POLITECNICO DI MILANO
Master’s degree in Computer Science and Engineering
Department of Electronics, Information and Bioengineering

Distributed MQTT+: development of a
pub/sub broker for distributed
environments

ANTLab
Advanced Network Technologies LABoratory

Advisor: Prof. Alessando Redondi
Co-Advisor: Eng. Edoardo Longo

Master’s Degree Thesis of: Leonardo Stagliané
Matricola 917310

Anno Accademico 2020-2021

A Nonna Maria, anche se non ci sei pit, questo traguardo, che tanto hai
sognato di vivere insieme a me, € per te

Sommario

MQTT (Message Queuing Telemetry Transport) ¢ un protocollo publish/
subscribe il cui utilizzo & cresciuto in maniera sempre pit importante negli
ultimi anni per applicazioni nell’ambito IoT o di reti wireless di sensori.
Per questo motivo ¢ stato soggetto a diversi ambiti di ricerca che, negli
ultimi anni, hanno portato a una sua estensione sempre piti ampia e a pos-
sibilita di applicazione sempre piu svariati, non pensati quando fu lanciato
da IBM. Tra questi, sviluppati proprio nell’ambito del Politecnico di Milano
vi ¢ MQTTH+, un’estensione del protocollo originario che ha consentito di
effettuare operazioni integrate nello standard, aumentando la complessita
degli scenari di utilizzo senza pero alterare i principi cardine di efficienza e
semplicita che gli ideatori avevano come obiettivo principale.
Parallelamente la necessita di creare infrastrutture distribuite, ha imposto
di pensare al modo di consentire 1'utilizzo di tale protocollo, insieme ad altri
suoi omologhi, all’interno di un ambito di cooperazione di macchine dislo-
cate nelle parti piu disparate del pianeta.

Da questi due percorsi nasce questo progetto, che cerca di consentire 'utilizzo
dell’estensione MQTT+ anche in un contesto distribuito, assumendo al con-
tempo una valenza rilevante anche dal punto di vista dello sviluppo di un
sistema di connessione efficiente e resiliente a eventuali malfunzionamenti.

Abstract

MQTT (Message Queuing Telemetry Transport) is a publish /subscribe pro-
tocol whose usage is growing a lot in recent years, for IoT applications or
Wireless Sensor Networks. For this reason, it was the subject of several
research topics that, recently, brought to a wide extension and several ap-
plication contexts, not even thought when it was launched on the market
by IBM. Among these, developed at the Politecnico di Milano, there is
MQTT+, an extension of the original protocol that allowed the execution
of aggregated operations integrated into the standard, increasing the com-
plexity of the application scenarios without affecting the main principles:
efficiency, and ease of use that the developer had as the main goal.

At the same time, the need of creating distributed infrastructures imposed
to think how to enable the usage of this protocol, along with others of the
same type, in a context in which several machines, located in the most dis-
parate parts of the world, have to communicate.

These paths brought to the birth of this project that tries to allow the usage
of the MQTT+ extension also in a distributed context, having also a rele-
vant value, considering the possibility of developing an efficient and resilient
interconnection system.

Ringraziamenti

Ringrazio Ida, la persona che mi ha trasferito la dolcezza e la serenita di cui
avevo bisogno durante tutto questo periodo, che mi ha portato a completare
il tassello mancante di un percorso faticoso ma bellissimo.

Ringrazio i miei genitori, per I'importanza che hanno sempre dato all’istruzione
e alla cultura, che ho percepito fin da piccolo e che mi ha portato a realizzare
uno dei miei sogni, studiare e conseguire risultati accademici presso questo
prestigioso ateneo.

Ringrazio Domenico e Stefano, che in questi anni sono sempre stati vicini
a me, mi hanno supportato e mi hanno aiutato a superare pit di qualche
giorno difficile strappandomi dei sorrisi.

Ringrazio il Politecnico di Milano, per la professionalita e 'umanita che
i suoi membri mi hanno sempre trasmesso, in particolare Alessandro Re-
dondi ed Edoardo Longo, che mi hanno aiutato a portare a compimento
questo lavoro col loro prezioso aiuto.

Contents

Sommario 1
Abstract 2
Ringraziamenti 4
1 Introduction 1
1.1 Overview e 1
1.2 Project Objective 2
1.3 Thesis Outline 2

2 State of Art 3
2.0.1 MQTT+ e 3

2.0.2 MQTT Bridging . . .« o v v vvee e 5

2.0.3 PADRES protocol 6

2.0.4 MQTT-ST 6

2.0.5 Other Distributed Publish/Subscribe paradigms . .. 7

3 Project Structure & General Idea 9
3.1 MQTT+ Distributed Broker 9
3.2 System-level Perspective, 10
3.3 JavaServer 13

4 Implementation 15
4.1 Discovery Protocolo 15
4.2 Round Trip Time Computation 17
4.3 STP protocol 20
4.3.1 Root Selection L. 21

4.3.2 Path Computation 23

4.4 Routing Algorithm oL 25
4.4.1 Algorithm Adaptation 26

4.4.2 Routing Tables 0. 27

4.4.3 Conclusions and clarifications 34

5 Testing Methodology
5.1 Evaluation Targets .
5.2 Testing Environment

5.2.1 Clients locality
5.2.2 Bridging topologyo
5.2.3 Convergence experiments
5.2.4 Clarifications and other aspects

6 Experimental Results
6.1 Network traffic . . .
6.2 Workload

6.2.1 CPU workload

6.2.2 Memory workload

6.3 Convergence results
7 Final considerations

Bibliografia

ii

35
35
36
38
40
41
42

44
44
47
47
50
54

57

59

List of Figures

3.1
3.3
3.2
3.4
3.5

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14

4.15

4.16

4.17

4.18

Deployment diagram for the broker 9
Explanation of various connections of the system 10
Example of MQTT+ Distributed System 11
The system from the point of view of the clients 12
State diagram that describes the Java Server 13
Example of a discovery message 15
Example of the logical connections established in a system of

5brokers 17
The green node sends the requests for the computation of the

RTT estimations 18
Example of a possible RTT message request sent by the green

node e 18
The responses sent as consequence of the figure 4.4 19
Example of a response message received by the white node . 19
Representation of what is stored in memory by each node of

thenetwork 20
Message exchange for the first phase of the tree formation

protocol 21
Example of a packet sent in the first phase of the protocol . . 21

Message sent at the end of the phase described in this subsection 22
Situation at the end of the first phase of the STP protocol . . 23
Example of a packet sent by the brokers during the path
computation phase L. 23
Example of a snapshot of the system at the end of the protocol 25
Representation of the situation in memory of each broker at

the end of the STP protocol 28
Representation of the system reaction to a publish message
on a topic never encountered 29
How the SRT tables are filled upon receiving the messages of
the figure 4.15. Lo 30
Example route followed by a subscription sent to a broker
that filled its SRT 31

Example of the PRTs obtained by the traffic showed in 4.17 . 33

iii

4.19 Example of a routing of a publish message of an already en-
countered publication topic

5.1 Representation of the setting of the network used for the tests 37

5.2 Example of how the clients may be placed in case of 100%
locality oL
5.3 Example of how the clients may be placed in case of 50%
locality

39

5.4 Example of how the clients may be placed in case of 0% locality 39

5.5 Topology adopted to perform the tests in the bridging case

5.6 How the convergence period is computed after the startup of
abroker

5.7 How the convergence period is computed after the failure of
abroker

6.1 Representation of the obtained traffic dimension (in bytes)
differentiated by the algorithm and the locality adopted in
the experiment

6.2 Average usage of the CPU by the 5 brokers during a test case
in which clients are placed with 0% locality

6.3 Average usage of the CPU by the 5 brokers during a test case
in which clients are placed with 100% locality

6.4 Average usage of the CPU by the 5 brokers during a test case
in which clients are placed with 50% locality

6.5 Average usage of the memory by the 5 brokers during a test
case in which clients are placed with 0% locality

6.6 Average usage of the memory by the 5 brokers during a test
case in which clients are placed with 100% locality

6.7 Average usage of the memory by the 5 brokers during a test
case in which clients are placed with 50% locality

6.8 Average convergence performance for the 5 brokers at the
startup of the system

6.9 Average convergence performance for the remaining 4 brokers
at the failure of one of the brokers

iv

40

List of Tables

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Tabular representation of the traffic (in bytes), considering as
excluded the part concerning the publishes forwarding, differ-
entiated by the locality and the routing methodology adopted 45
Tabular representation of the traffic (in bytes) concerning the
publishes forwarding, differentiated by the locality and the
routing methodology adopted 45
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 0% locality 48
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 100% locality 49
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 50% locality 50
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 50% locality 51
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 100% locality 52
Average percentages of CPU resources of the host machine
used by each container during a test case in which clients are
placed according a 50% locality 53

Chapter 1

Introduction

1.1 Overview

The Internet of Things paradigm is becoming more and more important
during the last years as new technologies are pushing its potential to a very
high level, moving this world increasingly into the users’ everyday life. Smart
object, sensors, and a lot of other IoT devices are daily in touch with us,
and developing new technologies in this branch assumes a lot of relevance
as time passes, this is the reason why this project is born, to increase the
functionalities of the current available IoT services and to improve the pos-
sibility of enjoying them in a distributed fashion, as mobility is one of the
crucial properties for new technologies to be successful nowadays.

The main reason for this incredible success can be identified in the large
area of interest that this technology paradigm covers: washing machines,
smartwatches, doors, windows, smart bulbs, and many other objects that
are used every day by everyone can be included in systems and services that
are able to ease a lot of daily tasks of the users, allowing also to enlarge
these objects’ field of action to new perspective never explored before.
MQTT (Message Queuing Telemetry Transport) is an IoT protocol of grow-
ing importance, its success is based on ease of use and a large field of applica-
bility. It was developed by IBM to have a low impact in terms of processing
power and it has been thought for all the situations in which the band-
width is limited. It is a publish/subscribe protocol and at the start, it was
developed to work with a single broker that is responsible for the message
handling and forwarding operating independently and as self-contained. In
the last years, the research focused on the possibility of integrating this pro-
tocol in a distributed environment, making the brokers able to cooperate in
order to connect clients that are located in different parts of the world. Its
standard is available at [1], a new version, the 5.0, was developed recently
and contains lots of improvements like topic aliasing, enhanced authentica-

tion, disconnect message to be sent by the broker to specify the reason of
disconnection, and so on.

1.2 Project Objective

The project interests a protocol that is assuming a key role in the develop-
ment of the importance of IoT technologies during the last years, MQTT. It
was the subject of research before and expanded in its functionalities with
MQTT+ [5], an extension that gave the possibility of performing new op-
erations on the data collected by the brokers adding a simple syntax to the
MQTT well-known standard for the subscriptions.

The missing part in the implementation of the cited project was the pos-
sibility of using it in a distributed fashion, inserting each broker into an
infrastructure that allows collecting and elaborating data from different lo-
cations. The prescriptions of the distributed paradigm impose also resilience
and recovery to failure, and, as a technological project demands nowadays,
efficient exploitation of the computing power of the nodes, these are other
objectives to which the project aims.

Making MQTT+ working according to the paradigm just described imposes
us to evaluate different alternatives on how the brokers that make up the
entire infrastructure have to communicate, forward information, and keep
connected. Many choices were faced, so the motivation behind them, the
implementation, and the experimental aspects will be discussed later in this

paper.

1.3 Thesis Outline

In chapter 2 the reader can find the state of art for distributed publish/subscribe
paradigm, more specifically distributed MQTT technologies and their cor-
relation with the described work are detailed.

In chapter 3 there will be the project general idea to fulfill the objectives
described before, the design choices, and the structure of the project.
Chapter 4 is focused on the description of the implementation, how the im-
plementation is structured, and the practical actuation of the project.
Chapter 5 contains a discussion of the choice of the evaluation methods for
the obtained result, the evaluation targets, and the motivations for these
choices.

In chapter 6 the results of the experimental evaluations are presented, there
will be also comments on their meaning with respect to the starting goal of
the project.

Chapter 7 explains what are the possible future research paths related to
the described project and some final considerations.

Chapter 2

State of Art

MQTT+, the technology at the base of this project, can be considered as
completely developed as detailed in [5]. Making it work in a distributed
environment requires different properties that, as we will see in the following,
are not guaranteed simultaneously by any technology available nowadays.
It is possible to summarize these properties as follows:

e Network traffic efficiency, to not waste bandwidth for the commu-
nication among the brokers that make up the network, as the traffic
generated by the clients can be a bottleneck itself.

e Fault resilience, the system must be able to recreate correctly the
connections among the brokers still available after a failure of a single
node of the system. This is a quite common property required for a
distributed system.

e Dynamic overlay creation, in order to exploit those nodes that are
more powerful to relay and process packets as much as possible.

e The orchestration of the system must not be centralized, no
centralized entity must be required to start the system. The brokers
have to be able to join without any pre-existing information about the
addresses with which they can connect to the other nodes.

These properties were the guideline during the development of the project,
since, as can be seen later in this chapter, they are not simultaneously
fulfilled by any of the technology already present in the context of the MQTT
protocol.

2.0.1 MQTT+

MQTT+ is the technology on which this work is based. It is an enhanced
syntax for MQTT that allows to carry out some operations on data ap-
pended in the payload of the normal MQTT publish messages, that the

standard protocol wouldn’t allow. This is achieved by simply adding to nor-
mal subscriptions the operator, preceded by the $ character and followed
by the normal topic filter on which the operator has to act. The classes
of operations that MQTT+ adds to the standard can be summarized as
follows:

e Rule based operators: as the name says they are operators that

enforce a rule that filters out the messages related to a certain topic to
which a client is subscribed. If a publication related to that topic com-
plies with the rule of the operator, it is forwarded to the subscribed
client, otherwise, it is discarded.
For example the syntax $EQ;value/topic applied to subscription fil-
ters allows specifying a ”rule” according to which the broker forwards
the publication to a topic that matches the topic part of the filter,
if and only if its value is exactly equal to the value specified in the
syntax above.

e Temporal aggregation operators: these operators allow to obtain
the average, the minimum, the maximum, and the sum of the mes-
sages under a certain topic according to a temporal granularity (daily,
quarter-hourly, hourly), using all the last messages published under
that topic to carry out one of the above-listed operations, limiting the
operands to the temporal range specified.

As an example with the syntax $DAILYSUM /topic, the sum of
all the payloads of the publications related to the topic, in a span
of 24 hours from the moment the subscription has been received, are
summed up and returned to the subscriber as soon as the timer expires.

e Spatial aggregation operators: the allows to specify one of the
mathematical operation listed in the previous point of the bullet-list,
but the operands of this operations are not selected on a temporal
basis, they are chosen with the help of the wildcards already present
in the MQTT standard (specified by the # and + characters). It is
possible to consider as an element of the operations, publication of
different topics that match the subscription filter net of the wildcards.
With the syntax $SUM /topic, for example, the payload of every
publication on a topic that matches the topic part of the filter will be
summed up and the subscriber will receive the final value, as soon as
a publication arrives at the broker, the value is recomputed using the
last published value of each topic belonging to the aggregation.

e Data processing operators: MQTT+ is able to specify some op-
erators that allow the subscriber to manifest their interest in some
particular operation that can be carried out on the payload of a cor-
responding MQTT message. For example, the operator SCNTPPL

allows the client to signal that it is interested in the number of people
that are depicted in an image published on the specified topic, without
receiving the entire image, but only the result of the image processing
operation on the image. There are also other examples of operators
but this functionality has for sure a lot of applicability fields.

Moreover, the aggregation operators can be combined together to have more
and more possibilities and the last point in the list shows the potential of
introducing such a modification to the MQTT standard, allowing also to
save bandwidth and enable new application field, also where the constraints
are so tight.

2.0.2 MQTT Bridging

Lots of already existing brokers, like Mosquitto [7], HiveMQ !, and so
on, allows connecting to others through a bridging method, specifying be-
fore the startup of the system to which broker connects to and on which
topics exchange information. Unfortunately, none of these products guar-
antee efficiency: since is not possible to know which topics will be injected
into the network of brokers and which of them will be connected to a client
interested in them, the only way to allow communication among the nodes
was to forward every MQTT message generated by the clients. This explains
the lack of efficiency of this approach, resulting in a lot of wasted traffic
between nodes that are not interested in specific messages. Moreover, this
approach is static, everything has to be done at startup, and disconnection
is not properly handled using this type of interconnection.

As an example, Mosquitto allows to specify a configuration file as parameter
passed to the launch command of the broker, inside this configuration file
it is possible to state with a specific syntax one or more connection with a
Mosquitto Broker, like the one below:

connection id_2
address 10.0.0.251:1883
topic # both

The connection line simply specifies a start of a new bridging connection
specification inside the configuration file, the second one specifies to which
host connects to through its IP and port, used by the Mosquitto instance.
The last line specifies the topic pattern that is the subject of the bridging
between the two nodes and the direction of the bridging ("#” means that
every topic is shared and ”both” that this connection is going to be bidirec-
tional).

'see www.hivemq.com/hivemq/mqtt-broker

2.0.3 PADRES protocol

To face the problem of efficiency, limiting as much as possible the network
traffic, it was necessary to find a protocol that implements a smart way to
forward publishes and subscriptions and one suited for this purpose was for
sure [3], but in the context of MQTT this protocol has some adjustment to
be done, since it is conceptually a protocol thought to work for content-
based publish/subscribe paradigm, while MQTT, and so MQTT+, are
topic-based protocols. The content-based paradigms need the introduc-
tion of a new type of messages, they are called advertisement messages, they
are sent by the publishers, and their role is to perform a notification to the
subscribers on how the publication messages will look like. They can specify
the range of value of the publication messages or the attributes that will be
used inside the packets sent by the publishers.

The idea behind this approach is based on three tables that are used to route
the messages of the base publish/subscribe paradigm on which PADRES is
founded on the Overlay Routing Table (ORT), the Subscription Routing
Table (SRT), and the Publication routing table (PRT). As the names say,
the ORT is the table that contains the direction that the advertisement mes-
sages must follow, it is a tabular representation of the logical connections
that are present in the network at the startup. The SRT, based on what
are the route enforced by the advertisement messages, is used to forward
the subscription towards the nodes that would be interested in the contents
that are going to be published by the clients. The PRT, exploiting the infor-
mation spread by the circulation of the subscription, assures to route of the
publication to the nodes that expressed interest to a matching topic filter.
Based on [3] it was necessary to develop a whole new paradigm to achieve
goals as routing correctly publications and subscriptions, preserving band-
width, maintaining resilience to failures, and making it easy to integrate this
new technology with the already existing ones.

2.0.4 MQTT-ST

The main idea behind this approach is to apply the Spanning Tree Protocol
in order to connect MQTT brokers to each other in a network in which loops
are avoided.

The protocol follows the main phases of the STP and implements the signal-
ing inside the MQTT messages already available according to the standard,
in particular at the startup all the nodes sends to their directly connected
neighbors a modified CONNECT message, with the most significant bit set,
upon the reception of such a message a broker stores all the IPs and ports
of the brokers to which it is connected to, along with the Round Trip Time
computation and the value of the C parameter, that summarize the compu-

tational resources available on that machine.

Upon the termination of this phase, every node sets itself as the root of
the topology and starts sending the messages that are meant to build the
tree, including the necessary information to pursue the objective inside the
MQTT PINGREQ messages, appending to it the following information: the
IP of the currently selected root, the value of C and the cost that the sender
is going to pay to reach the root at that moment. The circulation of these
messages allow to perform two operations at the same time: the selection
of the root, according to the higher value of C, and so choosing the most
powerful node as root, and the path computation, according to which each
node chooses its next hop toward the root. In the end, upon the reach of
convergence, a tree is formed.

As can be seen in [8], this protocol is well suited for the purpose of the
creation of an overlay network among MQTT brokers that is failure resilient
and dynamically exploit the most powerful nodes of the network, it also
guarantees the property of avoiding loops that may create a lot of band-
width waste on the physical network underlying the logical created by the
protocol.

Nevertheless, this approach lacks as long as traffic efficiency is concerned
since it is based on bridging (see 2.0.2 of this chapter) and doesn’t allow
the brokers to create a network without injecting information in the system
before the startup.

2.0.5 Other Distributed Publish/Subscribe paradigms

Beyond the PADRES approach previously described, others have been de-
veloped recently to face the problem of introducing the Publish/Subscribe
paradigm inside a distributed context while trying at the same time to re-
duce the signaling overhead as much as possible.

In [4] is introduced the concept of Matchmaker, a node in the network re-
sponsible for the matching between a publish and a subscribe or an ad-
vertisement and a subscribe. The paper describes also how the overhead
signaling efficiency is affected by the direction to which the subscription
and publication messages are routed inside the network with the addition
of this component. The two most intuitive approaches are to forward the
publication towards the subscriber nodes or conversely the subscription to-
wards the nodes where the publishers are placed, once this forwarding is
operated and the matchmaker operates its comparison to detect matches,
the messages can correctly circulate inside the distributed system.

Another approach is presented in [6], this has some similarities with the
PADRES algorithm since uses a Subscription Routing Table as the base the
entire algorithm uses to correctly propagate publications. This approach
focuses more on reliability and the possibility of continuously providing a
service, being able to tolerate a maximum number of failures without re-

booting the entire system. As PADRES does, it assumes to have an overlay
network already set on which it starts to operate, it is represented in memory
by a so-called Topology Map, as it records the brokers that join and depart
from the system. In addition, an STP with different information with re-
spect to PADRES is introduced, it contains the topic filters along with a
from field, which can be considered as a "network pointer” which points to
another broker in a certain range of numbers of ”logical” hops, determined
by a parameter that enforce the maximum number of failures acceptable by
the whole system. This last table is used to route correctly publications as
near as possible to the subscriber to a corresponding topic in a similar way it
is done in the PADRES approach, nevertheless, this algorithm is centered in
failure resilience, trying to implement a high level of reliability, which is not
done by the approach chosen by the work presented in this paper, focused
on the efficiency of the algorithm and of the data structures.

The last alternative approach that is going to be presented is called Scribe
[2], it is an event-notification infrastructure, that is another name for a
topic-based publish/subscribe system. As the reader can see the scope of
this paradigm is more focused on the field of application of the project pre-
sented in this paper, even if it is general and not applied specifically to the
MQTT protocol. The APIs that allow operating in the context of Scribe are
quite common of any publish/subscribe paradigm, and so similar to the one
implemented by MQTT, as it is a protocol that operates in this particular
conceptual scheme. The main peculiarity of Scribe is the fact that it is to-
tally decentralized, there is not any figure that is comparable to the broker,
it is based on a P2P approach, and so the routing of the messages uses a
mechanism thought for this type of systems, the DHTs (Distributed Hash
Tables) and more specifically, one of its implementation called Pastry [9].
The DHTs are routing tables based on key-values pairs in which any partici-
pating node can retrieve a value associated with a key exploiting the lookup
efficiency of the hash tables, usually, the keys are unique identifier associated
with the peer belonging to the system and the values are addresses through
which the destination can be reached. The main advantage of using such
an approach is that the nodes can be easily added and removed with a very
low overhead in terms of computational requirements. Pastry is a specific
implementation of this general idea, it is quite similar to other approaches
like Chord [10], that presents, similarly to Pastry, a circular key-space. The
main difference that allows distinguishing this particular instance of DHT
with respect to other homologs approaches is the overlay network built on
top and used by the DHT itself, this allows Pastry to apply a metric that
reduces the cost of routing packets avoiding the need to flood packets.

Chapter 3

Project Structure
Idea

In this chapter the general structure of the developed software will be pre-
sented, in this project, several entities are involved, so it is necessary to
explain how they communicate with each other and what are their roles to
accomplish the objectives explained before in this paper. The description
and proceeds to focus on the
in the project

starts with a system-level design explanation
structure and the role of each entity involved

& General

3.1 MQTT+ Distributed Broker

[

MQTT+ Distributed Broker

Masquitto for Proxy
MQTT+ WebServer
<< C language >> <<Java Languages>>

L

Figure 3.1: Deployment diagram

The figure 3.1 shows how the broker is structured from a high-level perspec-
tive, it can be seen as composed of two communicating entities: a custom

for the broker

version of the Mosquitto MQTT broker, written in C language, and a web
server written in Java.

The Mosquitto broker is responsible for all the well-known operation exe-
cuted by an MQTT broker, but it also communicates with the server via
the HTTP protocol: every publication or subscription is forwarded by the
C software to the Java one that adds all the functionalities of MQTT+ ex-
plained in [5] and the ones proper of the project described in this paper. The
forwarding of the MQTT traffic is the only difference between this version
of Mosquitto and the standard version.

The Java Server has three key roles:

e It makes it possible to process the MQTT+ operators.
e It contains all the logic to establish the connection among the brokers.

e It works as a router for the MQTT messages in the network. All
the logic to forward smartly the messages to other brokers is in here.
This functionality allows avoiding the usage of the bridging offered by
the base version of Mosquitto, which is not well suited to obtain a
low-traffic message exchange, as explained in 2.0.2.

3.2 System-level Perspective

Observing the whole system from the point of view of the connections among
the instances of the brokers, it appears as follows:

MQTT+ Distributed Broker

Client

MQTT+ Distributed Broker

Figure 3.3: Explanation of various connections of the system

10

-
Client

N

Client
) MQTT+/Distributed
Client Broker
MQTT+ Distributed
Broker
Client
MQTT+ Distributed
Broker Client

Client

IQTT+ Distributed
Broker

E Client

Client

Figure 3.2: Example of MQTT+ Distributed System

In the figure 3.2 every client is connected to a single broker through an
MQTT connection established with the Mosquitto "part” of the broker (see
section 3.1). Each MQTT+ Distributed Broker knows every other one in the
network, from a mathematical point of view it is possible to state that they
form a fully connected graph. As the figure 3.3 shows, Each MQTT+
Distributed Broker is connected to another instance through an application-
layer link between the Java Server of one side and the Mosquitto Broker of
the other, indeed the former includes MQTT clients that have the role of
forwarding the protocol messages hop by hop, using the mechanism that will
be explained in chapter 4. Later in the text, it will be clear how this high
number of ”logical” connection among the nodes of the network is reduced
to form a tree that prevents loop and reduce the total communication delay
of the system.

What is important to notice at this step is that the clients see the whole
system as follows:

11

EN
=

Client [
EI\ Client
Client
Client

I

Client Client Client

MQTT+
Distributed
Broker

&7

[|

Figure 3.4: The system from the point of view of the clients

The distributed brokers cooperate in order to make the system appear as
a single broker to which every client is connected. It means that when a
client publishes a message, another one, subscribed to a topic that matches
the publication of the former, will receive the publication even if they are
technically connected to two different instances of the software.

It would be now clear how it is possible to correctly aggregate the data
produced by the clients, they are simply forwarded through the (application-
level) network toward the broker instance connected to the client interested,
once it receives the information it can process locally them inside the ”Java
Server” part of the software. Since MQTT+ has been developed to operate
on data published to a broker on the very same machine, exploiting
its normal functioning implementing a routing protocol at an application
level, made the entire system work as a single entity, splitting the process-
ing overhead over several nodes.

It is important to underline once more that every connection in the figures
3.2 and 3.4 is logical, it means that is established at the application-level of
the OSI stack, nevertheless, each line of the figure hides all the lower-level (of
the OSI model) links that could be interposed between two nodes, affecting
the performances of the information transmission. This aspect is of crucial
importance to be ready to understand how the MQTT+ Distributed Brokers
arrange themself into a (logical) topology, trying to select as next-hop the
hosts that guarantee the minimal delay toward the node with the highest
computational power, considered as well suited to receive and process the
largest number of requests.

12

3.3 Java Server

This entity can be seen as a state machine, it is detailed as follows:

Java
Server,

-
. > Discovery

. (Normal

I(.\

44

Figure 3.5: State diagram that describes the Java Server

In the following we will describe the meaning of each status and each con-
nection between states, it has to be noticed that the implementation of the
protocols will be discussed in the next chapter, as will be done with every
implementation detail:

e Discovery: in this state, the server communicates with the other
nodes to discover their IP addresses and the ports through which it
can reach their processes running the protocols that they implement.
Since no prior information is available, it sends packets to a multicast
group joined by the nodes that are interested to join a network.

e RTT: it is improper to define it as a state, since the computation of
the Round Trip Time between a server and another one is continuously
executed, however, it is mandatory to have at least one computation
of RTT for each discovered node to proceed to the next state. After
the first "round” of computation of the RTTs, the server has all the
information needed to compute the overlay network of the distributed
system.

e STP: here the server will execute all the processing to have a list of
neighbors to be able to apply the routing protocol that will be de-
scribed in the implementation details of the project. As can be seen,
even if the name of the state refers to the Spanning Tree Protocol, the
protocol implemented in this state it is a modified and simplified ver-
sion of it, the applicability of these simplifications is due to particular
conditions that are guaranteed by the discovery protocol.

13

e Normal: it can be considered as the nominal state of the server,
the one in which it will be for most of the time and the only one
in which the requests forwarded by the connected Mosquitto Broker
can be processed since all the steps for the correct communication of
the server with the other nodes in the network have been executed.
While the server is in any other state than this, the requests are put
in a queue of execution and they are executed as soon as this step is
reached.

The reader is now ready to analyze all the possible connections among the
states described above. As can be seen, by the graph, the Discovery state
can be reached by any state, there are multiple motivations to explain this
concept: every time a disconnection to a previously discovered node is de-
tected, the server returns to this state to know which servers are still on. On
the other hand, if a node wants to join a network when the already present
serves are doing other operations, the server has to start all the procedure
to determine its neighbors from scratch.

The STP state can be reached by the "nominal” state whenever the net-
work conditions change since the server continuously monitors its RT'T with
every node in the network, it periodically checks whether the structure of
the tree formed is outdated concerning the time to reach every other server.
All the other connections have been detailed in the explanation of the stat-
echart above.

14

Chapter 4

Implementation

In this chapter the reader can acquire knowledge about what has been done
from an implementation point of view to pursue the objectives previously
explained in the paper, following the conceptual model presented in the last
chapter.

4.1 Discovery Protocol

One of the most important features of the project is the fact that the broker
that is obtained at the end of its development would have the ability to
insert itself into a network of brokers without any information given by the
user, autonomously discovering the other nodes. This task is accomplished
by a simple protocol that requires the brokers that want to become part of
a system, to join a specific multicast group, in order to be able to send and
receive discovery messages like the following:

MQTT+ Distributed Discovery Message
Broker Address: 10.0.0.254:1886
Proxy Address: 10.0.0.254:8083

RTT listening on: 10.0.0.254:4447

STP listening on: 10.0.0.254:1024
ID: 78141000254
10.0.0.254:4447

Figure 4.1: Example of a discovery message

The message below is sent via a UDP packet to the multicast address pre-
viously specified. The fields of the packets are:

e The header: as it will be possible to see later, each message sent
by the MQTT+ Distributed Broker has a header to specify to which

protocol it belongs to.

e Broker Address: this field contains the address of the Mosquitto
broker process of the sender that will be used to forward the MQTT
messages.

e Proxy Address: it is the address of the Java Server, this value was
mainly included in order to test the system in a local environment to
distinguish the different instances of the same Java process.

e RTT listening on: the sender says to the receiver where it is going
to listen to Round Trip Time request messages.

e STP listening on: the address from which the sender expects to
receive packets of the STP protocol, used to arrange the topology of
the system.

e ID: this unique identifier is used by the receivers in order to detect
whether the sender is going to start a new session of discovery or
not and to detect retransmission of the same packer, indeed since the
underlying transport protocol in unreliable and the servers may be
started at different moments, each instance transmits the same packet
(with the same information and the same ID) multiple times until the
end of this phase in its own instance.

This procedure starts at the very same time the Java Server is launched,
during the period of time the protocol is running inside the process, it con-
tinuously sends and receive packets until a timer expires, which will termi-
nate the sending part, in order to pass to the next step (see figure 3.5), but
never stops the receiver since the server has to be able to listen to discovery
requests in case of disconnections or insertion of new nodes in the system.
The timer is postponed every time a discovery message is received from
another node, this lets the procedure be sufficiently confident to terminate
when convergence is reached. Obviously, this implementation hasn’t been
thought to protect the server against security threats, since it is not the
main topic of the research carried out by who wrote the code. The duration
of the timer clearly was the subject of an empirical choice.

The situation, from a connection point of view, at the end of this state of
the Server state machine can be synthesized with this graph:

16

Figure 4.2: Example of the logical connections established in a system of 5 brokers

Each node of the graph represents an MQTT+ Distributed Broker, while
the arcs (it is important to notice that they are bidirectional) symbolize the
fact that the two connected nodes know each other addresses to proceed in
the following operations of the protocol.

4.2 Round Trip Time Computation

The MQTT+ Distributed Broker is now ready to start the computation of
an estimation of the Round Trip Time required to communicate with the
previously discovered nodes of the network.

17

MQTT+ Distributed RTT Messag
equest

Figure 4.3: The green node sends the requests for the computation of the RTT esti-
mations

The reader can imagine assuming the role of the green node in the figure
4.4 but has to keep in mind that what is happening in one direction of each
link, is happening into the other one as well.

The messages sent by the highlighted broker are of the following type:

Sent: MQTT+ RTT Request:da191000252
10.0.0.252:8081

Figure 4.4: Example of a possible RTT message request sent by the green node

The packet contains simply two crucial contents:

e A request identifier: it is used to be able to transmit the same
message several times if no response is received by the broker that
originally sent the request. In particular, internally, the server keeps
a timer for each request code, whenever this timer expires, it sends
again the same packet to the original destination, this procedure is
repeated at most three times after which the connection is considered
no more active and the Discovery procedure is restarted.

The code is also useful to understand upon the reception of a response
to which message the received packet corresponds.

e The sender of the packet, expressed as the IP address of the host
plus the port used by the server to receive the forwarded traffic by the
Mosquitto broker.

18

MQTT+ Distributed RTT Messag
Response

PRRti

)
o

gsuod

Figure 4.5: The responses sent as consequence of the figure 4.4

In the figure 4.5 the brokers previously contacted by the white node reply
to the request message:

Packet received: MQTT+ RTT Response:1c641000252
10.0.0.253:8082

Figure 4.6: Example of a response message received by the white node

The structure of the response is symmetric with respect to the request:

e The request identifier is the same that was received in the previous
request message.

e The sender is one of the node highlighted in green in the figure 4.5.

The total Round Trip Time for each couple of request-response messages is
computed as follows: as soon as the sender (the node with IP 10.0.0.252)
submits the request (fig. 4.4) it saves the instant of time in which it hap-
pens, upon reception of the response (fig 4.6), it memorizes at which time
this happens and carries out the difference between the instant the request
started and the time the response arrived. Every node does the same a num-

ber of times that is equal to the number of the discovered node continuously
until the server is up.

At the end the situation will be like this:

19

Figure 4.7: Representation of what is stored in memory by each node of the network

The nodes save in memory, into a table (it is a HashTable in the Java
implementation), a record whose key is the IP of the node for which it is
stored the RTT and whose value is the computed numerical value.

This snapshot represents the system after one round of computations, but
after a short sleep time, the nodes will execute again the same operations, in
the meanwhile, they are ready to execute the next step of the state machine.

4.3 STP protocol

The standard Spanning Tree Protocol (IEEE 802.1D) is used to prevent pos-
sible loops into switching loops and consequent broadcast storm, neverthe-
less, in our case the main hypothesis underlying the theoretical background
of that protocol doesn’t hold. The starting point is different, because every
node knows how the network is composed and what is its distance from every
other broker, instead the original STP protocol is based on the premise that
the single node hasn’t the complete knowledge of the network. This condi-
tion allows the application of some simplification to the standard protocol
that will be explained in the following. Based on what’s said above it is
possible to distinguish two phases of the protocol:

1. Root Selection
2. Path Computation

The list presented above is ordered because the two phases are executed
one after the other and the reader will discover their implementation in the
following sections.

20

4.3.1 Root Selection

Figure 4.8: Message exchange for the first phase of the tree formation protocol

The figure 4.8 shows the first phase of the protocol from the point of view of
the node ”1”. In the very same way the node did in the RTT computation, it
sends to all the other brokers of the network the same message, obviously, it
uses different ports as indicated by the discovery messages we saw in section
4.1.

The packet injected into the network, in this case, is like the following;:
STP PACKET SENT: MQTT+ STP Message

Root: 10.0.0.252:8081
M: 1.2291304E7

L: 2304.0
P: 0
Source: 10.0.0.252:8081

Figure 4.9: Example of a packet sent in the first phase of the protocol

It is now possible to analyze each field of the packet:

e Root: here the sender signals who is the node selected as its root, in
this phase this field always matches the ”Source” field since at start-up
time every node chooses itself as the main node of the tree because it
hasn’t any information about the others.

e M: this is one of the fields used by the nodes to apply the criterion for

21

the selection of the root node, it is the memory capacity of the sender,
expressed in kB.

e L: the second parameter used for the selection of the root node, ex-
presses the CPU clock frequency of the sender, expressed in MHz.

e P: this field is always 0 in the Root Selection phase because it is a value
useful for the path selection as it gives the value of the distance (in
terms of Round Trip Time previously computed) between the sender
and the root, considering that when this message is sent the sender
selected itself as root, it is perfectly logical to have 0 as the value of
this message part.

e Source: this field indicates the sender of the packet, as can be seen
in the figure 4.9 it is, in fact, equal to the ”Root” field.

The root selection is performed every time a packet of the type above is
received by a node, it simply adds together the parameters L. and P and
compare this sum with the one computed with the parameters of the cur-
rently selected node (at start-up this corresponds to itself), if the interme-
diate value is greater than the current one, then the root changes. In the
case of ties, the root with the lowest IP address is chosen as the root.
Once every node collected all the STP root messages it finishes this phase,
having selected a node as the root of the tree that is going to be formed and
sends a message as the one that is presented here:

STP PACKET SENT: MQTT+ STP root selection completed

Source: 10.0.0.252:8081

Figure 4.10: Message sent at the end of the phase described in this subsection

Once a node receives this packet from every other node of the network it
can safely proceed to the next phase the protocol, at the end of the first
phase the situation appears like this:

22

Selected|
Root

Figure 4.11: Situation at the end of the first phase of the STP protocol

The figure 4.11 reports an example of a possible convergence of the first
phase: the node ”1” has been selected as the root node of the tree, the reader
can be sure that the choice is agreed by every node of the network since the
situation in the picture is a snapshot of the system after the reception of the
messages showed in the figure 4.10.

4.3.2 Path Computation

Once the previous phase has been completed the nodes collaborate in order
to form the Spanning Tree that has the minimum path cost. The situation
at this point is identical to the one presented in the figure 4.8, the messages
sent are analogous as well but they differ in the content of the P field,
as discussed in the subsection dedicated to the explanation of the Root

Selection phase. It is possible to show an example of a packet sent during
this step of the protocol:

STP packet content: MQTT+ STP Message
Root: 10.0.0.251:8080

M: 1.2291304E7

L: 2304.0
P: 374318205
Source: 10.0.0.253:8082

Figure 4.12: Example of a packet sent by the brokers during the path computation
phase

As can be seen by the figure and anticipated previously during the expla-

23

nation of the protocol, the messages, during this phase, present two main
differences compared to the ones of the type shown in the figure 4.9:

e The Root and the Source fields are now different, in particular, this
message is not sent by the root node, so it presents as root the address
of that broker and as sender the indication its own IP.

e The P field is now different from 0, it is a direct consequence of what
is said in the previous point of this list, since the selected root is not
equal to the node that is the source of the packet, its cost is different
from 0 and corresponds to the cost that the sender pays to reach the
root in terms of RTTs.

The receiver of such a packet is now going to compare its own cost to reach
the root with respect to the value sent by the other node, if this value plus
the cost to get to the sender is lower than the one it has in its RT'T Table,
then it sets the sender of the packet as new root (since it is the new next
hop to the root) and updates the cost value. An attentive reader may notice
that since the root has 0 as path cost to itself and the RT'Ts can be assumed
greater than 0 for all the other nodes in the network (at least in a real
environment), it never updates its root and cost value. If those changes
occur inside the data structure of the receiver, it sends new packets to all
the nodes of the network, to notify the new values and let the other nodes
take advantage of this new information.

Sooner or later no more new messages will be sent into the network and
the receiver thread of each node will be closed as their timer expires (those
timers represent the period in which the brokers wait for a new message to
arrive and are postponed upon reception of each STP message, an analogous
behavior seen in the RTT and Discovery protocols). An example of the
snapshot of the system at the end of this step may be the following;:

24

Selected

Figure 4.13: Example of a snapshot of the system at the end of the protocol

The red links are the logical connections that are active from now on until a
new run of the protocol will be executed. It is important to notice that the
other potential connections are not thrown off, the nodes will keep them in
memory in case of another execution, at least if no disconnection among the
network will happen, in this case, everything will be restarted from scratch.
As soon as the tree is formed the nodes will use the continuous computation
of RTT to monitor their distance to the nodes that have been elected as
root during the Root Selection phase.

The information about the neighbors that are the result of this protocol will
be used to actuate the routing mechanism that will be discussed in the next
section.

4.4 Routing Algorithm

The algorithm that will be presented in this section takes a lot of inspiration
from [3] but, as it has been said during the introductory part of the paper,
this protocol is designed to be applied to content-based publish/subscribe
paradigms while MQTT is a topic-based protocol, for this reason, it may
be worthy to spend some time to understand how the original protocol is
adapted to a different scope, to be ready, in the successive sections, to
understand how it is implemented in the specific case of this project.

25

4.4.1 Algorithm Adaptation

The main clarification that has to be done at this point is what are content-
based publish/subscribe paradigms and how they differ from topic-based
ones. In a content-based protocol, messages are only delivered to a sub-
scriber if the attributes or the content of those messages match the con-
straints defined by the subscriber, while in a topic-based one the subscribers
will receive all messages published to the topics to which they subscribe, the
topics are in fact called logical channel as they represent a logical source
from which they receive contents by the clients. Based on these definitions
it appears clear that the original paradigm in which PADRES operates is
based on the values published by each client rather than on how they are la-
beled, this justifies the presence of particular messages called advertisement
that are injected into the network before clients publish messages. In the
content-based paradigm, publications are based on messages that present
attributes and values assigned to them, these attributes are sort of keys to
which the corresponding values are assigned. Advertisements are messages
in which the publisher notifies potentially interested clients on the type and
range of values it will associate to each attribute of its forthcoming publica-
tions.

Two examples of publication and advertisement are reported below:

P: [class, ‘STOCK’], [symbol, ‘YHOO’], [open, 25.2],
[high, 43.0], [low, 24.5], [close, 33.0],
[volume, 170300], [date, ‘12-Apr-96°]

A: [class, eq4, ‘STOCK’], [symbol, isPresent, @STRING],
[open, >, 0.0], [high, >, 0.0], [low, > ,0.0], [close, >, 0.0],
[volume, >, 0], [date, isPresent, QDATE]

As it is possible to notice the complexity of these messages is very high due
to the presence of a typing mechanism and comparison operators for each
of these types.

Even if the class attribute may represent a point of conjunction between
content-based and topic-based approaches, as its role can be in some sense
compared to the topic of the latter, the presence of advertisements in a
protocol like MQTT has absolutely no sense, moreover, the addition of a
new type of message into the consolidated standard of this paradigm was
not the intent of this project. According to the standard (see [1], section
1.5.3) an MQTT topic must comply with the UTF-8 encoding for strings
with a length range that goes from 0 to 65535 bytes, the project exploits the
freedom in the design process of topics by creating a new type of messages
that are simple publication with an additional part appended to the topic.
It is now possible to see an example of this new type of message, explain the
reason behind this addition, and see how it is linked to the advertisement
concept of the content-based paradigm:

26

MQTT publish message
topic: rooml/sensO/temp@10.0.0.251:1883
payload: 81.0

The message presented above is an example of the MQTT publish packet,
lots of its fields have been neglected because they are not important at this
stage of the discussion. The addition on which the reader may focus its
attention is on the topic field, it is totally compliant to the standard but at
the same time, it presents a ”strange” final part. The idea behind this ad-
dition is that the '@’ character is not used too much inside the topic design
of the MQTT protocol, but at the same time, it expresses well the meaning
of this type of message. At the end of the topic, it is possible to find the
origin of the publication, more precisely the broker that originally received
the publication of that message from a client.

The message is the result of post-processing, since upon receiving a message
from its connected broker, that in turn received it from a connected client,
the Java Server appends this additional information to the topic string, this
operation is done only for the first message received by the server that be-
longs to a certain topic.

Similarly to what is done by publishers in the content-based paradigm, this
new type of message signals what are the contents published by a certain
publisher, plus its broker location. The reader will understand the im-
portance of this addition later in the explanation of the routing protocol
adopted, that from now on it’s analogous to the one presented in [3] with
some significant modification that will be explained in the next sections.

4.4.2 Routing Tables

Talking about routing algorithms imposes to include into the discussion the
routing tables, that represent its core. This routing algorithm uses three
tables, the reader may notice that the meanings and the names of these
tables are quite similar to the ones described in [3].

e ORT (Overlay Routing Table): this table is the result of what is de-
scribed in the section 4.3, in fact, it contains the list of the neighbors of
each broker, the representation of the figure 4.13 may now be extended
in this way:

27

ORT
1 | [IP:Port]

2 | [IP:port]y

ORT
1 | [IP:Port]z
ORT
2 | [IP:port]y
3 | (P:portls 1 ‘ [IP:Port]s

ORT

ORT
1 | [IP:Port]

1 | [IP:Port]

Figure 4.14: Representation of the situation in memory of each broker at the end of
the STP protocol

it is important to understand the meaning of each entry of the table,
they are written in the form [IP:Port], and its meaning is: IP and
port (separated by a colon) of the instance of Mosquitto running on
the node x. Notice that, since the link are bidirectional, every node
stores its neighbors addresses but at the same time is saved into the
ORT table of each of them.

They are used in order to route the advertisement messages to the
neighbors of each node, more specifically, every time a server receives
a published message on a topic never encountered before, it forwards
a message of the form represented above, appending the address of
its connected Mosquitto instance at the end of the topic string, in
order to make the forwarding process to be perfectly inserted into the
MQTT standard, it is performed by using a simple MQTT publish.
This message is in turn forwarded by the nodes which receive it to
their own neighbors, substituting the sender address with their own.

28

ORT
[IP:Port]y

-

2 | [IP:port]s
Mo,
ORT , o,
. S s,
1 | [IP:Port]y o @\\q?om %,% nzgs ORT
P
2 | OPporte W’ g 1 tpPort,
3 | [IPport]s &
3
o p“bhaa
" iy g, “oe
MQTT Publish Message 1P oy .
L 1
on topic: “topic1® % EN
%
% %
%%
N >
\ 4
5
ORT ORT
1 | [IP:Port]y : | [IP-Port]

Figure 4.15: Representation of the system reaction to a publish message on a topic
never encountered

Two clarifications are important after the observation of the figure
above: for clarity of representation, the connections that are not active
into the ORT of the nodes are omitted but logically they are always
present in the brokers memory, the links are bidirectional but the
messages that are forwarded always follow only one direction because
upon receiving such a message the ORT table is examined by each
node in order to avoid looping.

The messages are obviously not sent by the nodes in parallel as it may
seem observing the figure, they are sent after the reception of each
node from its ”predecessor”.

e SRT (Subscription Routing Table): as the name suggests this table is
used by the algorithm to route the subscriptions to the correct nodes.
Their filling is a direct consequence of the reception of the messages
as showed in the figure 4.15. The situation after the processing of the
above mentioned packets can be summarized in this way:

29

A/

Figure
4.15

SRT

topict | [IP:Port]y

SRT
[IP:Port],

topict

SRT

topic1 | [IP:Port]y

SRT
topict ‘ [IP:Pert],

4.16: How the SRT tables are filled upon receiving the messages of the figure

The SRT table is implemented through an HashMap in which the
keys are the topics and the values associated are represented by the
addresses of the brokers to which a subscription that arrives must be
delivered.

It is now possible to see what happens at the arrival of a subscription
message by a client, sent to a broker which filled its SRT.

30

/4

SRT

topict | [IP:Port]4 Q

[IP:Port],

topic

SRT
topict | [IP:Port]4

SRT
topic1 | [IP:Port]

Figure 4.17: Example route followed by a subscription sent to a broker that filled its

SRT

The figure above shows how the subscription received by the client
connected to the broker ”3” is routed to the root according to the con-
tent of the Subscription Routing Tables encountered during the path.
Upon the arrival of a subscription, the Java Server verifies whether
its topic filter matches any of the topics that form the set of the keys
of the SRT table saved in memory if so it forwards the message to
the corresponding Mosquitto broker saved as a value of that corre-
sponding key. The reader may ask what happens in case of circulation
of subscription messages before publication messages, the answer to
this legitimate doubt is that the servers are able to buffer the received
subscription and start their circulation into the distributed system as
soon as a corresponding publication arrives, in the end, it allows to
fill correctly the PRTs and the system can be considered as working
exactly as explained above. The brokers store into a data structure
the subscription filters they encounter and the corresponding broker
to which each subscription has been forwarded, for example, in case of
the arrival of a subscription before any other publication message, the
cited data structure stores the arrived topic filter, leaving empty the
part of the data structure that is dedicated to the broker that has been
advised for that specific topic. As soon as a publication, with a topic
that matches the subscription filter previously received, arrives, the

31

broker verifies that the list of the advised broker about that subscrip-
tion is empty and so proceed to forward the subscription, establishing
a situation in which the future publication can be correctly routed.
Notice that the examples are using simple topics, without any wild-
card, to simplify the explanation of the protocol, however, the mecha-
nism is the same in the case of more complex topic filters or publication
topics with more of one level since the program inside the Server is
able to test the matching of all these more sophisticated cases.

It may appear clear that the publication reaches the root since it was
the broker that received a corresponding publication and it doesn’t
go further because the nodes 74” and ”5” are not interested in a sub-
scription with that topic filter at that moment. This is a first example
of how this mechanism reduces the traffic on the network, in fact,
the usage of the communication implemented by bridging would have
replicated the message on the other two links that are excluded in this
case.

PRT (Publication Routing Table): The reader may have noticed that
the explanation of the part highlighted in red into the subscription
messages of the figure 4.17 has been previously neglected. The mo-
tivation is that those red parts regard the table that is going to be
explained now and they were difficult to be contextualized before.
The messages that are forwarded by the Java Server have a small part
appended to the subscription filters that resemble the ”extended” con-
cept of advertisement introduced talking about publications, in fact,
the concept is quite similar, it is used by the receiving node to be
able to update the PRT table, so to store what is the destination of
a potential publish message with a topic that matches the received
subscription filter (all but the part highlighted in red). Moreover, the
forwarding of a subscription is executed in a similar way with respect
to the publish messages, they are simple subscription messages, com-
pliant to the MQTT standard, sent to the interested node by a client
that disconnects itself immediately after the packet is sent, as it may
create additional traffic remaining connected and subscribed to a topic
that is not the one subject to the ongoing network traffic.

Therefore the PRTs appear like this (notice that the keys of the tables
are subscription filters, not publication topics):

32

PRT
[IP:Port],

topic1

PRT

topict | [IP:Port]y

Figure 4.18: Example of the PRTs obtained by the traffic showed in 4.17

When the client connected to the broker ”1” issues a publish message,
it follows the path designated by the PRTs and reaches the brokers
connected to the subscriber interested in it, avoiding the proliferation

of messages in parts of the network that can be neglected.

PRT

topic1 | [IP:Port],

PRT

topict | [IP:Port],

Figure 4.19: Example of a routing of a publish message of an already encountered

publication topic

33

No additional information is necessary to route the message correctly
as the data previously memorized in the PRTs are sufficient to ac-
complish this task. Notice that the publication arrives directly to the
interested client (see the black arrow out of the client ”3” in the fig-
ure 4.19), as the node 72" connects directly to the Mosquitto broker
running on the node ”3”, that is the broker to which the client sent
the original subscription.

4.4.3 Conclusions and clarifications

The algorithm presented was explained by means of a very simple example,
avoiding the complexity of topics with wildcards, multiple levels, and also
neglecting the usage of MQTT+ operators into subscription messages, nev-
ertheless, it is clear that what has been said in the previous section can be
easily applied to these cases. In particular, the operators of MQTT+ can
be treated as simple operators as soon as the reader considers that the Java
Servers contain all the logic to treat the messages received by the Mosquitto
brokers in order to process and correctly aggregate the data that is stored
locally, assuring the correct arrival of data, as this protocol does, allows to
take for granted the fact that the operators of the new paradigms will work
correctly.

34

Chapter 5

Testing Methodology

In this chapter, the reader can find a description of the choices made to
evaluate the results of the implementation conceptually described in the
previous sections.

This overview starts with the description of what are the objectives of the
evaluation and the reason behind their choice, then the description moves
to the testing environment, its components, and a justification of why this
path has been preferred to obtain significant results to evaluate the imple-
mentation of the project.

5.1 Evaluation Targets

In order to properly understand what are the evaluation targets may be
useful to recall what are the objectives of the entire project. As explained
in chapter 2, the main objectives of the system are basically the following:

e Network traffic efficiency: it is important that the impact of the
developed system on the network traffic among the brokers is lower
than the one enforced by the technologies already present on the mar-
ket. According to this concept, it should be clear that a measure of
the dimension of the traffic generated by the solution described in this
paper, with respect to the one derived from the usage of the bridging
mode, is a good metric to understand whether this target has been
achieved or not.

e Dynamic overlay creation, fault resilience, independent and
self-contained system orchestration: these three targets of the
project are tightly coupled to each other and have a strong link with
the evaluation presented in the previous point. It is clear that more
system functionalities mean more traffic: to correctly form the tree, to
verify the connection with the other brokers, and to discover those pro-
cesses, all things that the normal bridging simply can’t do, the project

adds a part of network traffic that cannot be neglected, however, it is
desirable that the resulting overhead allows having a resulting amount
of data injected in the network at least comparable to the total traffic
obtained by means of bridging.

Workload: the list is not ordered by importance but this evaluation
objective is for sure the most important. Obviously, it is necessary
to verify whether the implementation can be correctly executed by a
server machine that usually has an MQTT broker installed on it.

In order to be able to verify this requirement is crucial to monitor
the CPU and memory loads of the processes that make up the new
MQTT+ broker. It is possible to predict in advance that the imple-
mentation described in these pages has a higher workload with respect
to the one enforced by the normal MQTT+ broker, this should be the
result of the additional processing activities required by the routing al-
gorithm and the additional functionalities not present in the bridging
mode that imply more parallel activities and allocated data structures.
An acceptable result should be reasonable CPU and memory require-
ments, easily satisfiable by a server

Convergence performances: Another important goal to achieve
is to have a convergence of the algorithm that makes up the tree of
brokers that should add a reasonable delay to the computation of the
normal messages. As we said previously in the general description,
in particular in the section 3.3, while the Server is busy with the
necessary operations to correctly establish the connections with the
other brokers, avoiding loops, it queues the MQTT/MQTT+ messages
and postpones the processing of this packets until the whole process is
completed, this explains why it is essential to have a quick transition
from the intermediate states to the nominal one.

In particular the analysis will be focused basically on two aspects, how
much time it takes at the startup to form the tree, and what is the
duration of the period between a failure in the system and its complete
recovery by the remaining brokers.

The testing environment presented below pursue the goal of measuring the
above-described objectives putting the system in a scenario that tries to be
as much realistic as possible.

5.2 Testing Environment

After the explanation of which are the goals of the testing process of the
project, the reader is ready to know how these objectives have been pursued.
The testing environment is mainly based on a platform called Containernet

36

1 it is a tool that allows simulating a network, setting its topology, and
tuning its parameters, such as the links delay and bandwidth. The advan-
tage of using such a tool is that the results of the simulations of the system
obtained by means of this emulator can be considered for sure more real-
istic than the ones retrieved by simply executing the processes locally on
a single machine. On the other hand, this type of approach is convenient
for its flexibility and integration with a very simple programming language
like Python. Moreover using this type of experimental environment allows
another level of flexibility considering future works and research in this area,
allowing to execute new tests and experiments by simply modifying the im-
ages inside the containers, leaving the infrastructure totally untouched.

In addition to being able to properly place and connect network devices such
as switches and routers, it allows placing nodes executed inside independent
Docker containers.

Figure 5.1: Representation of the setting of the network used for the tests

The figure 5.1 shows the setting of the network made up through Contain-
ernet to perform the test. The number of selected brokers is five since it
represents a meaningful example of a distributed system that is, at the same
time, easy to control and trace. As can be seen, the broker is executed inside
Docker containers based on OpenJDK 11. The original Mosquitto broker
and the Java Server are the compounds of each of the servers visible in the
figure above, executed on top of the above-cited base image.

The network is very simple and the Brokers are placed all in the same

!see https://containernet.github.io/

37

(switched) network, the reason for this choice is that the functionalities that
require to join and send messages to a multicast group have to be correctly
routed by gateways that link networks to each other, it can be easily done by
the maintainer of the network by simply adding rules to the IP table of the
routers, but from the testing perspective, modifying these tables would re-
quire an effort that doesn’t make any difference in terms of reliability of the
collected results. The links between a broker and its corresponding switch
have 1 ms of delay and its bandwidth is 1 Mb/s, these settings are the same
for every broker-switch link in the network.

5.2.1 Clients locality

The clients are placed in the network differently according to the test case,
the possibilities explored are basically three:

e 100% Locality: Publishers and subscribers are connected to the same
broker.

Subscribers

Publishers

Figure 5.2: Example of how the clients may be placed in case of 100% locality

The figure above shows the physical location of the clients, they are di-
rectly connected to the switch to which the brokers they are connected
to are connected.

e 50% Locality: Publishers and subscribers are connected to the bro-
kers randomly according to a uniform distribution.

38

i Subscriber

Subscriber

Publisher

Figure 5.3: Example of how the clients may be placed in case of 50% locality

e 0% Locality: All the publishers are connected to the same broker,
similarly, the subscribers, but the two brokers to which the two classes
of clients are connected are different.

Figure 5.4: Example of how the clients may be placed in case of 0% locality

The localities presented in the bullet list above are the parameters on which
each experiment on the traffic is based, as can be seen in the next chapter,
as these conditions change the results obtained are quite different. The
reader can imagine that the most favorable conditions are guaranteed by
the 100% locality of the clients, as the inter-broker traffic of the system is
very limited, the reason behind this consequence is that it is not needed to

39

deliver the publish messages to the other brokers of the system, since the
subscribers interested in them are connected to the very same machine of
the publishers, the routing algorithm presented in the section 4.4 is able
to detect this peculiarity exploiting this aspect, while the normal bridging
mode among the brokers continues to blindly forward messages all over the
network.

5.2.2 Bridging topology

One of the most important aspects that will be analyzed concerns a deep
comparison between the performances obtained with the solution presented
in the previous chapter and the ones achieved through the usage of the
bridging mode of Mosquitto, as it represents the base of the implemented
broker to communicate with the Server. According to this premise, it is
useful to show here what is the chosen topology in order to perform the
experiments in the cases in which the bridging mode is adopted:

(@))

Figure 5.5: Topology adopted to perform the tests in the bridging case

The figure 5.5 shows a ”logical” topology enforced on top of the physical
one, that remains the same for both cases (bridging and distributed) and is
depicted in the figure 5.1, the Mosquitto icons that are placed next to each
link express that the overlay connections are established through the bridge
configuration this broker offers to its customer. Once more, it is important
to highlight that the choice of enforcing a topology is obliged by the fact
that this particular mode is static, it imposes to make decisions on which
brokers connect together before the startup of the entire system, the logical
option was to opt for a balanced tree of 5 nodes, while the dynamic approach
described in this paper doesn’t give the possibility to know in advance what
is the topology that is going to be enforced at a logical level, because con-

40

sidering as known the physical topology parameters, the computation of the
RTT takes into account also the congestion of the node, creating a sort of
variability.

5.2.3 Convergence experiments

Calculating the convergence performances of the algorithm would not be
simple to be done if different physical machines were used, luckily the choice
of Docker results to be useful also in this case, as it guarantees that the
different containers are based on the same clock, the one of the machine on
which the tests have been executed. This peculiarity brings to the possibility
of having a rough estimate of the intervals of time to complete the made up
of the tree in different situations.

Convergence period = Second timestamp - First timestamp

. Convergence
Startup instant reached
l Discovery + RTT + STP
X
r]
Switched off Algorithm Execution MNominal State
First timestamp Second timestamp

Figure 5.6: How the convergence period is computed after the startup of a broker

The figure 5.6, shows the temporal diagram of a broker, it also shows the
time instants that are of interest in the test case represented. As can be
seen, by the diagram the test is not interested in the handle of the traffic
by the broker, it simply computes the difference between two time instants,
it is clear that this type of computation does not guarantee a high precision
but still gives an idea on what is the time interval in which the requests are
queued at the startup.

41

Kill Signal

l

Nominal State >< Switched off
Convergence
reached

First timestamp l

Discovery + RTT + STP

A
r A

Nominal State Algorithm Execution Nominal State

w]

Failure

Second timestamp

detection
period
L__‘__J_ J
~
Failure detection Algorithm _ Total Convergence
period * execution period - Period

Figure 5.7: How the convergence period is computed after the failure of a broker

In the figure 5.7, the reader finds two temporal diagrams: the former is of the
broker that is going to fail during the test, the latter is of one of the remaining
brokers. This is the case in which the presence of a synchronized clock is
useful, as can be seen in the figure 5.7, the timestamps stored to obtain
the final period of time needed to reach again the nominal state are taken
from different machines, the presence of clock drifts would have decreased
the reliability of the obtained results. This second time period includes two
terms: the interval necessary to detect the failure and the actual execution
time of the three steps that in the figure are called Discovery, RTT and
STP. Notice that the failure detection penalty is paid only once, as soon
as a broker detects this event it restarts the Discovery protocol, by sending
a multicast packet to all the servers that joined the group, this message
also notifies the need of recomputing the tree and so the other brokers stop
to ping the machines they are connected to, restarting the procedure from
scratch.

5.2.4 Clarifications and other aspects

Some clarifications about the messages injected by the clients in the network
are of extreme importance:

e from the traffic point of view, the heavier operators that can be possi-
ble to use from the set offered by MQT T+ are the spatial aggregations

42

(such as $AVG, $MIN, $MAX ..), a change on any value of the aggrega-
tion, results in a change of the aggregated value and this modification
should be visible immediately by the subscribers. To execute test cases
that are complete but not too long to be executed, this was the pre-
ferred solution, as temporal aggregations would require a lot of time
to generate a sufficient load, and data processing operators would be
too heavy to allow to execute multiple brokers on the same machine.

e from the functional point of view, given from granted that the server
that handles the new functionalities of MQTT+ works correctly, test-
ing the functioning of the system using the spatial aggregation would
be exactly the same, as the data processing and temporal aggregation
operators at the end of the day are represented by numbers inside the
publish messages to their subscribers. Testing that the spatial opera-
tors work allowed to be sure that also the other operators do the same,
as the communication between brokers is focused on publication and
the results of the aggregations or other operators are processed by each
single broker and sent to the nearest subscriber.

Beyond the isolation of the execution of the processes, using the brokers
inside the Docker containers has an additional advantage, it allows to moni-
tor some of the usage statistics of each container, treating them as separate
machines with respect to the allocated resources. In particular, the com-
mand docker stats returns, every time it is called, the percentage of resources
(CPU and Memory) the container is using, against the ones allocated to it.
Allocating the same resources to the containers during the tests in which
the traffic is measured, made it possible to obtain the differences in terms of
resource usage by the two alternatives subject to the previously described
trials.

43

Chapter 6

Experimental Results

In this chapter, the reader will be able to see what are the results obtained
by the experimental methodology introduced in previous pages. In the first
section, it is possible to find the discussion about the results concerning
the traffic, while the following ones are dedicated to the workload and the
convergence performance of the system.

6.1 Network traffic

The main goal of the project is to apply a new concept in the way the MQTT
messages are routed among brokers that belong to a communicating system.
In the following results, we expect to see a significant difference in terms of
traffic generated to correctly route the publish messages among the nodes
that make up the distributed system.

The test case executed has the following features:

e There are 5 clients that subscribe to the same filter topic but each
of them uses a random MQTT+ operator selected from the spatial
aggregation operators previously introduced in this paper. They are
all located on different docker containers, with different IPs.

e There are 20 publishers, each of them publishes 50 messages, there are
5 docker containers, and so 5 different IPs, each of them executes 4
processes in which it is simulated the process of publishing 1 message
every second. Every different publisher publishes to a different topic,
every topic selected by them matches the filter previously described
concerning the subscribers, this means that the messages generated by
this class of clients are entirely useful to generate corresponding traffic
for the subscribers.

e Each subscription message has a dimension of 89 bytes on average.

e Each publish message has a dimension of 98 bytes on average, the
payload of the publications is the timestamp of the time instant in
which the single message has been sent.

le6
1.4
1.2 A
1.0 1
v
[
5
= 0.8
B
=
:FE 0.6 1
',_
0.4 4
H Taffic Distributed
0.2 | g Intra Traffic Distributed
HE Taffic Bridging
== Intra Traffic Bridging
0.0 f
= F =
) S =)
] =1
=
Locality

Figure 6.1: Representation of the obtained traffic dimension (in bytes) differentiated
by the algorithm and the locality adopted in the experiment

0% 50% 100%
Distributed 877280 1060326 817676
Bridging 1011320 1009339 1014473

Table 6.1: Tabular representation of the traffic (in bytes), considering as excluded the
part concerning the publishes forwarding, differentiated by the locality and the routing
methodology adopted

0% 50% 100%
Distributed 98505 334224 0
Bridging 363872 359648 356414

Table 6.2: Tabular representation of the traffic (in bytes) concerning the publishes
forwarding, differentiated by the locality and the routing methodology adopted

Once informed about the dimension of the traffic that represents the input
of the system, the reader is ready to analyze the results obtained by running

45

the test cases previously characterized.

Each vertical bar represented in the figure 6.1 depicts the total traffic gener-
ated by each test case, differentiated by the technology used and the locality
applied to place the clients. Every bar has a further subdivision, on top of
each of them, it is possible to find the cumulative dimension of a particular
class of packets generated during the run of each test, this category of traffic
represents the messages used by the brokers to route the publications to the
other node of the network.

Observing the figure it is clear that the main goal of the project has been
achieved, as the total traffic dimension is lower for the distributed cases
than the bridging ones, except for the 50% locality, moreover the reduction
in terms of traffic generated to route the publications is significant, as the
0% locality case with the developed protocol has a total dimension of this
class of packets that is one order of magnitude lower than the one obtained
with the same locality and the bridging used to connects the broker. The
100% locality shows a cumulative traffic dimension of this class of packets
equal to 0, which means that no useless information is routed to the bro-
kers to which no clients are connected, while the bridging method does not
exploit this additional advantage to reduce the number of bytes exchanged
by the nodes.

Concerning the 50% locality case, it is likely that disseminating clients in a
totally random way all over the network, brings the distributed case to have
very similar traffic with respect to the particular class of packets highlighted
in the figure, paying a lot more in terms of the signaling overhead, as can
be guessed following the explanation in the previous chapter of this paper,
concerning the routing strategy adopted. The signaling overhead to keep up
the system, computing the RT'Ts, filling the routing table, detecting failures,
during the entire test case is included in the ”residual” part of the bars in
the figure, placed at the bottom, as can be noticed, has a low impact in the
0% and 100% locality total traffic, while in the 50% one it assumes a certain
relevance as the blue bar is higher than the green one of the corresponding
case, revealing that, excluding the common traffic, this class of packets has
a higher weight with respect to the messages needed to correctly set the and
keep running the bridging mode among the nodes.

Figure 6.1 also reveals the smartness of the developed protocol with respect
to the usage of blind flooding of messages all over the logical links that con-
nect the brokers. The behavior of the brokers during the three tests executed
using the bridging mode appears to be quite "flat” across the different cases,
while the modified PADRES algorithm shows that it correctly exploits the
differences in terms of client placing, in particular, these features are visi-
bly observing the highlighted traffic (the yellow and red bars of the figure),
since the bridging shows similar results, while the distributed cases can be
recognized by only observing this particular class of traffic.

46

6.2 Workload

When the CPU and Memory usage is concerned, the reader must be informed
about what is the execution environment in which those experiments have
been performed. The machine on which the test cases have been executed
is a Linux (with Ubuntu 18.04 release) one, with 12 GB of memory and a
CPU that is an Intel 19-9880H clocked to 2,30 GHz with Turbo-Boosting
that brings the 16 Cores up to 4,80 GHz.

6.2.1 CPU workload

In the following some graphics and data that refer to a comparison on the
CPU usage by the implemented algorithm with respect to the execution of
brokers in bridging mode are shown:

I CPU Usage Distributed (Percentage) (NULL)

140 mmm CPU Usage Bridging (Percentage) (NULL)
120 A
100
80 4
60 1
40 4
20 4
o4

(= — o~] =+

Broker index

Figure 6.2: Average usage of the CPU by the 5 brokers during a test case in which
clients are placed with 0% locality

47

Distributed % Bridging % CPU
CPU usage usage
Container 1 139.163 92.198
Container 2 143.590 88.869
Container 3 147.346 85.453
Container 4 145.880 2.500
Container 5 144.320 0.844

Table 6.3: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 0% locality

B CPU Usage Distributed {Percentage) (TOTAL)

140 4 B CPU Usage Bridging (Percentage) (TOTAL)

120+

100 -

80 A

60

20+

[=] — [a] (1] =+
Broker index

Figure 6.3: Average usage of the CPU by the 5 brokers during a test case in which
clients are placed with 100% locality

48

Distributed % Bridging % CPU
CPU usage usage
Container 1 145.520 92.823
Container 2 143.798 89.442
Container3 150.352 85.822
Container 4 146.213 1.684
Container 5 146.434 0.813

Table 6.4: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 100% locality

160
I CPU Usage Distributed (Percentage) (UNIFORM)

I CPU Usage Bridging (Percentage) (UNIFORM)
140 -

120 4

100 A

80 A

60

20 A

[=] — [a] (1] =+
Broker index

Figure 6.4: Average usage of the CPU by the 5 brokers during a test case in which
clients are placed with 50% locality

49

Distributed % Bridging % CPU
CPU usage usage
Container 1 146.590 92.125
Container 2 143.205 88.794
Container 3 145.844 86.121
Container 4 145.858 0.806
Container 5 153.646 0.771

Table 6.5: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 50% locality

The results that are shown in the three figures and tables above reveal that
the broker implemented is quite CPU demanding, as they show an average
usage of the CPU that is beyond 100%, this is not surprising in a multi-
core environment, it simply means that the processing operations required
by each container use more than one processing unit on average in a single
test-case.

The usage pattern of the CPU for the distributed case appears to be quite
flat, so the reader can imagine that most of the excess percentage with re-
spect to the bridging case is due to the operations that are not implemented
in the latter that is heavily influenced by the traffic that has to handle dur-
ing the test, so being affected by where the clients are placed.

The tables also show that the leaf of the bridging topology has low usage of
the CPU, as they received all the messages without having to forward them
to the other nodes.

6.2.2 Memory workload

The situation is quite different as long as memory usage is concerned, the
reader should remember that the algorithm presented uses more data struc-
tures and the use of the Java part by this new broker is higher than the one
that exploits bridging, this results in a potential higher usage of the memory
available, however, the load on this resource is not so heavy, as it can be
considered grossly twice the usage of a normal broker

The percentages of memory occupation are so quite easy to be managed by
a server that has to run an MQTT broker:

50

I Memory Usage Distributed (Percentage) (NULL)

mmm Memory Usage Bridging (Percentage) (NULL)
2.0 4

1.5 A
1.0 A
0.5 1
0.0 -
[=] — [y m =+

Broker index

Figure 6.5: Average usage of the memory by the 5 brokers during a test case in which
clients are placed with 0% locality

Distributed % Bridging %

Memory usage Memory usage
Container 1 1.689 0.790
Container 2 1.280 0.769
Container 3 2.208 0.770
Container 4 1.286 1.177
Container 5 1.211 0.750

Table 6.6: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 50% locality

o1

Memory Usage Distributed (Percentage) (TOTAL)

25 = Memory Usage Bridging (Percentage) (TOTAL)
2.0 1
1.5 1
1.0
0.5
0.0 -
o — ~ " +

Broker index

Figure 6.6: Average usage of the memory by the 5 brokers during a test case in which
clients are placed with 100% locality

Distributed % Bridging %

Memory usage Memory usage
Container 1 2.596 1.116
Container 2 2.709 1.157
Container 3 2.249 1.107
Container 4 1.550 1.112
Container 5 2.154 0.747

Table 6.7: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 100% locality

52

2.5 1 EEE Memory Usage Distributed (Percentage) (UNIFORM)

mmm Memory Usage Bridging (Percentage) (UNIFORM)
2.0 1
1.5 A
1.0
0.5 A
0.0 -
(=] — ™ m =t

Broker index

Figure 6.7: Average usage of the memory by the 5 brokers during a test case in which
clients are placed with 50% locality

Distributed % Bridging %

Memory usage Memory usage
Container 1 2.383 0.794
Container 2 1.258 0.768
Container 3 1.157 1.135
Container 4 2.471 0.764
Container 5 1.140 0.744

Table 6.8: Average percentages of CPU resources of the host machine used by each
container during a test case in which clients are placed according a 50% locality

What was said about the CPU can be said also about the memory usage,
it is a quite reasonable demand of resources considering that in some cases
it is similar in the two approaches and the Java Virtual Machine is not
optimized especially concerning the object and dynamic allocation, while the
C language, used to write the Mosquitto part of the broker, is tailored for
this purpose. The reader should also remember that the PADRES approach,
and in turn its adaptation developed in this project, uses additional data
structures like the routing tables (ORT, PRT and SRT), moreover the other
protocols (Discovery, RTT and STP) need more data structure and more

93

data to be kept in memory to work. Despite what has been said, the two
approaches appear to be at least comparable in terms of demand of resources,
even if the comparison in this particular category results in an advantage
for the bridging approach.

6.3 Convergence results

One of the other aspects that is important to test about the developed
project is the convergence performance when the system is subject to events
like the startup of the system and the failure of one of the brokers of the
network. The reader can find in the chapter 5 the description of how these
convergence performances have been computed but it would be useful also
to detail how these experiments have been carried out:

e Concerning the startup convergence, the 5 brokers, previously used
to test the workload and the traffic performances, have been started
one after the other and the moment in which the tree was formed
was measured for each of those nodes. These measurements have been
performed 10 times and the results that will be presented to the reader
are the average values of these iterations of the executed tests.

e The failure convergence has been tested as follows: the 5 brokers have
been started, then one of the containers executing a broker received a
kill signal simulating a connection tear down, or, generally speaking,
a malfunction that would not allow the node to correctly reply to the
RTT messages to the other brokers, the time instant in which the
remained brokers agreed about the new topology has been recorded.
Similar to the previous case described the results that will be shown
are the average of 10 measurements.

54

[] -
19.487
® 194854
2 19.48
g
=
wm
w
= 19.47
'_
L
Q
=
G .
© 19.4622
g 19.46 .,
2 .
o
[w]
[= %
2
o 19.45
=
74}
19.44 - ® 194409
T T T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Broker indexes

Figure 6.8: Average convergence performance for the 5 brokers at the

system

startup of the

E& 9711
@ 58.9711

58.970

58.968

58.966

58.964

58.962

58.960
@ 58.9593

FAILURE CONVERGENCE TIMES {AVG) [s]

58.958

e 5B

[EE

2.0 2.5 3.0

T
3.5 4.0

Broker indexes

5.0

Figure 6.9: Average convergence performance for the remaining 4 brokers at the failure

of one of the brokers

95

The figures 6.8 and 6.9 shows two different classes of results, as the numeri-
cal difference suggests, the second measurements take into account also the
time the system takes to recognize the failure and to complete the procedure
as explained in the chapter 5. Considering that these intervals are period of
time in which the system queues the requests forwarded by the Mosquitto
broker, sent either by clients or by the Java part of other MQTT+ brokers,
it would be satisfactory to have reasonable values that would not force the
broker to arrive to a possible loss of requests or to a malfunctioning, more
in general. The reader should agree to the fact that these values are abso-
lutely reasonable, moreover, it should be considered that they are heavily
influenced by some timers that at an implementation level can be reduced
or increased in future versions of the protocols, involved in the convergence
process of the system.

The last important consideration that has to be done is that the measure-
ments depicted in the two figures above have a very low standard deviation
(this is the main reason behind the choice of not reporting it onto the fig-
ures), this suggests that the protocols reach the convergence on different
brokers with a very low difference in time, so the orchestration among the
brokers allows to have a good synchronization that results in a good effi-
ciency in case the system encounters high traffic in input, preserving a good
consistency among the data circulating among the network nodes.

o6

Chapter 7

Final considerations

According to the results presented in the previous section of this chapter,
the main goals presented at the beginning of this paper have been achieved.

e The traffic generated by the solution developed showed a significant
reduction with respect to the alternative that would have allowed to
let the MQTT+ paradigm working also in a distributed environment,
the only exception is represented by the 50% locality case.

In order to be able to obtain measurements that are always below the
ones that are given by the bridging case, one of the main paths of
research that can be followed is to reduce the signaling overhead, that
the protocols developed in this paper needs to operate. In particular,
concerning the UDP packets, it would be possible to further reduce the
information conveyed by these messages, standardizing some fields and
improving the dimension of the packets with respect to the considered
KPI.

Furthermore it would be possible to carry out some analysis about
the ideal period of time across RTT messages sent by the same source
to the same recipient, this would give a good trade-off between the
number of RTT messages injected in the network during a certain
period of time and good performances in terms of failure detection and
topology re-computation, following changes of the network conditions.

e The developed protocols require a reasonable amount of resources to
be executed, nevertheless, it is possible to further reduce this aspect.
One of the ways to pursue this goal is to integrate the operations that
are now carried out inside the Java Server to a code that has a better
usage of the resources, moving downwards the level of abstraction of
the development but keeping the conceptual scheme of the implemen-
tation intact. This would allow the developer to control the number
of threads spawned by the broker and to allocate and deallocate care-
fully the data structure necessary to the various functionalities that

are now implemented inside the proxy.

The most intuitive way to do so would be to implement entirely the
Java server functionalities inside the Mosquitto broker, this would im-
prove also the easiness as far as deploying is concerned, as only one
binary file would be necessary, while now the Mosquitto binary has to
be executed at the same time of the server JAR which requires the
installation of Java on the Server machine.

e The convergence performances showed in the section 6.3 can be con-
sidered good enough but they could be improved by taking care of the
traffic generated by increasing the frequency of the exchange of sig-
naling messages. These improvements are strongly linked to the first
point of this list, as said before, in fact, in order to obtain an optimal
trade-off between convergence performances and low traffic overhead
a specific study in this sense should be carried out.

One final consideration regards the testing environment, as its re-usability
would allow to easily test the new research path results obtained by changing
the implementation of the broker, in particular, the complete isolation of
the containers with respect to the network simulation given by the mini-
net framework, on which Containernet is based, allows to simply change
the deployment principles and the conceptual structure of this complex and
heterogeneous system, without any further effort by the developers.
Although the original goal of the project was to allow the possibility to
extend MQTT+ to be used in a distributed environment, it is clear that
what has been developed has a certain relevance also considering the base
protocol, MQTT, since the routing principles, along with the algorithms that
are useful to establish and keep connected multiple brokers, represent also
an important contribution to have an efficient and fault resilient connection
among those components of the original version of the protocol.

o8

Bibliography

[1]

Andrew Banks and Rahul Gupta. Mqtt version 3.1.1 oasis stan-
dard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-
os.html, 2014.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
Rowstron. Scribe: A large-scale and decentralized publish-subscribe
infrastructure. In Proceedings of the 3rd International Workshop on
Networked Group Communication (NGC’01), volume 2233, pages 30—
43. Citeseer, 2001.

Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. The
padres distributed publish/subscribe system. In FIW, pages 12-30.
Citeseer, 2005.

Zihui Ge, Ping Ji, Jim Kurose, and Don Towsley. Matchmaker: Signal-
ing for dynamic publish/subscribe applications. In 11th IEEE Inter-
national Conference on Network Protocols, 2003. Proceedings., pages
222-233. IEEE, 2003.

Riccardo Giambona, Alessandro EC Redondi, and Matteo Cesana.
Mqtt+ enhanced syntax and broker functionalities for data filtering,
processing and aggregation. In Proceedings of the 14th ACM Interna-
tional Symposium on QoS and Security for Wireless and Mobile Net-
works, pages 77-84, 2018.

Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Reliable and
highly available distributed publish/subscribe service. In 2009 28th
IEEFE International Symposium on Reliable Distributed Systems, pages
41-50. IEEE, 2009.

Roger A Light. Mosquitto: server and client implementation of the
mqtt protocol. Journal of Open Source Software, 2(13):265, 2017.

Edoardo Longo, Alessandro EC Redondi, Matteo Cesana, Andrés
Arcia-Moret, and Pietro Manzoni. Mqtt-st: A spanning tree proto-
col for distributed mqtt brokers. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pages 1-6. IEEE, 2020.

99

60

[9]

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 329-350. Springer, 2001.

Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. ACM SIGCOMM Computer Communication Review,
31(4):149-160, 2001.

