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1. Introduction
This thesis aims to explore recently pro-
posed Transformer-based architectures to per-
form brain tumor segmentation on MRI scans.
The investigation will specifically focus on two
approaches: the analysis of individual images
obtained by slicing magnetic resonances on the
axial plane (referred to as "slices") and the
analysis of entire three-dimensional MRI scans.
The primary objective of this research is to
train models to identify three nested tumor sub-
regions as defined the BraTS challenge: Whole
Tumor (WT), Tumor Core (TC), and Enhancing
Tumor (ET). In the context of brain tumor seg-
mentation, WT identifies the complete extent
of the disease. On the other hand, ET delin-
eates the region that becomes more visible in
the T1 modality when a contrast agent, typ-
ically Gadolinium, is administered to the pa-
tient. This region is often the most actively
growing part of the tumor. TC encompasses
both the necrotic region (representing the in-
ner core of the tumor composed of dead cells)
and the ET. Both classes of models in this study
are trained on a subset of the BraTS2019 chal-
lenge. In the upcoming section, we will delve
into fundamental concepts related to MRI and
the BraTS Challenge. Subsequently, we’ll out-

line the experimental setup for our study. The
results obtained on the test set will serve as a
basis for comparing the effectiveness of the two
approaches. Additionally, these outcomes will
play a pivotal role in assessing the potential of
the Transformer architecture in comparison to
other state-of-the-art architectures that are con-
ventionally based on Convolutional Neural Net-
works (CNNs). Specifically, our observations in-
dicate that, in the context of brain tumor seg-
mentation, Transformer-based approaches uti-
lizing full three-dimensional scans generally ex-
hibit superior performance compared to CNN-
based architectures for predicting the Whole Tu-
mor and Tumor Core subregions.

2. Background and State of the
art

Brain tumor segmentation is a crucial aspect of
disease diagnosis and treatment. Over the years,
Convolutional Neural Networks (CNNs), like
those proposed by Myronenko and Hatamizadeh
[3] and the 3D U-Net introduced by Wang et al.
[6], have been widely used for this purpose. Re-
cently, Transformers [5] have also shown success
in image analysis. In 2021, the Google Brain
team introduced the Vision Transformer (ViT,
[1]), utilizing Transformer capabilities to cap-
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ture long-range dependencies in image analysis.
ViT has demonstrated superior performance and
computational efficiency compared to Convolu-
tional Neural Networks, especially with exten-
sive datasets. In scenarios with limited data,
such as in this thesis, a combination of data aug-
mentation, regularization, and transfer learning
can address these constraints. Based on this,
some intriguing Transformer-based architectures
[4] have been proposed for image segmentation,
in some cases specifically tailored for glioma seg-
mentation [2].

3. MRI and BraTS dataset
Magnetic Resonance Imaging (MRI) is a medi-
cal imaging technique that exploits the magnetic
properties of the human body, particularly hy-
drogen atoms. By applying magnetic fields and
measuring two distinct response times, T1 and
T2, this method generates detailed body scans.
There are four fundamental measurements, or
"modalities": T1, T1ce (T1 with the admin-
istration of a contrast agent), FLAIR (Fluid
Attenuated Inversion Recovery), and T2. An-
nually, the MICCAI (Medical Image Comput-
ing and Computer Assisted Intervention) soci-
ety organizes the BraTS (Brain Tumor Segmen-
tation) challenge. This competition focuses on
segmenting brain tumors in provided MRI scans,
encompassing T1, T1ce, T2, and FLAIR modal-
ities. It aims to identify sub-regions like the
Whole Tumor (WT), Tumor Core (TC), and En-
hancing Tumor (ET). Participants develop and
assess algorithms to enhance the accuracy of au-
tomated brain tumor segmentation, contribut-
ing to advancements in medical image analy-
sis. The dataset for the BraTS2019 challenge
consists of MRI scans from 335 patients for the
training set, 125 cases for the validation set, and
166 cases for the test set. For our experiments,
we have utilized a subset of this dataset, com-
prising 227 patients for training, 49 patients for
validation, and 59 patients for the final test.

4. Experimental design
The models were trained using a NVIDIA TI-
TAN V, generously provided by Politecnico di
Milano, and on A100 and V100 GPUs rented
through Google Colab Pro.

4.1. Segmenter - 2D slice analysis
The first architecture chosen for this experi-
ment draws inspiration from the work of Robin
Strudel et al. [4], who introduced the Segmenter
— a Vision Transformer extension designed for
semantic segmentation tasks. Employing a ViT
as the encoder, this model is intended to ex-
tract features from RGB input images. Subse-
quently, it utilizes these features to generate full-
resolution segmentation maps through a dedi-
cated decoder known as the Mask Transformer.
Since our dataset is not composed of RGB im-
ages but rather a set of four grayscale images
(one for each modality) for each slice, we have
chosen to preprocess the dataset and obtain
RGB images through two distinct paths:
• Consequent-slice merging: three con-

secutive grayscale images representing three
subsequent slices of a given modality are
merged into one RGB image.

• Modality merging: we chose three of the
four modalities and use them to construct
a single RGB image. For this experiment,
we selected T1, T1ce and FLAIR.

Each of the 227 training MRI scans, as well as
the 49 and 59 patients for validation and test,
has been partitioned into 128 slices, cut on the
axial plane. Specifically, the training set un-
derwent a cleaning phase, during which slices
containing only background information were re-
moved.
The trained models vary in terms of the num-
ber of decoder and encoder layers, the number
of heads, embedding space dimension and pre-
processing technique applied to the dataset. In
total, we have trained ten models:
• cons-t1-256-4-4-2
• cons-t1-256-8-8-2
• cons-flair-256-8-8-2
• mod256-8-8-2
• mod256-8-8-4
• mod256-16-16-8
• pret192-12-3-8
• pret768-12-12-8
• mod-wt256-2-2-8
• mod-wt256-8-8-4

The prefix of each model indicates the pre-
processing strategy applied:
• cons: Consequent slice merging
• mod: Modality merging technique
• pret: Fine-tuning on a pre-trained back-
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bone
• mod-wt: Modality merging on a binary

dataset designed specifically for the whole
tumor problem

For the cons models, an additional label indi-
cates the chosen modality. The second number
in each model name indicates the embedding
space dimension, while the subsequent three
numbers represent the number of encoder layers,
the number of attention heads, and the number
of decoder layers, respectively. Each model em-
ploys a patch size of 6×6 pixels and a batch size
of 10, and has been trained for 3,000 epochs.
There are some exceptions:
• pret192-12-3-8 and pret768-12-12-8 models

have patch sizes of 16 × 16 and 32 × 32,
respectively.

• mod256-16-16-8, mod-wt256-2-2-8, and
mod-wt256-8-8-4 were trained with a batch
size of 1.

• mod256-16-16-8 has been trained for 1,000
epochs due to its high computational re-
quirements.

For each trained model, we employed the same
combination of dropout and stochastic depth
techniques for regularization. Additionally, we
incorporated various data augmentation tech-
niques, including resizing, random flipping, and
photometric distortion.

4.2. SwinUNETR - 3D scan analysis
For the second experiment, we opted for the Swi-
nUNETR architecture [2], which analyzes the
four T1, T1ce, T2, and FLAIR entire scans of
each single patient (processed as Nifti files) to
generate the segmentation map. Notably, this
architecture harnesses the Swin Transformer,
an algorithm that calculates attention on input
patches by utilizing shifting windows at various
patch resolutions. Following this, a CNN-based
decoder processes the contextualized intermedi-
ate representations of the input to generate the
final 3D segmentation map.
In particular, we have trained from scratch three
models:
• SWIN96-48
• SWIN64-48
• SWIN96-60

In this case, the first number in the model’s
name denotes the size of the Region of Inter-
est used for random cropping data augmenta-

tion and sliding window inference, while the sec-
ond number represents the embedding space di-
mension of the model. The models underwent
training for 2000 epochs using the AdamW opti-
mizer and incorporated various data augmenta-
tion techniques, including foreground cropping,
random cropping, random flipping, and inten-
sity scale/shifting. However, each of the three
models experienced overfitting issues before the
completion of the training. For this reason we
have chosen, for each model, the best checkpoint
for assessing the test set score.

5. Results
The results on the test set of the experiments
are condensed in table 1, which reports, for each
subregion, the average of the DICE score com-
puted for each patient.

Brats2019 DICE results comparison

WT TC ET

cons-t1-256-4-4-2 67.47 43.11 16.85

cons-t1-256-8-8-2 69.21 42.63 17.96

cons-flair-256-8-8-2 81.26 46.23 22.89

mod256-8-8-2 84.75 75.08 62.28

mod256-8-8-4 84.81 74.61 62.70

mod256-16-16-8 83.11 72.06 61.18

pret192-12-3-8 86.56 80.14 64.47

pret768-12-12-8 83.91 75.45 55.47

mod-wt256-2-2-8 85.94 - -

mod-wt256-8-8-4 85.47 - -

SWIN96-48 89.07 85.24 75.01

SWIN64-48 87.77 84.00 73.77

SWIN96-60 89.32 85.04 76.16

CNN-Myronenko [3] 88.20 83.70 82.60

CNN-3D U-Net [6] 85.20 79.80 77.80

Table 1: Brats2019 challenge comparison

To provide a comprehensive overview of our
model’s overall performance, we have included
the test set results reported by other CNN-based
works ([3, 6]) in the table.
From this comparison, it is evident that the Swi-
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nUNETR models consistently outperform the
Segmenter models across all subregions. They
excel in predicting Whole Tumor and Tumor
Core, surpassing the performance of CNN-based
architectures. However, there is still a challenge
in achieving comparable results in the Enhanc-
ing Tumor region.
Conversely, Segmenter models encounter diffi-
culties in matching the results of CNN-based ap-
proaches, particularly in the Enhancing Tumor
region. This discrepancy might be attributed
to the fact that the power of Transformer mod-
els lies in the ability to capture long-range de-
pendencies. This strength is not fully leveraged
when utilizing 2D input images. Notably, both
CNN architectures considered in this compari-
son analyze three-dimensional scans, emphasiz-
ing the importance of exploiting the third di-
mension for improved performance.
The superior capability of Transformers in lever-
aging 3D inputs becomes more apparent in the
following visual examples, where the predictions
of SwinUNETR are compared with those of Seg-
menter models.

(a) SWIN96-60 (b) SWIN96-48

(c) SWIN64-48 (d) Ground truth

Figure 1: SwinUNETR models prediction on
slice 67× 126× 73

(a) cons-t1-256-4-4-2 (b) cons-t1-256-8-8-2

(c) cons-flair-256-8-8-2 (d) mod-256-8-8-2

(e) mod-256-8-8-4 (f) mod-256-16-16-8

(g) pret192-12-3-8 (h) pret768-12-12-8

(i) mod-wt256-2-2-8 (j) mod-wt256-8-8-4

(k) Ground truth

Figure 2: Segmenter models prediction on slice
73
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Furthermore, both quantitative and qualitative
assessments unequivocally demonstrate the lim-
ited effectiveness of Segmenter models trained
with consequent-slice merging techniques, in
contrast to the superior performance observed
in models employing modality-merging tech-
niques. This underscores the critical impor-
tance of cross-modal analysis for accurate iden-
tification of various tumoral tissues. Moreover,
the disparity in performance between Segmenter
and SwinUNETR appears to diminish in pre-
trained models, highlighting the effectiveness of
transfer learning in the realm of medical image
analysis.
Further insights into the per-patient DICE
score distributions of the Segmenter and Swi-
nUNETR models can be gained by visualizing
them through box-plots. Notably, these dia-
grams reveal that SwinUNETR models not only
deliver consistent accuracy but also exhibit re-
duced variance, indicating enhanced robustness
in their predictions.

(a) Segmenter models

(b) SwinUNETR models

Figure 3: Box plot - Whole Tumor DICE metric
on test set

(a) Segmenter models

(b) SwinUNETR models

Figure 4: Box plot - Tumor Core DICE metric
on test set

(a) Segmenter models

(b) SwinUNETR models

Figure 5: Box plot - Enhancing Tumor DICE
metric on test set
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6. Conclusions
From these observations, we can distill the find-
ings of this thesis into the following conclusions:

• The simultaneous analysis of different MRI
modalities serves as the foundational ele-
ment for achieving favorable results in all
subregions.

• Models employing three-dimensional input
generally outperform those using single
slices. On the other hand, the use of trans-
fer learning on bi-dimensional models can
help to bridge the gap between these ap-
proaches.

• In the medical image field, which is char-
acterized by a limited data availability, we
observe that, when using the same three-
dimensional approach, Transformer mod-
els challenge CNNs, outperforming them in
the prediction of Whole Tumor and Tumor
Core subregions.
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