
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY

ADVANCED LEARNING METHODS FOR

ANOMALY DETECTION IN MULTIVARIATE

DATASTREAMS AND POINT CLOUDS

Doctoral Dissertation of:
Luca Frittoli

Supervisor:
Prof. Giacomo Boracchi
Tutor:
Prof. Nicola Gatti
The Chair of the Doctoral Program:
Prof. Luigi Piroddi

2022 – Cycle XXXIV

This thesis presents research produced during a Ph.D. funded by STMicroelectronics.

Abstract

Anomaly detection is a challenging problem that can be encountered in sev-
eral application domains, ranging from industrial quality control to crypto-
graphic attacks. In the literature, several statistical and deep learning mod-
els have been proposed, each underpinning specific assumptions on the na-
ture of the data to be analyzed. These models are typically configured on
a training set to describe data generated by a process in normal conditions,
and then assess whether the testing data conforms to the model or not.

This thesis presents new solutions for the anomaly-detection problem
in two different settings. In the first part of the thesis, we assume that
normal data are realizations of a random vector characterized by a certain
probability distribution. In this case, we focus on a change-detection prob-
lem, where the goal is to detect permanent changes in the data-generating
process by analyzing a sequence of samples acquired over time, namely a
datastream. Our most substantial contribution to the research on change de-
tection is QuantTree Exponentially Weighted Moving Average (QT-EWMA),
an online and nonparametric change-detection algorithm for multivariate
datastreams that can be configured to maintain the target Average Run
Length (ARL0), namely the expected time before having a detection in
stationary datastreams. In particular, we employ a QuantTree (QT) his-
togram to model the initial distribution from a training set and we define a
novel change-detection statistic based on the Exponentially Weighted Mov-
ing Average (EWMA) monitoring scheme. The properties of the statistics
based on QuantTree histograms guarantee that QT-EWMA is completely
nonparametric and allow us to compute thresholds that guarantee the ARL0

i

independently on the data distribution. Our experiments on synthetic and
real-world data confirm that QT-EWMA controls the ARL0 substantially
more accurately than most of the competing methods, while achieving com-
parable or lower detection delays.

We extend our work to the concept-drift scenario, where the data sam-
ples are the object of a classification problem and therefore distribution
changes, in this case referred to as concept drifts, require to update an
underlying classifier. In the literature, concept drift detection is typically
addressed by monitoring either the overall data distribution (thus ignoring
class labels) or the error rate of the classifier (thus ignoring distribution
changes that have little impact on classification error). We propose Class
Distribution Monitoring (CDM), a novel concept drift detection algorithms
that combines the information coming from the data distribution and the
class labels. In particular, CDM uses multiple instances of QT-EWMA
to detect changes in the class-conditional distributions of annotated datas-
treams. The main advantage of CDM is that it can promptly detect drifts
affecting a subset of classes and indicates which class triggered a detection,
which might be crucial for diagnostics in practical applications. Most re-
markably, we demonstrate that CDM inherits from QT-EWMA the ability
to control the ARL0, which is rarely guaranteed by alternative solutions.
Our experiments on synthetic and real-world data show that CDM controls
the ARL0 more accurately than alternative methods that monitor either the
overall data distribution or the error rate of a classifier, while achieving
lower detection delays in most cases. In particular, CDM achieves the best
performance when the drift affects a small subset of classes and when the
drift does not substantially increase the classification error, which are the
most challenging scenarios.

As a new application of change-detection tests, we address the problem
of detecting errors in sequential cryptographic side-channel attacks. The
aim of these attacks is reconstructing a private key one bit at a time by
using a distinguisher, namely a statistic involving side channel data (e.g.
the power consumption of the target device) and some intermediate results
of the target algorithm. We cast error detection as a univariate change-
detection problem since the distribution of the distinguisher changes after
an error in the reconstruction of a key bit. In particular, we propose to detect
errors by monitoring the distinguisher sequence by an online and nonpara-
metric change-detection algorithm for univariate datastreams. Then, we
propose an error-correction procedure based on a brute-force search over
a small key window centered at the detected error, and a statistical test
on the distinguisher values corresponding to each combination to select

ii

the correct one. Our experiments on synthetic and real-world side-channel
measurements demonstrate that our error detection and correction proce-
dure substantially improves the success rate of different sequential attacks
against the RSA-2048 algorithm, outperforming existing techniques, which
simply set a threshold on the distinguisher value. Our findings demonstrate
that sequential attacks can be substantially strengthened and thus might be
more dangerous than previously thought. For this reason, countermeasures
such as blinding should be employed even when the low success rate of
sequential attacks suggests that the cryptosystem can be considered secure.

In the second part of the thesis, we address anomaly detection in point
clouds. Point clouds are lists of the coordinates of points describing, for
instance, the surface of an object, and are becoming increasingly popular
since they can provide a compact yet detailed representation for 3D data.
In this case, our goal is to assess whether individual point clouds belong
to a certain normal class or not, a problem that is also known as one-class
classification. Point clouds are high-dimensional data (typically a point
cloud contains thousands of 3D coordinates) having complicated structures
(typically 3D points lie on a locally flat surface). The main challenge of
handling point clouds is their lack of a grid structure: in fact, the points
do not necessarily lie on a regular grid, so traditional Convolutional Neu-
ral Networks (CNNs) cannot be directly applied to this type of data. For
this reason, several point-convolutional layers, namely convolutional layers
designed to process point clouds, have been proposed in the literature.

We propose the composite layer, an original operator that extracts and
compresses the spatial information from the coordinates of the points by
a Radial Basis Function Network (RBFN) and then combines it with the
input features. Compared to the existing layers, our composite layer per-
forms additional regularization by compressing the spatial information, and
is substantially more flexible in terms of number of parameters and struc-
ture. We use our composite layers to implement CompositeNets, deep neu-
ral networks achieving excellent classification performance. Most remark-
ably, we are among the first to address anomaly detection in point clouds
by training our CompositeNet in a self-supervised fashion. Our solution
achieves state-of-the-art performance in anomaly detection, outperforming
the only existing solution (based on a variational autoencoder) and shallow
baselines leveraging hand-crafted features.

Finally, we address a relevant anomaly-detection problem in an indus-
trial scenario. In particular, we analyze Wafer Defect Maps (WDMs),
namely lists containing the 2D coordinates of the defects found on sili-
con wafers by an inspection machine. In normal conditions, wafers contain

iii

few, randomly distributed defects, while defects forming specific patterns
indicate problems and possibly failures in the production process. Since a
few classes of defect patterns have been already identified by production
engineers, in this case we cast anomaly detection as an open-set recog-
nition problem, where the goal is to correctly classify WDMs belonging
to the known classes (including the normal class) and detect anomalous
WDMs, namely those containing defect patterns that do not belong to any
known class. Even though the coordinates of a WDM lie on a grid, whose
size is determined by the precision of the inspection machine, the grid is
huge and prevents any CNN from processing WDMs at full resolution. For
this reason, WDMs should be handled as 2D point clouds. To efficiently
process WDMs at full resolution, we train a Submanifold Sparse Convolu-
tional Network (SSCN) on the known classes. Then, we propose to detect
anomalous patterns by applying an outlier detector based on a Gaussian
Mixture Model (GMM) to the latent representation, namely the output of
the penultimate layer of the SSCN. Our experiments on a dataset of WDMs
acquired at STMicroelectronics show that our solution outperforms several
methods from the literature, which we implemented on top of our SSCN
for a fair comparison.

iv

Contents

1 Introduction 1
1.1 Structure of the Thesis . 6

2 Problem Formulation 9
2.1 Change Detection in Datastreams 10

2.1.1 Concept-drift detection 11
2.2 Anomaly Detection in Point Clouds 11

2.2.1 Open-set recognition 12

I Change Detection in Datastreams 13

3 Related Literature 15
3.1 Univariate Datastreams . 15
3.2 Multivariate Datastreams 17

3.2.1 One-shot detectors 17
3.2.2 Online detectors . 18
3.2.3 Control of False Alarms 19
3.2.4 Summary of the main properties 21

3.3 Concept-drift Detection . 21

4 QuantTree Exponentially Weighted Moving Average 25
4.1 QuantTree Histograms . 26
4.2 The QT-EWMA Algorithm 28
4.3 Control of False Alarms 31

v

Contents

4.4 Updating the QuantTree Histogram 32
4.4.1 The QT-EWMA-update Algorithm 32
4.4.2 Setting the Updating Speed 33
4.4.3 Stopping the Update 35

4.5 Baselines controlling the ARL0 35
4.5.1 Datastream Monitoring by Batch-wise Detectors . . . 36
4.5.2 Datastream Monitoring by Element-wise Detectors . 38

4.6 Computational Complexity 39
4.7 Experiments and Discussion 40

4.7.1 Considered Datasets 41
4.7.2 Figures of Merit . 42
4.7.3 Results and Discussion 42

5 Class Distribution Monitoring 53
5.1 The CDM Algorithm . 53
5.2 Theoretical Analysis . 55

5.2.1 Online and Nonparametric Monitoring 55
5.2.2 Control of the ARL0 56
5.2.3 Computational Complexity 57

5.3 Experiments . 57
5.3.1 Considered Datasets 58
5.3.2 Figures of Merit . 59
5.3.3 Considered Methods 60
5.3.4 Real-world Data . 60
5.3.5 Synthetic Data . 64

5.4 Discussion and Future Work 65

6 Change Detection in Sequential Attacks 67
6.1 Background . 68
6.2 Sequential Attacks . 70

6.2.1 The Sequential Attack Procedure 70
6.2.2 Problem Formulation 71

6.3 Strengthening Sequential Attacks 72
6.3.1 Overview . 72
6.3.2 Error Detection . 74
6.3.3 Error Correction . 75
6.3.4 Assumptions . 77

6.4 Two Strengthened Sequential Attacks 79
6.4.1 Power-analysis attacks 79
6.4.2 Timing attacks . 82

vi

Contents

6.5 Experiments . 84
6.5.1 Datasets . 85
6.5.2 Figures of Merit . 86
6.5.3 Considered Methods 87
6.5.4 Results and Discussion 87

II Anomaly Detection in Point Clouds 91

7 Related Literature 93
7.1 Anomaly Detection . 93

7.1.1 Traditional Machine Learning 93
7.1.2 Deep Learning . 94

7.2 Open-Set Recognition . 96
7.2.1 Classification Scores and Latent Representations . . . 97
7.2.2 Reconstruction and Generative Models 98

8 Composite Layers for 3D Point Clouds 99
8.1 Machine Learning on Point Clouds 100

8.1.1 Deep Learning on Point Clouds 101
8.1.2 Unsupervised Learning over Point Clouds 102

8.2 Point Convolutions . 103
8.2.1 Convolution Window and Output Point Cloud 103
8.2.2 Point-convolutional Operators 104

8.3 Composite Layers . 105
8.3.1 Convolutional Composite Layer 106
8.3.2 Aggregate Composite Layer 108
8.3.3 CompositeNet . 109

8.4 Design Flexibility . 111
8.5 Experiments . 114

8.5.1 Benchmarking Datasets 114
8.5.2 Classification . 114
8.5.3 Anomaly Detection 116

8.6 Discussion and Limitations 119
8.6.1 Future Work . 120

9 Open-Set Recognition for Wafer Production Monitoring 121
9.1 Silicon Wafer Monitoring 122

9.1.1 Wafer Defect Maps 122
9.1.2 Existing solutions 123

9.2 Proposed Solution . 125

vii

Contents

9.2.1 Classification . 125
9.2.2 Anomaly Detection 127
9.2.3 Data Augmentation 128
9.2.4 WDM monitoring pipeline 130

9.3 Experiments and Discussion 131
9.3.1 Experimental Setup 131
9.3.2 Classification of known classes 133
9.3.3 Detection of anomalous patterns 137

9.4 Discussion . 140

10 Concluding Remarks 143
10.1 Future Work . 146

A Additional Results on QT-EWMA 149

Bibliography 159

viii

CHAPTER1
Introduction

Anomaly detection is a challenging problem in machine learning with rel-
evant applications in several domains. Anomaly-detection algorithms an-
alyze the input data with the aim of assessing whether the data-generating
process is operating in normal conditions or not. This problem paramount
in industrial monitoring, where anomalies might indicate issues in the data-
generating process that must be promptly identified and addressed. Cru-
cial challenges of anomaly detection include that typically normal samples
are abundant but anomalies are rare and it cannot be assumed that all the
possible types of anomalies that might occur during testing are adequately
represented in a training set. For this reason, anomaly detection should be
conveniently tackled in unsupervised settings. In this thesis, we address
the anomaly-detection problem under two different sets of data-modeling
assumptions that can be encountered in real-world scenarios.

In the first part of the thesis, we consider a scenario where the mon-
itored process produces a virtually unlimited stream of multivariate data
samples. In normal conditions, we assume all samples to be drawn from
a certain probability distribution, and our goal is to detect any permanent
distribution change as soon as possible by monitoring the datastream on-
line, i.e. one sample at a time. For this reason, in these settings anomaly-

1

Chapter 1. Introduction

detection problems are typically formulated as change-detection problems.
Developing a change-detection algorithm requires addressing three main
challenges: i) designing a model that can describe an arbitrary multivari-
ate distribution; ii) implementing a nonparametric test statistic (based on
the distribution model) to monitor the datastream without requiring any
assumption on the data distribution; iii) defining thresholds for the statis-
tic to control false alarms, which in online monitoring means to maintain
a target Average Run Length (ARL0), namely the expected time before a
false alarm. In [1, 2], we address change detection in multivariate datas-
treams by proposing QuantTree Exponentially Weighted Moving Average
(QT-EWMA) [1], an efficient online change-detection algorithm based on
a QuantTree histogram [3], which we use to model the initial data distri-
bution. The theoretical properties of QuantTree [3] enable us to define a
nonparametric statistic based on the Exponentially Weighted Moving Av-
erage monitoring scheme, and to compute thresholds that control the ARL0

by Montecarlo simulations. We then extend QT-EWMA by proposing QT-
EWMA-update [2], where we use the incoming data to incrementally up-
date the histogram, enabling to start monitoring when the training set is
extremely small. Our experiments on synthetic and real-world datastreams
confirm that QT-EWMA and QT-EWMA-update control the ARL0 better
than competing methods and achieve lower or comparable detection de-
lays. In particular, QT-EWMA-update yields much lower detection delays
than the alternatives when the training set is extremely small.

We also address concept-drift detection, a change-detection problem as-
sociated with a classifier operating on the datastream. In these settings,
detecting distribution changes is crucial since it might be necessary to up-
date a classifier to the new data distribution. The vast majority of the exist-
ing concept-drift detection methods aim at detecting a distribution change
in the datastream or an increase in the error rate of a classifier. The for-
mer approach ignores class labels, which might turn out to be key for de-
tecting drifts that affect only a subset of classes. The latter cannot detect
drifts that do not significantly increase the classification error but might
indicate relevant changes in the data-generating process. In [4], we ad-
dress concept-drift detection by proposing Class Distribution Monitoring
(CDM), which combines the information coming from the data distribution
and the class labels by monitoring the class-conditional distributions using
multiple instances of QT-EWMA. We demonstrate that CDM inherits from
QT-EWMA the theoretical guarantees on the ARL0, which instead is not
controlled by the vast majority of concept-drift detection algorithms. Our
experiments on synthetic and real-world data confirm that CDM accurately

2

controls the ARL0 and outperforms alternative solutions, especially when
the concept drift has little impact on the classification error or involves a
small subset of classes.

As a new application of change detection, we address the problem of
detecting and correcting errors in sequential attacks, a particular class of
cryptographic side-channel attacks that recovers a secret key one bit at a
time. The key recovery is done by computing, at each step of the attack, a
distinguisher, namely a statistic measuring the likelihood of each possible
key bit value (0/1) given some related side-channel data, for instance the
power consumption of a device using the secret key for decryption. Then,
the bit value maximizing the distinguisher is selected as the key bit recov-
ered in that step of the attack. Detecting errors in sequential attacks can be
cast as a change-detection problem in the datastream containing the maxi-
mum distinguisher values obtained in each step of the attack, since the first
error permanently changes the distribution of the distinguisher. This prop-
erty can also be used to correct the error since the distinguisher follows
the same distribution before and after a correctly recovered bit. In [5], we
detect errors by monitoring the value of the distinguisher using an online
change-detection algorithm for univariate datastreams. Then, we correct
errors by a brute-force search over a small window centered at the detected
error, using a statistical test on the obtained distinguisher values to select
the correct combination of key bits. We are the first to address this problem
using sequential monitoring techniques, while existing solutions simply de-
tect an error when the distinguisher gets lower than a threshold. Our exper-
iments on synthetic and real-world side-channel data show that our proce-
dure can improve the success rate of different sequential attacks much more
than existing solutions. Our findings reveal that strengthened sequential at-
tacks are more dangerous than expected. Therefore, it might be necessary
to implement additional countermeasures even when the cryptosystem is
considered secure due to the low success rate of the attacks.

In the second part of the thesis, we address anomaly detection in point
clouds, a particular data format that has been recently attracting more and
more interest since it allows to compactly represent 3D data. Our goal is to
assess whether an individual point cloud belongs to the normal class, which
is provided for training, or instead must be considered anomalous. This
problem is also known in the literature as one-class classification. Point
clouds are lists of coordinates – representing, for instance, the surface of
a 3D object – that are sometimes associated with additional features (e.g.
colors). Point clouds lack the matrix structure of signals and images, and
therefore traditional machine learning and deep learning processing tools

3

Chapter 1. Introduction

(e.g. convolutions) cannot be applied directly, requiring the design of ad-
hoc layers. The vast majority of the machine learning research on point
clouds is focused on supervised tasks such as classification and semantic
segmentation. In contrast, unsupervised tasks such as anomaly detection
have been rarely addressed in the literature. In [6], we address anomaly de-
tection in point clouds by proposing the composite layer, a new operator for
point cloud processing in deep neural networks. Compared to the existing
convolutional layers for point clouds, ours guarantees a higher degree of
flexibility in terms of number of parameters and structure. We implement
a convolutional composite layer, which operates similarly to convolutional
layers for images, and an aggregate composite layer, which instead com-
bines spatial information and features in a nonlinear manner. We employ
our composite layers as building blocks for deep neural networks called
CompositeNets. We successfully train our CompositeNets for classifica-
tion and, most remarkably, anomaly detection, following a self-supervised
approach based on geometric transformations [7]. Our experiments on syn-
thetic and real-world datasets show that our CompositeNets achieve a sim-
ilar classification accuracy to competing methods despite having a much
simpler architecture. Most remarkably, our self-supervised CompositeNets
substantially outperform deep and shallow anomaly-detection algorithms
from the literature.

Finally, we tackle the relevant industrial problem of detecting anoma-
lous patterns in Wafer Defect Maps (WDMs), which are point clouds con-
taining the 2D coordinates of defects in silicon wafers. In particular, we
consider the WDMs acquired by inspection machines at the STMicroelec-
tronics production site in Agrate Brianza, Italy. In normal conditions, de-
fects are few and randomly distributed in the wafer, while defect patterns in-
dicate problems in the production process. Production engineers at STMi-
croelectronics have identified 12 classes of defect patterns related to known
issues, but anomalous patterns might appear in the future due to production
problems that have never been observed so far. Therefore, anomaly de-
tection in WDMs can be cast as an open-set recognition problem, namely
a classification problem in which anomalous samples (i.e. not belonging
to any known class) must be detected during testing. Needless to say, ad-
dressing this problem is of paramount importance to build effective and au-
tomatic quality-inspection tools to monitor the production of silicon wafers.
In [8], we address the problem of open-set recognition for WDM monitor-
ing by training a Submanifold Sparse Convolutional Network (SSCN) [9] to
accurately classify WDMs into the Normal class and the 12 known classes
of defect patterns. Then, we detect anomalous patterns by analyzing the

4

latent representation of the SSCN (i.e. the output of its penultimate layer).
In fact, the SSCN embeds the WDMs from each known class in the same
region of the latent space, so that the last linear layer can distinguish them.
Since anomalous WDMs do not belong to any known class, we employ an
anomaly-detection algorithm based on a Gaussian Mixture Model (GMM)
fitted on the latent representation of the WDMs from the training set. Our
experiments on a real-world dataset of WDMs acquired at the STMicro-
electronics plant in Agrate Brianza, Italy, show that our SSCN yields bet-
ter classification performance than traditional CNNs (in particular, VGG16
and ResNet50) trained on WDMs pre-processed to obtain low-resolution
images. In the task of detecting anomalous patterns, our open-set recogni-
tion algorithms outperforms several alternatives from the literature, which
we apply on top of our SSCN for a fair comparison.

We have also addressed the problem of detecting anomalous regions in
texture images, which is strongly related to the material presented in this
thesis. However, we do not treat this topic in this thesis, where we fo-
cus on point clouds rather than images. In [10], we propose a new loss
function to train autoencoders for detecting anomalous regions in images
containing a texture. Our loss, which is based on a structural similarity
metric, can capture the patterns characterizing the textures substantially
better than traditional loss functions for autoencoders, such as the mean
squared error. Our experiments on well-known benchmarks show that a
simple autoencoder trained with our loss function often outperforms more
sophisticated anomaly-detection methods leveraging pre-trained CNNs to
extract features from the training images.

The vast majority of the material presented in this thesis appears in the
following publications:

• L. Frittoli, M. Bocchi, S. Mella, D. Carrera, B. Rossi, P. Fragneto,
R. Susella, and G. Boracchi. “Strengthening sequential side-channel
attacks through change detection”. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (3), pp. 1–21. 2020.

• L. Frittoli, D. Carrera, and G. Boracchi. “Change detection in multi-
variate datastreams controlling false alarms”. Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases
(ECML–PKDD), pp. 421–436. Online, September 13–17, 2021.

• L. Frittoli, D. Carrera, and G. Boracchi. “Nonparametric and online
change detection in multivariate datastreams using QuantTree”. IEEE
Transactions on Knowledge and Data Engineering, pp. 1–14. 2022.

5

Chapter 1. Introduction

• L. Frittoli, D. Carrera, B. Rossi, P. Fragneto, and G. Boracchi. “Deep
open-set recognition for silicon wafer production monitoring”. Pat-
tern Recognition (124) 108488. 2022.

• A. Bionda, L. Frittoli, and G. Boracchi. “Deep autoencoders for ano-
maly detection in textured images using CW-SSIM”. International
Conference on Image Analysis and Processing (ICIAP), pp. 669–680.
Lecce, Italy, May 23–27, 2022. Best paper award (NVIDIA prize).

• D. Stucchi, L. Frittoli, and G. Boracchi. “Class-distribution monitor-
ing for concept drift detection”. IEEE International Joint Conference
on Neural Networks (IJCNN). Padova, Italy, July 18–23, 2022.

• A. Floris, L. Frittoli, D. Carrera, and G. Boracchi. “Composite layers
for deep anomaly detection on 3D point clouds”. Submitted to IEEE
Transactions on Image Processing, under review.

1.1 Structure of the Thesis

The structure of the thesis is illustrated in Figure 1.1. In Chapter 2 we for-
mally introduce the main problems we address in this thesis. Then, we start
the first part of the thesis (Chapters 3–6), where we address the problem
of change detection in datastreams. In Chapter 3 we survey the literature
regarding change and concept-drift detection. In Chapter 4 we illustrate the
QT-EWMA algorithm, prove its theoretical properties and experimentally
show its practical advantages. In Chapter 5 we present the CDM algorithm
and the properties it inherits from QT-EWMA. Finally, in Chapter 6 we
illustrate our error detection and correction procedure for sequential side-
channel attacks based on a change-detection algorithm.

In the second part of the thesis (Chapters 7–9) we address the problem
of anomaly detection in point clouds. In Chapter 7 we present the literature
on anomaly detection and open-set recognition. In Chapter 8 we focus on
3D point clouds, illustrating our composite layer to process point clouds in
Deep Neural Networks, its theoretical properties and applications in unsu-
pervised anomaly detection. Finally, in Chapter 9 we present our open-set
recognition algorithm for WDM monitoring. In Chapter 10 we conclude
the thesis with some final remarks and possible future research directions.

6

1.1. Structure of the Thesis

Anomaly Detectionaaa
1. Introduction
2. Problem Formulation

Part I: Changeaaaaaa
Detection in
Datastreams
3. Related Literature

4. QuantTree Exponentially
Weighted Moving Average

5. Class DistributionQEaaa
Monitoring

6. Change Detection inaaaa
Sequential Attacks

Part II: Anomalyaaaa
Detection in
Point Clouds
7. Related Literature

8. Composite Layers foraa
3D Point Clouds

9. Open-Set Recognitionaa
for Wafer Production
Monitoring

Figure 1.1: A diagram illustrating the structure of the thesis. After the Introduction (Chapter 1),
in Chapter 2 we formulate the anomaly-detection problems we address. The rest of the thesis is
divided in two parts. In the first part, we focus on change detection in datastreams. In particular,
in Chapter 3 we review the literature on change and concept-drift detection. In Chapter 4 we
introduce QT-EWMA, a statistically sound change-detection algorithm for multivariate datas-
treams. In Chapter 5 we present CDM, an effective concept-drift detection algorithm based on
QT-EWMA. Finally, in Chapter 6, we apply a change-detection algorithm to detect and correct
errors in sequential side-channel attacks. In the second part of the thesis, we focus on anomaly
detection in point clouds. In Chapter 7 we review the literature on anomaly detection and open-
set recognition. In Chapter 8 we introduce the composite layer, a flexible operator to process
3D point clouds in Deep Neural Networks for classification and anomaly detection. Finally,
in Chapter 9 we illustrate our open-set recognition algorithm for the monitoring of WDMs in
semiconductor manufacturing.

7

CHAPTER2
Problem Formulation

Let us consider a data sample x ∈ Rd that, in normal conditions, is gener-
ated by a certain stochastic process ϕ0. Anomaly detection is the problem of
assessing whether x has been generated by ϕ0 or by an alternative process
ϕ1, which is completely unknown and represents anomalous conditions. We
assume that also the process ϕ0 is unknown, but a training set TR contain-
ing samples drawn from ϕ0 is available to configure an anomaly-detection
algorithm. As stated in Chapter 1, in this thesis we address anomaly de-
tection under two different sets of data-modeling assumptions. In the first
part of the thesis, we assume that the data dimension is relatively low, so
that each observation can be modeled as a realization of a random vec-
tor. We also assume that the samples are acquired in a virtually unlimited
datastream x1, x2, . . . and that the anomalous condition to be detected is
a distribution change ϕ0 → ϕ1 occurring at an unknown time τ . In these
settings, the anomaly-detection problem is usually referred to as change
detection.

In the second part of the thesis, we consider high-dimensional data, in
particular point clouds, that cannot be conveniently modeled as realiza-
tions of random vectors. In this case, the problem consists in detecting
whether a single instance x has been generated by ϕ0 or not. Since the

9

Chapter 2. Problem Formulation

size and peculiar structure of point clouds prevents from directly applying
traditional machine-learning techniques, we address anomaly detection on
point clouds by deep neural networks.

Although anomaly detection is an unsupervised problem, change-detection
and anomaly-detection techniques have often been employed in combina-
tion with supervised-learning methods, typically to handle anomalies in
classification problems. A traditional application of change-detection al-
gorithms is concept-drift detection, a classification problem in which test
samples are provided as a datastream. The distribution of the test sam-
ples can change over time, requiring to update the classifier to maintain
the pre-change performance. A comparatively more recent combination of
anomaly detection and classification is open-set recognition, a classifica-
tion problem in which anomalous samples that do not belong to any of the
classes provided for training must be identified at test time.

2.1 Change Detection in Datastreams

We address the change-detection problem in a virtually unlimited multi-
variate datastream x1, x2 . . . ∈ Rd. We assume that, as long as there are
no changes, all the data samples are i.i.d. realizations of a random vari-
able having unknown distribution ϕ0. We define the change point τ as the
unknown time instant when a change ϕ0 → ϕ1 takes place:

xt ∼
{
ϕ0 if t < τ

ϕ1 if t ≥ τ
. (2.1)

We assume that both ϕ0 and ϕ1 ̸= ϕ0 are unknown, and that a training
set TR containing N realizations of ϕ0 is provided to fit a model ϕ̂0. Af-
ter fitting ϕ̂0, an online change-detection algorithm assesses, for each new
incoming sample xt, whether the sequence {x1, . . . xt} contains a change
point. Typically, a statistic Tt based on ϕ̂0 is computed at each incoming
xt, then a decision rule is applied. Usually, the rule consists in controlling
whether Tt > ht for a certain threshold ht, and the detection time t∗ is de-
fined as the first time instant when there is enough statistical evidence to
claim that the datastream {x1, . . . xt∗} contains a change point, namely:

t∗ = min{t : Tt > ht}. (2.2)

As in any statistical test, the sequence of thresholds {ht}t employed in
change detection should be defined to control the probability of having a
false alarm, namely a detection on data drawn from ϕ0. In online settings,

10

2.2. Anomaly Detection in Point Clouds

we measure the amount of false alarms by the Average Run Length [11],
defined as ARL0 = Eϕ0 [t

∗], where the expectation is taken assuming that
the whole datastream is drawn from ϕ0. Thus, the ARL0 is the average
time before a false alarm. Ideally, the target ARL0 of an online change-
detection method should be set a priori, similarly to Type I error probability
in hypothesis testing. The goal is to detect a distribution change as soon as
possible, i.e., to minimize the detection delay t∗ − τ , while controlling the
ARL0, i.e. having an empirical ARL0 that approaches the target ARL0 set
before monitoring.

2.1.1 Concept-drift detection

We also consider the problem of concept-drift detection in a virtually un-
limited datastream {(xt, lt)}t, where each sample xt ∈ Rd is associated to
a class label lt ∈ L. We assume that the observations xt are independent
realizations of a random vector that follows an initial distribution ϕ0, and
we denote by ϕℓ

0 the class-conditional distribution, i.e., the distribution of
instances belonging to class ℓ, defined by

Pϕℓ
0
(xt) = Pϕ0(xt|lt = ℓ), (2.3)

for each ℓ ∈ L. In other words, we say that xt ∼ ϕ0 if and only if xt ∼ ϕℓ
0,

where lt = ℓ. A concept drift is defined as a change ϕℓ
0 → ϕℓ

1 affecting
at least one class-conditional distribution ℓ ∈ L, occurring at an unknown
time τ . We assume that a training set TR containing labeled samples drawn
from the initial distribution ϕ0 is provided before monitoring, to configure
the concept-drift detector.

2.2 Anomaly Detection in Point Clouds

In the second part of the thesis, we address the anomaly detection problem
in high-dimensional data that cannot be modeled as realizations of ran-
dom vectors. In this case, our goal is to analyze a single instance x and
assess whether it is normal or anomalous. This is typically done by com-
puting an anomaly score T(x) and comparing it to a threshold h. Then,
the sample x is considered anomalous if T(x) > h. When dealing with
high-dimensional data such as signals and images, T(x) is typically the
output of an unsupervised Deep Neural Network (DNN) exclusively trained
on normal instances. This setup is also known as semi-supervised since
only normal data samples are provided for training.

11

Chapter 2. Problem Formulation

In particular, we address anomaly detection in Point Clouds (PCs), a
challenging data format that, unlike signals and images, cannot be repre-
sented by a regular grid. A point cloud is defined as a pair x = (P,F),
where P ⊂ Rs is a set of points in an s-dimensional space (typically s = 2
or s = 3) and F : P → RI is a function associating a feature vector
F(p) ∈ RI , e.g. a color, to each point p ∈ P . Point clouds are a com-
pact format for 3D data acquired by LiDAR sensors or depth cameras, and
for this reason deep learning on point clouds is a challenge that has been
attracting more and more interest in the computer vision community.

2.2.1 Open-set recognition

Open-set recognition is an anomaly-detection problem embedded in a clas-
sification scenario. In particular, it is assumed that a training set TR =
{(xi, li)}Ni=1 containing labelled samples from a set of known classes L.
By contrast, anomalous instances (i.e., samples from novel or unknown
classes) might appear during testing. The goal is to train an open-set clas-
sifier K that associates to each test sample x either a known class label or
the Anomalous label. This is typically done by training a traditional classi-
fier to address the closed-set classification problem, i.e., to associate each
test sample x with its most likely class label ℓ̂(x) ∈ L, and an anomaly-
detection algorithm to provide an anomaly score T(x). Then, K returns the
Anomalous label when T(x) > h, where h is the threshold, and the known
class label ℓ̂(x) otherwise, i.e., the output of K is:

K(x) =

{
Anomalous if T(x) > h

ℓ̂(x) otherwise
. (2.4)

The open-set recognition problem has been widely studied on images, while
the literature on open-set recognition in point clouds is rather scarce.

12

Part I

Change Detection in Datastreams

13

CHAPTER3
Related Literature

In this chapter we survey the literature regarding change detection in datas-
treams. First, in Section 3.1 we review the most relevant methods designed
for univariate datastreams. Then, in Section 3.2 we explore the multivariate
case, a more challenging problem that has been addressed following differ-
ent approaches. First, we introduce one-shot change-detection tests (Sec-
tion 3.2.1), which separately analyze batches of data to assess whether they
follow the initial distribution ϕ0 or not. Then, we present online change-
detection tests (Section 3.2.2), which are designed to be executed at each
time t to assess whether the datastream x1, . . . , xt contains a change point
or not. Online change-detection tests are typically more powerful since they
leverage a larger amount of data compared to one-shot tests, however they
require stronger guarantees to control false alarms (Section 3.2.3). Finally,
in Section 3.3 we briefly survey the literature on concept drift detection.

3.1 Univariate Datastreams

Change-detection in univariate datastreams was originally addressed in sta-
tistical process control [12], where the observations are modeled as i.i.d.
realization of a random variable. The first algorithms, such as the Shewhart

15

Chapter 3. Related Literature

chart [13], Cumulative Sum (CuSum) [14], and Exponentially Weighted
Moving Average (EWMA) [15], are designed to be executed online to detect
changes in the mean of ϕ0. The main drawback of these very well-known
solution is that they are parametric, i.e., they assume that ϕ0 belongs to
a known family of probability distributions such as Gaussian [13, 14] or
Bernoulli [15].

Since in general real-world data cannot be assumed to follow a distri-
bution from a known family, nonparametric tests have been developed to
guarantee the control of false alarms when monitoring datastreams gen-
erated by an arbitrary distribution ϕ0. There are two main approaches to
obtain nonparametric change-detection tests: the first is to pre-process the
datastream in such a way that the samples follow a known distribution. For
instance, in [16] the Box-Cox transformation [17] is employed to make the
data approximately Gaussian. The second approach is to use nonparametric
statistics based on ranks such as the Mann-Whitney [18], Mood [19], Lep-
age [20], and Kolmogorov-Smirnov [21] test statistics. Another nonpara-
metric approach to change detection consists in permutation tests [22, 23],
which however are quite expensive from a computational point of view.

A relevant approach to change detection is the Change Point Model
(CPM) [12], which is based on a test statistic T specifically designed to
compare the distributions of two sets of observations and assess “how dif-
ferent” they are. To analyze the datastream x1, . . . , xt, the CPM tests each
tentative change point k < t by splitting the datastream in two sets Ak =
{x1, . . . , xk−1} and Bk = {xk, . . . , xt}, and computing the test statistic
Tk,t = T(Ak,Bk). When the maximum of the test statistic Tt = maxk Tk,t
exceeds a specific threshold ht, a change point is reported at the location τ̂
maximizing T:

τ̂ = argmax
k

Tk,t. (3.1)

The CPM was originally introduced in parametric settings to detect changes
either in the mean [12] or in the variance [24] of a Gaussian ϕ0. In [25, 26]
the CPM is modified using nonparametric statistics based on ranks [18–20].
The main advantage of this approach is its ability to estimate the position of
the change point by (3.1), while the other online change-detection tests [13–
15] only assess whether a distribution change has occurred or not. The main
drawback is that, whenever a new sample xt is acquired, the test statistic T
has to be computed for each tentative change point k ∈ {1, . . . , t}, thus the
computational cost of CPM is typically higher than alternative algorithms
and increases over time.

16

3.2. Multivariate Datastreams

3.2 Multivariate Datastreams

Change detection in multivariate datastreams is a challenging problem since
statistics designed for univariate datastreams, especially nonparametric statis-
tics based on ranks [18–20], cannot be directly applied to multivariate data.
In Section 3.2.1 we describe one-shot change-detection algorithms, which
operate on fixed-size batches of data rather than online. In Section 3.2.2 we
survey the existing approaches to online change detection in multivariate
datastreams, and in Section 3.2.3 we focus on the problem of controlling
the ARL0. Finally, in Section 3.2.4 we summarize the properties of the
most relevant change-detection algorithms for multivariate datastreams.

3.2.1 One-shot detectors

Change detection in multivariate datastreams has often been addressed us-
ing one-shot statistical tests, which analyze individual batches of data to
assess whether they follow ϕ0 or not. A relevant example is the paramet-
ric Hotelling test statistic [27], which is designed to detect changes in the
mean of a Gaussian distribution. When ϕ0 is unknown, as often occurs
when dealing with real-world data, the typical approach consists in fitting
a semiparametric model ϕ̂0, such as a Gaussian [28] or a Gaussian Mix-
ture [29], on a training set drawn from ϕ0. Then, the likelihood or log-
likelihood with respect to ϕ̂0 can be used to assess whether a new batch
follows ϕ0 [29]. Although these models are relatively flexible, they might
not be able to adequately approximate any ϕ0.

Histograms are very flexible nonparametric models to describe any ini-
tial distribution ϕ0 [30, 31]. The main drawback of regular-grid histograms
is that the number of bins does not scale well with the data dimension.
Moreover, in [31] it has been shown that uniform-density partitions yield
better detection performance than regular grids. A remarkable example
of a change-detection test based on uniform-density histogram is Quant-
Tree [3]. After constructing a histogram over a training set following a
stochastic process, the Pearson χ2 test statistic [32] can be used to assess
the goodness-of-fit of a batch of data.

Another nonparametric approach consists in comparing the batches to
reference data drawn from ϕ0 by the Maximum Mean Discrepancy (MMD)
statistic [33]. The main drawbacks of MMD are the following: i) it requires
a large amount of reference data [34], and ii) its computational complex-
ity does not scale well with the data dimension. This latter problem has
been addressed in Neural Tangent Kernel MMD (NTK-MMD) [35], where

17

Chapter 3. Related Literature

a neural network is trained on the reference data to approximate the MMD
statistic, reducing its computational overhead.

3.2.2 Online detectors

Several approaches have been proposed to address online change-detection
in multivariate datastreams, typically based on one-shot statistical tests or
on online methods originally designed for univariate data.

Dimensionality reduction. A common solution consists in reducing the di-
mensionality of the datastream so that the problem boils down to moni-
toring a univariate datastream. Dimensionality reduction can be achieved
by computing the likelihood of each observation with respect to a Gaus-
sian mixture model fitted on a training set [36] or by Principal Component
Analysis (PCA) [37, 38]. Then, the resulting univariate datastream can be
monitored using state-of-the-art online change-detection methods designed
for univariate datastreams, such as the nonparametric CPM [25].

Multi-stream monitoring. Change detection in multivariate datastreams has
often been addressed following the multi-stream (multi-channel) approach,
i.e., by separately analyzing each component of a multivariate datastream
[39–41]. However, the assumptions underpinning multi-stream monitor-
ing are stronger than those of change-detection in multivariate datastreams.
In fact, [39–41] assume that the components are generated by indepen-
dent 1-dimensional random variables, thus ignoring the possible correlation
among them. Moreover, in multi-stream settings, changes typically affect
the distribution of a subset of these random variables [39], while, in mul-
tivariate settings, more general distribution changes are considered [42].
In particular, subtle changes affecting the correlation between components
might be hard to detect by separately analyzing the components.

Extending univariate tests. Several extensions of online change-detection tests
originally designed for univariate datastreams have been proposed, for in-
stance in [43–46], which extend the Shewhart chart, CuSum, and EWMA.
Also the CPM framework has been extended to operate on multivariate
datastreams [47] using the Hotelling test statistic. As in the univariate case,
the main drawback of these solutions is that they are parametric and thus
assume that ϕ0 belongs to a given family of probability distributions, typi-
cally a multivariate Gaussian [47].

Unfortunately, the extension of nonparametric statistical tests to multi-
variate data is not straightforward since these rely on the natural order of

18

3.2. Multivariate Datastreams

real numbers, which is not well defined in multiple dimensions. For this
reason, only a few works follow this direction: for instance, [48] propose
a multivariate extension of the Mann-Whitney test statistic by ranking the
data points over each dimension, and [49] extend permutation tests to mon-
itor multivariate datastreams. The main drawback of these solutions is that
their computational cost does not scale well with the data dimension, mak-
ing it infeasible to apply them in online settings.

Extending one-shot tests. One-shot statistical tests for multivariate data can
in principle be extended to online monitoring by simply applying them to
consecutive, fixed-size batches of data. However, as we show in the follow-
ing Chapter, online tests that consider, at each time t, the whole datastream
x1, . . . , xt are substantially more powerful since they have access to more
data samples. A relevant online generalization of histograms-based change-
detection tests is the Binned Generalized CuSum (BG-CuSum) test [50].
However, this algorithm has been tested only on univariate datastreams,
and it is infeasible to extend to multivariate data because the number of
bins scales exponentially with the data dimension. Moreover, it requires
to know the analytical expression of ϕ0, or an accurate approximation, to
effectively control false alarms. This implies that, when ϕ0 is unknown, a
large training set is required for parameters estimation, especially when the
data dimension d is high [50].

Recently, the MMD statistic has been employed for online change detec-
tion [34, 35, 51]. In particular, No-prior-knowledge EWMA (NEWMA) [51]
analyzes the relation between two EWMA statistics with different forget-
ting factors based on MMD to detect changes online. Unfortunately, this
solution requires the analytical expression of ϕ0 [51], which limits the ap-
plicability of this solution. Scan-B [34] and NTK-MMD [35] respectively
compute the MMD statistic and approximate it by a neural network on a
sliding window of the datastream. A major limitation of the algorithms
based on MMD is that they require a large amount of reference data [34,35].

3.2.3 Control of False Alarms

As any statistical test, change-detection tests compute a statistic T of the
input data, and detect a change when the statistic exceeds a threshold h
defined to control the false alarm probability. In one-shot change-detection
tests, the threshold is defined to set the probability of a batch drawn from ϕ0

to trigger a detection to the desired value α, and is typically computed by
bootstrap on the training set [29] or by Montecarlo simulations on synthetic

19

Chapter 3. Related Literature

data if the test is completely nonparametric [3].

In online change-detection tests, in which a test statistic Tt is computed
whenever a new sample xt is acquired, a sequence of thresholds {ht} should
be defined to set the Average Run Length (ARL0) [11], i.e., the expected
time before a false alarm. There are two main main strategies to define
thresholds {ht} that guarantee the desired ARL0. The first consists in set-
ting a constant false alarm probability, namely

Pϕ0(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1. (3.2)

As shown in [52], when this property is satisfied, the detection time under
ϕ0 is a Geometric random variable with parameter α, hence its expected
value is ARL0 = 1/α. Since it is usually infeasible to exactly compute the
conditional probabilities in (4.13), [25,26,47] perform Montecarlo simula-
tions by computing the statistics Tt on a large number of synthetic datas-
treams. The, the first threshold h1 is defined as the empirical (1 − α)-
quantile of all the values of T1, where α = 1/ARL0. Similarly, the thresh-
olds ht with t > 1 are defined as the (1−α)-quantiles of the values Tt, using
only those datastreams whose statistics Tk have never exceeded any of the
previous thresholds hk for k = 1, . . . , t−1. Computing the thresholds {ht}
in this way guarantees that, for each time t, the empirical quantiles of Tt
are conditioned to Tk ≤ hk ∀k < t, which in turn implies (4.13), hence
the target ARL0 is preserved [52]. The main drawback of this approach is
that these Montecarlo simulations can be applied only when the test is para-
metric [47], thus the distribution ϕ0 is assumed to be known, or when the
distribution of the statistics Tt does not depend on ϕ0, as in [25, 26]. Due
to the large amount of data and computations required for simulations [25],
computing the thresholds {ht} by bootstrap is usually infeasible.

The second approach consists in approximating a lower bound for the
ARL0 at a fixed value of the threshold ht ≡ h [34, 45, 50, 51], for instance
studying the asymptotic behavior of the ARL0 when h→∞ [34]. Among
these, the only method in which the threshold for a given ARL0 can be
computed independently on ϕ0 is Scan-B [34]. In contrast, [45] assumes
that ϕ0 is a Gaussian distribution, and other solutions that in principle can
operate on any ϕ0 [50,51], require the analytical expression of ϕ0, or at least
a very accurate approximation [50], to compute these threshold. These re-
quirements limit the applicability of these solutions since ϕ0 is typically
unknown, especially when dealing with real-world data, and only a rela-
tively small training set drawn from ϕ0 is usually assumed to be available.

20

3.3. Concept-drift Detection

Table 3.1: Main properties of the most relevant change-detection algorithms for multivariate
datastreams.

algorithm nonparametric online control ARL0 update

G
au

ss
ia

n Hotelling CPM [47] ✓ ✓ ✓
SS-CPD [45] ✓ ✓

SPLL [29] semiparametric with modifications with modifications

PC
A PCA-SPLL [37] ✓

PCA-CD [38] ✓ ✓

Martingales [22, 23] ✓ ✓

M
M

D Scan-B [34] ✓ ✓ ✓ ✓
NEWMA [51] ✓ ✓ iff ϕ0 is known

NTK-MMD [35] ✓ ✓

H
is

to
gr

am
s BG-CuSum [50] ✓ ✓ iff ϕ0 is known

QuantTree [3] ✓ with modifications with modifications
QT-EWMA ✓ ✓ ✓

QT-EWMA-update ✓ ✓ ✓ ✓

3.2.4 Summary of the main properties

Table 3.1 summarizes the main properties of the most relevant change-
detection algorithms designed to monitor multivariate datastreams. In par-
ticular, we consider the following properties: being nonparametric, being
executed online, controlling the ARL0, and being able to incrementally up-
date the model using the incoming data. To the best of our knowledge,
Scan-B [34] is the only nonparametric and online change-detection algo-
rithm from the literature in which the target ARL0 can be set independently
of ϕ0. As we show in Section 4.5, one-shot change-detection methods such
as QuantTree [3] and Semi-Parametric Log-Likelihood (SPLL) [29] can be
modified to operate online while controlling the ARL0. All the other meth-
ods that control the ARL0 are either parametric [45, 47], or require the an-
alytical expression of ϕ0 [50, 51].

3.3 Concept-drift Detection

Concept-drift detection [53] is a challenging problem in datastream learn-
ing, and has been addressed in different settings and by different approaches,
which we summarize here. A more comprehensive survey on concept-
drift detection can be found in [54]. Since in this thesis we focus only
on concept-drift detection, we do not review the literature on concept-drift
adaptation. We refer to [55] for a survey on this subject.

The most popular concept-drift detection methods assume that the label

21

Chapter 3. Related Literature

lt of each sample xt is revealed after classifying it by a previously trained
classifier K [56]. This assumption enables to detect concept drifts by ana-
lyzing the binary stream {et} defined by the classification errors of K:

et = 1(K(xt) ̸= lt). (3.3)

Typically, a concept drift is reported when the error rate increases. In partic-
ular, Drift Detection Method (DDM) [57] and its variants [58–61] compute
a cumulative average and standard deviation of {et} during monitoring, and
employ at each time t a statistical test to assess whether the error rate has
changed significantly, approximating the distribution of the error rate by
a Gaussian. ADaptive WINdowing (ADWIN) [62] and its variants [63–65]
analyze {et} in a sliding-window fashion by comparing the average of two
consecutive sub-windows, for all the possible splits of the current window
(similarly to the CPM described earlier). A concept drift is detected when
the absolute difference between the average values of two sufficiently large
sub-windows exceeds a threshold. Recently, it has been proposed to mon-
itor the classification performance on individual classes to handle imbal-
anced datastreams and drifts affecting only some classes [66,67]. Unfortu-
nately, none of these solutions is designed to control the ARL0.

By contrast, EWMA for Concept Drift Detection (ECDD) [56] analyzes
{et} online by the EWMA chart [15]:

Ut = (1− r)Ut−1 + λet, U0 = p̂0,0, (3.4)

where p̂0,t indicates the average error rate of K up to time t, and λ is the
EWMA parameter, which in [56] is set to λ = 0.2. A concept drift is
detected when Ut > p̂0,t + Λσt, where Λ is a control limit and σt is the
estimated standard deviation of Ut:

σt =

√
p̂0,t(1− p̂0,t)

λ

2− λ(1− (1− λ)2t). (3.5)

Since Ut is an incremental estimate of the error rate of K, which gives
exponentially larger weights to the latest elements of et compared to older
elements, and since a one-sided decision rule is applied, ECDD can only
detect drifts that increase the classification error. Contrarily to the vast
majority of concept drift detection methods, ECDD allows to control false
alarms by setting the ARL0 by tuning the control limit Λ, and [56] provides
polynomial approximations to compute Λ for different values of the target
ARL0 as a function of p̂0,t.

A second relevant class of concept-drift detection methods monitors the
distribution of the input data by applying a change-detection algorithm [54]

22

3.3. Concept-drift Detection

such as those described earlier. The change-detection algorithm monitors
the input samples xt, overlooking the corresponding class labels lt, and
any distribution change is reported as a concept drift. On the one hand,
this approach ignores class information that might be relevant to detect a
concept drift. On the other hand, it can operate also when few or no labels
are available, as might be the case in a real-world monitoring scenario.

23

CHAPTER4
QuantTree Exponentially Weighted Moving

Average

In this chapter, we present QuantTree Exponentially Weighted Moving Av-
erage (QT-EWMA), a nonparametric online change-detection algorithm that
can effectively monitor multivariate datastreams controlling false alarms.
QT-EWMA combines a QuantTree (QT) histogram [3], used as a model for
the initial distribution, and a novel online statistic based on Exponentially
Weighted Moving Average (EWMA) [15] that monitors the proportion of
incoming samples falling in each bin of the histogram. The theoretical
properties of QuantTree [3] guarantee that QT-EWMA is completely non-
parametric and that its thresholds controlling the ARL0 can be set a priori.

In Section 4.1 we introduce the construction and use of QuantTree his-
tograms, and we extend the theoretical results in [3] by fully characterizing
the distribution of the bin probabilities. In Section 4.2 we present the QT-
EWMA algorithm, and in Section 4.3 we illustrate our Montecarlo proce-
dure to compute thresholds controlling the ARL0. In Section 4.4 we extend
QT-EWMA by incrementally updating the estimated bin probabilities, im-
proving the detection performance when the training set is small. Then, in
Section 4.5 we show how to modify one-shot detectors (Section 3.2.1) for

25

Chapter 4. QuantTree Exponentially Weighted Moving Average

online monitoring controlling the ARL0, and in Section 4.6 we analyze the
computational complexity of QT-EWMA and alternative algorithms. Fi-
nally, in Section 4.7 we present and discuss the results of our experiments.

4.1 QuantTree Histograms

Histograms are a flexible model for multivariate distributions over Rd [3,30,
31] defined by {(Sj, π̃j)}Kj=1, where theK bins Sj ⊂ Rd form a partitioning
of Rd, i.e.

⋃K
j=1 Sj = Rd and Sj ∩ Si = ∅ for j ̸= i, and π̃j is an estimate

of the bin probability pj = Pϕ0(Sj). QuantTree [3] is an algorithm that
takes as input a training set TR containing N samples drawn from ϕ0 and
returns a histogram Q = {(Sj, π̃j)}Kj=1 whose bins Sj are constructed by
splitting Rd along random directions to contain πjN samples from TR,
where {πj}Kj=1 is a given set of target bin probabilities. Since in [31] it
has been shown that histograms based on partitionings in which all bins
have the same probability under ϕ0 yield superior detection performance,
the most natural choice for the target probabilities is πj = 1/K for j =
1, . . . , K. The construction of a QuantTree histogram requires to order
K components of the N points in the training set TR, thus resulting in
a computational cost of O(KN logN) operations [3]. Further details on
QuantTree – including how to define the bins when TR cannot be exactly
split to match target probabilities – can be found in [3].

The rationale behind change-detection tests based on histograms is com-
paring the proportion of test samples falling in each bin Sj of the histogram
representing ϕ0 against the actual bin probabilities pj under ϕ0. Since ϕ0 is
assumed to be unknown, the bin probabilities (p1, . . . , pK) are the unknown
realization of a random vector, and in QuantTree histograms [3] they can
be approximated by:

π̃j :=





πjN

N + 1
if j = 1, . . . , K − 1

πjN + 1

N + 1
if j = K

. (4.1)

The most important property of QuantTree histograms is that the distribu-
tion of any statistic defined by the number of test samples falling in each
bin Sj does not depend on ϕ0 nor on the data dimension d, as demonstrated
in [3], thus yielding nonparametric statistical tests. Here we extend the the-
oretical results in [3] by fully characterizing the probability distribution of
(p1, . . . , pK) in the following Proposition.

26

4.1. QuantTree Histograms

Proposition 4.1. Let {Sj}Kj=1 be a partitioning built by the QuantTree al-
gorithm with target probabilities {πj}Kj=1 on a training set TR ∼ ϕ0 of
size N . Then, the bin probability vector (p1, . . . , pK) is drawn from the
Dirichlet distribution:

(p1, . . . , pK) ∼ Dir
(
π1N, π2N, . . . , πKN + 1

)
. (4.2)

Proof. We leverage the result in [68] linking the Dirichlet distribution to the
stick-breaking process. In particular, the stick-breaking process generates a
sequence of K random variables q1, . . . , qK as

qj =

j−1∏

k=1

(1− q̃k) · q̃j, j < K, qK = 1−
K−1∑

j=1

qj, (4.3)

where q̃j for j = 1, . . . , K − 1 are defined as

q̃j ∼ Beta
(
γj,

K∑

k=j+1

γj

)
, (4.4)

and γ1, . . . , γK are the parameters that define the stick-breaking process.
In [68] it has been shown that

(q1, . . . , qK) ∼ Dir
(
γ1, . . . , γK

)
. (4.5)

To prove the proposition it is enough to show that there exists a specific
configuration of γj such that the bin probabilities pj of a QuantTree his-
togram can be expressed as qj in (4.3). To this purpose, we recall the result
in [3] where it has been shown that pj can be written as

pj =

j−1∏

k=1

(1− p̃k) · p̃j, j < K, pK = 1−
K−1∑

j=1

pj, (4.6)

where p̃j are independent and follow Beta distributions:

p̃j ∼ Beta
(
πjN,

(
1−

j∑

k=1

πk

)
N + 1

)
j = 1, . . . , K − 1. (4.7)

Now, we only need to find a suitable choice of γ1, . . . , γK to express the
p̃j as the q̃j in (4.4). If we define γj = πjN for j < K as in (4.7) and
γK = πKN + 1, we obtain that:

K∑

k=j+1

γk =
K∑

k=j+1

πkN + 1 =

(
1−

j∑

k=1

πk

)
N + 1, (4.8)

27

Chapter 4. QuantTree Exponentially Weighted Moving Average

where the last equality follows from the fact that
∑K

j=1 πj = 1. Equation
(4.8) ensures the correspondence between p̃j in (4.7) and q̃j in (4.4), which
implies the thesis.

Proposition 4.1 means that, whenever we construct a QuantTree over
a training set, we are partitioning Rd into K bins in such a way that the
bin probabilities (p1, . . . , pK) under ϕ0, namely pj = Pϕ0(Sj), are drawn
from the Dirichlet distribution in (4.2). Since the expected value of the
j-th component of a random vector drawn from the Dirichlet distribution
Dir(γ1, . . . , γK) is γj/

∑K
k=1 γk [69], by simple algebraic manipulation of

the Dirichlet parameters in (4.2) we have that Eϕ0 [pj] = π̃j , where π̃j are
defined as in (4.1). Therefore, the values π̃1, . . . , π̃K defined in (4.1) can
be used as estimates of the bin probabilities p1, . . . , pK . Moreover, thanks
to the properties of the Dirichlet distribution, we have that var[pj] → 0 as
N → ∞, thus π̃j is a good estimator of pj when the training set TR is
sufficiently large. We remark that the statistics employed in QuantTree [3]
estimate the bin probability pj by its target value πj since it is assumed that
a large training set is provided, and π̃j → πj when N → ∞ by definition
(4.1). Here we also consider cases whereN is small, thus in the QT-EWMA
statistics (4.11) and (4.12) we employ π̃j , which is a more accurate estimate
of pj .

4.2 The QT-EWMA Algorithm

Here we introduce QuantTree Exponentially Weighted Moving Average (QT-
EWMA), which extends to online monitoring the QuantTree monitoring
scheme [3] that was originally designed for one-shot change detection. In
particular, we define a novel online statistic Tt to monitor the proportion
of samples in the datastream belonging to each bin Sj of a QuantTree his-
togram.

The QT-EWMA monitoring scheme is illustrated by Algorithm 4.1. First,
we construct a QuantTree histogram on a training set TR drawn from ϕ0

(line 2). When a new sample xt is acquired at time t, we define K binary
statistics from the indicator functions of each bin Sj , namely

yj,t = 1(xt ∈ Sj), j = 1, . . . , K, (4.9)

to track in which bin xt falls. If xt ∼ ϕ0, the expected value of each variable
yj,t is, by definition,

Eϕ0 [yj,t] = pj, j = 1, . . . , K, (4.10)

28

4.2. The QT-EWMA Algorithm

Algorithm 4.1 QuantTree Exponentially Weighted Moving Average (QT-EWMA)

Input: datastream x1, x2, . . ., target probabilities {πj}Kj=1, thresholds {ht}t, TR
Output: detection flag ChangeDetected, detection time t∗

1: ChangeDetected← False, t∗ ←∞
2: construct QuantTree histogram Q = {(Sj , π̃j)}Kj=1 from TR
3: Zj,0 ← π̃j ∀j = 1, . . . ,K
4: for t = 1, . . . do
5: yj,t ← 1(xt ∈ Sj)
6: Zj,t ← (1− λ)Zj,t−1 + λyj,t, j = 1 . . . ,K

7: Tt ←
∑K

j=1(Zj,t − π̃j)
2/π̃j

8: if Tt > ht then
9: ChangeDetected← True, t∗ ← t

10: break;
11: end if
12: end for
13: return ChangeDetected, t∗

where the expected value Eϕ0 is computed under the assumption that xt ∼
ϕ0. Since ϕ0 is unknown, so are the bin probabilities (p1, . . . , pK), which
can be approximated by π̃j ≈ pj , where π̃1, . . . , π̃K are defined in (4.1).
After evaluating the statistics yj,t for the incoming sample xt (line 11), we
compute the EWMA statistic [15] Zj,t (line 6), to monitor the proportion of
data in each Sj:

Zj,t = (1− λ)Zj,t−1 + λyj,t where Zj,0 = π̃j . (4.11)

Finally, we define the QT-EWMA change-detection statistic:

Tt =
K∑

j=1

(Zj,t − π̃j)2
π̃j

, (4.12)

which is similar to the Pearson statistic [32]. In fact, Tt measures the overall
deviation of the proportion of samples x1, . . . , xt falling in each bin Sj ,
represented by Zj,t, from their estimated expected values π̃j under ϕ0. This
difference naturally increases when t > τ as a consequence of a change
ϕ0 → ϕ1, which can be expected to modify the probability of some bin
Sj . The QT-EWMA statistic is computed at each incoming sample (line 7)
and then compared against the corresponding threshold ht to detect changes
(line 14).

Impact of the choice of K. The number of bins K of the QuantTree his-
togram is a fundamental parameter that influences the change-detection

29

Chapter 4. QuantTree Exponentially Weighted Moving Average

2 4 8 16 32 64 128 256 512

0.64

0.66

0.68

0.70

0.72

0.74

0.76

K

A
U

C

Gaussian, d = 4, 16, 64

N = 4096 N = 2048 N = 1024 N = 512

Figure 4.1: Detection power of QT-EWMA on Gaussian datastreams with different training set
size N when varying the number of bins K. The results, which are averaged over d = 4, 16, 64,
show that histograms with a small K cannot describe ϕ0 accurately and yield low detection
performance. Also setting a very large K harms detection performance since, at a fixed N ,
increasing K yields inaccurate estimates {π̃j}j .

performance of QT-EWMA. To analyze the impact of the choice of K, we
test QT-EWMA with K = 2, 4, 8, . . . , 512. In particular, we compute the
QT-EWMA statistic over 5000 stationary Gaussian datastreams and 5000
datastreams containing a change point at τ = 500, and we measure the de-
tection power by the Area Under the ROC Curve (AUC) given by the statis-
tic values at t = 1000, namely T1000. The distribution changes ϕ0 → ϕ1

consist in random roto-translations of ϕ0 generated by CCM [42] (see Sec-
tion 5.3.1). Since the detection performance depends also on the training
set size N , we employ different values of N = 512, 1024, 2048, 4096.

In Figure 4.1 we report the average results obtained on datastreams with
d = 4, 16, 64. Setting K = 2, 4 yields low AUC because histograms
having such few bins cannot describe ϕ0 well. Increasing the number of
bins (K = 128, 256, 512) while keeping N fixed increases the variance of
the bin probabilities pj due to the properties of the Dirichlet distribution
(4.2), harming the detection performance. Intermediate values – especially
K = 16, 32 for the considered values of N – yield the best results, thus we
in our experiments we select K = 32 as in [3]. As expected, the detection
performance increases with N since var[pj]→ 0 when N →∞. However,
the improvement is substantial only when increasing N from 512 to 1024,
while using a larger N yields a marginal improvement, see Figure 4.1.

30

4.3. Control of False Alarms

4.3 Control of False Alarms

In online monitoring, the thresholds {ht}t should guarantee a given ARL0 =
Eϕ0 [t

∗], where t∗ is the detection time, as defined in Chapter 2. Following
Margavio et al. [52], we compute the thresholds {ht}t to guarantee a fixed
false alarm probability α at each time instant t, namely

Pϕ0(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1, (4.13)

where α = 1/ARL0. This is a standard approach described more in detail
in Section 3.2.3. We remark that controlling false alarms by (4.13) implies
that the target ARL0 is an upper bound on the average detection delay since
the detection probability can be expected to increase after a distribution
change, i.e., when t > τ .

Since it is infeasible to exactly compute the conditional probabilities in
(4.13), we resort to Monte Carlo simulations as in [25]. Leveraging Propo-
sition 4.1, we simulate the construction of a QuantTree histogram on a train-
ing set TR ∼ ϕ0 of size N by drawing its bin probabilities (p1, . . . , pK)
from the Dirichlet distribution (4.2). Then, for each probability vector, we
simulate the binary statistics (y1,t, . . . , yK,t) in (4.9) of a stationary datas-
tream of length T = 5000 by drawing them from the following multinomial
distribution M:

(y1,t, . . . , yK,t) ∼M(p1, . . . , pK). (4.14)

Then, we use these values {(y1,t, . . . , yK,t)}5000t=1 to compute the QT-EWMA
statistics {Tt}5000t=1 by (4.11)–(4.12). To compute the thresholds {ht}t yield-
ing the desired ARL0, we repeat the procedure above 1,000,000 times, and
define h1 as the empirical (1 − α)-quantile of all the values of T1, where
α = 1/ARL0. Similarly, we define ht with t > 1 as the (1 − α)-quantiles
of the values Tt, using only those sequences {(y1,k, . . . , yK,k)}tk=1 whose
statistics Tk have never exceeded any of the previous thresholds hk for
k = 1, . . . , t − 1. Computing the thresholds {ht}t in this way guaran-
tees that, for each time t, the empirical quantiles of Tt are conditioned to
Tk ≤ hk ∀k < t, which in turn implies (4.13), hence the target ARL0 is
preserved [52].

We compute the thresholds ht for t = 1, . . . , 5000 and then fit a poly-
nomial in powers of 1/t to these values that returns ht for a given t, as
suggested in [25]. This allows to both estimate ht for t > 5000 and to im-
prove the estimates {ht}5000t=1 by leveraging correlation among thresholds.
In our code we provide the polynomial expressions of the thresholds main-

31

Chapter 4. QuantTree Exponentially Weighted Moving Average

taining ARL0 = 500, 1000, 2000, 5000, 10000, 20000, which can be very
useful to control false alarms in high-throughput applications.

This procedure based on Proposition 4.1 is substantially more efficient
than an equivalent procedure inspired by [3], which consists in comput-
ing the QT-EWMA statistics {Tt}5000t=1 from synthetic univariate Gaussian
datastreams, i.e. ϕ0 = N(0, 1), after constructing a QuantTree histogram
on a synthetic training set TR ∼ ϕ0. Directly generating the bin proba-
bilities (p1, . . . , pK) from the Dirichlet distribution (4.2) and the sequences
{(y1,t, . . . , yK,t)}5000t=1 from the multinomial distribution (4.14) replaces the
construction of a QuantTree histogram on each training set and the compu-
tation of the binary statistics (y1,t, . . . , yK,t) (4.9) for each synthetic datas-
tream. In particular, we have observed a 25% reduction in the average
runtime of the Montecarlo simulations.

Control over False Alarm Rates. An important consequence of setting a con-
stant false alarm probability in (4.13) is that our thresholds can also control
the false alarm rate at any time instant t. In fact, being t∗ a Geometric ran-
dom variable [52] with parameter α, the probability of having a false alarm
before t corresponds to the following geometric sum:

Pϕ0(t
∗ ≤ t) =

t∑

k=1

α(1− α)k−1 = 1− (1− α)t. (4.15)

This property enables us to assess the control of false alarms on datastreams
containing a change point at τ by computing the proportion of datastreams
in which t∗ ≤ τ . This can then be compared to the target false positive rate
in (4.15), which depends on the target ARL0.

4.4 Updating the QuantTree Histogram

Here we present QT-EWMA-update (Section 4.4.1), evaluate the impact of
the updating speed on the detection performance (Section 4.4.2), and dis-
cuss stopping the update to avoid including post-change samples (Section
4.4.3).

4.4.1 The QT-EWMA-update Algorithm

In QT-EWMA we model the distribution ϕ0 by means of a QuantTree [3]
histogram constructed over TR. Then, during monitoring, we use the
QT-EWMA statistic Tt (4.12) to compare the proportion of the samples

32

4.4. Updating the QuantTree Histogram

x1, . . . , xt falling in each bin Sj , measured by Zj,t (4.11), with the es-
timated bin probabilities π̃j . Being ϕ0 unknown, the actual bin proba-
bilities pj = Pϕ0(Sj) are unknown but can be approximated pj ≈ π̃j
since E[pj] = π̃j thanks to Proposition 4.1. However, the random vector
(p1, . . . , pK) follows the Dirichlet distribution (4.2), thus var[pj] → 0 as
N → ∞, which means that π̃j is an accurate estimate of pj when N is
sufficiently large. In contrast, when N is small, the variance is higher, and
in the extreme case in which N = K the histogram becomes completely
uninformative because each bin contains only one training sample.

As a result, when TR is small, the values {π̃j}Kj=1 used to compute Tt
yield inaccurate estimates of the actual bin probabilities {pj}Kj=1 and these
harm both the offline and online change-detection performance. However,
in online settings it is possible to update the model ϕ̂0 as new observations
arrive [25,47]. To do so, we propose a new algorithm based on QT-EWMA,
called QT-EWMA-update, where in (4.12) we replace each π̃j with a more
accurate estimate p̂j,t of the bin probability pj:

Tt =
K∑

j=1

(Zj,t − p̂j,t)2
p̂j,t

. (4.16)

The estimate p̂j,t is incrementally updated when a new observation xt be-
comes available, as long as no changes are detected:

p̂j,0 = π̃j, p̂j,t = (1− ωt)p̂j,t−1 + ωtyj,t t > 0, (4.17)

where yj,t = 1(xt ∈ Sj), ωt = 1/β(N + t) is a parameter representing
the updating speed, i.e., the weight of the latest sample in the average, and
β ≥ 1 is a tuning parameter.

We remark that all the quantities involved in the QT-EWMA-update
statistic (4.16), including p̂j,t defined in (4.17), are computed from a Quant-
Tree histogram. Thus, thanks to Proposition 4.1, we can compute the
thresholds controlling the ARL0 by the same Montecarlo procedure pre-
sented in Section 4.3.

4.4.2 Setting the Updating Speed

The parameter β allows tuning the updating speed ωt of QT-EWMA-update,
which has a crucial impact on the detection performance. Setting β = 1
guarantees that p̂j,t → pj when t→∞, as long as xt ∼ ϕ0, since (4.17) be-
comes the cumulative average of yj,t, whose expected value is Eϕ0 [yj,t] = pj
by definition. However, samples xt ∼ ϕ1 acquired after the change τ in-
troduce a severe bias that harms the detection performance. Therefore, we

33

Chapter 4. QuantTree Exponentially Weighted Moving Average

50 100 200 500 1000
0.90

0.92

0.94

0.96

0.98

1.00

t− τ

A
U

C
N = 64

50 100 200 500 1000
t− τ

N = 128

50 100 200 500 1000
t− τ

N = 256

(a) (b) (c)

QT-EWMA-oracle QT-EWMA β = 2 β = 5 β = 10

Figure 4.2: Detection power of QT-EWMA-update (β = 2, 5, 10) compared to QT-EWMA (β =
∞) and QT-EWMA-oracle over univariate datastreams with ϕ0 = U(0, 1), ϕ1 = N(0.5, 0.5),
and τ = 1000, setting N = 64, 128, 256. In particular, we compute the AUC given by the
statistic Tt at different times t > τ . QT-EWMA-update outperforms QT-EWMA right after τ ,
especially when N = 64, but its performance gets worse over time since the update includes
xt ∼ ϕ1 when t > τ . This is evident when the updating speed is high (β = 2).

propose to set β > 1, as this reduces the contribution of the most recent
samples when updating p̂j,t. Setting β > 1 slightly biases the estimate p̂j,t
in stationary conditions, but turns out to be very beneficial in terms of de-
tection delay, as shown in our experiments. We remark that QT-EWMA
corresponds to the case β =∞ since p̂j,t ≡ π̃j .

To illustrate the trade-off regulated by β, we perform a simple exper-
iment. First, we generate 1000 univariate training sets from a uniform
distribution ϕ0 = U(0, 1). Then, we generate 500 stationary univariate
datastreams of length T = 2000 from ϕ0, and 500 datastreams with initial
distribution ϕ0 containing a change point at τ = 1000. The post-change
distribution is a Gaussian ϕ1 = N(0.5, 0.5).

We monitor each datastream by the QT-EWMA-update algorithm set-
ting β = 2, 5, 10, and QT-EWMA (corresponding to β =∞). We measure
the detection power of these algorithms by the Area Under the ROC Curve
(AUC) of the statistics Tt computed at different times t after the change such
that t−τ = 50, 100, 200, 500, 1000. Since in this case we set ϕ0 = U(0, 1),
we can easily compute the bin probabilities pj of a given QuantTree his-
togram, so we also apply the “oracle” QT-EWMA algorithm, which uses pj
instead of π̃j in (4.11) and (4.12) and is never updated. This solution can-
not be adopted in general, since ϕ0 is unknown, thus it represents an upper
bound in terms of detection power.

In Figure 4.2 we show the results of this experiment, using training set
size N = 64, 128, 256. We observe that the QT-EWMA algorithm steadily

34

4.5. Baselines controlling the ARL0

improves its detection power over time thanks to the larger amount of sam-
ples drawn from ϕ1, which increase the statistical evidence of the change.
We also observe that the oracle QT-EWMA yields much better results than
QT-EWMA when the training set is small, while the gap reduces when N
is sufficiently large, as π̃j becomes an accurate estimate of pj .

In all cases QT-EWMA-update yields a higher detection power com-
pared to QT-EWMA right after τ , but shows a substantial decrease of the
AUC over time due to the fact that p̂j,t is updated using samples from ϕ1.
Using a larger β slows down the decrease, at the cost of slightly reduc-
ing the detection power right after τ . This experiment suggests that setting
β = 5 yields the best detection performance.

4.4.3 Stopping the Update

All in all, QT-EWMA-update outperforms QT-EWMA when the training
set is small (N = 64, 128), but the update yields only a marginal advantage
when N = 256 because π̃j is already a good estimate of pj . Hence, when
a large training set is available, QT-EWMA is preferable since it avoids the
risk of updating the model using samples from the post-change distribu-
tion. QT-EWMA-update is preferred when N is small, but the update of ϕ̂0

should stop as soon as a sufficient number S of samples have been acquired
without detecting a change, i.e., when N + t = S. This allows to reduce
the risk of updating using samples xt ∼ ϕ1 once the estimated bin prob-
abilities p̂j,t are sufficiently accurate. Since stopping the update does not
change the the fact that the distribution of the statistic is independent from
ϕ0 and d, which is guaranteed by the properties of QuantTree [3], we com-
pute thresholds controlling the ARL0 for given values of β and S using the
same Monte Carlo scheme illustrated in Section 4.3. The only difference
with respect to QT-EWMA-update is that we update the bin probabilities
p̂j,t by (4.17) only for t < S −N , using p̂j,S−N when t ≥ S −N .

4.5 Baselines controlling the ARL0

Unfortunately, the vast majority of online change-detection methods for
multivariate datastreams does not control the ARL0, or does so only when
ϕ0 belongs to a known family of distributions [47] or is a known arbi-
trary distribution [50,51]. These are strong assumptions that do not hold in
general, especially when ϕ0 represents the distribution of real-world data.
Since the lack of methods that effectively control false alarms makes it
difficult to fairly assess the detection performance of our solutions, we de-

35

Chapter 4. QuantTree Exponentially Weighted Moving Average

sign two simple yet effective strategies to adapt one-shot detectors to online
change detection controlling the ARL0. In particular, we focus on algo-
rithms that operate in a batch-wise (Section 4.5.1), and element-wise fash-
ion (Section 4.5.2). These strategies allow us to define baseline methods
based on QuantTree [3] and Semi-Parametric Log-Likelihood [29]. In this
section we also present Scan-B [34], an online change-detection method
based on the MMD statistic that, to the best of our knowledge, is the only
one in which the target ARL0 can be set independently on ϕ0.

4.5.1 Datastream Monitoring by Batch-wise Detectors

Several change-detection algorithms process the datastream x1, x2, . . . by
separately analyzing non-overlapping batches Wt of ν samples:

Wt = [x(t−1)ν+1, . . . , xtν]. (4.18)

In particular, these algorithms compute for each incoming batch Wt a test
statistic T(Wt) based on a model ϕ̂0 fit over TR. For example, in Quant-
Tree [3] the model ϕ̂0 is a histogram, while Semi-Parametric Log-Likelihood
(SPLL) [29] employs a Gaussian mixture model ϕ̂0. These algorithms de-
tect a change as soon as T(Wt) > hν , where the threshold hν does not
depend on t and is defined to control the false alarm probability over each
batch Wt.

In what follows we show how to employ these batch-wise monitoring
schemes for online change detection maintaining the target ARL0 by setting
the correct threshold hν . This result is based on the following proposition:

Proposition 4.2. Let Wt be any batch of ν samples drawn from ϕ0 and let
the detection threshold hν be such that

Pϕ0(T(Wt) > hν) = α. (4.19)

Then, the monitoring scheme T(Wt) > hν yields ARL0 ≥ ν/α.

Proof. Let t∗b the first time instant such that T(Wt∗b
) > h and let us compute

ARL0 = E[t∗b]. To this purpose, we follow a strategy similar to that in
Section 4.2. At first we observe that since the batches does not overlap,
the variables {T(Wt)} are independent if we condition w.r.t. the specific
training set realization (thus the model used to compute T). Therefore, we
obtain that:

P(T(Wt) > h | TR,T(Wk) ≤ h ∀k < t) = P(T(Wt) > h | TR).
(4.20)

36

4.5. Baselines controlling the ARL0

Let us define the random variable p = P(T(W) > h | TR), where W
is a batch of ν samples drawn from ϕ0. Following [52], the random vari-
able t∗b is distributed as a geometric random variable w.r.t. the conditional
probability P(·|TR), and its expected value is

E[t∗b | TR] =
1

p
. (4.21)

To compute the ARL0 we only have to evaluate the expectation of 1/p w.r.t.
to the training set realizations since the law of total expectation implies that

E[t∗b] = E[E[t∗b | TR]] = E
[
1

p

]
. (4.22)

We observe that Jensen’s inequality implies that

E[t∗b] = E
[
1

p

]
≥ 1

E[p]
, (4.23)

since the function 1/p is convex for p > 0. Finally, we have to compute
E[p]. To this purpose we rewrite

p = P(T(W) > hν | TR) = E[1(T(W) > hν) | TR], (4.24)

where 1 denotes the indicator function. Then:

E[p] = E[E[1(T(W) > hν)|TR]] = (4.25)
= E[1({T(W) > hν})] = (4.26)
= P(T(Wt) > hν) = α, (4.27)

where the equality between (4.25) and (4.26) is due to the law of total ex-
pectation. Combining (4.23) and (4.27) we obtain that

E[t∗b] ≥
1

α
. (4.28)

To obtain the thesis we observe that, since the monitoring is performed
in a batch-wise manner, change detected after the t∗b batch translates in a
detection made after ν · t∗b samples of the datastream, so ARL0 ≥ ν/α.

Hence, setting α = ν/ARL0, we obtain a conservative online change-
detection algorithm, guaranteeing that the ARL0 is greater than or equal to
the target ARL0. A slightly different result holds when the threshold hν

is computed from the training set, e.g. through a bootstrap procedure. The
following Proposition shows that, in this case, setting α = ν/ARL0 enables
achieving the target ARL0 exactly.

37

Chapter 4. QuantTree Exponentially Weighted Moving Average

Proposition 4.3. Let Wt be any batch of ν samples drawn from ϕ0 and let
the detection threshold hν be such that

Pϕ0(T(Wt) > hν | TR) = α, (4.29)

Then, the monitoring scheme T(Wt) > hν yields ARL0 = ν/α.

Proof. Following the same strategy we pursued to prove Proposition 4.2,
we have that the random variable p = P(T(Wt) > hν |TR) is a constant
equal to α. Therefore, the equality holds in (4.23), from which we derive
ARL0 = ν/α.

Leveraging the results presented above, we adapt two well-known batch-
wise change-detection methods to monitor datastreams online while con-
trolling the ARL0: QuantTree [3] and Semi-Parametric Log-Likelihood
[29]. Thanks to the properties of QuantTree [3] it is possible to set hν

for (4.19) to hold for any α, independently from the initial distribution ϕ0.
Hence, Proposition 4.2 guarantees that it is possible to set a lower bound
on the ARL0 in the original QuantTree monitoring scheme [3].

In contrast, the distribution of the SPLL statistic depends on ϕ0, so the
thresholds to set the false positive rate have to be computed by bootstrap
over the training set TR. In particular, we use a portion of TR to fit the
Gaussian mixture model ϕ̂0, and the rest to form independent batches for
bootstrap. For this reason, this algorithm requires a relatively large training
set to maintain a target ARL0. In this case, it is Proposition 4.3 guarantee-
ing the control over the ARL0, since the false positive probability is con-
ditioned on the training set realization. Therefore, when hν is set to guar-
antee Pϕ0(T

ν(W) > hν |TR) = ν/ARL0, the SPLL monitoring scheme
maintains the target ARL0.

4.5.2 Datastream Monitoring by Element-wise Detectors

As pointed out in Section 3.2.1, a popular approach to change detection
in multivariate datastreams consists in reducing the data dimension, con-
structing a univariate datastream that can be monitored by standard change-
detection algorithms. Here we consider a dimensionality reduction method
based on SPLL [29]. In particular, we reduce the dimension of each incom-
ing sample xt by computing the log-likelihood − log(ϕ̂0(xt)), where ϕ̂ is
a Gaussian mixture model fit on the entire TR. Then, we monitor the re-
sulting univariate sequence by a nonparametric online CPM [25] leveraging
the Lepage test statistic [20]. This algorithm, which we call SPLL-CPM,
maintains the desired ARL0 thanks to the CPM, which controls the ARL0

on any univariate datastream [25].

38

4.6. Computational Complexity

Table 4.1: Computational complexity and memory requirement to process each sample xt of QT-
EWMA and QT-EWMA-update compared to the other methods, depending on the configuration.

algorithm complexity memory

QT-EWMA O(K) K
QT-EWMA-update O(K) 2K

QuantTree [3] O(K) K
SPLL [29] O(md) 1

SPLL-CPM O(md+ w logw) w
Scan-B [34] O(nBd) (n+ 1)Bd

4.6 Computational Complexity

In this section we analyze the computational complexity and memory re-
quirements of QT-EWMA and QT-EWMA-update, since efficiency is cru-
cial in online change detection [25]. We perform the same analysis on
the modified one-shot detectors QuantTree [3], SPLL [29] and SPLL-CPM
(discussed in Section 4.5), and on Scan-B [34] (presented in Section 3.2.2).
The results are summarized in Table 4.1.

QT-EWMA, QT-EWMA-update and QuantTree. These algorithms are extremely
efficient and require a constant amount of memory over time that does not
depend on the data dimension d. During monitoring, these three algorithms
find the bin of the QuantTree histogram where each incoming sample xt
falls, resulting in O(K) operations [3], where K is the number of bins.
Then, QT-EWMA and QT-EWMA-update compute the test statistics (4.9),
(4.11), (4.12) and these operations have a constant cost that falls within
O(K). QT-EWMA-update also updates the bin probabilities of the Quant-
Tree histogram by (4.17), requiring K additional operations that fall within
O(K). The QuantTree algorithm instead computes the Pearson statistic at
the end of each batch, and this does not increase the order of computational
complexity either, resulting in O(K) operations as in QT-EWMA and QT-
EWMA-update.

In terms of memory requirement, QT-EWMA has to store only the K
values of the statistics Zj,t−1, j = 1, . . . , K to update them (4.11) at each
new sample xt. QT-EWMA-update stores also the K estimated bin prob-
abilities p̂j,t−1, j = 1, . . . , K, hence it requires to store 2K values in total.
Similarly to QT-EWMA, QuantTree has to store only the proportions of
points from the current batch that belong to each of the K bins to compute
the Pearson statistic.

39

Chapter 4. QuantTree Exponentially Weighted Moving Average

SPLL and SPLL-CPM. Both these algorithms compute the log-likelihood
of each sample with respect to each of the m components of the Gaussian
mixture model ϕ̂0 fit on TR. In the modified batch-wise monitoring scheme
SPLL, the log-likelihood computation over an entire batch requires O(md)
operations per sample [29], since the log-likelihood can be computed in-
crementally. Hence, only 1 value has to be stored in memory, namely the
log-likelihood computed in the previous step. In contrast, the SPLL-CPM
algorithm leverages the less efficient CPM framework [25] to monitor the
log-likelihood − log(ϕ̂0(xt)) of each incoming observation xt. In partic-
ular, the Lepage test statistic [20] used in the CPM requires to sort the
whole log-likelihood sequence obtained until time t, resulting in O(t log t)
operations on top of the O(md) operations required to compute the log-
likelihood − log(ϕ̂0(xt)). In this case, all the t values of the log-likelihood
sequence have to be processed and stored at each time t, thus the compu-
tational complexity and memory requirement steadily increase over time.
Since this is not desirable in online change detection, the ranks of older
observations can be discretized through a histogram, and used to approxi-
mate the Lepage statistic [25], so only the most recent w = 500 samples
are processed and stored [25].

Scan-B. The Scan-B algorithm [34] operates in a sliding-window fashion
with window size B, using n reference windows of size B sampled from
the training set. For each incoming sample xt, Scan-B updates n Gram
matrices by computing B times the MMD statistic, resulting in O(nBd)
operations [51]. The n reference windows from the training set and the
current window have to be stored, yielding (n + 1)Bd values in memory
[51] since each sample is d-dimensional. Hence the computational cost and
memory requirements of Scan-B increase with the data dimension.

4.7 Experiments and Discussion

The goal of our experiments is to empirically demonstrate the advantages
of QT-EWMA in terms of control of false alarms and detection power, both
on synthetic and real-world data. Moreover, we want to show that QT-
EWMA-update has the same control over false alarms as QT-EWMA, but
better detection power when the training set is small, and that stopping the
update after acquiring a sufficient number of samples can further improve
the detection performance.

40

4.7. Experiments and Discussion

4.7.1 Considered Datasets

We simulate Gaussian datastreams in different dimensions d = 4, 16, 64,
choosing an initial Gaussian distribution ϕ0 with random mean and covari-
ance matrix, and roto-translating ϕ0 to obtain the post-change distribution
ϕ1 = ϕ0(Q·+v). We randomly select the roto-translation parametersQ and
v using the CCM framework [42] to guarantee a target symmetric Kullback-
Leibler divergence [70] sKL(ϕ0, ϕ1) = 0.5, 1, 1.5, 2, 2.5, 3, which is useful
to compare detection performances in different dimensions [36].

We also perform our experiments on seven well-known multivariate
datasets: Credit Card Fraud Detection (“credit”, d = 28) from [71], Sensor-
less Drive Diagnosis (“sensorless”, d = 48), MiniBooNE particle identifi-
cation (“particle”, d = 50), Physicochemical Properties of Protein Ternary
Structure (“protein”, d = 9), El Niño Southern Oscillation (“niño”, d =
5), and two of the Forest Covertype datasets (“spruce” and “lodgepole”,
d = 10) from the UCI Machine Learning Repository [72]. As in [3], we
standardize the datasets and jitter the instances of “sensorless”, “particle”,
“spruce” and “lodgepole” by adding uncorrelated Gaussian noise to avoid
repeated values, which harm the construction of QuantTree histograms. We
use noise with variance 0.001 for “sensorless” and “particle”, and 0.1 for
“spruce” and “lodgepole”. We randomly sample datastreams from these
datasets, whose distribution can be considered stationary, and we introduce
a change by shifting the post-change data points by a random vector drawn
from a standard d-dimensional Gaussian distribution, scaled by the total
variance of the dataset, as in [3, 37]. For brevity, here we report only the
average results over the seven datasets (denoted by “UCI+credit”), leaving
the results over each individual dataset in Appendix A.

We also test our method on the recently published INSECTS dataset [73]
(d = 33), which contains features describing the wing-beat frequency of
different species of flying insects, extracted from high-dimensional sig-
nals acquired by optical sensors. This dataset is meant as a classification
benchmark in datastreams affected by concept drift. A concept refer to data
acquired under different environmental conditions affecting the insects’ be-
havior. The dataset contains six concepts referring to different distributions.
We assemble data from different concepts to form datastreams that include
30 realistic changes: we start sampling observations from one concept (ϕ0)
and switch to another (ϕ1) introducing a change point.

In all our experiments we make sure that the monitored datastreams do
not contain any sample from the training set. To do so, we generate syn-
thetic training and testing data from different seeds, and we sample real-

41

Chapter 4. QuantTree Exponentially Weighted Moving Average

world datastreams after removing TR from the datasets [71–73].

4.7.2 Figures of Merit

Empirical ARL0. To assess whether QT-EWMA and the other considered
methods maintain the target ARL0, we compute the empirical ARL0 as
the average time before raising a false alarm. To this purpose, we run the
considered methods on 1000 datastreams drawn from ϕ0, setting the tar-
get ARL0 = 500, 1000, 2000, 5000. In this experiment, we consider 5000
datastreams of length T = 6 · ARL0 to make sure that, with high proba-
bility, we have a detection in each datastream. In fact, the detection time
t∗ of our method under ϕ0 is a Geometric random variable with parameter
α = 1/ARL0 by construction, thus (4.15) indicates that the probability of
having a false alarm before T is Pϕ0(t

∗ ≤ T) ≈ 0.9975.

Detection delay. We evaluate the detection performance of QT-EWMA and
the other methods by their detection delay, i.e. ARL1 = E[t∗ − τ], where
the expectation is taken assuming that a change point τ is present [11].
We run the methods configured with ARL0 = 500, 1000, 2000, 5000 on
1000 datastreams of length T = 10000, each containing a change point at
τ = 500. We compute the empirical ARL1 as the average difference t∗− τ ,
excluding false alarms.

False alarm rate. To assess whether the considered methods yield the de-
sired false alarm probability, we compute the percentage of false alarms
over the datastreams used to evaluate the detection delay, i.e., those in
which a detection occurs at t∗ < τ . Setting the the target ARL0 = 500,
1000, 2000, 5000 should yield a false alarm in, respectively, 63%, 39%,
22% and 9.5% of the datastreams according to (4.15).

4.7.3 Results and Discussion

Empirical ARL0. The comparison between the empirical and target ARL0

on simulated Gaussian datastreams are reported in Figure 4.3 (a,c,e,g) for
d = 4, in Figure 4.4 (a,c,e,g) for d = 16, and in Figure 4.5 (a,c,e,g) for
d = 64. These plots show that QT-EWMA, QT-EWMA-update and SPLL-
CPM control the ARL0 very accurately, independently from the data dimen-
sion d and the training set sizeN . This can be seen from lines that are close
to the diagonal (note that axis units are different). The empirical ARL0

of QuantTree is higher than the target, as we expected from Proposition
4.2, while Scan-B cannot maintain high target ARL0. Figure 4.6 (a,b,c,d)

42

4.7. Experiments and Discussion

and Figure 4.7 (a,b,c,d) show that we obtain the same results on datas-
treams sampled from, respectively, the UCI+credit and INSECTS datasets,
confirming the nonparametric nature of QuantTree and the limitations of
Scan-B. In fact, Scan-B cannot control the ARL0 accurately because its
thresholds are defined by an asymptotic approximation that depends on the
window size B [34]. In particular, this approximation is more accurate for
higher target ARL0 when B is large, which increases the computational
complexity and memory usage (Table 4.1). Thus, Scan-B with a fixed win-
dow size B can only maintain a low target ARL0. Despite Proposition 4.3,
we observe that also SPLL cannot maintain the target ARL0 accurately, and
this is due to inaccurate estimate of its thresholds, which are computed by
bootstrap.

Detection delay vs false alarms. We plot the average detection delay against
the percentage of false alarms setting target ARL0 = 500, 1000, 2000, 5000,
to assess the trade-off between these two quantities. The performance of
the considered methods on simulated Gaussian datastreams with a change
point at τ = 500 are shown in Figure 4.3 (b,d,f,h) for d = 4, in Figure 4.4
(b,d,f,h) for d = 16, and in Figure 4.5 (b,d,f,h) for d = 64.

In terms of detection delay, QT-EWMA-update is the best nonparamet-
ric method when the training set is small (N = 64, 128, 256), being outper-
formed only by SPLL-CPM, which is expected since its parametric assump-
tions are met (ϕ0 is a Gaussian). When the training set is large (N = 4096)
both SPLL and Scan-B outperform QT-EWMA on Gaussian datastreams,
which can also be expected because the parametric assumptions of SPLL
are met, and statistics defined on histograms (such as that of QT-EWMA)
are known to be less powerful than those based on MMD (such as that
of Scan-B), as they perceive only changes affecting bin probabilities, and
are for instance totally blind to distribution changes inside each bin. How-
ever, our experiments show that both QT-EWMA and QT-EWMA-update
yield higher detection power than Scan-B when the training set is small.
All methods achieve higher detection delays as d increases, which is also
expected due to detectability loss [36].

On the UCI+credit datasets (Figure 4.6 (b,d,f,h)), QT-EWMA-update
is the second-best method (slightly outperformed by SPLL-CPM) when
the training set is small, and QT-EWMA is clearly the best method when
N = 4096. On the INSECTS dataset (Figure 4.7 (b,d,f,h)), QT-EWMA-
update achieves the best detection delays when N = 64, 128, 256, and QT-
EWMA approaches the performance of Scan-B when the training set is
large (N = 4096). Moreover, QT-EWMA and QT-EWMA-update substan-

43

Chapter 4. QuantTree Exponentially Weighted Moving Average

tially outperform SPLL and SPLL-CPM, meaning that the nonparametric
QuantTree can model the distribution of the INSECTS datasets much better
than the Gaussian mixture model used in SPLL and SPLL-CPM.

Remarkably, QT-EWMA and QT-EWMA-update consistently outper-
form QuantTree in all the considered scenarios, which indicates that our
sequential statistics are more powerful than the original QuantTree statistic
(designed for batch-wise monitoring) when operating online.

As expected, the detection power of the methods based on QuantTree
and Scan-B increases significantly with the training set size N . In contrast,
SPLL-CPM has similar performances with different values of N since the
Gaussian mixture model ϕ̂0 fit on TR is sufficiently accurate even when N
is small, and the CPM does not require a training set [25]. Most remarkably,
QT-EWMA and QT-EWMA-update outperform Scan-B when N is small,
meaning that in these settings our online statistics based on QuantTree his-
tograms have higher detection power than comparing a sliding datastream
window with reference data by the MMD statistic. Finally, we observe that
QT-EWMA-update substantially outperforms QT-EWMA when the train-
ing set is extremely small (N = 64, 128), while it yields only a marginal
improvement when N = 256, meaning that when N ≥ 256 the values π̃j
are sufficiently good estimates of pj .

In terms of false alarm rate, QT-EWMA, QT-EWMA-update and SPLL-
CPM approach the target values computed by (4.15). In contrast, Quant-
Tree and SPLL have, respectively, fewer and more false alarms than ex-
pected in all the considered monitoring scenarios. This can be explained
by the fact that the empirical ARL0 of QuantTree is higher than the target
due to Proposition 4.2, while the empirical ARL0 of SPLL is lower than
the target due to inaccurate threshold estimation. The false alarms of Scan-
B, instead, exhibit a completely different behavior, which also depends on
the data distribution since its thresholds do not yield a constant false alarm
probability.

Since on Gaussian data we can control the change magnitude by set-
ting sKL(ϕ0, ϕ1) [42], in Figure 4.8 we show the detection delays of the
considered methods depending on the change magnitude sKL(ϕ0, ϕ1) =
0.5, 1, 1.5, 2, 2.5, 3. In this experiment we use large training sets (N =
4096) and set target ARL0 = 1000, which is maintained by all methods
(see Figure 4.3(d)), to make the comparison fair. As expected, the detection
delays of all methods decrease when the change magnitude increases, i.e.,
when the distribution change becomes more evident. All methods achieve
higher detection delays as d increases, which is also expected due to de-
tectability loss [36]. In particular, in Figure 4.8 (a) we observe that when

44

4.7. Experiments and Discussion

d = 4 QT-EWMA is on par with the best-performing methods, i.e., the
parametric SPLL and SPLL-CPM and the nonparametric Scan-B. In con-
trast, in Figure 4.8 (b,c) we can see that SPLL and Scan-B have lower de-
tection delays than QT-EWMA when d = 16, 64, confirming that statistics
based on verified parametric assumptions (SPLL) and on Maximum Mean
Discrepancy (Scan-B) are very powerful and yield change-detection algo-
rithms that are more robust to detectability loss.

Stopping the update. As discussed in Section 4.4.2, we can stop the update
of the QuantTree histogram after acquiring a sufficient amount of data. This
mitigates the problem of updating the estimated bin probabilities p̂j,t when
t > τ , i.e., when xt ∼ ϕ1. To demonstrate this, we measure the detec-
tion delay of QT-EWMA-update where we stop the update after analyz-
ing S samples, i.e., when N + t = S. In this experiment, we compare
QT-EWMA-update stopping at S = 512, 1024 against QT-EWMA and QT-
EWMA-update. Figure 4.9 shows the detection delays achieved on Gaus-
sian datastreams with d = 16 and length T = 10000 containing a change
point at τ = 250, 500, 750, 1000. We consider different training set sizes
N = 64, 128, 256, and set target ARL0 = 2000. As observed in the pre-
vious experiments, when N = 64, 128, QT-EWMA-update performs bet-
ter than QT-EWMA, while the two algorithms have similar results when
N = 256, confirming that updating the histogram is not necessary when N
is sufficiently large. In all cases, the detection delay of QT-EWMA-update
decreases when the change occurs later in the datastream since more sam-
ples xt ∼ ϕ0 are used to update p̂j,t.

The fact that the detection delays of QT-EWMA-update with stopping
rule are lower than those of QT-EWMA-update confirms that reducing the
amount of samples xt ∼ ϕ1 used to update p̂j,t is beneficial. The detection
performance of QT-EWMA-update with stopping rule improves when the
change point τ occurs later in the datastream, unless the change occurs after
having stopped the update, i.e. when τ > S − N . In Figure 4.9(a,b) we
observe that setting S = 512 yields similar detection delays when τ =
500, 750, 1000 since these changes occur after having stopped the update,
thus all the S − N samples used to update p̂j,t are drawn from ϕ0. In
contrast, when τ = 250 the detection delay is higher since samples from ϕ1

might bias the estimates p̂j,t. We observe the same effect in Figure 4.9(c)
for S = 1024, where the detection delays for τ = 750, 1000 are very similar
and lower than those obtained when τ = 250, 500.

45

Chapter 4. QuantTree Exponentially Weighted Moving Average

500 1000 2000 5000
5001000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70 80
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

false alarm rate (%)

de
te

ct
io

n
de

la
y

Gaussian, d = 4, N = 64

(a) (b)
Gaussian, d = 4, N = 128

(c) (d)
Gaussian, d = 4, N = 256

(e) (f)
Gaussian, d = 4, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.3: Experimental results over Gaussian datastreams (d = 4). (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best-performing methods are QT-EWMA-update and SPLL-CPM when using small
training sets (N = 64, 128, 256) and SPLL and Scan-B when using large training sets (N =
4096). We observe that QT-EWMA-update clearly outperforms QT-EWMA when N = 64, 128,
and that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm
rates given by (4.15), which are represented in the plots by vertical dotted lines.

46

4.7. Experiments and Discussion

500 1000 2000 5000
5001000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

1000

2000

3000

4000

5000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

Gaussian, d = 16, N = 64

(a) (b)
Gaussian, d = 16, N = 128

(c) (d)
Gaussian, d = 16, N = 256

(e) (f)
Gaussian, d = 16, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.4: Experimental results over Gaussian datastreams (d = 16). (a,c,e,g) show that the em-
pirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while the
other methods do not maintain the target ARL0. (b,d,f,h) show that, in terms of detection delay,
the best-performing method is SPLL-CPM when using small training sets (N = 64, 128, 256)
and SPLL when using large training sets (N = 4096). We observe that only QT-EWMA, QT-
EWMA-update and SPLL-CPM achieve the target false alarm rates given by (4.15), which are
represented by the vertical dotted lines.

47

Chapter 4. QuantTree Exponentially Weighted Moving Average

500 1000 2000 5000
5001000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

1000

2000

3000

4000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

1000

2000

3000

4000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

1000

2000

3000

4000

false alarm rate (%)

de
te

ct
io

n
de

la
y

Gaussian, d = 64, N = 64

(a) (b)
Gaussian, d = 64, N = 128

(c) (d)
Gaussian, d = 64, N = 256

(e) (f)
Gaussian, d = 64, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.5: Experimental results over Gaussian datastreams (d = 64). (a,c,e,g) show that
the empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the tar-
get, while Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms
of detection delay, the best-performing method is SPLL-CPM when using small training sets
(N = 64, 128, 256) and SPLL when using large training sets (N = 4096). We observe that
only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates given
by (4.15), which are represented by vertical dotted lines.

48

4.7. Experiments and Discussion

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

250
500
750

1000
1250
1500
1750

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

UCI+credit, N = 64

(a) (b)
UCI+credit, N = 128

(c) (d)
UCI+credit, N = 256

(e) (f)
UCI+credit, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.6: Experimental results averaged over the UCI+credit datasets [71, 72]. (a,c,e,g) show
that the empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the tar-
get, while Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms
of detection delay, the best-performing methods are QT-EWMA-update and SPLL-CPM when
using small training sets (N = 64, 128, 256) and QT-EWMA when using large training sets
(N = 4096). We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the
target false alarm rates given by (4.15), which are represented by vertical dotted lines.

49

Chapter 4. QuantTree Exponentially Weighted Moving Average

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

INSECTS, N = 64

(a) (b)
INSECTS, N = 128

(c) (d)
INSECTS, N = 256

(e) (f)
INSECTS, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.7: Experimental results averaged over the INSECTS dataset [73]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best-performing method is QT-EWMA-update when using small training sets (N =
64, 128, 256) and Scan-B when using large training sets (N = 4096). We observe that only QT-
EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates given by (4.15),
which are represented by vertical dotted lines.

50

4.7. Experiments and Discussion

0.5 1 1.5 2 2.5 3

0

100

200

300

400

500

sKL

de
te

ct
io

n
de

la
y

d = 4, N = 4096

0.5 1 1.5 2 2.5 3

0

200

400

600

800

sKL

d = 16, N = 4096

0.5 1 1.5 2 2.5 3
0

250

500

750

1000

1250

sKL

d = 64, N = 4096

(a) (b) (c)

QT-EWMA QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure 4.8: Detection delays of the considered methods over Gaussian datastreams (d = 4, 16, 64)
with different change magnitudes sKL(ϕ0, ϕ1) = 0.5, 1, 2.5, 2, 2.5, 3 and training set size N =
4096. For a fair comparison, we set target ARL0 = 1000, which is maintained by all methods
(see for instance Figure 4.3(g)). As expected, all methods improve their performance when
increasing sKL(ϕ0, ϕ1) and achieve higher detection delays increasing d. We observe that when
d = 4 QT-EWMA is on par with SPLL, SPLL-CPM and Scan-B, which outperform QT-EWMA
when d = 16, 64, meaning that Scan-B seems more robust with respect to detectability loss [36].

250 500 750 1000
600

700

800

900

1000

1100

1200

τ

de
te

ct
io

n
de

la
y

d = 16, N = 64

250 500 750 1000
600

700

800

900

1000

τ

d = 16, N = 128

250 500 750 1000
600

650

700

750

800

850

τ

d = 16, N = 256

(a) (b) (c)

QT-EWMA QT-EWMA-update S = 512 S = 1024

Figure 4.9: Detection delays of QT-EWMA-update (β = 5) stopping the update after acquiring
S = 512, 1024 samples, compared to QT-EWMA-update, QT-EWMA over Gaussian datas-
treams (d = 16) with change points at τ = 250, 500, 750, 1000 with sKL(ϕ0, ϕ1) = 2. We
set initial training set sizes N = 64, 128, 256 and target ARL0 = 2000. We observe that QT-
EWMA-update outperforms QT-EWMA, and that stopping the update improves the performance
by reducing the risk of updating when t > τ .

51

CHAPTER5
Class Distribution Monitoring

In this chapter, we introduce Class Distribution Monitoring (CDM), a novel
concept-drift detection algorithm that monitors a multi-class datastream to
detect changes in the class-conditional distributions. In particular, we em-
ploy multiple instances of QT-EWMA (presented in Chapter 4) to monitor
samples from different classes, and report a concept drift after detecting a
change in at least one of the class-conditional distributions. Thanks to the
properties of QT-EWMA, we demonstrate that CDM is nonparametric and
guarantees the same ARL0 as the individual instances of QT-EWMA used
to monitor each class.

In Section 5.1 we present the CDM algorithm, and in Section 5.2 we dis-
cuss its theoretical properties, in particular the control of the ARL0. Then,
in Section 5.3 we illustrate the experimental evaluation of CDM, and in
Section 5.4 we discuss the advantages and limitations of this approach, pro-
viding some insights on possible future work.

5.1 The CDM Algorithm

Most concept-drift detection methods that monitor the data distribution
simply apply a change-detection algorithm to the datastream {xt} [54].

53

Chapter 5. Class Distribution Monitoring

Algorithm 5.1 Class Distribution Monitoring (CDM)

Input: datastream {(xt, lt)}t, target probabilities {πj}Kj=1, thresholds {ht}t, TR =
{(x, l)}

Output: detection flag ChangeDetected, detection time t∗, drifted class ℓ∗

1: // Configuration:
2: ChangeDetected← False, t∗ ←∞, ℓ∗ ← 0
3: for ℓ ∈ L do
4: TRℓ ← {x : (x, l) ∈ TR, l = ℓ}
5: construct QuantTree histogram Qℓ = {(Sℓ

j , πj)}Kj=1 [3] from TRℓ

6: initialize tℓ ← 0, Zℓ
j,0 ← π̃j for j ∈ {1, . . . ,K}

7: end for
8: // Monitoring:
9: for t = 1, . . . do

10: if the label lt is provided then
11: ℓ← lt, tℓ ← tℓ + 1, yj,tℓ ← 1(xt ∈ Sℓ

j)

12: compute Zℓ
j,tℓ
← (1− λ)Zℓ

j,tℓ−1 + λyj,tℓ−1, j = 1 . . . ,K as in (4.11)
13: compute QT-EWMA statistic Tℓ

tℓ
←∑K

j=1(Z
ℓ
j,tℓ
− π̃j)

2/π̃j as in (4.12)
14: if Tℓ

tℓ
> htℓ then

15: ChangeDetected← True
16: t∗ ← t, ℓ∗ ← ℓ
17: break
18: end if
19: end if
20: end for
21: return ChangeDetected, t∗, ℓ∗

Therefore, these algorithms compute at each time t a test statistic Tt, and
report a drift when Tt > ht, where ht is a threshold defined to control the
probability of having a false alarm. The detection time t∗ is defined as
the first time t in which the statistic exceeds the threshold. As in change
detection, the goal is to detect a concept drift as soon as possible while
controlling the ARL0.

In the concept-drift detection literature, it is usually assumed that the
labels lt associated with the data samples xt are regularly provided during
monitoring [54]. However, change-detection algorithms are designed to
operate in unsupervised settings, and therefore ignore this additional infor-
mation. As a result, concept drifts affecting only a subset of classes can be
hard to detect following this approach.

To exploit class labels, we propose Class Distribution Monitoring (CDM),
a novel concept-drift detection algorithm designed to detect changes in any

54

5.2. Theoretical Analysis

class-conditional distribution ϕℓ
0. We recall that each ϕℓ

0 is defined by

Pϕℓ
0
(xt) = Pϕ0(xt|lt = ℓ), (5.1)

and we refer to Section 2.1.1 for further details on the concept-drift detec-
tion problem. In Algorithm 5.1 we illustrate the CDM procedure. First,
we divide the training set TR into #L subsets TRℓ and use these to con-
struct #L QuantTree histograms Qℓ = {(Sℓ

j , πj)} [3], modeling the class-
conditional distribution ϕℓ

0 for ℓ ∈ L (lines 4–5). When an input sample
xt is provided with its label lt, we find the histogram bin such that xt ∈ Sℓ

j

in the QuantTree Qℓ corresponding to its label ℓ = lt (line 11). Then, we
compute the QT-EWMA statistics Zℓ

j,tℓ
(4.11) and Tℓ

tℓ
(4.12) (lines 12–13),

where tℓ is the number of samples of class ℓ observed until time t. We
report a concept drift as the first time t when Tℓ

tℓ
> htℓ , where htℓ is the

QT-EWMA threshold defined as in Section 4.3 (lines 14–18).
CDM successfully combines the advantages of monitoring the data dis-

tribution and of using the available labels, overcoming the main drawbacks
of both approaches. In particular, CDM can detect any type of concept
drift, including those that would not significantly increase the error rate
of a classifier and therefore ignored by algorithms that monitor the clas-
sification error. Moreover, CDM separately monitors the class-conditional
distribution, and therefore can promptly detect drifts affecting a small num-
ber of classes, which might be hard to identify by looking at the overall data
distribution. We also remark that, contrarily to most of the other concept-
drift detectors, CDM returns, on top of the detection time t∗, the class ℓ∗

that triggered the detection (line 21), which might be extremely useful for
diagnostics in practical applications.

5.2 Theoretical Analysis

Here we illustrate the most important properties of CDM. In particular,
in Section 5.2.1 we discuss the online and nonparametric nature of CDM.
Then, in Section 5.2.2 we demonstrate that CDM can control the ARL0,
and finally in Section 5.2.3 we analyze its computational complexity.

5.2.1 Online and Nonparametric Monitoring

Consistently with the notation introduced in Section 2.1, we can see CDM
as an online change-detection test with statistic T̃t defined as

T̃t = Tℓ
tℓ

where ℓ = lt, (5.2)

55

Chapter 5. Class Distribution Monitoring

and thresholds h̃t = htℓ . In fact, even though different statistics are com-
puted depending on the label lt associated to the sample xt, the datastream
is still processed one sample (xt, lt) at a time, as is evident from Algo-
rithm 5.1. The nonparametric nature of the CDM test statistic is inherited
from QT-EWMA because the distribution of each class-conditional statistic
Tℓ, like any other statistic defined on a QuantTree histogram, does not de-
pend on the class-conditional distribution ϕℓ

0 [3]. Since T̃t is defined in (5.2)
using the nonparametric statistics Tℓ, then its distribution does not depend
on ϕ0.

5.2.2 Control of the ARL0

CDM also inherits from QT-EWMA the control of false alarms, and in par-
ticular the possibility to define thresholds that guarantee a target ARL0.
Here we demonstrate that, since in QT-EWMA the target ARL0 is guaran-
teed by

Pϕ0(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1, (5.3)

where α = 1/ARL0 [52], then CDM yields the same ARL0 as the QT-
EWMA monitoring each class-conditional distribution.

Proposition 5.1. Let T̃ be the test statistic of CDM defined in (5.2), and
let {ht} be the QT-EWMA thresholds used to monitor the class-conditional
distributions, which are defined to maintain the target ARL0 (Section 4.3).
Then, the change-detection test defined by T̃ yields the same ARL0.

Proof. To prove the Proposition, we need to show that (5.3) holds for T̃.
By the definition of T̃ in (5.2) and the law of total probability we have that

Pϕ0(T̃t > h̃t | T̃k ≤ h̃k ∀k < t) =

=
∑

ℓ∈L
Pϕ0(T

ℓ
tℓ
> htℓ | Tℓ

k ≤ hk ∀k < tℓ, lt = ℓ)·

· Pϕ0(yt = ℓ | Tℓ
k ≤ hk ∀k < tℓ). (5.4)

Since all the samples (xt, lt) in the datastream are assumed to be indepen-
dent, the label lt associated with xt is independent from the values of the
statistic Tℓ

k for k < tℓ, so we can drop the conditioning in the second factor
of the second term of (5.4). Moreover, the probability under ϕ0 in the first
factor is conditioned on the event “lt = ℓ”, so it coincides with the prob-
ability under the class-conditional distribution ϕℓ

0 defined in (5.1). Hence,

56

5.3. Experiments

(5.4) becomes:

Pϕ0(T̃t > h̃t | T̃k ≤ h̃k ∀k < t) =

=
∑

ℓ∈L
Pϕℓ

0
(Tℓ

tℓ
> htℓ | Tℓ

k ≤ hk ∀k < tℓ) · Pϕ0(lt = ℓ) =

=
∑

ℓ∈L
α · Pϕ0(lt = ℓ) = α, (5.5)

where the penultimate equality derives from the fact that (5.3) holds for
the QT-EWMA test statistics Tℓ monitoring each class-conditional distri-
bution. The last equality in (5.5) derives from the assumption that, under
ϕ0, each sample xt has a label lt = ℓ ∈ L, so the events {lt = ℓ}ℓ∈L
represent a partition of the probability space, thus their probabilities sum to
1. Equation (5.5) demonstrates that (5.3) holds for T̃, showing that CDM
yields ARL0 = 1/α [52], which is exactly the thesis.

We remark that Proposition 5.1 holds for any CDM defined by an on-
line change-detection algorithm that can be configured to yield the desired
ARL0 by setting a constant false alarm probability over time as in (5.3).
This means that, in principle, we can define CDM using other change-
detection tests, as long as their thresholds can be set to satisfy (5.3). How-
ever, to the best of our knowledge, QT-EWMA is the only nonparametric
and online change-detection test for multivariate datastreams that satisfies
this condition, which is not guaranteed even by algorithms in which the
target ARL0 can be set before monitoring, such as Scan-B [34].

5.2.3 Computational Complexity

CDM is extremely efficient both in terms of computational complexity and
memory overhead because it employs #L instances of QT-EWMA, whose
efficiency is analyzed in detail in Section 4.6. Like QT-EWMA, CDM re-
quires placing each sample xt in its bin in the QuantTree histogram Qℓ

corresponding to its class label ℓ = lt, resulting in O(K) operations [3].
Then, CDM updates the corresponding EWMA statistics Zℓ

j,tℓ
(4.11) for

j ∈ {1, . . . , K}, thus requiring to store in memory #L ·K values, namely
K statistics per class.

5.3 Experiments

Here we illustrate our experiments, which we designed to demonstrate
that CDM outperforms mainstream concept-drift detection methods that

57

Chapter 5. Class Distribution Monitoring

•
µ1
0

ϕ1
0

•
µ2
0

ϕ2
0

µ2
1 •

Figure 5.1: Illustration of the Gaussian class-conditional distributions we use to generate synthetic
data. Each class-conditional distribution ϕℓ

0 is represented by its mean µℓ
0 and 3σ ellipsoid. We

consider changes ϕ0 → ϕ1 defined by translating the mean of ϕ2
0 inside the dashed rectangle,

as shown in this example.

monitor either the error rate of a classifier or the overall data distribution.
First, we present the real-world and synthetic datasets on which we test
our solution (Section 5.3.1), then we formally define the figures of merit
we use (Section 5.3.2) and the reference methods from the literature (Sec-
tion 5.3.3). Finally, we present and discuss our experiments and their results
(Sections 5.3.4,5.3.5).

5.3.1 Considered Datasets

Real-world data. The INSECTS dataset [73] is a well-known benchmark
for classification and concept-drift detection. It contains feature vectors
(d = 33) extracted from sensor measurements describing the wing-beat fre-
quency of six (annotated) species of flying insects. The dataset contains six
concepts, each representing measurements acquired at a different tempera-
ture, which influences the flying behavior of the insects. This allows us to
introduce realistic concept drifts by sampling the datastream from different
concepts before and after the change point τ , as in Chapter 4. In our exper-
iments, the stationary condition ϕ0 is characterized by the class-conditional
distributions {ϕℓ

0}ℓ∈L describing the features of #L = 4 different insect
species from each of the six concepts. We consider multiple drifts ϕ0 → ϕ1

that consist in a temperature change affecting one or more classes, namely
ϕℓ
0 → ϕℓ

1 ̸= ϕℓ
0. In this setting, for each stationary distribution ϕ0, the

change ϕ0 → ϕ1 is defined among 5 potential temperature changes affect-
ing one of 2#L − 1 = 15 different subsets of the #L classes, for a total of

58

5.3. Experiments

75 distribution changes per initial concept ϕ0. In our experiments we con-
sider training sets containing 256 instances of each class, sampled without
replacement from each class-conditional distribution ϕℓ

0.

Synthetic data. To interpret the results obtained on real-world data, we syn-
thetically generate various distribution changes ϕ0 → ϕ1 and assess their
impact on the classification error. In particular, we define the station-
ary distribution ϕ0 as a mixture of #L = 2 Gaussians (one per class)
ϕ1
0 = N(µ1

0, I) and ϕ2
0 = N(µ1

0, I) in R2, where I denotes the identity
matrix, µ1

0 = [0, 0]T , and µ2
0 = [δ, 0]T for some δ > 0. Post-change dis-

tribution ϕ1 is defined by shifting ϕ2
0 → ϕ2

1 = N(µ2
1, I), while keeping ϕ1

0

fixed. Changes are thus regulated by µ2
1, which we move over a grid around

µ1
0 (see Figure 5.1). Also in this case, we consider training sets containing

256 samples drawn from each ϕℓ
0.

This setup was designed to assess when CDM is a better option than
ECDD. The classification error varies when µ2

1 moves along the horizontal
direction, which is the line connecting µ1

0 and µ2
0: these changes can be

promptly detected by ECDD when they increase the error rate. In contrast,
changes translating µ2

1 vertically (thus orthogonal to the line joining µ1
0 and

µ2
0), do not change the error rate but only the input distribution. These

changes cannot be detected by ECDD, but are perceivable by CDM, whose
performance only depends by the change magnitude, which we measure
by the symmetric Kullback-Leibler distance sKL(ϕ2

0, ϕ
2
1) [70], that in this

case is equal to 1
2
∥µ2

1 − µ2
0∥2.

5.3.2 Figures of Merit

As in Chapter 4, we assess the control of false alarms by computing the
empirical ARL0, i.e., the average detection time in datastreams distributed
as ϕ0. Thanks to Proposition 5.1, we expect the empirical ARL0 of CDM
to approach the target ARL0 set before monitoring. Then, we measure the
detection power by the average detection delay (or ARL1), namely the av-
erage difference between the detection time t∗ and the actual change point
τ . The detection delay is computed considering only datastreams where no
false alarms were reported before the change, thus t∗ > τ .

In our experiments on the INSECTS dataset, we measure the detection
delay obtained over datastreams sampled from different initial distributions
ϕ0 and containing concept drifts affecting different classes. For an overall
evaluation of these results, we also rank the considered methods by their av-
erage detection delay in each setting (i.e. rank = 1 for the best-performing

59

Chapter 5. Class Distribution Monitoring

method, rank = 2 for the second-best, and so on) and compute the aver-
age rank of each method, as suggested in [74]. Moreover, we apply the
Wilcoxon [75], Nemenyi [76], and Dunn [77] tests to assess whether the
difference between the best-performing method in terms of average rank
and the others is statistically significant, as suggested in [74].

5.3.3 Considered Methods

To ensure a fair comparison, we only consider methods that i) are nonpara-
metric and ii) control the false alarms by setting a target ARL0 before moni-
toring. In particular, we consider ECDD [56], which monitors the error rate
of a classifier by means of an EWMA test statistic with thresholds defined
to maintain the target ARL0 (see Section 3.3 for more details on the ECDD
algorithm). To the best of our knowledge, this is the only concept-drift de-
tection algorithm that monitors the classification error while controlling the
ARL0. ECDD is also nonparametric since its test statistic only depends on
the probability distribution of the classification error, which is assumed to
be a Bernoulli distribution with unknown parameter p0 for any ϕ0 [56].

To demonstrate the advantages of monitoring the class-conditional dis-
tributions instead of the overall data distribution, we also compare CDM
against two nonparametric change-detection algorithms that control the ARL0,
which we apply to the datastream x1, x2, . . . (ignoring class labels). In
particular, we consider Scan-B [34] and QT-EWMA (Chapter 4). In QT-
EWMA, we set the number of bins of the QuantTree histogram to #L ·K,
to have a model of ϕ0 comparable to that of CDM, which employs L Quant-
Tree histograms having K bins each.

In terms of computational complexity, in these settings CDM is more
efficient than QT-EWMA, which performs O(#LK) operation for each
incoming sample xt (Section 4.6). CDM is also more efficient than Scan-
B, since in Section 4.6 we have shown that the computational cost of QT-
EWMA favorably compares to that of Scan-B. In contrast, the ECDD test
statistic is extremely efficient, but the algorithm also requires to classify
each incoming sample xt, so the computational cost of ECDD strongly de-
pends on that of the classifier K.

5.3.4 Real-world Data

In this Section, we discuss the empirical ARL0 and the detection delay
achieved on the INSECTS dataset by the considered models in the settings
described in Section 5.3.1.

60

5.3. Experiments

Table 5.1: Empirical ARL0 of the considered methods on the 6 concepts of the INSECTS
dataset [73].

Method ECDD [56] Scan-B [34] QT-EWMA CDM

target ARL0 400 300 375 375
C

on
ce

pt

A 376.51 382.08 379.10 375.44
B 371.07 384.56 361.78 374.47
C 373.16 381.65 371.66 365.32
D 374.14 387.17 367.18 369.94
E 371.82 376.28 375.10 374.64
F 377.67 374.22 375.58 371.87

Empirical ARL0. We compute the empirical ARL0 of the considered meth-
ods on the six concepts of the INSECTS dataset [73], which we denote
by A, B, C, D, E, F. We consider each concept as a stationary distribu-
tion ϕ0, and we sample without replacement 5000 training sets and 5000
datastreams of length T = 8000 from each ϕ0. Then, we configure the
considered methods on the training sets, and compute the empirical ARL0

as the average detection time over these stationary datastreams.
We report the results of this experiment in Table 5.1, which shows that

ECDD fails at accurately controlling the target ARL0 = 400. In con-
trast, the empirical ARL0 of CDM and QT-EWMA approaches their target,
which we set to ARL0 = 375 to match the empirical ARL0 of ECDD. Sim-
ilarly to ECDD, Scan-B does not accurately control the ARL0, and this is
consistent with the experiments in Chapter 4. For this reason, we set the
target ARL0 = 300 in Scan-B to yield approximately the same empirical
ARL0 as the other methods. Table 5.1 indicates that, in these settings, it is
possible to fairly compare the detection delays of the considered methods,
since they all yield approximately the same empirical ARL0. Most impor-
tantly, the results in Table 5.1 empirically demonstrate that CDM effectively
controls the ARL0, confirming the theoretical results in Proposition 5.1.

Detection delay. For each of the 450 changes ϕ0 → ϕ1 (75 for each of the 6
initial concepts) described in Section 5.3.1, we sample without replacement
1000 training sets and 1000 datastreams to be monitored. Each datastream
is the concatenation of τ = 160 points drawn from ϕ0 and 7000 points
drawn from ϕ1. Table 5.2 reports the average detection delays of the con-
sidered methods depending on the drifted classes. As suggested in [74],
we rank the considered methods according to their average detection delay
obtained on each of the 450 changes (rank = 1 for the method with the

61

Chapter 5. Class Distribution Monitoring

Table 5.2: Average detection delays on the 15 possible subsets of classes of the INSECTS
dataset [73] affected by concept drift, averaged over the 30 possible combinations of initial
and post-change concepts. We also report the average rank over all the 15·30 experiments, and
the p-values of the Wilcoxon, Nemenyi, and Dunn tests.

Drifted class(es) ECDD [56] Scan-B [34] QT-EWMA CDM

1 207.98 212.53 267.73 195.45
2 245.85 162.58 195.44 124.92
3 264.27 224.99 278.57 204.00
4 224.91 235.87 265.96 196.74

1, 2 198.17 131.71 174.80 114.44
1, 3 172.62 169.87 223.50 160.98
1, 4 165.77 163.63 221.66 145.82
2, 3 163.66 126.56 167.55 112.18
2, 4 176.53 119.41 154.95 106.49
3, 4 210.04 169.88 218.90 153.51

1, 2, 3 139.29 115.01 152.91 103.60
1, 2, 4 148.03 103.24 141.09 98.89
1, 3, 4 144.81 134.83 183.41 131.38
2, 3, 4 132.36 96.92 136.90 98.57

1, 2, 3, 4 122.38 88.86 128.04 91.44

Avg. rank 2.400 2.382 3.516 1.698
Wilcoxon-p 5.57·10–15 2.76·10–20 1.10·10–75 –
Nemenyi-p 5.75·10–6 1.36·10–1 4.36·10–17 –

Dunn-p 1.99·10–7 1.87·10–2 5.36·10–19 –

lowest detection delay, etc.), and report their average rank. We also report
the p-values of the Wilcoxon [75], Nemenyi [76], and Dunn [77] post-hoc
tests, to assess whether the differences between the best-ranking method
and the others are statistically significant.

We observe that CDM turns out to be the best method in 13 out of the 15
considered changes, and the best in terms of average rank. The Wilcoxon,
Nemenyi, and Dunn tests show that the gap of CDM over ECDD and
QT-EWMA is statistically significant (p-value < 0.05). The gap between
CDM and Scan-B is less remarkable, but still significant according to the
Wilcoxon and Dunn tests. As expected, all the methods tend to yield lower
detection delays when the change affects more classes. In particular, the
difference between the detection delays of CDM and QT-EWMA is larger
when the change affects only one class rather than when it affects all of
them, showing that monitoring the class-conditional distributions can in-
deed improve the detection performance in these cases. This effect is even
more apparent in the comparison between CDM and Scan-B.

62

5.3. Experiments

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

p1 − p0

de
te

ct
io

n
de

la
y

Concept A (p0 = 0.227)

0 0.1 0.2 0.3 0.4
p1 − p0

Concept B (p0 = 0.304)

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

p1 − p0

de
te

ct
io

n
de

la
y

Concept C (p0 = 0.173)

0 0.1 0.2 0.3 0.4
p1 − p0

Concept D (p0 = 0.212)

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

p1 − p0

de
te

ct
io

n
de

la
y

Concept E (p0 = 0.165)

0 0.1 0.2 0.3 0.4
p1 − p0

Concept F (p0 = 0.170)

CDM ECDD [56]

Figure 5.2: Detection delay achieved by ECDD and CDM on the INSECTS dataset [73] for each
of the 6 stationary concepts, plotted against the difference p1 − p0, where p0, p1 are the error
rates of K before and after the drift. Each dot is the average of 1000 realizations of the same
change ϕ0 → ϕ1 i.e., thus with the same affected classes.

Most remarkably, CDM substantially outperforms ECDD in terms of
average detection delay in all the considered settings. This is due to the
fact that ECDD can only detect concept drifts that increase the classifica-
tion error, while the considered drifts in the INSECTS dataset might have
little impact on the error rate of a classifier. To further analyze the rela-
tion between detection delay and classification error, we plot in Figure 5.2
the average detection delays of CDM and ECDD against the difference be-
tween the classification error after (p1) and before the change (p0). Each
plot reports the results obtained on the 75 drifts we consider for each ini-

63

Chapter 5. Class Distribution Monitoring

Detection delay of ECDD

0.
0

0.1

0.
2

0.3

0 60 120 180 240 300 360 420 480 540

Detection delay of CDM

1

234

4
16 56 96 136 176 216 256 296 336

Difference between detection delay

50

0

50

64 0 64 128 192 256 320 384 448 512

(b)(a) (c)

Figure 5.3: Results of the experiment on synthetic data, represented by heatmaps defined on the
feature space R2. The blue dot represents the pre-change mean µ2

0 ∈ R2. (a,b) report, at each
coordinate µ ∈ R2, the average detection delay achieved by ECDD and CDM when µ2

0 → µ.
In (a) the contour lines indicate the difference in classification error p1 − p0 before and after
the change, and in (b) the change magnitude sKL(ϕ2

0, ϕ
2
1). (c) report the difference between the

detection delay achieved over synthetic data by ECDD and CDM, with contour lines.

tial concept A, B, C, D, E, F. We highlight the relation between p1− p0 and
the detection delay by plotting the moving average (weighted by a Gaussian
kernel) of the detection delay as a function of p1−p0. These results qualita-
tively show that the performance of ECDD only depends on p1− p0, which
is often small and sometimes even negative. In contrast, CDM can detect
any change in the class-conditional distributions, thus yielding a lower de-
tection delay in most cases.

5.3.5 Synthetic Data

Concept drifts might not always heavily impact the classification perfor-
mance, as we have shown in Figure 5.2 on the INSECTS dataset. Here we
further analyze the fundamental difference between monitoring the classi-
fication error by ECDD and the class-conditional distributions by CDM in
the synthetic scenario described in Section 5.3.1, where we can control both
p1 − p0 and the change magnitude sKL(ϕ2

0, ϕ
2
1). We configure ECDD and

CDM to maintain the same ARL0 as in Section 5.3.4.
The results of this experiment are illustrated in Figure 5.3. In particular,

Figures 5.3(a,b) report the detection delays respectively achieved by ECDD
and CDM as heatmaps. The color-coded value at a point µ ∈ R2 represents
the detection delay achieved by the each algorithm when µ2

1 = µ, averaged
over 5000 experiments. Moreover, in the same figures we plot, respectively,
the difference between the post- and pre-change error rates p1− p0, and the
change magnitude sKL(ϕ2

0, ϕ
2
1) as level curves.

64

5.4. Discussion and Future Work

As expected, ECDD cannot detect virtual drifts, as can be seen by the
large detection delays on the right side of Figure 5.3(a), but it achieves
excellent detection performance when the translation reduces the distance
between the two class-conditional distributions, increasing the classifica-
tion error (p1 − p0 > 0). In contrast, the detection delay of our CDM only
depends on the distance sKL(ϕ2

0, ϕ
2
1), as can be seen in Figure 5.3(b), where

the level curves of the detection delays are circles centered at µ2
0.

Figure 5.3(c) reports the difference between the detection delays of ECDD
and CDM, together with the level curves for the values −50, 0 and 50.
ECDD outperforms CDM when µ2

1 falls inside a relatively small triangular
portion of R2, corresponding to drifts that significantly increase the error
rate, even though the change magnitude is relatively low. However, the dif-
ference is substantial (> 50) only in a small region where the change is
nearly imperceptible and the performance of both algorithms is poor. Oth-
erwise, CDM yields lower detection delays than ECDD, and the difference
is quite large, especially when the drift reduces the error rate.

5.4 Discussion and Future Work

The results of our experiments on synthetic data, which are summarized in
Figure 5.3, visually confirm our intuition that monitoring individual class-
conditional distributions is more effective than monitoring the classification
error since drifts can cause only a little increase of the error rate of a classi-
fier, and can even be virtual drifts that do not increase it at all. Our results
on the INSECTS dataset [73] (see Table 5.2 and, most remarkably, the plots
in Figure 5.2), indicate that drifts with little or no impact on the classifica-
tion error (and even drifts that reduce it) can occur quite often in real-world
datastreams, and not only in our rather simplistic synthetic scenario.

Future work will extend CDM by applying other change-detection al-
gorithms whose thresholds are defined to satisfy (5.3), using for instance
SPLL-CPM (Section 4.5), which operates in semiparametric settings us-
ing an online CPM [25]. Moreover, other change-detection algorithms
can be used in combination with QT-EWMA, since Proposition 5.1 holds
even when different algorithms are employed to monitor different class-
conditional distributions, as long as their thresholds satisfy (5.3). There-
fore, different algorithms might be selected based on prior knowledge about
each distribution. For instance, SPLL-CPM might be employed to moni-
tor class-conditional distributions that can be assumed to be approximately
Gaussian, and QT-EWMA on classes where such assumption cannot be
made and thus a nonparametric algorithm is preferable.

65

CHAPTER6
Change Detection in Sequential Attacks

In this chapter we address the problem of detecting and correcting errors
in a particular class of cryptographic attacks. We cast this as a change-
detection problem, and propose an error-detection and correction strategy
based on a state-of-the-art online and nonparametric change-detection al-
gorithm. Our experiments on synthetic and real-world data demonstrate
that our strategy substantially improves the success rate of the considered
attacks, ourperforming the existing solutions adding a relatively small com-
putational overhead. These results show that these attacks can be eas-
ily strengthened, making it necessary to implement countermeasures even
when the cryptosystems are considered secure due to the low success rate
of these attacks.

In Section 6.1 we introduce sequential side-channel cryptographic at-
tacks and the existing strategies to deal with errors in these attacks. In
Section 6.2 we formally define sequential attacks and cast error-detection
and correction as a change-detection problem. In Section 6.3 we illustrate
our error-detection and correction strategy, and in Section 6.4 we present
two sequential attacks strengthened by our strategy. Finally, in Section 6.5,
we describe our experiments and discuss the results.

67

Chapter 6. Change Detection in Sequential Attacks

6.1 Background

Side-Channel Analysis (SCA) is a class of cryptographic attacks that ex-
ploit the physical information leaked by a target device during the execu-
tion of a cryptographic algorithm, and retrieve the secret key by means
of specific statistical tools. Examples of side-channel information include
execution time [78], power consumption [79] and electromagnetic radia-
tion [80]. Since its introduction in 1996 [78], SCA has become a major
threat, as any statistical dependence between physical leakages and secret
information might weaken cryptosystems that are considered secure from a
mathematical point of view.

Here we consider sequential attacks, a particular type of side-channel at-
tacks made of consecutive steps. The aim of each step is to recover a small
portion of the secret key using a distinguisher [81], namely a statistic of the
side-channel data that can identify the most likely among all the possible
values of the target key portion. In sequential attacks, the distinguisher also
depends on the intermediate results computed by the target cryptosystem,
which can be calculated using the key portion recovered in the previous step
of the attack. As an illustrative example, we consider the Horizontal Cor-
relation Power Analysis (H-CPA) attack [82], where the distinguisher is the
correlation coefficient between the power consumption and the Hamming
weight [83], namely the number of 1-valued bits of the intermediate results
of a multiplication. When a key portion is wrongly recovered, e.g. due to
noise in the power measurements, the intermediate results predicted in the
subsequent steps no more correspond to those that were actually involved
in the computations. Therefore, in H-CPA, the correlation coefficients be-
tween the predicted Hamming weights and the power consumption will not
allow to recover the remaining key bits, since the Hamming weight of the
wrongly predicted operands are not correlated to the power consumption,
as shown in Figure 6.1(a). At the end of an attack, the recovered key can
be verified by checking a digital signature, but when the attack fails this
procedure cannot locate the errors.

The fact that sequential attacks propagate the first error introduces a
distribution change in the distinguisher values (as shown in Figure 6.1)
has been referred to as an error-detection property [78] since it can be
used to determine the position of the first error. Error propagation was
first observed in a Timing Attack against modular exponentiation presented
in [78]. The authors also provide a sketch of an error-correction procedure,
but do not disclose any implementation details or experimental results.

Error propagation has been first exploited for error detection in a Timing

68

6.1. Background

0 500 1000 1500 2000

−0.1

0.0

0.1

0.2

0.3

ϕ0 ϕ1

t

x
t

Correlation coefficients

Γ

−0.1 0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

xt

Distributions of the correlation coefficients

ϕ0

ϕ1

(a) (b)

Figure 6.1: (a) The distinguisher values (correlation coefficients) of the key bits chosen by an
unsuccessful H-CPA attack. The first error occurred at step τ = 713, causing a distribution
change. The horizontal dashed line indicates the optimal threshold Γ separating the distin-
guisher values before and after τ , as discussed in Section 6.5.3. (b) Two histograms representing
the empirical distribution of the distinguisher before (blue) and after (orange) τ = 713: the two
distributions are significantly different.

Attack against RSA-512 [84]. In particular, the authors observe that, after
the first error, the considered attack is more likely to predict key-bits valued
0, while in the target key the distribution of the bit values can be assumed
to be uniform. For this reason, after each step, the authors employ a statis-
tical test to determine whether the distribution of the latest recovered key
bit values is uniform or not. When that is not the case, an error is reported
and a correction procedure is activated. The same authors extend their work
in [85,86], introducing error-detection strategies for some “divide and con-
quer attacks”, i.e. attacks that target a portion of key at a time, including
the Timing Attack presented in [84]. The main drawback of these strategies
is the lack of generality. Indeed, each attack is presented together with a
specific error-detection strategy that applies only to that attack.

A more general error-detection strategy is proposed in [87–89] for Tim-
ing Attacks targeting, respectively, RSA-512, RSA-CRT and a GPU imple-
mentation of RSA, all subject to error propagation. These works leverage
the fact that, before the first error, the distinguishers corresponding to the
correct and wrong key values follow different distributions. After an error,
the distinguisher follows the same distribution both for correct and wrong
key values. For this reason, the authors monitor the distinguishers and/or
the difference between the distinguishers of the two candidate key bit val-
ues, and detect an error when that quantity is “low” (i.e. below a threshold)
for a certain number of consecutive steps of the attack. Although these
error-detection methods can in principle be applied also to other attacks,

69

Chapter 6. Change Detection in Sequential Attacks

Algorithm 6.1 Target algorithm (decryp-
tion)
Input: ciphertext C, secret key D
Output: original message M

1: M1 is initialized
2: for t = 1 : T do
3: Mt+1 ← O(D[t],Mt, C)
4: end for
5: return MT+1

Algorithm 6.2 Sequential attack
Input: target algorithm, ciphertext C, side

channel {Lt}Tt=1, distinguisher D
Output: estimated secret key D̂

1: M̂1 is initialized as in Algorithm 6.1
2: for t = 1 : T do
3: D̂[t] ← argmaxv∈V D(v, M̂t,Lt)

4: M̂t+1 ← O(D̂[t], M̂t, C)
5: end for
6: return D̂ ← (D̂[1], . . . , D̂[T])

they require the attacker to set a threshold to decide whether the distin-
guisher or their difference is “high” or “low”. This threshold might be dif-
ficult to set a priori, and typically relies on heuristics that do not allow to
control the false alarm rate. Controlling false alarms is crucial, because any
detection triggers a correction procedure that might be time-consuming.
Therefore, a large number of false alarm might make the attack impractical
from a computational point of view.

6.2 Sequential Attacks

In this section we formally define sequential attacks (Section 6.2.1), and
cast error-detection and correction in sequential attacks as a change-detection
problem (Section 6.2.2).

6.2.1 The Sequential Attack Procedure

Among side-channel attacks we consider the class of sequential attacks. A
sequential attack recovers a portion of the secret key at a time, by recon-
structing the intermediate steps of the target algorithm. In particular, the
attacker computes the possible intermediate results of each step depending
on the value of a portion of the secret key. Then, the attacker leverages a
distinguisher, namely a statistic of the side-channel data, to select the most
likely value of the portion of secret key involved in that step. Note that, to
compute these intermediate results, the attacker needs to know the imple-
mentation of the target cryptosystem, as well as its input.

Let us consider the prototype of a decryption function (Algorithm 6.1)
as the target of a sequential attack. The t-th step of the decryption typically
combines a portion D[t] of the key (one or a few bits), the output Mt of the

70

6.2. Sequential Attacks

previous step and sometimes the ciphertext C to compute the next output
Mt+1 = O(D[t],Mt, C), where O denotes the set of instructions executed
in each step of the algorithm. It is assumed that M1 is initialized to some
fixed value, and that the algorithm has T steps in total.

In the t-th step of a sequential attack (Algorithm 6.2), the attacker recov-
ers D[t] by evaluating a distinguisher D(v, M̂t,Lt), a statistic that takes as
input a possible key value v, the output M̂t computed in the previous step
of the attack, and the side-channel data Lt. The distinguisher is expected
to take a high value when v coincides with the true key value D[t], and
a lower value otherwise. Therefore, the attacker selects D̂[t] as the value
v ∈ V that maximizes D (line 3):

D̂[t] = argmax
v∈V

D(v, M̂t,Lt). (6.1)

Then, the output M̂t+1 is computed depending on the recovered key value
D̂[t] (line 4), and the whole procedure is repeated in the next step.

By design, sequential attacks are subject to error propagation. In fact,
when the maximization of the distinguisher function leads to an error, i.e.
D̂[t] ̸= D[t], also the predicted output M̂t+1 is different from the actual
output Mt+1 computed in the target algorithm. All the key portions recov-
ered after the first error are based on a wrong prediction, and therefore are
not reliable. An error occurs every time the distinguisher is maximized
by a wrong key value rather than the correct one, e.g. due to noise in the
side-channel measurements.

6.2.2 Problem Formulation

To strengthen sequential side-channel attacks we need to solve two major
problems:

• Error Detection: estimating the first attacking step τ where the re-
covered key portion obtained by (6.1) is different from the true one,
formally

τ = min{t : D̂[t] ̸= D[t]}. (6.2)

Error detection consists in determining that an error has occurred, and
providing an estimate τ̂ of its location. Error detection is preferably
executed online, i.e. during the execution of the attack. As observed
in Figure 6.1, the distinguisher values xt = maxv∈V D(v, M̂t,Lt),
for t < τ , corresponding to the correct key values {D̂[t]}t<τ can be
considered i.i.d. realizations drawn from an unknown distribution ϕ0,

71

Chapter 6. Change Detection in Sequential Attacks

namely xt ∼ ϕ0. In contrast, after the first error at τ , the distinguisher
values {xt}t>τ follow another, unknown distribution ϕ1 ̸= ϕ0, namely
xt ∼ ϕ1. Therefore, error detection can be addressed as an online
change-detection problem (formulated in Chapter 2) on the univariate
datastream formed by distinguisher values {xt}t.

• Error Correction: correcting the first error using its estimated loca-
tion τ̂ . Note that a detection does not necessarily correspond to an er-
ror, being just a false alarm of the change-detection algorithm. More-
over, the estimated error location τ̂ might not be accurate. Therefore,
errors cannot be simply corrected by changing the decision made at
the step identified by the error-detection procedure.

6.3 Strengthening Sequential Attacks

Here we present our error detection and correction strategy to strengthen
a generic sequential attack (Algorithm 6.3). In what follows we provide
an overview of our solution (Section 6.3.1), then we describe in detail our
error-detection (Section 6.3.2) and correction (Section 6.3.3) procedures.
Finally, we discuss more in depth the assumptions on which our methodol-
ogy is based (Section 6.3.4).

6.3.1 Overview

The core ingredient of our error-detection procedure is a change-detection
algorithm that we execute at each step of the attack (Algorithm 6.3, line 6)
to monitor the sequence of distinguisher values {xt}t:

xt = max
v∈V

D(v, M̂t,Lt) = D(D̂[t], M̂t,Lt). (6.3)

Therefore, {xt}t contains all the distinguisher values corresponding to the
key portions recovered by the attack. At each time t, the online change-
detection algorithm indicates whether the sequence x1, . . . , xt contains a
distribution change and, in this case, an estimate of the change-point lo-
cation τ̂ (lines 1–5). This estimate is usually rather close to the location
of the first error τ occurred during the attack, but it does not necessarily
correspond to τ , as we show in Section 6.3.4.

Every time we detect a change during the attack, we activate our error-
correction procedure (lines 7–19). This consists in a brute-force search over
all the possible values of the secret key in a reasonably small window Wτ̂ ,
which is centered around the estimated change point τ̂ . Our idea is to use

72

6.3. Strengthening Sequential Attacks

Algorithm 6.3 Strengthened sequential attack

Input: target algorithm, ciphertext C, side channel {Lt}Kt=1, distinguisher D, set of pos-
sible window lengths S

Output: estimated secret key D̂

1: M̂1 is initialized as in Algorithm 6.1
2: for t = 1, . . . , T do
3: D̂[t]← argmaxv∈V D(v, M̂t,Lt) // Algorithm 6.2, line 3
4: M̂t+1 ← O(D̂[t], M̂t, c) // Algorithm 6.2, line 4
5: xt ← maxv∈V D(v, M̂t,Lt) // save the distinguisher value xt

6: Tt ← maxk Tk,t // compute change-detection statistic
7: if Tt > ht then
8: τ̂ ← argmaxk Tk,t
9: align τ̂ and t

10: for each w ∈ S do
11: SuccCorr,vbest ← correction(τ̂ , w, {xt}tk=1) // Algorithm 6.4
12: if SuccCorr then
13: break
14: end if
15: end for
16: (D̂[τ̂ − u], . . . , D̂[τ̂ + u])← vbest
17: t← τ̂ + u+ 1
18: remove xτ̂−u, . . . , xτ̂+u

19: end if
20: end for
21: return D̂ ← (D̂[1], . . . , D̂[T])

a statistical test to determine whether any of the tested combinations can
correct the potential error. In particular, the statistical test assesses whether
the distinguisher in a window W<, cropped before the brute-force window
Wτ̂ , and in a window W>, opened after Wτ̂ , follow the same distribution
(see Figure 6.2). In fact, assuming that W< have been computed from cor-
rect key values, the statistical test should identify the correct combination
as the one yielding the same distribution in W>. It is important to remark
that, to deal with false alarms, the window Wτ̂ should not to be considered
during the correction procedure, nor in the following steps of the attack
(line 18). In fact, the detection at τ̂ suggests that – in case of a false alarm –
the distribution of Wτ is non-stationary even when the key is correctly re-
construted (see Figure 6.2(c)). Note that our methodology is very general,
thus it can be applied to any sequential attack, as defined in Section 6.2.1.

73

Chapter 6. Change Detection in Sequential Attacks

6.3.2 Error Detection

To automatically determine whether the distribution in {xt}t has changed
or not and, in the former case, to estimate the exact location of the first
wrong guess in the secret key, we monitor the sequence {xt}t by an online
CPM [25]. We recall that the CPM is based on a test statistic Tk,t that
compares the distribution of the two consecutive windows x1, . . . , xk and
xk+1, . . . , xt. The statistic Tk,t is computed for all k ∈ {1, . . . , t − 1}, and
the online change-detection statistic Tt is defined as Tt = maxk Tk,t. We
compute the statistic Tt at each time t, and report a change at time t = t∗ if
Tt > ht, where ht is a threshold. After detecting a change, the change point
location τ is estimated by

τ̂ = argmax
k

Tk,t. (6.4)

We refer to Section 3.1 for a more detailed description of the CPM. In par-
ticular, here we use the Lepage statistic [20], which is meant to identify
both changes in scale and location [25], as we expect that a wrong guess
might affect any of these. A fundamental advantage of the Lepage statistic
is that, like other rank-based statistics, it does not depend on ϕ0 and ϕ1, thus
the thresholds {ht}t have been pre-computed through Montecarlo simula-
tions [25], to achieve the target ARL0, which we set to ARL0 = 50, 000.

To apply our error-detection method, we first execute the same opera-
tions performed during each step of the sequential attack (Algorithm 6.3,
lines 1-4), then append the distinguisher value xt to the sequence (line 5)
and finally monitor x1, . . . , xt by the CPM (line 6). Typically, the online
CPM requires a few samples after the change point to gather enough sta-
tistical evidence for a detection, which occurs at t∗ > τ̂ . All the computa-
tions performed in the steps between the estimated change point τ̂ and the
detection time t∗ are pointless due to error propagation, making detection
promptness a crucial aspect in attacks that are computationally expensive.

Note that monitoring {xt}t by an online change-detection test is sub-
stantially different from using the elementary error-detection schemes de-
scribed in [87–89], which estimate τ as the first index where xt < Γ, where
Γ is a fixed threshold. These methods disregard whether the detection is
due to a permanent distribution change (introduced by an error), or rather
by an outlier (i.e., a spurious distinguisher value). Moreover, using a CPM
allows us to control the false positives by setting the ARL0.

74

6.3. Strengthening Sequential Attacks

t

x
t

Wrong key value

t

Correct key value

t

False alarm
Wτ̂W< W> Wτ̂W< W> Wτ̂W< W>

(a) (b) (c)

Figure 6.2: Examples of distinguisher values in Wτ̂ , W<, W> and the rationale behind our
correction procedure. In (a) the key tested in Wτ̂ is wrong, thus W< and W> have different
distributions. In (b), the tested key is correct, thus W< and W> follow the same distribution.
In (c), τ̂ corresponds to a false alarm, thus the distributions of W< and W> coincide, but differ
around the detection, i.e. in Wτ̂ . This indicates why it is necessary not to include Wτ̂ in the
error correction, and also to remove it from {xt}t when the monitoring restarts.

6.3.3 Error Correction

After detecting a change at step t∗ with estimated location τ̂ , we activate
our error-correction method (Algorithm 6.3, line 11), which is detailed in
Algorithm 6.4. The aim of this procedure is to correct the error that might
have occurred at τ̂ or at a nearby index. More formally, we expect τ̂ to be:

• the location of the first error, i.e. τ̂ = τ as defined in (6.2), or

• a correct but inaccurate detection, i.e. an error occurred at τ , which is
close but does not coincide with τ̂ , or

• a false alarm, i.e. a change point is detected at step t∗ even though no
errors occurred at any τ ≤ t∗.

To handle all these cases, our error-correction procedure implements a
brute-force search over a reasonably small window Wτ̂ = {τ̂ − u, . . . , τ̂ +
u} of size w = 2u + 1, centered at the detected change point τ̂ . During
the brute-force search over Wτ̂ , we test each possible value v ∈ {0, 1}w
as follows: first, we compute the outputs of the operations executed over
Wτ̂ , using v (lines 2-3). Then, the attack continues after step τ̂ + u + 1
(line 4) for a few steps to compute the distinguisher values of the window
W>. When v is the correct combination, assuming that no errors occur
for a few steps, the distinguisher values in W> are expected to follow the
distribution ϕ0, as shown in Figure 6.2(b). A very practical way to assess
this hypothesis is to test whether the distribution in W> is the same as that
in W<, which is assumed to contain distinguisher values computed before
the first error. In contrast, when v is a wrong combination, the distinguisher

75

Chapter 6. Change Detection in Sequential Attacks

Algorithm 6.4 Correction procedure

Input: target algorithm, ciphertext C, side channel {Lt}Tt=1, distinguisher D, change
point τ̂ , Wτ̂ with size w = 2u + 1, distinguisher sequence {xt}t, predicted output
M̂τ̂−u

Output: correction goodness (SuccCorr), best estimated key vbest over Wτ̂

1: for v ∈ {0, 1}w do
2: set (D̂v[τ̂ − u], . . . , D̂v[τ̂ + u]) = v // initialization
3: compute M̂v

τ̂−u+1, . . . , M̂
v
τ̂+u+1 using O // as in Algorithm 6.2, line 4

4: restart the attack from step t = τ̂ + u+ 1
5: select the two windows W< ← {xt}t<τ̂−u, W> ← {xv

t }t>τ̂+u

6: run the statistical test T(W<,W>)
7: if the test yields enough statistical evidence then
8: return true, v
9: end if

10: end for
11: return false, the v maximizing the statistic in line 6

values in W> should follow a different distribution ϕ1 due to error propa-
gation, (see Figure 6.2(a)). The choice of the hypothesis test and the sizes
of the windows W<,W> (which we have not defined here for the sake
of generality) depend on several factors, mainly the computational cost of
the attack. In Section 6.4 we provide two detailed examples of correction
procedures for different attacks.

As any other statistical test, the CPM might detect a change point in
{xt}t even though no errors occurred. The correction procedure has to cope
with this crucial problem: if τ̂ is a false alarm, a statistical test might find
that the distinguisher follows different distributions before and after τ even
when the correct combination is found by the brute-force search. This is the
reason why we do not include Wτ̂ in the windows W<,W>. For the same
reason, we remove all the windows Wτ̂ from {xt}t in the following steps
of the attack (Algorithm 6.3, line 18). Since we exclude the analyzed brute-
force windows from {xt}t, the indexes of the monitored sequence {xt}t are
not aligned with the attacking steps, and the detected change points must
be adjusted (Algorithm 6.3, line 9) by a suitable shift.

The size of the brute-force window determines a trade-off between ef-
fectiveness and efficiency: larger brute-force windows allow us to handle
inaccurate estimates of the change point locations τ̂ , improving the cor-
rection performance. On the other hand, larger brute-force windows mean
that an exponentially larger number of combinations v ∈ {0, 1}w must be
tested, increasing the computational cost of the correction.

To reduce the average computation time while keeping the effectiveness

76

6.3. Strengthening Sequential Attacks

of our correction procedure, we propose a greedy strategy (Algorithm 6.3,
lines 10-15) that performs the brute-force search over increasingly larger
windows, until the test yields a strong statistical evidence that the correc-
tion was successful (Algorithm 6.3, line 12). When such evidence is found
(Algorithm 6.4, lines 7-8), we select the corresponding value v as the cor-
rect one, stop the brute-force search and restart the attack. For instance, the
correction might stop when the p-value of the statistical test exceeds a cer-
tain threshold. When none of the possible values v ∈ {0, 1}w is selected,
we repeat the search over a larger window.

This strategy reduces on average the time required by our correction
procedure, which is very important when the considered attack is compu-
tationally expensive. In fact, in most cases the estimated change point τ̂
is very close to the location of the first error τ and thus a small window is
enough to correct the error. The window size (and consequently the compu-
tational cost) is increased only in the rare cases where the detected change
point is far from the first error.

6.3.4 Assumptions

Here we discuss some of the assumptions on which our methodology is
based, and how our error detection and correction methods can cope with
violations of these hypotheses.

Distribution of the distinguisher. A key assumption of our solution is that the
distinguisher values corresponding to the correct key values are i.i.d. real-
izations of a random variable, which seems reasonable from our observa-
tions (see Figure 6.1). This is not always guaranteed in practice, and vio-
lations of this assumption might lead to a higher number of false alarms
than expected, which we experience in our experiments. However, our
correction procedure (Section 6.3.3) can deal with false alarms, thus our
methodology works even when this hypothesis is violated.

It is also possible that some sequential attacks provide non-stationary
distributions, or even multiple distinguisher sequences. These cannot be
directly employed by our error-detection procedure, which assumes that the
distinguisher sequence follows a stationary, univariate distribution. Here
we show how the proposed methodology can be modified to be applied
also in a variety of these cases:

• when the sequence {xt}t exhibits a trend, e.g. an increase over time,
{xt}t can be pre-processed to remove the trend by means of specific

77

Chapter 6. Change Detection in Sequential Attacks

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

τ̂ − τ

re
la

tiv
e

fr
eq

ue
nc

y

Distribution of τ̂ − τ

Figure 6.3: Histogram representing the empirical distribution of the difference between the de-
tected change points τ̂ and the corresponding first error locations τ (excluding false alarms),
computed over 2000 H-CPA attacks on simulated data (see Section 6.4.1).

statistical tools [25, 90]. Then, our error detection procedure can be
applied.

• It might happen that the distinguisher in {xt}t follows different dis-
tributions depending on the value of the correct key value, hence the
distribution ϕ0 becomes multimodal. Since the CPM is nonparamet-
ric, and therefore can handle data following any distribution [25], our
error-detection method can be applied without changes.

• When multiple pieces of hardware or multiple side channel data are
analyzed at the same time, there might be several distinguisher se-
quences at play. In this case, our error detection procedure should be
modified to monitor all these sequences in parallel, and to flag a po-
tential error as soon as the CPM finds a change in at least one of the
sequences, as in multi-stream monitoring [39–41].

Location of the detected change points. A fundamental assumption of our error-
correction procedure is that an estimated change point τ̂ is close to the first
error location τ . In case of an inaccurate estimate, we expect τ̂ to be either
a few samples before or after the actual first error τ . In Figure 6.3 we illus-
trate the empirical distribution of the difference τ̂ − τ , which we computed
by applying our error-detection procedure to the H-CPA attack [82]. First,
we observe that our error-detection procedure is extremely accurate. Fig-
ure 6.3 also confirms our intuition that the brute-force windows should con-
tain samples from both sides of τ̂ , and confirms the validity of our greedy
strategy. In fact, it is very convenient to perform the brute-force search

78

6.4. Two Strengthened Sequential Attacks

Algorithm 6.5 Square and multiply al-
ways exponentiation (left-to-right)

Input: ciphertext C, key D, modulus n
Output: M = CD mod n

1: M ← 1
2: for t = 1 : T do
3: M ←M2 mod n
4: if D[t] = 1 then
5: M ←M · C mod n
6: else
7: aux←M · C mod n
8: end if
9: end for

10: return M

Algorithm 6.6 Multiply and square expo-
nentiation (right-to-left)

Input: ciphertext C, key D, modulus n
Output: M = CD mod n

1: M ← 1, Q← C
2: for t = 1 : T do
3: if D[t] = 1 then
4: M ←M ·Q mod n
5: else
6: aux←M ·Q mod n
7: end if
8: Q← Q2 mod n
9: end for

10: return M

over increasingly larger windows, since in most cases a small window is
sufficient, and only in rare cases it is necessary to search larger windows.
Finally, we remark that the distribution of τ̂−τ might depend on the attack,
thus this kind of study can be used to define the optimal window size.

6.4 Two Strengthened Sequential Attacks

We applied our error detection and correction methods to strengthen two
sequential SCAs targeting the RSA-2048 exponentiation [91]. The first one
is a Horizontal Correlation Power Analysis (H-CPA) attack [82] (Section
6.4.1), while the second is a vertical Timing Attack [87] (Section 6.4.2).

6.4.1 Power-analysis attacks

This horizontal attack was introduced in [82] and formalised in [81]. The
peculiarity of the horizontal modus operandi, which was first proposed
in [92], is the use of side-channel data referring to a single execution of
the target algorithm. Horizontal attacks are thus very practical, as they re-
quire a single execution of the target algorithm and, most importantly, they
are by design robust against key blinding, a countermeasure that prevents
the attacker from using multiple executions.

As distinguisher, the H-CPA attack uses the correlation between an ar-
ray Lt containing the power consumption measured when specific opera-
tions are performed at the t-th step of the target algorithm, and the array
Ht containing the Hamming weights of the input and/or output of those

79

Chapter 6. Change Detection in Sequential Attacks

operations [93]. To obtain the array Lt, the attacker needs to perform a pre-
processing phase to locate and extract all the relevant power consumption
samples from a single power trace, which requires to know exactly the tar-
get algorithm and its implementation. We remark that this pre-processing
might be extremely hard to perform also when the target implementation is
known, because the traces might be jittering and/or the operations within
the multiplication algorithm might not produce a visible structure in the
power consumption. Nevertheless, we assume a pre-processed power trace
to be available, as it is customary in the literature.

In what follows, we describe how to apply the H-CPA attack proposed
in [82] to the square and multiply always exponentiation (Algorithm 6.5)
and how strengthen it with our error detection and correction methodology.
In particular, the attacked operations are the products of the square and
multiply always exponentiation (Algorithm 6.5, lines 5,7), whose factors
depend on the secret key. The side-channel data Lt used at the t-th step of
the attack consist of the power consumption of the (t+ 1)-th product.

At the t-th step, the attacker computes the possible values of the result
variable R, which depend on D̂: when D[t] = 0, M = Mt, i.e. the output
of the square (line 3) and, when D[t] = 1, M = Pt, i.e. the output of the
product (line 5), which define the pair M̂t = (Mt, Pt). Then, the attacker
simulates, for each value of D[t], the square and the product performed
at step t + 1 of Algorithm 6.5, as shown in Table 6.1, and computes the
Hamming weights of the 64-bit digits of the first operand for each simulated
product. These are saved in two arrays H0

t ,H
1
t , associated with the two

possible values v ∈ {0, 1} ofD[t]. Then, the attacker computes the Pearson
correlation coefficient, denoted by ϱ, between each array Hv

t and the array
Lt containing the side-channel data:

D(v, M̂t,Lt) = ϱ(Hv
t ,Lt). (6.5)

As in (6.1), D̂[t] is selected as the bit value yielding the highest correla-
tion (Algorithm 6.3, line 3). At step t+ 1, the whole procedure is repeated
using the outputs M̂t+1 = (Mt+1(D̂[t]), Pt+1(D̂[t])) predicted at step t (Ta-
ble 6.1), as in Algorithm 6.3, line 4. After detecting an error by the CPM
(Algorithm 6.3, line 6), we start our correction procedure (Algorithm 6.4)
with a symmetric brute-force window Wτ̂ of size w = 3, which is in-
creased symmetrically by two whenever none of the possible combinations
v ∈ {0, 1}w is selected, up to a maximum window size w = 9.

The correction procedure considers windows W<,W> of size 30 (Al-
gorithm 6.4, line 5) and compares them by the Mann-Whitney test statis-
tic [18], which is designed to detect a shift in the median value of the data

80

6.4. Two Strengthened Sequential Attacks

Table 6.1: The input to the operations computed in step t+ 1 depending on D[t].

step t step t+ 1

Mt+1(1)← (Pt)
2 mod n

Mt ← (Mt)
2 mod n

if D[t] = 1
Pt+1(1)←Mt+1(1) · C mod n

Pt ←Mt · C mod n Mt+1(0)← (Mt)
2 mod nif D[t] = 0

Pt+1(0)←Mt+1(0) · C mod n

distribution. We choose the Mann-Whitney test because we observe an ev-
ident shift in the median of the distinguisher when an error occurs during
H-CPA attacks (see Figure 6.1). When the p-value obtained by the Mann-
Whitney test is larger than a fixed threshold h, we assume that there is not
enough statistical evidence to claim that the elements of W< and W> have
different distributions, thus v can be selected as the correct combination.
Hence, we stop the brute-force search (Algorithm 6.4, line 7). In case at
the end of the brute-force search over the largest window none of the key
values v ∈ {0, 1}w yields a sufficiently large p-value, the combination with
the largest p-value is selected as the correct one (Algorithm 6.4, line 11).
As an early stopping criterion, in our experiments we set an extremely low
value of h, namely h = 10−7. Even though unusual in hypothesis tests,
we have observed that wrong combinations yield p-values that are orders
of magnitude smaller than the correct ones.

Note that computing the Mann-Whitney test statistic is more efficient
than repeating the online CPM for each combination, but requires to carry
out the attack for at least 30 steps for each combination, to obtain a suffi-
ciently large number of distinguisher values to achieve a statistically sig-
nificant outcome of the Mann-Whitney test. Performing 30 steps of the
attack for each combination tested during the brute-force search is possible
because the H-CPA attack is not computationally demanding.

For the sake of simplicity, here we have only described the H-CPA attack
targeting the square and multiply always exponentiation (Algorithm 6.5),
which can be easily adapted to the multiply and square exponentiation rou-
tine (Algorithm 6.6) by changing the pipeline illustrated by Table 6.1 ac-
cording to the operations performed by Algorithm 6.6. The error detection
and correction procedure is exactly the same.

We remark that our strengthened H-CPA attack requires the same pre-
processing and hypotheses (in particular, the knowledge of the ciphertext
C and of the multiplication algorithm) as the original attack [82]. Hence,
it cannot overcome additional countermeasures such as blinding. The aim
of our error detection and correction methodology is to improve the suc-

81

Chapter 6. Change Detection in Sequential Attacks

Algorithm 6.7 Sliding window exponentia-
tion
Input: ciphertext C, key D, modulus n
Output: M = CD mod n

1: for j = 0 : 7 do
2: Q[j]← (j + 8) · c mod n
3: end for
4: M ← 1
5: for t = 1 : T do
6: if D[t] = 1 then
7: M ←M16 mod n
8: i← (D[t+ 1]D[t+ 2]D[t+ 3])
9: M ←M ·Q[i] mod n

10: t← t+ 3
11: else
12: M ←M2 mod n
13: end if
14: end for
15: return M

Algorithm 6.8 Montgomery multiplication

Input: operands A,B, Montgomery pa-
rameter r, modulus n, n′ s.t. r · r−1 −
n · n′ = 1

Output: P = A ·B · r−1

1: Q← A ·B
2: P ← (Q+ (Q · n′ mod r) · n)/r
3: if P ≥ n then
4: P ← P − n
5: end if
6: return P

cess rate of the H-CPA attack when the noise in the power measurements
introduces errors, preventing the key recovery.

6.4.2 Timing attacks

Timing Attacks were introduced in [78], where the execution time was
first used as side-channel data to recover the secret key of a cryptosystem.
Here we describe a Timing Attack against the RSA cryptosystem inspired
by [87], where the authors break a 512-bit modular exponentiation using a
set of execution times. This attack is vertical since it analyzes side-channel
data gathered from multiple executions of the target algorithm.

The attack exploits the variable-time Montgomery modular multipli-
cation [94] (Algorithm 6.8), which is used as multiplication and squar-
ing algorithm in the sliding-window exponentiation (Algorithm 6.7). The
main loop of the Montgomery multiplication creates a temporary result that
might be greater than the modulus, depending on the key. A subtraction is
executed when that is the case (Algorithm 6.8, line 4), increasing the over-
all execution time. Therefore, the difference between the execution times
of different exponentiations can be a powerful distinguisher.

The attacker selects a set of ciphertexts {Ci}Ni=1, computes the modular
exponentiation with the secret key on the target device, and measures as

82

6.4. Two Strengthened Sequential Attacks

side-channel data the set of execution times {ET i}Ni=1 corresponding to the
selected ciphertexts. The attacker also needs an oracle function that, given
the ciphertext, an intermediate result and a hypothetical part of the secret
key, simulates the exponentiation algorithm and determines whether, at a
particular step, the subtraction (Algorithm 6.8, line 4) has been computed
or not. We denote this function by oracle. Since the running time might
be influenced also by other factors, these attacks usually employ a large
number of timing measurements to make the differences due to the con-
ditional subtractions statistically evident. Hence, the effectiveness of the
distinguisher grows with the considered number of measurements N .

The attack replicates the structure of Algorithm 6.7, where the bits of the
secret key are processed either singularly (when D[t] = 0) or in chunks of
4 (when D[t] = 1). When D[t] = 0, a square is computed (Algorithm 6.7,
line 12) and the next 4 operations are certainly squares because a subse-
quent 1-valued bit in D implies the computation of 4 squares (line 7). An
extra square is computed for each 0-valued bit in between, so there are at
least five consecutive squares. Therefore, to determine whether D[t] =
0, the attacker computes the five squares and uses the oracle to find out
whether the final subtraction has been executed at the end of the 5-th square,
for each ciphertext in {Ci}Ni=1. In contrast, when D[t] = 1, only four
squares (and a multiplication) are computed (lines 7, 9). Therefore, the at-
tacker computes the four squares and a product for each possible combina-
tion of (D[t+1], D[t+2], D[t+3]), and uses the oracle to find out whether,
for each ciphertext in {Ci}Ni=1, the final subtraction has been executed at the
end of the first square after the multiplication (which is computed in any
case). We analyze the subsequent square instead of the multiplication since
products by constant values (i.e., the elements of Q) have been shown to be
less informative [87]. For each admissible value v ∈ {0, 8, . . . , 15}, ofD[t]
or of the chunk (D[t], D[t+1], D[t+2], D[t+3]), the output of the oracle
is used to divide the execution times into two sets Uv

t ,V
v
t , depending on

whether the subtraction is computed in the last operation or not:

Uv
t = {ET i : oracle(v, M̂ i

t , C
i) = true},

Vv
t = {ET i : oracle(v, M̂ i

t , C
i) = false}.

(6.6)

The distinguisher is the difference between the averages of the two sets,
denoted by ∆:

D(v, M̂t,Lt) = ∆(Uv
t ,V

v
t). (6.7)

Note that the side-channel data Lt is the same for each step t, and coin-
cides with the whole set {ET i}Ni=1. As in (6.1), the value of D̂[t] (or of

83

Chapter 6. Change Detection in Sequential Attacks

(D̂[t], D̂[t + 1], D̂[t + 2], D̂[t + 3])) is chosen by maximizing ∆, because
the averages of the two sets are expected to be significantly different for the
correct guess v. Indeed, the exponentiations corresponding to the times in
Uv

t compute, on average, one more subtraction than the ones correspond-
ing to the times in Vv

t . In contrast, the information provided by the oracle
in case of a wrong guess does not correspond to what happens in the actual
computations, so the difference of the averages of the two sets is not signif-
icant. Before starting a new step, if D̂[t] = 1, t is incremented by 3 (plus
the increment of the for loop), as in Algorithm 6.7 (line 10).

When applying our error detection and correction methodology to this
Timing Attack, we analyze the distinguisher sequence {xt}t = {∆t} with
the online CPM (Algorithm 6.3, line 6). When a change point is detected
at τ̂ , the correction procedure (Algorithm 6.4) starts with the smallest pos-
sible brute-force window Wτ̂ = {τ̂}. When the correction procedure is
not considered successful, the window size is increased by 1 (alternatively,
once to the left and once to the right), up to a maximum window w = 3,
which means that not all the searched brute-force windows are symmetric.

The correction procedure defines W< as the whole sequence {xt}t ob-
tained before Wτ̂ , while W> is an open window, including a new sample
at each step. The two windows are compared by monitoring their concate-
nation (W<,W>) with the same CPM used for error detection. When the
CPM finds a new change point that is larger than τ̂ , we assume that there
is enough statistical evidence to claim that the elements of {xt}t follow the
same distribution before and after the window, thus we stop the brute-force
search (Algorithm 6.4, line 7). The correction procedure is then repeated
on the new change point. When no change point is detected, the attack is
considered successful.

Note that the same statistical test employed by the correction proce-
dure on the H-CPA attack cannot be used for the Timing Attack due to its
computational cost. In fact, we have observed that monitoring (W<,W>)
online with the CPM is much more convenient than performing 30 attack-
ing steps and then computing the Mann-Whitney test statistic for each key
value tested during the brute-force search.

6.5 Experiments

The goal of our experiments is to demonstrate that our error-detection and
correction procedures can effectively and efficiently strengthen different
sequential attacks, improving their success rate more than existing error-
detection techniques based on thresholds. In particular, we test the H-CPA

84

6.5. Experiments

attack (Section 6.4.1) on a hardware implementation of the square and mul-
tiply always exponentiation (Algorithm 6.5) based on a schoolbook multi-
plication with an underlying 64-bit multiplier, and on a software imple-
mentation of the multiply and square exponentiation (Algorithm 6.6) based
on Montgomery multiplication [94] with an underlying 32-bit multiplier.
In the Timing attack (Section 6.4.2), we target a software implementation
of the sliding window exponentiation with window size 4 (Algorithm 6.7)
based on Montgomery multiplication. Since Algorithms 6.5,6.7 parse the
private keyD left-to-right, i.e starting from the most significant bit, in those
algorithms we denote by D[t] the bit processed at the t-th step of the algo-
rithm rather than the t-th least significant bit of D, to be consistent with
Algorithm 6.2.

6.5.1 Datasets

Power consumption (H-CPA attack). The power traces are noisy signals that
can be modeled as

L = p+ η, (6.8)

where p is the signal (i.e. the power consumption) and η ∼ N(0, σI) is
uncorrelated Gaussian noise with standard deviation σ. The power of the
signal with respect to the noise is usually measured using the signal-to-
noise ratio (SNR), which is defined as 10 log10(E[p2]/σ2), where E[p2] is
the expected value of the squared signal. Since we obtain the power traces
for our experiments in ideal conditions, they are virtually noiseless. For
this reason, we estimate E[p2] as the average of the squared elements of the
power trace, and we synthetically generate the Gaussian noise, adjusting
the standard deviation σ to achieve the desired SNR.

In our experiments we consider two different datasets:

• Simulated dataset. We simulate the power consumption of two ex-
ecutions of the RSA-2048 exponentiation using the square and mul-
tiply always algorithm (Algorithm 6.5) based on a hardware imple-
mentation of the schoolbook multiplication (with an underlying 64-
bit multiplier). To simulate the two power traces, we started from a
Register-Transfer Level (RTL) description of the algorithm, and per-
formed a logic synthesis in 40nm at 100MHz (using Synopsys Design
Compiler) to obtain a gate-level description. We simulated the power
consumption by Synopsys PrimeTime using the maximum allowed
resolution (100ps), which yields 100 samples per clock cycle. We sim-
ulated measurement noise by generating uncorrelated Gaussian noise
and adding it to the traces to achieve SNR ∈ {10, 9, . . . ,−1,−2}. We

85

Chapter 6. Change Detection in Sequential Attacks

tested our attack on 250 noisy versions of each power trace for each
considered SNR value.

• Measured dataset. We acquired the power consumption of ten RSA-
2048 exponentiations using a ChipWhisperer®-Pro (CW-1200) mount-
ing, as target microcontroller, an ARM® Cortex®-M4 CPU. The ex-
ponentiation was computed with a software multiply-and-square al-
gorithm (Algorithm 6.6) based on Montgomery multiplication [94]
and leveraging the CPU 32-bit multiplier. We estimated that mea-
surement noise yields SNR = 24, which is unrealistically high, so
we add uncorrelated Gaussian noise to the traces to achieve SNR ∈
{7, 6, . . . ,−1,−2}, similarly to the simulated dataset. We tested our
attack on 50 noisy versions of each power trace per SNR value.

Timing measurements (Timing Attack). The dataset consists in different sets
of ciphertexts {Ci}Ni=1 (with N = 80, 000, 100, 000, 120, 000, 140, 000,
160, 000) that are the input of an RSA-2048 exponentiation (always us-
ing the same private key), along with their respective timing measurements
{ET i}Ni=1. Each timing measurement refers to the whole execution time
of the software sliding window exponentiation on a Cortex®-M7 microcon-
troller. The more measurements are analyzed, the more effective the attack
is, so in this attack N plays a similar role as the SNR in the H-CPA attack.

6.5.2 Figures of Merit

We employ the following figures of merit to evaluate the effectiveness of
our error detection and correction methodology in the two considered se-
quential attacks:

• The success rate measures the effectiveness of an attack as the per-
centage of successful key recoveries over the total number of inde-
pendent attempts.

• The number of change points is the average number of errors detected
during a successful attack (including false alarms). This number indi-
cates how often the correction procedure has been successfully acti-
vated.

• The runtime measures the average time required to carry out a success-
ful attack equipped with our error detection and correction procedure.
In our experiments on the H-CPA Attack we used an AMD Ryzen™
Threadripper™ 1950X CPU @ 3.4 GHz, while for the Timing Attack

86

6.5. Experiments

we used an Intel® Xeon™ E5-2697A v4 CPU @ 2.6 GHz, both with
a x86_64 architecture.

6.5.3 Considered Methods

We compare our strengthened attacks against their original counterparts and
a variant that adopts an error-detection method based on thresholds inspired
by [87–89]. This latter comparison was done only for the H-CPA attack.
Here are the details of the three methods we considered.

Original attacks. These are the original H-CPA attack [82] and Timing At-
tack [87]. These attacks are not equipped with any error detection/correc-
tion techniques.

Threshold-based error detection. We compare our solution with the standard
error-detection technique based on thresholds presented in several works [87–
89]. This rather heuristic procedure monitors the sequence {xt}t using a
fixed threshold Γ, and detects an error as soon as xt < Γ. The correction
simply consists in flipping the corresponding key bit D[t]. To deal with the
large number of false alarms of such a simple scheme, error correction is
performed only when the distinguisher remains smaller than the threshold
for at least 10 steps, as in [88]. Since none of the existing works [87–89]
provides insights on how to define the threshold Γ, we assume that the at-
tacker can compute an optimal threshold to separate the distinguisher values
before and after the first error. In the H-CPA attack, we define Γ as the opti-
mal separation between ϕ0 and ϕ1, which we assume to be Gaussian. While
this is certainly not guaranteed in general, preliminary tests show that the
Gaussian distribution seems to fit the distinguisher values obtained in our
experiments.

Strengthened attacks. These are the H-CPA attack and Timing Attack equipped
with our error detection and correction methodology, which are described
in Section 6.4.1 and Section 6.4.2 respectively.

6.5.4 Results and Discussion

H-CPA (simulated dataset). As shown in Figure 6.4(a), our methodology can
successfully improve the success rate of the H-CPA attack on simulated
power traces. In particular, our solution achieves substantially higher suc-
cess rates than the original counterpart and the attack equipped with the
threshold-based error-detection method. This is particularly true when the

87

Chapter 6. Change Detection in Sequential Attacks

−2−1012345678910

0

20

40

60

80

100

SNR (dB)

Su
cc

es
s

ra
te

(%
)

Simulated data

−2−101234567

0

20

40

60

80

100

SNR (dB)

Measured data

−2−1012345678910

0

1

2

3

4

SNR (dB)

#
C

ha
ng

e
po

in
ts

−2−101234567

0

2

4

6

8

SNR (dB)

−2−1012345678910
0

2

4

6

8

10

12

SNR (dB)

R
un

tim
e

(s
)

−2−101234567

0

20

40

60

80

100

SNR (dB)

(a) (b)

(c) (d)

(e) (f)

original [82] threshold [88] strengthened (ours)

Figure 6.4: (a,b) Success rate of the original H-CPA attack, the attack equipped with threshold-
based error-detection [88], and strengthened by the proposed methodology. (c,d) Average num-
ber of change points detected by our methodology. (e,f) Average runtime of the successful attacks
with our error detection and correction methodology. All these quantities are presented as a
function of the SNR of the input power traces, which have been tuned by adding white Gaussian
noise. (a,c,e) show the results obtained by the H-CPA attack on simulated data, while (b,d,f)
show the results of the attack on the dataset measured by means of ChipWhisperer®.

SNR is low. For instance, when SNR = 1, the original attack succeeds
only 7.2% of the times, the attack equipped with the threshold-based error-
detection succeeds 16% of the times, while our strengthened attack achieves
59.4% success rate. The success rate of all the considered attacks decreases
with the SNR, but our error detection and correction method guarantees
a slower decay. Figure 6.4(c) shows that reducing the SNR increases the
number of errors to be corrected, and this in turns increases the runtime
(Figure 6.4(e)) since the correction procedure must be activated more of-

88

6.5. Experiments

ten. Comparing the average runtime of the attack at SNR = 10 (where the
average number of detected change points is ≈ 0.004) with those obtained
at lower SNR, we observe that our error detection and correction procedure
does not significantly increase the computational cost of the attack.

H-CPA (measured dataset). The results on measured power traces are in line
with those obtained over the simulated dataset: Figure 6.4(b) shows that
our strengthened attack outperforms the two alternatives, especially when
the SNR is low. For instance, when SNR = 0, the success rate of the
original attack is 6.9%, the attack equipped with the threshold-based error-
detection technique succeeds 21% of the times, while our strengthened at-
tack succeeds 56.9% of the times. Consistently with the results discussed
above, the success rate of the three attacks decreases with the SNR, but
the decay is slower for our strengthened attack. Also in this case, at lower
SNR values, the number of errors increases (Figure 6.4(d)), together with
the runtime since the correction procedure has to be executed more often
(Figure 6.4(f)). We remark that the results of the H-CPA attack on the mea-
sured and simulated datasets obtained with the same SNR values cannot
be directly compared, since measured and simulated traces might provide
different correlation levels with the Hamming weights due to the different
implementations (hardware/software) of the RSA exponentiation. For this
reason, the two experimental settings yield different success rates, numbers
of change points and, consequently, runtime, even though the attacking pro-
cedures are very similar.

Timing Attack The success rate of the strengthened Timing Attack (Fig-
ure 6.5(a)) confirms the effectiveness of our error detection and correction
procedure, which makes the attack possible at a relatively low number of
measurements. The strengthened attack achieves 96% success rate when
N = 160, 000, while the original attack could never recover the entire se-
cret key for any considered value of N (0% success rate). As expected, the
success rate tends to decrease with the number of timing measurements, as
this plays a similar role as the SNR in the H-CPA. Figure 6.5(b) shows that,
in line with the H-CPA attack, the number of change points grows when
N decreases. Figure 6.5(c) also shows that the overall runtime rapidly in-
creases when reducing the value of N . This is due to the large number of
times the correction procedure must be executed when few measurements
are used (see Figure 6.5(b)).

The original Timing Attack never succeeds in the considered experi-
mental settings. As a comparison, we tested the original Timing Attack on

89

Chapter 6. Change Detection in Sequential Attacks

0.81.01.21.41.6

0

20

40

60

80

100

N

Success rate (%)

0.81.01.21.41.6

0

40

80

120

160

N

Change points

0.81.01.21.41.6
0

100

200

300

400

500

N

Runtime (h)

·105 ·105 ·105

(a) (b) (c)

original [87] strengthened (ours)

Figure 6.5: (a) Success rate of the original Timing attack and of the attack strengthened by the
proposed methodology. (b) Average number of change points detected. (c) Average runtime
of the successful strengthened attacks. All these quantities are presented as a function of the
number N of execution time measurements available in the training set TR. We observe that
the original Timing attack never succeeds at the considered values of N .

RSA-1024, and we found out that more than N = 370, 000 measurements
were required to succeed. Since the number of measurements required to
recover a secret key grows with the length of the key, a 2048-bit key would
need an even higher number of timing measurements, making the attack
impractical. Thanks to our error detection and correction methodology, the
strengthened attack achieves high success rates even with a limited number
of measurements.

In conclusion, our experiments indicate that our error detection and cor-
rection procedure can significantly strengthen the considered attacks, in-
creasing the robustness with respect to noise in H-CPA attacks, and reduc-
ing the number of measurements required by the Timing Attack. The only
alternative solution that can be applied to any sequential attack simply sets
a threshold on the distinguisher, and yields only marginal improvements
over the original attacks. These findings confirm that an error detection and
correction procedure based on a sound change-detection test perform sub-
stantially better than heuristic solutions based on thresholds, which cannot
cope with false alarms and inaccurate estimates of the first error location.
We finally remark that our methodology does not resolve intrinsic limita-
tions of the attack to be strengthened, and therefore viable countermeasures
(e.g. message blinding for the H-CPA) should be employed even when the
device is considered safe due to measurement noise or the large number of
side-channel data required.

90

Part II

Anomaly Detection in Point
Clouds

91

CHAPTER7
Related Literature

In this chapter we survey the literature on unsupervised anomaly detection
and open-set recognition. In contrast with the first part of the thesis, here
the goal is to determine whether a single instance x is normal or anoma-
lous. First, in Section 7.1 we review the most relevant anomaly detection
methods based on traditional machine learning (Section 7.1.1) and deep
learning (Section 7.1.2). Then, in Section 7.2 we present the most recent
works addressing open-set recognition.

7.1 Anomaly Detection

Unsupervised anomaly detection is a challenging machine learning prob-
lem that has been addressed both by traditional machine learning and deep
learning models. A more comprehensive survey on anomaly detection al-
gorithms can be found in [95].

7.1.1 Traditional Machine Learning

Early approaches assume normal data to be realizations of random vectors
following a certain distribution ϕ0, and construct a model ϕ̂0, for instance

93

Chapter 7. Related Literature

by Kernel Density Estimation (KDE) [96], or by fitting a Gaussian [97] or
Gaussian Mixture model [98] on normal data from the training set using
the Expectation Maximization algorithm [99]. During testing, these meth-
ods compute the likelihood of new samples with respect to ϕ̂0, and identify
as anomalous those that can be considered outliers according to their like-
lihood.

More recently, anomaly detection has been addressed as a one-class
classification problem, where the aim is to find a boundary in the input
space to enclose the normal data from the training set. This is typically
done by solving an optimization problem, as in One-Class Support Vec-
tor Machine (OC-SVM) [100], which uses a linear boundary, and Support
Vector Data Descriptor (SVDD) [101], which uses a spherical boundary.

Other approaches measure the distance between a new sample and the
normal elements from the training set, and detect anomalous samples by
counting the number of samples from the training set within a given dis-
tance from the test sample [102, 103]. By doing so, these methods aim
at capturing the region of the input space in which normal samples are
more concentrated, leveraging the mutual distance between training sam-
ples. Another solution consists in constructing an ensemble of binary-trees
partitioning the input space, as in Isolation Forest (IFOR) [104], and de-
tecting anomalies by measuring the average height of the trees at which a
test sample gets “isolated”, i.e. belongs to a subset of the input space in
which there are no training samples.

The main drawback of these solutions is that they cannot be directly
applied to high-dimensional data such as signals, images, or point clouds
due to the curse of dimensionality [105]. To employ these machine learn-
ing methods to high-dimensional data, it is necessary to extract lower-
dimensional features from the raw data, for instance by PCA [71] or sparse
representations [106], and then use these features as input.

7.1.2 Deep Learning

Contrarily to traditional machine learning methods, the increasingly pop-
ular deep learning methods for anomaly detection can directly be applied
also on high-dimensional data. The most popular anomaly detection so-
lutions for signals and images are probably autoencoders, in which a first
neural network, called the encoder, extracts a low-dimensional latent rep-
resentation from the input signal, and a second neural network, called the
decoder, takes as input the latent representation and reconstructs a signal
having the same size as the original input. The two networks are jointly

94

7.1. Anomaly Detection

trained on normal samples to minimize the difference between the input
and the output of the decoder. Then, a test sample is identified as anoma-
lous if the reconstruction error of the autoencoder on that sample is larger
than a threshold [107–109], since the autoencoder will be able to accurately
reconstruct only normal samples. In [110], the autoencoder is trained to
produce a latent representation that follows a Gaussian Mixture distribu-
tion, and anomalies are detected by computing the likelihood with respect
to that distribution.

Some works address anomaly detection using deep versions of tradi-
tional machine learning methods such as OC-SVM [111] and SVDD [112–
114]. This is typically done by training a deep neural network to produce a
low-dimensional latent representation of the input instances such that nor-
mal samples seen during training have latent representations that are all en-
closed, for instance, in a hypersphere [112]. In particular, in [112] the net-
work is trained to minimize the distance between the latent representation
of the normal samples in the training set and a center defined as the output
obtained by randomly initializing the network. The main drawback of these
solutions is mode collapse, namely the fact that the network might learn
a trivial solution that assigns all samples the same latent representation,
which coincides with the center of the hypersphere. By definition, this so-
lution would minimize the loss, even though it would be completely useless
to distinguish normal and anomalous samples. To mitigate this problem, it
is possible to add noise to the loss [115]. As an alternative, more sophisti-
cated methods [114] define the boundary enclosing normal samples using
both the training data and anomalies generated by adding noise to normal
samples. Somewhat similarly, some works [116–118] address anomaly de-
tection using a Generative Adversarial Network (GAN) [119], which jointly
trains an autoencoder and another neural network, called the discriminator,
to distinguish between samples from the training set and samples generated
by feeding the decoder with random latent representations.

Another way to learn the characteristics of normal data is to train a deep
neural network to solve a classification problem using surrogate labels and,
for this reason, this approach is usually referred to as self-supervised. These
surrogate labels are typically generated by applying n geometric transfor-
mations f0, . . . , fn−1 (e.g., rotations and translations) to normal data (typ-
ically, images) [7, 120], and the classification problem consists in recog-
nizing which transformation has been applied. The same transformations
are then applied to each test sample x, which is identified as anomalous
if the network cannot accurately classify which transformations have been
applied. In particular, in [7] the network is a CNN, and the anomaly score

95

Chapter 7. Related Literature

is defined as

T(x) =
1

n

n−1∑

i=0

[
CNN

(
fi(x)

)]
i
, (7.1)

where CNN(·) indicates the maximum classification score of the network.
Although very effective, these self-supervised methods rely on transforma-
tions that are specifically designed for normal data (typically images), and
might not be suitable for other types of data. For instance, some rotations
might be hard to recognize when the data samples are characterized by cer-
tain symmetries. This issue can be addressed by training the network to
learn domain-specific transformations to extract meaningful features from
normal data, as in [121, 122].

A challenging problem that is strongly related to anomaly detection is
the identification of anomalous regions within images. Typically, this prob-
lem has been addressed by extending anomaly-detection algorithms to pro-
duce a local anomaly score, i.e. an anomaly score defined on each pixel of
the image. A simple yet effective solution involves autoencoders [10, 123],
whose reconstruction error can be directly used as a local anomaly score.
Other solutions leverage pre-trained CNNs as feature extractors. A promi-
nent example is the Student-Teacher approach [124], where a CNN (pre-
trained on natural images), referred to as the Teacher, is used to extract
features from image patches, and a set of Student networks are trained on
anomaly-free patches to estimate the Teacher’s output in a regression prob-
lem. During testing, the local anomaly score is computed by combining the
regression error and the prediction variance of the Student networks. The
intuition is that the Students can extract similar features compared to the
Teacher only from normal patches. It is also worth mentioning the solu-
tions based on inpainting such as [125], where the images are transformed
by taking out some patches, and a CNN is trained to reconstruct the missing
parts.

The problem of detecting anomalous regions is out of the scope of this
thesis. Nevertheless, it is an interesting anomaly detection problem with
relevant applications that has been widely studied on images. However,
this challenge is starting to attract some interest also in the point-clouds
research community [126].

7.2 Open-Set Recognition

The open-set recognition problem has been introduced by Scheirer et al.
[127] to address classification in a realistic scenario where only part of

96

7.2. Open-Set Recognition

the classes have been already identified and included in the training set,
and anomalous samples from unknown classes must be detected during
testing. A comprehensive survey on open-set recognition methods can be
found in [128]. The first open-set recognition methods are based on tradi-
tional machine-learning algorithms. Scheirer et al. [127] use modified Sup-
port Vector Machines with decision boundaries designed to reject unknown
samples. Other methods detect novelties using the distance of test samples
from the centroids of the known classes [129], or the reconstruction error
of sparse representations [130].

7.2.1 Classification Scores and Latent Representations

More recently, deep open-set recognition methods started to gain more and
more attention due to the outstanding results achieved by deep learning in
most classification and pattern-recognition tasks. A straightforward way
to extend a CNN trained for closed-set classification to open-set recogni-
tion consists in identifying as unknown those test samples on which the
CNN is uncertain. These samples are typically identified by analyzing the
maximum classification score [131], or the Shannon entropy of the clas-
sification scores vector [132]. Bendale et al. [133] propose the OpenMax
function to replace SoftMax as the last layer of a CNN trained on the known
classes at test time. In particular, during testing, OpenMax evaluates the
distance between the CNN score vectors and the mean activation vectors
(MAVs), computed using the score vectors of training samples. Each MAV
represents a known class, and a test sample is detected as a novelty when
the likelihood of its distance from all the MAVs with respect to a Weibull
distribution model fitted using the training set is below a certain thresh-
old. Cevikalp et al. [134] propose deep classifiers using polyhedral conic
boundaries to separate instances from different known classes, instead of
the traditional linear boundaries. This makes the acceptance regions of the
known classes more compact, thus easing anomaly detection.

Another approach consists in applying an outlier-detection method to
the latent representation of a deep classifier trained on known classes [135,
136]. Instances from known classes are expected to be mapped in the same
region of the latent space, following a multimodal distribution. Therefore,
it is possible to detect novelties from their latent representations as outliers
with respect to this distribution. To this purpose, Zhu et al. [135] employ a
variant of IFOR [104], while Zhang et al. [136] define confidence intervals
over each component of the latent space. Socher et al. [137] obtain a dif-
ferent latent representation by embedding the images into a semantic word

97

Chapter 7. Related Literature

space associated with the class labels. Then, they fit an isometric Gaus-
sian model to represent each known class in the semantic space and use the
likelihood as novelty score.

7.2.2 Reconstruction and Generative Models

Similarly to anomaly detection (Section 7.1.2), autoencoders have been
gaining more and more attention also for deep open-set recognition in im-
ages [138–140]. The idea is to train a deep autoencoder to extract a com-
pact latent representation from the input images and then reconstruct them.
Moreover, a second branch of the network is jointly trained to classify the
input images from known classes starting from the latent representation of
the autoencoder. Thus, these solutions provide both classification scores
for the known classes and an anomaly score based on the reconstruction
error of the autoencoder. As in anomaly detection (Section 7.1.2), GANs
can be used to generate anomalous (counterfactual) samples during train-
ing [141–143]. These generated samples are assumed to be “just outside
of the known class boundaries” [142], and the discriminator is trained to
classify known and generated samples. During testing, the discriminator is
directly used for open-set recognition.

Although a variety of sophisticated open-set recognition methods can
be found in the literature, a recent study by Vaze et al. [144] suggests that
the performance of a simple baseline such as [131] can be substantially in-
creased by improving the underlying closed-set classifier. In light of this,
a fair comparison between the performance of different open-set recogni-
tion methods would require that their closed-set classification accuracy is
approximately the same.

98

CHAPTER8
Composite Layers for 3D Point Clouds

In this chapter, we address the anomaly-detection problem in 3D point
clouds. In particular, we define the composite layer, a novel operator re-
placing point-convolutions, namely convolutions defined on point clouds.
Compared to existing point-convolutional layers, the composite layer guar-
antees more flexibility in terms of number of parameters and design, en-
compassing both convolutional and non-convolutional operators. Our ex-
periments on synthetic and real-world point clouds show that our Compos-
iteNets, deep neural networks based on composite layers, outperform Conv-
Point [145] and achieve similar classification accuracy to KPConv [146] de-
spite having a much simpler architecture. Most remarkably, we are among
the first to train deep neural networks for anomaly detection in point clouds,
training CompositeNets in a self-supervised fashion [7]. Our experiments
demonstrate that the self-supervised approach outperforms deep and shal-
low baselines. Also in this case, our CompositeNets outperform ConvPoint
and achieve similar results to KPConv, trained in the same fashion, despite
having a much simpler architecture.

In Section 8.1 we review the literature on machine learning for 3D point
clouds, with a particular focus on unsupervised models, and in Section
8.2 we illustrate point-convolutional layers and how they have been im-

99

Chapter 8. Composite Layers for 3D Point Clouds

plemented in the literature. In Section 8.3 we present our composite layers
and in Section 8.4 we demonstrate their superior design flexibility com-
pared with existing point-convolutional layers. Finally, in Section 8.5 we
illustrate and discuss our experiments.

8.1 Machine Learning on Point Clouds

3D deep learning has recently become one of the most studied branches
of computer vision, and the design of deep neural networks (DNNs) able
to process point clouds is a challenge that has been attracting more and
more interest. Point clouds are unordered sets of points in R3, typically
acquired by LiDAR sensors or depth cameras, which are sometimes paired
with additional features such as colors or the normal vector to a surface.
Point clouds are very informative and provide a compact yet detailed rep-
resentation of a 3D object. Not surprisingly, they have been widely used
in autonomous driving [147], topography [148], architecture and heritage
preservation [149], and are now a popular 3D data format. Starting from
PointNet [150], several DNNs processing point clouds have been proposed.
Such a flourishing literature is motivated by the intrinsic challenges of train-
ing machine learning models on point clouds, which are primarily due to
the peculiar structure of point clouds. Unlike images, point clouds cannot
be arranged over the regular grids where traditional convolutional layers are
defined, thus require special layers such as the composite layer we present
in this chapter.

The earliest deep learning solutions coping with the scattered nature of
point clouds project 3D input on several planes [151, 152], generating 2D
images to be processed by traditional CNNs. In volumetric CNNs [151,
153], 3D point clouds are instead mapped to a voxel grid, and then pro-
cessed by 3D convolutional filters. Both approaches imply a loss of in-
formation. Moreover, the computational cost of volumetric convolutions
scales very poorly with the grid resolution. Submanifold sparse convolu-
tional networks [9] represent an efficient alternative that can handle higher-
resolution voxel grids by leveraging the sparse nature of point clouds.

In what follows we overview deep learning techniques that operate di-
rectly on 3D point clouds without projections or voxelization, with a focus
on operators that extend convolutions to point clouds. A more comprehen-
sive review on deep learning for 3D point clouds can be found in [154].
We refer to Chapter 7 for an overview of the most relevant algorithms for
anomaly detection, which is the main task we address in this thesis.

100

8.1. Machine Learning on Point Clouds

8.1.1 Deep Learning on Point Clouds

Early approaches. PointNet [150] was the first DNN directly processing
3D point clouds using Multi-Layer Perceptrons (MLPs) and permutation-
invariant pooling. The main advantage of this approach is that the output of
the network does not depend on the order of the points. This is crucial since
two point clouds containing the same points in a different order should be
considered equivalent. The major drawback is that PointNet feeds the en-
tire point cloud to the same MLP and therefore fails at recognizing local
structures inside the point cloud. A straightforward improvement imple-
mented in PointNet++ [155] is to hierarchically apply PointNet to nested
partitions of the point cloud.

Point convolutions. Due to the success of CNNs, recent works have defined
convolutional layers operating like filters on 2D images. In this direction,
volumetric convolutions [156] are defined by interpolating a 3D function
with the input point cloud. Other methods approximate continuous convo-
lutional filters by MLPs [157, 158] or polynomials [159].

A wide variety of point-convolutional layers have been proposed in the
literature. The vast majority of these layers define convolution using ei-
ther Radial Basis Function Networks (RBFNs) or Multi-Layer Perceptrons
(MLPs). The most representative solution following the first approach is
KPConv [146], which uses a RBFN to define a tensor of weights combin-
ing the spatial coordinates of the points in a neighborhood (relatively to the
position of the output point) and the input features. KPConv and its exten-
sion AGMMConv [160] also implement a deformable convolutional kernel
based on a learnable shift function that translates the RBFN centers de-
pending on the output point where the kernel is applied. InterpCNN [161]
is equivalent to KPConv, the only difference being the chosen RBFs. FP-
Conv [162] follows a slightly different approach based on the fact that point
clouds usually represent locally flat surfaces. In particular, FPConv locally
projects 3D points to the estimated tangent plane to the surface, and then
applies 2D convolution whose weights depend on the distance between the
projected points and centers placed on a regular grid, similarly to KPConv.

A representative layer defined by MLPs is ConvPoint [145]. This oper-
ator separates feature and spatial operations, the latter being handled by a
MLP that takes as input the coordinates of the points inXy relatively to a set
of centers, which play a similar role to the RBFN centers in the layers de-
scribed above. Then, the MLP outputs are linearly combined with the input
features. Also RS-CNN [163], RandLa-Net [164], and RPNet [165] follow

101

Chapter 8. Composite Layers for 3D Point Clouds

the same approach, with the difference that the MLP takes as input not only
the relative position of the points with respect to the output, but also their
absolute position in the point cloud, and thus are not convolutional strictly
speaking. RandLa-Net [164] also makes use of attention-based pooling and
ad-hoc residual blocks to handle large-scale point clouds. DensePoint [166]
is similar to RS-CNN, the main difference being that the feature vectors as-
sociated with the points in the convolution window are transformed by a
shared single-layer perceptron, independently from the relative position of
the points with respect to the output point.

The structure and the number of parameters of KPConv, ConvPoint, and
the other point-convolutional layers depend on the number of centers. In
contrast, our composite layer enables more flexibility since spatial and fea-
ture operations are defined independently. Moreover, composite layers can
aggregate spatial information and features by more general operations than
linear combinations. To the best of our knowledge, the only layer that sepa-
rately processes the coordinates of the points and then shares the spatial in-
formation among the output features is PAConv [167]. However, we do not
consider this in our experiments because its convolutional kernel is defined
by a sophisticated neural network and depends on the absolute position of
the points, differently from convolutions.

Graph neural networks. Another approach consists in processing the point
clouds by Graph neural networks (GNNs) [168–173], which can be con-
sidered an extension of PointNet. In particular, a GNN transforms a point
cloud into a graph whose edges are defined by the Euclidean distance be-
tween the points. A relevant example is DGCNN [169], where a graph is
defined by connecting a number of randomly selected points in the input
point cloud to their nearest neighbors to take into account local patterns.
The major difference between GNNs and point-convolutional networks is
that, in GNNs, the coordinates of the points are considered as features as-
sociated with the graph vertices and thus are not preserved in the network
layers. In contrast, point-convolutional networks modify only the features,
e.g. the color associated to a point, while preserving the spatial information,
i.e. the coordinates of the points.

8.1.2 Unsupervised Learning over Point Clouds

All the operators above have only been employed in DNNs designed for su-
pervised tasks such as classification and semantic segmentation, and much
fewer works address unsupervised learning on point clouds. Among these,

102

8.2. Point Convolutions

the vast majority only tackle very specific industrial monitoring problems
such as detecting defective products in additive manufacturing [174]. Other
works apply unsupervised clustering to recognize vehicles in autonomous
driving [175], or One-Class SVM to identify geometric structures [148,
176] such as poles [176] from point clouds acquired by LiDAR. In general,
all machine-learning solutions for anomaly detection in point clouds rely
on hand-crafted features also referred to as point cloud descriptors [177].
However, as we show in our experiments, these descriptors do not gener-
alize well for anomaly detection. In contrast, the proposed DNNs perform
anomaly detection by extracting data-driven features that can effectively
describe a wider variety of point clouds.

Recently, unsupervised deep learning on 3D data has been drawing more
and more interest for pre-training [178, 179] and domain adaptation [180–
182] techniques. In fact, annotated datasets of 3D point clouds are not as
large and easy to acquire as 2D image classification datasets. To the best
of our knowledge, the only DNN for anomaly detection on point clouds
is a variational autoencoder (VAE) [183], while the other autoencoders for
point clouds [184–186] have not been employed for anomaly detection yet.

8.2 Point Convolutions

Before introducing the proposed composite layer and illustrating how to
implement CompositeNets, we present some more details on point con-
volutions. We start by defining the output points and the corresponding
convolution windows, i.e. the subsets of the input point clouds on which
point-convolutions are applied (Section 8.2.1). Then, we formally define
the point-convolutional operator and illustrate how it is implemented in
ConvPoint [145] and KPConv [146] (Section 8.2.2). We recall that the vast
majority of the point-convolutional layers in the literature are very similar
to either ConvPoint or KPConv. Therefore, these two layers can be consid-
ered as representatives for point convolutions.

8.2.1 Convolution Window and Output Point Cloud

2D convolutional filters operate on convolution windows, namely small por-
tions of the input image selected in a sliding window fashion, and return as
output a pixel value for each window. While the grid structure of 2D im-
ages makes these operations straightforward, when working on point clouds
there are multiple ways to define both the output points q ∈ Q and the cor-
responding windows Xq ⊆ P in the input point cloud.

103

Chapter 8. Composite Layers for 3D Point Clouds

Typically, point-convolutional layers first select each output point q ∈ Q
and then define the convolution windowXq. A popular approach [145,156]
to select q is random sampling with replacement from P , which implies
that Q ⊆ P . As in [145], we set a lower sampling probability to points
q ∈ P that have already been drawn or that are close to points in Q. When
stacking multiple point convolutions, the cardinality of the point cloud can
be reduced by sampling fewer output points than there are in the input point
cloud, i.e. #Q < #P , which is similar to having a stride in 2D convolution.
Pooling [146] is an alternative way to reduce the point cloud cardinality.

The convolution window Xq can be defined either as a sphere Xq :=
{p ∈ P : ∥p − q∥ < ρ} [146], or as a set containing a fixed number
of nearest neighbors of q in P . We follow this second approach since it
produces windows containing a fixed number of points, making point con-
volution more efficient and easier to implement. The two methods coincide
when the density of the points in P is uniform [187].

8.2.2 Point-convolutional Operators

After defining the output q and the convolution window Xq, the point-
convolutional operator [146, 158, 159] is defined at each q ∈ Q as:

Gj(q) = (F ∗ gj)(q) =
∑

p∈Xq

I∑

i=1

Fi(p)gij(p− q), (8.1)

where Fi is the i-th input feature and Gj is the j-th output feature, for
j ∈ {1, . . . J}. Similarly to traditional CNNs, each convolutional layer
stacks J filters gj : Rd → R I , each having I components gij like the
input feature function F. When handling images, the filters are defined as
a matrices whose elements correspond to specific pixels of input image. In
contrast, point clouds lack such grid structure, and therefore the filter gj is
a function defined over the entire space Rd.

Convolutional filters for images are learnable weight matrices having
the same size as the convolution window. Therefore, each weight is asso-
ciated to a spatial location and is multiplied to the features associated with
the pixel in the corresponding location of the convolution window. When
operating on images, the spatial locations of weights and pixels is embed-
ded in the grid structure of the image. In contrast, point clouds lack such
grid structure, and therefore the filter gj is a function defined over Rd.

As stated in Section 8.1.1, the vast majority of the point-convolutional
layers in the literature operate very similarly to either ConvPoint [145] or

104

8.3. Composite Layers

KPConv [146], which we illustrate here more in detail. Both these layers
implement gij as a linear combination:

gij(p− q) =
M∑

m=1

w̃ijmHm(p− q), (8.2)

where w̃ijm are learnable weights associated to a set of spatial locations
{cm}Mm=1 ⊂ Rd, called centers, and Hm are correlation functions that de-
pend on the relative position of p−q with respect to cm [146]. This formu-
lation is inspired by convolution on images, where p−q represent the pixel
locations in the convolution window, {cm} represent the spatial positions
of the weights, and Hm is the Kronecker function Hm = δ(p − q, cm),
i.e. δ(p − q, cm) = 1 if p − q = cm and 0 otherwise [145]. Due to the
irregular disposition of the points in point clouds, in point-convolutional
layers Hm must be a continuous function, and the positions of the cen-
ters either belong to a regular grid [146] or are learnable parameters [145].
In ConvPoint, the correlation functions Hm are defined by MLPs, namely
Hm(p − q) = MLPm

(
[(p− q)− cm]

M
m=1

)
, where square brackets de-

note concatenation. In KPConv, each Hm is an RBF, namely a function
Hm(p − q) = h(∥(p − q) − cm∥) that differs from the others only by the
parameter cm ∈ Rd.

In Figure 8.2(b) we illustrate the operations of the point-convolutional
layers ConvPoint [145] and KPConv [146] in terms of matrix multiplica-
tions. The linear combination in (8.2) can be expressed as a multiplication
between the weight tensor W̃ = (w̃ijm) and the matrix H stacking the the
correlations Hm(p − q) for p ∈ Xq and m ∈ {1, . . . ,M}. Then, each
output feature Gj(q) can be expressed as the Frobenius inner product be-
tween the matrix F(Xq) containing the features Fi(p) for p ∈ Xq and
i ∈ {1, . . . , I} and the j-th slice of W̃H .

8.3 Composite Layers

Here, we introduce our composite layers for point cloud processing in
DNNs. Our composite layer is defined by composing a spatial function
s : Rs → RK , which extracts the spatial information from the coordinates
of the points in Xq, and a semantic function A(F, s) : Rs → RJ , which
aggregates the output of s with all the input features F(p), for p ∈ Xq, to
produce the output feature vector G(q) (see Figure 8.1):

Gj(q) = Aj(F, s)(q). (8.3)

105

Chapter 8. Composite Layers for 3D Point Clouds

q q

Xq

P Q

Xq

F(Xq)

s(· − q)
A G(q)

Figure 8.1: Our composite layer: the spatial function s outputs a vector in RK for each point p of
the neighborhood Xq of the output point q. The semantic function combines the input features
F(Xq) and {s(p− q)}p∈Xq to produce the output features G(q).

This formulation provides additional regularization and guarantees superior
design flexibility compared to the existing point-convolutional layers, as we
empirically show in Section 8.4. Here we first illustrate our convolutional
composite layer and compare it to the point-convolutional layers used in
KPConv [146] and ConvPoint [145] (Section 8.3.1). Then, we present our
aggregate composite layer (Section 8.3.2), which aggregates spatial infor-
mation and features in a non-convolutional manner.

8.3.1 Convolutional Composite Layer

Our convolutional composite layer replicates point convolution (8.1) by our
composite formulation (8.3). Following the approach of ConvPoint, we
randomly sample the output points q ∈ Q from the input point cloud P ,
and define the convolution windows Xq by nearest neighbors. This choice
guarantees that all the windows contain the same number of points, making
point convolution easier to implement.

Spatial Function. Inspired by [146, 156], we implement the spatial function
s using a Radial Basis Function Network (RBFN) withM centers, which in
principle has the same approximation capability of MLPs [188] but depends
on fewer hyper-parameters. We define the k-th component of s as:

sk(p− q) =
M∑

m=1

vkm h(∥(p− q)− cm∥), (8.4)

106

8.3. Composite Layers

where vkm are learnable parameters, for k ∈ {1, ..., K}. We remark that the
input of each sk is the relative position of each point p ∈ Xq with respect
to q, as for the filters gij of point convolution (8.1). Each RBF term in (8.4)
differs from the others only by the parameter cm ∈ Rd, called RBF center,
which translates the origin for the RBFs in the d-dimensional space. Here
we employ a Gaussian h(r) = exp(r2/2σ2), where r = ∥(p − q) − cm∥,
σ is a hyper-parameter common to all RBFs, as in [156], and we learn
the position of the centers {cm} during training. The spatial function can
be expressed as a multiplication between the matrix H , containing the RBF
output h(∥(p−q)−cm∥) for p ∈ Xq andm ∈ {1, . . . ,M}, and a learnable
weight matrix V = (vkm) (see Figure 8.2(a)). Thus, the spatial function
compresses the spatial information by projecting each column of H to a
K-dimensional space, where K < M is a hyperparameter.

Semantic Function. To produce an equivalent formulation of point convolu-
tion (8.1) from our composite layer (8.3) we define the semantic function:

Gj(q) = Aj(F, s)(q) =
∑

p∈Xq

I∑

i=1

Fi(p)
K∑

k=1

wijk sk(p− q)

︸ ︷︷ ︸
gij(p−q)

, (8.5)

where i, j, k refer to the i-th component of the input feature vector, the j-th
output feature vector and the k-th component of the spatial function, and
wijk are learnable parameters. As shown in Figure 8.2(a), the inner sum
can be expressed as a multiplication of the projections in V H against the
J slices of W = (wijk), which contains the learnable weights of each con-
volutional filter. Finally, each output feature Gj(q) can then be expressed
as the Frobenius inner product between the matrix F(Xq) containing the
features Fi(p) for p ∈ Xq and i ∈ {1, . . . , I} and the j-th slice of WVH .

Comparison with point-convolutions. The formulation of our composite con-
volution (8.5) is equivalent to point-convolution (8.1) since it is possible
to interpret the inner sum as the filter function gij . In Figure 8.2 we com-
pare the matrix operations of our convolutional composite layer with KP-
Conv [146] and ConvPoint [145]. When applied to a given neighbourhood
Xq, all these layers combine the input features of the neighbourhood ele-
ments, grouped in the matrix F(Xq), and the spatial information from the
coordinates of the neighbourhood elements encoded in the matrixH . While
our layer compresses the spatial information in H by the spatial function

107

Chapter 8. Composite Layers for 3D Point Clouds

G(q)

J = I

F(Xq)

#Xq

⊗
I

W

K

J

K

V

M

M

H

#Xq

G(q)

J = I

F(Xq)

#Xq

⊗
I

W̃

M

J

M

H

#Xq

(a) Convolutional composite layer

(b) KPConv / ConvPoint

Figure 8.2: The scheme illustrating the operations in point-convolutional layers expressed
in matrix form (a) Our convolutional composite layer (8.5), and (b) the well-known point-
convolutional layers KPConv and ConvPoint. Here ⊗ indicates the Frobenius inner product.
In practice, our composite layer decomposes the matrix W̃ of ConvPoint and KPConv into the
product W · V , enabling more flexibility in terms of number of parameters.

(8.4) and then shares it among the filters (8.5), KPConv and ConvPoint
learn a huge weight tensor W̃ to combine spatial information and features.

Therefore, our convolutional composite layer has two major advantages
over the existing point-convolutional layers: i) it performs an implicit regu-
larization by decomposing W̃ into the product WV , which has lower rank
than W̃ , and ii) is more flexible since it allows to increase the complexity
(and thus the descriptive power) of the spatial function without dramatically
increasing the number of parameters of the layer, as we empirically show in
Section 8.4. In particular, we can tune the complexity of the spatial function
by increasing the number of RBF centers M . In KPConv and ConvPoint,
the size of W̃ , which collects the majority of the parameters, grows linearly
with M , while in our layer only the size of V , which contains substantially
fewer parameters than W̃ , grows with M (see Figure 8.2).

8.3.2 Aggregate Composite Layer

We also define the aggregate composite layer, implementing a semantic
function Aj(F, s) that aggregates the spatial information extracted by the
same spatial function s (8.4) and the input features F in a nonlinear man-

108

8.3. Composite Layers

ner (differently from point-convolution). In particular, we compute the
component-wise mean means and standard deviation stds of the spatial
function over the convolution window Xq as:

[means(q)]k =
1

#Xq

∑

p∈Xq

sk(p− q),

[stds(q)]k =

√∑
p∈Xq

(sk(p− q)− [means(q)]k)
2

#Xq − 1
.

Here, means and stds act as pooling operators with K components, receiv-
ing #Xq vectors in RK (the output of the spatial function s), and returning
a single vector in RK . Analogously, we define meanF(q), stdF(q) ∈ RI

as the component-wise mean and standard deviation of the input features
over the convolution window Xq. Then, we concatenate these in two vec-
tors θ(q) = [means(q); stds(q)] ∈ R2K and η(q) = [meanF(q); stdF(q)] ∈
R2I , and aggregate them as:

Aj(F, s)(q) =
2I∑

i=1

2K∑

k=1

θk(q)wkjiηi(q), (8.6)

where wijk are learnable parameters. Since the two vectors θ(q), η(q) are
obtained by concatenating the mean and standard deviation over the win-
dow Xq, this semantic function is nonlinear. In terms of the matrix mul-
tiplication illustrated in Figure 8.2(a), our aggregate composite layer com-
bines the columns of V H to extract a unique spatial descriptor for the entire
Xq, and the same is performed on F(Xq). Our aggregate layer forces the
network to learn from the mean and standard deviation (8.6) of the points
coordinates in Xq and of the features in F(Xq), introducing an additional
form of regularization.

8.3.3 CompositeNet

We implement a simple neural network, called CompositeNet, consisting
of 5 composite layers and a final dense layer. A scheme illustrating our
architecture is shown in Table 8.1, which also reports the number of output
features J , the cardinality of the window #Xq, and the number of output
points #Q for each layer. We chose these parameters so that our archi-
tecture is equivalent to the one of ConvPoint [145]. The number of output
features J of each layer is defined relatively to the number of output fea-
tures J0 of the first layer, which is a hyper-parameter. Nonlinearities and

109

Chapter 8. Composite Layers for 3D Point Clouds

Table 8.1: The architecture employed in all classification experiments for both our convolutional
and aggregate CompositeNets.

Layer Type J #Xq #Q

Composite + BN + ReLU J0 32 1024

Composite + BN + ReLU 2 · J0 32 256

Composite + BN + ReLU 4 · J0 16 64

Composite + BN + ReLU 4 · J0 16 16

Composite + BN + ReLU 8 · J0 16 1

Dense – – –

batch normalization are applied only to the features and not to the spatial
coordinates of the points, as in image convolution: in fact, the position of
the pixels is not modified by the layers of a CNN. The cardinality of the
point cloud is reduced throughout the network, and from the last composite
layer we obtain a single point with a feature vector. We feed this to a dense
layer, discarding its coordinates.

First, we train a convolutional and an aggregate CompositeNets for point
cloud classification, to compare our composite layers to existing point-
convolutional layers in terms of learning capability and design flexibility
(Section 8.4). We also train our CompositeNets for anomaly detection fol-
lowing the self-supervised approach proposed in [7], which we describe in
Section 7.1.2. In particular, we form a self-annotated training set by ap-
plying n geometric transformations {f0, . . . , fn−1} to each point cloud of a
given normal class. Then, we train a CompositeNet to classify the transfor-
mations applied to each input point cloud. The rationale is that, as shown
in [7], learning to distinguish different geometric transformations applied
to normal instances allows to extract features that are useful for anomaly
detection. During testing, we apply the same transformations to each point
cloud x and classify the resulting point clouds fi(x). Finally, we use as
normality score the average posterior probability (according to the Com-
positeNet) of the correct transformations applied to x, i.e.

T(x) =
1

n

n−1∑

i=0

[
CompositeNet

(
fi(x)

)]
i
. (8.7)

This solution is designed for 2D images, so the proposed geometric
transformations are rotations, translations and flips [7], which cannot be

110

8.4. Design Flexibility

straightforwardly adopted on point clouds. For instance, virtually all the
neural networks that process point clouds are insensitive to translations,
thus cannot distinguish between a point cloud x and any translation of x.
Moreover, most real-world objects (e.g. chairs, tables, etc.) have a common
vertical orientation, and appear arbitrarily rotated around the vertical axis
in the training set. Therefore, we expect rotations around the vertical axis
to be impossible to distinguish. Leveraging the prior knowledge about the
vertical orientation of the point clouds, we employ a set of n = 8 rotations
of 0◦, 45◦, 90◦, 135◦, 210◦, 240◦, 300◦, 330◦ around a fixed horizontal axis,
including the identity (the rotation of 0◦).

8.4 Design Flexibility

In Sections 8.3.1–8.3.2 we show that our composite layer has a flexible
structure, encompassing both point-convolutional layers and operators that
aggregate spatial information and features in a nonlinear manner. Here we
investigate the superior flexibility of our composite layers in terms of num-
ber of parameters compared to ConvPoint [145] and KPConv [146]. In
particular, we perform two experiments to show that, contrarily to Conv-
Point and KPConv, i) we can substantially improve the performance with-
out increasing the number of parameters of our CompositeNets and ii) we
can substantially reduce the number of parameters of our CompositeNets
without compromising their performance.

Tuning the complexity of the spatial function. In the first experiment, we train
different configurations of our CompositeNets on the ScanNet dataset [189],
tuning the number of centersM ∈ {8, 16, . . . , 256} to modify the complex-
ity of the spatial function. We compare the accuracy of our CompositeNet
with that obtained by a ConvPoint network having the same architecture
as our CompositeNets. In these settings, we cannot directly compare our
CompositeNets with the model proposed in KPConv [146] since it has a
substantially more sophisticated architecture including residual blocks and
thus the overall numbers of parameters are not comparable. For this rea-
son, we also implement a network based on KPConv layers having the
same architecture as our CompositeNets, which we call KPConv-vanilla
to distinguish it from the original model [146]. In both ConvPoint and
KPConv-vanilla we tune M ∈ {8, 16, . . . , 256} as in our CompositeNets.

As remarked in Section 8.3.1, in ConvPoint and KPConv-vanilla the
number of parameters of the layer increases linearly with M , which de-
termines the size of the weight tensor W̃ . In contrast, when tuning M in

111

Chapter 8. Composite Layers for 3D Point Clouds

2 4 8 16 32 64

0.70

0.75

0.80

0.85

0.56ms

2.85ms

0.67ms

1.74ms 1.78ms

0.70ms

0.90ms

3.32ms

#parameters (·106)

ov
er

al
la

cc
ur

ac
y

Comparison with ConvPoint and KPConv-vanilla

481216

0.88

0.89

0.90

0.91

0.92

0.93

3.9 · 106

6.3 · 106

3.8 · 106
1.5 · 107

9.8 · 105
3.9 · 106

K (M for KPConv)

Comparison with KPConv

(a) (b)

ConvPoint KPConv-vanilla KPConv Ours (Conv.) Ours (Aggr.)

Figure 8.3: (a) Overall accuracy against the number of parameters, varying the number of cen-
ters M . We report the average processing time during training for the least and most complex
configurations. The parameters of ConvPoint and KPConv-vanilla increase linearly with M ,
while in our CompositeNets M can be increased without significantly changing the number of
parameters. (b) Overall accuracy on ModelNet40 when reducing the number of parameters by
tuning K (M for KPConv). We also report the number of parameters of the most and least
complex configurations. These results show that we can substantially reduce the parameters of
our CompositeNets without compromising the accuracy, while this is not the case in KPConv.

both our convolutional and aggregate composite layers, we only modify the
complexity of the spatial function, i.e. the size of the weight matrix V . The
output dimension K of the spatial function is instead fixed, in particular
we set K = 16, thus the size of the weight tensor W , which contains the
majority of the learnable parameters, does not increase with M .

Figure 8.3(a) shows the overall accuracy (OA) of our CompositeNets
and ConvPoint against their number of parameters. In ConvPoint the num-
ber of parameters doubles with M , while in our CompositeNets it increases
less than 1% when passing from M = 8 to M = 256. In our Compos-
iteNets, the accuracy increases with M , while ConvPoint and KPConv-
vanilla achieve their best performance atM = 64, and yield worse accuracy
at M = 128, 256, suggesting that they might be more prone to overfitting
due to the increased number of parameters. For the least and most complex
configurations of the three networks, we report the mean processing time of
a point cloud during training. We observe that, in all cases, the processing
time increases with M due to the increasing complexity of the spatial com-
ponent. However, in ConvPoint and KPConv-vanilla the processing time
increases substantially more than in our CompositeNets due to the linear
growth of the number of parameters with respect to M . KPConv-vanilla
performs substantially worse than our CompositeNets and ConvPoint, sug-
gesting that KPConv layers cannot be successfully employed in simple ar-

112

8.4. Design Flexibility

chitectures and that the excellent performance of KPConv [146] is probably
due to its sophisticated architecture.

We obtain similar results by performing the same experiment on the
synthetic ModelNet40 [190] and ShapeNetCore [191] datasets. On these
datasets, our CompositeNets achieve excellent results when setting M =
64. Further increasing M does not yield a significant improvement, but
increases the processing time and thus is not convenient. However, the
results in Figure 8.3(a) demonstrate that increasing the complexity of our
spatial function by setting a larger M can substantially improve the perfor-
mance of our CompositeNets on challenging, real-world datasets such as
ScanNet [189] without requiring a larger number of parameters.

Tuning the number of parameters. In the second experiment, we train differ-
ent configurations of our CompositeNets on the ModelNet40 dataset [190]
to investigate how the classification accuracy varies after reducing the num-
ber of parameters of the network by tuning the output dimension of the
spatial function K ∈ {16, 12, 8, 4}. We compare the accuracy of our Com-
positeNets with that achieved by KPConv. Since KPConv lacks a tunable
spatial function, we vary the number of centers M ∈ {16, 12, 8, 4}, which
play a similar role as K in our composite layers (see Figure 8.2).

Figure 8.3(b) shows the overall accuracy of each network. We also re-
port the overall number of parameters of the most and least complex config-
urations of each network. Although KPConv achieves the best performance
overall (when M = 16), its accuracy gets substantially worse when reduc-
ing the number of parameters by setting M = 8 and M = 4. On the
other hand, both our convolutional and aggregate composite layers retain
better performance for low K. These results highlight the flexibility of our
composite layers, which allows to substantially reduce the number of pa-
rameters (–75% passing from K = 16 to K = 4) without compromising
the accuracy, which decreases by a mere 0.01. In fact, the simpler seman-
tic function given by a small K is counterbalanced by a spatial function
whose complexity (determined by the number of centers, which we set to
M = 16) remains constant in all experiments. In contrast, the performance
of KPConv is extremely sensitive to M (–0.05 passing from M = 16 to
M = 4), which is the only hyperparameter we can tune to reduce the num-
ber of parameters of a KPConv layer. Moreover, the reduction in the num-
ber of parameters is less substantial compared to our CompositeNets (–38%
passing from M = 16 to M = 4) due to the more sophisticated architec-
ture. In fact, tuning M does not change the number of parameters of the
residual blocks.

113

Chapter 8. Composite Layers for 3D Point Clouds

8.5 Experiments

Our experiments are meant to show the effectiveness of composite layers in
DNNs for point clouds. First, we illustrate the datasets we employ to test
our CompositeNets (Section 8.5.1). Then, we evaluate the performance of
our CompositeNets for classification (Section 8.5.2) and anomaly detection
following a self-supervised approach [7] (Section 8.5.3).

8.5.1 Benchmarking Datasets

We adopt two well-known synthetic 3D classification benchmarks: Mod-
elNet40 [190], which contains 12,311 objects from 40 classes, and a sub-
set of ShapeNet [191] called ShapeNetCore, which contains 51,127 shapes
from 55 rather imbalanced classes. We also perform our experiments on
real-world data using the ScanNet-v2 dataset [189], which contains 1513
3D scenes (obtained from RGB-D scans) of 707 indoor environments with
instance-level annotations of 608 classes. We extract the objects belonging
to the 17 largest classes (excluding planar objects such as windows, walls
and doors) as in the classification experiments in [189]. The resulting clas-
sification dataset presents severe class imbalance. All these datasets contain
3D meshes, from which we sample point clouds of 1024 points, setting a
constant feature function F ≡ 1. This is a standard procedure to build point
clouds containing only the spatial information [146, 150].

In our classification experiments, we use the official training split of
each dataset. We use the same splits in our anomaly detection experiments,
but in that case the DNNs are trained only on instances from a single class
that is considered normal. During testing, point clouds from other classes
are deemed anomalous. Since training DNNs requires relatively large train-
ing sets to extract meaningful features, we consider only the 7 most repre-
sented classes from ShapeNet (at least 2000 instances, as in [183]) and the
14 most numerous classes from ScanNet (at least 400 instances).

8.5.2 Classification

We train our CompositeNets for 200 epochs on an NVIDIA RTX A6000
GPU. We use the Adam optimizer [192] and the traditional cross-entropy
loss for multiclass classification. In Table 8.2 we report the hyperparameter
configurations that maximize the validation accuracy on each dataset.

Considered methods. We compare our CompositeNets against PointNet [150],
KPConv [146], and ConvPoint [145], reporting their accuracy on Model-

114

8.5. Experiments

Table 8.2: Hyperparameters of our convolutional and aggregate CompositeNets, Conv-
Point and KPConv-vanilla maximizing the validation accuracy on each dataset.

Dataset Layer J0 M K

ModelNet40 [190]
Ours (Conv.) 64 64 16
Ours (Aggr.) 64 64 16
ConvPoint 64 16 –

KPConv-vanilla 64 16 –

ShapeNetCore [191]
Ours (Conv.) 32 64 16
Ours (Aggr.) 32 64 16
ConvPoint 32 16 –

KPConv-vanilla 64 32 –

ScanNet [189]
Ours (Conv.) 64 256 32
Ours (Aggr.) 64 256 32
ConvPoint 64 32 –

KPConv-vanilla 64 64 –

Net40 from the corresponding papers. Since the performance on ShapeNet-
Core and ScanNet were not reported, we train and test the competing net-
works using the software implementations made publicly available. We
remark that both our CompositeNets are equivalent to ConvPoint in terms
of architecture, and have a comparable number of parameters. In contrast,
PointNet uses a custom non-convolutional architecture and KPConv uses a
deeper residual network, making both models significantly different from
ours. In all our experiments we employ the original architecture and con-
figuration of KPConv (M = 16). We also train KPConv-vanilla, namely a
network based on KPConv layers having the same architecture as our Com-
positeNets. In Table 8.2 we report the configuration of ConvPoint proposed
in [145] for ModelNet40, and the configurations we selected for ConvPoint
and KPConv-vanilla to maximize the validation accuracy also on the other
datasets. KPConv layers have an additional hyperparameter with respect to
ConvPoint, namely the radius ρ defining the convolution windows [146]. In
KPConv-vanilla we have tuned ρ in a ±20% range compared to the value
in [146] without obtaining substantial changes in the accuracy.

Figures of merit. We evaluate the classification performance by the over-
all accuracy (OA), defined as the proportion of correctly classified point
clouds, and the average accuracy (AA), namely the average per-class ac-
curacy, which better takes into account the accuracy on under-represented
classes. We train each method 5 times on each dataset and compute the av-
erage OA and AA, except for ModelNet40, where we report the results from
the papers presenting PointNet [150], KPConv [146], and ConvPoint [145].

Experimental results. The results in Table 8.3 indicate that our Compos-
iteNets achieve comparable performance to ConvPoint [145] and KPConv

115

Chapter 8. Composite Layers for 3D Point Clouds

Table 8.3: Overall accuracy (OA) and average accuracy (AA). The results of competing
methods on ModelNet40 are from the literature (KPConv [146] does not report the
AA). The results on ShapeNetCore and ScanNet are obtained using the available code.

PointNet [150] KPConv [146] KPConv-vanilla ConvPoint [145] Ours (Conv.) Ours (Aggr.)

Dataset OA AA OA AA OA AA OA AA OA AA OA AA

ModelNet40 [190] 0.892 0.862 0.929 – 0.879 0.848 0.918 0.885 0.913 0.871 0.911 0.879
ShapeNetCore [191] 0.830 0.686 0.829 0.671 0.752 0.632 0.837 0.669 0.828 0.653 0.839 0.698

ScanNet [189] 0.786 0.751 0.878 0.835 0.766 0.699 0.847 0.811 0.861 0.824 0.871 0.839

[146] on all the considered datasets. Therefore, the point-convolutional lay-
ers in these models can be successfully replaced by our composite layers,
which are more flexible, as shown in Section 8.4. Moreover, the poor per-
formance of KPConv-vanilla confirms that KPConv requires a sophisticated
residual architecture to achieve good classification accuracy.

Here we illustrate these results more in detail. On ModelNet40 [190],
our CompositeNets approach ConvPoint [145] both in terms of overall and
average accuray, and substantially outperform PointNet [150] in terms of
overall accuracy. KPConv [146] yields the best overall accuracy, but the
paper does not report the average accuracy. On ShapeNetCore [191], our
aggregate CompositeNet yields the best OA, slightly outperforming Conv-
Point, while our convolutional CompositeNet performs similarly to Point-
Net and KPConv. Our aggregate CompositeNet yields also the best AA,
which is particularly important on imbalanced datasets such as ShapeNet-
Core since it better evaluates the accuracy on under-represented classes.
On ScanNet [189], our aggregate CompositeNet performs very similarly to
KPConv, which has a slightly better OA. Also in this case, our aggregate
CompositeNet represents yields the best AA, suggesting that our aggregate
CompositeNet is more robust to class imbalance than the other methods.
Our convolutional CompositeNet performs worse than the aggregate and
KPConv, but yields better overall and average accuracy than ConvPoint.
While on ModelNet40 and ShapeNetCore PointNet achieves competitive
results, on ScanNet the performance difference with the other models is
substantial. Finally, we remark that, on challenging classification bench-
marks such as ShapeNetCore and ScanNet, our aggregate CompositeNet
outperforms ConvPoint and achieves similar accuracy to KPConv despite
having a much simpler architecture.

8.5.3 Anomaly Detection
We train our CompositeNets following the self-supervised approach pre-
sented in [7]. Since this approach solves a classification problem (with
surrogate labels), we employ the same configurations reported in Table 8.2.

116

8.5. Experiments

Considered methods. As baselines, we consider some traditional anomaly-
detection algorithms trained on hand-crafted features extracted from the
point clouds in the training set. In particular, we use the Global Orto-
graphic Object Descriptor (GOOD) [193] to compress the salient charac-
teristics of each point cloud into a feature vector. Compared to most of the
existing point cloud descriptors [177], the advantage of GOOD is that it can
be directly employed on point clouds that contain only the coordinates of
the points, and do not require additional features such as normal vectors.
To perform anomaly detection, we first use GOOD to extract a feature vec-
tor from each normal point cloud in the training set. Then, we use these
feature vectors to train some shallow anomaly detectors, namely Isolation
Forest (IFOR) [104], SVDD [101], and One-Class SVM [100], which we
then employ at test time to identify anomalous point clouds. Since IFOR,
SVDD, and One-Class SVM achieve approximately the same performance
in our experiments, here we only report only the results obtained by IFOR,
which, on average, performs slightly better than the others.

To the best of our knowledge, the only work using deep learning for
anomaly detection in point clouds is [183], where the authors leverage
a variational autoencoder (VAE) based on FoldingNet [186]. Since the
implementation of this method is not publicly available, we only report
from [183] the results achieved by this method on the 7 most numerous
classes of the ShapeNet dataset. We also compare our self-supervised Com-
positeNets with KPConv [146] and ConvPoint [145], trained in the same
fashion using the same architectures as in classification. We recall that our
CompositeNets have a simple architecture similar to ConvPoint, while KP-
Conv has a deeper, residual architecture.

Figures of merit. We assess the anomaly detection performance by the Area
Under the ROC Curve (AUC), which measures how well each network can
distinguish normal instances (i.e. from the training class) from the anoma-
lous ones (i.e. from any other class in the official test set). Following [74],
we report the average rank of each method and the p-values of the one-sided
Wilcoxon Signed-Rank test assessing whether the performance difference
between the best-ranking method and the others is statistically significant.

Experimental results. In Table 8.4 we report the results of our experiments.
On ShapeNet, self-supervised DNNs outperform both the shallow baseline
IFOR and the VAE [183] in most of the classes and in terms of average
rank. However, the Wilcoxon test [74] comparing our aggregate Compos-
iteNet (which is the best-performing method in terms of average rank) and

117

Chapter 8. Composite Layers for 3D Point Clouds

Table 8.4: Anomaly detection performance (AUC) of our self-supervised CompositeNets, two sim-
ilar networks based on ConvPoint [145] and KPConv [146], and a shallow detector based on
the GOOD descriptor [193]. We also report the results obtained by the variational autoencoder
in [183] on ShapeNet. Bold denotes the best AUC for each class. Our aggregate CompositeNet
is the best-performing method on most classes and in terms of average rank.

Baseline SOTA Self-supervised deep neural networks
Class IFOR VAE [183] KPConv ConvPoint Ours (Conv.) Ours (Aggr.)

Sh
ap

eN
et

[1
91

] Airplane 0.912 0.747 0.974 0.956 0.969 0.970
Car 0.712 0.757 0.988 0.953 0.953 0.972

Chair 0.571 0.931 0.921 0.910 0.904 0.941
Lamp 0.962 0.907 0.372 0.373 0.391 0.424
Table 0.883 0.839 0.943 0.777 0.821 0.854
Rifle 0.475 0.382 0.967 0.976 0.978 0.977
Sofa 0.986 0.777 0.923 0.898 0.936 0.944

Avg. rank 3.714 4.429 2.857 4.357 3.500 2.143

Wilcoxon-p 2.89 · 10–1 1.09 · 10–1 3.44 · 10–1 7.81 · 10–3 2.34 · 10–2 –

Sc
an

N
et

[1
89

]

Backpack 0.677 – 0.851 0.778 0.783 0.779
Book 0.830 – 0.734 0.731 0.782 0.782

Bookshelf 0.745 – 0.796 0.792 0.824 0.798
Box 0.429 – 0.705 0.638 0.630 0.659

Cabinet 0.581 – 0.813 0.818 0.810 0.827
Chair 0.449 – 0.747 0.842 0.837 0.838
Desk 0.482 – 0.869 0.857 0.870 0.888
Lamp 0.540 – 0.639 0.707 0.703 0.725
Pillow 0.647 – 0.693 0.707 0.754 0.771
Sink 0.415 – 0.896 0.892 0.921 0.940
Sofa 0.785 – 0.876 0.859 0.852 0.852
Table 0.318 – 0.920 0.912 0.902 0.902
Towel 0.801 – 0.657 0.690 0.640 0.655

Trash Can 0.426 – 0.881 0.918 0.921 0.927

Avg. rank 4.727 – 2.000 3.227 3.273 1.773

Wilcoxon-p 1.46 · 10–3 – 6.50 · 10–1 2.53 · 10–3 9.28 · 10–3 –

these baselines is inconclusive (p-value> 0.05), probably because the num-
ber of considered classes is small. Unfortunately, we could not compare our
CompositeNets with the VAE [183] on more classes since its implementa-
tion is not publicly available.

On ScanNet, all methods tend to perform worse than they do on the syn-
thetic data from ShapeNet, as we expected since the real-world objects in
ScanNet are often partially occluded. Also in this case, we observe that self-
supervised DNNs outperform IFOR in most of the classes. Our aggregate
CompositeNet is the best-performing method in most classes and in terms
of average rank, and the Wilcoxon test [74] confirms that the difference
with all the other methods, except for KPConv, is statistically significant
(p-value ≤ 0.05). These results show that our aggregate CompositeNet
substantially outperforms ConvPoint in both the considered datasets, and
performs similarly to KPConv despite having a much simpler architecture.

Finally, we observe that applying IFOR to hand-crafted features ex-

118

8.6. Discussion and Limitations

tracted by GOOD yields relatively good performance on a small number of
classes, outperforming deep solutions on the Lamp and Sofa classes from
ShapeNet, and on the Book and Towel classes from ScanNet. However,
IFOR yields poor performance on most of the other classes, often achieving
AUC ≤ 0.5. This suggests that point cloud descriptors cannot characterize
well all classes of point clouds, thus deep learning can address anomaly
detection in a more general way.

8.6 Discussion and Limitations

Our classification and anomaly detection experiments show that our aggre-
gate CompositeNet achieves excellent results, performing better than Conv-
Point and similarly to KPConv despite having a much simpler architecture.
The performance of our convolutional CompositeNet is slightly worse, on
par with ConvPoint. We believe that these promising results can be further
improved adopting more sophisticated architectures.

We speculate that the good performance of our CompositeNets is due
to the superior design flexibility of our models, which enables the design
of rich spatial functions that boost the layer’s capability to recognize local
spatial relations between points. In contrast, existing point-convolutional
layers such as ConvPoint and KPConv cannot be customized without sub-
stantially changing the overall number of parameters of the network (Figure
8.3(a)) or risking affecting its performance (Figure 8.3(b)). The ability to
customize the number of parameters can be crucial when training sets are
small (as in our anomaly detection experiments), which increases the risk
of overfitting. Moreover, the performance difference between our aggregate
and convolutional CompositeNets suggests that a non-convolutional aggre-
gation between spatial information and features might be beneficial to the
classification and anomaly-detection performance.

We are among the first to address unsupervised deep anomaly detection
on point clouds. Although very effective, the self-supervised approach [7]
has a fundamental limitation since, as noted in [114], the transformations
applied to the training set are domain-dependent, and most transformations
used for images are not suited for point clouds. Moreover, the selected set
of transformations might not be well suited for some of the possible normal
classes, resulting in poor anomaly detection performance. For instance, all
the considered self-supervised neural networks achieve AUC < 0.5 on the
class Lamp from the ShapeNet dataset. In contrast, the VAE [183] and
GOOD [193] successfully extract the relevant features from these point
clouds, and therefore yield better performance on the class Lamp from

119

Chapter 8. Composite Layers for 3D Point Clouds

ShapeNet [191]. We speculate that these results are due to the fact that said
class contains both table and ceiling lamps, thus preventing self-supervised
networks from distinguishing the rotations applied to each input, depending
on whether the lamp is placed on a table or hangs from the ceiling. All in all,
our experiments confirm that the self-supervised approach proposed in [7]
is extremely effective as long as the geometric transformations are care-
fully chosen depending on the considered normal class. When that is not
the case, e.g. in our experiments on the class Lamp from ShapeNet [191],
other algorithms might perform better. In general, the great flexibility of
our composite layers and the promising results obtained by our models in
the anomaly detection task encourage us to continue our research and em-
ploy our CompositeNets also for other unsupervised tasks.

8.6.1 Future Work

Future work will address the implementation of more sophisticated Com-
positeNets, leveraging deeper, residual architectures that comprise both
convolutional and aggregate composite layers, with the aim of improving
classification and anomaly-detection performance. To address the intrin-
sic limitations of the self-supervised approach in [7], we will investigate
how to automatically learn suitable transformations directly from the point
clouds from the training set as in [121], where such transformations have
been successfully learned for signals and images.

In this work, we have only considered the problem of distinguishing be-
tween normal and anomalous point clouds, therefore our self-supervised
CompositeNets are not designed to detect anomalous regions within the
point clouds. This problem has been widely studied in 2D images, and only
recently the first dataset designed for localized anomaly detection within
point clouds has been released [126]. Therefore, we will investigate how
to train CompositeNets to detect anomalous regions within point clouds, to
be tested in upcoming real-world datasets such as [126]. Another research
direction that combines the design flexibility of our composite layer and
the self-supervised approach is unsupervised hyperparameter tuning and
pre-training [178, 179] for 3D deep learning, which are of paramount im-
portance since annotated 3D datasets are not as large and widespread as 2D
image datasets.

120

CHAPTER9
Open-Set Recognition for Wafer Production

Monitoring

In this chapter we address the problem of detecting anomalous patterns in
Wafer Defect Maps (WDMs), namely point clouds listing the 2D coordi-
nates where defects were found in a silicon wafer by an inspection machine.
In normal production conditions, defects are rare and randomly distributed
in WDMs, while defects grouped in patterns indicate production problems.
Some classes of defect patterns have already been identified, while anoma-
lous patterns might appear due to unknown problems in the manufacturing
process. Therefore, we cast this as an open-set recognition problem, and ad-
dress it by applying an outlier detector based on a Gaussian Mixture Model
(GMM) to the latent representation of a Submanifold Sparse Convolutional
Network (SSCN) trained on known classes. Our experiments on WDMs
acquired at the STMicroelectronics plant in Agrate Brianza, Italy show that
our solution can detect anomalous patterns better than alternative methods,
which we apply on top of the same SSCN to obtain a fair comparison. Since
no anomalous WDMs have been included in our dataset yet, we design a
new experimental setup in which we train multiple SSCNs, each time tak-
ing out from the training set one of the defect classes, which will then be

121

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

considered anomalous during testing.
In Section 9.1 we define WDMs, illustrate the problem of wafer pro-

duction monitoring and how it has been addressed in the literature. In Sec-
tion 9.2 we present our WDM monitoring pipeline, including details on our
SSCN and the data augmentation procedure we employ to mitigate class
imbalance. Finally, in Section 9.3 we present our experimental setup and
our classification and anomaly detection results.

9.1 Silicon Wafer Monitoring

Silicon wafers represent the base upon which most electronic components
are built, including processors, memories and sensors that are present in
any electronic device from smartphones to cars. Producing wafers requires
costly, long, and high-tech industrial processes. Each wafer (Figure 9.1(a))
contains hundreds of chips and has to be analyzed by several inspection
machines at different stages of the production process to locate any defect,
which might be related to specific problems in the manufacturing process.
In this section, we first describe Wafer Defect Maps (WDMs), which rep-
resent the type of data we work on in this chapter (Section 9.1.1), and then
we briefly review the literature on automatic wafer production monitoring,
focusing mainly on WDM classification (Section 9.1.2).

9.1.1 Wafer Defect Maps

Each wafer inspection returns a Wafer Defect Map (WDM), which we in-
dicate by x, namely a point cloud containing the 2D coordinates of the
wafer where defects are found. Defect coordinates belong to a regular grid,
namely x ⊂ NK×K , determined by the resolution of the inspection ma-
chines. In practice, the grid might be huge (in our case K = 20, 000).

In normal production conditions, defects are rare and randomly dis-
tributed in WDMs. In contrast, WDMs containing patterns like those shown
in Figure 9.1(b) might be symptoms of problems or failures in the produc-
tion line, which must be promptly identified to solve production failures as
soon as possible, preventing the waste of time and resources. Some defect
patterns have been studied and labeled by production engineers into a set L
of classes. These patterns are known to be related to specific problems in a
particular manufacturing step. However, WDMs might also exhibit anoma-
lous patterns related to unknown production issues, and it is a primary con-
cern of production engineers to detect them as well. For this reason, we
cast WDM monitoring as an open-set recognition problem (Section 7.2).

122

9.1. Silicon Wafer Monitoring

BasketBall
74

ClusterBig
537

ClusterSmall
4393

Donut
418

Fingerprints
371

GeoScratch
642

Grid
283

HalfMoon
568

Incomplete
2946

Normal
20309

Ring
798

Slice
71

ZigZag
483

(a) (b)

1

(a) (b)

Figure 9.1: (a) An example of a wafer containing few hundreds of chips (the small cells). (b) An
example of WDM for each known class in the ST dataset. We also report the number of instances
of each class to emphasize the severe class imbalance in the ST dataset.

9.1.2 Existing solutions

During production, wafers are monitored to identify defect patterns in WDMs
[194–201], and also to analyze images of localized defects acquired by
electronic microscopes [202, 203]. Here we briefly review the literature on
WDM monitoring. We refer to [204] for a more comprehensive survey on
wafer monitoring.

The very first WDM monitoring pipelines required production engi-
neers to visually inspect a relatively small number of randomly sampled
WDMs. In the last few decades, the production volume and quality stan-
dards have been substantially increased, making it necessary to develop
automatic WDM classification algorithms. These techniques allow to in-
spect the whole wafer production and reduce classification errors, which in
visual inspection were frequently caused by fatigue.

For automatic classification purposes, a WDM x can be seen as a binary
image Ix ∈ {0, 1}K×K , where each pixel (i, j) corresponds to an inspected
wafer location and

Ix(i, j) =

{
1 if (i, j) ∈ x
0 otherwise

. (9.1)

However, the resolution of WDMs is huge (in our case K = 20, 000),
so a WDM would require almost 3 GB to be loaded in memory in single
precision as a grayscale image. For this reason, the vast majority of the

123

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

existing solutions preliminary reduce the size of these images by building
Wafer Bin Maps, namely smaller images (say 200× 200) where pixels are
associated with small portions of the wafer, and the value of each pixel
indicates whether the corresponding wafer portion contains defects or not.

The first supervised methods [195–197] employ hand-crafted features,
including geometric regional features such as area, perimeter, or eccentric-
ity of defect clusters [195], and density-based features such as the location
of defect-dense areas [196]. Other informative features can be obtained by
analyzing Wafer Bin Maps in a different domain using the Radon or Hough
transforms to highlight specific patterns [197]. A few of these features are
then stacked in vectors and fed to a classifier such as a support vector ma-
chine (SVM) or a decision tree. However, hand-crafted features might not
be able to extract meaningful information in some cases, e.g., when defect
patterns are rotated, shifted, or cover only part of the WDM. Moreover,
hand-crafted features are usually defined to highlight patterns belonging to
known classes, and might be meaningless for anomaly detection.

Since Convolutional Neural Networks have achieved impressive results
in image classification, the most recent methods [198–201] employ Deep
Learning models to classify Wafer Bin Maps. In particular, [198] addresses
the simplified problem of distinguishing radial map patterns from non-
radial ones. The solution presented in [199] proposes a specific preprocess-
ing where the intensity value of each pixel represents the number of defects
in the corresponding wafer portion. Several works [194, 200, 201] show
the superiority of deep CNNs over traditional machine-learning methods
based on hand-crafted features using the public dataset WM-811K [205],
where they achieve excellent classification performance. However, in these
works, wafer monitoring is tackled as a closed-set classification problem,
ignoring possible anomalous patterns. Moreover, the WM-811K dataset
contains small images representing Wafer Bin Maps, so we cannot use it to
test the proposed solution, which takes the original WDMs as input.

Although here we focus on WDM monitoring, it is worth mentioning
the work by Cheon et al. [203], which addresses open-set recognition on
localized defects. In particular, they apply a k-nearest neighbors outlier
detector to the features extracted by a CNN trained on the known classes.
However, this solution is designed to process traditional images of localized
defects, thus it cannot be applied directly to the analysis of WDMs. To the
best of our knowledge, this is the only open-set recognition solution for
wafer monitoring in the literature.

124

9.2. Proposed Solution

9.2 Proposed Solution

We address WDM monitoring as an open-set recognition problem and pro-
pose a network architecture to efficiently classify full-resolution WDMs
belonging to the classes represented in the training set (Section 9.2.1).
Then, we extend our network – which is trained to address a traditional
multi-class classification problem – to open-set recognition, i.e., to detect
WDMs containing anomalous patterns (Section 9.2.2). Here, we also de-
scribe the class-specific data augmentation procedure we employ in our
open-set recognition method, both at training and test time (Section 9.2.3)
and summarize the proposed pipeline to classify WDMs (Section 9.2.4).

9.2.1 Classification

The open-set recognition problem includes a traditional multi-class classi-
fication problem with a fixed set of known classes, i.e., those represented
in the training set. Traditional CNNs, which represent the state of the art in
image classification, cannot be directly applied to WDMs because they take
as input relatively small images (e.g., VGG16 [206] and ResNet50 [207]
take as input 224 × 224 RGB images), while images representing full-
resolution WDMs are huge and cannot be used to train and test CNNs.

To handle WDMs efficiently, we build a deep network based on Sub-
manifold Sparse Convolution (SSC) [9], a modified convolutional operator
designed to process sparse images at arbitrary resolution. The output of an
SSC is the same as that of a regular convolution, but only on the active sites
of its receptive field, namely, the non-zero locations, i.e.:

SSC(x) = conv(x)⊙ 1(supp(x)), (9.2)

where ⊙ indicates the Hadamard product, 1 the indicator function and
supp(x) the support of x, i.e., the set of its non-zero locations. The main
advantage of SSC compared to traditional convolution is that it enables a
very efficient processing of sparse images, regardless of their resolution.
Thus, a WDM can be processed directly as the list of the coordinates where
defects lie within the wafer, which correspond to the active sites. More-
over, (9.2) implies that SSC maintains the input sparsity – thus the shape of
the defect patterns in WDMs – throughout the layers and does not increase
the number of active sites, while regular convolutions reduce the sparsity
of WDMs, as illustrated in Figure 9.2.

The architecture of the proposed SSCN is inspired by the convolutional
part of the VGG16 [206], and is made of consecutive building blocks reduc-
ing the spatial resolution of the activation maps. Each block (Figure 9.3(a))

125

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

original

SSC+pool SSC+pool

conv+pool conv+pool

Figure 2: Visual representation of the difference between processing a WDM patch (200 ×
200) by regular convolutions (conv) and Submanifold Sparse Convolutions (SSC). All these
convolutional layers have uniform filters of size 7 × 7 and are followed by max-pooling with
a kernel of size 2 × 2, yielding a downsampling factor 2 on each dimension. For illustration
purposes, we represent all the images at the same size. While regular convolutions reduce the
original sparsity, SSCs maintain it since they do not increase the number of active locations.

Input SSC BN ReLU
Max-
Pooling

Output

w 8
SSCN
block

8 12 12 16 16 24 24 32 32 64 64 128
12
8

L(w)

S(w)

13

FC+SoftMax

̂̀(w)

(a) (b)

Figure 3: (a): our SSCN block made of a Submanifold Sparse Convolutional layer (SSC),
Batch Normalization (BN), ReLU activations and Max-Pooling layer (Pool) with stride 2.
(b): our SSCN architecture, based on our SSCN block, for open-set recognition on WDMs.
After 13 SSCN blocks, each WDM w is transformed to a 128-dimensional latent representation
L(w), which is fed to a fully connected-layer (FC) with SoftMax activation to identify the
known classes, and to the negative log-likelihood function of a GMM (fitted on the latent
representations of WDMs from known classes), which is our novelty score S(w).

of SSC compared to traditional convolution is that it enables a very efficient
processing of sparse images, regardless of their resolution. Thus, a WDM can
be processed directly as the list of the coordinates where defects lie within
the wafer, which correspond to the active sites. Moreover, (2) implies that SSC
maintains the input sparsity – thus the shape of the defective patterns in WDMs
– throughout the layers and does not increase the number of active sites, while
regular convolutions reduce the sparsity of WDMs, as illustrated in Figure 2.

The architecture of the proposed SSCN is inspired by the convolutional part
of the VGG16 [34], and is made of consecutive building blocks reducing the

8

Figure 9.2: Visual representation of the difference between processing a WDM patch (200× 200)
by regular convolutions (conv) and Submanifold Sparse Convolutions (SSC). All these convolu-
tional layers have uniform filters of size 7 × 7 and are followed by max-pooling with a kernel
of size 2 × 2, yielding a downsampling factor 2 on each dimension. For illustration purposes,
we represent all the images at the same size. While regular convolutions reduce the original
sparsity, SSCs maintain it since they do not increase the number of active locations.

includes an SSC layer, with Batch Normalization (BN) and ReLu activa-
tions, followed by a Max-Pooling layer of stride 2. Thus, a single block
reduces the resolution of the feature map by a factor 2 on each dimension.
Our architecture, illustrated by Figure 9.3(b), is formed by 13 such blocks
followed by a convolutional layer, and yields a 128-dimensional latent rep-
resentation L(x) of each WDM x, which we also employ to detect anoma-
lies (Section 9.2.2). Eventually, a fully-connected layer with SoftMax ac-
tivations outputs a vector of #L scores, whose maximum determines the
predicted class of the input WDM.

We remark that both our solution and those based on traditional CNNs
extract a compact representation of the WDMs [199–201]. The main differ-
ence is that traditional CNNs for WDM classification require a preliminary
binning of the WDMs to reduce their resolution, which we believe might
lead to a loss of information. In contrast, our solution is entirely data-driven
and does not discard any piece of information contained in WDMs, thanks
to Submanifold Sparse Convolutions. Our SSCN yields a spatial downsam-
pling factor 213 on each dimension, way larger than what is customarily ob-
tained by CNNs for image classification: for instance, the CNN proposed

126

9.2. Proposed Solution

Input SSC BN ReLU
Max-
Pooling

Output

x 8
SSCN
block

8 12 12 16 16 24 24 32 32 64 64 128
12
8

L(x)

T(x)

13

FC+SoftMax

̂̀(x)

(a) (b)

Figure 9.3: (a): our SSCN block made of a Submanifold Sparse Convolutional layer (SSC), Batch
Normalization (BN), ReLU activations and Max-Pooling layer (Pool) with stride 2. (b): our
SSCN architecture, based on our SSCN block, for open-set recognition on WDMs. After 13 SSCN
blocks, each WDM x is transformed to a 128-dimensional latent representation L(x), which is
fed to a fully connected-layer (FC) with SoftMax activation to identify the known classes, and
to the negative log-likelihood function of a GMM (fitted on the latent representations of WDMs
from known classes), which is our anomaly score T(x).

in [201] for Wafer Bin Maps only achieves a downsampling factor 25. Al-
though the network architecture made of convolutional and pooling layers
recalls the VGG16 [206], our SSCN has a substantially fewer parameters
(164, 077) since, on top of the convolutional part, the VGG16 has 3 large
fully-connected layers, which we do not include in our SSCN.

9.2.2 Anomaly Detection

The second task in open-set recognition is detecting anomalous instances,
namely defect patterns that do not belong to any known class. This is partic-
ularly important when monitoring WDMs because any anomalous pattern
must be detected as soon as possible and studied to determine whether an
unknown failure occurred during production. We follow the simple but ef-
fective approach of applying an outlier detector to the latent representation
of our classifier – i.e., the output of the penultimate layer of the network
(see Figure 9.3). This approach leverages the fact that a classifier maps in-
stances belonging to the same class in the same area of the latent space so
that the last, fully connected layer can separate the classes by linear bound-
aries [135, 136]. Hence, the latent representation of the known classes can
be described by a multimodal distribution ϕ, where each mode is associ-
ated with a known class. We expect anomalous instances to be mapped in
low-density regions of the latent space with respect to ϕ. For this reason,
we fit a Gaussian Mixture Model (GMM) with #L components, namely
the number of known classes, and obtain a density ϕ̂ to describe the distri-
bution of the latent representations L(x) extracted by the SSCN trained on

127

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

WDMs from known classes, i.e.:

ϕ̂ =

#L∑

i=1

âi · N(µ̂i, Σ̂i), (9.3)

where each Gaussian component N(µ̂i, Σ̂i) for i = 1, . . . ,#L represents a
known class. Then, at test time, we employ as anomaly score the negative
log-likelihood of ϕ̂, i.e., for each WDM x,

T(x) = − log
(
ϕ̂(L(x))

)
. (9.4)

Eventually, a WDM x is detected as Anomalous when T(x) > h, where h
is a threshold we set such that P(T(x) ≥ h | ℓ ∈ L) = α, where ℓ is the
label associated to x and α is the target false positive probability.

To prevent ϕ̂ from overfitting the latent representation of the training
set, we use 90% of the data to train the SSCN, and compute the latent rep-
resentation of another 5% of the training set. Then, we use these latent
representations to fit ϕ̂ by estimating the parameters of the GMM by the
well-known Expectation Maximization algorithm [99], as in [98]. Finally,
we compute the anomaly score T(x) (9.4) of each instance x of the re-
maining 5% of the training data, and set the threshold h as the empirical
(1−α)-quantile of these anomaly scores. We remark that, since we extract
the latent representation L(x) by the same SSCN used to classify WDMs
from the known classes, our anomaly-detection procedure does not require
additional computations compared to closed-set classification, except for
the calculation of the anomaly score T(x).

9.2.3 Data Augmentation

The ST dataset is relatively small compared to the traditional datasets used
for image classification and is characterized by an extreme class imbal-
ance. Both these facts increase the risk of overfitting when training a deep
classifier, and, in particular, the classification performance is likely to be
poor on under-represented classes. To address this problem, we implement
an ad-hoc data augmentation procedure based on a set of label-preserving
transformations to be applied to the WDMs. Let F ℓ denote the set of label-
preserving transformations for WDMs belonging to the class ℓ:

F ℓ =
{
f ℓ
θ : NK×K → NK×K , θ ∈ Θℓ

}
, (9.5)

where θ indicates the parameters that define each transformation f ℓ
θ, and

Θℓ is the set of transformation parameters specific for each class ℓ ∈ L.

128

9.2. Proposed Solution

Each f ℓ
θ combines different transformations widely used for data augmen-

tation on images, such as rotations around the center, horizontal flips, and
small translations of the defect coordinates. Besides these traditional aug-
mentation procedures, we apply two transformations that we specifically
designed for WDMs:

Noise injection consists in adding a small number of defects to each
WDM at randomly sampled coordinates. This operation does not change
the label of any WDM because a few randomly distributed defects are
present in every wafer due to natural impurities in the silicon. In partic-
ular, the defects in WDMs from the Normal class can be seen as pure noise
since they are few and randomly spread within the wafer, as can be ex-
pected when the process is executed normally. For this reason, we compute
the empirical cumulative distribution ψ̂ of the number of defects that are
present in Normal WDMs in the ST dataset, and use ψ̂ to randomly gener-
ate the number D of defects to be injected in a WDM during augmentation.
Our study and the experience of production engineers confirm that defects
in Normal WDMs do not show any specific pattern. Thus we inject these
D defects at uniformly sampled polar coordinates in [0, 2π]× [0, K/2].

Random mixing creates new training samples from under-represented
classes, such as BasketBall and Slice, by superimposing randomly cropped
parts of WDMs from the same class. We empirically verified that random
mixing preserves the label: production engineers at STMicroelectronics
could not tell the original WDMs from those generated by this procedure.
We remark that random mixing is somewhat similar to mixup [208], which
builds new training samples as linear combinations of instances of the train-
ing set. However, mixup is designed for relatively small images and cannot
be directly applied to WDMs. Another difference is that we do not change
the label of a WDM after applying random mixing.

We execute our data augmentation procedure in each training epoch to
produce new augmented batches, and also when fitting the GMM ϕ̂, to
obtain a sufficient number of samples from under-represented classes. This
is done by generating several versions of each original WDM x using class-
specific transformations f ℓ

θ(x), where θ is randomly sampled from Θℓ.

Test time augmentation. To stabilize the output of our SSCN and improve
the classification performance we employ data augmentation also at test
time, averaging the classification scores obtained on different augmented
versions of each WDM from the test set, as in [206]. Indeed, even though
the features extracted by the network should, in principle, be invariant to
the label-preserving transformations in F ℓ, perfect invariance cannot be

129

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

achieved in practice, thus combining the predictions obtained from several
augmented versions of the same WDM typically improves the classification
performance [206]. Since the labels of the test set cannot be assumed to be
known, during testing we only apply transformations that preserve all the
labels ℓ ∈ L:

F =

{
fθ : θ ∈ Θ =

⋂

ℓ∈L
Θℓ

}
. (9.6)

We exclude from F our random mixing transformation, which we only use
to construct new training samples from under-represented classes such as
BasketBall and Slice.

To apply data augmentation when testing an open-set recognition method,
it is important to verify that the transformations in F preserve not only the
known class labels ℓ ∈ L, but also the Anomalous class label, which might
be encountered during testing. This is certainly guaranteed when F is a
group since any fθ ∈ F that transforms an anomaly into a sample of a
known class would have an inverse f−1

θ ∈ F that does not preserve the
known class labels because it transforms an instance of a known class into
an anomaly. Here is a contradiction, therefore every fθ ∈ F must preserve
the Anomalous class label.

In our case, F is not a group because noise injection has no inverse
transformation in F . However, noise injection naturally preserves every
label, including Anomalous, since it simulates the noise affecting all the
manufactured wafers. We can obtain the other transformations fθ ∈ F
by composing, in any order, a rotation around the center of either 0◦, 90◦,
180◦, or 270◦, an optional horizontal flip and a translation in a random
direction with maximum distance ν. The inverse f−1

θ of an element of F
can be obtained by composing, in the opposite order, the inverses of the
rotation, horizontal flip, and translation that define fθ. This implies that
also f−1

θ ∈ F , hence F preserves the Anomalous class label by the same
argument used above for the case in which F is a group. Thus, we can
safely employ the transformations in F for data augmentation at test time
without influencing the anomaly-detection performance.

9.2.4 WDM monitoring pipeline

Here we summarize the proposed pipeline to classify a test WDM x: first,
we generate a set of n augmented maps

xi = fθi
(x), i = 1, . . . , n, (9.7)

130

9.3. Experiments and Discussion

where each θi is randomly sampled from Θ (Section 9.2.3). Then, we
feed all the augmented versions of x to the network, and average both the
anomaly score and the classification scores to stabilize the output, as in
[206]. Thus, output of our classifier K is:

K(x) =

{
Anomalous if = 1

n

∑n
i=1T (xi) > h

ℓ̂(x) = argmaxℓ∈L
1
n

∑n
i=1 SSCN(xi) otherwise

, (9.8)

where h is the threshold defined in Section 9.2.2 for the anomaly score
T and SSCN(xi) indicates the classification scores of our SSCN (Section
9.2.1) obtained from xi. Thus, when a WDM is not detected as Anoma-
lous, it is classified by taking the label ℓ̂(x) ∈ L maximizing the average
classification score over the n augmented versions of x.

9.3 Experiments and Discussion

Our experiments show that: i) Submanifold Sparse Convolutional Net-
works handling Wafer Defect Maps at full resolution outperform traditional
CNNs trained on low-resolution Wafer Bin Maps, ii) our data augmenta-
tion procedure is crucial to achieve good classification performance, and
iii) our open-set recognition solution based on a GMM fitted on the latent
representations extracted by our SSCN can detect anomalous patterns bet-
ter than state-of-the-art open-set recognition methods applied on top of the
same SSCN for a fair comparison.

9.3.1 Experimental Setup

Dataset. We test our solution on the ST dataset, which contains N =
31, 893 WDMs acquired at the STMicroelectronics plant in Agrate Brianza,
Italy. These WDMs are either annotated as Normal, i.e., they do not con-
tain any defect patterns, or belong to one of the 12 defect classes identified
by production engineers at STMicroelectronics. Figure 9.1(b) displays a
sample WDM for each of these classes.

In the literature, the open-set recognition performance is typically as-
sessed over datasets with numerous classes such as CIFAR-100 [209], and
ImageNet [210] so that a certain number of classes can be taken out during
training and considered Anomalous at test time. However, in our industrial
scenario, we have only 12 defect classes, and WDMs containing anomalous
patterns have not been included in the dataset. For this reason, we follow a
leave-one-out approach by training our model on all the known classes ex-
cept a single defect class, which we then consider Anomalous at test time.

131

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

This is quite a realistic scenario in which we assume to have identified a
certain number of defect classes (and the Normal class, which is always
assumed to be known), and Anomalous patterns from a previously unseen
class appear during testing.

Figures of Merit. We assess the classification performance of the proposed
SSCN (trained on all the 13 known classes) by the confusion matrix. We
also provide an overall evaluation of the classification performance using
two multi-class extensions of the Area Under the ROC Curve (AUC). The
first one is the 1vsRest-AUC [211], which is a weighted average of the
AUC values obtained in all the binary classification problems where each
class is selected in turns as the positive class and all the remaining classes
are merged in the negative class (1vsRest). We remark that, since the
weight given to each positive class is its frequency in the test set [211],
the 1vsRest-AUC is influenced by class proportions. The second one is
the 1vs1-AUC [212], which is the average of the AUC values of the binary
classification problems between every pair of classes (1vs1). Contrarily to
the 1vsRest-AUC, it has been shown that the 1vs1-AUC is not influenced
by the class proportions in the test set [212]. Since the ST dataset is ex-
tremely imbalanced, it is important to observe both these figures of merit
to analyze the classification performance on under-represented classes and
also to assess the impact of our data augmentation procedure.

We employ 10-fold cross-validation and average all these figures of
merit over the 10 test folds to provide an overall assessment of the clas-
sification performance. We also rank the considered methods (rank = 1 for
the best method, 2 for the second-best, and so on) according to the 1vsRest-
AUC and the 1vs1-AUC, and compute their average rank over the 10 test
folds to compare their classification performance, as suggested in [74].

Detecting anomalous patterns is, in fact, a binary classification prob-
lem where anomalous instances represent the positive class (Anomalous),
and the known classes used for training are merged in the negative class
(Known). Therefore, we can directly compute the AUC of these binary clas-
sification problems, which does not depend on class proportions, and this
is crucial because anomalous instances are rare. In contrast to other metrics
such as F-scores, the AUC does not depend on how detection thresholds
on the anomaly scores are set, which allows to evaluate the effectiveness of
different methods without setting the thresholds.

To provide an overall assessment of the anomaly-detection performance,
we rank the considered methods according to the AUC and compute their
average rank over the different anomalous classes, as suggested in [74].

132

9.3. Experiments and Discussion

Moreover, we perform the one-sided Wilcoxon Signed-Rank test [75] to
assess the statistical significance of the difference between the AUC of the
best-ranking solution over the 12 Anomalous classes and those of the other
methods. Moreover, we apply the nonparametric Mann-Whitney statisti-
cal test [18] on the anomaly scores of the best and second-best performing
methods on each Anomalous class to assess whether the difference between
their AUC is statistically significant. This test is suggested in [213] to com-
pare the AUC of two methods on the same binary-classification problem.

9.3.2 Classification of known classes

In this experiment, we evaluate the classification performance of our solu-
tion over the 13 classes identified so far by STMicroelectronics engineers.
We train our SSCN using the Adam optimizer [192] on an NVIDIA Titan
Xp GPU. Training the model for 100 epochs requires about 8 hours, while
the average time to classify a WDM is 0.061 ± 0.055 seconds. This time
includes the generation and processing of n = 250 augmented WDMs as
in (9.7). The large variability in the classification time can be explained by
the fact that the number of operations executed by an SSC layer directly
depends on the input sparsity [9], which in our case can vary substantially
from class to class (see Figure 9.1(b)).

Considered methods. We compare the classification performance of the pro-
posed SSCN with traditional CNNs for image classification. To this pur-
pose, we reduce the resolution of the WDMs from 20, 000 × 20, 000 to
224 × 224 by binning, i.e. converting each WDM to a grayscale image
where the intensity of each pixel is the number of defects that fall into the
corresponding bin, as in [199]. Then, we use the resulting Wafer Bin Maps
to fine-tune the VGG16 [206] and ResNet50 [207] models, both pre-trained
on the ImageNet dataset [210]. We employ the Adadelta optimizer [214]
for the VGG16, and the Adam optimizer [192] for the ResNet50, since we
observed that these configurations yield the best performance.

We compare our SSCN to these models because fine-tuning CNNs for
image classification is rather standard in wafer monitoring [205]. We do not
employ custom architectures for wafer classification [200, 201] since the
implementation and parameters of these models, pre-trained on the WM-
811K dataset [205], are not publicly available. Both traditional architec-
tures (such as VGG16 and ResNet50) and custom architectures produce
very deep models with several million parameters, which would risk over-
fitting when trained from scratch on the relatively small ST dataset. For a

133

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

0.95

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Bask
etB

all

BasketBall 0.00

0.79

0.01

0.03

0.02

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.01

Cluste
rBig

ClusterBig

0.00

0.04

0.74

0.01

0.04

0.02

0.03

0.02

0.04

0.01

0.01

0.00

0.02

Cluste
rSmall

ClusterSmall

0.00

0.04

0.00

0.89

0.00

0.00

0.00

0.01

0.00

0.00

0.01

0.00

0.00

Donut

Donut

0.00

0.03

0.04

0.00

0.86

0.00

0.00

0.03

0.01

0.00

0.00

0.01

0.03

Fingerp
rin

ts

Fingerprints

0.05

0.00

0.02

0.00

0.01

0.87

0.00

0.00

0.00

0.00

0.00

0.00

0.14

GeoScra
tch

GeoScratch

0.00

0.00

0.01

0.00

0.00

0.00

0.93

0.00

0.00

0.00

0.00

0.00

0.00

Grid

Grid

0.00

0.05

0.02

0.03

0.02

0.00

0.01

0.79

0.01

0.01

0.03

0.00

0.01

Half
Moon

HalfMoon

0.00

0.01

0.10

0.01

0.02

0.01

0.00

0.07

0.90

0.02

0.10

0.00

0.01

Incomplete

Incomplete

0.00

0.02

0.04

0.00

0.00

0.01

0.03

0.02

0.02

0.93

0.01

0.00

0.00

Norm
al

Normal

0.00

0.01

0.01

0.02

0.00

0.00

0.00

0.03

0.03

0.00

0.82

0.00

0.00

Ring

Ring

0.00

0.01

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.99

0.00

Slice

Slice

0.00

0.01

0.02

0.00

0.02

0.06

0.01

0.00

0.00

0.00

0.00

0.00

0.77

ZigZag

ZigZag

Predicted Label

Tr
ue

L
ab

el

Figure 9.4: Confusion matrix of our SCNN obtained by 10-fold cross-validation on the ST dataset.
Our network achieves very high accuracy on all the classes, and most misclassified samples
belong to similar classes such as ClusterSmall and Incomplete.

fair comparison with our SSCN, we train and test the VGG16 and ResNet50
using the same data augmentation described in Section 9.2.3 on the original
WDMs, before reducing their resolution.

To assess the impact of data augmentation, we also evaluate the perfor-
mance of our SSCN without data augmentation (both at training and test
time), and with traditional augmentation, i.e., using only geometric trans-
formations (translations, rotations, and flips). This experiment evaluates
the importance of our custom transformations, namely noise injection and
random mixing, in data augmentation.

Results and discussion. Figure 9.4 shows the confusion matrix of our SSCN
obtained by 10-fold cross-validation on the ST dataset. Our model achieves
excellent classification accuracy, and we observe that the majority of pre-
diction errors occur when our model fails to distinguish two classes con-
taining very similar patterns (e.g., ClusterSmall and Incomplete, see Fig-
ure 9.1(b)). In Table 9.1, we report in the first three columns the accuracy
achieved over each class (i.e., the diagonal of the confusion matrix) by our

134

9.3. Experiments and Discussion

Table 9.1: Classification accuracy of the considered methods obtained by 10-fold cross-validation.
We also report the average 1vsRest-AUC and 1vs1-AUC, the average rank on the 10 folds ac-
cording to these metrics, and the p-values of the Wilcoxon test assessing the significance of the
difference between the best-ranking method and each alternative [74]. We also evaluate our
SSCN without augmentation and all the considered methods with traditional augmentation, and
report the performance differences w.r.t. our augmentation procedure. Here the Wilcoxon test
assesses the significance of the performance difference compared to the same method with our
augmentation procedure.

OUR AUGMENTATION W/O AUG. TRADITIONAL AUGMENTATION

Class accuracy SSCN VGG16 ResNet50 SSCN SSCN VGG16 ResNet50

BasketBall 0.9545 0.9091 0.9091 −0.7273 −0.0909 −0.2727 −0.0909
ClusterBig 0.7880 0.7805 0.7917 −0.1013 +0.0075 −0.0809 −0.0188
ClusterSmall 0.7439 0.7844 0.7216 −0.0221 +0.0143 −0.0436 +0.0492
Donut 0.8933 0.8178 0.8133 −0.2311 −0.0356 −0.0221 −0.0133
Fingerprints 0.8571 0.7967 0.7857 −0.3764 +0.0110 −0.0773 −0.0110
GeoScratch 0.8694 0.8774 0.8678 −0.3264 −0.0287 −0.1284 −0.0239
Grid 0.9261 0.9545 0.9375 −0.2841 −0.0227 −0.0352 +0.0000
HalfMoon 0.7912 0.7349 0.7470 −0.3855 −0.0221 −0.0064 +0.0000
Incomplete 0.8965 0.9097 0.8904 −0.1565 −0.0136 −0.0177 −0.0037
Normal 0.9332 0.9132 0.9596 +0.0248 −0.0045 −0.0306 −0.0093
Ring 0.8224 0.8567 0.8552 −0.0806 +0.0060 −0.0026 −0.0239
Slice 0.9859 0.9437 0.9437 −0.4366 −0.0141 +0.0037 +0.0000
ZigZag 0.7681 0.7638 0.7064 −0.3277 +0.0213 −0.1472 +0.0000

1vsRest-AUC 0.9858 0.9818 0.9868 −0.0239 −0.0007 −0.0013 −0.0019
Avg. rank 1.8000 3.0000 1.2000
Wilcoxon-p 0.0142 0.0025 – −0.0025 −0.0844 −0.0844 −0.0372

1vs1-AUC 0.9893 0.9846 0.9849 −0.0614 −0.0018 −0.0066 −0.0029
Avg. rank 1.0000 2.6000 2.4000
Wilcoxon-p – 0.0025 0.0035 −0.0025 −0.0083 −0.0025 −0.0063

SSCN, the VGG16, and the ResNet50, all trained and tested using our aug-
mentation procedure. Table 9.1 also reports the average 1vsRest-AUC and
1vs1-AUC achieved by the considered methods on the test folds to compare
their overall performance. As recommended in [74], we also compute the
average rank of the considered method and the p-values of the one-sided
Wilcoxon Signed-Rank test [75] assessing whether the difference between
the 1vsRest-AUC and the 1vs1-AUC of the best-ranking method and those
of the other methods is significant.

First, we observe that methods trained and tested with our data augmen-
tation procedure achieve consistently high accuracy, and that our SSCN
achieves the best accuracy on 6 out of 13 classes. Overall, our SSCN is the
best in terms of 1vs1-AUC on all the 10 test folds (avg. rank= 1), and the
Wilcoxon Signed-Rank test confirms that the performance differences with
traditional CNNs are statistically significant (p-value ≤ 0.05). Notably,
our SSCN outperforms the VGG16, which has a similar architecture to our
SSCN, in both 1vsRest-AUC and 1vs1-AUC. The ResNet50 model is the

135

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

best in terms of 1vsRest-AUC thanks to its high accuracy on the Normal
class (≈ 96%), which is by far the most represented in the ST dataset (see
Figure 9.1(b)), and the 1vsRest-AUC is sensitive to class proportions [211].
Our SSCN provides a better trade-off between the accuracy on the Normal
class (> 93%) and the accuracy on under-represented classes, as it outper-
forms the ResNet50 on 9 out of 12 defect classes, often by a substantial
margin. This explains the significant difference between the two in terms
of 1vs1-AUC, which is not influenced by class proportions [212].

To assess the impact of our data augmentation procedure on classifica-
tion, we report in the fourth column of Table 9.1 the performance differ-
ences between the proposed solution, which leverages data augmentation
both during training and testing, and the same SSCN architecture trained
and tested without augmentation. Remarkably, training the VGG16 and
ResNet50 without data augmentation leads to overfitting due to the fact
that the ST dataset is relatively small and the considered CNNs have sev-
eral million trainable parameters. In contrast, our SSCN can be effectively
trained without augmentation since it has a substantially lower number of
parameters. However, without augmentation, our SSCN achieves substan-
tially lower classification accuracy on all classes except the Normal class,
which is by far the most common in the ST dataset (see Figure 9.1(b)) and
therefore can also be learned very accurately (≈ 96%) without augmenta-
tion. The SSCN without augmentation also achieves lower 1vsRest-AUC
and 1vs1-AUC compared to our SSCN trained using our data augmentation
procedure, and the differences are statistically significant (p-value ≤ 0.05)
according to the Wilcoxon test.

Similarly, the last three columns of Table 9.1 report the performance dif-
ferences between the models trained and tested with our augmentation pro-
cedure (which includes noise injection and random mixing) and the same
models trained and tested using only traditional augmentation, namely ge-
ometric transformations. We observe that traditional augmentation yields
lower accuracy on most classes, and lower 1vsRest-AUC and 1vs1-AUC
compared to the same model with our augmentation. According to the
Wilcoxon test, the difference in 1vsRest-AUC is significant (p-value ≤
0.05) for the ResNet50. Remarkably, the differences in 1vs1-AUC are sig-
nificant for all the considered models, which confirms that our augmenta-
tion procedure improves the robustness to class imbalance, since the 1vs1-
AUC is not influenced by class proportions [212].

136

9.3. Experiments and Discussion

9.3.3 Detection of anomalous patterns

In this experiment, we assess the performance of our solution in detecting
WDMs containing anomalous defect patterns. We train 12 different mod-
els, each time taking out one of the defect classes, which we then consider
Anomalous at test time, as illustrated in Section 9.3.1. Since some of the
identified defect classes in the ST dataset (e.g., ClusterSmall and Incom-
plete) are very similar, we expect some anomalies to be more difficult to
detect than others.

Considered methods. We compare the anomaly-detection performance of
our solution against methods implementing the following open-set recog-
nition techniques on the same SSCN:

• SoftMax is a widely employed open-set recognition baseline [131]. It
relies on the intuition that a classifier trained on known classes would
probably classify anomalous instances with low confidence. Let v =
(v1, . . . , v#L) be the score vector associated to a WDM x, i.e., the
output of the last fully-connected layer of our SSCN (or any neural
network). Then, the SoftMax function is defined as:

pj = SoftMax(v)j =
exp(vj)∑#L

i=1 exp(vi)
, (9.9)

which guarantees that the final classification scores are non-negative
and sum to 1. The anomaly score is then simply defined as T(x) =
−maxj pj , which is high when the posterior probability of the se-
lected class is low.

• PreSoftMax is based on the same idea as SoftMax, but uses as anomaly
score the opposite of the maximum classification score before apply-
ing SoftMax, i.e., T(x) = −maxj vj . In fact, even when all the scores
v of an anomalous instance x are low, SoftMax might still assign x to
one of the known classes with extremely high confidence since poste-
riors are forced to sum to 1 [131], thus preventing SoftMax to detect
x as Anomalous. The PreSoftMax scores are not subject to this con-
straint, so they might be more informative than the SoftMax scores in
anomaly detection.

• OpenMax is a function designed in [133] to replace SoftMax in open-
set classifiers at test time. This method employs as anomaly score the
likelihood of a Weibull distribution fitted on the distances between the

137

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

PreSoftMax score vectors v of a classifier and the Mean Activation
Vectors (MAVs) of each known class, computed from the training set.

• We denote by SME the open-set recognition method based on Soft-
Max Entropy proposed in [132]. SME relies of the observation that the
posterior probability vectors p of anomalous instances tend to have a
larger Shannon entropy compared to instances of known classes, thus
the anomaly score is defined as the entropy of the posterior probabil-
ities, i.e., T(x) = −∑j pj log pj . This method is part of a broader
solution for open-set recognition and one-shot detection [132], but
here we only consider the proposed open-set recognition solution.

• We denote by IFOR the open-set recognition method proposed in
[135] that applies the Isolation Forest [104] outlier detector to the
latent representation of the WDMs, i.e., to L(x). The method pre-
sented in [135] considers a latent representation including the features
extracted by a classifier and an embedding of the class labels to a se-
mantic word space. However, in our industrial setting, there is no
meaningful embedding of the labels to a semantic space. Hence we
only consider L(x) as input.

• We denote by CI the open-set recognition method proposed in [136]
that applies an outlier detector based on Confidence Intervals to the la-
tent representation of the classifier, treating each component of L(x)
as an independent variable. This method computes a confidence in-
terval µ̂± λσ̂ for each component, where µ̂ and σ̂ are estimated from
the training set, and its anomaly score is the number of components of
L(x) that exceed their confidence intervals.

Each of these methods produces a anomaly score and, similarly to ours,
requires a decision threshold computed on a small part of the dataset, as
illustrated in Section 9.2.2. However, we evaluate the anomaly-detection
performance by the AUC, which does not depend on the threshold, nor,
most importantly, on class proportions. SoftMax, PreSoftMax and SME do
not require training other than that of the SSCN. In OpenMax, we follow
the procedure presented in [133] to compute the MAVs and fit the Weibull
model from the entire dataset used to train the SSCN. For a fair comparison
with our solution, we adopt in IFOR and CI the same procedure illustrated
in Section 9.2.2, so we fit the Isolation Forest and compute the parameters
µ̂, σ̂ from a small portion of the dataset (5%) that was not used for training.

We remark that open-set recognition solutions based on the reconstruc-
tion error of autoencoders [138–140] have been designed for images and

138

9.3. Experiments and Discussion

Table 9.2: AUC of the considered methods in detecting each Anomalous class. Bold indicates the
best values, and the underlined values are significantly higher than the second-best on the same
anomalous class (p-value ≤ 0.05) according to the Mann-Whitney test [213]. We also report
the average rank over the anomalous classes and the p-values of the Wilcoxon test assessing the
significance of the performance differences between our solution and each alternative [74].

Anomaly SoftMax [131] PreSoftMax OpenMax [133] SME [132] IFOR [135] CI [136] GMM (ours)

BasketBall 0.3697 0.3234 0.3455 0.3191 0.9812 0.4009 0.9894
ClusterBig 0.7022 0.8272 0.7216 0.6776 0.9541 0.6195 0.9543
ClusterSmall 0.8672 0.9003 0.8775 0.8813 0.7694 0.8169 0.8227
Donut 0.4692 0.8508 0.6614 0.4270 0.9596 0.4916 0.9515
Fingerprints 0.8418 0.9222 0.8556 0.8234 0.8710 0.8214 0.9249
GeoScratch 0.6377 0.7282 0.6699 0.6177 0.7997 0.8557 0.8562
Grid 0.6716 0.5297 0.5454 0.6438 0.8933 0.4989 0.8907
HalfMoon 0.7465 0.8566 0.7918 0.7375 0.8234 0.8641 0.8873
Incomplete 0.8162 0.8438 0.8319 0.8258 0.5752 0.7672 0.7244
Ring 0.4898 0.4928 0.5211 0.4626 0.8590 0.7376 0.9196
Slice 0.8313 0.6944 0.7772 0.7723 0.8887 0.7969 0.9050
ZigZag 0.6448 0.7251 0.6647 0.6269 0.8802 0.8865 0.9149

Avg. rank 4.8333 3.7500 4.2500 5.7500 3.0833 4.4167 1.9167
Wilcoxon p 0.0024 0.0061 0.0024 0.0012 0.0024 0.0024 –

cannot be directly applied to full-resolution WDMs, hence we have not con-
sidered them. Instead, we have focused on open-set recognition methods
built on top of our SSCN, pre-trained to accurately classify WDMs from
known classes. This enables a fair comparison between the anomaly de-
tection power of methods that achieve the same classification performance
over known classes, which has been shown to strongly influence the open-
set recognition performance [144].

Results and discussion. Table 9.2 reports the AUC achieved by the consid-
ered methods in the anomaly-detection problem. As suggested in [74], we
also report the average rank of the considered methods and the p-values of
the one-sided Wilcoxon Signed-Rank test [75] assessing whether the dif-
ference between the AUC of our solution, which has the lowest average
rank, and those of the other methods is significant. As suggested in [213],
we apply the nonparametric Mann-Whitney test on the anomaly scores of
the best and second-best performing methods on each Anomalous class to
assess whether the difference between their AUC is statistically significant.

Table 9.2 indicates that our solution is the best in detecting 8 out of the
12 Anomalous classes. In 5 of these, the performance difference with the
second-best method is statistically significant (p-value≤ 0.05) according to
the Mann-Whitney test [213]. Most importantly, our solution achieves the
best average rank among the considered methods, and the p-values of the
Wilcoxon test show that there is enough statistical evidence to claim that

139

Chapter 9. Open-Set Recognition for Wafer Production Monitoring

GMM performs significantly better (p-value ≤ 0.05) than the alternatives.
As we note in Section 9.3.2, some classes are very similar and might be
easily confused by our SSCN (e.g., ClusterSmall and Incomplete), therefore
most of the considered methods find it difficult to detect them as anomalous.

The AUC values achieved by IFOR follow a trend similar to those of
GMM, even though inferior in most cases. These results can be explained
by observing that L(x) can be expected to follow a multimodal distribution
due to the presence of different known classes, and the GMM is explicitly
multimodal, while IFOR is a nonparametric outlier detector. In contrast,
SME and CI achieve relatively good results only on few specific Anomalous
classes, such as ClusterSmall.

SoftMax performs worse than most of the other methods: as expected,
anomalous instances are often classified with high confidence due to the
SoftMax operation. OpenMax performs better than SoftMax according to
the average ranks but worse than GMM. Perhaps surprisingly, PreSoftMax
performs very well, and represents the best method to detect ClusterSmall
and Incomplete, which are quite difficult to distinguish.

The fact that PreSoftMax outperforms OpenMax and SoftMax outper-
forms SME shows that the highest classification score (before and after
applying the SoftMax) is the most informative for anomaly detection in
WDMs, confirming the intuition that anomalous instances are likely to be
classified with low confidence. By also considering the other scores, Open-
Max and SME search for outliers in a 12-dimensional space where most
dimensions are not informative for anomaly detection, while PreSoftMax
and SoftMax operate on a 1-dimensional space since they only consider the
highest score. For this reason, we speculate that OpenMax and SME might
suffer from an effect similar to detectability loss [36] i.e., the higher the
dimensionality, the harder it is to detect a distribution change.

9.4 Discussion

The effective and automatic monitoring of large volumes of WDMs is a
crucial challenge to improve the quality and efficiency of industries operat-
ing in semiconductor manufacturing. Our results show that a simple deep-
learning model based on Submanifold Sparse Convolutions is substantially
more robust to class imbalance than traditional CNNs. This suggests that
binning WDMs to reduce their size before feeding them to a CNN leads to
a relevant information loss, thus an SSCN is the perfect instrument since it
allows to efficiently process WDMs at their original resolution.

Moreover, we are the first to address the open-set recognition problem

140

9.4. Discussion

on WDMs, which is of paramount importance for the industry because
anomalous patterns might occur due to production issues that have not been
observed yet. Our results show that applying a simple outlier detector based
on a GMM to the latent representation of our SSCN yields better anomaly-
detection performance than state-of-the-art open-set recognition methods,
which we also applied on top of our SSCN to obtain a fair comparison.

Our classifier is currently employed in several STMicroelectronics fa-
cilities all over the world. Future work will address the deployment of our
open-set recognition pipeline to monitor the production of wafers at the
STMicroelectronics plant in Agrate Brianza, Italy. Moreover, we are in-
vestigating the possibility to jointly train our SSCN and the GMM, using a
custom loss function to produce a latent representation that follows a Gaus-
sian mixture distribution, as in [110].

141

CHAPTER10
Concluding Remarks

In this thesis, we address anomaly detection, namely the problem of mon-
itoring data to determine whether the data-generating process operates in
normal conditions or not. This problem has relevant applications in several
domains, and each domain introduces specific challenges due to the struc-
ture of the data at hand. We address anomaly detection under two different
sets of modeling assumptions on the data-generating process.

In the first part of the thesis, we model the data as consecutive realiza-
tions of a random vector, and focus on the problem of detecting a perma-
nent distribution change in the datastream. The main challenge is designing
an online and nonparametric change-detection algorithm for multivariate
datastreams that can effectively control false alarms by maintaining the tar-
get Average Run Length (ARL0), namely the expected time before a false
alarm. We propose QuantTree Exponentially Weighted Moving Average
(QT-EWMA), a change-detection algorithm combining a QuantTree his-
togram, used to model the initial distribution from a training set, and a
new, powerful statistic based on Exponentially Weighted Moving Average
(EWMA). To effectively operate also when the training set is small, we
propose QT-EWMA-update, where we incrementally update the bin prob-
abilities of the QuantTree histogram using the incoming data.

143

Chapter 10. Concluding Remarks

The theoretical properties of QuantTree guarantee that the distribution of
the QT-EWMA and QT-EWMA-update statistics is independent from the
data distribution and dimension, and allow us to design an efficient Monte-
carlo procedure to compute thresholds that maintain a target ARL0 on any
datastream. Our experiments on synthetic and real-world data empirically
demonstrate that our algorithms effectively control the ARL0 and obtain
detection delays that are lower than or comparable to those of state-of-the-
art change-detection algorithms based on the Maximum Mean Discrepancy
statistic (MMD), especially when the training set is small.

We also address concept-drift detection, namely a change-detection prob-
lem where the data samples are the object of a classification problem. We
propose Class Distribution Monitoring (CDM), a new concept-drift detec-
tion algorithm leveraging multiple instances of QT-EWMA to monitor the
class-conditional distributions. Even though it combines multiple change-
detection tests, we demonstrate that CDM maintains the same target ARL0

as the QT-EWMA monitoring each class-conditional distribution. Our ex-
periments on synthetic and real-world data empirically show that CDM ef-
fectively controls the ARL0 and outperforms concept-drift detection algo-
rithms that monitor either the overall data distribution or the error rate of
an underlying classifier.

As a relevant application of change detection, we investigate sequential
side-channel attacks, a class of cryptographic attacks where a distinguisher,
namely a statistic of some side-channel data (e.g. the power consumption
of a cryptosystem), is used to recover the private key one bit at a time. To
determine the full potential danger posed by these attacks, we address the
problem of automatically detecting and correcting errors in these attacks.
We propose to monitor the univariate datastream of distinguisher values
using a state-of-the art change-detection algorithm to detect errors, and to
correct them by a brute-force search over a small window centered at each
detected error, using the new distinguisher values to select the correct com-
bination. Our experiments on synthetic and real-world side-channel mea-
surements demonstrate that our error-detection and correction procedure
can substantially improve the success rate of sequential attacks, outper-
forming existing solutions that detect an error whenever the distinguisher
falls below a pre-defined threshold.

In the second part of the thesis, we model the data as individually ac-
quired point clouds, namely lists of coordinates describing objects in a 2D
or 3D space. In this case, the goal is to assess whether a test point cloud be-
longs to the normal class, which is the only class represented in the training
set, or instead must be considered anomalous. The main challenge of point

144

cloud processing is the lack of a grid structure, which prevents from using
traditional convolutions. We propose the Composite Layer, a new opera-
tor to process point clouds in deep neural networks. Differently from the
existing convolutional layers for point clouds, our Composite Layer first
extracts the spatial information from the coordinates of the points, and then
shares this information among the convolutional filters. Compared to the
alternatives, our Composite Layer operates more similarly to a convolu-
tional layer on an image, where the spatial information is embedded in the
grid structure and thus is implicitly shared among the filters. Moreover,
our Composite Layer can be designed with greater flexibility in terms of
structure and number of parameters.

We define a convolutional and a non-convolutional Composite Layers,
and use them to implement CompositeNets, deep neural networks that we
train for classification and, most remarkably, anomaly detection, following
a self-supervised approach. Our experiments on synthetic and real-world
point clouds show that, in classification, our CompositeNets approach the
accuracy of a more sophisticated network based on an alternative convo-
lutional layer. Most remarkably, in anomaly detection our self-supervised
CompositeNets outperform shallow baselines using hand-crafted features,
a variational autoencoder that is the only deep-learning based anomaly-
detection method for point clouds, and similar self-supervised networks
based on alternative convolutional layers.

As a relevant application of anomaly detection in point clouds, we ad-
dress the problem of monitoring Wafer Defect Maps (WDMs), namely
point clouds listing the 2D coordinates where defects lie within a silicon
wafer. These coordinates belong to a regular grid defined by the precision
of the inspection machines, however the resolution is huge and prevents
traditional CNNs from directly processing WDMs. In normal conditions,
defects are rare and randomly distributed, while defects grouped in patterns
indicate problems in the manufacturing process. Some classes of defect
patterns have already been studied by production engineers, while anoma-
lous patterns might occur due to unexpected issue in the production line,
and therefore must be detected as soon as possible. For this reason, we cast
WDM monitoring as an open-set recognition problem, where the goal is to
recognize instances from a set of known classes and to detect anomalies,
i.e. instances that do not belong to any known class.

We propose to employ a Submanifold Sparse Convolutional Network
(SSCN), which can efficiently process high-resolution, sparse images such
as WDMs. In particular, we train a custom SSCN on the known classes,
and to detect anomalous patterns by applying an outlier detector based on

145

Chapter 10. Concluding Remarks

a Gaussian Mixture Model (GMM) fitted on the latent representation, i.e.
the output of the penultimate layer of our SSCN. Since our dataset is ex-
tremely imbalanced, we employ a data augmentation procedure combining
traditional and custom transformations. Since our dataset does not contain
any anomalous pattern, to evaluate the open-set recognition performance
we design an experimental setup in which we train our multiple SSCNs,
each time taking out a defect class from the training set and considering
it anomalous during testing. Our experiments on WDMs acquired at the
STMicroelectronics plant in Agrate Brianza, Italy show that, in classifi-
cation, our SSCN outperforms traditional CNNs trained on low-resolution
images obtained by binning the WDMs. In particular, our results suggest
that our SSCN is more robust to class imbalance and overfitting. In the
anomaly-detection task, our solution outperforms state-of-the-art open-set
recognition methods, which we also apply on top of our SSCN to obtain a
fair comparison.

10.1 Future Work

The research presented in this thesis can be expanded following different
directions. First, we have shown that QT-EWMA is an effective exten-
sion of the QuantTree algorithm to online change detection, but it might
be worth investigating how to combine QuantTree with other monitoring
schemes such as the Change Point Model (CPM) [12] or the Binned Gener-
alized Cumulative Sum (BG-CuSum) [50]. Another possible extension of
our work involves CDM. For simplicity, here we employ the same change-
detection algorithm (namely, an instance of QT-EWMA) to monitor each
class-conditional distribution. However, it might be possible to boost the
concept-drift detection performance using QuantTree histograms with dif-
ferent number of bins, or even different change-detection algorithms (as
long as they control the ARL0), leveraging prior knowledge on the class-
conditional distributions.

Our work on point clouds might be extended by using our Composite
Layers to implement new anomaly-detection networks [114] to overcome
the intrinsic limitations of the self-supervised approach, which requires to
select domain-dependent geometric transformations. A research direction
we do not pursue in this thesis is the design of deep-learning methods to de-
tect anomalous regions within point clouds. This problem has been widely
studied on images, but not on point clouds, mainly due to the lack of suit-
able datasets, which are now starting to be released [126].

Besides the deployment of our WDM monitoring pipeline in the STMi-

146

10.1. Future Work

croelectronics plant in Agrate Brianza, our open-set recognition solution
might be extended by jointly training our SSCN and the GMM, using a
custom loss function to learn a latent representation that follows a Gaus-
sian mixture distribution, following the approach presented in [110] to train
a deep autoencoder for anomaly detection.

147

APPENDIXA
Additional Results on QT-EWMA

Here we report and comment the results of our change-detection experi-
ments on the following datasets: Credit Card Fraud Detection (“credit”,
d = 28) from [71], Sensorless Drive Diagnosis (“sensorless”, d = 48),
MiniBooNE particle identification (“particle”, d = 50), Physicochemi-
cal Properties of Protein Ternary Structure (“protein”, d = 9), El Niño
Southern Oscillation (“niño”, d = 5), and two of the Forest Covertype
datasets (“spruce” and “lodgepole”, d = 10) from the UCI Machine Learn-
ing Repository [72]. For brevity, in Chapter 4 we have reported only the
average results.

Empirical ARL0. The comparison between the empirical and target ARL0

on simulated Gaussian datastreams sampled from the credit [71] (see Fig-
ure A.1 (a,b,c,d)) and all the considered UCI datasets [72] (see Figures
A.2–A.7) confirms that QT-EWMA, QT-EWMA-update and SPLL-CPM
control the ARL0 very accurately, independently from the data dimension
d and the training set size N , as shown in Chapter 4. The empirical ARL0

of QuantTree is higher than the target, as we expected from Proposition 4.2,
while Scan-B cannot maintain high target ARL0.

149

Appendix A. Additional Results on QT-EWMA

Detection delay vs false alarms. When the training set is small (N = 64, 128,
256) QT-EWMA-update is the best method in terms of detection delay over
the particle (Figure A.3 (b,d,f)) and niño (Figure A.5 (b,d,f)) datasets, and
is outperformed only by SPLL-CPM over the other datasets, though only
slightly over spruce (Figure A.6 (b,d,f)) and lodgepole (Figure A.7 (b,d,f)).
This confirms that, overall, SPLL-CPM slightly outperforms QT-EWMA-
update over the UCI+credit datasets when N = 64, 128, 256, as shown
by the average results presented in Chapter 4. In contrast, Scan-B yields
higher detection delays compared to QT-EWMA-update on all the consid-
ered datasets when N = 64, 128, 256.

As observed in Chapter 4, QT-EWMA-update outperforms QT-EWMA
in terms of detection delay whenN is small (especially whenN = 64, 128)
over real-world datastreams (Figures A.1–A.7). These results confirm that
updating the QuantTree histograms improves the detection performance
when the initial training set is small. Moreover, over all the considered
datasets we have that QT-EWMA and QT-EWMA-update outperform Quant-
Tree, consistently with the experiments illustrated in Chapter 4.

When the training set is large (N = 4096), Scan-B substantially im-
proves its detection delays, being the best-performing method over the
credit dataset (Figure A.1 (h)) and approaching QT-EWMA over the sen-
sorless (Figure A.2 (h)) and particle (Figure A.3 (h)) datasets. QT-EWMA
outperforms all the other methods over the particle (Figure A.3 (h)) and
niño (Figure A.5 (h)) datasets, while SPLL-CPM yields the lowest detec-
tion delays on the remaining datasets, although it only slightly outperforms
QT-EWMA over the protein (Figure A.4 (h)), spruce (Figure A.6 (h)) and
lodgepole (Figure A.7 (h)) datasets. These plots show that QT-EWMA is
very effective on the UCI+credit datasets in terms of detection delay, con-
firming the average results reported in Chapter 4. Moreover, these experi-
mental results confirm our observation that Scan-B requires a large training
set to achieve good detection performance.

We recall that, when the false alarm probability of a change-detection
algorithm is a constant α at each time t, its stopping time t∗ is a Geometric
random variable having parameter α [52]. Hence, when the ARL0 is con-
trolled by setting a constant false alarm probability α = 1/ARL0, the false
alarm probability at any time t corresponds to the Geometric sum:

Pϕ0(t
∗ ≤ t) =

t∑

k=1

α(1− α)k−1 = 1− (1− α)t, (A.1)

thus the change-detection algorithm can control the false alarm rate at any
time t, as we show in Chapter 4. The results presented here over datas-

150

treams sampled from the considered UCI+credit datasets (Figure A.1-A.7)
confirm that QT-EWMA, QT-EWMA-update and SPLL-CPM approach the
target values computed by (A.1) at ARL0 = 500, 1000, 2000, 5000. As in
Chapter 4, we observe that QuantTree has fewer false alarms than expected,
and this is a consequence the fact that its empirical ARL0 is greater than the
target due to Proposition 4.2. In contrast, SPLL has more false alarms than
expected since its empirical ARL0 is slightly lower than the target, which
confirms that computing the thresholds by bootstrap over a limited training
set yields inaccurate estimates, as we observe also in Chapter 4. The false
alarms of Scan-B, instead, exhibit a completely different behavior, which
also depends on the data distribution, confirming that its thresholds do not
yield a constant false alarm probability. All in all, these results confirm
those presented in Chapter 4, showing that QT-EWMA and QT-EWMA-
update can control the false alarm rates in all the considered datasets and
monitoring scenarios.

151

Appendix A. Additional Results on QT-EWMA

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

false alarm rate (%)

de
te

ct
io

n
de

la
y

credit, N = 64

(a) (b)
credit, N = 128

(c) (d)
credit, N = 256

(e) (f)
credit, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.1: Experimental results over the credit dataset (d = 28) [71]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is SPLL-CPM when N = 64, 128. QT-EWMA and QT-EWMA-update
outperform all the other methods when N = 256, while Scan-B is the best method when N =
4096. Only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates
given by (A.1), which are represented in the plots by vertical dotted lines.

152

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70

0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80

0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

sensorless, N = 64

(a) (b)
sensorless, N = 128

(c) (d)
sensorless, N = 256

(e) (f)
sensorless, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.2: Experimental results over the sensorless dataset (d = 48) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, SPLL-CPM is the best method in all the considered scenarios, and SPLL achieves similar
results when N = 4096. We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM
achieve the target false alarm rates given by (A.1), which are represented in the plots by vertical
dotted lines.

153

Appendix A. Additional Results on QT-EWMA

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

particle, N = 64

(a) (b)
particle, N = 128

(c) (d)
particle, N = 256

(e) (f)
particle, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.3: Experimental results over the particle dataset (d = 50) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is QT-EWMA-update when N = 64, 128, 256, and QT-EWMA (on par
with Scan-B) when N = 4096. We observe that only QT-EWMA, QT-EWMA-update and SPLL-
CPM achieve the target false alarm rates given by (A.1), which are represented in the plots by
vertical dotted lines.

154

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

500

1000

1500

2000

2500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80 90
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

protein, N = 64

(a) (b)
protein, N = 128

(c) (d)
protein, N = 256

(e) (f)
protein, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.4: Experimental results over the protein dataset (d = 9) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is SPLL-CPM for all the considered values of N , approached by QT-
EWMA when N = 4096. We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM
achieve the target false alarm rates given by (A.1), which are represented in the plots by vertical
dotted lines.

155

Appendix A. Additional Results on QT-EWMA

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60
0

500

1000

1500

2000

2500

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

500

1000

1500

2000

false alarm rate (%)

de
te

ct
io

n
de

la
y

niño, N = 64

(a) (b)
niño, N = 128

(c) (d)
niño, N = 256

(e) (f)
niño, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.5: Experimental results over the niño dataset (d = 5) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is QT-EWMA-update when N = 64, 128, 256, and QT-EWMA when
N = 4096. We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the
target false alarm rates given by (A.1), which are represented in the plots by vertical dotted
lines.

156

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70 80

0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0
100
200
300
400
500
600
700

false alarm rate (%)

de
te

ct
io

n
de

la
y

spruce, N = 64

(a) (b)
spruce, N = 128

(c) (d)
spruce, N = 256

(e) (f)
spruce, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.6: Experimental results over the spruce dataset (d = 10) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is SPLL-CPM, although all the methods except Scan-B perform similarly.
We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false
alarm rates given by (A.1), which are represented in the plots by vertical dotted lines.

157

Appendix A. Additional Results on QT-EWMA

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

0 10 20 30 40 50 60 70 80

0

250

500

750

1000

1250

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0

200

400

600

800

1000

false alarm rate (%)

de
te

ct
io

n
de

la
y

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L
0

10 20 30 40 50 60 70

0
100
200
300
400
500
600
700

false alarm rate (%)

de
te

ct
io

n
de

la
y

lodgepole, N = 64

(a) (b)
lodgepole, N = 128

(c) (d)
lodgepole, N = 256

(e) (f)
lodgepole, N = 4096

(g) (h)

QT-EWMA QT-EWMA-update QuantTree [3] SPLL [29] SPLL-CPM Scan-B [34]

Figure A.7: Experimental results over the lodgepole dataset (d = 10) [72]. (a,c,e,g) show that the
empirical ARL0 of QT-EWMA, QT-EWMA-update and SPLL-CPM approaches the target, while
Scan-B and SPLL cannot maintain the target ARL0. (b,d,f,h) show that, in terms of detection
delay, the best method is SPLL-CPM, although all the methods except Scan-B perform similarly.
We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false
alarm rates given by (A.1), which are represented in the plots by vertical dotted lines.

158

Bibliography

[1] Luca Frittoli, Diego Carrera, and Giacomo Boracchi. Change detection in multivariate datas-
treams controlling false alarms. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML–PKDD), pages 421–436. Springer, 2021.

[2] Luca Frittoli, Diego Carrera, and Giacomo Boracchi. Nonparametric and online change de-
tection in multivariate datastreams using QuantTree. IEEE Transactions on Knowledge and
Data Engineering, pages 1–14, 2022.

[3] Giacomo Boracchi, Diego Carrera, Cristiano Cervellera, and Danilo Macciò. QuantTree:
histograms for change detection in multivariate data streams. In International Conference on
Machine Learning, pages 639–648. PMLR, 2018.

[4] Diego Stucchi, Luca Frittoli, and Giacomo Boracchi. Class distribution monitoring for con-
cept drift detection. In IEEE-INNS International Joint Conference on Neural Networks
(IJCNN). IEEE, 2022.

[5] Luca Frittoli, Matteo Bocchi, Silvia Mella, Diego Carrera, Beatrice Rossi, Pasqualina Fra-
gneto, Ruggero Susella, and Giacomo Boracchi. Strengthening sequential side-channel at-
tacks through change detection. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 3:1–21, 2020.

[6] Alberto Floris, Luca Frittoli, Diego Carrera, and Giacomo Boracchi. Composite layers for
deep anomaly detection on 3D point clouds. arXiv preprint arXiv:2209.11796, under review
for IEEE Transactions on Image Processing, 2022.

[7] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. In
Advances in Neural Information Processing Systems, pages 9781–9791, 2018.

[8] Luca Frittoli, Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, and Giacomo Boracchi.
Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition,
124:108488, 2022.

[9] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation
with submanifold sparse convolutional networks. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 9224–9232, 2018.

[10] Andrea Bionda, Luca Frittoli, and Giacomo Boracchi. Deep autoencoders for anomaly detec-
tion in textured images using CW-SSIM. In International Conference on Image Analysis and
Processing (ICIAP), pages 669–680. Springer, 2022.

159

Bibliography

[11] Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and appli-
cation, volume 104. Prentice Hall Englewood Cliffs, 1993.

[12] Douglas M Hawkins, Peihua Qiu, and Chang Wook Kang. The changepoint model for statis-
tical process control. Journal of Quality Technology, 35(4):355–366, 2003.

[13] Walter Andrew Shewhart. Economic control of quality of manufactured product. MacMillan
And Co Ltd, London, 1931.

[14] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[15] SW Roberts. Control chart tests based on geometric moving averages. Technometrics,
1(3):239–250, 1959.

[16] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. A just-in-time adaptive classification
system based on the intersection of confidence intervals rule. Neural Networks, 24(8):791–
800, 2011.

[17] George EP Box and David R Cox. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), 26(2):211–243, 1964.

[18] Henry B Mann and Donald R Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, pages 50–60,
1947.

[19] Alexander M Mood et al. On the asymptotic efficiency of certain nonparametric two-sample
tests. The Annals of Mathematical Statistics, 25(3):514–522, 1954.

[20] Yves Lepage. A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika,
58(1):213–217, 1971.

[21] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American
Statistical Association, 46(253):68–78, 1951.

[22] Shen-Shyang Ho. A Martingale framework for concept change detection in time-varying data
streams. In International Conference on Machine Learning, pages 321–327, 2005.

[23] Niloofar Mozafari, Sattar Hashemi, and Ali Hamzeh. A precise statistical approach for con-
cept change detection in unlabeled data streams. Computers & Mathematics with Applica-
tions, 62(4):1655–1669, 2011.

[24] Douglas M Hawkins and KD Zamba. A change-point model for a shift in variance. Journal
of Quality Technology, 37(1):21–31, 2005.

[25] Gordon J Ross, Dimitris K Tasoulis, and Niall M Adams. Nonparametric monitoring of data
streams for changes in location and scale. Technometrics, 53(4):379–389, 2011.

[26] Gordon J Ross and Niall M Adams. Two nonparametric control charts for detecting arbitrary
distribution changes. Journal of Quality Technology, 44(2):102–116, 2012.

[27] Harold Hotelling. A generalized t test and measure of multivariate dispersion. In Berkeley
Symposium on Mathematical Statistics and Probability, pages 23–41. University of Califor-
nia, 1951.

[28] Alexander G Tartakovsky, Boris L Rozovskii, Rudolf B Blazek, and Hongjoong Kim. A
novel approach to detection of intrusions in computer networks via adaptive sequential and
batch-sequential change-point detection methods. IEEE Transactions on Signal Processing,
54(9):3372–3382, 2006.

[29] Ludmila I Kuncheva. Change detection in streaming multivariate data using likelihood detec-
tors. IEEE Transactions on Knowledge and Data Engineering, 25(5):1175–1180, 2011.

160

Bibliography

[30] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke Yi. An
information-theoretic approach to detecting changes in multi-dimensional data streams. In
Symposium on the Interface of Statistics, Computing Science, and Applications. Citeseer,
2006.

[31] Giacomo Boracchi, Cristiano Cervellera, and Danilo Macciò. Uniform histograms for change
detection in multivariate data. In IEEE International Joint Conference on Neural Networks
(IJCNN), pages 1732–1739. IEEE, 2017.

[32] Erich L Lehmann and Joseph P Romano. Testing statistical hypotheses. Springer, 2006.

[33] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–
773, 2012.

[34] Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-point detection.
Advances in Neural Information Processing Systems, 28:3366–3374, 2015.

[35] Xiuyuan Cheng and Yao Xie. Neural tangent kernel maximum mean discrepancy. Advances
in Neural Information Processing Systems, 34:6658–6670, 2021.

[36] Cesare Alippi, Giacomo Boracchi, Diego Carrera, and Manuel Roveri. Change detection in
multivariate datastreams: Likelihood and detectability loss. International Joint Conference
on Artificial Intelligence, 2:1368–1374, 2016.

[37] Ludmila I Kuncheva and William J Faithfull. PCA feature extraction for change detection
in multidimensional unlabeled data. IEEE Transactions on Neural Networks and Learning
Systems, 25(1):69–80, 2013.

[38] Abdulhakim A Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang. A PCA-based
change detection framework for multidimensional data streams. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 935–944, 2015.

[39] Yao Xie and David Siegmund. Sequential multi-sensor change-point detection. In 2013
Information Theory and Applications Workshop, pages 1–20. IEEE, 2013.

[40] Georgios Fellouris and Alexander G Tartakovsky. Multichannel sequential detection-part I:
Non-iid data. IEEE Transactions on Information Theory, 63(7):4551–4571, 2017.

[41] Zhongchang Sun, Shaofeng Zou, Ruizhi Zhang, and Qunwei Li. Quickest change detection
in anonymous heterogeneous sensor networks. IEEE Transactions on Signal Processing,
70:1041–1055, 2022.

[42] Diego Carrera and Giacomo Boracchi. Generating high-dimensional datastreams for change
detection. Big Data Research, 11:11–21, 2018.

[43] Harold Hotelling. Multivariate quality control. Techniques of Statistical Analysis, 1947.

[44] Ronald B Crosier. Multivariate generalizations of cumulative sum quality-control schemes.
Technometrics, 30(3):291–303, 1988.

[45] Liyan Xie, Yao Xie, and George V Moustakides. Sequential subspace change point detection.
Sequential Analysis, 39(3):307–335, 2020.

[46] Cynthia A Lowry, William H Woodall, Charles W Champ, and Steven E Rigdon. A multi-
variate exponentially weighted moving average control chart. Technometrics, 34(1):46–53,
1992.

[47] KD Zamba and Douglas M Hawkins. A multivariate change-point model for statistical pro-
cess control. Technometrics, 48(4):539–549, 2006.

[48] Alexandre Lung-Yut-Fong, Céline Lévy-Leduc, and Olivier Cappé. Robust changepoint
detection based on multivariate rank statistics. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3608–3611. IEEE, 2011.

161

Bibliography

[49] David S Matteson and Nicholas A James. A nonparametric approach for multiple change
point analysis of multivariate data. Journal of the American Statistical Association,
109(505):334–345, 2014.

[50] Tze Siong Lau, Wee Peng Tay, and Venugopal V Veeravalli. A binning approach to quick-
est change detection with unknown post-change distribution. IEEE Transactions on Signal
Processing, 67(3):609–621, 2018.

[51] Nicolas Keriven, Damien Garreau, and Iacopo Poli. NEWMA: a new method for scalable
model-free online change-point detection. IEEE Transactions on Signal Processing, 68:3515–
3528, 2020.

[52] Thomas M Margavio, Michael D Conerly, William H Woodall, and Laurel G Drake. Alarm
rates for quality control charts. Statistics & Probability Letters, 24(3):219–224, 1995.

[53] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

[54] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. Learning
under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering,
31(12):2346–2363, 2018.

[55] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.
A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):44, 2014.

[56] Gordon J Ross, Niall M Adams, Dimitris K Tasoulis, and David J Hand. Exponentially
weighted moving average charts for detecting concept drift. Pattern Recognition Letters,
33(2):191–198, 2012.

[57] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detec-
tion. In Brazilian Symposium on Artificial Intelligence, pages 286–295. Springer, 2004.

[58] João Gama and Gladys Castillo. Learning with local drift detection. In International Confer-
ence on Advanced Data Mining and Applications, pages 42–55. Springer, 2006.

[59] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavalda, and
Rafael Morales-Bueno. Early drift detection method. In Fourth International Workshop on
Knowledge Discovery from Data Streams, volume 6, pages 77–86, 2006.

[60] Isvani Frias-Blanco, José del Campo-Ávila, Gonzalo Ramos-Jimenez, Rafael Morales-
Bueno, Agustin Ortiz-Diaz, and Yailé Caballero-Mota. Online and non-parametric drift de-
tection methods based on Hoeffding’s bounds. IEEE Transactions on Knowledge and Data
Engineering, 27(3):810–823, 2014.

[61] Roberto Souto Maior de Barros, Juan Isidro González Hidalgo, and Danilo Rafael
de Lima Cabral. Wilcoxon rank sum test drift detector. Neurocomputing, 275:1954–1963,
2018.

[62] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive window-
ing. In 2007 SIAM International Conference on Data Mining, pages 443–448. SIAM, 2007.

[63] Albert Bifet and Ricard Gavalda. Adaptive learning from evolving data streams. In Interna-
tional Symposium on Intelligent Data Analysis, pages 249–260. Springer, 2009.

[64] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavalda. New
ensemble methods for evolving data streams. In 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 139–148, 2009.

[65] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard
Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for evolving data
stream classification. Machine Learning, 106(9):1469–1495, 2017.

162

Bibliography

[66] Shuo Wang and Leandro L Minku. AUC estimation and concept drift detection for imbal-
anced data streams with multiple classes. In IEEE International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2020.

[67] Łukasz Korycki and Bartosz Krawczyk. Concept drift detection from multi-class imbalanced
data streams. In 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 1068–1079. IEEE, 2021.

[68] Bela A Frigyik, Amol Kapila, and Maya R Gupta. Introduction to the Dirichlet distribution
and related processes. Technical Report UWEETR-2010-0006, 2010.

[69] Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Continuous multivari-
ate distributions, Volume 1: Models and applications. John Wiley & Sons, 2004.

[70] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[71] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bon-
tempi. Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE
Transactions on Neural Networks and Learning Systems, 29(8):3784–3797, 2017.

[72] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[73] Vinicius Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA Batista. Chal-
lenges in benchmarking stream learning algorithms with real-world data. Data Mining and
Knowledge Discovery, 34(6):1805–1858, 2020.

[74] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7:1–30, 2006.

[75] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80–83, 1945.

[76] Peter Bjorn Nemenyi. Distribution-free multiple comparisons. PhD Thesis, Princeton Uni-
versity, 1963.

[77] Olive Jean Dunn. Multiple comparisons among means. Journal of the American Statistical
Association, 56(293):52–64, 1961.

[78] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

[79] Paul C Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual
International Cryptology Conference, pages 388–397. Springer, 1999.

[80] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: con-
crete results. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 251–261. Springer, 2001.

[81] Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal and vertical
side-channel attacks against secure RSA implementations. In Cryptographers’ Track at the
RSA Conference, pages 1–17. Springer, 2013.

[82] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil.
Horizontal correlation analysis on exponentiation. In International Conference on Informa-
tion and Communications Security, pages 46–61. Springer, 2010.

[83] Richard W Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, 1950.

[84] Jean-Jacques Quisquater, François Koeune, and Werner Schindler. Unleashing the full power
of timing attack. In Universite Catholique de Louvain–Crypto Group, 2001. 120, 130 BIBLI-
OGRAPHY 159. Citeseer, 2001.

163

Bibliography

[85] Werner Schindler, François Koeune, and Jean-Jacques Quisquater. Improving divide and
conquer attacks against cryptosystems by better error detection/correction strategies. In IMA
International Conference on Cryptography and Coding, pages 245–267. Springer, 2001.

[86] Werner Schindler. On the optimization of side-channel attacks by advanced stochastic meth-
ods. In International Workshop on Public Key Cryptography, pages 85–103. Springer, 2005.

[87] Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré, Jean-
Jacques Quisquater, and Jean-Louis Willems. A practical implementation of the timing attack.
In International Conference on Smart Card Research and Advanced Applications, pages 167–
182. Springer, 1998.

[88] CaiSen Chen, Tao Wang, and Junjian Tian. Improving timing attack on RSA-CRT via error
detection and correction strategy. Information Sciences, 232:464–474, 2013.

[89] Chao Luo, Yunsi Fei, and David Kaeli. GPU acceleration of RSA is vulnerable to side-
channel timing attacks. In International Conference on Computer-Aided Design, pages 113–
120. ACM, 2018.

[90] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. A hierarchical, nonparametric, se-
quential change-detection test. In IEEE International Joint Conference on Neural Networks
(IJCNN), pages 2889–2896. IEEE, 2011.

[91] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[92] Colin D Walter. Sliding windows succumbs to big mac attack. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 286–299. Springer, 2001.

[93] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage
model. In International Workshop on Cryptographic Hardware and Embedded Systems, pages
16–29. Springer, 2004.

[94] Peter L Montgomery. Modular multiplication without trial division. Mathematics of Compu-
tation, 44(170):519–521, 1985.

[95] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech
Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Müller. A unifying review of
deep and shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795, 2021.

[96] Emanuel Parzen. On estimation of a probability density function and mode. The Annals of
Mathematical Statistics, 33(3):1065–1076, 1962.

[97] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[98] Stephen Roberts and Lionel Tarassenko. A probabilistic resource allocating network for nov-
elty detection. Neural Computation, 6(2):270–284, 1994.

[99] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1):1–22, 1977.

[100] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural Computa-
tion, 13(7):1443–1471, 2001.

[101] David MJ Tax and Robert PW Duin. Support vector data description. Machine Learning,
54(1):45–66, 2004.

[102] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms
and applications. The VLDB Journal, 8(3):237–253, 2000.

164

Bibliography

[103] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. LOF: identifying
density-based local outliers. In 2000 ACM SIGMOD International Conference on Manage-
ment of Data, pages 93–104, 2000.

[104] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422. IEEE, 2008.

[105] Gordon Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Transactions
on Information Theory, 14(1):55–63, 1968.

[106] Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, and Giacomo Boracchi. Online anomaly
detection for long-term ECG monitoring using wearable devices. Pattern Recognition,
88:482–492, 2019.

[107] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders.
In 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 665–674, 2017.

[108] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Robust, deep and in-
ductive anomaly detection. In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 36–51. Springer, 2017.

[109] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha
Venkatesh, and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly detection. In IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1705–1714, 2019.

[110] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and
Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detec-
tion. In International Conference on Learning Representations, 2018.

[111] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie.
High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep
learning. Pattern Recognition, 58:121–134, 2016.

[112] Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In
International Conference on Machine Learning, volume 80, pages 4393–4402. PMLR, 2018.

[113] Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller,
Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In Inter-
national Conference on Learning Representations, 2020.

[114] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain.
DROCC: Deep robust one-class classification. In International Conference on Machine
Learning, pages 3711–3721. PMLR, 2020.

[115] Penny Chong, Lukas Ruff, Marius Kloft, and Alexander Binder. Simple and effective preven-
tion of mode collapse in deep one-class classification. In IEEE International Joint Conference
on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

[116] Duc Tam Nguyen, Zhongyu Lou, Michael Klar, and Thomas Brox. Anomaly detection with
multiple-hypotheses predictions. In International Conference on Machine Learning, pages
4800–4809. PMLR, 2019.

[117] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. GANomaly: Semi-supervised
anomaly detection via adversarial training. In Asian Conference on Computer Vision, pages
622–637. Springer, 2018.

165

Bibliography

[118] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Kloft. Image
anomaly detection with generative adversarial networks. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML–PKDD), pages 3–17.
Springer, 2018.

[119] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems, 27, 2014.

[120] Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft.
Effective end-to-end unsupervised outlier detection via inlier priority of discriminative net-
work. Advances in Neural Information Processing Systems, 32:5960–5973, 2019.

[121] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph. Neural trans-
formation learning for deep anomaly detection beyond images. In International Conference
on Machine Learning, pages 8703–8714. PMLR, 2021.

[122] Alex Tamkin, Mike Wu, and Noah Goodman. Viewmaker networks: Learning views for unsu-
pervised representation learning. In International Conference on Learning Representations,
2021.

[123] Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattlegger, and Steger Carsten. Improv-
ing unsupervised defect segmentation by applying structural similarity to autoencoders. In
International Joint Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (VISAPP), pages 372–380. SciTePress, 2019.

[124] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students:
Student-teacher anomaly detection with discriminative latent embeddings. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 4183–4192, 2020.

[125] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Reconstruction by inpainting for visual
anomaly detection. Pattern Recognition, 112:107706, 2021.

[126] Paul Bergmann., Xin Jin., David Sattlegger., and Carsten Steger. The MVTec 3D-AD dataset
for unsupervised 3D anomaly detection and localization. In 17th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications (VIS-
APP), pages 202–213. SciTePress, 2022.

[127] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. Probability models for open set recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2317–2324,
2014.

[128] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set
recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(10):3614–3631, 2020.

[129] Abhijit Bendale and Terrance Boult. Towards open world recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1893–1902, 2015.

[130] He Zhang and Vishal M Patel. Sparse representation-based open set recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 39(8):1690–1696, 2016.

[131] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In International Conference on Learning Repre-
sentations, 2017.

[132] Chuanxing Geng, Lue Tao, and Songcan Chen. Guided CNN for generalized zero-shot and
open-set recognition using visual and semantic prototypes. Pattern Recognition, 102:107263,
2020.

166

Bibliography

[133] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1563–1572, 2016.

[134] Hakan Cevikalp, Bedirhan Uzun, Okan Köpüklü, and Gurkan Ozturk. Deep compact poly-
hedral conic classifier for open and closed set recognition. Pattern Recognition, 119:108080,
2021.

[135] Yue Zhu, Kai Ming Ting, and Zhi-Hua Zhou. Multi-label learning with emerging new labels.
IEEE Transactions on Knowledge and Data Engineering, 30(10):1901–1914, 2018.

[136] Yu Zhang, Yin Wang, Xu-Ying Liu, Siya Mi, and Min-Ling Zhang. Large-scale multi-label
classification using unknown streaming images. Pattern Recognition, 99:107100, 2020.

[137] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. In Advances in Neural Information Processing Systems, pages
935–943, 2013.

[138] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Nae-
mura. Classification-reconstruction learning for open-set recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4016–4025, 2019.

[139] Poojan Oza and Vishal M Patel. C2AE: Class conditioned auto-encoder for open-set recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2307–2316,
2019.

[140] Xin Sun, Zhenning Yang, Chi Zhang, Keck-Voon Ling, and Guohao Peng. Conditional gaus-
sian distribution learning for open set recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13480–13489, 2020.

[141] Zongyuan Ge, Sergey Demyanov, Zetao Chen, and Rahil Garnavi. Generative openmax for
multi-class open set classification. In British Machine Vision Conference, 2017.

[142] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set
learning with counterfactual images. In European Conference on Computer Vision, pages
613–628, 2018.

[143] Inhyuk Jo, Jungtaek Kim, Hyohyeong Kang, Yong-Deok Kim, and Seungjin Choi. Open set
recognition by regularising classifier with fake data generated by generative adversarial net-
works. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2686–2690. IEEE, 2018.

[144] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need? In International Conference on Learning Representa-
tions, 2022.

[145] Alexandre Boulch. ConvPoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics, 88:24–34, 2020.

[146] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. KPConv: Flexible and deformable convolution for point
clouds. In IEEE International Conference on Computer Vision, pages 6411–6420, 2019.

[147] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, and Dongpu Cao.
Deep learning for image and point cloud fusion in autonomous driving: A review. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[148] Zurui Ao, Yanjun Su, Wenkai Li, Qinghua Guo, and Jing Zhang. One-class classification
of airborne LiDAR data in urban areas using a presence and background learning algorithm.
Remote Sensing, 9(10):1001, 2017.

167

Bibliography

[149] Simone Teruggi, Eleonora Grilli, Michele Russo, Francesco Fassi, and Fabio Remondino. A
hierarchical machine learning approach for multi-level and multi-resolution 3d point cloud
classification. Remote Sensing, 12(16):2598, 2020.

[150] Charles R. Qi, Hao Su, Mo Kaichun, and Leonidas J. Guibas. PointNet: Deep learning on
point sets for 3d classification and segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 77–85, 2017.

[151] Charles R. Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas Guibas.
Volumetric and multi-view CNNs for object classification on 3D data. In IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[152] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann. Robust 3d hand pose estimation
from single depth images using multi-view CNNs. IEEE Transactions on Image Processing,
27(9):4422–4436, 2018.

[153] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3075–3084, 2019.

[154] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun.
Deep learning for 3d point clouds: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(12):4338–4364, 2021.

[155] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hierarchical fea-
ture learning on point sets in a metric space. In Advances in Neural Information Processing
Systems, 2017.

[156] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by
extension operators. ACM Transactions on Graphics, 37(4), 07 2018.

[157] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep
parametric continuous convolutional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2589–2597, 2018.

[158] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convolutional networks on 3d
point clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9621–9630, 2019.

[159] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. SpiderCNN: Deep learning
on point sets with parameterized convolutional filters. In European Conference on Computer
Vision, pages 87–102. Springer, 2018.

[160] Fei Yang, Huan Wang, and Zhong Jin. Adaptive GMM convolution for point cloud learning.
In British Machine Vision Conference, 2021.

[161] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpolated convolutional networks for
3d point cloud understanding. In IEEE/CVF International Conference on Computer Vision,
pages 1578–1587, 2019.

[162] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, and Xiaoguang
Han. FPConv: Learning local flattening for point convolution. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4293–4302, 2020.

[163] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional
neural network for point cloud analysis. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8895–8904, 2019.

[164] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni,
and Andrew Markham. RandLA-Net: Efficient semantic segmentation of large-scale point
clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11108–
11117, 2020.

168

Bibliography

[165] Haoxi Ran, Wei Zhuo, Jun Liu, and Li Lu. Learning inner-group relations on point clouds. In
IEEE/CVF International Conference on Computer Vision, pages 15477–15487, 2021.

[166] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong Pan.
DensePoint: Learning densely contextual representation for efficient point cloud processing.
In IEEE/CVF International Conference on Computer Vision, pages 5239–5248, 2019.

[167] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. PAConv: Position adaptive
convolution with dynamic kernel assembling on point clouds. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3173–3182, 2021.

[168] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast
geometric deep learning with continuous b-spline kernels. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 869–877, 2018.

[169] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics,
38(5):1–12, 2019.

[170] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs
go as deep as CNNs? In IEEE/CVF International Conference on Computer Vision, pages
9267–9276, 2019.

[171] Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical kernel for efficient graph convolu-
tion on 3d point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(10):3664–3680, 2020.

[172] Mingtao Feng, Syed Zulqarnain Gilani, Yaonan Wang, Liang Zhang, and Ajmal Mian. Re-
lation graph network for 3d object detection in point clouds. IEEE Transactions on Image
Processing, 30:92–107, 2020.

[173] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. In International Conference on
Learning Representations, 2022.

[174] Jiaqi Lyu and Souran Manoochehri. Online convolutional neural network-based anomaly
detection and quality control for fused filament fabrication process. Virtual and Physical
Prototyping, 16(2):160–177, 2021.

[175] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point
clouds. In IEEE Conference on Computer Vision and Pattern Recognition, pages 7652–7660,
2018.

[176] Borja Rodríguez-Cuenca, Silverio García-Cortés, Celestino Ordóñez, and Maria C Alonso.
Automatic detection and classification of pole-like objects in urban point cloud data using an
anomaly detection algorithm. Remote Sensing, 7(10):12680–12703, 2015.

[177] Xian-Feng Hana, Jesse S Jin, Juan Xie, Ming-Jie Wang, and Wei Jiang. A comprehensive
review of 3d point cloud descriptors. arXiv preprint arXiv:1802.02297, 2, 2018.

[178] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany. PointCon-
trast: Unsupervised pre-training for 3d point cloud understanding. In European Conference
on Computer Vision, pages 574–591. Springer, 2020.

[179] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of
3d features on any point-cloud. In IEEE/CVF International Conference on Computer Vision,
pages 10252–10263, 2021.

[180] Longkun Zou, Hui Tang, Ke Chen, and Kui Jia. Geometry-aware self-training for unsuper-
vised domain adaptation on object point clouds. In IEEE/CVF International Conference on
Computer Vision, pages 6403–6412, 2021.

169

Bibliography

[181] Li Yi, Boqing Gong, and Thomas Funkhouser. Complete & label: A domain adaptation ap-
proach to semantic segmentation of lidar point clouds. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15363–15373, 2021.

[182] Feiyu Wang, Wen Li, and Dong Xu. Cross-dataset point cloud recognition using deep-shallow
domain adaptation network. IEEE Transactions on Image Processing, 30:7364–7377, 2021.

[183] Mana Masuda, Ryo Hachiuma, Ryo Fujii, Hideo Saito, and Yusuke Sekikawa. Toward un-
supervised 3d point cloud anomaly detection using variational autoencoder. In 2021 IEEE
International Conference on Image Processing (ICIP), pages 3118–3122. IEEE, 2021.

[184] Maciej Zamorski, Maciej Zieba, Piotr Klukowski, Rafał Nowak, Karol Kurach, Wojciech
Stokowiec, and Tomasz Trzciński. Adversarial autoencoders for compact representations of
3d point clouds. Computer Vision and Image Understanding, 193:102921, 2020.

[185] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule net-
works. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1009–
1018, 2019.

[186] Siheng Chen, Chaojing Duan, Yaoqing Yang, Duanshun Li, Chen Feng, and Dong Tian. Deep
unsupervised learning of 3d point clouds via graph topology inference and filtering. IEEE
Transactions on Image Processing, 29:3183–3198, 2019.

[187] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
Monte Carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans-
actions on Graphics, 37(6):1–12, 2018.

[188] Jooyoung Park and Irwin W. Sandberg. Universal approximation using radial-basis-function
networks. Neural Computation, 3(2):246–257, 1991.

[189] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 5828–5839, 2017.

[190] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1912–1920, 2015.

[191] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012 [cs.GR], 2015.

[192] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[193] S Hamidreza Kasaei, Ana Maria Tomé, Luís Seabra Lopes, and Miguel Oliveira. GOOD:
A global orthographic object descriptor for 3D object recognition and manipulation. Pattern
Recognition Letters, 83:312–320, 2016.

[194] Roberto di Bella, Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, and Giacomo Borac-
chi. Wafer defect map classification using sparse convolutional networks. In International
Conference on Image Analysis and Processing (ICIAP), pages 125–136. Springer, 2019.

[195] Jianbo Yu and Xiaolei Lu. Wafer map defect detection and recognition using joint local and
nonlocal linear discriminant analysis. IEEE Transactions on Semiconductor Manufacturing,
29(1):33–43, 2016.

[196] Mengying Fan, Qin Wang, and Ben van der Waal. Wafer defect patterns recognition based on
optics and multi-label classification. In IEEE Advanced Information Management, Commu-
nicates, Electronic and Automation Control Conference (IMCEC), pages 912–915, 2016.

170

Bibliography

[197] Cheng-Wei Chang, Tsung-Ming Chao, Jorng-Tzong Horng, Chien-Feng Lu, and Rong-Hwei
Yeh. Development pattern recognition model for the classification of circuit probe wafer
maps on semiconductors. IEEE Transactions on Components, Packaging and Manufacturing
Technology, 2(12):2089–2097, 2012.

[198] Kouta Nakata, Ryohei Orihara, Yoshiaki Mizuoka, and Kentaro Takagi. A comprehensive
big-data-based monitoring system for yield enhancement in semiconductor manufacturing.
IEEE Transactions on Semiconductor Manufacturing, 30(4):339–344, 2017.

[199] Takeshi Nakazawa and Deepak V Kulkarni. Wafer map defect pattern classification and image
retrieval using convolutional neural network. IEEE Transactions on Semiconductor Manufac-
turing, 31(2):309–314, 2018.

[200] Naigong Yu, Qiao Xu, and Honglu Wang. Wafer defect pattern recognition and analysis
based on convolutional neural network. IEEE Transactions on Semiconductor Manufacturing,
32(4):566–573, 2019.

[201] Muhammad Saqlain, Qasim Abbas, and Jong Yun Lee. A deep convolutional neural network
for wafer defect identification on an imbalanced dataset in semiconductor manufacturing pro-
cesses. IEEE Transactions on Semiconductor Manufacturing, 33(3):436–444, 2020.

[202] Wei-Chen Li and Du-Ming Tsai. Wavelet-based defect detection in solar wafer images with
inhomogeneous texture. Pattern Recognition, 45(2):742–756, 2012.

[203] Sejune Cheon, Hankang Lee, Chang Ouk Kim, and Seok Hyung Lee. Convolutional neural
network for wafer surface defect classification and the detection of unknown defect class.
IEEE Transactions on Semiconductor Manufacturing, 32(2):163–170, 2019.

[204] Szu-Hao Huang and Ying-Cheng Pan. Automated visual inspection in the semiconductor
industry: A survey. Computers in Industry, 66:1–10, 2015.

[205] Ming-Ju Wu, Jyh-Shing R Jang, and Jui-Long Chen. Wafer map failure pattern recognition
and similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manu-
facturing, 28(1):1–12, 2015.

[206] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[207] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[208] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[209] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages. 2009.

[210] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[211] Foster Provost and Pedro Domingos. Tree induction for probability-based ranking. Machine
Learning, 52(3):199–215, 2003.

[212] David J Hand and Robert J Till. A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 45(2):171–186, 2001.

[213] Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Comparing the ar-
eas under two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, pages 837–845, 1988.

[214] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

171

	Introduction
	Structure of the Thesis

	Problem Formulation
	Change Detection in Datastreams
	Concept-drift detection

	Anomaly Detection in Point Clouds
	Open-set recognition

	I Change Detection in Datastreams
	Related Literature
	Univariate Datastreams
	Multivariate Datastreams
	One-shot detectors
	Online detectors
	Control of False Alarms
	Summary of the main properties

	Concept-drift Detection

	QuantTree Exponentially Weighted Moving Average
	QuantTree Histograms
	The QT-EWMA Algorithm
	Control of False Alarms
	Updating the QuantTree Histogram
	The QT-EWMA-update Algorithm
	Setting the Updating Speed
	Stopping the Update

	Baselines controlling the ARL0
	Datastream Monitoring by Batch-wise Detectors
	Datastream Monitoring by Element-wise Detectors

	Computational Complexity
	Experiments and Discussion
	Considered Datasets
	Figures of Merit
	Results and Discussion

	Class Distribution Monitoring
	The CDM Algorithm
	Theoretical Analysis
	Online and Nonparametric Monitoring
	Control of the ARL0
	Computational Complexity

	Experiments
	Considered Datasets
	Figures of Merit
	Considered Methods
	Real-world Data
	Synthetic Data

	Discussion and Future Work

	Change Detection in Sequential Attacks
	Background
	Sequential Attacks
	The Sequential Attack Procedure
	Problem Formulation

	Strengthening Sequential Attacks
	Overview
	Error Detection
	Error Correction
	Assumptions

	Two Strengthened Sequential Attacks
	Power-analysis attacks
	Timing attacks

	Experiments
	Datasets
	Figures of Merit
	Considered Methods
	Results and Discussion

	II Anomaly Detection in Point Clouds
	Related Literature
	Anomaly Detection
	Traditional Machine Learning
	Deep Learning

	Open-Set Recognition
	Classification Scores and Latent Representations
	Reconstruction and Generative Models

	Composite Layers for 3D Point Clouds
	Machine Learning on Point Clouds
	Deep Learning on Point Clouds
	Unsupervised Learning over Point Clouds

	Point Convolutions
	Convolution Window and Output Point Cloud
	Point-convolutional Operators

	Composite Layers
	Convolutional Composite Layer
	Aggregate Composite Layer
	CompositeNet

	Design Flexibility
	Experiments
	Benchmarking Datasets
	Classification
	Anomaly Detection

	Discussion and Limitations
	Future Work

	Open-Set Recognition for Wafer Production Monitoring
	Silicon Wafer Monitoring
	Wafer Defect Maps
	Existing solutions

	Proposed Solution
	Classification
	Anomaly Detection
	Data Augmentation
	WDM monitoring pipeline

	Experiments and Discussion
	Experimental Setup
	Classification of known classes
	Detection of anomalous patterns

	Discussion

	Concluding Remarks
	Future Work

	Additional Results on QT-EWMA
	Bibliography

