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1. Abstract
The aim of this research is to create a tool to
support musicologists in tracing and studying
the evolution of music trends through years. For
this purpose, we create an Euclidean music sim-
ilarity metric space employing Transformers ar-
chitectures, which currently hold the state of the
art in Natural Language Processing tasks, and
the triplet loss function. In addition, we create a
graphic interface to support the visualization of
music pieces in a 2D space. Experiments reveal
that Transformer architecture over−performed
with respect to the CNN. We test our models
both with algorithm metrics and human evalu-
ations provided by music experts. At the end
of the study, our model show an evolutionary
trends of popular music in Italy in a range of
year between 2016 to 2021.

2. Introduction
Digital revolution has brought significant
changes in the music production world, as it al-
lows to reduce the cost and the space required for
the electronic hardware. The main consequence
of this phenomena is that, today, an increasing
number of people produce music. This revolu-

tion is leading to a faster evolution of the music
much more that it happens in the past. Further-
more, people’s music tastes have been evolving
through years in parallel to music styles. Simi-
larly, music styles are influenced by popular cus-
toms and social changes. As the number of mu-
sic sub-genres is growing more and more, we be-
lieve that music genre classification can not be as
exhaustive as it would be in the past years. In-
stead, we believe that the categorization of mu-
sic should mainly relies on similarity. For this
purpose, we create a similarity metric space in
which similar songs are located in near-by re-
gions, while dissimilar one are far away from
each other. Music similarity literature is vast, in
MIREX context ’Audio Music Similarity’ task
has been run from 2006. Most of that works
rely on Machine Learning classifier, hand crafted
features and human evaluations. Today, new
Deep Leaning techniques leads to much perfor-
mative algorithms. Many works exploit triplet
loss function with Artificial Neural Network, as
the Multi-Layer Perceptron or CNN, using per-
ceptive features mixed with hand-crafted fea-
tures. Similarly, the problem of the evolution
of music trends has been treated by many other
works. Some of them try to capture the genre
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trends predictions through the influence of mu-
sic in time and space, with the beliefs that an
Artist’s musical influence is not limited to just
a genre, but also to the others. Others treat the
problem of music prediction employing LSTM
architectures, using the song playback volumes,
collection volumes and download of music by
several artists. In this thesis, we presents a novel
approach based on Transformer [4] architecture,
which exploits triplet loss function and employ
perceptual features as music descriptors.

3. Features and Datasets
In this section we give an overview of the per-
ceptive features and the datasets we employ for
our research.

3.1. Perceptual features
Music similarity can be described under several
dimensions including sound, harmony, melody,
rhythm and growth. What is more, it can be
related to psychological, cultural, perceptual as-
pects of human life and differently perceived by
everyone due to the non-linear humans percep-
tion of sound. For this reasons, we leave the
comprehension of all the high level categories to
deep learning model, while employing low level
features to describe the logarithmic human per-
ception of sound. For this thesis we extract five
perceptual features, which are able to capture
different aspects of music. They are MFCC,
MFCC delta, CQT, MEL and Chroma coeffi-
cients, for a complete features vector of 324 mu-
sic descriptors per 130 time frames.

3.2. Dataset
A dataset must satisfy a certain number of re-
quirements. It must provides a number of bal-
anced examples which must cover all the rele-
vant classes of interest, it must be large enough
to avoid over−training and to effectively learn
models incorporating inconsistencies in the data.
It also should be free licensing and provides raw
audio data. Consequently, we choose ’Free Mu-
sic Archive’ library, as it satisfies those require-
ments and also provides metadata related to ti-
tle, artist, genre and year. It contains eight bal-
anced genres for a total amount of 8000 songs.
To test our model, we also select six playlists
from Spotify, which collect all the most popu-
lar and listened Italian songs from 2016 to 2021.

Spotify’s API allow us to download 30 seconds
of audio per tracks, for a total amount of 500
songs.

4. Networks and Triplet loss
function

In this section we present the model architec-
tures we employed for the experiments and the
implementation of triplet loss function.

4.1. Convolutional Neural Network
We build a Convolutional Neural Network com-
posed of three convolutional layers with 64, 128
and 256 number of kernels each. After every
convolutional layer, we insert a Max Pooling 2D
layer, to downsample the input by a factor of
3, and a Batch Normalization layer, to prevent
overfitting in the training stage. Then, we in-
sert a flatten layer to reduce the dimensionality
of data and add a dropout layer for more reg-
ularization. The input is then feed to a dense
layer with ’Relu’ activation and a final L2 nor-
malization layer, to restrict the output embed-
ding vectors inside a unit hypersphere.

4.2. Transformers
Transformers are architectures which
over−performed with respect to the past
recurrent models. The reasons for that are due
to the ability of processing long sequence of
input data at the same time. While past recur-
rent models processed their input sequentially,
thus requiring expensive memory, Transformers
process data in parallel at the same time. The
transformer acts as it does not know the tem-
poral dimension of data, so positional encoding
is added to the input before being processed.
The greatest power of Transformer is the
self-attention mechanism. This allows to create
weighted connections among the input data
and to focus the attention on the most relevant
ones. Thanks to the multi-head attention layer,
Transformers are also able to ’see’ different
representations of the same input at the same
time and elaborate them all together, requiring
the same memory as it would use to process a
single representation of the input.
Our Transformer includes the encoder structure
only. This is the only necessary structure for the
purpose of our thesis, as we don’t want to gen-
erate data, but instead learn a similarity metric
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space. The encoder has the same structure of
the one presented in the original paper [4]. In
such structure, we remove the last Dense layer
with Softmax activation function. Instead, we
add a Dropout layer to prevent overfitting, we
add a 1D Global Average Pooling to downsample
the input, we insert a Dense Layer and finally, as
for the CNN structure, we add a Lambda layer
to perform the L2 normalization. In our best
model, we set the number of encoder layers to 12,
the number of heads to 27, the number of units
neurons in the dense layer to 1024 and the em-
bedding vectors output to 1024. We introduce a
linear activation function in the first Dense layer
before adding the positional encoding to the in-
put, increasing the performance of the model of
the 17 percent, as we learned from [2].

4.3. Triplet loss
Triplet loss is the technique we employ for the
generation of the similarity metrics space. We
select from the datasets triplets of samples in
order to have two very similar samples, the an-
chor and the positive sample, and one very dis-
similar from the first one, the negative sample.
Triplet loss minimize the Euclidean distance be-
tween the anchor and the positive sample, while
increasing the one of the negative with respect
to the anchor. The following Formula shows the
loss function for a single triplet:

{L = max(0, D(fa − fp)−D(fa − fn) + α),

(1a)
where:
• fa is the embedding vector for the anchor

sample;
• fp is the embedding vector for the positive

sample;
• fn is the embedding vector for the negative

sample;
• ’alpha’ is the margin, a value which makes

sure that the network is not allowed to out-
put the insignificant solution where all em-
bedding’s vectors are zero or contain the
same values;

• D is the metrics to compute the distance,
which in our case is the Euclidean distance.

In our research, we implement a triplets mining
based on three different labels, which are the
genre, the artist and the track id label. The rea-
sons which lead us to make this choice are sim-

ple. A song is more similar to itself than to any
other song. Two songs by the same artists or
of the same genre are more similar than songs
by other artists or others genres. The We im-
plement the triplet loss layer exploiting Siamese
Networks. These networks work in parallel while
sharing the same weights. Given a base model,
which could be for example one of the architec-
tures mention in 4.1 or 4.2, we compile a new
model with three new input layers, each corre-
sponding to one of the samples in a triplets.

5. Graphic Interface
To support the study of the evolution of music
trends, we create a graphic interface, depicted
in Figure 1. It provides very basic operations,
which revealed to be extremely useful in trac-
ing trends. The interface shows all the music
pieces by ’Free Music Archive’ datasets, which
are represented as points in space, where each
color corresponds to a particular genre. Black
points, instead, represents Spotify’s tracks. A
slider on the top left of the window allows to vi-
sualize songs by year. Clicking on a point song,
information relative to title, artist, genre and
year are illustrated in a info box on the bottom
right of the window. A heat map allows the vi-
sualization of the space in which the color and
the color’s intensity are parameters related to
the genre and to the concentration of the em-
bedding vectors presented in a certain region.
There is the possibility to shows Spotify songs
over the heat map. Clicking a point and and
pressing ’i’ on the keyboard, neighbours of that
point are shown over the heat map.

Figure 1: The figure shows the graphic inter-
face. Colored points are music tracks from FMA
datasets, while black points represent Spotify’s
music tracks.
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6. Experiments and results
In this section we describe the four experiments
we conduct with both architectures. Then, we
introduce the metrics used for the final evalua-
tions and finally, we show the results.

6.1. Experiments
We decide to conduct four different experiments
to test the performances of our model with dif-
ferent settings. While we maintain the CNN
structure the same for all the tests, in the Trans-
former case, we experiments different model
complexities and add new layers in the final test,
to show the improvements with respect to the
first scenario.
In a baseline approach, we feed the networks
a training set with examples including only
20MFCC features by 130 time frames. In this
first test, we mine the triplets from the dataset
according to the only genre label. In this way,
each triplet has the anchor and the positive sam-
ple sharing the same genre, while the negative
sample having a different genre.
In a complex approach, the experiments are con-
duct employing all the complete features vec-
tors with 324 descriptors by 130 time frames. In
this second scenario, the triplets selection is per-
formed according to three different labels, the
genre, the artist and track id label. In the train-
ing process, each label is given a probability of
being selected at each time step. A batch of
triplets at each time step is generated accord-
ing to the select labels. We notice that track id
label notably reduce the computational time in
the training process, act as a similarity regular-
ization and make the loss decreasing faster, as
we learned from [1].

6.2. Metric
To evaluate the performance of the models we
employ a machine learning classifier, the ’K-
nearest neighbours’, with ‘ball tree’ algorithm.
First, we predict with our trained model (CNN
or Transformer), the embedding vectors of both
the training and test set. Than we fit the ‘K-
nearest neighbours’ classifier with the predicted
training set, with the corresponding true labels.
Then we use this classifier to predict the genre
labels of the test set and count how many of the
predicted labels are equal to the true labels. The
accuracy is calculated as the number of correct

predictions divided the test set size.

6.3. Results of the four Experiments
Table 1 shows the results of the four experi-
ments. The CNN is very performative in learn-
ing a simple metric space based only on MFCC
coefficients, but its accuracy decreases when it
deals with the complete features vectors. Trans-
former, instead, shows very poor performances
in this first experiments. This is due to the fact
that Transformers are architectures which works
best with longer inputs data. Furthermore, in
the special case of audio signal, acoustic events
in adjacent frames are very similar to each other.
So, in this case, Transformer shows its weakness
in focusing the attention on such short input se-
quences of similar events. To the contrary, in
the second experiment, it leads to very good re-
sults, after we double the dimensionality of the
features from 324 to 648, following the guide-
lines of [3]. We reshape the matrix according to
this Formula:

{
X ∈ R(lxd)− > reshapeX ∈ R( l

a
xad) (2a)

We think that music cannot be described just
by a single feature, so 20 MFCC are little in-
formative. Multiple features, instead, are able
to capture different and relevant aspects of the
same song. For these reasons, we think that the
results shown by the Transformer are much per-
formative than the CNN.

Final results of the four experiments

Baseline app. Complex app.

CNN 90 75

Transformer 56 91

Table 1: Accuracy of of the models in both tests
and with both networks.

7. Humans evaluations
We ask three experts to evaluate the perfor-
mance of our model. We submit to them a
simple test composed of six questions to which
they have to answer giving a numerical score
in a range between 1 and 10, where 1 is the
worst evaluation and 10 is the best evaluation.
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For each participants, twenty randomly songs
are selected from Spotify’s playlists, for a to-
tal amount of 60 songs. The first three ques-
tions are concern the absolute position in space
of a query song, the similarity of its neighbours
and the proximity of its location with respect to
the right cluster. The final three questions con-
cern about to the overall performances of the
systems. We ask the tester how useful is the vi-
sualization by year, how much is the ability of
the system in showing trends and how perfor-
mative is the overall system.

7.1. Results of Human evaluations
In table 2, we can see the final results of the
first three questions. We compute the mean of
the three evaluations given by the participants
for each song and for each question. Then, we
compute the mean of the mean twenty values
for each question. The results are shown in the
first rows of the table. In second row, instead,
we show the variance of the mean of the three
evaluations for each song and for each question.
In table 3 are shown all the evaluations given
by the each participant for the last three ques-
tions concerning the overall performances of the
system, plus the mean and the variance.

Final results of the first three questions

Q1 Q2 Q3

Mean 7,2 6,3 7,1

Var 0,61 0,82 0,49

Table 2: Mean and variance of the evaluations
given for the first three questions by the experts.

Final results of the last three questions

Q4 Q5 Q6

V1 4 7 7

V2 7 8 8

V3 8 7 8

Mean 6,3 7,3 7,6

Var 2.9 0.2 0.2

Table 3: All the scores, the mean and variance of
the evaluations given for the last three questions
by the experts (V1, V2, V3).

The first question gain a 7,2 mean value and
0.61 score for the variance. According to this
result, our model classifies almost correctly the
absolute positions of the points songs. The sec-
ond question obtain mean value of 6.3 score and
very high variance. This result reveal one of the
main weakness of our model which can a con-
sequence of FMA issues, in which the compared
datasets show very different characteristics. The
third question reaches the mean value of 7,1 and
lower variance, which means that all the scores
are concentrated around that value. In this case,
our model seems to be more performative, as
the songs are located in proximity of the correct
clusters. The result of the fourth question is
the lowest with respect to all the others, which
is 6,3. The visualization per year of the FMA
tracks lucks of a sufficient number of examples
per year, so comparing a query song with neigh-
bours of different year results to be hard. The
fifth question obtain a final mean vote of 7.3 with
a very low variance. This means that the evalu-
ations were consistent in agreeing that this tool
can well visualizes trends. The results of the last
question of the test test reveal a 7,6 score on the
overall performances of the system. This is a
good results, even though it appears to be lower
compared with what we expect from the first
metric evaluation. The reasons for that could
mainly be address to the characteristics and lim-
its of FMA datasets. A good point to notice is
that, all the Spotify’s playlists include the most
popular tracks in Italy from 2016 to 2021 and the
most popular genres in Italy in these years, in-
cluding ’trap’, ’indie’, ’Pop’, ’drill’. The Embed-
ding vector points generated by our model are
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predicted in the exact position of space where
we expect they would be. In fact, they are orga-
nized inside a region of space between Hip-Hop,
Pop and Rock.

7.2. Tracking music trends
We plot the songs by Spotify’s playlists, year by
year, over all the embedding points of the FMA
dataset. From this plot, we trace an evolution-
ary trend of music. Playlists contain the most
popular songs in Italy from 2016 till 2021, so
classifiable as Italian Pop music. In our inter-
face, black points, which represent them, grad-
ually move from the violet Pop cluster to the
light-blue Hip-Hop cluster. This fact could be
addresses to the advent of the trap music in
Italy in 2016. Actually, 2016 was the year in
which trap music reached the maximum pop-
ularity in Italy, enjoying great success among
the audience. If we look back in years before
2010, Pop music was mainly based on songwrit-
ing folk music. Later, the influence of American
trap music affected the Italian artist, thus hav-
ing consequence on Pop music.

8. Conclusions
In this work we employed Deep Neural Archi-
tecture to study the evolution of music trends
through years. We employed both a ’Convolu-
tional Neural Network’ and a ’Transformer’ ar-
chitecture, with in addition the triplet loss func-
tion, to generate a music similarity metric space
based on Euclidean Distance. In such a space
songs in near-by regions share similar character-
istics, while dissimilar ones are far away from
each others. We conducted four experiments
with both architecture with a baseline and a
complex approach, showing very different re-
sults. In the complex approach Transformers
outperformed over the CNN reaching 91 per-
cent of accuracy. A graphic interface, created
for the purpose of this research, was used to
show the output embedding vectors of our best
model and to conduct human evaluations of the
performances. At the end of the study, we was
able to traced a music trends of the popular mu-
sic in Italy which moves from the Pop genre to
the Hip-Hop genre. In futures works we will
implement unsupervised techniques for different
triplet mining strategies in order to be able to
make use of larger and unlabeled datasets.
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Abstract

New digital technologies completely revolutionized the world of music
production and made it accessible to almost everyone, expanding the
possibilities of the creativity process and giving the opportunity of a low
cost self-promotion on the social networks. The main consequence of this
revolution is the increasing numbers of new musical ’trends’, which are
hardly classifiable into just a single musical genre and make the identifi-
cation of new musical ’sub-genres’ almost impossible.

From this perspective, it arises the need of changing the point of
view and look for a new way of identifying music trends, to let the music
being free from genres boundaries though still giving a clear idea of the
songs style. The concept of similarity naturally encounters this need, as
it might be disjoint by the concept of ’genre’.

In this study we address the problem of creating a similarity metric
space to trace how music evolves through years and what genres are
more influenced by other genres or by new emergent artists, as they gain
popularity, giving rise to new ’musical trends’.

For this purpose, we propose a novel approach based on Transformer
architecture with triplet loss function to generate a music similarity met-
ric space and a graphic interface to visualize the results and to identifying
the music trends. Other precedent works focused their attention on mu-
sic similarity, but, at the best of our knowledge, no one of them exploit
music similarity to study the evolution of music trends through years,
employing perceptual features as input to the current state of the art
Transformer architecture.





Sommario

L’avvento del digitale nel mondo della musica sta spostando lentamene
il baricentro della produzione musicale dai grandi studi di registrazione
alle case di nuovi piccoli artisti emergenti. La principale conseguenza di
questo fenomeno è la nascita di sempre più numerose nuove ’sonorità’
musicali, difficilmente incorniciabili in un certo genere musicale, che ren-
dono faticosa, ed in un qualche modo inutile, la definizione di altrettanti
nuovi ’sottogeneri’.

Sotto questa prospettiva nasce l’esigenza di rompere i confini di genere
ed esplorare spazi più liberi nel campo della classificazione musicale: il
concetto di similarità risponde naturalmente a questa esigenza, evitando
di ’etichettare’ un certo brano musicale, ma piuttosto di collocarlo in uno
spazio metrico in cui brani vicini presentano una qualche somiglianza. Il
concetto di similarità risponde naturalmente a questa necessità essendo
idealmente distaccata dal concetto di genere.

In questo studio diamo uno panoramica dell'evoluzione della musica
negli anni, evidenziando come alcuni generi musicali siano fortemente
influenzabili da altri generi, nonché da nuovi artisti emergenti, dando
origine a nuove ’tendenze musicali.

L’architettura proposta in questo studio è un Transformer, che tramite
la funzione di costo triplet loss e l'utilizzo di descrittori percettivi del
suono, è impiegato allo scopo di creare uno spazio metrico Euclideo di
similarità musicale. Uno spazio grafico 2D ci permette di visualizzare
l’evoluzione della musica negli anni e di capire come un certo genere
sia influenzato da altri generi o da artisti emergenti, dando dunque vita
alla scia di nuovi trend musicali. Altri lavori precedenti hanno focaliz-
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zato la loro attenzione sulla similarità musicale, ma nessuno di questi
sull’evoluzione della musica nel tempo con i Transformer.
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Introduction

Many producers, which I had the pleasure to met during my musical
experiences in different recording studios and music laboratories, shared
to me how laborious it was to record and produce music with the analog
technologies in past years. It was a long and demanding work, in which
each mistake cost a lot of money and time. However today, the advent
of digital technologies is revolutionizing the music production rules and
practises. Very cheap hardware, which can almost simulate the relative
analog ones, have the advantage of being portable with a considerable
size reduction.

A large number of these devices are midi controllers, which are de-
signed to work with their own software, though they can be also con-
figured to allow the control of the functionality of other ones. This is a
grate advantage as it grant musicians the access to an unlimited number
of digital synthesizers and effects, just by holding a single controller and
a personal computer. There is the possibility to choose between an infi-
nite list of VSTs but also to design personal sounds with tools like ’Max
Msp’, thus enormously expanding the possibility of the creativity process.
Digital Audio Workstations grant the integration of different plugins in
a single platform, facilitate the recording session as well as simplify each
step of the signal processing chain. They also offer all the tools needed
for the mixing and mastering process such as equalizers, compressors,
limiters and so many others electronic hardware which are completely
replaced by software. The trend allows music production studies to re-
duce required space, so that small rooms are potentially enough. For
those reasons, the on going digital revolution encourages young artists to
start a career in the music industry much more than it happens in the
past.
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This phenomenon has been slowly growing through years and today a
larger number of artists can self-produce their own music. Self-promotion
is also catching on in the society more and more. Social media, like In-
stagram or Tik-Tok and the new music platforms, like Spotify or Tindal,
make possible to share music freely or at a very low price, among the
public, focusing the attention not only to the artist’s music style, but
also to the artist’s image itself. Today artists become as influencers and
their music acquires more relevance if people tend to follow them. For
this reason, artists might also become trends setters.

But what is the impact of this revolution in the evolution of music?

Today, the categorization of music based on genre is no more explica-
tive as it would have been years ago. It is unlikely to happen that asking
to some musician the genre he/she produces, answers like pop, electronic
or classical, would give an exhaustive definition of the style of the music
produced. Today, a real distinction between genres is not feasible any-
more. People travel, people share ideas, people are strictly connected to
each other, distances are reduced, so contamination is a commonplace.
Moreover, there is the propensity of any aspiring producers to investigate
and explore new exclusive ’sounds’, on one hand, for a personal research,
and on the other hand, to have a chance to emerge among all of the other
artists and being more ’identifiable’. In this context, the investigation of
new directions that music will pursue and maybe what trends will be
popular in the future is a under-the-spot topic.

For everything said so far, music cannot be clustered anymore in
rigid borders. Music is not more just belonging to a genre’. Instead,
what we can better do is to think to music as located somewhere in
an imaginary space. In such a space, all of the music’s pieces which
are similar, which means that they have something in common or share
characteristics which make them resemble one with each other, are closed.
Greatest aggregations of similar songs are trends. Given information on
the released years for the songs allows, in the space, to also track the
evolution of music trends through time. These could be used also with
the aim of searching for a correlation between the rise of a new emergent
artist and a corresponding trend in past years. In this work we present a
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novel approach to music similarity space creation based on deep learning.
A representation of music based on released year allows to observe how
music spontaneously tend to aggregate in regions and form new musical
currents.

The literature for music similarity is vast: Audio Music Similarity
(ASM) is a task that has been proposed for the first time in 2006, in the
’Music Information Retrieval Evaluation eXchange’ MIREX event [1].
In its first editions, music similarity’s researches where based on hand-
crafted features and Machine Learning ML techniques which involves
the use of classifiers. The evaluation of the similarity measurements, in-
stead, relied primarily on subjective ratings of some music experts, which
evaluated the performance of the algorithms according to their personal
judgements. In MIREX context, the work proposed by Bogdanov et. al.
[2] is one of the first study which lead to very good results in the audio
music similarity task. They employ different hybrid systems based on
tempo-related music features and ’Support Vector Machine’ SVM classi-
fiers which involve the use of high-level semantic descriptors derived from
low level features.

Today, Deep Learning (DL) techniques demonstrates to be much more
performative than the classical Machine Learning Classifier. Further-
more, the works mentioned above result to be unsuitable to efficiently
address the similarity task, as it is something very subjective cannot sim-
ply rely to just the ratings of human judgments. Provide a qualitative
objective measurement and a representation of similarity is something
challenging. New approaches to this problem employ ’Artificial Neural
Networks’ and perceptual features, build on psychoacustical scales cre-
ated on the basis of human’s sound perception, which substitute the less
descriptive handcraft features and ML techniques.

The work by [3] addresses the similarity task by introducing a novel
approach with the use of Conditional Similarity Networks which allows to
jointly model several dimensions in which the similarity can be described.
In addition, triplet loss technique, trained on a combination of users tags
and algorithmic estimates, is employed to create the similarity metric
space. Other similar works exploit the triplet loss technique, for example
the work by Cleveland et al. [4] which employ simple fully connected
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networks with a triplets mining based on the artist label, or the work by
Pretet et al. [5] which use more advance Deep Learning architectures,
like CNN, with perceptual features as music descriptors.

In this thesis, a novel approach based on the current state of the art
architecture in Natural Language Processing tasks, the ’Transformers’
[6], is used to the generation and optimization of the embedding music
space. In our model, we employ the encoder structure only, removing the
last Softmax layer, commonly used for multi-class classification tasks, and
replacing it with a triplet loss layer for the generation of the similarity
metric space. Triplet Loss technique was first introduced by Google in [7].
The aim of the triplet loss is to create an L2 Euclidean space such that
similar samples are located in near-by regions, while dissimilar one are
far from each other. We use a multi labels triplets mining strategy based
on genre, artist and id track label. The triplets are randomly sampled
according to one of this labels from the dataset with different probability.
In our final test we choose 20 percent of probability for the artist, 30
percent probability for id track label and 50 percent probability for genre
label. The reasons which move this choice is that a song is more similar
to itself than to the other and songs by the same artist are similar. In
this study we implement an offline strategy for triplet mining, generating
batches of N triplets at each time steps by N*3 randomly samples from
the dataset. For the training stage we use ’FMA’ small library [8], which
includes eight different balanced genres, while for the test stage, we select
Spotify’s Italian playlists with songs released from 2016 till 2021.

To evaluate the performance and the effectiveness of our model, we
create a 2D graphic interface, in which show all the FMA music pieces
colored according to the genre and located in space according to simi-
larity in a timeline starting from 2007 till 2017. We also plot the test
music tracks, represented by black point in space. Through simple basic
functions, this interface helps the evaluation of our model performances
through human evaluation conducted by music experts.

This thesis is structured as follow: in Chapter 1 we present the state of
the art on the music similarity task, triplet loss strategy and transformer
architecture. We give a summary of the needed theoretical background
knowledge for the comprehension of our research in Chapter 2, discussing
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about the perceptual features, the Deep Neural Networks and the triplet
loss technique. Next, we present our approach to the music similarity
task, explaining the reasons to employ perceptual features, the architec-
tures used and the presentation of the graphic interface in Chapter 3. In
Chapter 4 we discuss the setup for all the experiments, showing the one
which lead us to better results. Finally, we summarise the key findings
of our research, discuss the limitations or weaknesses of the study and
the possible futures improvement of our work in Chapter 5.





1
State of the Art

In this chapter we will present the reasons why, today, music similarity
has gained importance with the advent of digital revolution and why
it needs to be further explored. We will go through the most relevant
approaches in the field. Finally we will give an overview of what has
been proposed in the field of musicology for the study of the evolution of
music trends.

1.1 Music streaming service provider
In recent years, new music streaming service providers have seen a consid-
erable number of daily listeners growing. Digital revolution has brought
a drastically changed in the technologies employed for audio reproduc-
tion, bringing the old vinyls, cassettes and CDs to be replaced by the
new online music streaming services. The reasons can be found in the
accessibility provided by portable devices and by the offering of an in-
credibly large number of music tracks. The most immediate consequence
of this phenomena is the needs of having an efficient system to suggest
and help people to find new music. In this context, music similarity is
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becoming a central topic which need to be taking into account when it
comes to design recommendation systems.

Nowadays, ’Spotify’ [9] use three main types of recommendation mod-
els which are:

• Collaborative filtering [10]: it is the process through which it is pos-
sible to make automatic predictions on the users’ tastes. This type
of recommendation model filters for information or patterns from
the collaboration of multiple agents, even if these agents might not
explicitly collaborate with each other, and try to identify similar-
ity between them. In real world, people have always been making
use of different kind of collaboration which rely on spoken words,
advertising, media and so on, to make decision. Collaborative Fil-
tering follow the rules of this natural process and it based on the
assumption of the ’nearest neighbors’. This means that is if the
behaviour of user A is similar to B in a issue, probably the two
users would have a similar behaviour in other issue;

• Natural Language Processing (NLP) [11]: it is a subfield of Ar-
tificial Intelligence AI which employ computational techniques to
analyse music tracks, playlists, blog posts, social media comments.
These are turned into text documents and they are used to search
for similar patterns among them. These NLP Spotify’s algorithms
constantly search the web to find any kind of text related to a par-
ticular track to come up with a description for each song. Artists
and songs are assigned to classifying keywords based on the data
and than they are used to classify songs and match them with other
similar profile’s song.

• Audio models [12]: these models rely directly on particular music
descriptors which are used to search for similarity between tracks.
These features are extracted directly from raw audio and they
can be both low or high level descriptors. They give information
about the key, tempo, mood, danceability, valence, energy, loud-
ness, speechiness, instrumentalness, segments, tatums, bars, beats,
pitches, Timbre and so on. With this approach, new tracks on
Spotify have the possibility to be suggested to users and added
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to playlists even if they have very little initial listeners, so when
collaborative filtering could be less efficient.

All of these models try to answer the same question, which is ’what
makes two songs similar’?

In this study we will explore the third of these approaches, with the
aim of creating a similarity metric space through the use of perceptual
features and deep learning DL Artificial Neural Networks ANN, which
can be used as a tool for the study of music trends evolution.

1.2 Similarity
In this section we will see what is MIREX and its oldest music similarity’s
algorithm in 2006. Then we will move to most recent methods which in-
stead involve deep learning DL techniques, focusing mainly the attention
on triplet loss, which is the focus mechanism employed in this research.
We will briefly talk about music similarity and the music features needed
to describe it.

1.2.1 Similarity in MIREX

MIREX

’Music Information Retrieval Evaluation eXchange’ MIREX [13] is a
community-based framework which, every year, submits new challenges
related to a multitude of different ’Music Information Retrival’ MIR and
’Music Digital Libraries’ MDL [14] tasks, which are chosen by the com-
munity itself, through different inputs, such as a mailing list or MIREX-
WIKI. The aim of this context is to define standard metrics of evalu-
ation in the ’MIR’ field. Since the datasets used in MIREX context
cannot be freely shared, the ’International Music Information Retrieval
Systems Evaluation Laboratory’ IMIRSEL [15] provides the infrastruc-
tures to upload and to evaluate the different algorithms submitted by
the participants, which are subjected to both statistical test and human
evaluations.
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ASM

’Audio Music Similarity’ AMS is a task that was run for the first time
in MIREX context in 2006 and whose last edition was in 2016. In its
first edition, the similarity evaluation was based on two different metrics.
The first metric requires the experts or the volunteers in MIREX lists
to compare, using the spiffy Evalutron 6000 web interface [16], a set of
thirty songs to a given query track, giving both a numerical score from
zero(not similar) to 10(very similar) and a personal judgment to state if
the song is similar to the query track. Tracks were previously filtered in
order to avoid to select song’s cover or tracks by the same artists. The
second metric relied on objective statistics, as the average percentage of
genre, artist and album matches in a certain number of top results. The
final evaluation of the participant algorithm was an attempt to find any
kind of correlations between these two different metrics.

A very performative work in audio music similarity task submitted
in MIREX 2011, was the one proposed by Bogdanov et. al. [2]. They
authors proposed three different baseline approaches based on low-level
features. The first one was an unweighted Euclidean distance performed
on 59 of manually selected descriptors, which were extracted frame by
frame, then summarized through mean and variance statistic and finally
reduced in dimension by the principal component analysis (L1-PCA).
The second one was an Euclidean distance based on relevant component
analysis [17] RCA. The features were further reduced through RCA al-
gorithm previously trained on a set of similar songs, thus minimizing the
irrelevant variability in the data and amplifying relevant one. Finally,
the third baseline approach was a Kullback-Leibler divergence based on
’Gaussian Mixture Models’ GMM [18] of MFCCs, reducing the com-
putational complexity using just a single Gaussian with full covariance
matrix.

Against those three baseline approaches they proposed three new hy-
brid approaches. The first one exploits a simple sum of measure dis-
tances performed on two tempo-related musical parameters, the beat per
minute BPM and the onset rate OR. They move from the assumption
that songs with the same BPM, or multiples of the same BPM, are more
similar than songs with non-multiple BPM. Given two tracks, similarity
scores were the result on the sum of weighted distance measure based on
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the two descriptor. The second approach exploits machine learning tech-
niques based on semantic measures. They exploit a 14 multi-class sup-
port vector machine SVM classifier, to infer different groups of musical
dimensions which include genre, culture, moods, instruments, rhythm,
and tempo annotations. To do this, high-level semantic features are first
inferred from the low-level ones. The third measure, instead, involves
linearly combining previously introduced metrics into a hybrid one: an
Euclidean distance based on principal component analysis of timbral,
temporal and tonal descriptors, and a timbral distance based on single
Gaussian MFCC modeling.

An important observation that must be made, coming from the afore-
mentioned works, is that ASM tasks in MIREX, in most of the cases, were
evaluate relying primarily on human and subjective judgments. This is
the principal cause of the limitations on these algorithms, as the luck of
a clear definition of similarity and the variability deriving from subjec-
tive judgements, make it hard to find both a reasonable approach and a
metric to treat the similarity task. As the author of the paper [19] sug-
gested, these rely most on the fact that people perceive music differently
one from each other, so the accuracy of the final result would not be
as expected and there is a low inter-rater agreement between the given
ratings.

1.2.2 Deep Learning Approaches
Artificial Intelligence (AI) has brought substantial improvements to the
music similarity field thanks to the new knowledge and techniques de-
veloped in deep learning DP [20]. DP techniques allow an automatic
learning of the training dataset which result in an internal representa-
tion of the data distribution with the consequent possibility to recognize
and predict the class for unseen data. DP approaches in music tasks
generally include the extraction of perceptual music features from raw
audio, which are then feed to the artificial neural networks ANN, with
the aim of learning some patterns and peculiarity characteristic of the
data. Works like [21] try to deal with the problem of audio-based near-
duplicate video retrieval through Convolutional Neural Network (CNN).
Others like [22] employ the neural networks to build robust music recom-
mendation systems and others more like [23], use deep learning techniques
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for music classification system and autotagging for most of the popular
music streaming services. Triplet loss is a well known DL deep learning’s
loss function build on the top of ANN which is used to deal with the
problem of similarity. It was introduced for the first time by Google,
in 2015, in the paper [7] where the authors shown an high-performing
algorithm employed in the field of computer vision for the face recogni-
tion task. Triplet Loss is based on the idea that similar data must be
near while dissimilar ones must be pushed away from each other in the
metric similarity space. The implementation includes the splitting of the
dataset into sets of triplets composed by an anchor, a positive and a neg-
ative sample, in which the first two samples share similar characteristics,
while the third one show very dissimilar characteristics from the other.
The objective is to create a metric space by minimizing the Euclidean
distance between anchor and positive samples, while maximizing the one
between the anchor and the negative samples. The main important step
in this process concerns the criterion according to which the triplets are
selected, as it have a strong impact on the final result. Following, we
shows some of the latest implementation of this technique with employ
different strategies for the triplet mining.

Triplet Loss

[3] the authors introduce the concept of multidimensional similarity.
They employ conditional similarity networks [24], which are networks
able to learn embeddings differentiated into semantically distinct sub-
space. They combined them with ad-hoc masking functions, to train a
single network with four disentangled semantic dimensions of similarity,
which are the instrument, mood, tempo and genre dimension. The triples
mining was performed by choosing the three samples according similar-
ity in each dimension. In addition, they include a set of triplets mined
according to the only tracks information as a similarity regularization
to impose consistency across the embedding space, such that the anchor
and positive samples must belong to the same track. To conduct the
experiments they use Million song dataset [25] in addition to the meta-
data provides by last.FM dataset [26]. Two songs are considered similar
if they share at least one tag in the same dimension. They extract 128
Mel-spectrogram’s coefficients from three seconds of song excerpts as mu-
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sic descriptors and performed a multi-label classification (genre, mood,
instrumentation, tempo). Triplets are than feed to a CNN composed
by a first layer with 64 convolutional filters, followed by six Inception
Blocks plus a final inception module with an output embedding size of
256, ending with a final L2 normalization before computing the euclidean
distance for the triplet loss. The main problem of this approach is that it
still rely on human annotation as the four dimensions tags are subjective
evaluation of the users.

Another work which employs the triplet loss technique is [4], which
focus its attention on the artist-similarity. The triplets mining, here, is
implemented so that the anchor and the positive samples result to be
songs by the same artists, while the negative one is by another artist.
They used a two-layer fully- connected network, in which the first layer
has a ’sigmoid’ activation function, while the other a ’tanh’ activation
function. FMA dataset [8] provides tracks raw audio and additional
metadata from which the authors extracted 518 audio music descriptors,
like Zero- Crossing Rate [27], CQT [28], Tonnetz, MFCC [29], and STFT
[30], to which they apply a z-score transformations. The distance metrics
of the triplet loss is calculated as an euclidean distance between these
features.

In a most recent work that exploit triplet loss for the music similar-
ity task [5], authors propose a new recommendation system based only
on the audio content which does not require music tagging. Instead of
using classical handcrafted features feed to a classifier, they employ per-
ceptual features feed to a CNN, with an additional pooling layer which
allows to interpolate between different [31] statistics to down sample and
summarized the features. They analyzed 246 music tracks from Pandora
multi-labels dataset, with 488 tags, organized in five categories, extract-
ing 96 bins of CQT, (12 bins/octave and fmin= 32.70 Hz), and a hop
size of 1024 at 44.1 kHz, per 512 time frames. The basic idea of the
triplets mining relies on an oracle similarity function which returns a
list of songs, selected from the datasets, which are the most similar to a
given query track. Songs are ordered by descending similarity, in which
the similarity score is based on tags likelihood. The query track acts as
the anchor sample and the positive sample is chosen such that his index
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in the ranked list is lower than the negative one. They also limit the
number of positive sample per anchor and the number of negative sam-
ple per anchor-positive pairs as only the first few songs in list turn out
to be very similar to the query track. They results demonstrate that the
triplet loss gives better result with ranked list of songs instead of tags.

1.3 Evolution of music trends

Music styles have been evolving through years as people’s music tastes
have, since they influence both each other and they are a direct conse-
quence of popular custom and social changes. As researches in modern
music history have revealed, different generations of people tend to like
different music genres and if we take a look to music genres across all
ages, we can easily notice how the music has dramatically changed decade
after decade. There is no a single factor which induce this evolution, but
instead there can be identified an infinite number of causes, which, all
together, equally contribute to this phenomena.

One of the possible causes of this phenomena can be found in the
field of Neuropsychology, which plays an important role in this sense.
The perception of a musical sounds has a deeper influence on people
than any other kind of sounds or noises. When human brain process
musical sounds, they are not perceived just as a physical sensation, but
instead, they are able to affect humans also from an emotionally point of
view and have the power of bringing back in mind memories belonging
to the past. In [32] the authors conducted an experiment, called ’Mem-
ory Lane’, which shows the effect of ’reminiscence bump’. This effect
occurs in adults which show an increased recollection of the past events
happened during their adolescence. This tendency of developing such a
stronger remembrance of the past could be the consequence of hormonal,
neurobiological or social relationship and moreover, it affects every as-
pect of life. For example, this happens also for music, as the experiment
in mentioned article demonstrated. In such test, some undergraduate
university students were asked to rate the liking of each song, according
to the personal perceived emotion, the music’s feeling conveid, its sense
of nostalgia and to relate that song to a person. Reminiscence bump
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was found from the results, as they shows high ratings for music from
1980 and 1984, years which could be reconnected to the period of adoles-
cence of participants’ parents and their relative reminiscence bump. The
reported results of the experiments leave researchers with the open ques-
tion of whether perhaps musical preferences are transmitted over time
from generation to generation

Other reasons, that could be related to the changes of genre and
musical tastes through years, could be addressed to the specific social
context in which a certain population live, because music is always a
direct consequence of historical events, people’s habits, traditions, ideas
beliefs, religion, culture, commonly accepted way of behaving or doing
something, geographical regions or currents of thoughts. There are a very
large number of factors which play an important role in this scenario.
There is a close relationship between society and music, as the society
influence the music and the music, in the same way, influence the society.
As any other form of art, music is a pure expression of human being and
thus perfectly reflects whatever is around it.

Record labels, in order to strictly have the power to rule music, need
to always be a step forward in knowing the new direction in which the
music is evolving so they can anticipate new music styles. In this context,
tracing the evolution of music styles through years and try to identify
the most popular trends in a certain time or in a certain region, or both,
could be an interesting starting point to lay the basis for the study of
the future trends’ prediction. This is the main reason why a solution to
this problem need to be addressed.

This topic has been tackled by different researchers and following, we
will go through the most recent works to show some baselines approaches.

Some works like [33] treats the problem of predicting the trends’ evo-
lution of music genre according to two different approaches, which are
the spatial and temporal music influence and the music similarity. In the
paper, the authors move from the idea that an Artist’s musical influence
is not limited to just a genre. Instead it can also be able to influence
other genres and such influence can be effective for a certain period of
time. With ’Spatio-Temporal Music Influence Model’ STMI calculated
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by a cosine similarity between the features embeddings of the artists,
they can obtain specific spatial and temporal values. They evaluate the
influence that musicians have not only on music, but also on the other
musicians, taking into account that if they are located in different geo-
graphical areas, this influence would be poorer, and that ordinary artists
would be more conditioned by more famous artists. The ’Euclidean Sim-
ilarity Model’ (ESM) is instead used to measure music similarity through
an euclidean distance based on music features. Using PCA [34] they se-
lect the most relevant music descriptors from an initial set of 13 features,
reducing the dimensionality of the data. They also propose an ’Euclidean
Music Similarity’ instead of the classical Euclidean distance to calculate
a similarity score between the features.

Another work which focuses its attention on the evolution of music
trends is [35], in which the authors proposed a music popular trend pre-
diction model based on LSTM [36] architectures. To conduct the study,
they rely on data which comes from the ’Alibaba Cloud Music Plat-
form’. It is the top platform in China’s digital music industry, which
has been developed since 2016 and which held a 21.9 percent market
shared of music both from Chinese digital music platforms and Xiami
Music, with millions of active users. From this dataset, they extracted
information about users activity, including collections, downloads and
playbacks of songs, and metadata of each song and artist’s song. The
aim of the research is to predict the future popularity of an artist’s song
looking at the average playing volume of its past songs. They used an
LSTM architecture composed of three input neurons, which represents
the playing amount, the playing average and the playing variance of the
singers, two hidden layers with 35 and 10 units and three output neurons,
representing the play volume, average and variance. At the end of the
experimental results, they found that song playback volumes, collection
volumes and download volumes are the best data to predict the popular-
ity of an artist’s song. They also demonstrated that LSTM architecture
outperform the state of the art of the previous ML’s techniques.
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1.4 Our contribution in musicology

How can this work could really help musicologist in the study of the
evolution of music trends? The aim of this research is to create a basic
tool able to assign a specific position in a 2d space to each added songs
from several different genres. In such a space, songs which show similar
characteristics of sound, harmony, melody, rhythm, growth or which be-
longs to similar genre or sub-genres, are located in near-by regions. In
such a metric space, distance becomes the measure of similarity itself.
To allow the visualization of songs and so to allow researchers to conduct
their study on a concrete tool, we create a simple interactive interface, in
which songs are represented by points in space characterized by a color
according to their genre. Clicking on them, information related to artist,
title and year are available, in order to allow comparisons with neighbor-
ing songs. Furthermore, there is the possibility to show only songs by
the same year or songs published in a certain range of years. In addition,
the heat map helps to better show the distribution of genre in the 2d
space, so that are no more boundaries between them or kind of clusters,
but instead, a continuously changing shades of color. All of these ba-
sic and elementary functions, results to be extremely useful to trace the
evolution of a particular style of music. Studying a particular sub-genre
results to be extremely simple, as it can be added, once per time, songs
by consecutive years, so that its evolution through years could be easier
to track. With this tool, a large dataset of a specific genre, providing
songs from multiple years, could clearly show new directions undertaken
and towards what other genres is going to resembling more. This means,
that we will able to know what genre is able to influence more and where
the center of mass of that particular style is gravitating on. Contami-
nation are also shown, as a song point with of a particular genre could
be located in other color regions, where it would not be might expected.
Probably, that particular artist’s song could be affected by the influence
of other different music styles, even if does not belong to that current of
music. these are just some little suggestions on how this interface can be
used, but in reality the possible real world applications could be much
more.
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1.5 Some of the best Transformers prac-
tices

For the purpose of our research, we have decided to rely on relatively
new architectures, called transformers, introduced for the first time in
2017 by Vaswani et al. [6]. As the best of our knowledge, we employ, for
the first time, these architectures for music similarity tasks. The reason
behind this choice can be found in the high performances shown by these
networks in several deep learning tasks in which they outperform the
state of the art, reaching better results with respect to classical deep
learning networks. In this section we will give a summary of some of
most recent works which employs in which the transformers represents
the state of the art.

Works like [37], show how transformers architectures outperforms the
previous end-to-end sequence-to-sequence model, like time-delay neural
networks TDNN [38] and long short-term memory recurrent neural net-
works LSTM on the speech recognition task. They employ the same en-
coder decoder structure of the original paper ’Attention is all you need’,
with a very deep model. In fact, the use 48 encoder layers, which generate
a high-level representation of the input and a 48 decoder layers, which
models the data as a conditional language model. The experiments were
conducted on Switchboard-1 Release 2 (LDC97S62) [39] datasets, which
contains several hours of audio speech, from which they extracted 40 log
Mel filter-bank as music descriptor. At the end of the experiments, they
demonstrate that the introduction of stochastic residual layers in the
architecture further increases the results and enhances the performance
with respect to even more complex hybrid model.

[40] is a work that introduces a new state-of- the-art classifier that
uses label-attention, called Roberta, for the extreme multi-label classi-
fication (XMC) problem. They also present a framework for data aug-
mentation, which rely on ruled-based strategy and language-model-based
strategy, with the aim of mitigate the problems arise due to the scarce
data for tail labels, which in real-world scenario are extremely unbal-
anced. To validate the impact of the augmentation framework, they use
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’LA-RoBERTa’. This architecture is obtained from a pretrained model
call ’RoBERTa’ [41], further fine-tune it on the AmazonCat-13K [42]
dataset, with label attention, so that each token embedding can have
different impact on each label. They show how ’LA-RoBERTa’ outper-
forms previous state of the art model like the ’XML-CNN’ [43] or the
AttentionXML [44].

In the field of music information retrieval, Zhao et al. [45] present
’MusicCoder’, which is a transformer inspired by BERT [46] architecture,
which includes the only encoder structure. It is self-supervised pretrain-
ing model which is able to learn a powerful representation of music thanks
two masking strategies, the Contiguous Frames Masking (CFM) and Con-
tiguous Channels Masking (CCM). The first one randomly masked differ-
ent length of consecutive frames, whose size is sample by a normal distri-
bution. The second one, instead, randomly masked block of consecutive
channels. With this technique, the encoder is force to reconstruct miss-
ing data, so acquiring a high-level understanding of them. them They
join songs from three datasets Music4all [47], FMA-Large [8] and MTG-
Jamendo [48] and extracted music features, with ’Librosa’ library [49],
which includes Mel-scaled Spectrogram, Constant-Q Transform (CQT),
Mel- frequency cepstral coefficients (MFCCs), MFCCs delta and Chro-
magram. This research shows how these architecture can outperform the
state of the art both in classification task, where it achieve accuracy of
94,2 percent, and in music autotagging task.





2
Theoretical Background

In this second chapter we will first gives an overview of the features we
have chosen for our experiments. We will also introduce the Deep Learn-
ing (DP) architectures that we employ for the generation of the similarity
metric space. To achieve the objectives already discussed in the chap-
ter 1 of this thesis, two different kinds of Artificial Neural Networks has
been used: the Transformers, which are the current state of the art in
the field of Natural Language Processing and the Convolutional Neural
networks, which were originally employed in computer vision applica-
tions and images processing. In Section 2.2 we will illustrate the triplet
loss function and the different strategies that can be implemented to
mined the triplets. Finally, at the end of this chapter, we will discuss the
dimensionality reduction technique we use to generate the final output
embedding vectors, in a way such that they can be represented in a 2D
space.
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2.0.1 Features as descriptors for music similarity

Music similarity is not something that can be easily defined since it in-
volves several aspects of human perception of sounds and also different
dimensions on which it can be described and evaluated. Consequently,
one good point to start our research is to look for the most basic and
elementary parts in which a music piece can be break up and than try
to define a similarity between them. Probably, the easiest way to find
these elementary components is to learn how musicologists analyze and
decompose a music piece. ’Guidelines for style Analysis’ [50] is a book
written in 1992 by one of the greatest musicologist of the XX century,
called Jan LaRue. This book lay the foundation for modern music anal-
ysis with the identification of six fundamental parameters, which in some
way subdivide the phenomena of the music into manageable parts. They
are: ’sound’, ’harmony’, ’melody’,’rhythm’, ’growth’ and ’text influence’.
According to LaRue, conducting an analysis based on these six categories
is sufficient to give a whole description of the song itself and of its style.
However, these parameters would be insufficient for our purpose as we
know the behaviour of human auditory system is much more complex
than this. In fact, when we state that a music piece is similar to another
piece we are certainly referring to the similarity of the sound, the har-
mony, the melody, the rhythm, or the mood, the meaning of the lyrics,
but there could be other hidden reasons we cannot either understand
and which we don’t really know. Psychological, cultural, perceptual as-
pects, in fact are involved in the process of assessing the similarity among
songs by humans. Therefore, what we can do is to entrust the comprehen-
sion of human perception of similarity to AI and in particular to Deep
Learning architectures. On one hand, we employ low level perceptual
features, which are just simple vectors of numbers that a machine can
understand,to the description music sounds as the humans logarithmi-
cally perceive it. On the other hand, we leave the comprehension and the
description of all these high level features, mentioned above, including
Psychological, cultural, perceptual aspects, to the deep neural architec-
tures. For this thesis the music low level descriptors we have chosen are:
MFCC, MFCC delta, Chroma, CQT and Mel coefficients.
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Mel Spectrum

Humans perception of sound is not linear. As a matter of fact we are able
to distinguish two pure sine waves at 90 Hz and 91 Hz, but we cannot do
that between to sine waves at 10000 Hz and 10001 Hz. It means that we
perceived the distance between two close frequencies differently according
on where they are ’located’ in the spectrum. The Mel scale born with the
aim of linearize the frequencies in order to make the distance’s perception
of them equal in all the spectrum. In other terms, Mel scale is a non-
linear transformation which allows to convert the frequencies from Hz
in a new scale, Mel, such that they well approximate the psychological
sensation of heights of a pure sinusoid. Here is the formula to convert
from a frequency from Hz to Mel:

m(f) =
1000

log 2
log(1 +

f

1000
), (2.1)

where f is the frequency to convert, log is the natural logarithm and m
indicates the equivalent value in Mel.

The process to convert a signal in a power spectrum based on a Mel
scale involves four steps. First the input signal is sampled and windowed,
generating a certain number of segments on which Discrete Fourier Trans-
form DFT [51] is performed. Then, the obtained spectrum is splitted into
a certain number of equally spaced central frequencies, according to the
Mel scale. Finally, the Mel spectrum is computed by multiplying the
magnitude spectrum of each segments by a filter bank, composed by
triangular filters centered on Mel frequencies.

s(m) =
N−1∑
k=0

[|X(k)|2Hm(k)]; 0 ≤ m ≤ M − 1, (2.2)

where X(k) is the magnitude spectrum of a segment, M is the total
number of triangular Mel weighting filters and Hm(k) is the weight given
to the k-th energy spectrum bin contributing to the m-th output band.

MFCC

Mel Frequency Cepstral Coefficients MFCC [29] are perceptual features,
which similarly to the Mel scale, are based on the logarithmic human
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perception of sound and which are particularly suited to describe audio
and speech signal. They can be calculated according to the formula:

C(x(t)) = DCT [log(DFT [x(t)])], (2.3)

where C is the cepstrum, x(t) is the time domain signal, DFT is
the Discrete Fourier Transform [51] and DCT is the Discrete Cosine
Transform. The MFCC feature extraction technique basically involves
a first step of sampling and windowing of the signal, to perform the
analysis on short segments of audio. Then, DFT is applied to each of
the generated segments, which are now in frequency domain. Mel spec-
trum is computed by multiplying each power spectrum by the Mel-filter
bank, after applying a logarithmic function, which ends up in segments
of logarithmic power Spectrum. Finally, the Discrete Cosine Transform
DCT [52] is performed on the Mel spectrum, converting the signal in
the cepstral domain. Cepstrum is a spectrum of a spectrum in which a
’quefrequency’ peak corresponds to the pitch of the signal and the low
’quefrequency’ peaks represents the number of formants. Normally, in
real world application are used a number between 8 and 20 MFCC co-
efficients as increasing the number would just increase the complexity of
the model with no relevant advantages. Low order coefficients contain
most of the information about the overall spectral shape of the signal’s
spectrum, which can be thought as the timbre. Even though higher order
coefficients represent increasing levels of spectral details, there are no big
advantages to use them because most of the more relevant information
of the signal is concentrated in low order coefficients.

In particular, in speech signals, zero order coefficients represent the
average log-energy of the signal, while the first order coefficients indicate
the distribution of the spectral energy between low and high frequencies
(in Mel scale). Sonorant sounds have positive coefficients because the
energy is concentrated in low frequencies, while fricative sounds have
negative coefficients as the energy is most concentrated in high frequency.

MFCC delta

MFCC delta coefficients [53] are static features, as they only contain
information related to a given frame. Dynamic MFCC delta coefficients,
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which show information about the temporal dynamics of the signal, can
be obtained by calculating the first and the second derivatives according
to this formula:

∆cm(n) =

∑T
i=−T kicm(n+ 1)∑T

i=−T | i|
, (2.4)

where cm(n) denotes the mth feature for the nth time frame, ki is the
ith weight, and T is the number of successive frames used for computa-
tion, generally taken as 2.

Chroma Vector

Chroma [54] is the representation of the spectral energy of a signals in
a musical chromatic scale format. In fact, the whole tonal content of
an audio signal is condensed in just twelve coefficients, each of which
represents the semitones we found between a frequency and the double
of that frequency. Therefore, chromagram must be take into account
when dealing with high-level semantic analysis, like in the case of this
study, which results fundamental for the harmonic similarity estimation
as it allow to see all the pitches played in the analyzed music piece.

vk =
∑
nϵSk

Xi(n)

Nk

, (2.5)

where vk is the mean of log-magnitudes of the respective DFT co-
efficients, Sk is a subset of the frequencies that correspond to the DFT
coefficients and Nk is the cardinality of Sk.

CQT

Constant Q transform [28] is a spectral descriptor which resemble the
DFT. The difference is that it maintain for each frequency a constant
ratio between the central frequency of a bands filter fk and the spectral
width of that filter (fk-fk−1), helping to increase an equally energy dis-
tribution of a music signal. One important aspect to notice is that the
CQT prevents from some issues when frequencies are converted into a
logarithmic scale. For example, it enhance the resolution of peaks on
the lower end as the window length of each bin is function of the bin
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number, so the buffer size increase for lower frequency, while reducing
the buffer size for high frequencies and thus require less computational
power. Given the above, CQT emulates human logarithmic perception
better than how Short Time Fourier Transform STFT [30] does. .

fk = f0 ∗ 2
k
b (2.6)

where f0 is the central frequency of the first band and b the number of
frequencies per octave.

X[k] =
1

N [k]

N [k]−1∑
n=0

W [k, n]x[n]e
−j2πQn

N [k] , (2.7)

where W is the window function and 2πQ
N [k]

is the spatial frequency,

Q =
fk
δfk

, (2.8)

where Q is the quality factor, the constant ratio between the central
frequency of a band fk and the frequency resolution δfk,

N [k] = Q
fs
fk

, (2.9)

where fs is the sampling frequency and N [k] is the window length for
the k − th bin.

2.1 Deep Learning Background
Following, we discuss about the ’Artificial Neural Networks’ ANN, which
are deep learning architectures inspired by ’Biological Neural Networks’
of living being. These last ones are composed by billion of densely pro-
cessing units, called neurons, which are connected with each other by a
similar number of synapses. Synapses are structures responsible for the
transmission of the electrical signals through the neural system. We will
explain step by step how ANN are composed, how they work and their
main characteristics. Then, we will focus our attention on the two par-
ticular type of architectures we employ in this study for the generation of
the similarity metric space, which are the ’Convolution Neural Networks’
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and the ’Transformers’. Finally, we provide a brief summary of triplet
loss technique and its different strategies.

2.1.1 Artificial Neural Network
As the name itself suggests, Artificial Neural Networks ANN [55] are
parallel computing systems inspired by what is the ’learning center’ of
human beings, the neural system. Therefore, these architectures are de-
signed to simulate how it can analyze and process all the external stimuli
to which human sensory system react. This kind of architectures are also
known as ’deep models’ and are mainly characterized by compositions of
non-linear function, which can be denoted as:

(fi(x)) := (fm ◦ fm−1 ◦ . . . f1)(x) (2.10)
where fi is a stage of processing, called layer, in which the input is

transformed, with a non-linear function, to an output and feed again as
input to the following layer and m is the models depth or the number of
these layers, which does not include the input one.

Multi-Layer Perceptron

The simplest model, but also the oldest one we can trace back, is the
Multi-Layer Perceptron MLP [56]: it is basically a fully connected se-
quence of layers composed of a variable number of neurons.

A neuron is a processing unit of the layer responsive for a particular
non-linear transformation of the input. We can formally define it with
this expression:

fi(z|θ) := ρi(w
T
i ∗ z + bi) (2.11)

θ = (wi, bi, ρi)i = 1m (2.12)
where fi is the i − th layer of the network, z is the input array, ’ρ’

represents a non-linear transformation and θ is shown in 2.12. Other
variables are the learnable parameters of the network:

• wi, the weights of each connection;



22

Figure 2.1: Different types of Activation Function

• bi, the bias;

• ρ, the transfer function, also called activation function;

Activation function

The activation function helps the model to learn non-linear structure in
data and to control the learning process of the training set. Some of these
functions depicted in Figure 2.1, as the input diverge from zero, approach
a saturating value, like tanh function. In these region these of constant
constant values, the first derivative to zero and so the error cannot be
back propagated. The choice of the activation function varies depending
on the structure of the output space or according to the network’s task.

As we said before, each layer is composed of a variable number of units
(neurons) and we call this number ’shape’. d0 is the shape of the input
layer and di is the shape of the i − th internal layer. We call ’dout’ the
shape of the output layer, which usually represents the number of classes
of the input dataset when deal with classification problems. We can
imagine that each stage is a kind of feature extractor, where each neuron
acts on a different portion of the data to learn patterns. The aim is to
make, in the last layer, the input data matches the correct output. The
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loss function in the output layer states how well the prediction is, then
computes an error and backpropagates it. The weights of the network are
accordingly updated, so that at the end of the training process, makes
the network performing as expected.

Multi-label classification

Multi-label classification is a type of prediction task in which the net-
work is required to predict more than one label class per input sample.
In this case, the labels are usually encoded as a binary vectors and are
not mutually exclusive. The output layer has a logistic transfer function,
like Sigmoid and the standard loss function is the Binary Cross-Entropy.
This last one is also called Sigmoid Cross-Entropy Loss, as it is a Sigmoid
activation function plus a Cross-Entropy loss. This function acts inde-
pendently for each vector component (class), so that the loss computed
for each of them cannot affected by the others labels. This is the for-
mula for the Binary Cross-Entropy loss, where y′ stands for the predicted
output.

ferr(y
′, y) :=

C∑
c=1

yc − log(y)′c − (1− yc) log(1− yc) (2.13)

Multi-class classification

In multi-class classification task, each input sample fed to the network,
at the prediction stage, can be assigned to just one of the possible out-
put class. Here labels are one hot encoded, meanings that labels are
matrix where rows are the numbers of sample in dataset and columns
are vectors with the length equal to the number of total classes. All of
the vectors values are zeros, except for the index of the correct class,
for the corresponding sample, which has the value of one. In the output
layer is commonly employed a Softmax activation function and the loss
is computed through the Categorical Cross Entropy Loss, which is shown
in the formula 2.14:

ferr(y
′, y) := −

c∑
c=1

yc log(y) (2.14)
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Gradient

The gradient is a numerical calculation, in vector form, which gives us
information, during the training process, about the direction where the
loss function is increasing faster. So it tells how the weights should be
updated in order to follow the exact opposite direction. It is calculated for
a single input-output sample through a process called back propagation
[57], which is an iterative method which calculates partial derivatives
of the loss function with respect to any weights and bias in the output
layer. This is actually done for every layer, starting from the last to
the first, in a way that every layer does not affect the other. Each of
the values computed by these operations tell us how sensitive is the loss
function to each of the network’s parameters. Once the gradient vector
is obtained, the corresponding gradient value is subtracted from each of
the weights and then multiplied by the learning rate, which is a small
number between zero and one, which allow us to regularize the speed of
the learning process.

θ → θ − η∇(x, y, |θ) (2.15)

where ∇ is the gradient function with respect to the parameter θ, and
η is the learning rate, which tell us how big are the steps the network
walks to reach ∇ the global minimum at each iteration.

2.1.2 Convolutional Neural Network
The Convolutional Neural Network [58] is a class of Artificial Neural
Network which is very performative in processing data with a grid-like
topology, such for example a spectrogram or an image. This kind of Net-
work draws inspiration by researches on biological visual system conduct
by David Hubel and Torsten Wiesel [59] in the half ot the twentieth
century, who brought great advances in the understanding of the visual
system’s functioning. In particular, they focus their attention on cats,
which reveal to have two major types of cells, which were simple or
complex. The simple one was able to respond to bars of light or dark in
specific location and with specific orientation. The complex was still able
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Figure 2.2: Spectrogram feed to a Convolutional Neural Network with multiple
convolutional blocks

to respond to orientation, but in different nearby locations. These Hubel
and Wiesels researches brought significant changes on the world of ma-
chine learning. Actually, later in the 80’, Kunihiko Fukushima, inspired
by the Hubel and Wiesels researches, proposed an hierarchical, multilay-
ered artificial neural network called Neocognitron [60]. This model was
relies on almost the same visual system’s principal of operation and it
is said to be the precursor of the modern CNN. CNN show similarity to
the visual system, as they have a set of filters which react differently to
specific portion and characteristics of the input and process these results
sequentially, increasing the complexity of the patterns matched.

2D CNN Architecture

If we look at the architecture of a CNN, we can see that it is composed
of several convolutional layers, which are the building blocks of this type
of networks. In addition, we generally find also pooling layers, which do
not have any parameters to train, as their only aim is just to apply some
statics to the output of a convolutional layer. This is done to downsample
the input, reduce the temporal dimension and pass the output result to
the next layer.

The input array of the 2D CNN z is three dimensional:

• T is the temporal dimension;

• U is the spatial dimension;
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• d is the number of channels or dimensionality of the input;

In each convolutional layer there are a certain number of di filters,
called kernels, which represent the learnable parameters and which slide
over the input to perform a dot product, a convolution, with a portion
of the input restricted to their receptive field, or kernel size. In Figure
2.2 we can see how CNN with two convolutional blocks, a Max Pooling
layer and a final softmax function, process an input spectrogram. The
following Formula shows the convolutional operations applied over the
input z:

(w ∗ z)[t, u] :=
n∑

j=1

p∑
k=1

(w[j, k], z[t+ j − [n/2], u+ k − [p/2]]) (2.16)

where n is the length of the receptive field of the filter w, which for
convention is an odd number. p is the filter’s depth, j and K represents
the filter’s position on the the signal and the relative of filters coefficient.

The filters have the ability to learn pattern like edges, circles, squares,
for images, or envelope, transient or sustained tones in the case of sound
signals. While in the first layer filters can learn just simple and local
features, as the number of layers grow, more complex and general pat-
tern are detected. During the training process, the kernels modify their
coefficients to make the input sample match the right output in the final
layer. Th kernel has the same number of dimensions of the input, but
it is always smaller in size. This is the reason for which the CNN have
sparse interaction across the input, which reduce the required memory
space and in addition improve its performances.

Output size

What is the output size of a layer given an input dimension of T x U x
d? In the case of an spectrum, T would represent the number of frames,

U the number of frequency bins and d the number of stereo channels.
Then we can define other relevant parameters which are:
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• Kernels height (KT ), kernel’s width (KU), channels (Kd);

• Strides height (ST ), stride’s width (SU);

• Padding over height and width: PT1, PT2, PU1, PU2;

After every Convolutional or Pooling layer these parameters are modi-
fied according to the following different cases: changes due to the Padding:

• T1 = H + PT1 + PT2

• U1 = W + PU1 + PU2

changes due to the kernel (KT x KU):

• T2 = T1 - KT + 1

• U2 = U1 - KU + 1

changes due to the sliding of the kernel over the input (strides):

• T3 = (T1 - KT ) / ST + 1

• U3 = (U1 - KU) / SU + 1

Taking into account all of the above, the final output size would be
T3 x U3 x Kd.

2.1.3 Transformer
Transformers are Artificial Neural Networks ANN which currently hold
the state of the art in many different tasks, especially in the field of Nat-
ural Language Processing, and outperform with respect to the previous
sequence to sequence models [61]. Transformers were first presented in
2017 in [6], where the authors Vaswani et al. demonstrated how trans-
formers can overcome the limitations of the previous recurrent models
such as RNN [62], LSTM[63] and GRU [64]. In fact, they show higher
accuracy, especially with large datasets. As the papers title ’Attention
is all you need’ [6] could suggest, the biggest novelty in these networks
is the so called self-attention or ’intra-attention’. It is the ability of the
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network to give some context to its input data and establish relationships
among them in order to create different weighted connections and give
more attention to the most relevant words. While the previous recurrent
models processed their input sequentially, thus requiring expensive mem-
ory and time-consuming computations, the most important innovation in
transformers is the ability to process very long input data in parallel and
acting as they would have an infinite memory. There are different types of
transformer-based machine learning architectures, like BERT [46], which
stands for ’Bidirectional Encoder Representations from Transformers’.

A simple intuition of the Self-attention

In the following lines, before we dive into mathematical formula, we
presents a simple and intuitive explanation of what is the self-attention
mechanism and how it ideally works.

In the case of transformer employed in ’Natural Language Processing’
task, we call input embedding vectors the input sentences first splitted
in sequences of words and punctuation, converted into token ids and
then mapped into an n-dimensional space. Briefly, input embedding vec-
tors are encoded numerical vector representation of the input sentences.
Given some input embedding vectors with length n, V = [v1, v2, . . . ,vn],
we want first of all give some context to them. Words can have multiple
meanings, as for the English word ’bank’, so when we encounter such
word in our input sentence, we need to know the context in which it is
used to know its real meaning. To do that, what a transformer does is to
create some relationships between this word and any other words in the
phrase, in order to establish weighted connections between them. RNN
or GRU or LSTM architectures, as they process their input sequentially,
would have take into account just the n-closest words, supposing that
all the words related to ’bank’ would have been located near it. But, as
it could be observed in subordinate sentences, this is absolutely wrong
because some words in a sentence could be referred to words in the other
sentences and be located far away from each other. The first step in
this process is the re-weighting of the input through weights that the are
derived directly from the input itself as is it shown in this formula 2.17:
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Wij = vi ∗ vj; (2.17)

The second step, consist in multiplying every of the weights calculated
in 2.17 with the original input values, finally obtaining the contextualized
data Yi.

Yi =
∑

(Wij ∗ vj). (2.18)

Up to here, we can make some important observations. First, the
self-attention mechanism is shape independent, as it does not depend
on the input length; second, proximity has no effect between vectors,
this means that a transformer can ideally learn and contextualize infinite
input length, and order has no influence.

Positional Encoding

The input embedding vectors which enter the encoder structure repre-
sents tokens, which means text splitted in words and punctuation, in a ’d’
dimensional space, where words with similar meaning are located close
in the space. So in this case, words have a special position according to
their similarity. By the way, as we said in Section 2.1.3, the transformer
has no any kind of information about the words position in a sentence,
as it process their input in parallel and not sequentially. For this reason,
we need something that makes the transformer aware of the index po-
sitions of the elements in the input tensors for different input sequences
lengths. A first solution to this problem, would be to simply return the
count, in the natural number set, of each element (word). This approach
would lead to exploding gradient scenario, as the longer is the length
of the input sentence, the bigger would be the numbers introduced in
the network. So, we can try to normalized those natural index numbers
in a range between zero and one, to avoid instability in the networks.
Unfortunately, even this solution results to be inefficient, because in this
second approach, the value of the position would depend on the sequence
length. So, in this case, different positions would be assigned the same
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index number for different sequences lengths. Another approach would
be to exploit binary numbers. In this case every integer is first converted
into a binary vector, thus creating a positional matrix with time temps
row and depth-model columns. Unfortunately, also this method is results
to be inefficient, as the binary vector comes from a discrete function and
not from a continuous one. Therefore, we can think how to make this
binary vectors continuous and make them cycles between zero and one.
A solution can be found in a sine function, resulting in a vector positions
such as in the following equation:

PE = (v(0), . . . , v(depth−1)) (2.19)

where depth is the model dimension,

v(i) = [sin(ωoxi), . . . , sin(ωnxi)] (2.20)

where vi is the positional encoding vector of a single discrete position,
xi is the index of the position in space and i is the index position in time.
Then, we want to find a linear transformation which makes this equation
holds:

PE(x+∆x) = PE(x) ∗ T (∆x) (2.21)

To do this, we build a rotation function, making use of this trigono-
metric identity:

(
cos(θ + ϕ
sin(θ + ϕ

)
=

(
cosϕ− sinϕ
sinϕcosϕ

)(
cosθ
sinθ

)
(2.22)

So we create an encoding matrix alternating cosine and sine function
resulting in these new vectors:

v(i) = [cos(ωoxi)sin(ωoxi), . . . , cos(ωnxi)sin(ωnxi)] (2.23)

Finally, we end up in the formula presented in the paper [6]:
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PEpos,2i = sin(pos/100002i/dmodel) (2.24)

PEpos,2i+1
= cos(pos/100002i/dmodel) (2.25)

where pos indicate the position in time, dmodel is the dimensionality
of the input embeddings and i is the dimension position index in the in-
put tensor. Positional encoding is added to the input embedding vectors.
This is the way of how transformers can trace the positions of elements in
the input sequence, but also in multiple sentences. Positional encoding
results to be a matrix with ’time-step’ rows and ’d-dimensional’ columns,
where each row is a sequence of cosine and sine functions with frequencies
that decrease according to a geometric progression from 2pi to 1000*2pi.
This mechanism also allows, in the prediction stage, to feed the trans-
former different lengths of inputs even if they are longer or smaller from
the ones seen during the training stage.

Scaled Dot-Product attention

Given the above, now we can dive into the real self-attention’s mech-
anism, shown in Figure 2.3. We introduced the ’Scaled Dot-product
Attention’, which is the layer in which is performed the dot-product at-
tention, which, in contrast to the additive attention, is much faster and
more space-efficient, as it can be implemented using highly optimized
matrix multiplication code. For each input word, or better each input
embedding vector, that we here call query, we ask some more ’context’,
so we compare it with all the possible keys, composed by the whole set
of the input embedding vectors. Combining a query with a key, we want
back a value. These three objects, keys, queries and values, are the key
aspect of the self-attention block and are implemented as dense layer in
the network, with trainable weights, in order to make the queries, coupled
with the keys, returning back the correct values.

This is done in the self-attention layer. Here a scale dot product is
performed between the queries and keys, and the result is than normal-
ized with

√
dk factor: this is extremely important for numerical stability

and to avoid extremely small gradients to the Softmax function which
will be applied later. A padding masking is added at this point, which
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Figure 2.3: Scaled Dot Product Attention

substitute all the padded values in the input with a 1 and all the other
values with a 0. This is done because all the input vectors have not the
same length, so they must be padded before they go into network. We
add a padding mask in order to make softmax ignore those values and
output a zero for them. At this point, the normalization is performed
with a Softmax function which ensure that all the weights sum up to one:

n∑
j=0

Wij = 1. (2.26)

After the softmax normalization, the normalized weights are multiply
with the original values and we get the complete ’Scaled Dot-Product at-
tention’, which is presented in the figure 2.3. This is the original formula
presented in the paper [6] for the A attention function 2.3 :

A(Q, V,K) = Softmax(Q ∗KT/
√

dk)V (2.27)

where Q,V,K stands for queries, keys, values and ’dk’ is the dimension
of each of these layer.

To ensure the learning process, a gradient signal is than back-propagated
through the Scaled Dot-Product attention block to update all the weights.



Chapter 2. Theoretical Background 33

Multi-Head attention block

The multi-head attention block, shown in Figure 2.4, is an improvement
of the Scaled Dot-Product attention block, which allows the model to
jointly process information from multiple representation subspaces at
different positions. It is composed of ’h’ different layers of such block,
which works in parallel and do not share any weights. Each of these
blocks is called head and has dimension equal to the input dimension
divided the number of heads. This is an important advantage in term of
the total computational complexity, as its overall cost is like the one of
a single-head attention with full dimensionality. Each of the heads, or
parallel self-attention layers, pay attention on only a particular portion
of the input, thus learning different representations of the same input
embeddings simultaneously. The output obtained at the end of each
layer from each head is finally concatenated with all of the other and
feed to a dense layer.

With a single attention head, averaging inhibits this:

MH(Q, V,K) = Concat(head1, . . . , headn)W
o (2.28)

headi = A(QWQ
i , KWK

i , V W V
i ) (2.29)

where MH is the function represented by the Multi-Head attention
block and where WQ

i ϵRdmodelxdk ,WK
i ϵRdmodelxdk , W V

i ϵRdmodelxdv , WO
i ϵRhdv∗dmodel

are the different learned projections matrices of the of query, keys and
values. dk is equal to dv, which is calculated as the embedding size di-
vided by number of heads, and W o

i is a square weight matrix which lin-
early projects all the learned representations to the original embedding
dimensionality.

Linear layer and Residual Connection

The multi-head attention output is added to the original positional input
embedding, which is called residual connection, and then feed to a layer
of normalization. The normalized residual output are feed to a second
sublayer added at the end of the encoder. This last one is a pointwise
feed forward network, which consists of two fully-connected layers with
relu activation. It is applied to each position separately and identically.
The output is again added to the residual connection, which this time
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Figure 2.4: Multi Head Attention

is the result obtained before this second sublayer and then, normalized
again. Residual connections help the network training process as they
allow the gradient flow through the network directly. Instead, layer of
normalization are used to stabilize the network for faster convergence,
while the pointwise feed forward network is used to projects the attention
output for a richer representation.

Encoder and Decoder Structures

The transformer architecture proposed in [6], depicted in Figure 2.5, in-
cludes both an encoder and a decoder structure. The encoder is composed
of six identical layers, each of which is divided in two sub-layer. The first
is the multi-head attention layer, followed by the first layer normalization
of its output added to the residual connection of the positional encoding,
and the second is the position-wise fully connected feed-forward network,
which is followed by the second normalization layer of its output plus an-
other residual connection.

The decoder has the the same structure of the encoder, but in ad-
dition it shows a second stacked multi-head attention layer. This last
one performs multi-head attention over the output of the encoder stack.
Residual connections are also here employed around each of the sub-
layers, followed by the layers of normalization. A modified self-attention
sub-layer in the decoder stack is used to prevent positions from attending
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Figure 2.5: Transformer architecture, with its encoder and decoder structure

to subsequent positions.
A key aspect of this architecture is the ’Mask Language Modeling’

MLM approach, which allows the training of bidirectional architectures.
In the Figure 2.3 we can see an optional masking layer, which is used to
mask the 15 percents of the input tokens in the pretraining stage before
feeding the input to network. By masking some tokens randomly, which
are replaced by other tokens, the model attempts to predict the original
value of the masked words, based on the context provided by the other,
non-masked, words in the sequence.

2.2 Triplet Loss Background
In this section we will explain what is Triplet loss function and how it can
be implemented for similarity tasks with Siamese Networks, what kind
of triplets can be generated from the dataset and their different mining’s
strategies.

2.2.1 Triplet Loss
Triplet loss is a cost function presented for the first time in 2015, in the
paper [7], which employed it for images recognition tasks and similarity.
The basic idea of this technique, which is visually summarized in Figure
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2.6, is to train the network to learn a distributed embedding vector space
in which similar near-by-region points are data which share some similar
characteristics. The implementation of the triplet loss requires a first
step where the training set should be reorganize in batches of triplets
composed of an anchor, a positive and a negative sample, such that the
first two are very similar and belong to the same class, while the third
one is very dissimilar from the others two. The objective is to produce
embedding vectors in the output models layer, which are a compressed
representation of the anchor, positive and negative input samples, and to
minimize the distance between the similar vectors and maximize the dis-
tance between dissimilar vectors, according to a specific metric. The size
of the embeddings is a new hyper-parameters, because its must contain a
good enough representation of the input data. The results, at the end of
the learning process, is a metrics space where similar data are projected
in near region which are visually condensed in clusters.

Metrics

The distance between the embedding vectors can be calculated with dif-
ferent metrics. The most popular one is the euclidean distance we see in
the following formula:

L =
N∑
i=0

[||f(xa
i )− f(xp

i )||22 − ||f(xa
i )− f(xn

i )||22 + α] (2.30)

But there is also the possibility to use a square euclidean distance,
which is an euclidean distance which does not perform the square root
on the results. The final loss over a batch of triplets can be calculated
with different margin strategy:

• ’max margin’: in which the margin is set to one and the final loss
is the maximum between zero and the loss plus margin;

• ’soft margin’: in which the margin depends on the loss itself ac-
cording to the function 2.31 and it is calculated as the maximum
between zero and the loss plus margin;

Normally, the margin is set to a standard and constant value of 0.2.
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loss = log(1 + eloss) (2.31)

Siamese Network

The implementation of the triplet loss require Siamese Neural Networks,
as they are able to process multiple inputs in parallel and return a single
value loss calculated over the multiple outputs. They are identical net-
works, which means they all share the same weights and so every input
is evaluated with all the same parameters. Given three different inputs,
Siamese Neural Networks produce in their output layer a single output
embedding vector f(x) Rd composed by all the concatenated outputs.
This last one is usually L2-normalized, which means it is forced to rely
on a ideal unit hyper-sphere. These embedding vectors are passed to the
triplet loss layer and used to calculate and minimize the error:

L = max(0, D(f(xa
i )− f(xp

i ))−D(f(xa
i )− f(xn

i )) + α) (2.32)

where:

• f(xa
i ) is the embedding vector for the anchor;

• f(xp
i ) is the embedding vector for the positive;

• f(xn
i ) is the embedding vector for the negative;

• ’α’ is the margin, used to enforce the distance between positive and
negative samples. The alpha/margin value makes sure that the
network is not allowed to output the insignificant solution where
all embeddings vectors are zero or contain the same values;

• i is the i-th triplet;

• D is the metrics to compute the distance;
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Figure 2.6: The triplet loss is a loss function which try to minimize the Eu-
clidean distance between the positive and the anchor sample, while maximizing
the one between anchor and negative samples

Type of Triplets

There can be three different categories of triplets:

• Easy triplets are triplets with zero loss as the distance between the
anchor and the positive sample plus the margin is less than the one
between the anchor and the negative sample D(f(xa

i )-f(x
p
i )) + ’α’

< D(f(xa
i )-f(xn

i ));

• Hard triplets have the negative sample is closer to the anchor than
the positive sample, D(f(xa

i )-f(xn
i )) < D(f(xa

i )-f(x
p
i ));

• Semi-hard triplets are the triplets where the distance between the
anchor and negative sample is between the anchor-positive distance
and the anchor-positive distance plus the margin D(f(xa

i )-f(x
p
i )) <

D(f(xa
i )-f(xn

i )) < D(f(xa
i )-f(x

p
i )) + ’α’;

These definition rely on the position of the negative sample relatively
to the anchor and positive, so they can be renamed as ’easy negative’,
’hard negative’ or semi-hard negative’ triplets. Distinguish different kinds
of triplets helps to evaluated the different performances over the training
process and see where and when they show better results. Hard triplets
make the learning process faster as they force the network to learn more
as it must push away the negative from the anchor sample. The easy
triplets, instead, performs poorly. In contrast to hard triplets, they make
the convergence of the gradient very slow. However, the use of the only
hard triplet would requires a very high computational cost in case of big
datasets, as it would be time consuming search for the hardest triplets
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in a large number of examples. A good trade-off can be found in semi-
hard triplets, which are easier to mine and show relatively good results
comparing the accuracy and computational time.

Mining Strategies

We have talked about what type of triplets which can be selected, but
now we focus the attention on how to sample them from the dataset.
There are two main techniques:

• Offline mining computes the triplets before the training time on the
entire dataset. This is the less efficient in term of computational
cost. In this scenario, creating a batch of N triplets requires the
network to compute N*3 embeddings.

• Online mining, instead, needs to compute just N embedding vectors
to generate N3 triplets. So in this case, the network generates the
triplets as all the possible combination of the N embedding vectors.
Of course, a large parts of these triplets are not valid, so there is
the need to select the valid ones, for example using the batch hard
triplet strategy.





3
Proposed Approach

In this chapter we will go through the process to build and prepare the
setup for our experiments. We will talk about the dataset, the features
extraction process and the architectures we employed for the generation
of an euclidean metric space for music similarity. We will briefly dive
into the triplet loss function to train the network and the mining triplet
strategy. In addition, we will talk about the interface we create for the
data visualization in a 2D space.

3.1 General Formulation
The objective of this study is the generation of an Euclidean metrics
space for music genre similarity, which will be used to study the evo-
lution of different music trends through years. As discussed in Section
1.2, different approaches have been followed to treat the music similarity
problem. However, to the best of our knowledge, the use of transformers
with an offline triplet loss function, is not still explored in the field of mu-
sic similarity. In our study we will focus our attention on triplet loss as
loss function on the top of two different networks, a CNN and a encoder
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structure of the transformer. We will compare the two methods, as they
are differently able to learn data representation because of their different
structures. We firstly treat the problem with a baseline approach, train-
ing a CNN with an offline triplet loss and mining the triplets according
to the genre label only. Then we proceed to explore the results showed
by the transformer with a triplet mining based on genre, id track and
artist label.

3.2 Dataset and Features
Following we provide a brief overview on the dataset we employed and
the parameters we set to extract the features mentioned in Section 2.0.1.

3.2.1 Dataset: FMA
The choice of the dataset plays an important role for the success of a
scientific research, because the results will directly depend on data to
work with and the metadata it provides. So a dataset must satisfy a
number of requirements which may vary from case to case. In general, a
good dataset should have a number of balanced examples which must be
representative, that is to say covering all the relevant classes of interest
for the study. It must be large enough to avoid over-training and to ef-
fectively learn models incorporating inconsistencies in the data. Another
important aspect in the case of a music dataset, is the availability of high
quality audio raw data, which allows to extract any kind of features, with
the needed level of detail and precision. This raw data must also have a
permissive licensing to allow the redistribution. Taking care of the above
requirements, one the most reasonable dataset for this study is FMA
[8] ’Free Music Archive’, which is a free and open library managed by
WFMU, the longest-running radio station in the United States. FMA is
an open and easily accessible dataset employed in several tasks in MIR,
providing 106,574 tracks from 16,341 artists and 14,854 albums, arranged
in a hierarchical taxonomy of 161 genres. It also provides a smaller and
balance dataset, FMA small, which is more suitable to test the perfor-
mances of the architecture, so we decide to work on this subset, as it
also contain eight representative music macro-genres with 8.000 tracks of
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30s each. This datasets, as mention before, provides a considerable num-
ber of metadata for each track as for each artist and album present in
the dataset. This metadata include also the released date of the tracks,
which in our case, result to be fundamental for the sake of this study.

3.2.2 Features

The feature extraction process starts with the removal, from the dataset,
of those tracks which last zero seconds or very few seconds, which where
maybe wrongly included in the dataset. To compute the features we
use Librosa [49], a python library for music and audio analysis largely
employed in MIR tasks. For baseline approach, we extract only 20 MFCC
coefficients by 130 frames, with a sample rate of 22050 Hz. Instead, for
the final test, we choose to extract five different features including MFCC,
MFCC delta, Mel Coefficients, CQT and Chromagram for each thirty
seconds tracks. We load each audio track with a sample rate of 44100 Hz
and split them in three seconds segments, getting ten samples per track.
For each segment we compute the STFT using a hamming window, with
2048 window length, 1024 hop length and 2048 NFFT length. Finally, we
compute 20 MFCC , 20 MFCC delta, 128 Mel, 144 CQT and 12 Chroma
coefficients, for a total vector length of 324 features per 130 frames.

Given the heterogeneous nature of the features, we employ a scaling
procedure in order to scale them in the range of value between -1 and
1. We choose the scaling instead of the normalization because, in this
study, we treat models which use the Euclidean Distance as loss function
and thus they are sensitive to the magnitude of the distance. With this
approach, we are instead able to compare different variables on equal
grounds.

3.3 Model Architectures

In this section we take an in-depth look at the two architectures mention
in the subsection 2.1.2 and in 2.1.3, paying attention to the structure, to
all the regularization inserted to avoid overfitting and the setting of the
hyperparameters.
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3.3.1 Convolutional Neural Network

The first architecture we propose is a ’Convolutional Neural Network’. In
particular we use a three convolutional layers architecture, with ’ReLU’
activation. We set the padding option to ’same’, so that each layer’s
output have the same spatial dimensions as its input. After each con-
volutional layer, a Max Pooling 2D layer is inserted to downsample the
input along its spatial dimensions by taking the maximum value over
an input window, whose size is defined by the parameters ’pool size’ for
each channel of the input. We set those size to (3,3) for the first layer
and (2,2) for the following two. In the first layer of Max Pooling, the
window is shifted by strides (3,3) along each dimension and in the other
two by (2,2). In order to avoid overfitting of the network, after each Max
Pooling layer, Batch Normalization layers are added as they accelerate
the deep network training by reducing the internal covariate shift, as
we learn from [65]. As the network easily goes in overfitting, two addi-
tional layers of dropout with rate 0.3 are added after the last two Batch
Normalization layers. Next, we insert flatten layer to reduce the input
dimension from two to one and feed the output to a dense layer with
1024 neurons, which will be the embeddings vectors size of the network.
A last L2 Normalization layer, with epsilon parameter set to e-16, in
order to normalized number smaller than e-12, is added to control the
output and normalize the hidden units constraining the representation
to be on a hypersphere. This architecture is summarized in Table 3.1
and we call it ’base model’. The input of the triplet loss architecture is
composed of three input layers, corresponding to the anchor, the positive
and the negative input sample, as we can see from the Table 3.3. We
then compile a new model, with the triplet loss input layers as input new
inputs of the base model. In this way we create Siamese Networks [66],
which works in parallel for each input sample and share weights. The
three outputs of this new model are are finally concatenated in a single
output vector. The architecture shown in Table 3.1 and in Table 3.2,
refers to the architectures employed for our baseline approach, in which
we use just 20 MFCC coefficients as features and the final test, in which
we use the complete features vector.
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Layer Output Shape Activation Function
Conv2D (None, 20,130,64) ReLU

Max Pooling2D (None, 7,44,64) None
BatchNormalization (None, 44,64) None

Conv2D (None, 7,44,128) ReLU
Max Pooling 2D (None, 4,22,128) None

Batch Normalization (None, 4,22,128) None
Conv2D (None, 4,22,256) ReLU

Max Pooling 2D (None, 2,11,256) None
Batch Normalization (None, 2,11,256) None

Flatten (None, 5632) None
Dropout (None, 5632) None
Dense (None, 1024) ReLU

Lambda (None, 1024) None

Table 3.1: CNN base model architecture composed of three Conv2D layers,
one flatten layer, one dense layer and a final lambda layer for the L2
normalization. The input is refered to the features vector with only the
MFCC coefficients.

3.3.2 Encoder Structure of Transformer
The architecture of the transformer that we use includes the only en-
coder’s structure, as we are dealing with a regression problem, which
does not require to generate an output, but instead, it need an encoder
to learn a latent space of the data. This last one is finally connected
to an output dense layer with 1024 neurons and a ’sigmoid’ activation
function, followed by a lambda layer to perform the L2 normalization on
the output embedding vectors. The encoder follows the same structure
proposed in the original paper [6], which is composed of two sub-layers,
the multi-head attention layer and the point-wise fully connected net-
work, with residual connection and normalization and add layers. The
first sub-layer is the multi-attention layer, which is build through a model
subclassing implementation using the ’tensorflow.keras’ functional API,
as it let to mix different style of APIs and it is followed by a normaliza-
tion layer in which the output of the multi-head attention layer plus the
positional encoding is normalized to accelerate the convergence of the
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Layer Output Shape Activ Func Params
Conv2D (None, 324,130,64) ReLU 640

Max Pooling2D (None, 108,44,64) None 0
BatchNormalization (None,108, 44,64) None 256

Conv2D (None, 108,44,128) ReLU 49280
Max Pooling 2D (None, 54,22,128) None 0

Batch Normalization (None, 54,22,128) None 512
Conv2D (None, 54,22,256) ReLU 131328

Max Pooling 2D (None, 27,11,256) None 0
Batch Normalization (None, 27,11,256) None 1024

Flatten (None, 76032) None 0
Dropout (None, 76032) None 0
Dense (None, 1024) ReLU 77857792

Lambda (None, 1024) None 0

Table 3.2: CNN architecture with takes as input the complete set of fea-
tures. It is composed of three Conv2D layers, one flatten layer, one dense
layer and a final lambda layer for the L2 normalization.

network. The second sub-layer is the point-wise fully connected network
composed by two dense layers, which have respectively 1024 and ’model’s
depth’ neurons, followed by the second normalization layer, where the
output of the point-wise fully connected network is added to the output
of the first normalization layer and normalized again. Moreover, we add
dropout layers at the output of each sub-layer before the normalization
layers to prevent the network from overfitting, as described in [67].

Furthermore, as the parer [37] suggests, we insert a dense layer with
a linear activation function before adding the positional encoding to the
input. This last paper states that linear projection improves the perfor-
mance of the transformer of the 17 percent with respect to just adding the
positional encoding, which, alone, would be even harmful to the learn-
ing process. We also add an encoding masking layer which prevent the
softmax function to paid attention to the padded tokens. By setting the
mask vector to a value close to negative infinity where we have padding
tokens and one otherwise, we don’t let softmax output some values for
them. At the end of the encoder layer, the output embedding vectors
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Layer Output Shape Activ Func Params
Input Layer [(None, 324, 130,1)] None 0
Input Layer [(None, 324, 130,1)] None 0
Input Layer [(None, 324, 130,1)] None 0
Functional (None, 1024) None 78040832

Concatenate (None, 3072) None 0

Table 3.3: CNN input model for triplet loss. The input is refered to the
complete features vector.

Layer Output Shape Activ Func Param
InputLayer [(None, None, 20)] ReLU 0

TFOpLambda (None, None) None 0
TFOpLambda (None, None) None 0

Enc Padding Mask (None, 1,1,None) None 0
Encoder (None, None, 20) ReLU 14476

TFOpLambda (None, 2600) None 0
Dense (None,128) None 332928

Lambda (None, 128) None 0

Table 3.4: Transformer model composed of 2 layer, 5 heads, one final
Dense layer of embedding vector shape 128 and a final Lambda layer for
L2 Normalization. The input is refered to the baseline approach.

are reshaped to be feed to a dense layer with 1024 neurons and finally
to a lambda layer which performs the L2 normalization. In out bet-
ter implementation of the transformer, the encoder’s output is fed to a
dropout layer and than to a ’Max Global Average Pooling 1D’, which
reduce the dimensionality of the vectors. The Tables 3.4 and 3.5 show
the two transformer architectures for the two different tests based on
two different input features. The first refers to the 20 MFCC coefficients
input and the second to the complete features vector. We implement the
triplet loss architecture according to the same implementation we used
for the CNN, as we can see from the Table 3.6.
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Layer Output Shape Activ Func Params
InputLayer [(None, None, 324)] ReLU 0

TFOpLambda (None, None) None 0
TFOpLambda (None, None) None 0

Enc Padding Mask (None, 1,1,None) None 0
Encoder (None, None, 324) ReLU 13154052
Dropout (None, None, 324) None 0

Global Average Pooling 1D (None, 324) None 0
Dense (None,128) None 332800

Lambda (None, 128) None 0

Table 3.5: Transformer base model composed of 12 layer, 27 heads, one
final Dense layer of embedding vector shape 1024 and a final Lambda layer
for L2 Normalization. The input is refered to complete set of features.

Layer Output Shape Activ Func Params
Input Layer [(None, None, 324)] None 0
Input Layer [(None, None, 324)] None 0
Input Layer [(None, None, 324)] None 0
Functional (None, 1024) None 13486852

Concatenate (None, 3072) None 0

Table 3.6: Transformer input model for triplet loss. The input is refered
to the complete features vector.

3.4 Triplet Loss
In this section we describe our architecture of the triplet loss function,
the strategy we use to optimize the learning process of the network with
new triplets mining according to multiple labels and how we compute
the final loss over a batch of samples.

3.4.1 Offline Triplet Loss
In this study we use an offline version of the triplet loss. As a first step,
we set the batch size of the triplets we feed the network at each time step
and then create a batch generator to mined that number of triplets for



Chapter 3. Proposed Approach 49

the training set. Inside the generator, two randomly and distinct labels
are selected from the dataset. Then, two random and distinct samples
are selected from all those examples sharing the first label. We call them
the ’anchor’ and the ’positive’. Finally, a third sample, to complete the
triplet, is randomly selected from all those examples in the dataset having
the second label and call it ’negative’. We repeat this process N times,
where N is the ’batch size’, and we finally get our batch of triplets.

In our first version, we generate the triplets according to the genre
only. However, we experimented that other information should be taken
into account in the selection. For this reason, anchor, positive and neg-
ative samples are chosen according to three different metadata, which
are the genre labels, the id track labels and the artist labels. At each
step, the triplets are mined according to on of these three labels with a
certain probability. The probability of being a triplet based on genre is
20 percent, while the probability of being a triplet based on id track or
based on artist is 40 percent. These last two labels are intended to force
the learning process to acquire knowledge beyond the only genre infor-
mation. A song is more similar to itself with respect to all the others.
Similarly for the artist labels. Two song are similar if they belong to the
same genre, but they are probably even more similar if the are produced
by the same artist.

The triplet loss function we use to calculate the loss is an euclidean
distance which can be summarized in the formula 3.1:

L =
N∑
i=0

[||f(xa
i )− f(xp

i )||22 − ||f(xa
i )− f(xn

i )||22 + α], (3.1)

where f is the function that maps each input sample to an output
embedding vector, xa

i , x
p
i , xn

i , are respectively the anchor, positive and
negative sample of i-th triplets in the batch.

The final loss is calculated as the arithmetic average of all the losses
in a batch.
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3.5 Visualization
In this section we will show how the output embedding vectors predicted
by the transformer’s architecture are process to be better visualized. We
will talk about the graphic interface we designed, its main characteristics
and the different kind of visualization it offers to let a better visualization
of music trends through years.

3.5.1 Samples’ reduction
As we described in Section 3.2.2, we split each 30 second track in 3
second rows segments, resulting in ten segments per track. After the
training process and the TSNE [68] dimensionality reduction of the the
output embedding vectors, we want to have just a just single sample
to describe each track, instead of ten. For this purpose, for each track,
we select all the segments belonging to its track id and perform the
local outlier factor’s [69] function by sklearn, which measures the local
deviation of density of a given sample with respect to its neighbors. With
this method, all of the samples which have a substantially lower density
than their neighbors are considered outliers and are removed from the
datasets. In a final step, we take all of the remaining samples per id and
perform a mean average over their spatial coordinates, thus resulting in
a single representative point per track.

3.5.2 Graphic Interface
The graphic interface, in Figure 3.1, is designed in order to support the
visualization of music trends through years. We code it in ’Processing’
[70], which is an environment and a programming language, which allows
a simple approach to the visual arts. Figure 3.1 shows the embedding
vector (music pieces) represented as points in space, characterized by a
color. The legend on the top right of the window, show the correspond-
ing color-genre mapping for the tracks belonging to ’Free Music Archive’,
which is the dataset on which we train the network. These genres are
Pop, Rock, Experimental, Hip-Hop, Folk, Electronic, Instrumental and
International. Black points, which can be shown clicking on the corre-
sponding toggle on the bottom left of the window, instead, represents
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Figure 3.1: This figure shows our graphic interface, in its first type of visual-
ization. We can see the embedding vectors located according to their similarity
in the 2d space. Each color correspond to a genre, as the map Genre-Color
represents.

Spotify’s tracks belonging to several playlists we choose ad hoc for this
study as test set. On the top left of the interface, a slider allows a custom
visualization of all the tracks published in a certain year between 2007
and 2017. If we set the slider to a particular year and then press ’b’ on
the keyboard, all the songs released from 2007 till that year are shown
together at the same time. This functionality is extremely useful, as it
allows to add in the 2D space, once per time, all the songs released a cer-
tain year, in ascending order. This allow to see where a particular trend
is evolving in time, what direction is undertaken and what other genre is
going to resemble more. Furthermore, to allow a better understanding of
the genre space and also better support the study of the music trends, we
introduce two kind of visualizations, witch can be switched by clicking
on the corresponding toggle on the bottom left of the interface. The first
one plots the embedding vectors as points on a 2D space in a specific
year or in multiple years. Near songs are more similar, dissimilar songs
are far away from each other. Clicking left on a colored point or clicking
left on a black point, the relative songs information appear in a info box
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Figure 3.2: This figure shows our graphic interface, in its first type of visu-
alization. Black points represents Spotify’s tracks located in a area between
Hip-Hop, Pop, Rock and Electronic genre.

on the bottom right of the interface, showing metadata about the title,
the artist, the genre and the year.

The second type of visualization we propose is a heat map depicted
in Figure 3.2, which allows a continuous visualization of the music genre
distribution in the 2D space, removing boundaries between clusters of
genre. In fact, the heat map shows the concentration of the embeddings
vectors belonging to a certain genre in a restricted area of the 2D space.
The higher is the embeddings density, the intense is the tone color of
the regions of space in which they are located. White areas correspond
to region of space where no embeddings are located in that region. This
representation allows to see where a particular genre can influenced more
a black point, as the darker region works like as center of gravity points,
as the darker they are, the more power of attraction have on the near
points. Spotify’s songs can be visualized over the heat map as points
and a similarity to a genre can be given according to the color of their
corresponding area. In addition, clicking on a point and then pressing ’i’
on the keyboard, we can see the local nearest neighbours points corre-
sponding to that music piece, as we can see in Figure 3.3. Right clicking
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Figure 3.3: The figure shows a selected point and its relative neighbours, which
can be added pressing ’i’ on the keyboard.

on the neighbour points, we are also able to see their information related
to the title, artist, genre and year. This is an important functionality, as
it allows to know, for each black point, what other songs, from the same
year, but also from other years, share its characteristics and some sort of
similarity. In this way we are able to identify and trace particular music
trends which evolve in years.





4
Experimental Setup and Evaluation

In this chapter we present all the network’s hyperparameters settings we
have chosen for our experiments and the metrics we have used to evaluate
the different results on the different architectures. We will show our
predicted embedding output vectors on a 2D space, to provide a visual
intuition of the obtained results. Then, we well compare those results in
different scenarios to see what architecture performs better. We will also
test our best model on Spotify’s tracks by some selected most popular
playlists in Italy. Finally, we test the accuracy and the performances of
our model through a simple test based on human evaluations by three
music experts. The value of accuracy provided for the four experiments
results in Section 4.1 and in Section 4.2 are referred to the first evaluation
metric described in Section 4.3.2.

4.1 CNN Experiments
In this section we describe the experiments conduct on the CNN archi-
tecture with two different approaches and hyper-parameter settings. We
also compare the obtained results.
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4.1.1 Baseline Approach
By an experimental approach, we end up with a set up for our first base-
line experiment to compare with the performances of the Transformers.
We feed the network, shown in Section 3.3.1, a matrix of 75277 exam-
ples of 20 MFCC by 130 time frames. We split the data using the train
test split function by sklearn library in order to have the 80 percent of
the sample for the training set and the other 20 percent for the test set.
We set the generator to build batches of 64 samples and our output em-
bedding dimension to 1024. In this first experiment we select triplets
according to the only genre label. We set the margin to a standard value
of 0.2 and use a triplet loss function which performs an Euclidean dis-
tance between the output embedding vectors pairs, in which the loss is
finally calculated as the average value over all the triplets losses in the
batch. We choose ’Adam’ optimizer with a decaying learning rate, start-
ing from 1e-3, with five sustain epochs, to 1e-4 with an exponential decay
of 0.95, as shown in Figure 4.1. The number of steps per epoch is calcu-
lated as the number of examples of our training set dived the batch size,
which in our case result to be 941 steps per epoch. We set the ’Early
Stopped’ class of the callbacks to have 30 epochs of patience and the
’Model Checkpoint’ class to save the best model’s weights according to
the minimum loss in the training process. After 140 epochs, the learning
process automatically stopped.

After a dimensionality reduction performed with ’TSNE’, we plot the
embeddings in a 2D space. Figures 4.2 and 4.3 show the results of the
training and the test set. We can clearly see how the our model performs
well not only on the training set, but also in the test set. Embedding
vectors of similar genre are closed in space in cluster of the same color,
which are well distinguishable one from the other. It means that the
CNN learns appropriately the music similarity space. Instead, very few
points are misclassified.

4.1.2 Complex approach
Our last experiment on the CNN is performed with almost the same
network’s hyparameters described in Section 4.1.1. We feed the network
with an input matrix of 75277 examples of 324 features, including all
the music descriptors in 2.0.1, by 130 time frames, previously normalized



Chapter 4. Experimental Setup and Evaluation 57

Figure 4.1: CNN’s learning rate for our baseline approach

Figure 4.2: Visualisation of the embeddings output vectors generated from the
CNN after 140 epochs training. These are the results from the training set in
our baseline approach.
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Figure 4.3: Visualisation of the embeddings output vectors generated from the
CNN after 140 epochs training. These are the results from the test set in our
baseline approach.

with the ’MinMAx Scaler’ by sklearn, in a range of value between -1 and
1. We mine the triplet according to three label: the artist, the track
id and genre labels, with a probability of 30 percent, 35 percent and 35
percent respectively. We train the network obtaining a final accuracy of
75 percent. The visualization of the embedding output vectors of the
training and test set is depicted in the Figures 4.4 and 4.5. In this case,
genre cluster’s boundaries overlapped and seems to be more sparse in the
space. On one hand, this could be a positive result as music, as we say in
our introduction, can not be constrained in closed genre boundaries. On
the other hand, we see that the prediction on the test set results to be
less accurate, as there are much more misclassified points than before.

4.2 Transformer Experiments

In this section we describe the experiments conducted on Transformer
in different scenarios, focusing on the hyperparameters selection and the
model complexity. We will see in which of the following experiments
Transformer performs better and in which is less performative.
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Figure 4.4: Visualisation of the embeddings output vectors generated from the
CNN . These are the results generated by the training set in our complex
approach.

Figure 4.5: Visualisation of the embeddings output vectors generated from the
CNN . These are the results generated by the test set in our complex approach.
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4.2.1 Transformer Baseline Approach

First experiment

In this first experiment, as we done for the CNN, we feed the transformer
a matrix of 75277 examples of 20 MFCC by 130 time frames. We split
the data using the sklearn function ’train test split’ with the test size
parameters set to 0.2. We set the generator with a batch size of 64 and
perform the triplets mining according to the genre label only. We con-
duct this test keeping low the complexity of the model, as Transformers
require very high computational resources and time, so we increased its
complexity progressively. We use two layers of encoder and five heads
in the scaled dot product attention. We insert some dropout in order
to avoid overfitting with a rate of 0.1 and set the units of neurons in
the dense layers and the output embedding size to 128. We set a ’relu’
activation on the output dense layer. After that, we insert an L2 nor-
malization layer in order to keep the embeddings restricted inside a unit
hypersphere. The training steps are calculated as the number of training
examples divided the batch size, so in this case 941. We set the ’Early
Stopped’ class of the callbacks to have 30 epochs of patience and the
’Model Checkpoint’ class to save the weights of best model according
to the minimum loss in the training process. We use a decaying learn-
ing rate with starting value of 1e-5 with 941 warm up steps. In two
epochs this value reaches 5e-5 and remain fixed for 50 epochs and fi-
nally it exponentially decay to 1e-6. Figure 4.6 shows the learning rate
function. We train the transformer mining the triplets according to the
genre labels and get for each step the final loss as the average within
all the losses calculated in a batch. After 200 epochs the Transformer
ends up with a final accuracy of 56 percent. This first experiment with
the transformer doesn’t show any improvements compared to the one of
the CNN. Instead, it performed worst. Figure 4.7 shows the Transformer

loss function in the training stage. As we learned from the paper [37],
Transformer architecture’s performances reach best results with higher
complexity of the model. Pham et al. recommended to use an input
model dimension of 512, with 8 heads, 48 layer and 2048 neurons in the
encoder’s dense layers. In our case, the input model depth is barely 20
MFCC’s coefficients, which results in very a poor performance. Figure



Chapter 4. Experimental Setup and Evaluation 61

Figure 4.6: Visualisation of the learning rate’s function we set up for the
transformer baseline’s approach.

4.8 and 4.9 show the visualization of the embedding output vectors in
a 2D space, after a dimensionality reduction performed with TSNE. In
this case, the clusters are completely overlapping and it is very hard to
distinguish were a genre is more present than other. The same results
is obtained both for the training and test set, in which the Transformer
performs worst than CNN.

Second experiment

In the second experiment, we use the same settings in 4.2.1, but with
a considerable increasing of the model complexity, to make the number
of parameters be comparable with the one of the CNN in 4.1.1. We set
the number of encoder layers to in 8, we use 512 neurons per dense layer
and add a 1D Global Average Pooling layer before the last dense layer.
We set the dropout rate in the encoder to 0.3 and 0.2 in the output one.
We use a ’gelu’ activation and set the margin’s value to 0.3, but also this
approach leads to very poor results.

4.2.2 Transformer complex approach
The following experiments are conduct on Transformer with different
hyperparameters. We feed the network 75277 examples, consisting of
324 features per 130 time frames. The matrix is previously normalized
with the ’MinMAx Scaler’ by sklearn, in a range of value between -1 and
1.
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Figure 4.7: Visualisation of the transformer loss function after 200 epochs of
training. The figure suggests that more epochs would probably reduce the loss’s
value, but that anyway the loss’s decreasing is too slow.

Figure 4.8: Visualisation of the output embeddings vectors generated from the
transformer after 200 epochs training. These are the results from the training
set in our baseline approach.
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Figure 4.9: Visualisation of the output embeddings vectors generated from the
transformer after 200 epochs training. These are the results from the test set
in our baseline approach.

First experiment

We start the first experiment training the network with a low complexity
of the model, for the same reasons we discussed in 4.2.1. We use the
following setup: 8 layer, 27 heads, 512 units in the dense layers and 128
output embedding size. We use batches of 32 examples and change the
final activation function in the last dense layer before the l2 normalization
with ’gelu’ activation. We train the transformer for 200 epochs, with 941
steps per epoch, using a starting learning rate of 1e-5, sustained for 100
epochs and than an exponential decaying learning rate ending to 1e-6.
This first result is quiet improved with respect to the previous one, with
a final accuracy of 86 percent.

Second experiment

To considerably improve the performance of the transformer as compared
to the previously first experiments, we set the number of encoder layers
to 12, the number of heads to 27, the number of units neurons in the
dense layers to 1024 and the embedding vectors output to 1024. We
increase the warm up steps of the the learning rate function to 941*2 .
We mine the triplets according to three different labels, related to the



64

Figure 4.10: Visualisation of the output embeddings vectors generated from the
transformer in our best experiments of the complex approach. These are the
results from the train set.

genre, the id track and the artist, with a probability of 35, 35 and 30
percents respectively. We use a rate of 0.11 for the dropout and sigmoid
activation function in the last dense layer before the l2 normalization.
We train the network for 200 epochs, reaching a final accuracy of 88
percent. We deduce that the reasons for the poor previously results is
the low dimensionality of the data we feed in the previous experiment
and the little number of layers, heads and units, which over reduce the
model complexity.

Third experiment

In this last experiment, we used the same settings in 4.2.2, but we increase
the dropout rate to 0.3 in the encoder structure and to 0.2 in the output
layer. We set the probability of mining a triplets with a certain label
to 20 percent for artist label, 30 percent for id label and 50 percent for
genre label. We also increase the triplet loss margin to 0.4 and finally,
we reduce the minimum learning rate to 1e-7. Following the guidelines
of [71], we also reshape the matrix according to this formula:
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Figure 4.11: Visualisation of the embeddings output vectors generated from the
transformer after 200 epochs training. These are the results from the test set
in our baseline approach.

X ∈ R(lxd)− > reshapeX ∈ R( l
a
xad) (4.1)

where l is the temporal dimension, d is the model depth and a is a
reshaping factor. After 200 epochs of training, the result is still more
improve to 91 percent of accuracy. The resulting the output embedding
vectors can be seen in Figures 4.10 and 4.11. In the case of the training
set, points are almost perfectly located inside the correct cluster. Also
the embedding vector predicted from the test set show very good results,
as the cluster are well distinguishable and separated by a large margin
one from the other in space.

4.3 Evaluation Metrics

In this section we will present about the dataset employed as test set to
evaluate the performance of the system on new and unseen data. The
we will describe the two metrics used to evaluate the models.
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Network Baseline Accuracy Complex Approach Accuracy
CNN 90 75

Transformer 56 91

Table 4.1: Comparisons of the four experiments’ results according to the
first metric proposed with K-neighbour classifier. CNN seems performing
better on a low dimensional input, while the transformer outperforms the
CNN when it receives high dimensional input value.

4.3.1 Spotify’s Playlists
To identify and to study the evolution of trends, we decide to use tracks
from only Italian artists. We choose the most quoted playlists on Spotify
in the last five years including different sub-genres of hip hop as trap,
drill and rap, and in addition, a new popular Italian style in the last five
years, called ’indie’ music. We download and process tracks taken from
six selected playlists specially chosen for the purpose of this thesis, for
a total amount of 500 tracks. We download them through the Spotify’s
API, which let us download thirty seconds for each track with additional
metadata including title, artist, year and genre.

4.3.2 K-nearest neighbours Classifier
To evaluate the performances of both networks, we use the following
system metrics. We use a machine learning classifier, the ’K-nearest
neighbours’ [72], to learn the train output embeddings, setting its neigh-
bors parameters, which is the number of neighbours searched for each
query point, to 100. We employ a ’ball tree’ algorithm [73], which works
best for fast generalized N-point problems. First, we use a trained model
(CNN or transformer) to predict the embedding output vectors of both
the training and test set. Second, we fit the ’K-nearest neighbours’ clas-
sifier with the predicted output embedding vectors of the training set,
with their corresponding true labels. Third, we use the trained classi-
fier to predict the genre labels of the test set. Finally, we count how
many of the predicted labels are equal to the true labels of the test set.
The resulting accuracy is calculated as the number of correct predictions
divided the test set size.
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All the results provided by this metric, for all the experiments men-
tioned before, are shown in Table 4.1. Results show that the CNN is
very performative in learning a simple metric space based only on one
single features, but decrease its accuracy when it deal with the complete
features vector. Transformer, instead, show very poor performances in
first experiments. This is due to the fact that transformers are architec-
tures which works best with longer inputs sequence. In the special case of
acoustic events, in which adjacent frames share very similar sound char-
acteristics, transformer show its weakness in focus the attention on such
lower input sequence of similar events. To the contrary, in the second
experiment, it leads to very good results, after we double the dimen-
sionality of the features. We believe that address the problem of the
similarity and creating a metric space with just a single features, in this
case the 20 MFCC, is to little informative. For this reasons, results pro-
vide by the transformer are much more relevant than the one of a CNN,
as the only MFCC could not be able to capture different and relevant
aspects of the music.

4.3.3 Human Evaluations
The second metric completely relies, instead, on human evaluations. We
ask three music experts to evaluate twenty songs, which were randomly
selected from the Spotify’s playlists. The mentioned experts are a music
producer (credits for Sugar, Universal and Sony record label), an artist
manager and AR of Music e Orangle labels. The test is conducted in-
dividually and secretly, so that each participant could not be influenced
by the others.

4.3.4 First part of the test
We submit to the testers the following first three questions:

• Q1 How much do you think the music piece is correctly located in
space?

• Q2 How much its relative neighbours are effectively similar to it?

• Q3 How much the music piece is in proximity of the correct cluster?
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Q1 Q2 Q3
Mean 7,2 6,3 7,1

Variance 0.61 0.82 0.49

Table 4.2: Q1,Q2 and Q3 corresponds to the questions of the test we
submitted to the testers. Rows represents the mean and the variance of
the overall result.

For each question, they are asked to answer with an evaluation score in
a range between 1 and 10, where 1 represents the poor evaluation, while
10 the best one.

The first question is about the correctness of the absolute location in
the space of each query song. In this case, the experts are required to look
at the color region where the music piece was located and say how much
the color genre match the style of the song. The second question is related
to each point neighbours. Given a query song, we ask the experts how
much its neighbours effectively sound similar to it and how much the style
of the query point matches the style of its neighbours. In the evaluation
score also parameters like sound, harmony, melody and rhythm are take
into account. The third question ask the expert to evaluate how much
the query song is correctly locate in the right cluster proximity or inside
of it. For music piece from multiple genre, they have to quantify how
much the song location match the proximity of the correct cluster.

In table 4.2, we can see the final results of this test. First we calculate
the mean of the three evaluations given by the participants for each song
and for each question. Then, we compute the mean of the mean twenty
values for each question. The results are shown in the first rows of the
table. In second row, instead, we show the variance of the mean of the
three evaluations for each song and for each question. In table 4.3 the
overall evaluations given by the participants for the first question are
shown. Columns represents the twenty query songs. The first three rows
show the scores by each expert and the last one the mean value over the
three evaluation. Table 4.4 and table 4.5 similarly show the results for
the second and third question.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
V1 5 5 7 8 5 9 7 7 7 8 4 6 8 7 7 8 8 7 6 9
V2 7 8 9 8 7 8 8 7 6 8 6 7 8 5 7 8 8 6 8 8
V3 6 9 8 7 8 7 6 8 9 7 5 9 6 6 8 9 7 7 8 7

Mean 6 7.3 8 7.7 6.7 8 7 7.3 7.3 7.7 5 7.3 7.3 6 7.3 8.3 7.7 6.7 7.3 8

Table 4.3: This table is show all the evaluations given by the three experts
and the mean for the first question.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
V1 7 4 6 6 3 7 3 7 6 7 6 7 7 6 6 7 3 4 8 2
V2 5 7 8 7 8 7 8 6 6 7 6 9 5 8 5 9 8 8 7 6
V3 6 5 8 8 8 8 4 5 4 8 5 9 5 6 8 6 5 6 5 7

Mean 6 5.3 7.3 7 6.3 7.3 5 6 5.3 7.3 5.7 8.3 5.6 6.7 6.3 7.3 5.3 6 6.7 5

Table 4.4: This table is show all the evaluations given by the three experts
and the mean for the second question.

4.3.5 Second part of the test
Finally, three other questions are submitted to the participants regarding
the overall performances of the model. For each question the tester are
asked to answer giving an evaluation score in a range between 1 and 10,
where 1 is the worst evaluation and 10 the best one. The three questions
are here reported:

• Q4 How much the visualization per year is useful ?

• Q5 How much the system is able to visualize music trends?

• Q6 How much do you evaluate the overall system?

The first questions concern the usefulness of the visualization by year.
Participants have to evaluate how much help to see only the songs re-
leased in the same year to a better comparison of the test songs. The
second question ask how much the system is able to show trends and its
effectiveness in doing it. The third question requires a final evaluation
of the overall system, including all of the aspect took into account in the
precedent questions. The table 4.6 shows the results of the final question
of the test, where the participants where required to answer question
relative to the overall performances of the model.
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
V1 8 4 7 7 5 9 6 7 7 8 6 7 7 6 7 8 6 7 6 8
V2 8 8 9 7 5 7 8 8 8 9 6 7 8 6 7 6 7 9 8 7
V3 9 7 8 6 7 7 7 6 7 7 5 7 6 8 6 9 8 8 7 6

Mean 8.3 6.3 8 6.7 5.7 7.7 7. 7. 7.3 8 5.7 7 7 6.7 6.7 7.7 7 8 7 7

Table 4.5: This table is show all the evaluations given by the three experts
and the mean for the third question.

Q4 Q5 Q6
V1 4 7 7
V2 7 8 8
V3 8 7 8

Mean 6,3 7,3 7,6
Variance 2.9 0.2 0.2

Table 4.6: The three columns corresponds to the last three questions on
the overall performances of the model. The first three rows show the
evaluation given by the participants and final one the mean value and the
variance of them.

4.3.6 Limits shown by FMA and Music considera-
tion

To clearly understand and makes considerations on the final test results,
we should before highlighting the weakness of the dataset in the context
of our research. First, FMA does not contains a balanced number of
songs per year and this makes difficult the comparisons of the query
songs with their neighbours in multiple years, as sometimes they do not
exist at all. In addition, the fast evolution of the Pop and Hip-hop music
in years makes very hard comparing songs by these genres in multiple
years, and in our case, we compared relatively recent songs from 2016 to
2021, with music from 2007 to 2017. On one hand, genres like Rock are
not affected by the influence of other genres and, in years, they shows
very few changing in their sounds. We can think to Rock as a ’stable’
genre, which means that if we compare the sounds of different Rock
music pieces from different years they are similar. Consequently, Rock
music evaluation scores by the experts were higher than other genres
in our test. On the other hand, genres like Pop or Hip-Hop suffer from
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contamination from the other genres and are continuously changing, year
after year, as they do not have their own dimension where to live. Hip-
Hop engross beats and sounds by other genres, as in its first years was
produced mainly by people who do not have a big knowledge of musics.
Pop, instead, tends to be more influenced by the popularity of the main
music trend in a year, so it is constantly changing. It follows that the
evaluation scores for this genre results to be lower than the others.

4.3.7 Consideration on the results
The first question, related to the first part of the test, gained a 7,2 mean
value and 0.61 score for the variance. According to this result, our model
can almost correctly classifies the absolute positions of the points songs,
but with some uncertainty in doing that. The second question obtained
the worst results of the first part of the test, with a mean of 6.3 and
very high variance. Second question revealed the main weakness of our
model, as FMA song’s are much different from the music tracks from
Spotify’s. Even though similarity genre could be caught by the testers,
the evaluations were low due to their poor similarity in sound. The third
question, related to the first part of the test, reaches the higher mean
value with the less variance, meaning that all the scores are concentrated
around that value. In this case, our model seems to be much performa-
tive, as the songs are to be located in proximity of the correct clusters.
The result of the fourth question is the lowest gained in all the test,
which is 6,3. The visualization per year of the FMA tracks lucks of a
sufficient number of examples per year, so comparing a query song with
neighbours of different year results to be hard. The fifth question gained
a final mean vote of 7.3 with a very low variance. It means that the
evaluations were consistent in agreeing that this tool can well visualizes
trends. The results of the last question of the test revealed a 7,6 mean
score on the overall performances of the system. This is a good results,
even though it appear to be lower compare with what we expect from the
first metric evaluation. The reasons for that could mainly be address to
the characteristics and limits of FMA datasets, discussed in Section 4.3.6.
A good point to notice is that, all the Spotify’s playlists include the most
popular tracks in Italy from 2016 to 2021. They included the most pop-
ular genres in Italy in these years, including ’trap’, ’indie’, ’Pop’, ’drill’.
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The Embedding vector points generated by our model are located in the
exact position of space where we expect they would be. In fact, they are
organized inside a region of space between Hip-Hop, Pop and Rock. The
reasons, for the non excellent results gained by human evaluations, can
be addressed to the different kind of music from the American Playlists
of the FMA dataset and the Italian songs by Spotify, which hardly con-
ditioned the evaluations. As a matter of fact, the similarity between the
adjacent Italian songs in space are higher. This means that, probably,
in the metric similarity space we trained, there was no a region where
the similarity between the two datasets would be higher, as the training
set is very different from the test. To the contrary, the visualization per
year helps in tracking an evolution in the popular music in Italy.

4.3.8 Evolution of Pop music
For an experimental validation of the method we study the evolution of
Italian songs among the years. We plot the songs by Spotify’s playlist
year by year over all the embedding points of the FMA dataset. This plot
seems to reveal an evolution of music contained in out playlist from Pop
to the Hip-Hop. The playlists contain the most popular songs in Italy
from 2016 till 2021, so classifiable as Italian Pop music. From the Figures
4.12, 4.13 and 4.14, we can trace an evolution of the black points, which
gradually move from the violet Pop cluster to the light-blue Hip-Hop
cluster from 2016 till 2021. This fact could be due to the advent of the
trap music in Italy in 2016. That year was the pinnacle of success of trap
music in Italy where it reach the apex of popularity and gained much of
the favour of the audience. While in year before 2010, pop music mainly
based on folk music by songwriting, today the influence of American
trap music is affecting the Italian artist. With our representation, music
trends are now visible.



Chapter 4. Experimental Setup and Evaluation 73

Figure 4.12: The figure shows how the music pieces from Spotify’s playlists
evolve in years. From the left to the right, the images show the tracks from
2016 to 2017.

Figure 4.13: The figure shows how the music pieces from Spotify’s playlists
evolve in years. From the left to the right, the images show the tracks from
2018 to 2019.

Figure 4.14: The figure shows how the music pieces from Spotify’s playlists
evolve in years. From the left to the right, the images show the tracks from
2020 to 2021.





5
Conclusions and Future Works

In this ending chapter we will summarise the key findings of our research,
giving the final results of the experiments and our conclusion. Finally,
we will talk about which could be the possible future works for this
thesis, showing how our work could be boost in performances according
to several proposed improvements.

5.1 Conclusions
In this thesis we shown a novel approach to study music trends through
similarity. We build a similarity metric space employing Deep Neural
networks with a the triplet loss function. We tested two kind of architec-
tures for our experiments, which are a ’Convolutional Neural Network’,
presented in Section 3.3.1 and a ’Transformer’ encoder, presented in Sec-
tion 3.3.2. FMA provided the music we use for our research, for a total
amount of 8000 songs. From each 30 seconds of audio, we extracted five
perceptive features including MFCC, MFCC delta, MEL, CQT and Chro-
magram coefficients, as we discussed in Section 2.0.1. We experimented
two different kinds of triplet mining, one according to the only genre la-
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bel and the other according to the three different labels, including genre,
artist and track id, as we discussed in Section 3.4. We experimented
as well two different training sets, one containing only 20 MFCC coeffi-
cients and the other with a features vector including all the five music
descriptors. We created a graphic interface, presented in Section 3.5, to
show the embedding output vector generated by the model and plot over
them the music from six Spotify playlists in order to test the performance
of our best model on unseen data. At the end of the experiments, de-
scribed in Chapter 4, Transformer outperformed over the Convolutional
Neural Network in our complex approach employing the second train-
ing set. These results shown the ability of the transformer in learning
a more general representation of the music based on multiple features,
instead of a single descriptors. Issues related to FMA dataset, discussed
in Section 4.3.6, lead to positive human evaluations scores, even though
they resulted to be inaccurate in measuring the similarity between the
FMA and Spotify’s playlists. To the contrary, our model resulted to be
performative in locating the songs in the right cluster proximity. The
songs by Spotify playlists were located by our model in a region of space
between Hip-Hop, Pop and Rock, which is the exact region of the space
were we expect they would be.

5.1.1 Triplet Loss improvements
In our research, we used an offline triplet loss. The offline implementation
requires to produce 3*N embeddings vectors to obtain N triplets. Fur-
thermore, it requires full pass over the training set. The online version
instead, with N embeddings output vectors, generate N3 triplets as it cal-
culates all the possible combination of the embeddings. In future works
we will implement an online strategy for the triplets mining, which will
considerably improve our model, in terms of efficiency and faster train-
ing, as much less examples are needed. Another improvements, which
will further reduce the convergence of the network is the chosen of the
valid triplets, which are the hard positive and the hard negative triplets,
as we described in 2.2.1. In future approaches, triplets will be selected
taking into account another parameter, which is the year, in order to
produce a metric space in which similar songs are produced in the same
years.
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5.1.2 Supervised to Unsupervised learning improve-
ments

In this thesis we followed a supervised approach for the learning process,
as we need a labeled dataset to conduct our experiments. This is a big
disadvantage as the available and free licensing datasets are few and are
not so specific to a particular kind of music. In future works, we will also
implement an unsupervised learning technique, which would expands the
boundary of music learning, as we will use an incredibly larger number
of music tracks and datasets. This approach will be done by feeding
the examples to an unsupervised cluster algorithm, such as the ’K-mean
cluster’, which would naturally aggregate features in a space according
to their similarity, and than assigned to each of them a label.

5.1.3 Dataset
Another possible improvements to our work will be the choice of a dataset
with more recent songs. It will be choose for a particular case of study.
For example, our model is just able to show where Hip-Hop is located,
bu not all of its sub-genres. A more informative dataset on this genre
would boost the performance of the algorithm in tracing trends, because
it will better shows the direction of a particular trends inside a metric
space which better resembles it characteristics.





Bibliography

[1] M. I. R. E. eXchange, “Audio music similarity and retrieval.”

[2] D. Bogdanov, J. Serrà, N. Wack, P. Herrera, and X. Serra, “Unifying
low-level and high-level music similarity measures,” IEEE Transac-
tions on Multimedia, vol. 13, no. 4, pp. 687–701, 2011.

[3] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam, “Disentangled
multidimensional metric learning for music similarity,” in ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6–10, IEEE, 2020.

[4] J. Cleveland, D. Cheng, M. Zhou, T. Joachims, and D. Turn-
bull, “Content-based music similarity with triplet networks,” arXiv
preprint arXiv:2008.04938, 2020.

[5] L. Prétet, G. Richard, and G. Peeters, “Learning to rank music
tracks using triplet loss,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 511–515, IEEE, 2020.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, pp. 5998–6008,
2017.

[7] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 815–823, 2015.

79



80

[8] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA:
A dataset for music analysis,” in 18th International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2017.

[9] G. Kreitz and F. Niemela, “Spotify–large scale, low latency, p2p
music-on-demand streaming,” in 2010 IEEE Tenth International
Conference on Peer-to-Peer Computing (P2P), pp. 1–10, IEEE,
2010.

[10] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, 2009.

[11] E. D. Liddy, “Natural language processing,” 2001.

[12] A. Bozzon, G. Prandi, G. Valenzise, and M. Tagliasacchi, “A
music recommendation system based on semantic audio segments
similarity,” Proceeding of Internet and Multimedia Systems and
Applications-2008, 2008.

[13] J. Downie, K. West, A. Ehmann, and E. Vincent, “The 2005 mu-
sic information retrieval evaluation exchange (mirex 2005): Prelim-
inary overview,” in 6th Int. Conf. on Music Information Retrieval
(ISMIR), pp. 320–323, 2005.

[14] J. S. Downie, J. H. Lee, A. A. Gruzd, and M. C. Jones, “Toward an
understanding of similarity judgments for music digital library eval-
uation,” in Proceedings of the 7th ACM/IEEE-CS joint conference
on digital libraries, pp. 307–308, 2007.

[15] J. Downie, “International music information retrieval systems eval-
uation laboratory (imirsel): Introducing d2k and m2k,” in Demo
Handout at the 2004 International Conference on Music Informa-
tion Retrieval, 2004.

[16] T. Lidy and A. Rauber, “Evaluation of feature extractors and
psycho-acoustic transformations for music genre classification,” in
ISMIR, pp. 34–41, 2005.

[17] N. Shental, T. Hertz, D. Weinshall, and M. Pavel, “Adjustment
learning and relevant component analysis,” in European conference
on computer vision, pp. 776–790, Springer, 2002.



Bibliography 81

[18] P. Hedelin and J. Skoglund, “Vector quantization based on gaussian
mixture models,” IEEE transactions on speech and audio processing,
vol. 8, no. 4, pp. 385–401, 2000.

[19] A. Flexer, “On inter-rater agreement in audio music similarity.,” in
ISMIR, pp. 245–250, Citeseer, 2014.

[20] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and
T. Sainath, “Deep learning for audio signal processing,” IEEE Jour-
nal of Selected Topics in Signal Processing, vol. 13, no. 2, pp. 206–
219, 2019.

[21] P. Avgoustinakis, G. Kordopatis-Zilos, S. Papadopoulos, A. L. Syme-
onidis, and I. Kompatsiaris, “Audio-based near-duplicate video re-
trieval with audio similarity learning,” in 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 5828–5835, IEEE,
2021.

[22] M. Schedl, “Deep learning in music recommendation systems,” Fron-
tiers in Applied Mathematics and Statistics, vol. 5, p. 44, 2019.

[23] J. Nam, K. Choi, J. Lee, S.-Y. Chou, and Y.-H. Yang, “Deep learning
for audio-based music classification and tagging: Teaching comput-
ers to distinguish rock from bach,” IEEE signal processing magazine,
vol. 36, no. 1, pp. 41–51, 2018.

[24] A. Veit, S. Belongie, and T. Karaletsos, “Conditional similarity net-
works,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 830–838, 2017.

[25] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” 2011.

[26] H. Schreiber, “Improving genre annotations for the million song
dataset.,” in ISMIR, pp. 241–247, 2015.

[27] F. Gouyon, F. Pachet, O. Delerue, et al., “On the use of zero-crossing
rate for an application of classification of percussive sounds,” in
Proceedings of the COST G-6 conference on Digital Audio Effects
(DAFX-00), Verona, Italy, vol. 5, Citeseer, 2000.



82

[28] J. C. Brown, “Calculation of a constant q spectral transform,” The
Journal of the Acoustical Society of America, vol. 89, no. 1, pp. 425–
434, 1991.

[29] B. Logan, “Mel frequency cepstral coefficients for music modeling,”
in In International Symposium on Music Information Retrieval,
Citeseer, 2000.

[30] J. B. Allen and L. R. Rabiner, “A unified approach to short-time
fourier analysis and synthesis,” Proceedings of the IEEE, vol. 65,
no. 11, pp. 1558–1564, 1977.

[31] M. O. A. T. U. PANDORA and T. DATA, “Project by, rahul
raghavendiran (rahulrar@ usc. edu),”

[32] M. Clynes, Music, mind, and brain: The neuropsychology of music.
Springer Science & Business Media, 2013.

[33] C. Qin, H. Yang, W. Liu, S. Ding, and Y. Geng, “Music genre trend
prediction based on spatial-temporal music influence and euclidean
similarity,” in 2021 36th Youth Academic Annual Conference of Chi-
nese Association of Automation (YAC), pp. 406–411, IEEE, 2021.

[34] S. Roweis, “Em algorithms for pca and spca,” Advances in neural
information processing systems, pp. 626–632, 1998.

[35] Z. Wang, C. Ye, and W. Wang, “Music trend forecast based on lstm,”
in 2019 4th International Conference on Computational Intelligence
and Applications (ICCIA), pp. 30–35, IEEE, 2019.

[36] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm
networks for improved phoneme classification and recognition,” in
International conference on artificial neural networks, pp. 799–804,
Springer, 2005.

[37] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Müller, S. Stüker, and
A. Waibel, “Very deep self-attention networks for end-to-end speech
recognition,” arXiv preprint arXiv:1904.13377, 2019.



Bibliography 83

[38] A. Waibel, “Modular construction of time-delay neural networks for
speech recognition,” Neural computation, vol. 1, no. 1, pp. 39–46,
1989.

[39] B. Spillane, E. Gilmartin, C. Saam, L. Clark, B. R. Cowan, and
V. Wade, “Identifying topic shift and topic shading in switchboard,”
UK Speech 2018 Abstract Book. UK Speech, vol. 44, 2018.

[40] D. Zhang, T. Li, H. Zhang, and B. Yin, “On data aug-
mentation for extreme multi-label classification,” arXiv preprint
arXiv:2009.10778, 2020.

[41] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[42] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu,
and M. Varma, “The extreme classification repository: Multi-label
datasets and code,” 2016.

[43] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang, “Deep learning for ex-
treme multi-label text classification,” in Proceedings of the 40th in-
ternational ACM SIGIR conference on research and development in
information retrieval, pp. 115–124, 2017.

[44] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu,
“Attentionxml: Label tree-based attention-aware deep model for
high-performance extreme multi-label text classification,” Advances
in Neural Information Processing Systems, vol. 32, pp. 5820–5830,
2019.

[45] Y. Zhao and J. Guo, “Musicoder: A universal music-acoustic en-
coder based on transformer,” in International Conference on Multi-
media Modeling, pp. 417–429, Springer, 2021.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.



84

[47] I. A. P. Santana, F. Pinhelli, J. Donini, L. Catharin, R. B. Mangolin,
Y. M. e Gomes da Costa, V. D. Feltrim, and M. A. Domingues.

[48] D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and X. Serra, “The
mtg-jamendo dataset for automatic music tagging,” 2019.

[49] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Bat-
tenberg, and O. Nieto, “librosa: Audio and music signal analysis
in python,” in Proceedings of the 14th python in science conference,
vol. 8, pp. 18–25, Citeseer, 2015.

[50] J. LaRue, Guidelines for style analysis. No. 12, Harmonie Park
Press, 1992.

[51] L. Bluestein, “A linear filtering approach to the computation of dis-
crete fourier transform,” IEEE Transactions on Audio and Electroa-
coustics, vol. 18, no. 4, pp. 451–455, 1970.

[52] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine trans-
form,” IEEE transactions on Computers, vol. 100, no. 1, pp. 90–93,
1974.

[53] K. Kumar, C. Kim, and R. M. Stern, “Delta-spectral cepstral coeffi-
cients for robust speech recognition,” in 2011 IEEE International
conference on acoustics, speech and signal processing (ICASSP),
pp. 4784–4787, IEEE, 2011.

[54] M. A. Bartsch and G. H. Wakefield, “To catch a chorus: Using
chroma-based representations for audio thumbnailing,” in Proceed-
ings of the 2001 IEEE Workshop on the Applications of Signal Pro-
cessing to Audio and Acoustics (Cat. No. 01TH8575), pp. 15–18,
IEEE, 2001.

[55] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt.
Ltd., 2009.

[56] H. Ramchoun, M. A. J. Idrissi, Y. Ghanou, and M. Ettaouil, “Mul-
tilayer perceptron: Architecture optimization and training.,” Int. J.
Interact. Multim. Artif. Intell., vol. 4, no. 1, pp. 26–30, 2016.



Bibliography 85

[57] R. Hecht-Nielsen, “Theory of the backpropagation neural network,”
in Neural networks for perception, pp. 65–93, Elsevier, 1992.

[58] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET), pp. 1–6, Ieee, 2017.

[59] D. Hubel and T. Wiesel, “David hubel and torsten wiesel,” Neuron,
vol. 75, no. 2, pp. 182–184, 2012.

[60] K. Fukushima, “Neocognitron: A hierarchical neural network capa-
ble of visual pattern recognition,” Neural networks, vol. 1, no. 2,
pp. 119–130, 1988.

[61] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5884–5888, IEEE, 2018.

[62] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural net-
work regularization,” arXiv preprint arXiv:1409.2329, 2014.

[63] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks
for language modeling,” in Thirteenth annual conference of the in-
ternational speech communication association, 2012.

[64] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru)
neural networks,” in 2017 IEEE 60th international midwest sympo-
sium on circuits and systems (MWSCAS), pp. 1597–1600, IEEE,
2017.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning, pp. 448–456, PMLR, 2015.

[66] X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in Proceedings of the European conference on computer
vision (ECCV), pp. 459–474, 2018.



86

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[68] A. Gisbrecht, A. Schulz, and B. Hammer, “Parametric nonlin-
ear dimensionality reduction using kernel t-sne,” Neurocomputing,
vol. 147, pp. 71–82, 2015.

[69] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation
forest and local outlier factor,” in Proceedings of the conference on
research in adaptive and convergent systems, pp. 161–168, 2019.

[70] C. Reas and B. Fry, “Processing. org: programming for artists and
designers,” in ACM SIGGRAPH 2004 Web graphics, p. 3, 2004.

[71] M. Sperber, J. Niehues, G. Neubig, S. Stüker, and A. Waibel, “Self-
attentional acoustic models,” arXiv preprint arXiv:1803.09519,
2018.

[72] P. Viswanath and T. H. Sarma, “An improvement to k-nearest neigh-
bor classifier,” in 2011 IEEE Recent Advances in Intelligent Com-
putational Systems, pp. 227–231, IEEE, 2011.

[73] T. Liu, A. W. Moore, A. Gray, and C. Cardie, “New algorithms for
efficient high-dimensional nonparametric classification.,” Journal of
Machine Learning Research, vol. 7, no. 6, 2006.


	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Music streaming service provider
	Similarity
	Similarity in MIREX
	Deep Learning Approaches

	Evolution of music trends
	Our contribution in musicology
	Some of the best Transformers practices

	Theoretical Background
	Features as descriptors for music similarity
	Deep Learning Background
	Artificial Neural Network
	Convolutional Neural Network
	Transformer

	Triplet Loss Background
	Triplet Loss


	Proposed Approach
	General Formulation
	Dataset and Features
	Dataset: FMA
	Features

	Model Architectures
	Convolutional Neural Network
	Encoder Structure of Transformer

	Triplet Loss
	Offline Triplet Loss

	Visualization
	Samples' reduction
	Graphic Interface


	Experimental Setup and Evaluation
	CNN Experiments
	Baseline Approach
	Complex approach

	Transformer Experiments
	Transformer Baseline Approach
	Transformer complex approach

	Evaluation Metrics
	Spotify's Playlists
	K-nearest neighbours Classifier
	Human Evaluations
	First part of the test
	Second part of the test
	Limits shown by FMA and Music consideration
	Consideration on the results
	Evolution of Pop music


	Conclusions and Future Works
	Conclusions
	Triplet Loss improvements
	Supervised to Unsupervised learning improvements
	Dataset



