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Abstract

The last decade has experienced a worldwide consolidation of numerous Moon re-
lated space missions to develop and advance the technologies required for a future
exploration of Mars. Among those, NASA’s Artemis program plays a dominant role,
with its Lunar Orbital Platform Gateway (LOP-G) to operate as long-term modular
infrastructure in deep-space. To successfully assembly and operate the Gateway, au-
tonomous rendezvous, docking and undocking capabilities on non-keplerian orbits
are required. However, despite a great deal of experience on guidance, navigation
and control techniques for rendezvous in LEO has been gained through the ISS pro-
gramme, no proximity operation has been autonomously performed so far in the
non-keplerian regime.

In this context, the present work focuses on assessing the applicability of bearing-
only navigation to perform proximity operations in the cislunar domain. This tech-
nique estimates the relative state of an observer by measuring through a single op-
tical camera the line-of-sight angles to the target. Although this navigation solution
requires simple, cheap, and lightweight navigation sensors, its application in the
space environment has been sparsely studied because of inherent limitations in esti-
mating the range. Using as a baseline existing researches in LEO, this thesis deeply
investigates the impact of unobservabiity over the navigation quality in the non-
keplerian regime and extends the results to any system that admits a discrete-time
solution. In addition, it presents a framework to enable the implementation of com-
putationally efficient Model Predictive Control (MPC) strategies in the Earth-Moon
system.

A GNC architecture based on a Shrinking Horizon - MPC algorithm is proposed to
synthetise a rendezvous trajectory, together with a novel approach to favour the tar-
get observability while respecting traditional rendezvous requirements. The results
of a dedicated numerical testing campaign are presented to highlight the robustness
of the proposed algorithm and its capability to meet safety and navigation require-
ments throughout the whole relative approach. Moreover, this thesis also offers an
extensive sensitivity analysis to compare the effects of various degree of approx-
imation on the estimation and guidance processes. Finally, the same architecture
is exploited to perform relative navigation between flying distant heterogeneous
non-keplerian orbits. The outcomes of this work demonstrate the applicability of
bearing-only navigation to a large set of potential near-future missions in the cislu-
nar environment, from small satellites as a primary navigation solution to a backup
strategy for larger spacecraft.
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Chapter 1

Introduction

The last decade has experienced a worldwide consolidation of numerous Moon re-
lated space missions to develop and advance the technologies required for a future
exploration of Mars. Among those, NASA’s Artemis program plays a dominant role,
aiming to bring back humans on the lunar surface by the mid-20s. In this framework,
the Lunar Orbital Platform Gateway (LOP-G) will play a critical part as a long-term
modular infrastructure, supporting activities on and around the Moon whilst allow-
ing to conduct research and scientific experiments that require a deep-space environ-
ment (e.g., outside the protection of Earth’s Van Allen radiation belts). The integra-
tion of the first two Gateway pieces is planned for 2023, with additional modules and
robotics furnished by ESA, CSA, JAXA and Roscosmos to follow. The activities on
the Gateway and on the lunar surface will be supported by various space transporta-
tion systems, such as the Space Launch System (SLS), the Cislunar Transfer Vehicle
(CLTV) and other commercial vehicles which will deliver cargo, experiments and
logistics. To enable and safely accomplish these assembly and re-supply missions,
autonomous rendezvous and docking/undocking capabilities must be consolidated.
In particular, although a great deal of experience on Guidance, Navigation and Con-
trol (GNC) techniques for rendezvous in Low Earth Orbit (LEO) has been gained
through the International Space Station (ISS) programme, no proximity operation
has been performed so far in the non-keplerian regime.

In addition, to guarantee the long-term sustainability of these future lunar explo-
ration missions, the International Space Exploration Coordination Group (ISECG)
has identified as a key point the collaboration with commercial partners through
dedicated arrangements [1]. In this regard, the last years have seen the influence
of private companies in the space sector to grow remarkably and few of those have
already been awarded delivery contracts to the Gateway. Nevertheless, rendezvous
operations generally require expensive and power-consuming hardware to measure
the relative state, which can rarely be afforded on-board of small spacecraft. To
bridge this gap, an alternative technique, known as bearing-only navigation (i.e.,
angles-only), has recently been proposed for in-orbit applications. This technique
measures through a single optical camera the Line-of-Sight (LOS) angles (i.e., az-
imuth and elevation) to the target and thus represents a simple and low-cost solu-
tion to perform relative navigation from large distances. In particular, bearing-only
measurements can be used as a primary navigation solution for small satellites to
enable rendezvous with non-cooperative targets or as a back-up strategy for larger
spacecraft. Even though the simplicity of this technique has spread its applications
in many ground and naval operations, its implementation in the space environment
has been sparsely studied because of inherent limitations in estimating the range.

In the recent years, various authors have studied the performance of bearing-only
navigation in LEO, demonstrating that the observability gap can be overcome by
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performing specific sets of maneuvers to alter the natural evolution of the spacecraft
trajectory. Nevertheless, to the author’s knowledge little research has been pub-
lished to deal with this topic in the non-keplerian environment, thus the present
thesis will focus on establishing the applicability of bearing-only measurements for
rendezvous and proximity operation in the cislunar domain. In the remaining of
this chapter, a brief literature review on the topic is reported, together with a general
overview of thesis structure and objectives.

1.1 Literature Review

1.1.1 Bearing-Only Navigation

Bearing-only navigation has been studied by several authors in naval [2] [3], track-
ing [4] and orbit determination [5] applications. More recently, in the context of in-
orbit relative motion Woffinden [6] and Grzymisch [7] have proved that a necessary
and sufficient condition for observability is the execution of maneuvers that yield
a difference of at least one measurement between the perturbed trajectory and its
evolution if no maneuvers had occurred. Examples of unobservable control actions
were also computed for impulsive and constant thrust maneuvers [7]. However,
both studies exploited a linearised relative dynamic model based on Clohessy Wilt-
shire (CW) equations because typical non-linear observability approaches based on
Lie derivatives [8] are unsuited for complex dynamic environments.

One of the first documented in-orbit demonstration of noncooperative far-range ren-
dezvous based on bearing-only navigation was accomplished during the extended
phase of the PRISMA mission in 2012, with the execution of the Advanced Ren-
dezvous Demonstration using Global Positioning System and Optical Navigation
(ARGON) experiment [9]. During the tests, a ground-in-the-loop architecture was
exploited to process the images collected by the on-board camera and compute the
control actions required to follow a predefined trajectory profile. In particular, the
guidance strategy evaluated a safe rendezvous trajectory based on the relative eccen-
tricity and inclination vectors; however, in- and out-of-plane maneuvers to improve
observability were only chosen from a subset of already available fuel efficient solu-
tions. Relying on the experience gained from ARGON, in 2016 a second in-orbit ex-
periment called Autonomous Vision Approach Navigation and Target Identification
(AVANTI) successfully performed two autonomous rendezvous with a noncoopera-
tive object from 13 and 3 km of initial distance, respectively [10]. Nevertheless, both
missions as well as [11] identified a general lack of literature dealing with the design
of rendezvous trajectory that favour the target observability while respecting safety
and navigation requirements.

In this regard, few studies have developed expressions to quantify the observability
of the trajectory and compute single optimal maneuvers. Woffinden [6] proposed
a metric based on the relative range and the observability angle but analytical so-
lutions were only found for very simple cases. On the other hand, Grzymisch [12]
quantified the observability through the positive linear independence of the relative
position vector with a maneuver and that of the natural evolution. The same author
suggested an analytical closed-form expression for optimal maneuvers that yield the
best possible improvement in the navigation estimate (i.e., those which maximise
observability) which holds true for any system with a linear discrete-time solution.
Moreover, he has also shown the possibility of combining the same observability
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metric with a fuel objective to obtain a Quadratic Programming (QP) optimisation
problem that can be solved multiple times along the trajectory with little compu-
tational effort [13]. Chari [14] investigated the performance of various formation
geometries and concluded that the R-bar approach is much more effective at provid-
ing range observability than a V-bar approach. In particular, he shew that a motion
normal to the line-of-sight yields significant improvements in the downrange uncer-
tainty. Spurmann [15] proposed a spiraling approach based on the eccentricity and
inclination vector separations to initiate a far-range approach. More recently, Mok
[16] developed a one-step guidance which exploits the Fisher Information Matrix
(FIM) to quantify and enhance the observability in a closed-loop architecture.

Concerning the navigation algorithms, many implementations adopt a traditional
Extended Kalman Filter (EKF) to reduce the computational demands, even though it
is well known the filter has weak robustness properties because of the measurement
equations linearisation [17]. In this regard, Grzymisch proved the EKF performance
can be enhanced by de-coupling the observable and unobservable states through a
spherical coordinate parametrisation of CW’s equations [18]. Additionally, he also
developed a non-linear navigation filter based on a pseudo-measurement equation
to overcome the EKF divergence for large initialisation errors [11].

1.1.2 Non-Keplerian Rendezvous Operations

Rendezvous operations have been researched since the beginning of the space ex-
ploration era, although with the end of the Apollo programme in 1972 the focus
shifted towards proximity operations in LEO to support the development and main-
tenance of Skylab, Mir and the ISS. With the recent regrown interest in lunar explo-
ration missions, several contemporary studies have explored rendezvous strategies
for Near Rectilinear Halo Orbits (NRHO) because they emerged as the most promis-
ing candidate to stage the LOP-G [19] [20] [21]. In particular, Bucci [22] investigated
Earth-Moon transfers and rendezvous phases with a spacecraft located on a NRHO,
identifying the periselene region as an unfeasible area for proximity operations be-
cause of its numerical instability. Natural relative 6 Degrees-of-Freedom (DOF) mo-
tions for large structures in NRHO and Halo orbits have been studied by Colagrossi
[23] and Colombi [24] to highlight potential exploitable features for the design of
approaching and departing trajectories. In addition, the same authors have shown
how relative 6 DOF Guidance and Control (CG) functions can be designed through
a direct transcription of the energy optimal control problem to accomplish a ren-
dezvous.

Alternative promising optimal control strategies rely on Model Predictive Control
(MPC) techniques as they can easily account for constraints and non-linearities [25]
[26]. The resulting optimisation problem is solved online and multiple times along
the rendezvous approach to update the maneuver plan and contain errors provoked
by uncertain estimates and environmental disturbances. In this regard, Berning [27]
proposed a sup-optimal Nonlinear MPC for station-keeping on NRHOs and used a
4th order Runge-Kutta scheme to numerically approximate the dynamics. Indeed,
one of the major drawbacks of some MPC formulation is that they might result ex-
pensive from a computational standpoint. In this regard, a linearised model for
formation flying in non-keplerian orbits was developed by Luquette [28] and suc-
cessfully applied for rendezvous applications by Bucci et al. [29]. The very same
model was adopted by Pesce [30] for autonomous vision-based navigation around
uncooperative objects.
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1.2 Thesis Objectives and Outline

The existing literature studies on bearing-only navigation are all focused on LEO
applications. Thus, many of them exploit the closed-form analytical solution of Clo-
hessy Wiltshire’s equations to investigate the observability properties of various nat-
ural and forced motions. However, as highlighted by [23], the dynamics of cislunar
relative motion has a completely different behaviour from that of LEO because the
period of a non-keplerian orbit in the Earth-Moon system is much bigger than the
duration of the rendezvous. In this regard, the research work of Grzymisch [11] has
extended many bearing-only concepts to a generic discrete-time linear system and
has developed a robust framework to account for observability inside a rendezvous
optimisation problem. Nevertheless, the performance of that architecture have been
tested only in the LEO environment.

Therefore, the main contribution of this thesis are grouped in two areas. The ini-
tial objectives are to asses the impact of unobservability over the navigation quality
in the non-keplerian regime and find a general criterion to evaluate which set of
maneuvers is most capable of reducing the navigation uncertainty. In particular,
the goal is to identify an observability metric which holds irrespective of the envi-
ronment properties so that the results here obtained can be easily generalised and
employed in other scenarios. In the second place, exploiting the results of the ob-
servability analyses, this thesis develops a GNC architecture based on bearing-only
navigation to perform various proximity operations in the cislunar domain.

The work of this thesis is structured as follows:

- Chapter 2 provides an overview of the non-keplerian dynamic models: the
equations for the Circular Restricted Three Body Problem (CR3BP) and high-
fidelity ephemeris models are discussed. Then, an efficient discrete-time ma-
trix approximation for the relative model is presented.

- Chapter 3 introduces the most common formulations for non-linear navigation
filters, together with their implementation for bearing-only measurements in
the non-keplerian dynamics. In addition, a brief mention of real-world appli-
cation is made by discussing the effects of different camera properties over the
estimation errors.

- Chapter 4 characterises the observability of bearing-only navigation in the cis-
lunar domain and investigates the capability of various observability metrics
to provide optimal observable maneuvers.

- Chapter 5 introduces the mathematical formulation for the GNC architecture.
It shows how a computationally efficient Shrinking Horizon - MPC can be de-
veloped for non-keplerian applications. Moreover, already existing observ-
ability metrics are generalised to linear time-varying systems and a novel non-
linear strategy is proposed.

- Chapter 6 presents the results of the numerical simulations performed to as-
sess the validity of the proposed architecture. The performance of different
observability metrics are compared and critically analysed from an operational
perspective. In addition, a sensitivity analysis is reported to highlight the ap-
plicability of the approach on different orbital families and its robustness to
various degrees of approximation.

- Chapter 7 summaries the results obtained in this work and suggests possible
future developments.
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Chapter 2

Non-Keplerian Dynamics

This chapter intends to provide a complete mathematical description of all the mod-
els employed to describe the absolute and relative motion of two objects in the cis-
lunar environment. All bodies are assumed to be point-masses, capable only of
translational motion. No reference is made to their orientation in space since this
investigation deals with the estimation of the relative position and velocity only.

2.1 The Circular Restricted Three Body Problem

In first approximation, an object in the cislunar space domain is influenced by the
gravitational potential of both Moon and Earth, thus the classical Keplerian Two
Body Problem (2BP) is unable to provide a reliable description of the motion of
a spacecraft. Instead, a formulation based on the Circular Restricted Three Body
Problem (CR3BP) can provide a useful framework for preliminary analyses on the
dynamics of such environment.

The classical CR3BP describes the motion of a small body, with mass mB, under the
influence of two major attractors P1 and P2, called primaries, with masses much big-
ger than mB. This assumption allows to neglect the impact of mB over the motion of
M1 and M2. Thus, the primaries revolve in Keplerian orbits around their common
barycentre. It is further assumed that their motion is circular.

Under this hypothesis, it is possible to define a rotating frame, the Synodic Reference
Frame, fixed with respect to the relative position of the primaries. The adoption of
such frame can provide many insights on the dynamic problem and the resulting
symmetry is often exploited to perform differential corrections and find periodic so-
lutions. Let (X̂, Ŷ, Ẑ) be the vector basis of an inertial reference frame Î and let (x̂,
ŷ, ẑ) be the basis of the synodic reference frame Ŝ, with the x̂ axis always parallel to
the line between the primaries and directed towards P2. The origin of both frames is
located in the barycentre of the system with ẑ parallel to Ẑ and normal to the plane
of motion of the primaries. The orientation of the synodic frame with respect to the
inertial one is described by θ, the angle between X̂ and x̂. Conventionally, at the
initial time the two frames are aligned and θ = 0. A sketch of the system geometry
is reported in Figure reffig: syn reference.

Additionally, the differential equations that govern the dynamics are normalised
with respect to the physical properties of the system, so that the resulting distance
between the primaries, the total mass and the angular velocity are unitary. The main
characteristic quantities are defined as following:

- The characteristic length equals the distance between the two primaries and,
thanks to the assumption of circular motion, is constant in time: L∗ = d1 + d2.
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- The characteristic mass M∗ is defined as the total mass of the system. Since mb
is much smaller than M1 and M2, M∗ equals the sum of the masses of the two
primaries: M∗ = M1 + M2.

- The characteristic time T∗ is chosen as the inverse of the angular velocity of
the system: T∗ = 1/Ω =

√
L∗3/(GM∗). As a consequence, the dimensionless

orbital period of the primaries is 2π and the normalised time equals the angle
θ between the inertial and synodic frame. Moreover, also the non-dimensional
universal gravitational constant becomes unitary.

All the other quantities, such as velocities, accelerations and forces, can be expressed
as combinations of these three. The characteristic quantities of the Earth-Moon sys-
tem are here reported:

L∗ [km] M∗ [kg] T∗ [s]

384400 6.045638 · 1024 3.751578 · 105

TABLE 2.1: Main characteristic quantities of the Earth-Moon system

The normalised system results more robust to numerical errors and the dynamics
can be univocally represented by the mass-parameter µ, defined as:

µ =
M2

M1 + M2
(2.1)

Exploiting this definition, the masses of the primaries are expressed as: M1 = 1− µ
and M2 = µ. The mass parameter also defines the location of P1 and P2 along x̂,
which are −µ and 1− µ respectively.

FIGURE 2.1: Geometry and reference systems of the CR3BP

A brief derivation of the CR3BP equations of motion is hereby reported; for a more
comprehensive dissertation, the reader is encouraged to refer to [31]. The set of
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dimensionless differential equations that rule the absolute dynamics in the inertial
frame can be derived combining Newton’s second law and Newton’s law of gravity
to obtain:

r̈ = − (1− µ)

r3
1

r1 −
µ

r3
2

r2 (2.2)

where r1 and r2 represent the relative positions of mB with respect to the two pri-
maries. The general kinematic relations that link the first and second-order time
derivatives of a vector between an inertial and a rotating frame are:

(
dr
dt

)
i
=

(
dr
dt

)
r
+ Ω r/i × r (2.3)

(
d2r
dt2

)
i
=

(
d2r
dt2

)
r
+ 2Ω r/i ×

(
dr
dt

)
r
+

(
dΩ r/i

dt

)
r
× r + Ω r/i × (Ω r/i × r) (2.4)

where Ω r/i is the angular velocity vector between the rotating and inertial frame.
For the normalised case at hand Ω r/i = Ẑ and Ω̇ r/i = 0. Combining (2.2) with (2.4)
the general dimensionless equations of motion in the synodic frame are written as:

f (x) =



ẍ = x + 2ẏ− (1− µ)(x + µ)

r3
1

− µ(x− 1 + µ)

r3
2

ÿ = y− 2ẋ− (1− µ)y
r3

1
− µy

r3
2

z̈ = − (1− µ)z
r3

1
− µz

r3
2

(2.5)

The distances from P1 and P2 are respectively:

r1 =
√
(x + µ)2 + y2 + z2 (2.6)

r2 =
√
(x + µ− 1)2 + y2 + z2 (2.7)

The system (2.5) depends only on the mass parameter µ and is autonomous (i.e. time
does not explicitly appear inside the equations). However, to obtain the evolution
of the dynamics, a numerical integration is necessary since a closed-form analytical
solution does not exist for such system. Indeed, it can be shown that in the rotating
frame there is only one analytical integral of motion, known as the Jacobi Constant,
and defined as:

JC = 2U∗ − (ẋ2 + ẏ2 + ż2) (2.8)

where U∗ is the pseudo-potential function, a modified expression of the gravitational
potential:

U∗ =
1
2
(x2 + y2) +

1− µ

r1
+

µ

r2
(2.9)

The Jacobi constant is associated to the mechanical energy of mb in the synodic
frame: the lower the value of JC, the higher the energy is. Additionally, the sys-
tem (2.5) admits five equilibrium solutions, called Lagrangian points and named after
their energy level. The first three lie on the x̂ axis and are unstable. The remaining
two form equilateral triangles with the primaries and are stable only if µ < 0.03852.



8 Chapter 2. Non-Keplerian Dynamics

2.2 Ephemeris Model and Perturbations

The CR3BP is a valid tool to perform preliminary analyses on the dynamics of a
spacecraft in the the cislunar space, however, for certain applications a higher fi-
delity propagator is deemed necessary. Indeed, such approximation neglects two
factors that play an important role in the behaviour of the Earth-Moon system: the
eccentricity of the primaries’ orbits and the influence of other gravitational bodies
(e.g., the Sun) [23][22].

In this framework, the ephemerides of the Sun and the Moon are obtained from the
NASA / Jet Propulsion Laboratory (JPL) SPICE Toolkit. The model returns the po-
sitions of the two celestial bodies in the J2000 frame Ĵ, an inertial reference system
centered in Earth’s barycentre. Denoting ( ˆ̃X, ˆ̃Y, ˆ̃Z) the basis vectors, the frame is de-
fined such that at the epoch J2000, ˆ̃X is pointing in the direction of the mean equinox,
ˆ̃Z is orthogonal to the plane defined by the mean equator and ˆ̃Y completes the right-
handed triad.

Before describing the set of differential equations that govern the new dynamics, a
few remarks are mandatory. The CR3BP equations (2.5) formulated in either Î or
Ŝ have as origin the barycentre of the Earth-Moon system. However, since in the
ephemeris model the relative position of that point with respect to either of the pri-
maries is not fixed, the barycentre holds no benefits anymore. Additionally, comput-
ing the trajectory of a spacecraft with respect to a central body, can usually provide
more insights on the overall motion. Therefore, as the focus of this work is to investi-
gate the bearing-only performance in the cislunar domain, the equations of motions
for the N-body ephemeris model are formulated with respect to the Moon. To dis-
tinguish from the previously defined system, the J2000 frame centred in the Moon is
here called the J2000 Moon-Centred (JMC) frame.

Further, to improve the numerical accuracy, all quantities are non-dimensionalised
with respect to the characteristic quantities of the system. However, since in this
model the primaries do not follow a circular motion, it is necessary to use the in-
stantaneous characteristic quantities [32], denoted with a tilde and equal to:

L̃ = ‖Rm‖ ω̃ =
h̃
L̃2

=
‖Rm ×Vm‖

L̃2
(2.10)

where ω̃ is the instantaneous angular velocity. Rm and Vm are the dimensional po-
sition and velocity vectors of the Moon with respect to Earth in the J2000 frame, as
obtained from the ephemerides. Then, the characteristic time is evaluated as the in-
verse of ω̃. For obvious reasons, the characteristic mass is unchanged from Table
2.1. Once this quantities have been evaluated, all the position vectors coming from
SPICE are normalised before entering the differential equations.

The spacecraft inertial acceleration as seen by Pj and subject to the gravitational in-
fluence of N-bodies is expressed, in non dimensional form, as [33]:

r̈sj = −µj
rsj

r3
sj
−

N

∑
k=1
k 6=j

µk

(
rsk

r3
sk
+

rkj

r3
kj

)
(2.11)

where the vector rkj is the relative position of the k-th body relative to Pj, the sub-
script s indicates the spacecraft and µk is the dimensionless mass of the k-th object.
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Applying this equation to the Earth-Moon system in the JMC frame and temporarily
neglecting the presence of other bodies, yields:

r̈BM = −µ
rBM

r3
BM
− (1− µ)

(
rBE

r3
BE

+ r̂EM

)
(2.12)

rBM/rBE are respectively the spacecraft positions with respect to Earth and Moon,
whereas rEM is the position of Earth relative to the Moon. Notice that thanks to the
normalisation step, this quantity will always be a unit vector and so the denominator
is trivial. When the positions of Moon and Earth are obtained from the ephemerides,
this equation represents the dynamical model for the Ephemeris Restricted Three
Body Problem (EpR3BP) expressed in the JMC frame. However, the new system is
non-autonomous as the relative positions vary in function of the solving epoch: dif-
ferent initial epochs lead to different solutions for the spacecraft motion. Thus, to
allow for comparisons between different simulations, the default value of the start-
ing epoch has been set to January 1st, 2026.

As a last remark, this model can be easily expanded to include different kinds of en-
vironmental forces, other than the gravitational actions of Earth and Moon. Among
the many actors, the most common and studied perturbations are the sun’s gravi-
tational force, the solar radiation pressure and non-uniform gravity fields. Once an
analytical expression for their acceleration is available, the associated term is nor-
malised and inserted inside equation (2.12).

2.2.1 Fourth-body Effects

For the Earth-Moon scenario, the gravitational pull of the Sun is one of the most
important perturbing forces and must be included in any high-fidelity model. The
forth-body gravitational force in the JMC frame is easily modelled by exploiting
equation (2.11):

a4th = −µs

(
rBS

r3
BS

+
rSM

r3
SM

)
(2.13)

In accordance with the notation above, rBS is the spacecraft position relative to the
Sun, rSM is the relative position of the Sun with respect to the Moon and µs is the
non-dimensional Sun’s mass. If both relative position vectors are normalised prior
to their usage in this equation, the acceleration coming from (2.13) can be directly
inserted inside (2.12). The resulting dynamic system constitutes the basis of the
Ephemeris Restricted Four Body Problem (EpR4BP).

2.2.2 Solar Radiation Pressure

The Solar Radiation Pressure (SRP) is the result of the interaction between the en-
ergetic photons coming from the Sun and the surface that is immersed into these
particles. When the photons collide, three types of phenomena are possible: spec-
ular reflection, diffusive reflection and absorption. The intensity of each interaction
depends on the surface characteristics and on the angle between the incident par-
ticles and the local surface normal. As a result, the photons exert both forces and
torques on the spacecraft.

To simplify the analysis and considering that so far the satellite has been modelled
as a point-mass with infinitesimal dimensions, the SRP’s action is computed using
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the cannonball model [34], which assumes the spacecraft is a sphere with radius R.
The resulting force is:

aSRP = ν
Λ

c
cR As r̂BS (2.14)

where As is the cross-sectional absorbing area, c is the speed of light, Λ is the flux
density at the distance from the Sun (Λ ' 1350 W/m2 for the Earth-Moon system)
and r̂BS is the unit vector pointing from the Sun towards the spacecraft in the JMC
frame. cR is the radiation pressure coefficient that accounts for the characteristics
of the surface. It varies between 1, if the momentum is completely absorbed, and 2
when all the radiation is reflected, effectively doubling the exerted force. ν is called
the shadow function and is either equal to 0 or 1 depending on whether or not the
spacecraft is shadowed. Finally, the acceleration coming from equation (2.14) must
be dimensionalised using the instantaneous quantities defined in (2.10) and added
to (2.12).

2.3 Coordinate Frames Transformations

Coordinate frame transformations are useful to study the motion of a spacecraft from
different perspectives. For example, a periodic orbit in the synodic frame does not
display the same kind of periodicity in the inertial frame. On the other hand, the
shape of some resonant orbits is best analysed from an inertial viewpoint rather
than a rotating one. Additionally, to transition a periodic CR3BP solution in higher-
fidelity models, the spacecraft coordinates must be first converted from the Ŝ frame
to the J2000 one.

2.3.1 Synodic Frame to Inertial Frame

In the context of the CR3BP, the conversion matrix from the synodic frame Ŝ to Î is
obtained by combining two transformations. First, using as a reference Figure 2.1,
the position is easily converted by performing a clockwise rotation of θ around the
Ẑ-axis:

X = Cpx =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x (2.15)

where X and x are the positions vector in the inertial and synodic frame, respectively.
This expression is valid whenever the two frames are assumed to be aligned at the
initial time, i.e., θ = 0 at t = 0. If that is not the case, θ must be substituted with
(θ + θ0). Recall that, thanks to the normalisation, θ can be used interchangeably
with t. Then, an expression to rotate between synodic and inertial velocities can
be obtained either by using the kinematic relationship in (2.3) or by differentiating
(2.15). Since θ̇ = 1, both methods yield:

Ẋ = Cvx + Cpẋ =

− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 x + Cpẋ (2.16)

Finally, combining (2.15) and (2.16) the complete transformation is:[
X
Ẋ

]
=

[
Cp 0
Cv Cp

] [
x
ẋ

]
(2.17)
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Although the CR3BP equations have been formulated with respect to the Earth-
Moon barycentre, this transformation holds irrespective of the point used as origin
of the synodic frame. Thus it is equally valid if the centre is set at a primary. If the
opposite transformation is desired, i.e., from the inertial to the synodic frame, the
transformation matrix to use is the inverse of (2.17).

2.3.2 CR3BP to Ephemeris Model

To transition a periodic solution in the synodic frame to an ephemeris model, it is
necessary to express the CR3BP states in the inertial JMC frame [32]. The first step
is to shift the orbital states from the barycentre of the system to the Moon. Then, the
data is dimensionalised using the instantaneous characteristic quantities defined in
(2.10).

Before introducing the transformation matrix, it is convenient to define an instanta-
neous rotating frame, here called the J2000 Rotating Moon-Centred (RMC) frame [24].
It is similar to the synodic frame but its basis vectors ( ˆ̃x, ˆ̃y, ˆ̃z) are expressed relative
to the J2000 frame:

ˆ̃x =
Rm

Rm
ˆ̃y = ˆ̃z× ˆ̃x ˆ̃z =

Rm ×Vm

‖Rm ×Vm‖
(2.18)

where Rm and Vm are again the instantaneous position and velocity of the Moon
relative to Earth in the J2000 frame. These axes are then used to construct the rotation
matrix for the position vector:

X̃ = C̃px̃ =
[

ˆ̃x ˆ̃y ˆ̃z
]

x̃ =

C11 C11 C13
C21 C22 C23
C31 C32 C33

 x̃ (2.19)

which transforms the dimensional position vector x̃ in the RMC frame (coming from
the previous step) to X̃, its inertial JMC counterpart. The structure of C̃p does not
allow for a simple analytical time-derivative. Thus, to obtain the inertial velocity,
the kinematic relationship (2.3) is exploited:

dX̃
dt

=
dx̃
dt

+ ω̃× x̃ = ( ˙̃x− ω̃ỹ) ˆ̃x + ( ˙̃y + ω̃x̃) ˆ̃y + ˙̃z ˆ̃z (2.20)

where ω̃ is the instantaneous angular velocity of the rotating frame and equals ω̃ ˆ̃z
by definition. Notice that, since the data comes from the ephemerides, the instanta-
neous dimensional angular velocity is no longer constant and unitary. The inertial
velocity is then obtained by applying the transformation in equation (2.19) to (2.20)
(see [32][35] for further details). The final result is:[

X̃
˙̃X

]
=

[
C̃p 0
C̃v C̃p

] [
x̃
˙̃x

]
(2.21)

where the matrix C̃v is defined as

C̃v = ω̃

C12 −C11 0
C22 −C21 0
C32 −C31 0

 (2.22)



12 Chapter 2. Non-Keplerian Dynamics

Equation (2.21) allows to transform a state from the RMC to the JMC frame and,
whenever the opposite conversion is required, the inverse of this transformation
matrix is used. However, as stated earlier, before applying the transformation, the
rotating states must be dimensionalised. This step is required because the angular
velocity obtained from (2.10) is dimensional. Finally, once the conversion has been
applied, the primary-centred inertial states can be normalised using the very same
instantaneous characteristic quantities.

In some cases it is useful to exploit the dynamics from an inertial perspective. For
example, when in a navigation filter the ephemeris dynamics is approximated with
the CR3BP, an accurate value for the process noise is easier to find in a fixed refer-
ence frame. In these instances, it is possible to establish a direct link between the
two inertial frames using a transformation matrix similar to Equation (2.21). Ad-
ditionally, since both frames are fixed by definition, the orientation of one relative
to the other is constant in time. Therefore, it is only necessary to know the rela-
tive attitude at one particular moment to perform the conversion at any other time.
Assuming that the synodic and inertial CR3BP frames are initially aligned, the trans-
formation matrix from the inertial frame Î to the JMC is computed in the exact same
way of Equation (2.21), with the instantaneous axes evaluated at the initial epoch. It
must be remarked that also in this procedure, before applying the transformation,
the initial states in Î must be transitioned to a Moon-centred representation and di-
mensionalised. The advantage of this last methodology relies in the exploitation of
a constant matrix to perform the conversion.

2.4 Generation of Periodic Orbits

The inherent nature of the three body problem is chaotic and the resulting motion
is extremely sensitive to the selection of the initial conditions. Thus, periodic orbital
solutions can only be found through numerical correction algorithms. In literature,
one of the most common techniques is to exploit a multiple-targetting scheme com-
bined with a Newton-Rhapson solver. Such methodology is well discussed in [23]
[36] [37], therefore only a short summary is here reported.

2.4.1 Differential Corrector

Given the potential initial conditions X0, the purpose of the algorithm is to correct
their values to enforce a periodic behaviour. Assume a set of n design variables X
subject to m constraints expressed as F(X). Then, X∗ is identified as a solution if it
satisfies F(X∗) = 0 under reasonable tolerances. Starting from the initial guess, the
constraint equation can be expanded in a Taylor series as:

F(X0 + δX) ≈ F(X0) +DF(X0)δX ≈ 0 (2.23)

where DF(X0) is the Jacobian of the constraint function with respect to the free-
variables vector X. Whenever the number of constraints is smaller than the number
of independent variables, a minimum norm solution of (2.23) is sought to update the
current guess. The new guess at each iteration is obtained as:

Xk+1 = Xk −DF(Xk)
T
[
DF(Xk) · DF(Xk)

T
]−1

F(Xk) (2.24)

If a single-shooting method is used, the constraint vector simply enforces the peri-
odicity between the initial and final state. On the other hand, if a multiple-shooting
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scheme is exploited, the trajectory is discretised into N patch points and the con-
straint vector is augmented to enforce the continuity across the N − 1 arcs.

Analytical solutions for the Jacobian DF(X) in equation (2.24) are easily derived by
making use of linear variational equations. These last allow to study the motion in
the neighbourhood of a reference solution by mapping a perturbation of the initial
states to a variation on the final ones through the usage of a state transition matrix,
defined as:

Φ(t, t0) =
∂X
∂X0

(2.25)

The properties of this matrix are well-discussed in section 2.5.2. Analytical expres-
sions for the evaluation of both (2.24) and (2.25) are available in [24] [36]. For what
concerns the initial guess, different methods can be exploited to compute the vari-
ables required to run the algorithm, e.g., analytical approximations near the equi-
librium points, Poincarè maps, exploitation of the Monodromy matrix eigenvectors
and heuristic methods. A good number of initial conditions for different families of
periodic solutions can be found in [38].

Generally, the multiple-shooting technique results more reliable and is particularly
useful to transition a periodic solution from the CR3BP to the ephemeris model. The
first step is to discretise the trajectory into a series of patch points, with the num-
ber that depends on the sensitivity of the orbit. Then, to enforce a quasi-periodic
behaviour, the previous points are duplicated and stacked together to obtain the
desired number of revolutions. However, note that a large number of revolutions
makes the problem harder to solve and depending on the stability of the target orbit,
in some cases a solution may not be found. Finally, the patch points are transformed
to the JMC frame at the associated epochs and a correction technique is applied to
converge towards a continuous quasi-periodic solution.

FIGURE 2.2: Comparison between the original CR3BP periodic or-
bit and the associated quasi-periodic solution in the EpR3BP for a L2

Southern NRHO orbit in the RMC frame
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Additionally, if perturbations are added to the dynamics, the newly found solu-
tions may diverge early on. To compensate for their effects, it is possible to include
their contribution inside (2.25). Then, the aforementioned correction procedure is ex-
ploited using as baseline the EpR3BP quasi-periodic solution found at the previous
step.

2.4.2 Continuation Methods

Once a periodic orbit has been obtained, additional orbits can be found exploiting
the information of the first solution. The two most common numerical techniques
are the single-parameter and the pseudo-arc length continuation methods. The for-
mer modifies only one parameter of the first solution and then seeks a new periodic
orbit. Instead, the pseudo-arc length algorithm continues in a direction tangent to
the null-space of the Jacobian matrix in (2.24). Its major advantage is that it does not
require any a-priory knowledge on the geometry of the orbits to expand the family
[23]. A very similar method is presented in [37], where an additional constraint is
included to fix the relative distance between two adjacent initial solutions. This way,
a smooth visualisation of the whole family is easily obtained. Moreover, to ensure
that the future members are moving in the same direction, the sign of the null-space
ν is selected to enforce the following inequality:

ν · (Xk+1 − Xk) > 0 (2.26)

Finally, note that in some sensitive regions, the selected step-size between one orbit
and the other might be too large. In such cases it is convenient to adaptively reduce
its size until a solution is found.

FIGURE 2.3: Family of periodic Halo (red) and NRHO (yellow) orbits
around L1, computed in the CR3BP
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2.5 Relative Dynamics

The relative translational dynamics is easily obtained by differentiating the defini-
tion of the relative position vector of the chaser with respect to the target, denoted
as x:

ẍ = r̈C − r̈T (2.27)

The expressions of r̈C and r̈T are obtained either from equation (2.5) or (2.12) and rep-
resent the absolute acceleration vectors of the two spacecraft. The relative state in
(2.27) are expressed accordingly to the frame used to evaluate the absolute dynam-
ics, be it the inertial or the rotating one. Notice that the propagation of the relative
dynamics always requires the knowledge of the relative variables and the absolute
state of either the chaser or the target. However, in a typical bearing-only implemen-
tation, the chaser is only equipped with a camera that measures its relative state with
respect to the target. It is then necessary to obtain additional information regarding
the absolute dynamics by communicating with the target itself or through the help
of ground-stations. This characteristic is a fundamental difference with respect to
classical LEO relative dynamics models, which require knowledge of only the 6 rel-
ative states. The practical consequences of this will be further analysed in the next
sections.

2.5.1 Linearised Relative Dynamics

Although the non-Keplerian environment is strongly non-linear, the relative dynam-
ics can be linearised with respect to the target position by applying a first-order Tay-
lor expansion, under the assumption that the relative distance between the space-
craft is much smaller than the distance between the target and the primaries [28].
The linearised relative dynamics is expressed in the inertial frame as:[

ẋ
ẍ

]
≈
[

0 I3
Ξ(t) 0

] [
x
ẋ

]
+

[
0
I3

]
(u + δa) (2.28)

where I3 is a 3x3 identity matrix, u is the control input and δa is the contribution of
the environmental perturbing accelerations. The matrix Ξ(t) depends only on the
absolute position of the target (which is in turn function of time), and is defined as:

Ξ(t) = −
(

1− µ

r3
T1

+
µ

r3
T2

)
I3 + 3

1− µ

r3
T1

[
r̂T1 r̂T

T1

]
+ 3

µ

r3
T2

[
r̂T2 r̂T

T2

]
(2.29)

where r̂T1 and r̂T2 identify the relative inertial unit position vectors between the tar-
get and the two primaries. The great advantages introduced by this approximate
formulation are related to the possibility of exploiting the techniques of the linear
control theory to design the trajectory profile for the proximity dynamics. An ad-
ditional benefit of equation (2.28) is that it does not make any assumptions on the
model used to propagate the dynamics, thus it can be straightforwardly adapted to
work either in the CR3BP or with the ephemeris model by changing the expression
of the primaries position vectors. To express equation (2.28) in a rotating frame, the
whole system has to be modified to account for the presence of non-inertial contribu-
tions. Combining the transformation relationships of (2.17) with (2.28), the linearised
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relative dynamics in the rotating frame is:[
ẋ
ẍ

]
=

[
0 I3

Ξ(t) + [Ω̇×]− [Ω×][Ω×] −2[Ω×]

] [
x
ẋ

]
+

[
0
I3

]
(u + δa) (2.30)

where [Ω×] is a skew-symmetric matrix containing the components of the synodic
angular velocity vector Ω (the subscript r/i has been dropped to improve readabil-
ity). For the CR3BP, the equation can be further simplified recalling that Ω̇ = 0:[

ẋ
ẍ

]
=

[
0 I3

Ξ(t)− [Ω×][Ω×] −2[Ω×]

] [
x
ẋ

]
+

[
0
I3

]
(u + δa) (2.31)

Notice that the expression of Ξ(t) has remained unchanged; the only difference is
that r̂T1 and r̂T2 (and all other quantities), are now evaluated in the synodic frame. As
a last comment, a similar linearisation process can be carried out using as a reference
the chaser rather than the target. If this were the case, Ξ(t) would contain only the
information regarding the former spacecraft. However, from a GNC perspective,
such formulation does not result convenient at all. A detailed explanation is given
in section 5.3.1.

(a) Central manifold (b) Unstable manifold

FIGURE 2.4: Comparison between the exact (red) and linear (yellow)
relative dynamics at an initial distance of 500 km. The starting point

is marked with a violet dot.

In the figure above, the dynamics has been propagated for two periods of the target
orbit. The highest errors between the two models are reached when the reference
spacecraft is in the perilune region, where the linear formulation fails to accurately
reproduce the gravitational action.

2.5.2 State Space Formulation

The systems in equations (2.28) and (2.31) can be written in state-space form as:

ẋ = A(t)x + Bu (2.32)

A closed-form solution of this system does not exist since A is dependent on the ab-
solute dynamics of the target, which requires a numerical integration. Nevertheless,
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given x(t0) and u(t) the solution of (2.32) can be separated into two contributions:

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ)dτ (2.33)

where the two terms are associated to the system free and forced responses, respec-
tively. The matrix function Φ(t, τ), is called the state transition matrix (STM) and has
the following properties:

Φ̇(t, τ) = A(t)Φ(t, τ)

Φ(τ, τ) = I
Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)

(2.34)

It is possible to show that if A(t) is continuous or piece-wise continuous, Φ exists
and is unique. Considering our expression of A, the only problems arise when the
position of the target corresponds with one of the two primaries (i.e., the denomina-
tors nullify). However, these scenarios are physically impossible, thus the solution to
equation (2.34) always exists. Since an analytical expression is not available, we are
limited to a numerical solution of (2.34 a) with (2.34 b) as boundary condition. Given
a time interval [tk, tk−1], different strategies are available to compute Φ(tk, tk−1); the
simpler is to integrate numerically the target absolute dynamics simultaneously with
(2.34 a/b), to obtain:

Φ(tk, tk−1) =
∫ tk

tk−1

A(xt(τ))Φ(τ, tk−1) dτ with Φ(tk−1, tk−1) = I6 (2.35)

where the dependence of A on the target state xt has been made explicit. Once
Φ(tk, tk−1) is known, the natural evolution of the relative dynamics is immediately
available from the first term of (2.33). A remarkable difference with respect to classic
relative models, such as the Clohessy-Wiltshire (CW) equations, other than the in-
existence of an analytical solution is that the model in (2.32) is a time-varying linear
system, thus:

Φ(tk + ∆t, tk) 6= Φ(ti + ∆t, ti) if ti 6= tk (2.36)

Indeed, the dependence of Φ on the target state generates different results for differ-
ent initial times since xt(ti) 6= xt(tk). Therefore, it is necessary to compute Φ at each
discretisation time even if a uniform time-step is adopted.

The solution of the forced response is more complicated and only in few cases the
convolution integral of the time-varying maneuver u(t) can be written as the prod-
uct between a matrix and a vector. The solution for two basic types of maneuvers
is here derived by explicitly substituting the value of u. For impulsive controls at
the beginning of the time interval, the input is defined as: u(t) = uδ(t), where the
Dirac-delta δ(t− τ) is used to describe an impulse at time τ. Substituting inside the
integral yields:∫ t

t0

Φ(t, τ)Bu(τ)dτ =
∫ t

t0

Φ(t, τ)Buδ(τ)dτ = Φ(t, t0)Bu = G(t, t0)u (2.37)

Thus, for impulsive maneuvers, the input matrix G(t, t0) is readily available once
the STM is known. If constant-thrust maneuvers are assumed, the time dependence
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of u(t) vanishes and the term can be moved out of the integral:∫ t

t0

Φ(t, τ)Bu(τ)dτ =
∫ t

t0

Φ(t, τ) dτ Bu = G(t, t0)u (2.38)

This time, however, the solution of the matrix G(t, t0) requires the numerical inte-
gration of the above integral. This procedure is very cumbersome because of the
presence of Φ(t, τ), which adds the computation of (2.35) at each time-step. To sum-
marise:

G(t, t0) =


Φ(t, t0)B for u(t) = uδ(t)∫ t

t0

Φ(t, τ) dτB for u(t) = u
(2.39)

In both cases, the computation of G requires only knowledge of Φ, and so of the
target dynamics. Once that is available, the discrete-time solution of the relative
dynamics is given by:

x(tk) = Φ(tk, tk−1)x(tk−1) + G(tk, tk−1)u (2.40)

From a GNC perspective, this result is very useful since it allows for the implementa-
tion of traditional guidance and control techniques to govern the chaser trajectory in
proximity of the target. Additionally, the few studies [7] [12] [39] regarding in-orbit
bearing only applications in LEO have been derived under the assumption that a
discrete-time solution of the relative dynamics is available. Thus, this formulation
allows the exploitation of the same approach in a completely different environment.
Additionally, Φ is also necessary for the propagation of the covariance in standard
navigation filters.

However, from a computational standpoint, the exact evaluation of Φ and G at each
time step can be too burdensome as it requires the integration of 42 differential equa-
tions at each update time. As highlighted in [40], different truncated Taylor series
can be used to approximate (2.35), with great advantages in terms of computational
effort as only the knowledge of the Jacobian A(t) (and its derivative) is required.
The three analysed methods are summarised in the table below.

Description Expression

1 1st- order I + Ak∆t
2 2nd- order without Ȧk I + Ak∆t + A2

k∆t2/2
3 2nd- order I + Ak∆t + (A2

k + Ȧk)∆t2/2

TABLE 2.2: Approximation techniques for Φ(tk + ∆t, tk)

Please notice that Ak is used to indicate the value of A(t) at time tk. For the lin-
earised relative CR3BP, the time-derivative of the Jacobian is easily obtained by de-
riving (2.29), as all the other terms in the matrix are constant. However, if a different
dynamical model is employed, the time-derivative of Ω has to be included. The
analytical expression of Ξ̇ is:

Ξ̇(t) = 3Λ(t)− 9Γ(t) + 3Ψ(t) (2.41)
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Λ(t) =

[
c1

r2
T1

(vT1 · rT1) +
c2

r2
T1

(vT2 · rT2)

]
I3

Γ(t) =
c1

r2
T1

(vT1 · rT1)
[
r̂T1 r̂T

T1

]
+

c2

r2
T2

(vT2 · rT2)
[
r̂T2 r̂T

T2

]

Ψ(t) = c1

[
r̂T1

dr̂T
T1

dt
+

dr̂T1

dt
r̂T

T1

]
+ c2

[
r̂T2

dr̂T
T2

dt
+

dr̂T2

dt
r̂T

T2

] (2.42)

where the two unknown coefficients are defined as:

c1(t) =
1− µ

r3
T1

c2(t) =
µ

r3
T2

(2.43)

the derivative of the unit vector r̂Ti is:

dr̂Ti

dt
=

vTi

rTi

− rTi

r3
Ti

(rTi · vTi) (2.44)

and vT1 and vT2 are the relative velocities of the target with respect to the primaries.
If Ξ̇(t) is evaluated in the synodic frame, then vT1 = vT2 = v because the positions
of the primaries are fixed. Finally, the time-derivative of A in the CR3BP is:

Ȧ(t) =
[

0 0
Ξ̇(t) 0

]
(2.45)

From (2.45) one can see that the complete expression of the 2nd- order Taylor expan-
sion does not introduce any additional information on the components of Φ related
to the position. Thus, the only difference between the 2nd and 3rd methods in Table
2.2 is associated with the velocity. Figure 2.5 illustrates the times required by the
different methods compared to the exact solution of (2.35). It immediately stands
out that all three approximations require up to 3 order of magnitude less time than
the exact solution. Furthermore, their timings hold irrespective of the propagation
time-step, whereas the numerical integration displays a clear growing trend. As ex-
pected, out of the three expansions the last one always requires a slightly higher time
because it has to evaluate both the Jacobian and its derivative.

FIGURE 2.5: Comparison be-
tween different STM approx-
imation techniques in terms
of computational time. The
blue dots are the timings re-
quired for the exact integration
of Eq. (2.35), while the yellow,
red and violet lines represent
the 1st, 2nd and 3rd methods of
Table 2.2, respectively. Results
obtained with an Intel i7-6700

and a RAM of 16 GB.

Figure 2.6, instead, reports the prediction accuracy, with the error defined as the
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difference between the exact CR3BP non-linear relative dynamics and the various
linear solutions. Notice that now, the numerical integration of the linear dynamics
is also treated as an approximation. The performance of the truncated 2nd - order are
not reported because, as highlighted above, it has the same accuracy of the complete
2nd - order for the position and of the 1st - order in terms of velocities. The results
are very encouraging because even after 20 hours, the position error is just slightly
bigger than 1 km. Thus, both Taylor approximations are well-suited for on-board
GNC applications as they allow a very good trade-off between modelling errors and
computational effort.

(a) Position error (b) Velocity error

FIGURE 2.6: Prediction errors for different STM approximation tech-
niques at the NRHO apolune The blue line identifies the exact numer-

ical integration of the linearised dynamics.

As a final remark, these performance may vary depending on the relative initial
conditions and on the location of the target around its orbit. For example, it has
already been shown [23] that in the NRHOs perilune region the trend of the error
gives acceptable results only for brief propagation times with respect to other points
along the very same orbit. Indeed, the assumption of relative distance between the
spacecraft much smaller than that between the target and the primaries is satisfied
with a much higher tolerance at the apolune than the perilune. Thus, considering the
typical relative distances of most rendezvous operations, it is reasonable to assume
that the linearised model can be exploited by GNC algorithms in most of the cis-
lunar space domain, except for the regions closest to the Moon.
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Chapter 3

Sensors & Filtering Techniques

This chapter deals with the main techniques to estimate the states of a dynamic sys-
tem when noisy measurements are available. In particular, when applied to in-orbit
bearing-only solutions, the aim of the filter is to provide an estimate of the relative
position and velocity of the chaser with respect to a target, given only the line-of-
sight angles. For a generic dynamic linear system, the most common technique is
the so-called Kalman Filter, an optimal linear estimator that mathematically pro-
vides the best estimate of the state variables. However, when speaking of bearing-
only navigation, one has to deal with a non-linear measurement equation, thus the
Kalman Filter must be slightly modified to account for non-linearities. In this regard,
both the EKF and UKF are flight-proven technologies.

The chapter begins by illustrating the geometry of the measurement model, showing
how it can be implemented to co-exist with a three-degrees-of-freedom formulation.
A brief mention of real-world applications is made by discussing the effect that dif-
ferent camera properties have on measurement errors. Additionally, the range of
relative distances where angles-only navigation is relevant is retrieved through sim-
ple mathematical and geometric considerations. Then, a detailed description of the
filtering solutions exploited in this work is provided, together with their application
to the non-keplerian dynamics. Finally, the last section deals with the techniques for
the tuning of the state noise covariance matrix.

3.1 Observation Model

3.1.1 Pinhole Camera

In real applications, the measurements are obtained by applying image processing
techniques to the data coming from the camera. These algorithms must be capable
of recognising and locating the position of the target object, distinguishing it from
other source of noise (e.g., the stars or other planetary bodies in the background).
Some practical considerations regarding the bearing-only applicability range can be
introduced by modelling the sensor as a simple pinhole camera [30]. It is based on
the assumption that all the light rays travel through an infinitely small aperture at
the centre and are projected onto the image plane of the camera. Since it does not
rely on lenses to focus the light, distortion effects are neglected.

This simple approximation allows to narrow the set of suitable sensors that can be
used to for a bearing-only application. For example, consider an object with charac-
teristic length Lr at a distance R. Using as a reference Figure 3.1 and exploiting the
rules of similar triangles, one can determine the minimum focal length f required to
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identify the target with a given amount of pixels covered cp:

Lr

Lc
=

R
f

−→ f =
Rcpρp

Lr
(3.1)

where Lc is the expected image size on the camera and ρp the pixel size in meters,
such that: Lc = cpρp.

𝐿𝑐
𝑅

𝑓 𝐿𝑟

FIGURE 3.1: Pinhole Camera Model

Additionally, for a given array size W (i.e., the number of pixels in each direction),
the Field-of-View (FOV), here denoted as θ, can be computed as follows:

tan
(

θ

2

)
=

1
2

Wρp

f
(3.2)

Substituting (3.1) inside (3.2) a relationship between θ and R is obtained:

θ = 2 tan−1
(

WLr

2Rcp

)
(3.3)

Equations (3.1) and (3.3) respectively express the focal length and FOV required to
distinguish an object as function of the relative distance between the target and the
camera itself for a given pixel coverage. Figure 3.2 shows the behaviour of both pa-
rameters as function of the target distance. They illustrate the minimum and max-
imum values of f and θ, respectively required to identify the target with the given
pixel coverage. For example, if the relative bearing-only navigation was to begin at
an initial distance from the LOP-G of 600 km, the minimum focal length to guaran-
tee a coverage of at least 4 pixels would be 0.27m. Any value lower than this would
imply the target projection onto the camera plane is not big enough.

(a) Focal length (b) Field of View (FOV)

FIGURE 3.2: Focal length and FOV required to identify a target at
different distances. The maximum FOV has been computed assuming
a 4 pixels coverage of the target. A dimension of 120 m was set for the

target, mimicking the ISS size. A pixel size of 13.5µm is assumed.
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For the same pixel coverage and distance, the right plot indicates the FOV should be
no greater than 2.92◦ with a camera resolution of 1024 pixels. The same figure sug-
gests that a Narrow Angle Camera (NAC) with a very small FOV should be used
to identify the target when the distances are in the order of thousands of kilometers.
Thus it is reasonable to expect that for a rendezvous with the LOP-G (or structures of
similar sizes) the maximum relative distance to begin the bearing-only navigation is
set in the order of thousands of km. However, to properly identify this range a more
detailed analysis should be performed, taking into account the optical characteristics
of the target, the illumination conditions and the performance of the image process-
ing algorithms. As a last remark, these values strongly depends on the real size of
the object. Indeed, for the same requirements of pixel coverage, camera resolution
and initial distance mentioned previously, the minimum focal length increases to
0.8m, whereas the maximum FOV drops to 0.97◦.

Whenever the apparent size of the target on the camera focal plane is greater than 1
pixel, it is theoretically possible to estimate the relative range by inverting (3.1), as
long as the target size is known. This would provide 3 relative measurements (az-
imuth, elevation and distance) and greatly enhance the performance of the bearing-
only navigation. Moreover, if this was possible, all the studies regarding maneuvers
to enhance the state observability would be unjustified. Unfortunately, in a prac-
tical scenario, the presence of noisy pixels introduces range estimation errors far
greater than those due to the inherent observability issues of the system. To prove
this statement, a simple relation to compute the relative range error can be obtained
manipulating (3.1). Define R and R̂ the exact and estimated ranges, respectively.
Then:

R =
Lr f
nρp

R̃ =
Lr f

(n + σp)ρp
(3.4)

where n is the number of pixels associated to the real object and σp the amount of
noisy pixels. Subtracting the expressions yields:

δR̃ = R̃− R =
Lr f
ρp

(
1

n + σp
− 1

n

)
= −Lr f

ρp

σp

n(n + σp)
(3.5)

From (3.1) the real number of pixels n is inferred as:

n =
Lr f
Rρp

(3.6)

By substituting (3.6) into (3.5), the value of the relative estimation error is re-written
as:

δR̃
R

= −
Rρpσp

Lr f + Rρpσp
(3.7)

Finally, if the focal length is expressed in function of the distance D where a mini-
mum pixel coverage of cp is desired (through Eq. 3.1), the relative range error be-
comes:

δR̃
R

= −
Rσp

cpD + Rσp
(3.8)

This equation allows to evaluate the relative range error that would be introduced if
the apparent size of the target was used to estimate the relative distance. The error
is function of the exact range R, the number of noisy pixels σp and the desired pixel
coverage cp at an arbitrary distance D. Notice that it holds irrespective of the target
real size.
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The behaviour of δR̃/R is shown in Figure 3.3 and 3.4. The former suggests that to
lower the relative range error, the distance where the angles-only navigation is set
to begin should be maximised. Physically, when requesting the same pixel coverage
at different distances, the FOV of the camera must decrease. Therefore, if the camera
resolution is fixed, the angular size of each pixel reduces and the impact of noise
effects is attenuated. Nevertheless, both figures clearly demonstrate that estimating
the range from the apparent size of the target is unfeasible for a real application.
Indeed, even for distances in the order of tenths of kilometers, it would introduce an
error that is at least 5 or 10 times greater than that admissible for typical rendezvous
operations.

FIGURE 3.3: Variations of the relative range error as function of the
distance for different initial conditions. The number of noisy pixel is
set to 1 and the minimum coverage at the farthest distance is set to 4

pixel.

FIGURE 3.4: Variations of the relative range error for different noise
conditions. A minimum 4 pixel coverage is required at 250 km.
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3.1.2 Measurement Angles

Exploiting the rules of similar triangles, the three-dimensional position of the target
(X = [X, Y, Z]T) can be mapped to the respective 2D coordinates in the camera plane
[u, v] as:

u = f
X
Z

and v = f
Y
Z

(3.9)

Then, knowing the camera specifications (e.g., the FOV), these coordinates are trans-
formed into the corresponding azimuth and elevation angles. However, these mea-
surements are expressed in the sensor frame Is, thus they must be rotated to the
frame used to propagate the dynamics inside the navigation filter. In this regard,
additional errors are introduced inside the readings by the imperfect knowledge of
the spacecraft attitude.

𝑥
𝑦

𝑧

𝜙

𝛼

FIGURE 3.5: Measurement angles definition in the relative frame

Since the goal of this thesis is to evaluate the feasibility of bearing-only navigation
for rendezvous operations in the cis-lunar domain, the measurement model is sim-
plified and the angles are directly obtained from their definition:[

α
φ

]
=

[
tan−1(y/x)

sin−1(z/
√

x2 + y2 + z2)

]
= h(x) (3.10)

where α is the azimuth and φ the elevation angle. They are defined from -180◦ to 180◦

and from -90◦ to 90◦ respectively. Exploiting equation (3.10), one can easily adopt a
simple point mass approximation for the spacecraft without the need of introducing
the attitude dynamics. Whenever these angles are measured with a non-ideal sensor,
the noise is assumed additive and is included as:[

α̃
φ̃

]
=

[
α
φ

]
+

[
δα
δφ

]
= h̃(x, v) = h(x) + v (3.11)

3.2 Non-linear Filters

The bearing-only navigation problem in the cis-lunar space is represented by the
following non-linear model:

ẋ = g(x, xt, u, t)
y = h(x)

(3.12)

where x is the relative state vector, xt the absolute state of the target, g describes
the system dynamics, u is a control input and y is the output. As already under-
lined in the previous chapter, the contribution of xt is necessary for the propagation
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of the non-keplerian dynamics because the relative equations of motion cannot be
simplified to a function of only the relative states. Additionally, in the most general
scenario, time explicitly enters in the state equation because the ephemeris model is
not autonomous. However, in a practical implementation, the exact dynamics of the
system is unknown and different degrees of approximation are possible depending
on the desired accuracy. Moreover, the measured angles will always be corrupted
by some kind of noise, leading to an inherent uncertainty of the relative state.

Let us suppose that the system (3.12) can be approximated inside the navigation
filter as:

ẋ(t) = A(xt(t))x(t) + Bu(t) + Bw(t)

y(t) = h̃(x(t), v(t))
(3.13)

where the linear formulation of Eq. (2.32) is exploited to model the real dynamics.
The terms v and w are the measurement and process noise and are used to account
for random disturbances and modelling errors. In particular, in this work w is used
to account for the un-modelled perturbing effects of both the SRP and the Sun’s
gravitational field. It is proven that its presence prevents the divergence of the filter
estimates due to errors in the dynamical model. Additionally, both the EKF and UKF
assume w(t) and v(t) to be Gaussian white noise processes such that [41]:

E [v(t)] = 0 and E [w(t)] = 0

E[v(t)vT(τ)] = R(t)δ(t− τ)

E[w(t)wT(τ)] = Q(t)δ(t− τ)

(3.14)

where E is the expected value operator, Q(t) is the power spectral density of w and
R(t) is the measurement noise covariance matrix. The discrete time solution for the
system in (3.13) would be:

xk = fk(xk−1, xtk−1 , uk−1, wk−1)

yk = h̃(xk, vk)
(3.15)

It is clear however, that this form of propagation would require the integration of
the state equations at each update time to obtain xk. Moreover, one would need to
simultaneously integrate the relative state dynamics with the absolute dynamics of
the target due to their coupling via the Jacobian A. On the other hand, in section
2.5.2 it was shown that a suitable expansion of the STM is well capable of approxi-
mating the results coming from the numerical integration. In particular, Figure 2.6
indicates that for typical filter update times (e.g. 1 Hz), the errors introduced by the
approximation are completely negligible. Thus, to ease the computational burden,
the following discrete-time model is employed to simulate the real-world dynamics
in the navigation filter:

xk = Φk−1xk−1 + Gk−1uk−1 + Gk−1wk−1

yk = h̃(xk, vk)
(3.16)

where Φk−1 is evaluated with one of the relationships in Table 2.2 and Gk−1 exploits
the equations in (2.39). However, since both matrices depend on xtk−1 , at each time
step k the navigation filter requires information on the absolute state of the target to
work properly. Notice that for non-impulsive maneuvers, the solution of Gk−1 re-
quires the integration of the whole dynamics nonetheless. A suitable work-around
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could then be found by exploiting Simpson’s rules or similar techniques to approx-
imate definite integrals. If that is the case, the different values of Φ are straight-
forwardly obtained by changing the propagation time ∆t. As a last remark, system
(3.16) holds true for both the CR3BP and the EpR3BP as the only difference relies in
the definition of the target position with respect to the primaries.

Although the state equation in (3.16) is linear, the outputs of the systems are still
non-linear function of the relative states, thus a non-linear filter is required anyway.

3.2.1 Extended Kalman Filter

The EKF is an extension of the Kalman Filter to non linear models. It relies on the
linearisation of the KF equations with respect to the state estimate at each time-step.
The whole estimation procedure can be divided into two subsequent stages, the pre-
diction and the correction steps, respectively. The former is computed as:

x̂−k = Φk−1x̂+k−1 + Gk−1uk−1

P−k = Φk−1P+
k−1ΦT

k−1 + Sk−1
(3.17)

Instead, the correction stage takes the form of:

zk = yk − h(x̂−k )

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1

x̂+k = x̂−k + Kkzk

P+
k = (I−KkHk)P−k (I−KkHk)

T + KkRkKT
k

(3.18)

where Kk is the Kalman gain, yk are the sensor measurements and Sk−1 is the state
process covariance matrix. Hk is the linearised measurement function, evaluated at
the predicted state x̂−k and equals:

Hk =
∂h
∂x

∣∣∣
x̂−k

=


− y

x2 + y2
x

y2 + x2 0 0 0 0

− zx
r2
√

x2 + y2
− xy

r2
√

x2 + y2

√
x2 + y2

r2 0 0 0


∣∣∣∣∣
x̂−k

(3.19)

with r =
√

x2 + y2 + z2. Notice that the covariance update in the correction step
is the so-called Joseph’s Formula, a more robust version of the original update equa-
tion that guarantees the covariance matrix P+

k remains positive definite. From the
definition of w, the process covariance S can be expressed as:

Sk =
∫ tk

tk−1

Φ(tk, τ)BQ(τ)BTΦT(tk, τ)dτ (3.20)

In practice, to simplify the computation an approximate value of Sk is exploited;
computed according to the methods explained in Section 3.3.

One common problem when dealing with azimuth measurements is called the az-
imuth mutation. It happens when the chaser crosses the negative side of the x-axis,
leading to a sudden change of the azimuth readings from π to -π or viceversa. As
a consequence, the estimation error drastically increases and the filter diverges. To
prevent the issue, a modified measurement method has been proposed [42], where



28 Chapter 3. Sensors & Filtering Techniques

the azimuth sine and cosine replace the original data. However, the resulting for-
mulation leads to a non-additive measurement noise, in contrast with the original
assumptions of the EKF. The reasons behind the divergence are due to the unusual
large values of the innovation zk when the filter predicts the chaser to be on one side
of the x-axis and the measurements say otherwise. Thus, a simple approach is here
applied to ensure that zk always remains bounded, that is:

zαk = zαk ± 2π while |zαk | > c (3.21)

where zαk refers to the azimuth component of the innovation vector and c is an ar-
bitrary design threshold (a value of 5/6π has proven to work). Note that if the
measurement function was based on the pixels coordinates in (3.9), the rotation to
the chaser frame would prevent this issue from happening.

One of the major drawbacks of the EKF is that it can generate unreliable results
when applied to highly non-linear systems, such as bearing-only problems. An-
other source of issue is that the Jacobian H should be computed at the true state
of the system and, as this is not possible, the usage of the predicted states further
increases the estimation errors.

3.2.2 Unscented Kalman Filter

In the last decades, several alternatives have been proposed to address the EKF
drawbacks; one of the most common is the UKF. As the name suggests, it is based on
the unscented transformation, a method to compute the statistics of a random variable
subject to a nonlinear transformation [43]. This is performed by generating a set of
2n + 1 sigma points X i

k−1 as follows:

X 0
k−1 = x̂k−1

X i
k−1 = x̂k−1 +

(√
(n + κ)P+

k−1

)
i

X i
k−1 = x̂k−1 −

(√
(n + κ)P+

k−1

)
i

Wi =
κ

n + κ
i = 0

Wi =
κ

2(n + κ)
i = 1, ..., n

Wi =
κ

2(n + κ)
i = n + 1, ..., 2n

(3.22)

where
(√

(n + κ)P+
k−1

)
i

is the i-th column of the matrix square root L such that:

(n + κ)P+
k−1 = LLT (3.23)

Wi is the weight associated to the i-th point, κ is a scaling parameter and n is the
number of estimated states (see [44] for further details). Some formulations assign to
W0 two slightly different values for the estimates of the mean and of the covariance.
Nevertheless, the performance of the two alternatives are identical. Representing
with U (x̂k−1, Pk−1) the unscented transformation in Eq. 3.22, the UKF prediction
step is written as:

X i
k−1 = U (x̂+k−1, P+

k−1)

X i
k|k−1 = Φk−1X

i
k−1 + Gk−1uk−1

x̂−k =
2n

∑
i = 0

WiX
i
k|k−1

P−k =
2n

∑
i = 0

Wi

(
X i

k|k−1 − x̂−k
) (

X i
k|k−1 − x̂−k

)T
+ Sk−1

(3.24)
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For the correction stage, the general version of the UKF would require a new genera-
tion of sigma points with mean x̂−k and covariance P−k . However, under the assump-
tion of additive process and measurement noise, the previously propagated points
X i

k|k−1 can be exploited for the next step. The measurement update equations are
then expressed as:

Y i
k|k−1 = h(X i

k|k−1)

ŷ−k =
2n

∑
i = 0

WiY
i
k|k−1

zk = yk − ŷ−k

Pyyk
=

2n

∑
i = 0

Wi

(
Y i

k|k−1 − ŷ−k
) (

Y i
k|k−1 − ŷ−k

)T
+ Rk

Pxyk
=

2n

∑
i = 0

Wi

(
X i

k|k−1 − x̂−k
) (

Y i
k|k−1 − ŷ−k

)T

Kk = Pxyk
P−1

yyk

x̂+k = x̂−k +Kkzk

P+
k = P−k −KkPyyk

KT

(3.25)

To prevent the azimuth mutation when zk is computed, its value is bounded with
(3.21). The clear advantage with respect to the EKF is that the computation of Ja-
cobians is not required. Additionally, the unscented transformation is capable of
partially capturing some discontinuities of the non-linear function h. The major
drawback is that the computation of the sigma points is computationally expensive.
For this reason, an alternative and more efficient version has been proposed. It is
called the Square-Root UKF and exploits the propagation of the matrix square-root
of the state covariance matrix [45].

3.3 Process Noise Covariance

The tuning of the process covariance Sk is always a cumbersome procedure because
it relies on the designer’s ability to select proper values for the approximation errors
of the dynamic model. Moreover, the tuning in some peculiar environments, such as
the cis-lunar space, has proven particularly challenging because of the strong non-
linearities of the real dynamics. The inclusion of additional time-varying perturbing
effects (e.g., the SRP) further increased the complexity of the task at hand. For these
scenarios a more reliable and intuitive approach is desirable.

As stated previously, the EKF and UKF assume the state noise w(t) to be a white
noise process, leading to the following expression for the process noise covariance
(here reported from 3.20):

Sk =
∫ tk

tk−1

Φ(tk, τ)BQ(τ)BTΦT(tk, τ)dτ (3.26)

This equation does not allow a straightforward and fast numerical implementa-
tion, therefore two approximations have been proposed by [41]. They are respec-
tively called the State Noise Compensation (SNC) and the Dynamic Model Compensation
(DMC). A brief description of both is given in the following paragraphs.
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3.3.1 State Noise Compensation

Given the original dynamic model:

ẋ(t) = A(xt(t))x(t) + Bu(t) + Bw(t) (3.27)

In the SNC, the unmodelled accelerations w(t) are assumed to be uncorrelated ran-
dom walks with a fixed intensity. It is further supposed they can be described by a
spectral density Q in the form of:

Q(t) =

qx 0 0
0 qy 0
0 0 qz

 ' σ2
wI3 (3.28)

Please note that for the future derivation of S, the matrix Q is not required to be
diagonal nor to have equal elements. However, this approximation is quite useful for
a first rough tuning of σw. Indeed, the greater the number of independent elements
in Q and the harder/burdensome it is to properly tune them. Thus, an easier way
to approach the problem is to exploit a single parameter to reduce the tuning space.
Then, the elements can be diversified to increase the accuracy of the estimation.

The final expression of Sk is obtained by assuming that the update time is small
enough for Φ to be approximated by a 1st-order expansion. Under these hypothesis
the integral in (3.20) is written as:

Sk =

Qk
∆t3

3
Qk

∆t2

2

Qk
∆t2

2
Qk∆t

 (3.29)

This value of Sk holds as long as the update time is constant, whenever that is not
the case, the matrix must be properly adjusted. The major drawback of this ap-
proach relies in the assumption that w(t) is a white noise process, since in practical
applications all unmodelled accelerations are correlated in time.

3.3.2 Dynamic Model Compensation

The drawbacks of the SNC are compensated in the DMC by modelling the dynamic
errors, here called η, as a time-correlated first-order Gauss-Markov process. The time
evolution of these biases would then satisfy the following differential equation:

η̇(t) = −βη(t) + w(t) (3.30)

This expression yields a process noise that includes a deterministic contribution as
well as a random term. To account for (3.30), the state vector is augmented with
the values of η. Note that some alternative versions of Eq. (3.30) exists, such that
the time-correlation coefficients β change with time. However, the resulting model
would require an additional extension of the state vector dimensions (up to 12 com-
ponents), thus they are here neglected.
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The state transition matrix of the newly augmented system Φa can be written as:

Φa
k−1 =

Φpp Φpv ηp
Φvp Φvv ηv

0 0 ηη

 (3.31)

By assuming that the three components of η are uncorrelated, the matrices in the
third column become diagonal and their generic i-th element is expressed as:

ηpi =
∆t
βi

+
1
β2

i

(
e−βi∆t − 1

)
ηvi =

1
βi

(
1− e−βi∆t

)
ηηi = e−βi∆t

(3.32)

Finally the process noise covariance is:

Sk =

γppQ γpvQ γpηQ
γpvQ γvvQ γvηQ
γpηQ γvηQ γηηQ

 (3.33)

where Q has the same form of (3.28). The matrices γ are all diagonal with the i-th
element equal to:

γppi
=

∆t3

3β2
i
− ∆t2

β3
i
+

∆t
β4

i

(
1− 2e−βi∆t

)
+

1
2β5

i

(
1− e−2βi∆t

)
γpvi

=
∆t2

2β2
i
− ∆t

β3
i

(
1− e−βi∆t

)
+

1
β4

i

(
1− e−βi∆t

)
− 1

2β4
i

(
1− e−2βi∆t

)
γpηi

=
1

2β3
i

(
1− e−βi∆t

)
− ∆t

β2
i

e−βi∆t

γvvi =
∆t
β2

i
− 2

β3
i

(
1− e−βi∆t

)
+

1
2β3

i

(
1− e−2βi∆t

)
γvηi

=
1

2β2
i

(
1 + e−2βi∆t

)
− 1

β2
i

e−βi∆t

γηηi
=

1
2βi

(
1− e−2βi∆t

)

(3.34)

Besides achieving a higher estimation accuracy, the DMC model is less sensitive to
tuning. That is, it achieves good performance over a broader range of σw when
compared to the SNC. Nevertheless, also in this case, a good assumption to start the
tuning process is to exploit identical values for the elements of β as well as of Q.

As a last remark, please notice that the expressions for the coefficients of Sk have
been obtained by evaluating the integral in (3.26) with a first-order expansion of
the STM that is different from the one reported in (3.31). In particular, the the top-
left portion was set equal to the product between the identity matrix (I6) and the
time-step. Nevertheless, the usage of (3.31) for the prediction stage has proven more
effective when applied to the non-keplerian space. This method will be adopted for
all the numerical simulations of this work.
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Chapter 4

Observability Analysis

This chapter begins by tackling the bearing-only observability dilemma from dif-
ferent perspectives. Geometric considerations are first employed to introduce the
problem and are followed by a mathematical description to rigorously derive the
observability and unobservability criteria. Then, a continuous "measure" of observ-
ability is suggested to develop a closed-form analytical solution for the maneuvers
that provide the best improvement in the navigation process. The effectiveness of
these maneuvers to provide an optimal solution is discussed and the results on the
Keplerian and non-Keplerian regimes are shown.

As mentioned in the introduction, bearing-only navigation is the problem of deter-
mining the relative position and velocity of a chaser with respect to a target by mea-
suring only the line-of-sight angles (i.e, azimuth and elevation). The inherent sim-
plicity of this approach makes it a very appealing technology to replace the costly
and power demanding traditional navigation methods for rendezvous. Neverthe-
less, bearings-only navigation suffers from the limitation in determining the range
to the target.

Recent studies in LEO orbits have shown that the observability gap can be overcome
by performing specific sets of maneuvers to alter the trajectory of the spacecraft with
respect to its original natural evolution. However, to the author’s knowledge, the
bearing-only navigation has been very little studied for rendezvous applications in
non-keplerian regimes. Therefore, this chapter is completely dedicated on assessing
the applicability of LEO bearing-only solutions to perform proximity operations in
the cis-lunar domain.

Since all the existing analyses adopt as a baseline the Closhessy-Wiltshire (CW)
model, the linearised relative dynamics presented in section 2.5.1 is here exploited to
mimic a similar approach. Additionally, throughout the chapter, the results coming
from the linear formulation are constantly compared with the real non-linear dy-
namics to highlight potential differences and, where possible, exploit their benefits.

4.1 Observability and Unobservability Criteria

Under the assumption that the non-keplerian relative dynamics can be approxi-
mated with a linear model, the bearing-only navigation problem can be described
by the following system:

ẋ(t) = A(t)x(t) + Bu(t)
y(t) = h(x(t))

with x(t0) = x1 (4.1)
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characterised by linear state equations and a non-linear measurement function h(x),
with x ∈ R6 and y ∈ R2. The initial point x1 is unknown and belongs to a set Ω of
admissible initial conditions.

The system (4.1) is said to be completely observable in Ω in the time interval [t1, tk] if
there exist a one-to-one correspondence between the set of initial states Ω and the
set of measurements described by the output y(t) in [t1, tk]. In other words, given
x1 ∈ Ω, the system is completely observable if there does not exist another x2 ∈ Ω,
such that the set of measurements h(x(x1, t)) = h(x(x2, t)) in [t1, tk] [46]. In this
regard, it is important to distinguish a single measurement from the whole mea-
surement profile. The former is associated with a single sensor reading, whereas the
latter is the ensemble of all the different measurements over an arbitrary observa-
tion interval. From the previous definition it is then clear that global observability
in Ω is granted only if the initial point can be uniquely determined on the basis of
its measurement profile. According to the previous notation, this means that at least
one measurement generated by x1 must be different from the readings of x2.

For a generic linear system, a simple criteria for global observability exists and is
based on evaluating the rank of the observability matrix. Unfortunately, in our case
the measurements are associated with the azimuth and elevation angles, meaning
that the outputs are inherently non-linear functions of the states. With this in mind,
many authors have proposed a polar or spherical coordinate parametrization of the
relative dynamics when dealing with bearing-only applications. For example [18]
developed a spherical model starting from CW’s equation of relative dynamics, de-
coupling the observable and unobservable states and effectively improving the accu-
racy of the navigation filter. However, despite in such formulation the measurement
function is linear, the state-dynamics is expressed as a non-linear function of the
new coordinates, thus a non-linear approach to establish observability is required
nonetheless.

Classical non-linear techniques rely on Lie derivatives to derive the sufficient and
necessary conditions for the global observability of non-linear systems. These cri-
teria are based on the construction of a non-linear observability map, obtained by
iteratively deriving the measurement function in time (see [8] [46] for a detailed ex-
planation). Such approach has proven beneficial in the frame of ground and naval
applications, where the relative dynamics is somewhat written in a simple form [2].
Yet, the non-keplerian space (and in a greater perspective, the whole space domain)
is a much more complex scenario, one for which a more straightforward proof of
observability is desirable.

Recent studies have already established the observability criteria for in-orbit bearing-
only navigation. In particular [39] has exploited a geometric interpretation of the
problem to analyse the observability of specific scenarios. On the other hand, [7]
used an analytical approach to derive the observability conditions in a linear frame-
work. In addition, it also adopted the very same criteria to find the set of maneu-
vers that, if executed, do not provide observability. On the basis of these works,
this section shows that the results of these formulations are also valid in a com-
pletely different dynamical environment. Additionally, the effects of un-modelled
non-linear gravitational terms to produce observability are quantified and analysed
from a practical viewpoint.
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4.1.1 Geometric Interpretation

To gain a physical perspective on the problem, it is useful to establish a link between
the system dynamics (i.e., the spacecraft trajectory) and the outputs. In doing so, the
Line-of-Sight (LOS) unit vector ιr(t) can be written in terms of the angle measure-
ments as:

ιr(t) =

cos α(t) cos φ(t)
cos α(t) sin φ(t)

sin α(t)

 =
r(t)
‖r(t)‖ (4.2)

where α, φ are respectively the azimuth and elevation angles and xr is the relative
position vector. Defining Λ the positions-related portions of the state transition ma-
trix in (2.40), such that Λ = [Φrr Φrv] and assuming a null input vector u, the LOS
measurements can be recast as function of the initial conditions x1 as:

ῑr(t) =
Λx1

‖Λx1‖
(4.3)

where Λ is always evaluated from t1 to t. The bar over ῑr(t) is used to underline
that these angle measurements are associated with the natural dynamics. According
to the previous definition, in order for x1 to be observable, the collection of all ῑr(t)
over every t ∈ [t1, tk] must be unique. However, it is easy to notice that the same
LOS profile is obtained by scaling the initial conditions x1 by any arbitrary factor
β > 0 [39]:

Λ(βx1)

‖Λ(βx1)‖
=

β

|β|
Λx1

‖Λx1‖
= sgn(β)

Λx1

‖Λx1‖
(4.4)

If β < 0, the resulting measurement profile is opposite to the original one, making x1
observable. Therefore, if the exact dynamics were represented by a linear model and
no maneuvers were performed, the system would be unobservable for any given
initial condition, as there exist infinite x2 = βx1 such that the measurement profile
generated by x1 is indistinguishable. This issue is visually illustrated in Figure 4.1.

FIGURE 4.1: Ensemble of unobservable line-of-sight profiles

Figure 4.1 displays the evolution of the linearised relative dynamics around a target
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on a Lyapunov orbit, with the chaser located in the unstable manifold, for three dif-
ferent values of β. The LOS vectors at the beginning and end of the time-window are
used to highlight that the measurement profiles are equal. [6] effectively proves that
the only parameter that cannot be distinguished from identical angle measurements
is the range between the two spacecraft (i.e., the scaling parameter β). Despite this,
observability is gained when the chaser is maneuvered in appropriate directions that
allow to determine the unknown range.

When a generic maneuver profile u(t) is performed, the new LOS vector at time tk
is obtained from (2.33):

ιr(tk) =
Λkx1 +

∫ tk
t1

Λ(tk, τ)Bu(τ)dτ

‖Λkx1 +
∫ tk

t1
Λ(tk, τ)Bu(τ)dτ‖

=
r̄(tk) + δr(tk)

‖r̄(tk) + δr(tk)‖
(4.5)

where r̄ represents the nominal trajectory profile and δr(tk) is associated with the
displacements due to the cumulative effects of u(t) over the interval [t1, tk]. Recall-
ing the structure of B from (2.28), the convolution integral can be simplified to:

δr(t) =
∫ tk

t1

Λ(tk, τ)Bu(τ)dτ =
∫ tk

t1

Φrv(tk, τ)u(τ)dτ (4.6)

Re-introducing the scaling parameter β, the request of unique LOS vectors is trans-
lated to:

k1 (r̄(t) + δr(t)) 6= k2 (βr̄(t) + δr(t)) ∀β > 0∧ β 6= 1 (4.7)

with k1/2 replacing the denominators of (4.5). A sufficient condition to ensure that
two vectors are different is when they are not parallel to each other. Mathematically,
this is obtained by demanding that their cross-product is not null. Following the
derivation of [6], the result requires that:

δr(t)× r̄(t) 6= 0 (4.8)

Therefore, a maneuver guarantees observability when it produces a perturbation of
the trajectory δr(t) that is not aligned with the natural evolution r̄(t), meaning:∫ t

t1

Φrv(t, τ)u(τ)dτ 6= ρ(t)Λx1 ∀t ∈ [t1, tk] (4.9)

where ρ(t) acts as a scaling factor. Notice that this parameter is allowed to change
in time, as the only thing that matters is for the two vectors to be aligned. This
relation must hold throughout all the observation period otherwise, if even a single
measurement is different, the trajectory becomes observable. To prove the validity
of (4.9), let us check what happens when that hypothesis is violated. Assume that
the deviation δr(t) is always parallel to the nominal position vector:

δr(t) = ρ(t)r̄(t) (4.10)

Substituting inside (4.5), the new measurement profile becomes:

ιr(t) =
r̄(t) + ρ(t)r̄(t)
‖r̄(t) + ρ(t)r̄(t)‖ =

1 + ρ(t)
|1 + ρ(t)|

r̄(t)
‖r̄(t)‖ = sgn (1 + ρ(t)) ῑr(t) (4.11)

Equation (4.11) proves that for any ρ(t) > −1, the two unit vectors are identical.
Additionally, this result is easily generalised to any arbitrary scaling β of the initial
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conditions, such that ρ(t) > −β:

ιr(t) =
βr̄(t) + ρ(t)r̄(t)
‖βr̄(t) + ρ(t)r̄(t)‖ = sgn (β + ρ(t)) ῑr(t) (4.12)

The conditions over ρ(t) guarantee that the sign functions are always equal to one.
Whenever that is not the case, the two relative unit vectors are opposite and the
measurement profiles are different. Thus, (4.11) and (4.12) also highlight a potential
exception to the previous criteria: even though the deviation produced by a ma-
neuver is parallel to the natural evolution of the trajectory, the relative range can be
uniquely determined if the two LOS vectors are opposite. Although theoretically
valid, from a practical viewpoint this class of maneuvers is inadmissible for a ren-
dezvous because they all result in the chaser passing through the target onto the
opposite side, rotating ιr(t) of 180 degrees.

In summary, the necessary and sufficient conditions for observability can be written
as a simple criterion by introducing the observability angle [39]. It represents the angle
between the natural ῑr(t) and true ιr(t) line-of-sight vectors:

θ(t) = cos−1 (ῑr(t) · ιr(t)) (4.13)

This angle is directly related to the difference between the two measurement profiles.
Exploiting this definition, a trajectory is said to be observable in the time-window
[t1, tk] if:

∃t ∈ [t1, tk] : θ(t) 6= 0 (4.14)

Meaning that, if the observability angle is different from zero at any arbitrary time
of the observation window, the initial conditions can be uniquely determined. From
(4.14) the unobservability criteria is easily written as:

θ(t) = 0 ∀t ∈ [t1, tk] (4.15)

4.1.2 Analytical Derivation

The previous derivation relied on geometric considerations regarding the line-of-
sight to establish the necessary and sufficient conditions for the observability of the
in-orbit bearing-only problem. However, it does not apply for many practical appli-
cations. For example, one may be interested in determining the subset of maneuvers
that do not produce observability. In this regard, equation (4.9) has been exploited
for few very simple cases in LEO, where the dynamics can be expressed analyti-
cally, but the same approach cannot be applied to the cislunar domain. Bearing that
in mind, [7] has developed an alternative methodology to establish the observabil-
ity conditions, one that relies on a mathematical interpretation of the problem. Its
major advantage is that it provides simple formula applicable to any system with a
discrete-time solution, such is our case.

In this framework, the observability criterion is found by showing when the initial
conditions can be solved from a discrete formulation of the problem. The origi-
nal derivation exploits the CW equations, for which the matrices Φ(tk + ∆t, tk) and
Φ(ti,+∆t, ti) are equal for all values of k and i. As highlighted in (2.5.2), that is true
only if the linear system is time-invariant; unfortunately that is not the case for the
non-keplerian regime. Moreover, the expressions for unobservable maneuvers are
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found by exploiting analytical solutions of Φ and G, which do not exist in our do-
main. On account of this, the formulation is here generalised to any linear system
that admits a discrete solution in the form of (2.40) and the validity of the results
obtained for impulsive and constant-thrust maneuvers is extended to problems that
can only be solved numerically.

Before proceeding with the derivation, it is useful to introduce the so-called pseudo-
measurement equation, inspired by the work of [2]. It is an algebraic manipulation
of the original measurement equation, written in a linear form with respect to the
relative states x (see [7] for the full derivation):

0 = H(y)x (4.16)

where y = [α, φ]T is the output vector containing the azimuth and elevation angles,
respectively. H(y) is called the pseudo-matrix and is defined as:

H(y) =
[
− sin(φ) 0 sgn(φ) cos(φ) cos(α) 0 0 0
− sin(α) cos(α) 0 0 0 0

]
(4.17)

This matrix can be determined explicitly from the knowledge of the output angles.
The only downside of this expression is that it holds for any state vector as well as its
opposite, whereas that is not the case for the original output equation. Specifically,
H(y)x = H(y)(−x) even though h(x) 6= h(−x). Although this limitation does not
have a major impact, it will impose some additional constraints on the expressions
that exploit H.

The observability requirement can be derived by considering that the state vector is
made by a total of 6 components: 3 positions and 3 velocities. Since at each time-step
two angles are obtained, a minimum of three different sensor readings are necessary
to solve for the initial condition x1. The sequence of relative states over the discrete
observation window [t1, t2, t3] is:

x2 = Φ1x1 + G1u
x3 = Φ2Φ1x1 + Φ2G1u

(4.18)

where the compact notation Φk−1 stands for Φ(tk, tk−1) to remind that the matrix is
evaluated with xtk−1 . To simplify the analysis, it is here supposed that the spacecraft
is maneuvering only between the interval [t1, t2]. Moreover, the only assumption
regarding the type of maneuver is that the resulting convolution integral can be
interchanged with the product between G and u. Using the newly defined matrix
H, the measurements associated to these states are written as:

0 = H(y1)x1

0 = H(y2)x2 = H(y2)Φ1x1 + H(y2)G1u
0 = H(y3)x3 = H(y3)Φ2Φ1x1 + H(y3)Φ2G1u

(4.19)

This system can be re-arranged in matrix form to separate the natural contribution
of x1 from the perturbation due to u: 0

−H(y2)G1
−H(y3)Φ2G1

 u =

 H(y1)
H(y2)Φ1

H(y3)Φ2Φ1

 x1 (4.20)
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For the CW model, it has been shown that the matrix on the Right Hand Side (RHS)
is full rank. The proof has been obtained by exploiting the analytical expressions of
H and Φ to create a symbolic representation of the matrix. Again, this procedure
cannot be applied for our case because Φ is known only numerically. However, it
is easy to notice that the first two rows, represented by H(y1), are always linearly
independent because of the inherent nature of H. Therefore, the only exceptions
could be due to particular combinations of yi and Φi that yield a zero determinant
for the whole matrix. For the LEO scenario, such solutions have not been found,
thus it could be reasonable to assume that the RHS matrix is always full rank even
in the non-keplerian domain.

If the previous statement is valid, in order to obtain a non-trivial solution for x1
(i.e., x1 6= 0), at least some components on the left side must be different from zero.
Therefore, the necessary and sufficient conditions can be written as:[

H(y2)G1
H(y3)Φ2G1

]
u 6= 0 (4.21)

By analysing this system, the very same observations made through a geometric
formulation of the problem, can now be established mathematically. Indeed, in order
for (4.21) to be satisfied, the input u must be different from zero. Namely, a necessary
condition for observability is the execution of a maneuver. Moreover, as previously
seen, even if a maneuver is performed, observability is not necessarily granted. This
happens whenever the nullity of the matrix in (4.21) (i.e. the number of vectors in its
null-space) is greater than zero.

This result can be generalised to multiple maneuvers over any number of sample
intervals. For example, if a second maneuver was performed at time t2, the system
(4.20) would become: 0

−H(y2)G1
−H(y3)Φ2G1

 u1 +

 0
0

−H(y3)G2

 u2 =

 H(y1)
H(y2)Φ1

H(y3)Φ2Φ1

 x1 (4.22)

Equation (4.22) underlines again that in order to have a non-trivial solution for x1,
at least one between u1 and u2 must be different from zero and the null-space of the
corresponding matrix must be empty. The benefit of adding a second maneuver is
an increased flexibility of the system. Indeed, assuming u1 different from zero but
unobservable, the initial conditions can still be recovered if u2 is observable. By ma-
nipulating the expressions in (4.19), it can be proved that this observability condition
is physically translated into requiring that at least one of the measurements after the
maneuver took place must be different from the natural evolution of the dynamics
[7].

4.1.3 Non-linear Effects

Before investigating the subsets of unobservable maneuvers, it is appropriate to
quantify the ability of non-linear terms to enhance the observability of the system.
The approach suggested by [6] is to treat the neglected accelerations as pseudo-maneuvers
and analytically evaluate their contribution from the measurement profile equation.
As that is not feasible for the case at hand, a different measure of observability is
proposed, inspired by the work of [47].
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Given an arbitrary finite set of measurement times T = [t1, t2, ..., tN ], it is possible to
define a function V(x) : R6 → R2N as:

V(x) =


(h ◦Φ1) (x)
(h ◦Φ2) (x)

...
(h ◦ΦN) (x)

 (4.23)

where ◦ is used to indicate (h ◦Φ)x = h(Φx), that is, the composition of the two
functions. Its purpose is to map a generic initial state x to all the corresponding
measurements over the interval T . In order to evaluate the observability properties
of a reference point x1, the functional Jx1 : R6 → R is introduced as follows:

Jx1(x) = ‖V(x)−V(x1)‖ (4.24)

Equation (4.24) can be exploited to evaluate the observability of a generic initial point
x1 with respect to any other point belonging to a given domain Ω. In other words, it
quantifies the difference between the measurements of the reference dynamics and
those of all the other trajectories that originate from the points contained in Ω. It is
easy to notice that if the LOS vectors of two trajectories are identical, then V(x2) =
V(x1) and Jx1(x2) = 0. Therefore, if it exists a point x ∈ Ω such that the functional
Jx1(x) = 0, then x1 is locally unobservable because its measurement profile is not
unique. This observability measure can then be viewed as a natural generalization
of observability gramians to a nonlinear framework [47]. Additionally, since the
definition of Jx1 does not require the measurement equation to be a linear function
of x, it can be effectively used to investigate the ability of the neglected non-linear
dynamics to enhance the observability of the system.

Under few simplifying assumptions, this formulation has been applied to the case
study of Fig. 4.1 and the resulting values of Jx1 are illustrated in the figure below.

FIGURE 4.2: Non-linear observability levels of Jx1 for a Lyapunov or-
bit in the domain Ω(x, y) : x ∈ [−70, −5] and y ∈ [50, 300] km. The

reference point x1 is highlighted as a red dot.
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In order to show the level sets of Jx1 in a two-dimensional plot, the space of the solu-
tions has been reduced from R6 to R2. In particular, by studying the behaviour of the
chaser relative to a target on a Lyapunov orbit, the CR3BP dynamics can be reduced
to a planar motion (i.e, x1 ∈ R4). Additionally, since the purpose of this analysis
is to evaluate whether or not the non-linear contributions can compensate the orig-
inal unobservability, the ratio between the ith velocity component of x and that of
x1 is chosen equal to the ratio between the respective position elements. Namely, if
y2 = 3y1 then ẏ2 = 3ẏ1. This assumption allows for a direct comparison with Figure
4.1 because it makes possible to include in Ω all the points obtained by equally scal-
ing the components of x1 for a given range of β; that is, the unobservable trajectories
of the linear formulation.

The results display a net drop of observability in the neighbourhood of the unob-
servable region. Nevertheless, the lowest value of Jx1 is close but different from
zero, meaning that the non-linear terms ideally make the reference point observable
in Ω. However, the low values of Jx1 indicate that the difference between the mea-
surement profiles are very small thus, from a practical perspective, one may argue
that the degree of observability is not high enough to guarantee the convergence of
the navigation filter. Moreover, if measurements errors are introduced, very precise
sensors might be needed to distinguish the two sets of measurements.

Additional insights on the observability problem are gained by evaluating the func-
tional Jx0 for different durations of the observation time T .

FIGURE 4.3: Comparison between the local observability gramiams
Jx1 for increasing durations of the observation interval T (0.5, 1, 1.5
and 2 days). The target is placed on a L1 Lyapunov orbit and the
reference point is marked with a red dot. Notice that the color scale

is different for each plot.
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Figure 4.3 shows that the bottom-left part of the xy-domain has the highest degree
of observability for short propagation times. However, as the observation window
is increased, the top-right corner outclasses completely the lower region. Therefore,
as a reminder for future analysis, it is important to remark that the observability of
a generic trajectory strongly depends on the time used to evaluate it. A trajectory
profile that has a low level of observability early-on might show sudden changes
with respect to the nominal trajectory at a later stage.

A few final considerations are worth to be made. The linear model holds as long
as the effects of non-linearities are small and non-influential. Therefore, it is to be
expected that their contribution to the overall observability of the system is negligi-
ble. If that was not the case, concerns could rise on its ability to approximate the real
dynamics. Bearing that in mind, this investigation further proved the validity of the
linear analysis. Indeed, the lowest values of Jx1 are all associated to the region where
the linear criteria foresaw unobservability and, even after long propagation times,
the results are still in agreement with the linear predictions. Nonetheless, since the
relative dynamics in the CR3BP depends on the positions of both the target and the
chaser, there could be certain combinations that provide a much higher degree of
observability than the one of this planar example. Furthermore, an additional en-
hancement might be obtained translating to the full ephemeris dynamics.

As a last remark, the high deviations from the reference point, visible at the top-left
of the fourth plot, should not be mistaken with a high level of local observability.
Indeed, as explained earlier, a measure of observability over Ω is represented by the
lowest value of Jx1 in the domain.

4.2 Unobservable Maneuvers

It is now of interest to search for the sub-sets of unobservable maneuvers. Their
analysis would validate the observability criteria derived previously and provide
insights on what type of maneuvers shall not be performed if a bearing-only nav-
igation solution is being exploited. Again, the derivation follows the steps of [7],
generalising the analysis to linear time-variant systems and extending the results of
impulsive and constant-thrust maneuvers in LEO to the non-keplerian dynamics.

To derive the unobservable maneuvers, consider the expression for the position vec-
tors with and without an input for three consecutive time-steps:

r2 = Λ1x1 + Γ1u and r̄2 = Λ1x1

r3 = Λ2Φ1x1 + Λ2G1u and r̄3 = Λ2Φ1x1

r4 = Λ3Φ2Φ1x1 + Λ3Φ2G1u and r̄4 = Λ3Φ2Φ1x1

(4.25)

where Γ is extracted from:
G =

[
Γ Gv

]T (4.26)

As seen in section (4.1.1), a maneuver is unobservable if it produces a perturbation
parallel to the line-of-sight vector. Therefore, in order for the three equations of (4.25)
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to hold simultaneously, the system can be re-written as:
ρ1 (Λ1x1 + Γ1u) = Λ1x1

ρ2 (Λ2Φ1x1 + Λ2G1u) = Λ2Φ1x1

ρ3 (Λ3Φ2Φ1x1 + Λ3Φ2G1u) = Λ3Φ2Φ1x1

(4.27)

For any arbitrary constant ρi 6= 0. However, it was demonstrated that if the two
position vectors are opposite, the measurement profiles are different. Thus the three
constants are also constrained to be positive: ρi > 0. Mathematically, unobservabil-
ity requires the two position vectors to be positive linear dependent (i.e., point in the
same direction). Re-arranging (4.27) by separating the natural and forced responses,
these equations turn into:

α1Λ1x1 = Γ1u
α2Λ2Φ1x1 = Λ2G1u
α3Λ3Φ2Φ1x1 = Λ3Φ2G1u

for any αi > −1 (4.28)

where αi = 1/ρi − 1. In order for the two trajectories to be indistinguishable, the
system (4.28) must also be valid for every subsequent time step after the maneuver.
Now, considering the first equation, the matrix Γ can be inverted to solve for the
unobservable maneuver. There are some special exceptions that might make this
matrix singular, alluding that unobservable maneuvers do not exist for those sce-
narios. Nevertheless, if that is the case, these restrictions will be reflected in the final
solution [7]. The unobservable maneuvers can then be evaluated as:

uu = αΓ−1
1 Λ1x1 for α > −1∧ α 6= 0 (4.29)

The constraint α 6= 0 is added to avoid trivial solutions where uu is null, namely the
cases where no maneuver is performed. It is interesting to notice that this expression
for uu depends on the initial point x1, meaning that unobservable maneuvers exist
only for specific initial conditions. Therefore, before evaluating uu it is necessary
to solve for this set of initial conditions by substituting (4.29) inside the last two
equations in (4.28). Since the initial state vector is made of 6 components, it should
now be clear why the positions for 2 additional time-steps have been propagated
throughout this derivation.{

α2Λ2Φ1x1 − α1Λ2G1Γ−1
1 Λ1x1 = 0

α3Λ3Φ2Φ1x1 − α1Λ3Φ2G1Γ−1
1 Λ1x1 = 0

(4.30)

After some algebra, defining βi = αi+1/α1, the system reads:{
Λ2(β1Φ1 −G1Γ−1

1 Λ1)x1 = 0

Λ3Φ2(β2Φ1 −G1Γ−1
1 Λ1)x1 = 0

(4.31)

for βi 6= 0. Both equations must be valid when x1 is different from zero. The only
way for this to be possible, is if the intersection between the null-spaces of the two
matrices on the LHS is not empty, for any choice of βi that satisfies the constraints. In
this regard, a product between two matrices is a linear map by definition. Therefore,
the two terms Λ2 and Λ3Φ2 can be viewed as linear transformations of the matrices
they multiply inside the brackets. This implies that the nullspace of each LHS matrix
is a sub-space of the null-space of the respective matrix between the parenthesis.
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Therefore, to have a non-empty intersection between the two sub-spaces, the terms
in the brackets must be equal, meaning that β1 = β2. Additionally, to obtain a non-
empty null-space for a matrix, its determinant must be zero.

Thus, the basis that describes the set of initial conditions that allow for unobservable
maneuvers can be found from:

x0u = null(C) for β 6= 0 ∧ det(C) = 0 (4.32)

where:
C = βΦ1 −G1Γ−1

1 Λ1 (4.33)

It is important to remark that this result has been obtained by assuming that a single
maneuver was performed, with an arbitrary duration between the interval [t0, t1].
A similar formula can be found by assuming that a series of maneuvers is executed,
however the more equations are added and the less likely it is that an intersection
between the null-spaces exists. Finally notice no assumption on the type of maneu-
ver has been made and (4.33) is valid for any maneuver that can be represented by a
matrix G.

To summarise, the procedure to find an unobservable maneuver is as follows:

1. The type of maneuver is selected and the corresponding matrices G and Γ are
evaluated for an arbitrary duration. Φ and Λ are also computed over the same
time interval.

2. The values of β that yield a null determinant for C and respect the constraints
in (4.32) are sought.

3. The set x1u of initial conditions that allow for unobservable maneuvers is ob-
tained by a linear combination of the vectors inside the null-space of C, evalu-
ated for the values of β found at the previous step.

4. Finally, the unobservable maneuver uu is obtained by substituting x0u inside
(4.29).

The initial conditions and the associated impulsive and constant-thrust unobserv-
able maneuvers are now computed numerically and generalised. This will allow to
compare the results coming from the CW equations with those of the non-keplarian
dynamics. Other types of maneuvers are not investigated because they either do not
allow a matrix G or are less likely to be performed during a rendezvous operation.

4.2.1 Impulsive Maneuvers

Accordingly to the following sub-division of the state transition matrix:

Φ =

[
Φrr Φrv
Φvr Φvv

]
(4.34)

for impulsive maneuvers, the input matrices can be written as (2.39):

Gk = Φk

[
0
I

]
=

[
Φrv
Φvv

]
and Γk = Φrv (4.35)
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From now on, the k-subscript will be dropped as all the matrices are computed over
the same time interval. Temporarily define R equal to the second term of the RHS in
(4.33), then:

R = GΓ−1Λ =

[
Φrv
Φvv

]
Φ−1

rv
[
Φrr Φrv

]
(4.36)

Taking the products yields:

R =

[
ΦrvΦ−1

rv Φrr Φrv

ΦvvΦ−1
rv Φrr Φvv

]
=

[
Φrr Φrv

ΦvvΦ−1
rv Φrr Φvv

]
(4.37)

Therefore, the original matrix C simplifies to:

C = βΦ− R =

[
(β− 1)Φrr (β− 1)Φrv

βΦvr −ΦvvΦ−1
rv Φrr (β− 1)Φvv

]
(4.38)

For this type of matrix, solving for null values of the determinant always yields 6
solutions for β, three with β = 0 and three for β = 1. Since β = 0 violates the
constraints (4.32), the initial conditions for impulsive unobservable maneuvers are
found from the null space of C evaluated for β = 1:

x0u = null

([
03x3 03x3

Φvr −ΦvvΦ−1
rv Φrr 03x3

])
(4.39)

A vector basis for the null-space of this matrix has the form of:

x0u =

{


0
0
0
1
0
0

 ,



0
0
0
0
1
0

 ,



0
0
0
0
0
1


}

=



0
0
0
vx
vy
vz

 =

[
0
v

]
(4.40)

Equation (4.40) implies that unobservable impulsive maneuvers can only be per-
formed at the origin; that is, when the chaser and the target are in the same position.
The unobservable maneuver is found by substituting (4.40) into (4.29):

uu = αΦ−1
rv
[
Φrr Φrv

] [0
v

]
= αΦ−1

rv Φrvv (4.41)

The final expression is:

uu = αv for α > −1∧ α 6= 0 (4.42)

Equations (4.40) and (4.42) highlight that for impulsive maneuvers, unobservable
trajectories are obtained only when the maneuver is executed at the origin and in a
direction parallel to the initial relative velocity. This result has been obtained with-
out making any assumption on the numerical values of Φ, therefore it holds for any
dynamic system that can be represented in discrete form. As a last remark, note that
the components of v are independent and can assume any arbitrary value, both pos-
itive and negative.

Figure 4.4 shows the trajectory associated to an unobservable impulsive maneuver
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for a random value of the initial velocity, with the target located at the NRHO apol-
une. It is easily noticed that the forced dynamics is an exact scaled copy of the natural
relative evolution.

(a) Projection in the x-y plane. (b) Projection in the y-z plane.

FIGURE 4.4: Projections of the natural and forced dynamics for an
unobservable impulsive maneuver.

The trajectories have been propagated with the linear model and the amplitude of the maneuver has
been set to an arbitrary high value to easily distinguish the two lines.

The disagreements between the readings of the two trajectories are reported in Fig-
ure 4.5. For the linear model, the differences have the same order of magnitude of
the integration tolerances, thus are completely negligible. The same is true for the
real dynamics; indeed, despite the results are much higher with respect to the linear
model, in practice they never exceed 0.1◦. The smallest differences are found at the
beginning of the propagation where the accuracy of the approximation is highest
(∼ 0.001◦ at 10 hours). Overall, this comparison highlights once again the high-
degree of reliability of the linear formulation.

(a) Azimuth differences. (b) Elevation differences.

FIGURE 4.5: Comparison between the measurements differences of
the linear and non-linear dynamics.

Additionally, some interesting considerations can be made from an operational view-
point. As highlighted by [7], it is almost impossible that the conditions for an impul-
sive unobservable maneuver are satisfied in a real rendezvous operation. Indeed,
as the initial conditions are located in the origin, all the maneuvers that are com-
puted during an arrival trajectory are going to be observable. Moreover, a null rel-
ative position would require the chaser to cross the position of the target, resulting
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in a collision between the two spacecraft. Even so, when the relative distances are
very small, the bearing-only technique is outclassed by other navigation solutions
in terms of accuracy, thus even for a departing spacecraft impulsive unobservable
maneuvers should be of no concern whatsoever.

4.2.2 Constant-Thrust Maneuvers

In the previous case, the particular structure of the input matrix G was exploited to
find analytical expressions for the unobservable maneuver and the associated initial
conditions. Unfortunately, if constant thrust maneuvers are executed, the matrix G
cannot be reduced to a simpler form, thus one has to rely on the numerical compu-
tation of the convolution integral in (2.39).

However, it is interesting to notice that multiple numerical evaluations of C have
shown that it can be expressed as:

C =

[
(β− 1)Φrr (β− 1)Φrv

βΦvr − Rvr βΦvv − Rvv

]
(4.43)

where the Rvr and Rvv are the sub-portions of R, defined accordingly to (4.34). Thus,
it is clear that if β = 1, the first three rows vanish and the determinant is null. By
exploiting symbolic expressions, the remaining three solutions have been found to
be β = 0 and are thus inadmissible. Similarly to the previous derivation, substituting
β = 1 in (4.43) yields:

C =

[
03x3 03x3

Cvr Cvv

]
(4.44)

Since the rank of this matrix is 3, from the Rank-Nullity theorem, the null-space of C
will always have a dimension of 3. Moreover, the reduced Row Echelon Form (REF)
for a matrix of this type is written as:

CREF =

[
I3x3 A

03x3 03x3

]
(4.45)

where, in the most general case, A is a full matrix of unknown coefficients. From
this representation, one can see that the basis of the nullspace of C (i.e, the set of
unobservable initial conditions) has the form of:

x0u =

{


a1
a2
a3
1
0
0

 ,



b1
b2
b3
0
1
0

 ,



c1
c2
c3
0
0
1


}

=

[
r0
v0

]
(4.46)

Since x1u can be obtained by any linear combination of these basis vectors, any lo-
cation in the three-dimensional domain allows for a specific unobservable constant-
thrust maneuver. This statement is best proven with an example. Define rD a generic
position vector and let the position-related components of the basis vectors in (4.46)
be {a, b, c}. The goal is to find the coefficients α that yield a linear combination of
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these vectors equal to rD. Mathematically:

[a, b, c] α = rD (4.47)

By definition, a, b and c are linearly independent, therefore the matrix on the LHS
can be inverted to find a unique solution for α. Additionally, since the basis vectors
in (4.46) are defined with unitary velocity components, these coefficients are also
equal to the relative initial velocity that allows for the unobservable maneuver.

In summary, for non-impulsive trajectories in any point an unobservable constant
thrust maneuver can be performed; however, for each of these positions there exist
only a unique value of the initial velocity that allows it. An example for this kind of
maneuvers is reported in Figure 4.6.

FIGURE 4.6: Comparison between the natural and forced dynamics
for an unobservable constant-thrust maneuver.

It is here remarked that the expressions for the unobservable maneuvers have been
found under the assumption that the action is performed for any arbitrary duration
of the first time step [t1, t2]. As a result, the generated trajectories are unobserv-
able only when the maneuver is ceased. This stands clear in Figure 4.5, where the
measurement differences reach peaks higher than 1◦ during the maneuvering phase.
However, once the firing has stopped, the values of the linear model are again in the
order of the integration tolerances.

(a) Azimuth differences. (b) Elevation differences.

FIGURE 4.7: Comparison between the measurements differences for
constant thrust maneuvers. The dotted line represents when the fir-

ing is ceased.
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Although some degree of observability is provided by these trajectories, the dis-
agreements in the measurement profiles may not be high enough to either guaran-
tee the convergence of the filter or be distinguished by the noisy sensors. Indeed, in
the example above the differences are below 0.1◦ for most of the maneuvering time.
Thus, these kind of maneuvers should still be avoided for proximity operations that
only rely on angle measurements.

The analysis carried out in these sections, generalised the concepts introduced by [7]
and [39] to any linear system that admits a solution in discrete form. It showed that
a necessary and sufficient condition for observability is to perform a maneuver that
changes the measurement profile from that of the natural evolution. Additionally,
it highlighted that in a practical scenario, impulsive maneuvers are never going to
be unobservable, whereas the same does not hold when continuous thrust is intro-
duced. Finally, the constant comparisons with the non-linear model proved that the
classical techniques of linear analysis can effectively be exploited to investigate the
relative motion in the cislunar domain.

4.3 Observability Measures

In an ideal scenario, a system is either observable or unobservable. When a partic-
ular dynamics belongs to the former class, the error in the estimation of the state
variables will asymptotically approach zero. In this regard, the work in the previ-
ous section established the necessary and sufficient criteria to classify a trajectory as
either observable or unobservable. However, the real world is far from ideal and
when sensor errors are introduced, the convergence of the filter is not granted. A
perfect example is given by the set of unobservable maneuvers in Figure 4.7. As
already discussed, during the firing, the direction of the LOS vector is slightly dif-
ferent from that of the natural dynamics. Thus, from a theoretical standpoint the
trajectories are observable. Nonetheless, when measurements errors are accounted
for, the navigation filter may either not be able to distinguish between the two mea-
surement profiles or take a long time to reduce the error below a design threshold.

Therefore, for real applications, it is useful to introduce a measure for the level of
observability; one that can be used to classify different trajectories as more or less
observable. A high degree of observability would then imply the possibility of great
improvements of the navigation estimate. Additionally, an analytical expression for
this measure of observability would provide the means to optimise and solve for the
maneuvers that guarantee the maximum improvement in the navigation error. This
expression should also allow to account for the specific time upon which observabil-
ity is desired. Indeed, consider the simple scenario where a chaser measures its rel-
ative state each hour. Since the filter can only process the information coming from
the sensors, it does not matter how much observable the trajectory is in-between two
consecutive measurements; the key factor to ensure the error is reduced is to have
observability at the same time the measurements are performed.

In the last decade, this problem has been tackled by different authors. In particular,
[39] proposed an expression based on the concept of the observability angle, but its
complexity allows analytical solutions only in very few simple cases. Additionally,
since that measure may vary of many orders of magnitude, different non-linear opti-
mizers struggled at finding a feasible solution when additional terms (e.g., fuel costs)
were included in the overall cost function. [48] used the Fisher Information matrix to
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gain insights on the estimation performance of the navigation filter and exploited a
non-linear solver to find the optimal maneuver. Finally, [12] developed a continuous
measure of observability based on the positive linear independence of the perturbed
and natural position vectors. Due to its simple nature, this last proposal allows to
find a closed-form solution for the optimal observable maneuvers; one that can be
applied to any dynamic system/maneuver type that admits a discrete-form matrix
solution.

Bearing this in mind, the remaining of the section is structured as follows. The con-
cept of observability angle is recalled to highlight the different factors (e.g, sensor
errors and maneuver directions) that affect the estimation of the range and quantify
their impact. Then, the analytical expression for the optimal observable maneuvers
of [12] is generalised to time-variant linear systems. Finally, numerical simulations
are used to verify the ability of this kind of maneuvers to yield the best improvement
in the navigation estimate.

4.3.1 Observability Angle

The geometry of the range detectability is well illustrated by Figure 4.8, where the
target (the grey circle) is fixed in the origin of the system and the chaser position is
depicted before and after the observable maneuver (red circles). The angle γ is called
the perturbation angle and is the angle between the natural position vector r̄ and the
perturbation δr due to the observable maneuver. For the ideal scenario (i.e, perfect
measurements), the relative distance ρ can be found through the law of sines:

ρ = δr
[

sin(θ + γ)

sin(θ)

]
(4.48)

Unfortunately, the sensor readings will always be affected by some kind of noise,
leading to an inherent uncertainty in the range estimation. These could be due to
pixel misreadings or to errors in the image processing algorithms.

δr
γ

𝒓

ത𝒓

θ

δr
γ

𝒓

ത𝒓

δρ

FIGURE 4.8: Range detectability geometry in the ideal (left) and real
(right) scenario. r is the position vector of the real trajectory whereas

r̄ represents the natural dynamics.

In a real application, [39] has shown that the position uncertainty can be written
as function of the observability angle θ, the perturbation angle γ and the sensor
accuracy ε. The resulting expression is quite complex but if measurement errors are
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small, it can be simplified to:

δρ ' ε

[
ρ

sin(θ)

]
(4.49)

where ρ is the relative distance between the two spacecraft and δρ is the range un-
certainty. Equation (4.49), shows the estimation uncertainty for the range is affected
by three factors: the measurements noise ε, the relative distance ρ and the observ-
ability angle θ. Therefore, there are three distinct ways to minimise the uncertainty.
The first is to improve the sensor accuracy. However, there are physical and techno-
logical limitations to the minimum achievable value for ε. On the other hand, one
of the major benefits of bearing-only solutions is that they only require a camera to
work, meaning great economic savings in terms of hardware. Thus, requiring very
accurate sensors would simply deny them any advantage.

The remaining options are to bring the chaser closer to the target or perform a ma-
neuver that increases the observability angle. In this regard, the range uncertainty
is minimised when θ reaches 90 degrees. Namely, when the LOS vector of the per-
turbed trajectory is perpendicular to the one of the natural dynamics. A visual rep-
resentation of the range estimation sensitivity at varying values of the observability
angle is represented in Figure 4.9.
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FIGURE 4.9: Range uncertainty sensitivity to the observability angle
θ, for fixed relative distance and sensor accuracy.

For typical rendezvous applications, a useful design parameter is the relative range
uncertainty. Indeed, to evaluate whether or not a specific absolute error is accept-
able, one should check the relative distance between the two spacecraft. A range
uncertainty of 1 km can be extremely good if the chaser is 500 km or unacceptable
if the distance is only 10 km. A classical rule-of-thumb is to set the threshold for
the relative error to 0.01; that is, a one-percent accuracy [49]. An expression for this
metric is easily obtained from (4.49) as:

δρ

ρ
' ε

sin(θ)
(4.50)

This criterion clearly shows that in order to reduce the relative range estimation er-
ror, the design of the trajectory should focus on maximising the observability angle
θ. From this perspective, reducing the relative distance is not convenient anymore.
Indeed, although (4.49) showed that it was a viable alternative to improve the ab-
solute uncertainty, an optimisation algorithm based on that criterion could solve for
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a maneuver that reduces ρ while keeping θ very small. If that was the case, the
resulting trajectory would most likely violate any threshold on the relative range
uncertainty.

Since (4.49) and (4.50) have been obtained without making any reference to the nav-
igation filter, one should check whether or not these criteria are good indicators for
the filter uncertainty. Thus, to evaluate the navigation performance, a Monte Carlo
simulation has been set up, varying the initial state of the filter and the sensor noise.
The real dynamics is modelled with the CR3BP whereas the linear approximation
is exploited by the EKF. The chaser performs an impulsive maneuver at the initial
time and the direction of u has been obtained through a non-linear optimizer using
as objective (4.51). Figure 4.10 shows the resulting relative position errors for 500
simulations of the relative dynamics in proximity of the LOP-G orbit.

FIGURE 4.10: Theoretical relative range uncertainty prediction per-
formance. The gray lines represent each individual simulation. The
maneuver is performed at the initial time. The update time is 1 Hz.

It stands clear that the relative uncertainty metric marks the outer boundary of the
navigation errors envelope, whereas the 1-σ mean error is well below the threshold.
This is explained by recalling that the previous geometric considerations assumed
an infinite initial uncertainty. However, in a practical implementation, the naviga-
tion filter is initialised with a finite covariance uncertainty, therefore it is to be ex-
pected that the errors will be smaller than the ones predicted by the relative metric.
Moreover, it was acknowledged that the errors immediately following the maneu-
ver could be higher than expected when the update frequency of the filter is low.
Overall, it appears that (4.50) is a valid measure for the worst possible navigation
performance once the filter has reached convergence. Thus, if a requirement on the
maximum admissible error is given and the sensor accuracy is known, this metric
is easily inverted to find the observability angle necessary to satisfy the demands.
Viceversa, if the maximum value of θ is constrained, the same relationship can be
exploited to find the needed accuracy for the on-board cameras.

It is interesting to evaluate what happens when a second maneuver is performed.
Specifically, one could question whether the second impulse should maximise the
angle with the original dynamics θ or with the natural evolution of the chaser after
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the maneuver was performed, here denoted ϕ. In this regard, both directions have
been tested and the performance are respectively reported in Figure 4.11. To clear
any doubts, in the second scenario, the direction was chosen to ensure that ϕ is max-
imised while θ is minimised. From the right plot, it is evident that when θ becomes
constant the range uncertainty no longer improves, even though ϕ is increased. On
the other hand, a constant reduction of the estimation error is guaranteed when θ
continuously rises.

(a) Maximisation of θ. (b) Maximisation of ϕ.

FIGURE 4.11: Comparison between different directions for the second
maneuver, performed at the dashed black line. The yellow and red
lines are the relative error metrics associated to the two angles. A
logarithmic scale is employed to better highlight the estimation errors

at the final times.

These simulations confirm that what matters most is the observability angle of the
perturbed trajectory with respect to the original evolution of the dynamics, regard-
less of how many maneuvers are performed in-between. As a consequence, this
peculiar behaviour can be exploited to design rendezvous trajectories that naturally
maximise θ. Suppose the bearing-only navigation is employed to close the gap be-
tween a far-range distance (e.g., 500 km) and a fixed 1 km close-proximity hovering
point. If the rendezvous time Trdv is also constrained, one can find an initial optimal
point at 500 km, whose natural dynamics at Trdv is as perpendicular as possible to
the desired final position vector. Although this does not ensure the error is below
the one-percent threshold throughout the whole rendezvous trajectory, it guarantees
the final navigation uncertainty will always satisfy the constraints.

4.3.2 Search for Optimal Observable Maneuvers

When bearing-only is used for a rendezvous mission, the trajectory profile should
allow to minimise the navigation error. The previous section established what are
the key elements that ensure a maneuver yields maximum observability and vali-
dated a metric for the navigation filter performance. The concept of observability
angle could be exploited to classify a maneuver as either optimal or not, depending
on the value reached by θ. A simple expression for the optimisation objective would
then be:

Jθ = cos2(θ) =

[
(Λx1)

T(Λx1 + Γu)
‖Λx1‖‖Λx1 + Γu‖

]2

(4.51)
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where the discrete-form solution of the linear model is employed to ease the com-
putations. However, equation (4.51) cannot be solved by linear or quadratic pro-
gramming algorithms because the maneuver u (i.e., the independent variables) en-
ters in both the numerator and denominator. Moreover, for the very same reason
it does not admit a closed-form solution either. Such explicit analytical expression
for the optimal maneuver is desirable because it would grant the usage of minimi-
sation algorithms that guarantee a solution in polynomial time. Thus, allowing the
implementation of the same concept for both large spacecraft and small satellites
with limited computational power. With this in mind, [12] proposed a continuous
measure of observability that admits an explicit closed-form solution applicable to
any type of maneuver and trajectory. Therefore, the objective is now to investigate
whether or not this kind of analytic optimal maneuvers yield the best improvement
of the navigation estimate when applied to the non-keplerian dynamics.

In this framework, the objective function to minimise has been derived starting from
the sufficient condition for observability, that is the positive linear independence of the
perturbed trajectory (Λx1 + Γu) and the natural evolution (Λx1). An optimal maneu-
ver would then be one that ensures the orthogonality (independence) of the two vec-
tors while simultaneously ensuring the positive nature of their relationship. How-
ever, it can be proved that these two conditions cannot be satisfied simultaneously
and when possible, the maneuver would simply bring the chaser to the exact posi-
tion of the target. For this reason the proposed optimisation objective "maximises"
the positive linear independence, without necessarily requiring the two vectors to
be orthogonal. Mathematically:

Jo(u, t) = (Λx1)
T(Λx1 + Γu) subject to Jo(u, t) > 0 (4.52)

Physically, whenever this constraint is not satisfied, the chaser finds himself on the
opposite side of the target with respect to where he would have been without the
maneuver. Note that this objective is quite similar to (4.51), but the key difference
is that Jo can be minimised by either changing the angle between the two vectors
(i.e., θ) or reducing their magnitude (i.e., moving closer to the target). However, as
said previously this last alternative does not always guarantee a reduction of the
error or the satisfaction of the relative error threshold. Although in the LEO scenario
this dissimilarity did not raise any concerns (the maneuvers effectively provided the
best minimisation of the error), the peculiar nature of rendezvous operations in the
cislunar domain will cause remarkable differences with respect to the other dynamic
environment.

Notice that Jo is function of both the maneuver u as well as time, which enters the
equation through the matrices Λ and Γ. In a real operation, the space of admissible
maneuvers is constrained by the engine characteristics and by the amount of on-
board propellant. Therefore, an additional constraint has been added to (4.52) to
limit the maximum magnitude of u. An explicit solution that minimises Jo can
be found by means of Langrange multipliers and the Karush-Kuhn-Tucker (KKT)
optimality conditions. The resulting algebraic expression for the optimal maneuver
direction is (see [12] for the full derivation):

uopt = −m
ΓT(Λx1)√

(Λx1)TΓΓT(Λx1)
(4.53)
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where m is amplitude of the maneuver. To validate this expression, multiple Monte
Carlo simulations have been performed in proximity of the LOP-G orbit. Since the
objective is to prove that uopt effectively yields the best improvement of the naviga-
tion estimate, its performance have been compared with those of other maneuver
directions (uniformly distributed on a sphere of radius m). To easily asses whether
the optimal maneuver improves or deteriorates the estimation error, the mean navi-
gation error of the trajectory without maneuvers (i.e., the natural evolution) has been
subtracted to that of all the other directions. According to this process, a negative
value would then imply the maneuver direction improves the observability of the
relative motion and viceversa when the result is positive.

(a) Navigation error. (b) Navigation error improvement.

FIGURE 4.12: Optimal maneuvers performance in terms of naviga-
tion error. The maneuvers are performed at the dashed black line; the
violet line represents the errors of the natural evolution. The dotted

points are the optimal maneuvering times.

Some interesting results have come out from the simulation. Figure 4.12 clearly indi-
cates that the so-called "optimal maneuvers" are completely uncapable of providing
the best improvement of the navigation estimate. Moreover, it almost looks like the
corresponding trajectories are unobservable for most of the simulation time as they
display little to no differences with respect to the error of the trajectory with no ma-
neuvers at all (the violet line). Figure 4.13a shows that the objective Jo is effectively
minimised by these optimal maneuvers. Thus, the reasons for the bad filter perfor-
mance are not due to modelling or mathematical errors but rely on the inability of
the proposed optimisation objective to yield observability.

(a) Optimisation objective. (b) Relative range.

FIGURE 4.13: Characteristics of each maneuver direction.
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Recall that the navigation uncertainty in (4.49) depends on two variables: the rela-
tive range and the observability angle (sensor errors are currently neglected because
they affect in equal way all these trajectories). From Figure 4.13b it appears that these
optimal maneuvers are the ones that bring the chaser closer to the target. Nonethe-
less, a significant improvement in the error happens only when the relative distance
is reduced of almost 40 km, implying that a possible one-percent accuracy threshold
would be violated for half the trajectory. These simulations are a clear example of
the concept mentioned earlier. That is, an objective function that includes informa-
tion on the range can be minimised by simply reducing the relative distance rather
than acting on the observability angle. As shown by Figure 4.14a, the maneuvers
coming from the minimisation of Jo have an observability angle that is close to 0 for
almost 2 hours, only then the navigation uncertainty improves. Therefore, although
the trajectories associated to these maneuvers minimise the range, the navigation
errors cannot be improved because their degree of observability is extremely low.

(a) Observability angle. (b) Navigation error improvement.

FIGURE 4.14: Comparison between optimisation objectives. The blue
line ideally represents the optimal maneuver at 2 hours.

In this regard, a simple comparison between the two optimisation objectives Jo and
Jθ was performed in Figure 4.14b. It is clear that the best improvement is obtained
when the maneuver maximises the observability angle.

Having acknowledged that, additional analyses have been performed in LEO, where
[12] has proved these analytical optimal maneuvers work as expected. Interestingly,
depending on the initial conditions, and so on the nature of the relative natural mo-
tion, these maneuvers either provide some of the best or worst navigation estimates,
showcasing that Jo is not reliable as a measure of observability. The same investiga-
tion was carried out in the cis-lunar domain but unfortunately, it was not possible to
find any realistic initial condition for Jo to work properly. The comparison between
the two space environments suggests this has to do with the peculiar nature of the
CR3BP relative dynamics. Specifically, while in LEO a rendezvous approach may
last for several periods of the target’s orbit, in the non-keplerian domain the orbital
periods are in the order of days if not weeks. Define T the ratio between the typical
duration of the rendezvous and the orbital period, then:

TLEO � 1 and TCR3BP � 1 (4.54)

This difference implies that the relative natural dynamics is much slower in the cis-
lunar domain than it is in LEO. When that is the case, it seems that to optimise Jo it
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is more convenient to act on the range rather than on the observability angle. Over-
all, this raises serious doubts on the effectiveness of this observability measure for
bearing-only applications in the cislunar domain. On the other hand, Jθ success-
fully allowed to identify the maneuver directions that yield the best improvement in
the navigation estimate, although its expression is not compatible with a linear nor
quadratic formulation.
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Chapter 5

Shrinking Horizon Bearing-Only
Guidance

The primary objective of standard techniques for the design of rendezvous trajecto-
ries is to minimise either the fuel consumption or the time duration of the operation
(or a combination of both). In this regard, many strategies are available and can be
classified on the basis of their optimisation method. A common denominator among
them is that, as long as the trajectory guarantees that measurements are available,
the navigation performance is not actively considered during the planning phase.
However, when dealing with a bearing-only architecture, the navigation process is
directly influenced by the shape of the trajectory and, as shown in the previous chap-
ter, the range uncertainty can only be reduced through a precise set of observable
maneuvers.

Navigation

State

Maneuver Plan

Guidance

Navigation

State

Guidance

Maneuver Plan

FIGURE 5.1: Comparison between a standard rendezvous planning
scheme (left) and a bearing-only application (right). Image adapted

from [50]

This concept is well illustrated in the figure above. The left side shows the traditional
approach where the relative state estimate coming from the navigation filter is the
primary input of the guidance algorithms. The computed trajectory will then be
affected by inherent errors due to the navigation uncertainties; thus, the maneuver
plan must be periodically updated to ensure the spacecraft reaches its final destina-
tion point. Notice that if the estimation and modelling errors were null, a periodic
check (and eventually an update) of the control action would be required nonethe-
less because of possible malfunctions of the actuators. Depending on the type of
sensors used, the state uncertainty decreases with the distance from the target, so
that at the final stages the position error is minimised.

On the other side, for a bearing-only application, the navigation uncertainty can only
be reduced through specific maneuvers that enhance the observability of the system.
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As shown previously, decreasing the range is not a sufficient condition to ensure the
navigation estimate improves. Clearly if the range error constantly remains above
the one-percent threshold, the final position dispersion will never satisfy the op-
erational constraints, no matter how many times the guidance problem is solved.
Therefore, it is mandatory to include, inside the trajectory design, a contribution
that allows to improve the navigation performance. This last consideration justifies
exactly the need for a measure of the system observability.

With this in mind, the goal of this chapter is to provide a mathematical description of
the spacecraft guidance, highlighting how already existing fuel-optimal techniques
can be enhanced to account for the navigation performance in the design of a non-
keplerian trajectory. Initially, it provides an overview of the Shrinking Horizon -
Model Predictive Control (SH-MPC) strategy used to compute feasible rendezvous
trajectories. The objectives to account for fuel consumption and to enhance the
bearing-only observability are discussed and different formulations are presented
for each of them. Concerning the observability, the quadratic objective already pro-
posed in [13] is generalised to any discrete-time system and a linear alternative is
suggested. A small survey of multi-objective optimisation techniques is reported to
select the most suitable option for the case at hand, on the basis of a bunch of rele-
vant criteria. Additionally, it is shown how different constraints can be included to
account for systems engineering limitations, such as the maximum thrust available
from the engines, and how the same problem formulation can be exploited for mul-
tiple proximity operations. Finally, on the basis of the previous chapter results, an
alternative non-linear formulation to generate observable trajectories is proposed.

5.1 Shrinking Horizon - Model Predictive Control

A Model Predictive Control (MPC) can be classified as an optimal control strategy
that relies on a repeated on-line constrained optimisation of a series of control actions
based on the prediction of the dynamics. In particular, throughout the last decade,
this technique has been exploited by many research studies to improve the degree of
autonomy of a spacecraft during a rendezvous operation. For this work, a Shrinking
Horizon - MPC architecture has been chosen to compute the maneuvers required to
bring the spacecraft to a desired location. In this alternative formulation, the tra-
jectory is discretised into a series of n points, arbitrarily spaced in time. However,
differently from a standard MPC approach, with a shrinking horizon the rendezvous
duration is fixed and the problem is always solved from the current epoch until the
final time, thus the time window shrinks at each re-optimisation according to the
remaining rendezvous time. Two main reasons are behind the selection of this strat-
egy. First, it opens the possibility for a direct comparison with the results that [13]
obtained with the same bearing-only architecture; establishing a baseline for angles-
only navigation in the cis-lunar space. In addition, as the design of a trajectory is
always a trade-off between fuel usage and time required, it would allow to inves-
tigate the sensitivity of the solution to a different number of perturbing actors and
model approximations, leaving time as an a-priori fixed design variable.

The course of action for this kind of architecture is as follows. Calling Trdv the desired
rendezvous time, the trajectory is discretised into n steps tM = [tM1 , tM2 , ..., tMn ],
and at each of those a maneuver is allowed. At the same time, the number m of re-
optimisation performed along the trajectory is scheduled for tO = [tO1 , tO2 , ..., tOm ]
and is such that tOi does not necessarily equal tMi . Once the guidance is initialised,
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for each update time tj it checks whether an optimisation is planned at the current
epoch. If that is the case, the minimisation algorithms sets the estimated relative state
as the initial point and searches a solution for the remaining discretisation points,
eventually updating the maneuver scheme Uopt. Afterwards, it also controls if a ma-
neuver is planned; whenever that is the case, the chaser executes the control action
according to Uopt. Finally, the cycle is stopped when Trdv is reached. The whole
scheme is summarised as a simple flow-chart in Fig. 5.2.

REOPTIMISE

Solve for 𝑼𝒑𝒍𝒂𝒏

END

YES

NO

EXECUTE
According to 𝑼𝒑𝒍𝒂𝒏

𝑡 = 𝑡𝑀𝑡 = 𝑡𝑂 𝑡 = 𝑡𝑅𝐷𝑉
NO

YES

YES

NO

FIGURE 5.2: Guidance Flow-chart.

to and tM are the epochs when re-optimisations are planned and maneuvers are allowed, respec-
tively. At each time step t the on-board CPU checks if a re-optimisation is planned, if that is the case
it solves the optimisation problem and updates the maneuver plan Uplan. Then, the computer also
controls whether a maneuver should be performed. The algorithm is stopped when the current epoch
t equals the designed rendezvous time tRDV .

Please notice that in a real implementation, it might not be feasible to solve the opti-
misation problem and execute a maneuver at the exact same epoch. Nevertheless, it
is here assumed that the two tasks can be accomplished simultaneously.

5.1.1 Optimisation Problem

Theoretically, inside an MPC, any type of solver can be used to deal with the op-
timisation problem, from simple deterministic methods to more complex heuristic
ones (e.g., genetic algorithms). Thus, since an analytical solution is not necessarily
required, any type of constraint and cost function can be exploited for the design of
the approach trajectory. These higher degrees of freedom are one of the reasons why
a MPC generally outperforms the competition (e.g., artificial potential methods). On
the other hand, the greater level of flexibility makes it computationally heavier when
compared to more basic control methods. In this regard, the time-interval between
two successive re-optimisations is limited by the specifics of the on-board CPU. In-
deed, even though during a far-range approach maneuvers are performed only ev-
ery now and then, other tasks might require a computational priority and thus, limit
the time available to solve the optimisation problem.

For this reason, it is desirable to have a linear time-invariant or time-varying model
to approximate the dynamics of the spacecraft motion. This representation would
allow to formulate the optimisation problem in such way that Linear Programming
(LP) and Quadratic Programming (QP) algorithms can be used to find an optimal
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solution. Their major benefit is that, if the problem is feasible, a result is guaranteed
in polynomial time with no particular demands in terms of available computational
power. This property is very appealing because it would allow for the same guid-
ance scheme to be implemented over a broad class of satellites, from cubesats to
large spacecraft. Specifically, the time required by LP and QP algorithms directly
depends on the number of variables, i.e., on the discretisation step.

With this in mind, most works in LEO exploit the exact closed-form solution of CW’s
equations to adopt a wide time-interval between the points and limit the number of
independent variables. Once again, such closed-form solution does not exist in the
non-keplerian domain and the numerical integration of the relative dynamics would
not be compatible with a LP/QP formulation. Nevertheless, the analysis of section
2.5.2 proved that the discrete-form of the linearised relative non-keplerian dynamics
has a high degree of accuracy for classical rendezvous times. Therefore, it is here
exploited to predict the future evolution of the trajectory and lower the computa-
tional demands. In this regard, the results of this section will demonstrate that the
linearised model is very well suited for an efficient MPC implementation in the cis-
lunar domain.

As a last remark, CW’s equations might be viewed as an exact solution to a wrong
problem, because the effects of dynamical perturbations (e.g., air drag, SRP, higher
gravitational harmonics, Luni-solar perturbations, etc...) are neglected. Thus, it
could be reasonable to assume that the adoption of the linearised non-keplerian rel-
ative model for the cis-lunar domain is as good of an approximation as CW’s equa-
tions are for the LEO scenario.

The structure of the resulting optimisation problem is summarised as:

min
y

Jc(y) (5.1a)

subject to Aeqy = beq (5.1b)
Aiqy ≤ biq (5.1c)

lb ≤ y ≤ ub (5.1d)

where y is the vector of independent variables, containing the maneuvers directions
and, possibly, other associated quantities. Aeq and Aiq are the matrices that express
the equality and inequality constraints, respectively. These are used to bound the
relative motion to specific regions of space and specify the boundary conditions;
namely, the initial and final points of the trajectory. lb and ub are the lower and up-
per bounds for the solution space of y and allow to include inside the problem the
system engineering limitations (e.g., the maximum thrust available). Finally, Jc is
the objective to minimise and will include linear or quadratic contributions of the
observability metric and fuel consumption. The following sections illustrate how
to assemble each of the matrices and vectors that enter in the optimisation problem
(5.1). Notice that, depending on the expression for the fuel objective, the structure of
y (and of the other matrices) is subject to some slight changes.

To clarify the future notation, the dynamics is expressed according to (2.40) and the
state transition matrix Φ is computed with one of the approximations in Table 2.2.
For the input, it is here supposed that the convolution integral can be expressed as
the product between a matrix G and u; thus, this formulation is valid for both im-
pulsive and constant-thrust maneuvers. Additionally, since (2.40) does not make any
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assumption on the model used to propagate the target absolute dynamics, the guid-
ance is straightforwardly adapted to work in the CR3BP or with the Ephemerides.

According to the previous notation, given the vector of n discretised maneuvering
times tM = [t1, t2, ..., tn], the matrices for the trajectory evolution from tk−1 to tk are
written as:

xk = Φk−1xk−1 + Gk−1uk−1

rk = Λk−1xk−1 + Γk−1uk−1
(5.2)

where rk is the relative position vectors and xk the complete state. The matrices Λk
and Γk are easily computed as:

Λk =
[
I3 03

]
Φk Γk =

[
I3 03

]
Gk (5.3)

Assuming the time-interval is discretised in n points, the relative states can be col-
lected inside a vector X = [xT

1 xT
2 ... xT

n ]
T of size 6n × 1. At the same time, the

maneuvers are admissible at every point but the last one, otherwise an additional
relative state would be produced. Thus, in a similar fashion they are collected in-
side a global vector U = [uT

1 uT
2 ... uT

n−1]
T of size 3(n− 1)× 1. Generally speaking,

the usefulness of this formulation of the optimisation problem is that it holds for any
dynamic system that can be approximated with a discrete-time solution of this form.

5.2 Fuel Objective

The classical parameter used to quantify the performance of a trajectory in terms of
fuel cost is the ∆V. Through Tsiolkovsky’s formula, the resulting value can be di-
rectly used to estimate the fuel mass required for the transfer and check whether the
solution is feasible from an engineering standpoint. Unfortunately, the ∆V cannot
be expressed as a linear or quadratic combination of the optimisation variables as it
involves a square root by definition. Two workarounds are commonly used in MPC
implementations and are here reported.

5.2.1 Quadratic Control

The most common approach is to exploit a cost function JFq that is quadratic on
control effort, written in function of U as [26]:

JFq =
1
2

UTQU (5.4)

where Q is a 3(n− 1)× 3(n− 1) diagonal weighting matrix. By changing the ele-
ments along the diagonals one can either prioritise or penalise the maneuvers associ-
ated to certain epochs. In addition, when combined with the observability objective,
it is possible to produce trajectories that favour observability at the cost of additional
fuel consumption (or vice-versa) by equally scaling all the components of this ma-
trix. Nevertheless, in this work Q has always been set equal to the identity matrix
and additional weight factors are used to cope with the multi-objective optimisation.

The adoption of a quadratic fuel objective usually guarantees a smooth control ac-
tion and the resulting dynamics is more robust to disturbances and off-nominal con-
ditions [25]. To analyse its performance, JFq can be related to the ∆V of the solution
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by taking the products in (5.4) and assuming Q = I:

JFq =
1
2

n−1

∑
k=1

(∆Vk)
2 (5.5)

Physically, the equation shows that JFq is equal to the sum of the squares of the ∆V
required by each maneuver. As a consequence, since the ∆V is directly proportional
to the control action, the solutions coming from the minimisation of this cost func-
tion may not be optimal in terms of overall fuel consumption (see Figure 6.2 for a
visual proof). As a final remark, whenever this cost function is used, the optimisa-
tion vector y in (5.1) is equal to the global maneuver vector U for the fuel-optimal
trajectory; if observability is included, U is augmented with one unitary element (see
section 5.3 for further details).

5.2.2 Slack Variables

A more realistic representation of the fuel expenditure can be obtained by adopting
a so-called 1-norm objective; that is, the sum of the absolute values of all thrust
elements inside U:

JFs =
n−1

∑
k=1

3

∑
j=1

|Ukj| (5.6)

This class of cost function generally yields solutions with smaller ∆V when com-
pared to the previous quadratic objective. Additionally, the maneuver plan is charac-
terised by sparser control actions that are quite appealing when a continuous-thrust
system is not available. However, the downside of having few maneuvers is that, if
the control schedule is not executed properly, the trajectory may be subject to large
deviations from the original plan.

The objective in (5.6) is a piece-wise linear function and must be properly converted
before being implemented inside a LP/QP algorithm. Therefore, a new set of vari-
ables S = [sT

1 sT
2 ... sT

n−1]
T, called slack variables [13] is introduced inside the optimi-

sation vector Y. Then, by adding specific inequality constraints, each of the elements
inside S can be set equal to the absolute value of the corresponding element in U.
Defining Y = [U; S] the augmented optimisation vector, the cost function in (5.6) is
written as:

JFs = FTY (5.7)

where the vector F has the first 3(n− 1) elements equal to zero and the remaining set
to one. To ensure S equals the absolute value of U, each j-element must be subject to
the following two constraints:

Uj − Sj ≤ 0

−Uj − Sj ≤ 0
(5.8)

It is easy to prove that when these constraints are simultaneously satisfied, S = |U|.
The system (5.8) is generalised to every maneuver by expressing all the individual
constraints through a matrix as:

AsY ≤ bs (5.9)

where As and bs are written as:

As =

[
Im −Im
−Im −Im

]
bs = 02m (5.10)
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with m = 3(n− 1). Notice that, even though the number of variables required by
this cost function doubles that of the previous expression, JFs is linear in Y and can
be solved in a shorter time with LP algorithms.

5.3 Observability Objective

The previous chapter investigated two observability metrics, Jθ and Jo, which are
here recalled from (4.51) and (4.52):

Jθ = cos2(θ) =

[
(Λx1)

T(Λx1 + Γu)
‖Λx1‖‖Λx1 + Γu‖

]2

Jo = (Λx1)
T(Λx1 + Γu) (5.11)

The analyses in section 4.3.2 highlighted that the angle θ proved a very promising
criterion to quantify the observability. However, it stands clear that a dedicated cost
function (i.e., Jθ) cannot be expressed as a linear or quadratic combination of the
optimisation variables because they are found at both sides of the fraction. As a
consequence, such objective is not compliant with the structure of the optimisation
problem under study in (5.1). Nevertheless, since the results coming from this cost
function seemed very encouraging, a different formulation of the MPC problem is
later proposed in section 5.6 to account for the observability angle θ.

In order to keep the observability objective in a linear or quadratic form, the same
approach of [13] is here exploited. The observability is measured on the basis of Jo,
properly adapting the expression to request observability at each discretisation time.
Even though it was previously proved that the optimal maneuvers coming from the
minimisation of this cost function are completely uncapable of providing observ-
ability, it is interesting to investigate the behaviour of the objective function when
the geometry of the problem and the duration of the approach are constrained. In
particular, the optimal solutions that were computed favoured a drastic reduction of
the range rather than increasing the observability angle, resulting in a low-degree-
of-observability motion. However, in multi-objective optimisation a single global
solution that simultaneously minimises both objectives rarely exists, and whenever
the two functions have opposite needs, the resulting solution will be a compromise.
Therefore, it could be reasonable to assume that when the optimisation objective is a
combination between Jo and the fuel cost, the optimal solution will favour a slower
approach towards the target to limit the ∆V (for a fixed rendezvous time), fostering
instead higher observability angles.

In addition, section 4.3.1 proved that to guarantee observability the control actions
should maximise the angle between the actual trajectory and that associated with
natural evolution of the initial conditions, regardless of the number of maneuvers
performed in-between. Therefore, for a fixed rendezvous point xrdv and time, the
starting condition can be selected to yield a trajectory that naturally maximises θ
while the chaser gets closer to xrdv. When this constraints are applied to the optimi-
sation problem, it might be possible that Jo would also favour a higher observability
angle, similarly to Jθ .

Bearing this in mind, the next section will show how the quadratic observability ob-
jective proposed in [11] can be generalised to linear time-varying systems. On the
other hand, an alternative linear expression is proposed on the basis of the results in
4.3.1.
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5.3.1 Quadratic Cost

The observability cost in (4.52) can be expanded by summing the values of this func-
tion at each optimisation step. The original measure is here reported to aid the read-
ability of the next paragraph:

Jo(u) = r̄Tr = (Λx)T(Λx + Γu) (5.12)

For each discretisation step, the scalar product between the natural position vector
r̄j and the perturbed position rj should be added to Jo. Taking the sum for every
j-point:

Joq =
n−1

∑
j=2

r̄T
j rj =

n−2

∑
k=1

(Λkxk)
T(Λkxk + Γkuk) (5.13)

The subscript q is used to differentiate from the future observability metric. Notice
that the initial and final points are excluded because their position is constrained by
the problem. With respect to Figure 5.3, as a consequence of the discretisation, if
the extremes are fixed there are no observability differences between the two trajec-
tories on the left; thus, including them inside Jo would be pointless. On the other
side instead, the position of the intermediate points can be properly adjusted to min-
imise the observability objective. According to (5.2) the position of the j-th point is
obtained from uj−1 maneuver, thus only up to n− 2 input terms enter in Jo.

𝑅𝐼𝐶

𝑅𝐸𝐶
𝑅𝐸𝐶

𝑅𝐼𝐶

𝑅2

𝑅3

𝑅3

𝑅2

FIGURE 5.3: Observability objective discretisation. IC and EC denote
the initial and final points, respectively.

To avoid including also the global position vector X inside the optimisation vari-
ables, the objective (5.13) must be re-formulated as function of the global maneuver
vector U only. A few basic cases of Jo are here reported for different discretisation
points n to better highlight how the expression can be generalised.

For n = 3:

Jo3 = xT
1 ΛT

1 Λ1x1 + xT
1 ΛT

1 Γ1u1 (5.14)

For n = 4:

Jo4 = Jo3 + xT
1 ΦT

1 ΛT
2 Λ2Φ1x1 + 2xT

1 ΦT
1 ΛT

2 Λ2G1u1 + xT
1 ΦT

1 ΛT
2 Γ2u2 ... (5.15)

+ uT
1 GT

1 ΛT
2 Λ2G1u1 + uT

1 GT
1 ΛT

2 Γ2u2
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For n = 5:

Jo5 = Jo4 + xT
1 ΦT

1 ΦT
2 ΛT

3 Λ3Φ2Φ1x1 + 2xT
1 ΦT

1 ΦT
2 ΛT

3 Λ3Φ2G1u1 ... (5.16)

+ 2xT
1 ΦT

1 ΦT
2 ΛT

3 Λ3G2u2 + xT
1 ΦT

1 ΦT
2 ΛT

3 Γ3u3 ...

+ uT
1 GT

1 ΦT
2 ΛT

3 Λ3Φ2G1u1 + uT
2 GT

2 ΛT
3 Λ3G2u2 ...

+ 2uT
2 GT

2 ΛT
3 Λ3Φ2G1u1 + uT

1 GT
1 ΦT

2 ΛT
3 Γ3u3 + uT

2 GT
2 ΛT

3 Γ3u3

These expansions show that Jo can be re-written as a combination of a constant,
linear and quadratic terms in U as:

Joq =
1
2

UTHU + LTU + C (5.17)

where
L =

[
LT

1 LT
2 . . . LT

n−1
]T

H =


H11 H21 . . . H1(n−1)
H21 H22 . . . H2(n−1)
...

...
. . .

...
H(n−1)1 H(n−1)2 . . . H(n−1)(n−1)


(5.18)

and C is a constant. Defining m = 3(n− 1), the dimensions of L and H are m× 1
and m× m, respectively. The subscripts for Lj refer to the three components of the
vector associated with the maneuver uj: from the (3j− 2)-th to the 3j-th element of
L. The same notation is used with Hij, where the two indices refers to the row and
column elements. Each of these terms is expressed as:

C = xT
1

n−2

∑
k=1

AT
1kΛT

k ΛkA1k

 x1

Lj = xT
1 AT

1jΛ
T
j Γj + 2xT

1

 n−2

∑
k=j+1

AT
1kΛT

k ΛkA(j+1)kGj



Hij = ΓT
i ΛiA(j+1)iGj(1− δij) + 2

 n−2

∑
k=i+1

GT
i AT

(i+1)kΛT
k ΛkA(j+1)kGj

 for i ≥ j

(5.19)
where δij is the Kronecker delta and the matrix A is defined as:

Aij =
j−1

∏
k=i

Φk if j > i and Aij = I6 if j ≤ i (5.20)

Due to the properties of Φ (see section 2.32), this matrix equals the state transition
matrix from step i to j. However, when Φk is approximated with Table 2.2, the error
introduced by evaluating Aij with xti and ∆t = (tj − ti) is much higher than that
obtained by taking the product of each single STM. Finally, notice that the expression
for Hij is valid only for the lower-triangular portion of the matrix, the remaining
half is obtained by exploiting the symmetry of H. The following table summaries
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the values of these matrices for different discretisation points.

Matrices n ≤ 2 n = 3 n ≥ 4

C - From (5.19a) From (5.19a)
L - From (5.19b) From (5.19b)
H - - From (5.19c)

TABLE 5.1: Observability objective computation

Although it does not depend on U, the computation of C is necessary to keep the
observability objective positive and avoid unfeasible results when Joq is combined
with the fuel cost function. Therefore, whenever Joq is introduced inside the optimi-
sation problem, the decision vector y is augmented with one element constrained to
a unitary value. The observability cost function in (5.17) is then written in terms of
the optimisation vector Y as:

Joq =
1
2

YTHyY + LT
y Y (5.21)

with

Hy =

[
H 0 m×(p+1)
0 (p+1)×m 0 (p+1)×(p+1)

]
Ly =

[
LT 01xp C

]T (5.22)

where p = 0 if the quadratic fuel objective is used, otherwise p = m when the slack
variables are implemented. It is possible to prove that whenever the dynamic sys-
tem is time-invariant, the resulting expressions are equal to those of [11].

The evaluation of C, L and H from their definition in (5.19) is computationally ex-
pensive and denies any advantage coming from the LP/QP formulation. A clever
procedure is to compute them by simultaneously adding the contribution of uj to
all three matrices and store the values of Aj for the next iteration. In this way, it
also straightforward to adapt the algorithm to compute Joq only over a sub-set of
the whole trajectory, such as in a traditional MPC implementation with a fixed size
moving window.

As a last remark, in section 2.32 it was highlighted that the exact relative dynam-
ics could be linearised around the position of the chaser rather than the target, so
that only the knowledge of its absolute state would be required to navigate. Nev-
ertheless, it was also suggested that it would not be convenient from a GNC/MPC
perspective. The reasons can be well understood by looking at the definition of
the matrices in the observability objective. Whenever this linearisation approach
is adopted, Φ and G are computed using the chaser position at each discretisation
step. However, these states are dependent on the maneuvers so that a change in
the control action U would in turn imply a continuous change of H, L and C. This
coupling between the problem matrices and the optimisation variables makes the
solution impossible to find with LP/QP routines.

5.3.2 Linear Cost

The previous formulation demands observability at each j-th maneuver by maximis-
ing the positive linear independence of the natural evolution of xj and the perturbed
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trajectory. However, section 4.3.1 proved the observability should be enforced with
respect to the evolution of the initial condition x1, irrespective of the numbers of
maneuvers in-between. Thus, the objective inside (5.13) could be re-written as:

Jol =
n−2

∑
k=1

(Λkx̄k)
T(Λkxk + Γkuk) (5.23)

After some algebra, expressing everything in terms of the global vector U yields:

Jol = LTU + C (5.24)

where the expression of C is unchanged and L is slightly modified to:

Lj = xT
1 AT

1jΛ
T
j Γj + xT

1

 n−2

∑
k=j+1

AT
1kΛT

k ΛkA(j+1)kGj

 (5.25)

The immediate advantage is that (5.24) is linear in U, thus whenever it is combined
with the 1-norm fuel objective, the optimisation problem can be solved with a LP
algorithm, with great benefits in terms of computational time. Also in this case C

must be included in the objective to avoid possible errors in the multi-objective op-
timisation, leading to:

Jol = LT
y Y Ly =

[
LT 01xp C

]T (5.26)

5.4 Multi-Objective Optimisation

When both the fuel and observability objectives are considered, the guidance prob-
lem becomes a multi-objective optimisation (MOO), that is generally expressed in the
form of:

min
y

F(y) = [JF(y), Jo(y)] (5.27a)

subject to Aeqy = beq

Aiqy ≤ biq

lb ≤ y ≤ ub

Unfortunately, it is not possible to a find a single solution y∗ that simultaneously
minimises both objectives because they are in conflict with one another. Thus, when
dealing with MOO problems, the concept of Pareto Optimality is introduced: a solu-
tion y1 is said to be Pareto optimal if there is no other y that improves at least one
objective function without worsening the others. Pareto points are often referred to
as non-dominated solutions.

5.4.1 Survey of Alternatives

In literature, many approaches have been proposed to find the set of Pareto points;
most of these are based on parameters that can be used to find solutions in specific
regions of the Pareto curve (see [51] for comprehensive survey). A brief overview of
the most promising candidates to solve the problem under study is here reported.
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Weighted Sum

The most common approach to deal with MOO problems is to exploit a single global
objective, obtained from a linear combination of all the original objective functions:

Jw =
2

∑
i=1

wiJi(y) (5.28)

To guarantee that a minimum of Jw is Pareto optimal, it is sufficient to ensure all
the weights wi are positive. In addition, a necessary condition to obtain all the non-
dominant solutions with this method requires the Pareto curve to be convex. For the
case at hand, this criterion is always satisfied because all the previously proposed
objective functions are also convex. The major downside of the weighted-sum is
that even if the curve is convex, an even spread of the weights does not ensure an
even spread of the points on the Pareto curve [52]. Indeed, in many cases the points
are clumped in specific regions of the Pareto set and the designer may struggle at
finding the remaining part of the curve.

This issue is enhanced by the great difference between the order of magnitudes of
the two objective functions, which makes the selection of proper weights more chal-
lenging. For example, a scaling factor that guarantees a certain balance between the
two objectives in a given scenario, does not necessarily accomplish so in a different
environment. In this regard, some techniques are available to ease the selection of
the weights:

- Fuel optimal: as proposed by [13], the objectives are scaled by their values com-
puted with the fuel-optimal trajectory. Notice this is not a proper normali-
sation because the fuel objective will always be greater than one before the
weights wi are applied.

- Max norm: the objective Ji is normalised by its maximum possible value; that
is, the value of Ji when the other objective is minimised.

- Min-Max norm: before being introduced inside (5.28), each objective is nor-
malised as follows:

Ji =
J i −J i

min

J i
max −J i

min
(5.29)

All these normalisation procedures can be employed inside a LP/QP algorithm by
either augmenting the decision vector (similarly to the inclusion of C) or simply
scaling the objective functions.

Normal Constraint

The Normal Constraint (NC) is a technique that generates a set of evenly spaced so-
lutions on the Pareto curve. By tuning a specific parameter, the algorithm can find all
(and only) the Pareto solutions. A detailed explanation of the method can be found
in [53] and only a few key information are here given.

The NC scales both objective functions with the min-max norm and includes an
additional constraint in the original MOO problem (5.27a) to guarantee a uniform
spread of the Pareto points. However, the new constraint acts on the objective
functions. As a consequence, since one of the observability objectives is quadratic,
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the guidance problem would become a Quadratic Programming Quadratic Con-
straint (QPQC) problem. This class is classified as Nondeterministic Polynomial-time
hard problem (NP-hard) [54] and cannot be solved with the same algorithms of the
Quadratic Programming Linear Constraint case.

A workaround is only possible when the objective functions are symmetric and pos-
itive semi-definite. Under this assumption, (5.27a) can be recast as a Second-Order
Cone Programming (SOCP) optimisation problem. However, for the case at hand,
the SOCP formulation is unfeasible because the dimensions of the matrices and their
condition numbers make the problem numerically unstable. Therefore, a non-linear
optimiser must be used to seek a solution, expressing the additional constraint as a
non-linear function.

A similar version of this algorithm exists and is called Normal Boundary Intersec-
tion [55]. The logic behind it is quite similar to the aforementioned technique but it
was discarded because the NC resulted more reliable.

5.4.2 Trade-Off Criteria

When solving the original MOO problem, the designer is interested in finding a sin-
gle solution on the Pareto curve, rather than a set of points. The solution will then
be translated into a maneuver plan and properly executed. This reason is behind the
exclusion of heuristic algorithms (e.g., genetic algorithms or particle swarms) from
the list of potential candidates: they simultaneously provide all the Pareto points
but highly increase the computational demands. A suitable method would be one
that guarantees a solution in low time and that is robust with respect to the prob-
lem formulation. For example, when solving the optimisation problem multiple
times along the trajectory, the boundary conditions and the remaining duration of
the approach continuously change. In this regard, robustness is used to identify a
technique that, for a given value of the control parameter, always provides the same
level of compromise between the two objective functions. If that is not the case, the
guidance may not be able to ensure the same level of observability throughout the
whole operation.

Method Computational Cost Non-Dominance Robustness

FO - WS 1 LP + 1 QP Fuel branch optimal Good
Max - WS 1 LP + 2 QP Mediocre Good
MM - WS 1 LP + 2 QP Good Mediocre

NC 1 LP + 1 QP + 1 NLP Observability branch optimal Mediocre

TABLE 5.2: Comparison among different MOO techniques.

NLP indicates a non-linear solver is used. Max and MM are the Maximum and Min-Max normalisa-
tion, respectively. The table assumes the quadratic observability cost function is used.

A comparison among the possible alternatives is shown in Table 5.2. The two tech-
niques that are more appealing, in terms of Pareto optimality, are the Fuel-Optimal
Weighted Sum (FOWS) and the NC. However, neither of them is completely capable
of capturing the whole curve and only provide good results in the regions associ-
ated with the fuel and observability branch, respectively. This behaviour is probably
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connected with the large variations of the objectives magnitudes and a very fine tun-
ing of the control parameter might be needed to extend the results to the opposite
branch. Nevertheless, the NC method is much more demanding from a computa-
tional standpoint and, when applied to large-scale problems, the non-linear solver
struggles at finding a reliable solution. The remaining two weighted sum alterna-
tives did not provide good enough performance to justify the additional QP iteration
and were discarded.

A simple but practical consideration is used to discriminate between the remaining
two candidates. In first approximation, the shape of a convex Pareto curve can be
modelled as an equilateral hyperbola. Thus, when moving towards the observabil-
ity branch, small improvements in observability result in drastic increments of ∆V.
However, as the available fuel on-board is limited by the system design, it is always
desirable to work in proximity of the fuel optimal solution. Therefore, the FOWS
was deemed the most suitable technique to solve the MOO problem. The global
objective is formulated as:

Jw = (1− w)
JF

J F
FO

+ w
Jo

J o
FO

(5.30)

Finally, notice that throughout the rendezvous approach, observability should be
enhanced only to aid the convergence of the navigation filter. Indeed, once the er-
ror has been reduced below the desired accuracy threshold, demanding additional
observability would only result in an unneeded increment of the fuel consumption.
Similarly to [13], the norm of the position-related diagonal components of the covari-
ance matrix P is used as a metric of the current estimation uncertainty. Whenever
this value is below the accuracy threshold, only the fuel-optimal trajectory is com-
puted.

5.5 Problem Constraints

5.5.1 Boundary Conditions

To specify a desired final point for the trajectory, the final position is written in func-
tion of the global maneuver vector U and of the initial conditions:

xn = GU + A1nx1 (5.31)

where x1 is the initial point, A is computed with (5.20) and G is a 6 × m matrix
defined as:

G =
[
G1 G2 . . . Gn−1

]
(5.32)

and the general matrix in the j-th slot equals:

Gj = A(j+1)nGj (5.33)

The final position is enforced by adding an equality constraint to the problem and
augmenting the matrix G to account for additional variables in the optimisation vec-
tor Y:

ABCY = bBC (5.34)
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with
ABC =

[
G 06×(p+q)

]
bBC = x̂EC −A1nx1

(5.35)

where x̂EC is the desired final point, p depends on the fuel cost function (as reported
in section 5.3.1) and q is equal to zero or one for the fuel-optimal or observability-
enhanced trajectories, respectively. Notice that the structure of ABC makes the adop-
tion of a linearisation with respect to the chaser inconvenient also for the fuel-optimal
trajectories, because U affects the boundary conditions constraint as-well.

5.5.2 Thrust Magnitude

Thrust magnitude constraints are easily added through the lower and upper bound
vectors as:

lb = −um

[
11×m 01×p − 1

um

]T

ub = um

[
11×m 11×p

1
um

]T (5.36)

The final element is added only when observability is required and it allows to in-
clude C inside Jo. Due to the discrete formulation of the original problem (5.2), um
is expressed as a velocity and equals the maximum ∆V available for each maneuver.
These constraints can also be expressed in matrix form as Ay ≤ 0; nevertheless, the
results are the same. Finally, notice that (5.36) is applied to each direction indepen-
dently, since a constraint on the norm of each impulse would not be compliant with
a LP/QP routine.

5.5.3 Relative Motion

Another useful class of constraints that can be added to the problem allows to spec-
ify forbidden zones: areas that the chaser is prohibited from entering. A simple
technique that bounds the state of each point is formulated as:

Xl ≤ X ≤ Xu (5.37)

where Xl and Xu are vectors of dimension 6(n− 2). With the same algebraic manip-
ulations, the global position vector X is expressed as function of the global maneuver
vector U as:

X = Ex1 + FU (5.38)

where
E =

[
AT

12 AT
13 . . . AT

1(n−1)

]T

F =


G1 0 . . . 0
A23G1 G2 . . . 0
...

...
. . .

...
A2(n−1)G1 A3(n−1)G2 . . . Gn−2


(5.39)

The final form of the constraint with respect to the augmented optimisation vector
Y is:

AlY ≤ bl

AuY ≤ bu
(5.40)
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with
Al =

[
−F 06(n−2)×(p+q)

]
bl = Ex1 − Xl

Au =
[

F 06(n−2)×(p+q)
]

bu = Xu −Ex1
(5.41)

The flexibility of this constraint allows to introduce many variations to the original
unconstrained trajectory. For example, it can be used to identify the direction of a
potential approach corridor or limit the components of the relative velocities from a
given step until the final epoch.

When multiple types of constraints are simultaneously applied to the optimisation
problem, all the matrices and vectors are combined together as:

Aiq =
[
AT

l AT
u AT

s
]T

biq =
[
bT

l bT
u bT

s
]T (5.42)

5.6 Non-Linear Formulation

In order to include the observability angle as a metric inside the optimisation prob-
lem, a non-linear formulation is required. A wide number of option is available,
such as using (4.51) as an observability cost function, expanding Jθ to each single
discretisation step.

Nevertheless, the easiest and most effective approach is to augment (5.1) with an
additional non-linear constraint, demanding that after M steps the observability an-
gle should be greater or equal than a given threshold. The number of steps can be
used as an additional tuning parameter. For example, it can be selected to ensure
the error is reduced by the time the next re-optimisation occurs. Mathematically, the
constraint is expressed as:

c(U) = θTHR −
x̄T

MxM(U)

‖x̄M‖‖xM(U)‖ ≤ 0 (5.43)

where x̄M depends only on the initial conditions. By formulating this constraint as
an inequality, the solver will automatically find the solution with the lowest fuel
consumption among all the possible values of θ ≥ θTHR. The two vectors in the
previous expression are easily computed as:

x̄M = A1Mx1

xM = x̄M + GMU
(5.44)

The matrix GM is similar to (5.32) but is evaluated only up to the (M− 1)-th term:

GM =
[
G1 . . . GM−1 0 . . . 0

]
Gj = A(j+1)MGj

(5.45)

The evaluation of the non-linear constraint can be accelerated by pre-computing
these matrices. In addition, since the observability metric is added as a constraint,
the guidance problem becomes a single-objective optimisation and only one itera-
tion of the algorithm is required.

Therefore, the complete non-linear optimisation problem can be summarised as:
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min
y

JF(y) (5.46a)

subject to Aeqy = beq

Aiqy ≤ biq

lb ≤ y ≤ ub

c(y) ≤ 0

A common approach to solve this problem is to exploit a Sequential Quadratic Pro-
gramming (SQP) algorithm, which solves the (5.46) as a sequence of optimization
sub-problems. Moreover, the computational time can be further reduced by spec-
ifying the analytical expression for the gradient of the objective function ∇J with
respect to the optimisation variables:

∇JF =
[
01×m 11×m

]
for J = JFs

∇JF = UTQ for J = JFq

(5.47)

Notice that, even though with non-linear solvers the 1-norm of U can be computed
without the need of introducing slack variables, the SQP algorithm finds a solution
in less time when JF is a continuous and smooth function; that would not be the
case if the sum of the modulus of U was directly computed.
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Chapter 6

Simulation Results

This chapter reports the outcomes of the numerical testing campaign performed to
assess the applicability and robustness of the proposed SH - MPC approach. Ini-
tially, a series of off-line tests is conducted to validate the resulting fuel-optimal so-
lutions and investigate their sensitivity on the number of discretisation points and
total rendezvous time. Thereafter, the ability of the different observability metrics to
aid the converge of the navigation filter are tested in a closed-loop system on three
distinct approach scenarios. The sensitivity of the navigation solution on the target
position and on different degrees-of-approximation of the real dynamics is assessed.
Finally, a new operational scenario is presented, highlighting that angles-only mea-
surements can also be exploited to perform relative navigation between spacecrafts
flying on distant heterogeneous non-keplerian orbits.

Throughout the analysis, the target is always assumed to be moving on a periodic
non-keplerian orbit. A southern NRHO around the Earth-Moon L2 point has been
selected as a primary reference orbit to mimic a potential rendezvous scenario with
the LOP-G, where bearing-only navigation could be used either as a main naviga-
tion technique for small satellites or as a back-up solution for larger spacecraft. In
addition, by positioning the target on a three-dimensional orbit, both the in-plane
and out-of-plane relative motion can be excited, regardless of the chaser initial con-
ditions. Since previous researches have identified the NRHO apolune region as the
most favourable area to perform the complex rendezvous and docking operations
[22] [23] [24], most of the simulations position the chaser in the same neighborhood.
In this regard, it is here assumed that the chaser switches from an absolute to a rela-
tive navigation at a distance between 100 and 500 km from the target.

In typical LEO rendezvous and formation-flying applications, the relative dynamics
is expressed in the Local Vertical Local Horizon (LVLH) frame. Equivalent represen-
tations have been proposed for the non-keplerian dynamics [24] [56], but the trans-
formation between the inertial or synodic frame to the LVLH must be performed
at each time-step and requires knowledge of the target absolute dynamics. To ease
the computations and assembly of the optimisation problem matrices, in this work
the relative dynamics is always expressed and represented in the inertial frame.
Nevertheless, this assumption does not limit the applicability of the proposed SH
- MPC guidance. Indeed, once the target dynamics is known, any boundary condi-
tion and/or constraint over the relative LVLH state is easily converted to its synodic
counterpart through a proper transformation matrix.

To validate the results and comply with the typical accuracy required for GNC func-
tions, a high-fidelity non-keplerian simulator is exploited to propagate the relative
dynamics in the Earth-Moon domain; it is based on the EpR4BP and includes the
SRP effects on both chaser and target, accordingly to their physical properties. As
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a last remark, to simplify the computation of the input-matrix G, the chaser is only
allowed to perform impulsive maneuvers.

6.1 Offline Guidance Validation

Before testing the performance of the complete architecture, it is important to asses
whether or not the guidance is capable of synthesising a suitable maneuver pro-
file. To decouple the results from the observability issues of a bearing-only solution,
the navigation filter is temporarily excluded from the simulations and the guidance
uses the exact relative position to compute the necessary control actions. These tests
will establish the ability of the SH - MPC guidance to yield competitive fuel-optimal
solutions (in terms of ∆V) with respect to other approaches for the generation of
rendezvous trajectories. In addition, as these results hold irrespective of the naviga-
tion technique, they will serve as a potential baseline to compare the performance of
future MPC formulations for the non-keplerian dynamics.

6.1.1 Trajectory Discretisation

The time required to solve the optimisation problem strictly depends on the number
of variables and in turn, on the discretisation step. The major advantage coming
from the LP/QP formulation of the optimisation problem is the low computational
effort required to find a solution. However, even though there are many algorithms
capable of solving the problem, not all have the same degree of efficiency. For exam-
ple, considering the linear case, it is well known that the simplex method struggles
to deal with large-scale problems as the solving time might become exponential in
the number of unknowns and on the amount of data to be stored. Historically, this
was the reason that pushed for the development of a much more efficient class of
algorithms, called interior-point methods, which ensure the number of iterations is
polynomially bounded by the dimensions of the problem. Therefore, in this work
interior-point algorithms have been adopted to solve both the linear and quadratic
versions of the optimisation problem.

With this in mind, the computational time can be further reduced by adopting larger
discretisation steps, i.e., increasing the time between each maneuver. Indeed, al-
though an exact solution for the discrete matrices in (5.2) is not available, the analy-
sis in section 2.5.2 highlighted that the approximation errors are below 1 km as long
as the propagation time does not exceed 24 hours In addition, if one considers a
total rendezvous duration of 10 hours, it immediately stands clear that any reason-
able discretisation of this interval will have a minimal impact on the accuracy of the
solution. A comparison in terms of solving time between the LP and QP formula-
tions is shown in Figure 6.1a and, even though the LP case has double the amount
of unknowns (because of the slack variables), the linear algorithm is almost always
faster than the quadratic alternative. Nevertheless, both routines yield a solution in
a fraction of a second, regardless of the number of points; making the approach very
appealing for multiple on-board optimisations.

However, a limitation on the maximum number of points comes from the time re-
quired to assemble the matrices for the observability cost functions. In particular,
Figure 6.1b suggests that the time to build the matrix H (the red line) is much greater
than the time required to solve the problem and it even exceeds the minute when a
fine time-discretisation is employed. In addition, please notice that despite the high
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values, these results have been obtained with an optimised assembly procedure, as
the straightforward evaluation of these matrices from their definition in (5.19) would
require 10 times more computational resources.

(a) Solving Time. (b) Assembly Time.

FIGURE 6.1: The left plot shows the comparison in terms of solving
times between the two fuel cost functions. The right plot reports the
times required to assemble the matrices of the observability metrics.

The results are valid for an Intel i7-6700 and a RAM of 16 GB.

On the other hand, the assembly of the vector L for the linear cost function (the
blue line) is much faster than the quadratic version, even though the CPU time is
still higher than that required by either of the solving algorithms. Thus, whenever
the guidance must account for the quadratic observability objective, it is desirable to
work with a low number of discretisation points, otherwise the advantages coming
from the the LP/QP formulations are denied by the lengthy times required to build
the observability matrices. Another key actor to consider when selecting the time-
step is the sensitivity of the solution (in terms ∆V) to the number of discretisation
points. In this regard, Figure 6.2 presents the results for the two fuel cost functions.

(a) Slack Variables. (b) Quadratic Control.

FIGURE 6.2: Sensitivity of the fuel-optimal solution to the discretisa-
tion step and time-of-flight for the linear and quadratic formulations.

The color-bar is shared among the two plots. The chaser is on an unstable manifold of the NRHO
apolune at a distance of 100 km.



80 Chapter 6. Simulation Results

It is evident that the fuel consumption holds irrespective of the discretisation step,
with an imperceptible improvement at the lowest ∆t. Instead, the costs of fuel-
optimal trajectories are driven only by the duration of the approach, which is here
treated as a fixed design variable. For a visual comparison with Figure 6.1, the num-
ber of discretisation points were evaluated with a Time-of-Flight (TOF) of 10 hours.
With these results in mind, it is reasonable to assume that a large discretisation step
(e.g., about 30 points) can be adopted without the need of worrying for approxima-
tion errors nor increments of ∆V.

6.1.2 Fuel-Optimal Solutions

An interesting comparison between the two fuel cost functions is immediately avail-
able from Figure 6.2. For the same values of TOF and discretisation step, the quadratic
control solution is always more expensive than that coming from the linear objective.
The difference is around 2 m/s for the highest rendezvous duration and increases
to approximately 5 m/s when the TOF drops to 6 hours. This behaviour is due to
the physical meanings of the two fuel objectives: the linear cost function is a more
realistic expression for the total ∆V expenditure, as highlighted in section 5.2. In-
deed, it can be proved that the trajectory with the minimum ∆V does not appear
optimal from a quadratic standpoint. Nevertheless, the trend in the plot suggests
that the difference between the two can be attenuated by increasing the rendezvous
duration. On the other hand, the quadratic solution appears much more stable to
the variations of the discretisation step, whereas the slack variables display some
irregularities.

To verify the optimality of the proposed approach, the trajectories provided by the
MPC are compared with a Direct Transcription (DT) of the rendezvous problem.
This method reduces the optimal control problem into a Non-Linear Programming
(NLP) formulation through a polynomial parametrisation of the control action (see
[23][24] for further details). The objective function is defined in terms of a minimum
energy control (i.e., quadratic control) over the the interval [0, Trdv]. To guarantee
an optimal result, the NLP algorithm integrates the exact EpR4BP perturbed dy-
namics; thus, the maneuver plan is computed a-priori and does not require any re-
optimisations. Instead, the SH-MPC guidance is based on a CR3BP approximation
and is updated once every hour, with a discretisation step of 10 minutes.

(a) Relative motion in the x-y plane. (b) Cumulative ∆V.

FIGURE 6.3: Comparison between the SH - MPC and the direct tran-
scription solutions. The yellow line is superimposed to the red one.
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In Figure 6.3 it is straightforward to notice that the DT solution is identical to the
quadratic fuel formulation of the guidance. Although the result may seem obvi-
ous, the control action employed inside the DT algorithm is continuous, whereas
the LP/QP is based on impulsive maneuvers. As highlighted in section 2.5.2, the
convolution integral for a generic continuous thrust u(t) cannot be reduced to a
product between an input matrix G and a vector u, making that kind of maneuvers
impossible to model in this framework. Bearing this in mind, the important conclu-
sion coming from Figure 6.3 is that by solving for the quadratic fuel objective JFq ,
impulsive maneuvers can also be used to approximate a low-thrust continuous con-
trol.

Table 6.1 summarises the performance of the two SH-MPC fuel objectives, together
with the maximum and minimum timings required to a find a solution. By re-
optimising the maneuver plan, both formulations grant a very high accuracy in the
final position, with the errors increasing to about 15 meters when the optimisation
is performed only at the beginning of the approach. Notice that with a low number
of discretisation points, the LP requires a slightly higher time to find a solution than
the QP problem, accordingly to Figure 6.1a.

Method Tmin [ms] Tmax [ms] ∆V [m/s] +∆V [m/s] Accuracy [m]

LP 3.46 16.73 7.284 0.093 1.42
QP 1.96 8.25 10.561 0.004 1.83

TABLE 6.1: SH-MPC fuel-optimal solutions performance.

+∆V is the difference between the fuel expended and that required at the time of the first optimisa-
tion. An exact knowledge of the target state at each optimisation time was assumed.

The cumulative ∆V evolution in Figure 6.3b shows that the 1-norm objective (i.e., the
slack variables formulation) is characterised by a bang-bang type of control at the ini-
tial and final points, exploiting the natural dynamics in-between the impulses. On
the other hand, the quadratic control action progressively evolves from a large accel-
eration at the beginning to a final breaking phase, with the highest relative velocity
(about 5 m/s) reached half-way through the approach. This slowly-approaching be-
haviour makes the QP control more robust to possible thrusters malfunctions with
respect to the 1-norm objective. Indeed, if the final maneuver was not executed, the
greater relative velocity of the LP case would make the chaser drift-away, largely
increasing the ∆V required for a future trajectory re-adjustment.

Figure 6.3a shows the typical form of a non-Keplerian rendezvous trajectory: the
chaser moves on an almost straight line towards the desired final point. The rounded
shapes of the Keplerian relative dynamics are missing because the rendezvous time
is much smaller than the orbital period of a cislunar orbit.

As a last remark, these results confirm the capability of the proposed SH - MPC
guidance to yield fuel-optimal trajectories. The approximation due to the CR3BP
linearised relative model only causes a final position error of 1 meter, which is negli-
gible when compared to the navigation errors that will be introduced by the bearing-
only measurements.



82 Chapter 6. Simulation Results

6.2 On-board Guidance for Rendezvous Operations

To investigate the ability of the proposed architecture to perform a quasi autonomous
bearing-only rendezvous with the LOP-G, the Shrinking Horizon - MPC guidance
is tested in a closed-loop system along with a navigation filter. Two Holding Points
(HP) are used to identify the desired initial and final relative states. In a practical
rendezvous approach, these points are used as checkpoints: they allow to account
for operational constraints by enforcing few desired relative positions throughout
the approach. Three different rendezvous scenarios are used to compare the vari-
ous observability metrics presented in Chapter 5, varying the initial holding point
around the NRHO apolune. The results of each simulation are analysed from an
operational standpoint to establish which formulation of the observability objective
provides the highest degree of observability while satisfying plausible mission and
navigation requirements.

6.2.1 Architecture Overview

A scheme of the simulation architecture is presented in Figure 6.4. In this frame-
work, the guidance uses the navigation estimate for the optimisation and updates
the control plan accordingly to the logic shown in figure 5.2. A high-fidelity prop-
agator is used to simulate the chaser and target absolute dynamics, accounting for
the perturbing effects of the sun gravitational force and the SRP. In this regard, the
target is assumed to be a 400-tons spacecraft with an exposure area of 12.000 m2,
mimicking an ISS-class object. On the other hand, the chaser represents a hypotheti-
cal automated transfer vehicle, with a mass of 20 tons and total surface of 125 m2. A
summary of the remaining simulation parameters is reported in Table 6.2.

Target Real 
Dynamics

Bearing-Only
Measurements

Navigation 
Filter

MPC 
Guidance

Ideal 
Thrusters

Chaser Real 
Dynamics

𝒙

𝒚

ෝ𝒙𝒖

𝒂

𝒙𝒕

FIGURE 6.4: Simulation architecture scheme.

Notice that the propagation of the relative dynamics inside the navigation filter re-
quires knowledge of the target absolute state. For this reason, it is here supposed
that at each re-optimisation epoch, an uncertain estimate of the absolute state of the
target is transmitted to the chaser. Then, the information is propagated on-board
until the next optimisation. In practice, the communication link could transmit the
absolute states of either spacecraft, as the other is immediately available from the
relative state. Unfortunately, this need for the absolute navigation makes impossible
to completely automatise this guidance scheme.

The control problem is not considered in this work, thus thrusters are modelled as
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ideal actuators, neglecting transient states and any kind of pointing errors. An EKF
is chosen as navigation filter and is aided by the DMC to tune the state process
covariance and approximate unmodelled accelerations. The STM for the guidance
and navigation functions is computed with a 2nd- order approximation based on the
CR3BP model. In addition, the target position with respect to the primaries is ex-
pressed in the inertial frame because it allows for a more reliable estimation than
that of a rotating perspective, where the presence of cross-coupling perturbing terms
is harder to model. Concerning the desired accuracy threshold, a conservative value
of 0.5% of the range has been chosen instead of the classical 1-percent.

Parameter Value Confidence Interval

Time Settings

Re-optimisation time step 1 hour -
Discretisation time step 600 s -
Filter update frequency 1 Hz -

Filter Settings at 100 km

Position uncertainty
[
6 9 6

]
km 1σ

Velocity uncertainty
[
0.3 0.3 0.3

]
m/s 1σ

Filter Settings at 250 km

Position uncertainty
[
15 15 15

]
km 1σ

Velocity uncertainty
[
1 1 1

]
m/s 1σ

Noise Settings

Target position noise
[
300 300 300

]
m 1σ

Target velocity noise
[
0.1 0.1 0.1

]
m/s 1σ

Measurement noise 1 mrad/axis 1σ

TABLE 6.2: Simulation settings.

The weights for the multi-objective optimisation were selected on the results of a
dedicated tuning campaign and represent a trade-off between fuel-consumption and
error reduction. As a last remark, to statistically characterise the navigation perfor-
mance, 300 Monte Carlo simulations are run for each scenario, varying the filter
initialisation and the noise effects.

6.2.2 Case A: Center Manifold

In this scenario, the initial holding point (HP1) is placed on the NRHO center man-
ifold at a relative distance of 250 km. The natural dynamics of this location is char-
acterised by a periodic hovering motion around the target. Therefore, it can be ex-
ploited to ensure the chaser does not drift away from the target if the control func-
tions were to malfunction at the beginning of the rendezvous. On the other hand, to
guarantee a strong passive safety, the second holding point (HP2) is set on the unsta-
ble manifold at the boundary of a 1 km Keep-Out-Sphere (KOS). In a real operation,
this location ensures a safe drift away from the target in case of failures [23]. The
total rendezvous duration is set to 12 hours.
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The results of the simulation are visually represented in Figure 6.5 and summarised
in Table 6.3. From the top-left figure, it immediately stands out that the non-linear
formulation provides a sudden reduction of the relative error. By directly acting on
the observability angle, the maneuver performed near the 1-hour mark greatly en-
hances the observability of the system, causing an improvement of about 3000 m
in the navigation estimate, while remaining at a relatively higher distance from the
target with respect to the other techniques. In this regard, the time-evolution of the
range confirms the typical behaviour of an observability metric that includes infor-
mation on the range: both LP and QP techniques favor a fast reduction of the relative
distance at the cost of expensive initial impulses. However, this type of trajectories
does not appear convenient from an operational viewpoint as the accuracy threshold
is violated for most of the approach.

(a) Relative navigation error.

(c) Relative distance.

(b) Absolute navigation error.

(d) Fuel consumption.

FIGURE 6.5: Performance of the bearing-only guidance with the ini-
tial point on a center manifold

QP is the quadratic observability objective Joq , LP the linear observability objective Jol and NL is the
non-linear formulation.

In particular, Table 6.3 shows that for the formulations based on Jo, the distance at
which the filter reaches the desired accuracy is extremely close to the target. Thus, it
is very likely that these kind of trajectories would not comply with plausible safety
and navigation requirements for a rendezvous with the LOP-G. On the other hand,
the non-linear approach outclasses both as it guarantees that from approximately
125 km, the error never exceeds the 0.5% of the relative distance. Nevertheless, all
three final navigation errors are smaller than 1 m because the second holding point
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was chosen in close-proximity of the station. Indeed, at such a small distance even
a low observability angle can provide great reductions of the filter uncertainty, ac-
cording to (4.49). At the same time, the final position dispersions are slightly higher
because at the time of the last re-optimisation (i.e., after 11 hours), the guidance was
affected by an inherent position error of approximately 20 m.

Method ↓ ∆V [m/s] ↓ ∆VR [-] ↓Em [km] ↑Rcon [km] ↓NA [m] ↓PA [m]

LP 21.29 1.79 1.37 10.73 0.73 21.02
QP 25.06 2.12 1.22 29.16 0.84 17.76
NL 21.58 1.82 1.04 124.42 0.91 23.20

TABLE 6.3: Center manifold navigation performance.

∆VR is the ratio between the ∆V of the observability-ehnanced and fuel-optimal trajectories. Em is
the average value of the Root Mean Square Error (RMSE) of the estimated position and Rcon is the
relative distance at which the filter reaches the desired accuracy. NA and PA are the final navigation
and position mean errors (1σ), respectively. The arrow indicates whether the parameter should be
minimised (↓) or maximised (↑).

The ∆V profiles in Figure 6.5d display a peculiar behaviour. Indeed, even though
the fuel-consumption was included using the 1-norm objective (i.e., with the slack
variables), the resulting acceleration profile is characteristic of low-thrust engines,
with small and almost continuous maneuvers. The only exceptions occur at the be-
ginning, when the guidance must account for the observability metric. This result
suggests that if a real model of the actuators was included in the simulator, the ∆V of
a high-thrust engine would likely be higher than the ones here reported. However,
another possible explanation is that each individual run in the Monte Carlo simula-
tion performs a single impulse at a different time from the others. Thus, when taking
the mean, the average result is a slowly but constant increment. Overall, despite the
LP method requires the lowest ∆V, the non-linear guidance provides much better
navigation estimates at the only cost of an extra 0.29 m/s.

6.2.3 Case B: Unstable Manifold

In this scenario, the first holding point is settled on an unstable manifold and the
duration of the rendezvous is reduced to 8 hours. Instead, the arrival point remains
unchanged.

Interestingly, for the first 2 hours the evolution of the absolute navigation error is
almost the same for the three trajectories. Nevertheless, the non-linear approach has
a slightly lower relative error because it remains farther from the target. In spite of
the previous results, Table 6.4 shows that the linear technique is capable of reaching
the accuracy threshold at a similar distance of the NL and also has the lowest aver-
age Root Mean Square Error (RMSE). However, in the last two hours it struggles at
reducing the absolute range uncertainty and thus, it violates once again the relative
threshold. On the other hand, the quadratic metric has the worst performance: it has
the highest ∆V because it moves even closer to the target (with respect to the linear
metric) but does not manage to simultaneously reduce as much the navigation error,
leading to a peak percentage-error above the 1%.
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This scenario confirms once again that in the non-keplerian domain, the observabil-
ity metrics based on Jo always favour a reduction of the relative range rather than an
increment of the angle. Therefore, if an operational requirement for a bearing-only
approach was to require the minimisation of the deviations from the original fuel-
optimal trajectory, the guidance should be based upon the concept of observability
angle.

(a) Relative navigation error.

(c) Relative distance.

(b) Absolute navigation error.

(d) Fuel consumption.

FIGURE 6.6: Performance of the bearing-only guidance with the ini-
tial point on an unstable manifold

Nevertheless, it is important to remark that all three strategies succeed in bringing
the chaser to the desired hovering point with minimal position dispersions and nav-
igation errors, similarly to the previous scenario.

Method ↓ ∆V [m/s] ↓ ∆VR [-] ↓Em [km] ↑Rcon [km] ↓NA [m] ↓PA [m]

LP 14.01 1.79 0.53 24.12 2.62 20.37
QP 11.49 1.60 0.54 1.22 1.31 41.36
NL 11.60 1.62 0.62 26.29 1.96 25.65

TABLE 6.4: Unstable manifold navigation performance.

∆VR is the ratio between the ∆V of the observability-ehnanced and fuel-optimal trajectories. Em is
the average value of the Root Mean Square Error (RMSE) of the estimated position and Rcon is the
relative distance at which the filter reaches the desired accuracy. NA and PA are the final navigation
and position mean errors (1σ), respectively. The arrow indicates whether the parameter should be
minimised (↓) or maximised (↑).
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6.2.4 Case C: Periodic Mode

In this last test, the natural dynamics of the initial point is associated to a periodic
mode of the NRHO. In particular, since the two spacecraft are on the same abso-
lute orbit, the unperturbed motion of HP1 simulates an along-track formation, with
the chaser shifted backwards of an arbitrary phase angle. Instead, the final point is
placed on the very same unstable manifold of the previous scenarios.

Figure 6.7 presents remarkable differences with respect to the performance of the
previous tests. Indeed, the initial maneuvers computed with the LP and QP ob-
jectives are completely uncapable of providing an improvement in the navigation
estimate for almost half of the rendezvous duration. A significant drop of the error
only happens when the chaser is extremely close to the target, few hundreds of me-
ters away from the boundary of the KOS. As a result, the relative error at 30 km is
almost ten times greater than the allowed maximum. Additional insights on the rea-
sons behind the inability to reduce the error are provided by Figure 6.8. The original
periodic trajectory (the violet line) is characterised by an initial motion perpendicu-
lar to the x-y plane; at the same time, both LP and QP formulations draw an almost
straight line along the y-axis and thus, have minimal differences in terms of azimuth
measurements with respect to the nominal trajectory. As a consequence, the filter is
unable to reduce the uncertainty along the y-axis. The navigation estimate begins to
improve only after 3 hours, when the natural motion bends towards the right-side,
effectively differentiating the azimuths.

(a) Relative navigation error.

(c) Relative distance.

(b) Absolute navigation error.

(d) Fuel consumption.

FIGURE 6.7: Performance of the bearing-only guidance with the ini-
tial point on a quasi-periodic mode
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(a) Azimuth differences.

(c) Trajectory projection in the x-y plane.

(b) Elevation differences.

(d) Trajectory projection in the y-z plane.

FIGURE 6.8: Approaching trajectories characteristics

In the bottom plots, NOM stands for the nominal trajectory and the tiny dots represent the relative
position of the chaser after 3 hours. The red and blue trajectories are superimposed.

On the other side, the NL guidance performs a maneuver at the 1 hour-mark that
forces the chaser to move on the opposite side of the y-axis, causing a sudden reduc-
tion of more than 1000 m of the navigation error. However, it is interesting to notice
that different readings in the elevation angle do not affect the quality of the estima-
tion. In this regard, although the observability angles of the LP and QP trajectories
are higher than that of the yellow line, they perform worse because the navigation
filter requires differences in the in-plane motion (i.e., the azimuth angle) to reduce
the uncertainty along the y-axis. Therefore, these results suggest that there exist
some peculiar combinations of nominal and perturbed trajectories, such that a high
observability angle does not necessarily guarantee a high degree of observability.

Concerning the final errors, in spite of having the best performance throughout the
rendezvous, the non-linear approach has the worst position dispersion. This is again
associated with the absolute navigation error at the time of the last re-optimisation.
Since the LP/QP trajectories remain in close-proximity of the target for half of the
rendezvous duration, they have plenty of time to reduce their absolute errors. Thus,
when the final planning is performed, the navigation uncertainty is minimal. With
this in mind, these three test scenario highlight that an observability metric based on
Jo is always able to bring the chaser to the desired rendezvous point, with disper-
sions of only few metres. However, if standard safety and operational requirements
(e.g., a threshold on the maximum percentage navigation error) are imposed, the
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resulting trajectories will most likely be deemed unfeasible. On the other hand, the
addition of a non-linear constraint to enforce the desired observability angle has
proven successful in all three cases. Indeed, it consistently allowed the filter to reach
convergence at reasonable distances from the target and at the same time, it had very
good accomplishments in the remaining performance metrics. As a last remark, the
final dispersion can be reduced by introducing additional trajectory re-optimisations
towards the ending phase of the rendezvous.

Method ↓ ∆V [m/s] ↓ ∆VR [-] ↓Em [km] ↑Rcon [km] ↓NA [m] ↓PA [m]

LP 12.27 1.71 1.00 1.12 3.86 6.39
QP 12.64 1.77 1.01 1.03 2.21 6.81
NL 15.51 2.16 0.67 34.67 0.67 25.78

TABLE 6.5: Periodic mode navigation performance.

∆VR is the ratio between the ∆V of the observability-ehnanced and fuel-optimal trajectories. Em is
the average value of the Root Mean Square Error (RMSE) of the estimated position and Rcon is the
relative distance at which the filter reaches the desired accuracy. NA and PA are the final navigation
and position mean errors (1σ), respectively. The arrow indicates whether the parameter should be
minimised (↓) or maximised (↑).

6.2.5 Observability Weights

The previous results were obtained with a fixed observability weight w for the multi-
objective optimisation. To display what happens to the quadratic observability met-
ric (QP) Joq for different choices of w, the navigation performance for 50 different
weights have been collected in Figure 6.9 and 6.10. Notice that each point represents
the average performance of 200 Monte Carlo simulations of a rendezvous with simi-
lar settings to Case A. In addition, since increasing the observability weight favours
a higher fuel consumption (see Figure 6.10a), the ∆V was used in place of w to aid
the readability of the plots.

(a) Absolute navigation error. (b) Average relative error.

FIGURE 6.9: Navigation errors for increasing observability weights
(i.e., for greater ∆Vs) for the quadratic observability objective.

Figure 6.9 shows a clear trade-off between the absolute navigation errors and the
trajectory cost. In both plots, the points distributions resemble a standard convex
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Pareto curve, where small increments of ∆V lead to remarkable improvements of
the navigation errors. The exact Pareto Front for the two objectives is visible in 6.10a
and confirms that the weighted-sum approach is successful in finding the Pareto op-
timal solutions. However, despite increasing the observability objective effectively
reduces the absolute navigation error, Figure 6.10b shows that the convergence dis-
tance does not have a clear nor monotonic trend with the ∆V.

(a) Pareto front. (b) Convergence distance.

FIGURE 6.10: Performance for increasing observability weights (i.e.,
for greater ∆Vs) for the quadratic observability objective.

Physically, increasing the observability weight generates larger initial maneuvers to
move the chaser towards the final point as fast as possible. Thus, similarly to Fig-
ure 6.5, the 1-norm of the absolute error is minimised at the highest ∆V because the
chaser spends most of his time in close-proximity of the target. Indeed, recall from
(4.49) that in a bearing-only application, the absolute estimation error is proportional
to the relative distance. This behaviour is likely connected to the shrinking horizon
formulation. In particular, by defining Joq as the products between all the discreti-
sation points, the optimisation algorithm finds easier to minimise the objective by
reducing as much as possible the norm of the final relative position vectors; leading
to a hovering motion around the target for the remaining time. Moreover, although
the linear observability objective (LP) enforces the positive linear independence with
the original natural motion, the resulting trajectories have the same behaviour of the
quadratic metric, since Jol embeds the range information as well. Therefore, it could
be interesting to investigate the performance of these observability metrics inside a
standard MPC guidance; one for which the rendezvous duration is not fixed a-priori
and the optimisation is only solved over a small finite horizon.

6.3 Sensitivity Analysis

To prove the robustness of the proposed SH-MPC architecture, the navigation per-
formance are tested over a wide range of orbital families and filter settings. Besides
the importance in the field of bearing-only techniques, this analysis will also provide
useful insights to aid the implementation of any type of navigation technique in the
cis-lunar non-keplerian environment.
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6.3.1 Filter settings

All the previous simulations employed an Extended Kalman Filter with a DMC to
approximate the unmodelled dynamics. Therefore, it is of interest to present the
performances of the architecture when different techniques are used. In particu-
lar, in Section 3.3 it was mentioned that a DMC allowed for an easier tuning of the
state covariance matrix and at the same time, it properly took into account the time-
correlations of the unmodelled dynamics. In this regard, a comparison between the
SNC and DMC is shown in Figure 6.11a. The plots present the navigation perfor-
mance of a rendezvous approach with the same boundary conditions of Case B,
however the filter update frequency is decreased to 0.5 Hz. The result suggests that
the differences between the two techniques are more conspicuous when the chaser
is at an intermediate distance, approximately around 40 km. Then, as the range is
decreased, the performance of the SNC improve until the final stages of the ren-
dezvous, where the two lines are almost identical. Nevertheless, although the two
methods have similar trends, it is important to remark that the tuning of the DMC
has proven to be a much easier task because it has good performance over a broader
range of the noise parameters.

(a) SNC vs DMC.

(c) EKF vs UKF - 2x Initial Errors.

(b) EKF vs UKF - 1x Initial Errors.

(d) EKF vs UKF - 3x Initial Errors.

FIGURE 6.11: Filter settings comparisons.

When applied to bearing-only navigation, one of the major limitations of the EKF in
cartesian coordinates comes from the linearisation of the measurements equations,
which instead are strongly non-linear. As a consequence, further inaccuracies are
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introduced in the estimation problem. Therefore, it is reasonable to expect an im-
provement in the navigation performance when an UKF is adopted. This statement
is confirmed by the Figures 6.11b, 6.11c and 6.11d, which present the effects that
different initialisation errors have on the navigation quality. The 1x initial errors
correspond to a position and velocity uncertainty on each axis of 6 km and 1 m/s,
respectively. The error trends show that for small initial uncertainties, the perfor-
mance of the two filters are quite similar. Yet, when the initial errors increase the
EKF is not able to reach convergence because it operates far from its linearisation
point. On the other hand the UKF proves more robust, taking an average of 1.18 ms
for each iteration with respect to the 0.21 ms of the EKF (with an Intel i7-6700 and
a RAM of 16 GB). Nevertheless, for very large initial errors the accuracy threshold
is violated for both filters until the chaser arrives in close-proximity of the target.
With this in mind, the authors of [18] showed that more accurate results can be ob-
tained by decoupling the observable and unobservable states in the navigation filter.
However, to accomplish such task, they implemented a spherical formulation of the
CW’s equations of motions, one that is currently not available for the non-keplerian
dynamics. Moreover, the spherical coordinates made the state equations become
non-linear functions of the estimation variables; thus, they would not be compliant
with the MPC formulation under study.

6.3.2 Target Propagation Models

To investigate the robustness of this architecture in different orbital families, a few
more considerations regarding the knowledge of the target absolute state are worth
the attention. By this point, it should be well known that this information is neces-
sary because the state transition matrix of the linearised relative dynamics depends
on the motion of the target. In turn, the STM is requested by the guidance and navi-
gation functions at each maneuver and update time, respectively. Previously, it was
assumed that the information was passed at each re-optimisation epoch because an
active communication link throughout the whole rendezvous might not always be
available. In this regard, the chaser could directly interface with the target space-
craft, or be supported by a ground station. The latter option is necessary when the
target is uncooperative; for example, when bearing-only is used to improve the abso-
lute navigation of a single spacecraft (see section 6.4). On the other hand, for safety
reasons it could be reasonable to assume that in a rendezvous operation, the two
spacecraft can directly exchange data among themselves. Additionally, the same
considerations hold when the state vector of the chaser is transmitted, as the abso-
lute state of the target is easily obtained through the estimated relative variables.
However, whenever that is the case, the target state will be affected by the same
level of uncertainty of the navigation estimate and it will be harder to get accurate
results. That said, once the absolute orbital information is at hand, different options
are available and are summarised in Figure 6.12.

Since the original linear system is time-varying and the shrinking-horizon MPC
computes the trajectory from the initial time until the final one, the state information
at a given epoch must be propagated on-board over the remaining sample times.
Similarly to the relative motion, different levels of approximations can be exploited
to compute the absolute dynamics of the target, from a simple CR3BP to a more so-
phisticated model based on the ephemerides. To maximise the autonomy level of the
architecture, it is here assumed that the propagation must be carried out on-board.
However, depending on the type of application and on the spacecraft computational
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resources, the same process can be performed on ground and the complete history of
the trajectory is transmitted when needed. An alternative approach is available by
assuming that the time-dependence of the linear system has negligible impact on the
relative dynamics for short propagation times (e.g., a typical rendezvous duration).
If this hypothesis holds true, the STM can be assumed constant and computed using
a single value of the target state, leading to great simplifications in the assembly of
the optimisation problem. However, note that the errors introduced by this approx-
imation are also dependent on the shape of the target motion (see Section 6.3.4 for
further details).

Target State

෥𝒙𝒕
Uncertainties

Time-varying

CR3BP

Constant

EpR4BP

1st order

2nd order

Propagation step
STM

FIGURE 6.12: Target propagation approximations. This process is
performed at each re-optimisation epoch.

Regardless of the propagation accuracy, the knowledge of the target absolute state
is always affected by an inherent uncertainty, which impacts in different ways both
the navigation and guidance algorithms. Regarding the filter, the prediction step at
a generic time tk is written as:

xk+1 = Φ(xtk)xk + Gkuk (6.1)

Therefore, the estimation error for xk+1 depends on the previous error at tk and on
the wrong evaluation of Φk due to the inaccuracies of xt at the current time. The
latter, irrespective of the propagation method, grow proportional to the time passed
from the last communication of the target state (i.e., the last re-optimisation epoch).
Hence, it is to be expected that the impact of errors in the target state will be greater
for longer intervals between two successive transmissions of absolute navigation
data.

On the other hand, inside the optimisation problem the STM is exploited to enforce
the desired boundary conditions and evaluate the observability metrics. Thus, the
inexact knowledge of the target state leads to maneuvers that are incapable of ei-
ther bringing the chaser to the correct destination point or providing the requested
degree-of-observability. However, differently from the navigation filter, the absolute
state error at any arbitrary time affects the quality of the solution, since in a SH-MPC
the optimisation problem is always solved from the current epoch until the final one.
Therefore, when this architecture is implemented, one should always make sure the
target does not cross any regions that are characterised by a strong non-linear be-
haviour. Vice-versa, since in a standard MPC implementation (i.e., with a fixed hori-
zon), the guidance only computes the relative motion over a limited window, the
errors in the target dynamics should have a minor impact in the optimisation prob-
lem.

On the basis of these considerations, the performance of the proposed architecture
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in other cis-lunar regions will mainly depend on their numerical stability and on the
ability to correctly predict the motion of the target spacecraft throughout the whole
rendezvous duration.

6.3.3 NRHO Rendezvous Region

Previous studies [22] [23] identified the NRHOs perilunes as unfeasible areas to ac-
complish a rendezvous, since any small perturbation of a state variable generates
large deviations in the spacecraft trajectory. Additionally, it was proved that this
behaviour is associated to irregularities in the spectrum of the monodromy matrix
when evaluated with a full non-linear ephemeris model. In this paragraph, a similar
feasible rendezvous region is identified by analysing the performance of the navi-
gation and guidance algorithms for different positions of the target along the whole
NRHO. A time anomaly θt is used to represent the location of the target on its abso-
lute orbit:

θt = 2π
t
T

(6.2)

Where T is the orbital period and a null value for the anomaly identifies the apose-
lene of the orbit. The relative initial conditions are settled on the central manifold of
each discretisation point and the rendezvous duration is fixed at 8 hours. Observ-
ability is enhanced through the non-linear formulation of the guidance problem and
the re-optimisation time is set to 1 hour. In addition, to maximise the accuracy of the
GNC architecture, all the on-board propagation models are based on the EpR4BP
and the STM is computed with a second-order approximation. The outcomes of the
simulations are collected in Figure 6.13 and 6.14, where the x-axis displays the loca-
tion of the target according to (6.2). Note that each line is the average of 100 Monte
Carlo runs.

FIGURE 6.13: Navigation error evolution along a NRHO.

It stands quite clear that whenever the target moves in the region between 160 and
200 degrees, the performance of the architecture significantly deteriorate. In partic-
ular, the divergence of the navigation filter is caused by the numerical instability of
the perilune region: the trajectory predicted with an uncertain relative state results
remarkably different from the actual motion because of the high sensitivity to small
state perturbations. Successively, the navigation divergence reflects into the inabil-
ity of the guidance to define a proper maneuver plan. At each re-optimisation, the
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chaser finds himself in a completely wrong position and new expensive maneuvers
are constantly required to adjust the trajectory.

FIGURE 6.14: ∆V requirements along a NRHO.

These results are in agreement with previous studies and confirm once more that
the NRHOs perilune region is not a viable candidate to perform a rendezvous. The
identified "safe" and "forbidden" regions are depicted in Figure 6.15 and the red area
shall be avoided as far as the proposed Bearing-Only guidance-assisted approach is
adopted. In particular, since in a shrinking horizon the time of flight is a fixed design
variable, the target initial conditions shall be chosen to ensure the spacecraft never
reaches the unstable region throughout the whole rendezvous duration. Vice-versa,
if the initial position of the target is given, the maximum rendezvous duration equals
the time it takes the spacecraft to reach the boundary of the stable region.

FIGURE 6.15: Suitable rendezvous region in a NRHO.

As a final remark, the performance of the GNC architecture for the different ap-
proximation techniques in Figure 6.12 did not show any significant deviations with
respect to those presented above. The higher accuracy of the ephemeris second or-
der time-varying model only comes into play for close-proximity operations, where
estimation errors below 1 meter are desired.
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6.3.4 Time-invariant Approximation

A time-invariant formulation holds many benefits with respect to a time-varying
model. In this framework, having a constant expression for the STM allows for an
easier assembly of the optimisation problem constraints and an overall reduction of
the computational effort required by the GNC functions. In addition, when only
the absolute position is available, the target state cannot be propagated forward in
time because its velocity is unknown, making a constant first-order STM approxima-
tion the only viable approach. To identify the regions where this technique can be
exploited, it is helpful to recall the Jacobian expression for the linearised dynamics:

A(t) =
[

0 I3
Ξ(t) 0

]

Ξ(t) = −
(

1− µ

r3
T1

+
µ

r3
T2

)
I3 + 3

1− µ

r3
T1

[
r̂T1 r̂T

T1

]
+ 3

µ

r3
T2

[
r̂T2 r̂T

T2

] (6.3)

The time-dependence is associated with the variations of the relative position vectors
of the target with respect to the primaries. Four different time-contributions are
identifiable: the magnitudes of the vectors rT1/2 and their directions (i.e., the unit
vectors r̂T1/2). As the focus is on the cislunar domain, it is reasonable to assume
that the variations of the Earth-related terms are negligible because of the much
higher distance with respect to the Moon. A proper criterion to establish when the
approximation holds is found by evaluating the correlation between the navigation
error and the time derivatives of both rT2 and r̂T2 ; namely, the range-rate and the
rotation velocity of the vector.

Using as a baseline the family of DROs in Figure 6.17a, for each orbit a rendezvous
approach based on a constant STM approximation was simulated and the 1-norm
of the navigation errors is shown in Figure 6.16 as function of the angular rate of
change of r̂T2 . A deterioration of the navigation performance happens for angular
speeds higher than 2 mdeg/s, which correspond to the innermost orbits highlighted
in red in Figure 6.17b. All the remaining simulations are clustered together, meaning
that for lower angular rates, the time-invariant approximation does not affect in a
significant way the estimation error.

FIGURE 6.16: Time-invariant model validity criterion.

On the other hand, no evident correlation was found between the range-rate and
increments of the navigation errors, suggesting that for the cislunar orbital families
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a criterion based on the angular rate of r̂T2 is enough to identify the validity regions
for the time-invariant approximation.

(a) DRO. (b) DRO zoom-in.

FIGURE 6.17: Angular rate of change of r̂T2 in a family of DROs. The
red markers identify the regions where the time-invariant validity

threshold is violated.

The investigation has been expanded to other relevant families in the cislunar do-
main, as shown in Figures 6.18 and 6.19. The regions where the approximation does
not hold are all associated to the close-passages of the spacecraft around the Moon,
such as in the NRHOs perilunes. Interestingly, the red areas of the L1/L2 Lyapunov
families exhibit the same kind of numerical instability mentioned in the previous
section. Indeed, regardless of the propagation method, the proposed architecture is
never able to accomplish a safe rendezvous in those areas. Therefore, Figure 6.18
and 6.19 identify the regions were a rendezvous operation shall be avoided with the
GNC scheme under study (i.e., the red areas). Viceversa, it is well known that DROs
are particularly stable orbits and indeed, any kind of time-varying approximation is
accurate enough to perform proximity operations even in the innermost orbits.

(a) Lyapunov L1. (b) Lyapunov L2.

FIGURE 6.18: Angular rate of change of r̂T2 in the L1/L2 CR3BP Lya-
punov families. The red markers identify the regions where the time-
invariant validity threshold is violated. The color scale is associated

to the same values of Figure 6.17.
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(c) Halo L1.

(e) NRHO L1.

(d) Halo L2.

(f ) NRHO L2.

FIGURE 6.19: Angular rate of change of r̂T2 in the CR3BP Halo and
NRHO orbital families. The red markers identify the regions where
the time-invariant validity threshold is violated. The color scale is

associated to the same values of Figure 6.17.

6.4 Navigation in Heterogeneous Orbits

The same bearing-only SH-MPC guidance can be adopted by a variety of missions
that exploit the relative dynamics of multi-gravitational environments. For example,
bearing-only navigation could be used to support a spacecraft during the insertion
onto its nominal orbit or throughout a transfer between two distinct locations. This
section focuses on assessing the applicability of the proposed GNC architecture to
improve the state estimation of a satellite (i.e., the chaser) flying on non-keplerian
orbits when the relative distances are in the order of thousands of kilometers. These
results will also extend the validity range of this technique with respect to the hun-
dreds of kilometers previously analysed.

The system observability is enhanced through the non-linear formulation by spec-
ifying the minimum observability angle of the perturbed motion. The alternative
observability metrics based on Jo resulted completely uncapable of yielding feasi-
ble trajectories: by acting on the range they forced the chaser in close-proximity of
the target, requiring a ∆V of approximately 600 m/s for an initial distance of 3000
km. In addition, the solution of the multi-objective problem proved to be extremely
sensible to the selection of the observability weight, making the method even harder
to implement.
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6.4.1 DRO to Lyapunov Navigation

To stress the architecture robustness, the scenario selected involves two spacecraft
flying on different nominal orbits. The chaser is settled on a L2 Lyapunov while the
target is on a DRO, with an initial distance between the spacecraft of 5300 km. Addi-
tionally, it is here desired that the chaser remains bounded to its nominal orbit, thus
the final boundary conditions of the optimisation problem are set to guarantee that
at the end of the relative navigation phase the spacecraft finds himself on its original
orbit, as if nothing had happened. The navigation filter is initialised with relative
position and velocity uncertainties of 10% and 2.5%, respectively. From an abso-
lute viewpoint, these percentages yield particularly high initial errors because of the
great distance between the spacecraft. However, if lower values were selected, much
higher observability angles would be required to see an improvement, according to
(4.50).

Time Settings Value Interval

Propagation time 72 hours
Re-optimisation time step 5 hours
Discretisation time step 1800 s
Filter update frequency 0.1 Hz

TABLE 6.6: Simulation settings.

The effects of three different desired observability angles are analysed in Figures
6.20 and 6.21. Simultaneously, a comparison between the two fuel cost functions is
performed representing high and low-trust engines with the linear and quadratic ob-
jectives, respectively. Notice that as the final state is selected on the original nominal
orbit, the observability angles at the end of the simulation are always null. How-
ever, since the guidance is capable of targeting that position up to a finite accuracy,
in practice the final angle is slightly above zero. The constraint on the observabil-
ity angle has been imposed in the middle of the simulation because the resulting
symmetry guarantees the lowest fuel consumption. For example, if the same angles
were enforced after 10 hours, the chaser would have to perform larger maneuvers to
perturb as much his relative position.

(a) Impulsive - Relative estimation error. (b) Low-thrust - Relative estimation error.

FIGURE 6.20: Performance for the relative navigation on heteroge-
neous orbits (1/2).
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(c) Impulsive - Observability angle.

(e) Impulsive - ∆V.

(a) Impulsive - Absolute position error.

(b) Low-thrust - Absolute position error.

(d) Low-thrust - Observability angle.

(f ) Low-thrust - ∆V.

FIGURE 6.21: Performance for the relative navigation on heteroge-
neous orbits (2/2). The dotted line represents where the observability

constraint is enforced.

The two engines result in similar navigation performance, although the low-thrust
always requires an extra 10 m/s. The lowest relative error (the yellow line) is around
the 0.4% of the range, which corresponds to approximately 60 km; 10 times lower
than the original value. Interestingly, for the high-thrust case the greater improve-
ments of the navigation error happen immediately after the execution of the maneu-
vers, and then remain approximately constant throughout the whole coasting phase.
However, since the distance between the spacecraft keeps increasing, the absolute
estimation error increases as well.
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(c) Range evolution . (d) Linear model accuracy metric.

FIGURE 6.22: Relative range evolution. Only one line is reported be-
cause the range differences between the various approaches are min-

imal.

A few considerations can be extrapolated from these outcomes. When the goal is
to reduce the absolute uncertainty below a given threshold, various possibilities are
available. If the target is fixed (i.e., the relative distance), the necessary observabil-
ity angle is directly obtained from (4.49). On the other hand, if different spacecraft
can be exploited as a target for measurements, it is more convenient to choose either
the one that is closer to the chaser or that which naturally maximises the observ-
ability angle at the desired final location. An alternative is to select a target satellite
such that the range reduces in time (contrary to the above configuration). In this test
scenario, a relatively high distance was selected with the sole purpose of proving
the validity of the GNC architecture. However, it is always desirable to work with
smaller distances because, given the angle θ, the ∆V required to perturb the natural
trajectory grows as function of the range between the spacecraft.

As a last remark, the accuracy of the linear model deteriorates as the ratio between
the spacecraft distance and the target to Moon distance increases. On the basis of
multiple numerical simulations, it was found that the model performs relatively well
as long as the ratio does not exceed the 10%. In this regard, it is interesting to notice
that in the simulations of section 6.3.3, the ratio at the NRHO perilune was approxi-
mately around 3%; confirming that the inability of the GNC architecture to navigate
in that region is not due modelling errors but rather to the numerical instability of
the area.
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Chapter 7

Conclusions

The present thesis investigated several challenging aspects connected with the usage
of bearing-only techniques to perform proximity operations in the cislunar space. In
this final chapter, the most important outcomes and discoveries are summarised,
together with few suggestions for the development of future works.

7.1 Summary

Starting from the formalisation of the 3 DOF non-keplerian dynamics, a discrete-
form solution of the linearised relative dynamic model was presented to support
the analysis of the observability problem and the development of GNC functions.
The implementation of this linear framework inside navigation filters has been dis-
cussed from a computational viewpoint, highlighting how simple approximations
are exploitable for real-time dynamic predictions in the cislunar domain. Extensive
numerical tests showed that the linear model is well capable of capturing the shape
of the relative motion as long as the spacecraft are located in numerical stable re-
gions. A brief mention of real-world applications was made to discuss the effects
that different camera properties have on measurement errors, revealing the impos-
sibility to estimate the relative range from the target dimensions on the camera focal
plane.

Existing geometrical and analytical frameworks have been exploited to illustrate the
inherent unobservability of bearing-only navigation. The comparisons with the real
dynamics have shown that non-linear gravitational and perturbing accelerations are
unable to provide a significant enhancement of observability. This led to the con-
clusion that even in the non-keplerian space, to guarantee the convergence of the
navigation filter dedicated maneuvers must be executed to perturb the trajectory
from its from its natural evolution without maneuvers. In addition, through this ob-
servability criterion, the initial conditions for unobservable maneuvers in LEO were
identified for any kind of linear time-varying system.

A general framework for the implementation of Model Predictive Control techniques
in the non-keplerian domain has been derived, showing how system engineering
limitations and trajectory planning can be incorporated into a single optimisation
problem solvable with simple linear programming algorithms. Two different fuel
objectives were investigated, discovering that a quadratic control objective provides
a simple way to account for low-thrust propulsion inside the optimisation problem.
The exploitation of this formulation allowed to develop a novel quasi-autonomous
architecture to perform proximity operations with angles-only measurements. In
addition, non-linear inequality constraints have been employed to enforce a desired
observability angle and favour the convergence of the navigation filter. A numerical
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testing campaign was used to validate the capability of the proposed GNC scheme
to meet safety and navigation requirements throughout the whole relative approach,
with a specific focus on rendezvous operations at the apolune of the NASA LOP-G
NRHO. A similar already-existing guidance, which was able to achieve satisfactory
results in LEO, has been generalised to a time-varying system and used as a bench-
mark to compare the performance of our architecture. The outcomes highlighted
that in the non-keplerian dynamics, the minimisation of an observability measure
based on the positive linear independence of the natural and perturbed relative po-
sition vectors generates trajectories with an extremely low degree-of-observability.
In particular, it was inferred that in the cislunar space the minimisation of an ob-
jective which includes information on the range always favours a reduction of the
relative distance rather than an increment on the observability angle. As a conse-
quence, the resulting trajectories are likely to violate any relative accuracy threshold
for most of the approach. On the other hand, by directly targeting the angle, the
guidance scheme here proposed effectively reduced the navigation error whilst re-
maining at relatively high distances from the target. In addition, due to its simple
formulation, the optimisation problem resulted computationally efficient, with solv-
ing times in the order of fractions of a second.

Through a sensitivity analysis the effects of various navigation settings and prop-
agation models were evaluated. The adoption of UKF proved particularly useful
for large initialisation errors, as the EKF is not able to reach convergence when it
operates far from its linearisation point. Different simulations along the NRHO con-
firmed that the periselene of the orbit is not a suitable area to perform rendezvous
operations as the numerical instability of the region prevents the navigation filter
from reaching convergence. A time-invariant approximation for the target motion is
suggested to partially overcome the constant need of knowing the absolute state of
either spacecraft. The analysis on the validity range of this model allowed to define
critical regions in proximity of the Moon where rendezvous operations are unfeasi-
ble regardless of the propagation method, such as the NRHO and L1/L2 Lyapunov
perilunes. Finally, the versatility of the proposed architecture was assessed by suc-
cessfully employing it to perform relative navigation between spacecraft flying on
distant heterogeneous non-keplerian orbits. Nevertheless, the results highlighted
that to minimise the absolute navigation error, it is desirable to choose a target ob-
ject that naturally reduces the relative distance throughout the navigation phase.

7.2 Future Works

A few recommendations to extend the work presented in this thesis are here sug-
gested.

Standard MPC A shrinking horizon MPC was here adopted to have a common
ground to compare the performance of bearing-only navigation between LEO and
the cislunar space. The implementation of a standard MPC with a fixed horizon
sliding window could improve the architecture robustness to external perturbations
and control malfunctions. Additionally, it would be interesting to investigate the
behaviour coming from the minimisation of the linear and quadratic observability
objective when only few discretisation points are accounted for.
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6 DoF dynamics The GNC architecture proposed in this work focused on the es-
timation of the relative position and velocity only, using a 3 degrees-of-freedom
model. For a comprehensive analysis of the rendezvous approach, the design should
also incorporate the relative attitude dynamics together with the development of
a control scheme to guarantee the target remains in-view of the on-board cameras
throughout the whole approach phase.

Filtering techniques For large initialisation errors the EKF struggles to reach con-
vergence in reasonable times because it operates far from the linearisation point.
In the recent years, many alternative non-linear filters have been proposed to deal
with the estimation from bearing-only measurements. For example, [11] developed
a Pseudo-Measurement Filter that completely outperformed the EKF for large esti-
mation errors. On the other hand, [17] developed accurate and computationally ef-
ficient Shifted Rayleigh Filter for the angles-only problem, although its performance
were not tested for in-orbit applications. Thus, a future investigation could evaluate
and compare the estimation capability of different bearing-only filter formulations
as function of the initialisation errors.
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