
School of Industrial and Information Engineering

Safe ARPOD for under-actuated
CubeSat via Reinforcement Learning

Matthieu Paris
ID: 935844

Supervisor: Prof. Pierluigi Di Lizia
Co-supervisor: Michele Maestrini PhD.

A thesis presented for the degree of

Master of Science in Space Engineering

2021

Safe ARPOD for under-actuated CubeSat via

Reinforcement Learning

Matthieu Paris

Abstract

From the emergence of commercial applications such as on-demand imagery and
global internet service, to the necessity of satellite servicing and active space debris re-
moval, the level of complexity in mission design has skyrocketed. All these different ap-
plications have directed the evolution of the technology toward the need for autonomous
spacecraft that can operate independently of human control. As such, artificial intelli-
gence has rapidly emerged as being a promising field allowing greater robotic autonomy
and innovative decision making. While new autonomous techniques have enabled faster
and larger numbers of spacecraft operations, there is still a valid concern for the safety of
the missions during proximity manoeuvres.
This Master’s thesis investigates the use of the Reinforcement Learning algorithm Proxi-
mal Policy Optimization for achieving a planar Autonomous Rendezvous, Proximity Op-
eration, and Docking (ARPOD) manoeuvre with an under-actuated CubeSat. Together
with the safety considerations, the different control objectives throughout the three phases
reflect the complexity necessary for safe and efficient operations.
The results show both the promise of reinforcement learning methodology and its limita-
tions, which are discussed.

Safe ARPOD for under-actuated CubeSat via

Reinforcement Learning

Matthieu Paris

Acknowledgements

First I would like to thanks my supervisor Professor Pierluigi Di Lizia and co-
supervisor Michele Maestrini PhD for their support during the six months of work.
I also want to acknowledge the rich content of the DeepMind YouTube channel and
3Blue1Brown YouTube channel. Completing this thesis would have been even more chal-
lenging without their online courses and science popularization videos respectively. In
addition, the different online contents of Phil Tabor greatly help me to dive into the
concrete implementation of reinforcement learning algorithms.

Finally, I want to give a special thanks to John Hughes MA(Cantab.) for his invest-
ment of time and intellectual support during my scholarship up to the completion of this
work.

Contents

1 Introduction 1

1.1 A Brief History of Space Rendezvous and Docking 1

1.2 Overview of Autonomous Control Techniques 3

1.3 Reinforcement learning in Space . 4

1.4 Impact and Outline . 5

2 Reinforcement Learning 6

2.1 Elements of Reinforcement Learning . 7

2.2 Markov Decision Process . 7

2.3 Policy Gradient Methods . 9

2.3.1 Policy Approximation . 9

2.3.2 Value Function and Advantage . 10

2.3.3 Generalized Advantage Estimation 11

2.3.4 Policy Gradient Theorem . 12

2.3.5 Actor-Critic Framework . 13

2.4 Proximal Policy Optimisation . 14

2.4.1 Trust Region Method . 15

2.4.2 Clipped Surrogate Objective . 15

2.4.3 Algorithm . 16

3 Artificial Neural Networks 18

3.1 Artificial Neural Network Structures . 18

3.2 Forward Propagation and Execution . 19

3.3 Backpropagation . 20

3.4 Gradient Descent and Adam Optimizer . 22

3.4.1 Gradient Descent Variants . 22

3.4.2 Gradient descent optimization algorithms 23

Paris Matthieu 7

3.4.3 Adam Optimizer . 24

4 Autonomous Rendezvous, Proximity Operation, and Docking 26

4.1 Problem Formulation . 27

4.2 Model of the Chaser . 27

4.3 Dynamics . 28

4.4 Constraints . 31

5 Reinforcement Learning Implementation 34

5.1 ARPOD as a Markov Decision Process . 34

5.1.1 State Space . 35

5.1.2 Action Space . 35

5.1.3 Discrete Dynamics . 39

5.2 Reward logic . 40

5.3 The Agent’s Hyperparameters . 41

6 Test Cases 44

6.1 Case 1: Proximity Operation and Docking 44

6.1.1 Reward Logic . 45

6.1.2 Hyperparameters . 48

6.1.3 Results . 49

6.2 Case 2: Full ARPOD manoeuvre . 53

6.2.1 Reward Logic . 53

6.2.2 Hyperparameters . 54

6.2.3 Results . 55

6.3 Discussion . 57

Conclusion 59

List of Figures

2.1 Agent - Environment cycle . 8

2.2 Plots showing one term (i.e. a single time step) of the objective function
JPPOt as a function of the probability ratio Rt, for positive advantages (a)
and negative advantages (b). 16

3.1 A generic feed-forward neural network with an input layer of three neurons
(blue), an output layer of two neurons (green), and two hidden layers of
respectively five and four neurons (orange). 19

4.1 6U CubeSat Chaser with thrusters (red) aligned with the positive and
negative body x-axes, a reaction wheel (blue) aligned with the body z-axis,
and the docking port (green) normal to the positive body x-axes 27

4.2 Position of the Chaser and the Target in both frames: the inertial frame in
green associated with capital letters, and the Hill’s frame in blue associated
with small letters. 29

4.3 Convention of the attitude angle θN (red) in the Hill’s frame (blue). Both
spacecraft are characterised by their docking port and their normal vector
nj (green). The representation displays a generic Target with a docking
port normal to et. 31

6.1 Unscaled representation of the R-bar and V-bar initial configurations with
the Target docking port outward normal aligned with the tangential direc-
tion (i.e. nt ≡ et). The docking cone is displayed in red. 45

6.2 Case 1 - V-bar configuration: Full trajectory of the solution found (left),
and trajectory zoomed on the Target (right). The docking cone is displayed
in red. 49

6.3 Case 1 - V-bar configuration: Behaviour of the Thruster in terms of thrust
and commanded velocity impulse (left), and of the Reaction Wheel in terms
of angular velocity and commanded angular acceleration (right). 50

6.4 Case 1 - V-bar configuration: Relative velocity of the Chaser (left), and its
angular velocity and acceleration (right). 50

6.5 Case 1 - V-bar configuration: Learning behavior of the Agent (light blue),
and its running average over 100 episodes (dark blue). 51

Paris Matthieu 9

6.6 Case 1 - R-bar configuration: Full trajectory of the solution found (left),
and trajectory zoomed on the Target (right). The docking cone is displayed
in red. 52

6.7 Case 1 - R-bar configuration: Behaviour of the Thruster in terms of thrust
and commanded velocity impulse (left), and of the Reaction Wheel in terms
of angular velocity and commanded angular acceleration (right). 52

6.8 Case 1 - R-bar configuration: Relative velocity of the Chaser (left), and its
angular velocity and acceleration (right). 52

6.9 Case 1 - R-bar configuration: Learning behavior of the Agent (light blue),
and its running average over 100 episodes (dark blue). 53

6.10 Case 2: Full trajectory of the solution found (left), and trajectory zoomed
on the Target (right). The docking cone is displayed in red. 56

6.11 Case 2: Behaviour of the Thruster in terms of thrust and commanded
velocity impulse (left), and of the Reaction Wheel in terms of angular
velocity and commanded angular acceleration (right). 56

6.12 Case 2: Relative velocity of the Chaser (left), and its angular velocity and
acceleration (right). 56

6.13 Case 2: Learning behavior of the Agent (light blue), and its running average
over 100 episodes (dark blue). 57

List of Tables

4.1 Inertia properties of the Chaser . 28

4.2 Constraints of the problem with their respective numerical values 33

5.1 Constraints on the attitude and the reaction wheel of the Chaser 36

5.2 Constraints on the attitude of the Chaser and their impact on the com-
mended reaction wheel acceleration . 37

5.3 Constraints on the velocity and the thruster of the Chaser 37

5.4 Switching logic of the time step length according to the relative distance . 40

6.1 Case 1: Sparse reward logic for the attribution of bonuses and penalties . . 47

6.2 Case 1: Hyperparameters . 48

6.3 Case 1: Actor artificial neural network structure 48

6.4 Case 1: Critic artificial neural network structure 49

6.5 Case 2: Sparse reward logic for the attribution of bonuses and penalties . . 54

6.6 Case 2: Hyperparameters . 55

6.7 Case 2: Actor artificial neural network structure 55

6.8 Case 2: Critic artificial neural network structure 55

Chapter 1

Introduction

The space community is in the middle of a complexity paradigm shift. Many are
looking to large numbers of heterogeneous small satellites to accomplish missions never
attempted before. Commercial interests are looking to constellations of satellites for space-
based services like on-demand imagery and global internet service. There are growing
companies, new infrastructures and technologies being developed for complicated missions
such as satellite servicing and active debris removal [1]. All of this involves a level of
complexity never seen before in mission design and operation.

However spacecraft operations today are developed by human teams days in advance
to solve a particular task [2] and thus would be difficult to support missions stated above.
Indeed, as more complex tasks are introduced, the engineering effort needed to hand-craft
solutions may become infeasible.
To close this gap, development in autonomous techniques that are more supportive to
evolving complex needs are necessary. This work in particular address the complexity
involved in developing autonomy for safe and efficient proximity operations.

While autonomy could enable faster and larger numbers of spacecraft operations,
there is a valid concern for the safety of the missions. Rendezvous and docking as an au-
tonomous operation is particularly relevant to the satellite servicing and debris removal
applications and it is under continuous development, but mission safety is especially crit-
ical and challenging.
The work presented here seeks to meet the above-mentioned needs by providing an
overview of Autonomous Rendezvous, Proximity Operation, and Docking (ARPOD) for
an under-actuated spacecraft via reinforcement learning. The problem objective and
safety constraints introduced reflect the complexity necessary for safe and efficient ren-
dezvous and docking.

1.1 A Brief History of Space Rendezvous and Dock-

ing

In some respects, the birth of orbital rendezvous came in the 1960s during the height
of the space race between the United States and the Soviet Union. It was during this era
that orbital rendezvous transformed from a mere concept to reality. [3]

Paris Matthieu 1

Introduction

Some may claim that the first orbital rendezvous occurred on 12 August 1962 when
the Russian Vostok 4 spacecraft piloted by Pavel Popovich was launched into orbit and
came within 6.5 km of Vostok 3 [4]. However, neither spacecraft had the necessary ma-
neuvering capability to maintain their relative position, and so they eventually drifted
over 850 km apart before the end of the day. The Vostok program was analogous to the
United States Mercury program, whose primary objective was to place an astronaut into
Earth orbit.
Three years later, The NASA’s Gemini program served as a bridge between the path-
breaking but limited Earth-orbital missions of Project Mercury and the unprecedented
lunar missions of Apollo. Consequently, Gemini was first and foremost a project to de-
velop and prove equipment and techniques for orbital rendezvous and docking [5]. The
goal was manned orbital rendezvous and at this time, NASA considered autonomy as a
nicety, not a necessity. On 15 December 1965, the first ever orbital rendezvous occurred
between Gemini VI and Gemini VII. Several months later, on 16 March 1966, the first
docking between two spacecraft finally occurred when Neil Armstrong and Dave Scott
docked Gemini VIII with an Agena target vehicle [6]. During this program, the astro-
nauts’ effective display of detecting and resolving critical mission problems in real time
seemed to reinforce NASA’s position of using manual control over autonomous systems.
By the spring of 1967, the Soyuz program accomplished the first automated rendezvous
and docking between two piloted vehicles [4]. Unlike Gemini, the Soyuz vehicle was
designed primarily for automated orbital rendezvous with piloted capabilities generally
reserved for contingency operations. After Soyuz 1 crashed during its reentry manoeuvre
killing Vladimir Komarov, manned operations came to a temporary halt, automated mis-
sions continued to move forward. Under the cover name of Kosmos, in October 1967 the
first ever rendezvous and docking between two robotic spaceships was performed [7].

The great accomplishments and technical developments that have been achieved
with regard to orbital rendezvous are slowly being overshadowed by their limitations
to meet new demands. During the 1990s, the idea of performing rendezvous maneuvers
autonomously without necessitating complex communication schemes between spacecraft
while incorporating light weight, low power, compact navigation sensors has become a
sought-after ideal for a variety of missions. With this in mind, the National Space Devel-
opment Agency of Japan (NASDA) created the Engineering Test Satellite VII (ETS-VII)
flight experiment. And on 7 July 1998, ETS-VII successfully performed the first au-
tonomous rendezvous and docking procedure between uninhabited spacecraft [8].
Finally, commissioned by the U.S. Air Force Research Laboratory and under the direction
of the Lockheed Martin Space Systems Company, the Experimental Satellite System-11
(XSS-11) program started. This program had the mandate to develop and verify on-orbit
guidance, navigation, and control capabilities to safely and autonomously rendezvous a
micro-satellite [9]. It was launched on 11 April 2005 and by the fall of 2005 it had per-
formed over 20 rendezvous maneuvers. Although provisions were made to allow ground
controllers to interact with the vehicle, XSS-11’s on-board planner could autonomously
guide the spacecraft by selecting from a variety of operational modes. The spacecraft
was not simply operating automatically, but had the unique capacity to also respond to
various situations autonomously.

Paris Matthieu 2

Introduction

1.2 Overview of Autonomous Control Techniques

Since XSS-11 program has demonstrated that a spacecraft could be autonomously
guided and could respond to various situations autonomously, much research has been
made to extend the benefit of autonomous controller.

An algorithm for multiple small spacecraft during simultaneous close proximity op-
erations was then developed [10]. It combines the control effort efficiency of a Linear
Quadratic Regulator (LQR) and the robust collision avoidance capability of Artificial
Potential Function (APF) methods. The LQR control effort serves as the attractive
force toward goal positions, while APF-based repulsive functions provide collision avoid-
ance for both fixed and moving obstacles. This research have been carried on up to a
novel autonomous control technique featuring real-time fuel optimization and the previ-
ous LQR/APF algorithm [11].
The well-established Linear Quadratic Regulators are methods with a long heritage that
has also been implemented in a receding horizon fashion to simulate a closed-loop response.
This so-called Model Predictive Control (MPC) is able to use dynamically re-configurable
constraints by adjusting the trajectory based on the current state of the vehicle, which is
likely to be different than the predicted result with the purely open-loop algorithm.
Hence, algorithms for a three degrees of freedom docking [12] and hybrid rendezvous
and docking [13] were developed. These algorithms are able to deal with the notion of
fuel minimisation and obstacle avoidance. However, algorithms based on classical control
techniques suffer from their close dependency on the mathematical framework. Indeed,
the non-linearity of the attitude dynamics, the non-convexity of some of the constraints,
and the coupling between the positions and attitudes of all spacecraft make the problem
almost impossible to solve with such techniques.

To overcome this limitation, path planner algorithms have been applied to spacecraft
control. This technique typically operates by prescribing a set of way points for the
satellite to follow, although in some cases the path is defined using a smoothed curve such
as a series of splines.
It has been shown that it is possible to design spacecraft reconfiguration manoeuvres for
up to four spacecrafts with six degrees of freedom [14] where Rapidly-exploring Random
Trees is used as path planner. The algorithm generates a trajectory consisting of a
sequence of states, connected by feasible direct trajectories. The result is then passed
through a smoother to improve the cost of the trajectory previously found.
Path planner algorithms are open-loop ones in which the trajectory and high-level controls
are computed once at the beginning of the manoeuvre and this path is followed until
manoeuvre termination. Consequently, evolving constraints such as moving obstacles can
not be handled.

Motivated by the previous techniques’ limitations, a new approach that builds upon a
branch of machine learning has been introduced. This last technique, called reinforcement
learning, augments the guidance capabilities of spacecraft for difficult tasks.

Paris Matthieu 3

Introduction

1.3 Reinforcement learning in Space

Among the machine learning framework, reinforcement learning instructs the com-
puter by providing feedback to repeated attempts at solving a given problem. Since it is
a general, model-free framework, reinforcement learning is potentially advantageous over
model-based methods for scenarii where model identification is infeasible or prohibitive,
e.g., when environments, dynamics, or disturbances are time-varying. The engineering
effort is reduced to specifying a reward system rather than the complete logic. Therefore,
by selecting an appropriate reward scheme, complex behaviours can be learned by the
Agent without being explicitly programmed.
Moreover, once learned, implementation of the policy requires low amounts of computa-
tional effort and memory, making it practically realizable with current spacecraft com-
puting resources.

Most modern algorithms use artificial neural networks to approximate nonlinear func-
tions that decide on the actions to take. Deep reinforcement learning, which uses multi-
layer artificial neural networks, made headlines in the mid-2010s, in part due to the
groundbreaking work of Google Deep Mind.
In 2015 a computer was trained with a deep Q-learning algorithm to play 49 different
classic Atari games, 29 of which were at a human or superior skill level [15]. The follow-
ing year, a computer agent was capable of beating the European champion of the Chinese
game of Go by mastering this complex game of an estimated 4.9× 10359 possible combi-
nations of moves [16].
This was followed by a further development in which the agent demonstrated super-human
performance via pure reinforcement learning [17] and testifies to the reinforcement learn-
ing’s ability to learn novel solutions. These developments demonstrated the potential of
reinforcement learning solutions to other seemingly intractable problems that suffer from
the curse of dimensionality.

Its extension to spacecraft guidance, navigation, and control is still a source of active
research. Recent efforts include the application of the REINFORCE algorithm for aster-
oid mapping [18] and the use of an reinforcement learning actor-critic framework to solve
path constraints in near-rectilinear orbits [19]. Proximal policy optimization was used
for producing six degrees of freedom planetary landings and asteroid hovering maneuvers
[20].
A lot of work has also been done in the field of rendezvous, proximal optimization and
docking. In 2019, J.Broida and R.Linares [21] used a proximal policy optimization to
compute three degrees of freedom rendezvous trajectories without considering the attitude
dynamic. Later in 2020, C.E. Oestreich, R.Linares, and R.Gondhalekar [22] developed
six degrees of freedom docking manoeuvres where the rewards were based on a reference
value provided by a linear quadratic regulator feedback law.
Finally, Hovell and Ulrich [23] presented a guidance policy for three degrees of freedom
proximity operations using the “distributed distributional deep deterministic policy gra-
dient” (D4PG) algorithm, testing it successfully in granite surface hardware experiments.
The hardware implementation distinguishes this work from most research efforts that are
limited to simulation.

Paris Matthieu 4

Introduction

1.4 Impact and Outline

From the emergence of commercial applications such as on-demand imagery and
global internet service, to the necessity of satellite servicing and active space debris re-
moval, the level of complexity in mission design has skyrocketed. All these different ap-
plications have directed the evolution of the technology toward the need for autonomous
spacecraft that can operate independently of human control.

Recently, the interesting potential of reinforcement learning to solve complex time
varying problems has made it an important source of research in guidance, navigation and
control. This work aims to explore the capacity of reinforcement learning algorithms to
solve a three degrees of freedom rendezvous, proximity operation, and docking manoeuvre
for an under-actuated spacecraft system with safety constraints. While research has
already been done in this direction, none of it investigates the possibility to perform
a full ARPOD with a pure reinforcement learning algorithm.

The remainder of the document will be organized as follows. In chapter 2, a complete
explanation of the necessary reinforcement learning theory is provided. Starting from a
popularization of the scientific concept, it introduces the different notions in order to end
with a clear understanding of the algorithm used in this work: the Proximal Policy Opti-
mization. In chapter 3, an overview of the mechanisms of an artificial neural network is
made. It aims to provide the reader with a brief knowledge concerning this specific tool
allowing the learning mechanism. Chapter 4 introduces the problem of autonomous ren-
dezvous, proximity operation and docking. Hence, it formalizes the models and dynamics
of this specific problem. And it presents the constraints needed to compute a feasible and
safe manoeuvre. In chapter 5, the problem is implemented into the framework of chapters
2 and 3. Finally, chapter 6 studies different test cases to conclude on the ability of the
Agent to solve this highly constrained problem.

Paris Matthieu 5

Chapter 2

Reinforcement Learning

Reinforcement learning is learning what to do by interacting with the environment
to get the best outcome. The learner, also called Agent is not told which actions to take,
but instead must discover which actions yield the most benefits.

Reinforcement learning is different from supervised learning which learns from a
training set of labelled examples provided by a knowledgeable external supervisor. This is
an important kind of learning, but alone it is not adequate for learning from interaction.
It is also different from what machine learning researchers call unsupervised learning,
which is typically about finding structure hidden in collections of unlabelled data. One
might be tempted to think of reinforcement learning as a kind of unsupervised learning
because it does not rely on examples of correct behaviour; however reinforcement learning
tries to optimize a reward signal instead of trying to find hidden structures.

One of the challenges that arise in reinforcement learning, and not in other kinds of
learning, is the trade-off between exploration and exploitation. The Agent might want to
exploit the environment based on its current knowledge to maximise the total outcome.
But to discover such actions, it has to try actions that it has not selected before. Hence,
it also has to explore in order to make better action selections in the future.
The dilemma is that neither exploration nor exploitation can be pursued exclusively with-
out failing at the task. The Agent must try a variety of actions and progressively favour
those that appear to be best. Such a dilemma has been intensively studied by mathe-
maticians for many decades, yet remains unresolved. [24]

A daily life analogy is faced when we want to find the best restaurant in our city. This
situation is similar to reinforcement learning framework in the sense that the environment
is our city and we are the Agent who wants to find the best restaurant, meaning the
restaurant that yields the best score. To do so, we try them by interacting with our
environment. However, some of us will favor what they think is the best restaurant.
They will then favor exploitation to have a high cumulative score in the short-term. On
the other hand, another might prefer to try new restaurants by exploring the city. This
last one might have the best long-term strategy by gathering information in order to
make the best overall choice. But by doing so, he/she is going to sacrifice the short-term
cumulative score without any certainty on the long-term score.
This is the so-called exploration/exploitation dilemma.

Paris Matthieu 6

Chapter 2 - Reinforcement Learning

2.1 Elements of Reinforcement Learning

Beyond the Agent and the environment, one can identify three main sub-elements in
a reinforcement learning system: a policy, a reward signal, and a value function. [24]

A policy defines the learning Agent’s way of behaving at a given time. Roughly
speaking, a policy is a mapping from perceived states of the environment to actions to be
taken when in those states. The policy is the core of a reinforcement learning Agent in
the sense that it alone is sufficient to determine behaviour. In general, policies may be
stochastic, specifying probabilities for each action.

A reward signal defines the goal of a reinforcement learning problem. At each in-
teraction, the environment sends to the Agent a single number called the reward. The
Agent’s sole objective is to maximize the total reward it receives in the long run; if an
action selected by the policy is followed by low reward, then the action that has been taken
is “bad”, and the policy may be changed to select some other action in that situation in
the future.

Whereas the reward signal indicates what is good in an immediate sense, a value
function specifies what is good in the long run. Roughly speaking, the value of a state is
the total amount of reward an agent can expect to accumulate over the future, starting
from that state.

To continue with the previous analogy, the policy is the strategy we follow based on
our current knowledge of the restaurants in the city. Each time we go to a restaurant, we
get a score based on how good it was, this is the reward signal that we seek to maximise.
Finally, the value function is the cumulative score we expect to have at a given time
with a given knowledge. It is then easy to see that maximising the rewards favours the
short-term strategy, while maximising the value function might lead to the best long-term
strategy.

2.2 Markov Decision Process

A more formal description of reinforcement learning must start with the Markov
decision process, which provides the underlying structure for the learning process. [24]

In a Markov decision process, time is subdivided into discrete time steps, t = 0, 1, 2,
The full description of the Agent necessary to define its condition within the environment
is known as its state, St ∈ S . The action that the Agent takes to try and solve the
problem at time step t is At ∈ A (St). Notice how the chosen action is a function of the
state. After the Agent selects an action, the environment returns a subsequent state St+1

and reward Rt+1 ∈ R. This state then becomes the current state as the Agent advances
into the subsequent time step. This cyclical process is illustrated in figure 2.1.
This process continues until some end condition is met: the Agent may have succeeded
in its task, met a user defined failure condition, or simply reached a limit on the number
of time steps. Each attempt at solving the problem is known as an episode.

The Markov decision process and Agent together thereby give rise to a sequence or
trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, · · ·

Paris Matthieu 7

Chapter 2 - Reinforcement Learning

Figure 2.1: Agent - Environment cycle

Common formulations of Markov decision processes make the assumption that they
are finite. This requires that the sets S , A , and R all have discrete, finite spaces. As
a result, the random variables for the state and reward at a time step t, St and Rt have
discrete probability distributions dependent only on the preceding state and action. This
provides the most important property of a Markov decision process: the Markov Property.
In other words, the future is independent of the past at a given time step t.

Keeping this in mind, it is possible to define the probability of the agent transitioning
to a particular state s’ ∈ S and collecting a given reward r ∈ R solely as a function of
the current state s ∈ S and the action associated with it a ∈ A (s). This is known as
the dynamics of the Markov decision process. [24]

p(s’, r|s, a) = prob(St+1 = s’, Rt+1 = r|St = s, At = a) (2.1)

The definition 2.1 of the dynamics function p : S ×R×S ×A → [0, 1] is an ordinary
deterministic function of four arguments. For the sake of clarity, one must remember p
as a probability distribution for each choice of s and a.

∀s ∈ S ,∀a ∈ A (s),
∑
s’∈S

∑
r∈R

p(s’, r|s, a) = 1 (2.2)

From the four-argument dynamics function, p, one can compute anything else one
might want to know about the environment, such as the state-transition probabilities
(which it is denoted, with a slight abuse of notation, as a three-argument function p :
S ×S ×A → [0, 1]). This provides the probability of a state s’ at the next time step
given a state s and action a at the current time step. This marginal probability can be
found by summing the joint probability defined in equation 2.1 over all possible rewards
in the set R.

p(s’|s, a) = prob(St+1 = s’|St = s, At = a) =
∑
r∈R

p(s’, r|s, a) (2.3)

Similarly, the expected reward given a state s and action a can be found using equation
2.1 and the definition of an expected value; The expected value of a finite and countable
random variable is defined as the sum of all possible values of that variable weighted
by their probabilities. Therefore, the expected rewards for state–action pairs is a two-
argument function r : S ×A → R.

Paris Matthieu 8

Chapter 2 - Reinforcement Learning

r(s, a) = E[Rt|St = s, At = a] =
∑
r∈R

r
∑
s’∈S

p(s’, r|s, a) (2.4)

As mentioned previously, this formulation is designed solely for discrete state, action,
and reward spaces. This is a critical limitation. Fortunately, one can easily modify
equations 2.3 and 2.4 for continuous random variables [25]. Recall equation 2.3, which
gave the probability of a specific state St+1 = s’. This was a conditional probability mass
function. For the continuous case, this is replaced by a conditional probability density
function T : S ×A ×S ′ → [0, 1] which denotes the probability that action a in state s
results in a transition to a state in the region S ′ ⊆ S .

∫
S ′
T (s, a, s’) ds’ = prob(St+1 ∈ S ′|St = s, At = a) (2.5)

For a reinforcement learning problem with a discrete action space, an action can be
selected by simply selecting the value for At that has the highest probability from equation
2.3. With a continuous action space, an action can be sampled from the probability
distribution T .
Regarding the reward function defined by equation 2.4, it would be possible to calculate
a continuous version using a probability density function, however, this is not necessary
in a practical implementation.

2.3 Policy Gradient Methods

An Agent is not a monolithic system, but rather contains sub-components that control
its various functions. When an Agent chooses an action, it does so according to its policy
π. This policy maps an observation Ot of the Agent’s environment to an action At and
transforms the Agent into a closed-loop controller.

This section focuses on methods that learn a parameterized policy that can select
actions without consulting a value function. In other words, learning a strategy that does
not require the knowledge of the expected cumulative rewards. A value function may still
be used to learn the policy parameter, but is not required for action selection.

2.3.1 Policy Approximation

For continuous problems, this policy is a neural network that takes the observation
input signal Ot and defines a median and standard deviation as an output in order to
define a probability distribution. This is written πθ(a|Ot = o), where θ are the parameters
of the neural network.
The distinction between observation and state is a subtle one: In some scenarii, the
observation may contain more information than is included in the state alone. But by
assuming that the Markov decision process is fully observable, the state and observation
are one and the same. Hence, one can write the probability that action a is taken at time
t given the environment in state s at time t with parameters θ.

Paris Matthieu 9

Chapter 2 - Reinforcement Learning

πθ(a|s) = π(a|s, θ) = prob(At = a|St = s,Θt = θ) (2.6)

After some user-selected number of episodes, the policy parameters are updated based
on the information contained within the tuples (St, At, Rt+1). After many updates, the
Agent eventually converges to an optimal policy denoted π∗.
Before tackling the concepts used to learn this optimal policy, another concept needs to
be formalized : the value function V π,γ(s).

2.3.2 Value Function and Advantage

In order to make intelligent decisions, an Agent must consider not only the immediate
consequences of its actions but also their long term ramifications. With a reward being a
quantification of only a single state transition, taking decisions by following the highest
reward could result in a poor policy. To correct this deficiency, the value of a state
is defined as the expected value of the sum of discounted future rewards. Assuming a
discounting factor γ < 1,

V π,γ(st) = E

[
∞∑
τ=0

γτrt+τ

]
(2.7)

The value function can be thought of as being a measure of the quality of a trajectory,
with the horizon of this estimate controlled by the discounting factor. The discounting
factor also controls the greediness of the Agent. In other words, it quantifies how the
Agent prioritizes the immediate reward over long term rewards.
In a practical implementation, the recursive form of equation 2.7 is more convenient.

V π,γ(st) = E [rt] + γV π,γ(st+1) (2.8)

While the value function translates the expected outcome according to the current
policy, it does not determine whether a given action leads to a better or worse outcome
than anticipated. Thereby, the Agent has to consider the true value of each state that it
encountered using the collected rewards against its current value function. This is known
as the advantage function. [26]

Aπ,γ(st, at) = Qπ,γ(st, at)− V π,γ(st) (2.9)

with Qπ,γ(st, at) the state-action value function : it is an estimate of the value function
starting from state st and following the selection of action at. Since the Agent is exploring,
this will likely not be the best action according to its policy. Hence, in equation 2.9, it
is worse considering the value function V π,γ(st) as the Agent’s best guess for each state
according to its current policy.
As such, the advantage would be positive when the chosen action leads to a trajectory
that has a better outcome than the Agent’s current policy. In other words, the advantage
quantifies how much better the taken action is, based on the expectation of what would
have happened from the current policy.
In practice, the advantage Aπ,γ is not known and must be estimated.

Paris Matthieu 10

Chapter 2 - Reinforcement Learning

2.3.3 Generalized Advantage Estimation

Unfortunately, the variance of the advantage estimator scales unfavorably with the
time horizon, since the effect of an action is confounded with the effects of past and future
actions.
A common strategy is to make the use of a value function rather than the empirical
returns. Doing so leads to estimators with lower variance at the cost of introducing bias.
But while high variance necessitates using more samples, bias is more pernicious and can
cause the Agent to fail to converge. Consequently, an important challenge is to find an
advantage estimation with an effective variance reduction scheme without introducing too
much bias. [26]

Before any further considerations, the TD error has to be introduced. [24]

δV
π,γ

t = rt + γV π,γ(st+1)− V π,γ(st) (2.10)

The TD error at each time step represents the error in the estimate made at that
time. Hence, δV

π,γ

t can be considered as an estimate of the advantage of the action at. In
fact, if we have the correct value function, then it is an unbiased estimator of Aπ,γ.

Aπ,γ(st, at) = E
[
δV

π,γ

t

]
(2.11)

One can notice that the TD error in equation 2.10 depends on the next state and next
reward and it is not actually available until one time step later. That is, δV

π,γ

t quantifies
the error in V π,γ(st), available at time t+ 1.
However, in practice only an estimation of the value function is known and it will yield a
biased advantage estimate. [26]

Ât = δV̂t (2.12)

With V̂ standing for an approximation of the value function V π,γ and Ât representing the
advantage estimation.

A solution for reducing the bias is to take the sum of k of these δV̂t terms, which is

denoted by Â
(k)
t .

Â
(k)
t =

k−1∑
τ=0

γτδV̂t+τ

= −V̂ (st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV̂ (st+k)

(2.13)

Â
(k)
t results in a telescoping sum that involves a k-step estimate of the returns, minus

a baseline term V̂ (st). Analogously to the equation 2.12, it can be considered to be
an estimator of the advantage function. However, note that the bias generally becomes
smaller as k → ∞, since the term γkV̂ (st+k) becomes more heavily discounted, and the

baseline V̂ (st) does not affect the bias.

It can be noticed that a valid variance reduction scheme can be done not just toward
any k-step estimator, but toward any average of k-step estimators. One particular way

Paris Matthieu 11

Chapter 2 - Reinforcement Learning

of averaging is to consider all the k-step estimators, each weighted proportionally to λk−1

(where λ ∈ [0, 1]), and normalized by a factor of 1 − λ to ensure the weights sum to 1.
This estimation scheme, parameterized by γ and λ is called the generalised advantage
estimator GAE(γ, λ). [26]

Â
GAE(γ,λ)
t = (1− λ)

(
Â

(1)
t + λÂ

(1)
t + λ2Â

(2)
t + · · ·

)
=
∞∑
τ=0

(γλ)τδV̂t+τ

(2.14)

The construction used above is closely analogous to the one used to define TD(λ) [24],
however TD(λ) is an estimator of the value function, whereas here it is an estimate of the
advantage function.
For the sake of clarity, it is worth analysing the two special cases of this equation 2.14
obtained by setting λ = 0 and λ = 1.

Â
GAE(γ,0)
t = Ât = δV̂t (2.15)

Â
GAE(γ,1)
t = Â

(∞)
t =

∞∑
τ=0

γτδV̂t+τ (2.16)

Â
GAE(γ,1)
t has high variance due to the sum of terms. On the other hand, Â

GAE(γ,0)
t

induces bias, but it typically has much lower variance. It is then clearer that the gener-
alised advantage estimator makes a compromise between bias and variance, controlled by
the parameter λ.

The described advantage estimator uses two separate parameters γ and λ. Both of
them contribute to the bias-variance trade-off when using an approximate value function.
However, they serve different purposes and work best with different ranges of values : γ
most importantly determines the scale of the value function V π,γ which does not depend
on λ. Taking γ < 1 introduces bias in the estimate. On the other hand, λ < 1 introduces
bias only when the value function is inaccurate.
As a rule of thumb, the best value of λ is lower than the best value of γ because λ
introduces far less bias than γ for a reasonably accurate value function. [26]

2.3.4 Policy Gradient Theorem

Policy gradient methods work with a parameterized policy, introduced in section
2.3.1, and optimize an objective function J(θ) directly over the parameter space of the
policy.
These methods seek to maximize performance, so their updates approximate gradient
ascent in J . More details about neural network mechanism and gradient ascent are given
in chapter 3.

θt+1 = θt + α∇̂θJ(θt) (2.17)

Paris Matthieu 12

Chapter 2 - Reinforcement Learning

Where α is the learning rate, and ∇̂θJ(θt) is a stochastic estimate whose expectation
approximates the policy gradient ∇θJ(θt) with respect to its parameters θ.

One can easily guess that the most straightforward objective function is the value
function V πθ,γ(s0) which stands for the expected sum of discounted rewards

∑∞
t=0 γ

trt.
The gradient is thus defined as follows.

∇θJ(θ) = ∇θE

[
∞∑
t=0

γtrt

]
(2.18)

However, there are several different related expressions for the policy gradient [26].
By using the generalized advantage estimator, one can construct a biased estimator of
the policy gradient.

∇θJ(θ) = E

[
∞∑
t=0

∇θ log πθ(at|st)ÂGAE(γ,λ)
t

]
(2.19)

For the sake of clarity, the gradient should be the derivative of the objective function.
Therefore, the objective function corresponding to the biased estimator of the policy
gradient in equation 2.19 is worth giving.

JPG(θ) = J(θ) = E

[
∞∑
t=0

log πθ(at|st)ÂGAE(γ,λ)
t

]
(2.20)

This objective function is very interesting even though it is less intuitive than the
value function; if the advantage estimate is positive, meaning that the action the Agent
took in the sample trajectory resulted in a better average return, then the probability of
selecting this action will increase. On the other hand, the probability of taking an action
will decrease if the advantage estimate is negative. In addition, the use of the generalized
advantage estimate offers an effective variance reduction scheme at the cost of adding
bias.

2.3.5 Actor-Critic Framework

To compute the generalized advantage estimation introduced in section 2.3.3, the TD
error used an approximation of the value function as seen in equation 2.12. Therefore,
the Actor-Critic framework is needed to ease the understanding of further concepts.

Indeed, the algorithm presented so far can be referred to as an Actor-Critic algorithm:
the policy gradient algorithms, also named Actor-only methods, used an Actor to learn
the parametrized policy. At the same time, the Critic approximates and updates the value
function. The value function is then used to update the Actor’s policy.
Rather than only learning the policy or the value function and then backing out the
other, both are optimized simultaneously. While not perfect, the Actor-Critic framework
has good convergence properties and is a popular structure for designing reinforcement
learning algorithms [27]. One can notice that, like the Actor-only methods, the policy
action space can remain continuous.

Paris Matthieu 13

Chapter 2 - Reinforcement Learning

To implement an Actor-Critic algorithm, two neural networks are required: an Actor
and a Critic. The Actor neural network produces the parametrized policy πθ(a|s), while

the Critic calculates the Agent’s best estimate of the value function, denoted by V̂w(s).
Note that θ and w respectively stand for the parameters of the Actor and Critic neural
network.
Upon completing some number of episodes, the rewards collected from many steps are
batched together and the two networks are then updated to maximise their objective
functions. The objective function for the policy depends on the algorithm, but so far it
has been described as:

JPGt (θ) = Et
[
log πθ(at|st)ÂGAE(γ,λ)

t

]
(2.21)

In order to update the Critic, the objective function is defined as the squared-error between
the true values and the Critic’s assessment. The true value can be seen as the expected
discounted return Gπ

t based on the collected reward.

V π,γ(st) = E [Gπ
t |st] (2.22)

with

Gπ
t = rt + γGπ

t+1 (2.23)

In a more practical way, one can derive Gπ
t from the advantage function, and analogously

from the generalized advantage estimation.

Gπ
t = Â

GAE(γ,λ)
t + V π,γ(st) (2.24)

Hence, the objective function for the value function which tries to optimize the Critic
in order to minimize the equation 2.9 is defined as follows. Note that −JV Ft (w) has to be
considered since a gradient ascent optimization is performed.

JV Ft (w) = Et
[(
Gπ
t − V̂w(st)

)2]
(2.25)

2.4 Proximal Policy Optimisation

The problem reinforcement learning suffers from, is that the training data that are
generated are themselves dependent on the current policy. Hence, the Agent generates
its own training data by interaction with the environment rather than relying on a static
data set. It means that the data distribution over observations and rewards is constantly
changing as the agent learns. This is a major cause of instability in the learning process:
if the policy update is too large, it will push the policy network to a region of the pa-
rameter space where it is going to collect the next bunch of data on a very poor policy,
causing it to never recover again. In other words, the Agent can lose its understanding
of the environment if the Actor suddenly explores the action space leading to very poor
performances.

Paris Matthieu 14

Chapter 2 - Reinforcement Learning

Indeed, repeatedly performing optimization on JPGt using the same trajectory has
been shown to lead to destructively large policy updates [26]. This is solved by limiting
the changes in the policy to small updates.

2.4.1 Trust Region Method

A successful approach is to make sure that the updates of the policy never lead too
far away from the old policy. This idea is widely introduced in the Trust Region Policy
Optimization algorithm (TRPO) [28]. The objective function used in this last algorithm
is defined in equation 2.26.

JTRPOt (θ) = Et
[
πθ(at|st)
πθold(at|st)

Ât

]
(2.26)

subject to
Et [KL [πθold(.|st), πθ(.|st)]] ≤ ξ (2.27)

Here, πθold is the vector of policy parameters before the update.
To make sure that the update policy does not move too far away from the current policy,
a Kullback-Leibler divergence constraint is added to the optimization objective. This so
call Kullback-Leibler divergence is a measure of the difference between two distributions.

One can notice that the only difference with the policy gradient objective function
presented in equation 2.20 is the use of the policy ratio Rt(θ).

Rt(θ) =
πθ(at|st)
πθold(at|st)

(2.28)

This ratio is the probability of an action occurring under the new policy πθ, divided
by the probability as it occurred under the previous policy πθold . Then, the algorithm
attempts to maximize the ratio for a given action and the advantage calculated for that
action. For instance, if an action had a detrimental result, the action should be made less
likely: Rt < 1. Since the advantage function for an undesirable action is negative, the
maximization of equation 2.26 will produce the least negative Rt(θ)Ât possible. In doing
so, it will make the probability of the action occurring under the new policy πθ as small
as possible, subject to the constraint on the KL divergence from equation 2.27.

2.4.2 Clipped Surrogate Objective

While TRPO is a powerful algorithm, it adds additional overhead and is also complex
to implement among other limitations.
The Proximal Policy Optimization (PPO) has some of the benefits of trust region policy
optimization, but it is much simpler to implement, more general, and has better sample
complexity [29]. The objective function used in the PPO algorithm is the expectation of
the minimum of two terms. The first term is the ratio-advantage product, carried over
from TRPO, which pushes the policy toward actions that yield a high positive advantage
over the baseline. The second term is a truncated version of the policy ratio obtained by
applying a clipping operation.

Paris Matthieu 15

Chapter 2 - Reinforcement Learning

JPPOt (θ) = Et
[
min

(
Rt(θ)Ât, clip(Rt(θ), 1− ε, 1 + ε)Ât

)]
(2.29)

To better understand the meaning of this objective, one needs to give more attention
to the effect of each term. The effect of the min operator is changed according to the sign
of the advantage estimate.

(a) Ât > 0 (b) Ât < 0

Figure 2.2: Plots showing one term (i.e. a single time step) of the objective function
JPPOt as a function of the probability ratio Rt, for positive advantages (a) and negative
advantages (b).

When the advantage function is positive, the action results in a better than expected
outcome. In such a case, the optimization seeks to make this outcome more likely with
Rt > 1. To avoid any excessive changes to the policy, the change in probability is limited
to a value ε. For instance, if ε = 0.2, Rt may not exceed 1.2 and the action may not become
more than 20% more likely (Figure 2.2a). The limit applies in the opposite direction for
undesirable actions; the likelihood may not be reduced below 80% of its previous value
(Figure 2.2b).

2.4.3 Algorithm

Now that the different objective functions have been properly introduced, one should
be knowledgeable enough to tackle the full PPO algorithm.

In practice, a surrogate objective function combining the policy objective function
(equation 2.29) and the value function error term (equation 2.25) is used. This objective
can further be augmented by adding an entropy bonus H to ensure sufficient exploration
[30]. The entropy can be seen as a measure of how unpredictable the outcome of a variable
really is. In this case, maximising the entropy of the policy will force a wild spread over
all the possible options, and therefore force to have more exploration.

JPPO+V F+H
t (θ,w) = Et

[
JPPOt (θ)− c1JV Ft (w) + c2H (πθ(at|st))

]
(2.30)

Finally, the PPO algorithm is presented hereafter.

Paris Matthieu 16

Chapter 2 - Reinforcement Learning

Algorithm 1 Proximal Policy Optimisation algorithm

1: Initialization of neural network parameters θ and w
2: Initialization memory of length T
3: for episode = 1, 2, ..., E do
4: Reset the environment
5: while not done do
6: for t = 0, 2, ..., T do
7: at ∼ πθ(at|st) . Choose an action
8: st+1; rt+1; done← Env(st; at) . play the action
9: Record st, at and rt+1 in memory . store transition

10: for epoch = 1, 2, ..., K do
11: compute Â

GAE(γ,λ)
t for each recorded state . equation 2.14

12: for each batch of size M do
13: Compute Entropy H
14: Compute policy objective function JPPOt . equation 2.29
15: Compute critic objective function JV Ft . equation 2.25
16: Compute surrogate objective function JPPO+V F+H

t . equation 2.30
17: Perform a gradient ascent on the Actor parameters θ
18: Perform a gradient ascent on the Critic parameters w

19: Clear memory

Paris Matthieu 17

Chapter 3

Artificial Neural Networks

Artificial Neural Networks (ANNs) are tools that provide a means for complex, non-
linear functions to be modelled purely based on input and output data without any
knowledge of the form of the function itself. As such, ANNs are widely used in machine
learning. In the PPO algorithm introduced previously, two of them are used: the Actor
and the Critic that take as input the current state and return respectively the actions and
the best estimate of the value function.
It is worth devoting a chapter to this specific tool, to better understand how these two
ANNs manage to learn.

3.1 Artificial Neural Network Structures

An Artificial Neural Network is a machine learning algorithm based on the model
of a human brain. The brain consists of millions of interconnected neurons connected
with a special structure known as synapses. The same idea is applied in an Artificial
Neural Network: units, also referred to as neurons, are interconnected with arcs in order
to exchange and process information. Units are organized in sets called layers.
Different types of networks can be found in the deep learning world with different struc-
tures. The three most common ones are listed hereafter.

• Feed-Forward Neural Network: input data are processed only in the forward direc-
tion.

• Recurrent Neural Network: a recurrent connection on the hidden units is added with
respect to the previous structure. This looping constraint ensures that sequential
information is captured in the input data.

• Convolution Neural Network: Kernels are used to extract the relevant features from
the input using the convolution operation.

In this work, the Feed-Forward Neural Network is used. Such a network consists of
one input layer, one output layer, and one or more hidden layers that are neither receiving
information from the external nor presenting the final network outputs.
Figure 3.1 shows a generic Feed-Forward Neural Network where the units are represented
by circles.

Paris Matthieu 18

Chapter 3 - Artificial Neural Networks

Figure 3.1: A generic feed-forward neural network with an input layer of three neurons
(blue), an output layer of two neurons (green), and two hidden layers of respectively five
and four neurons (orange).

3.2 Forward Propagation and Execution

Before focusing on the key algorithms allowing neural networks to learn, it is worth
discussing how to use them to produce an output given an input.

Neurons are typically semi-linear units represented by scalar values named activations
and denoted as a. This activation is the result of a non-linear function σ, called activation
function, that has for input a weighted sum computed from a weight matrix w and a bias
matrix b. In figure 3.1, each arrow connecting two neurons represents an arc characterised
by a weight. On the contrary, a bias is somehow linked to each neuron.
In a Feed-Forward Neural Network, the neurons’ activation of layer l is computed from
the activations of the layer l − 1 with the following algebra.

pl = wlal−1 + bl

al = σ
(
pl
) (3.1)

Here, the weighted sum, also named preactivation, is computed separately and denoted
as p. This decomposition will make sense in the explanations hereafter.

Different activation functions are used, but they are typically sigmoid functions such
as the logistic function and tanh, though rectified linear unit (ReLU) is also widely used.
The non-linearity of activation functions is essential: if all the neurons in a multi-layer
Feed Forward Neural Network have linear activation functions, then the entire network
cannot model a non-linear behaviour because linear functions of linear functions are them-
selves linear.

In the next section, it will be necessary to look at equations 3.1 at the scale of each
neuron, rather than the layer. In this manner, a new subscript notation is used. In
equations 3.2, the activation of the j neuron in layer l is computed.

plj =
∑
k

wljka
l−1
k + blj

alj = σ
(
plj
) (3.2)

Paris Matthieu 19

Chapter 3 - Artificial Neural Networks

Note that the weight from the weights matrix w receives two subscripts to denote the
link between two specific neurons in two different layers.

3.3 Backpropagation

One may remember that the overall idea behind the Reinforcement Learning algo-
rithm is to optimize an objective function. In the PPO algorithm presented in section
2.4, this appears as the optimization of the objective function JPPO+V F+H

t by updating
the parameter space of both the Actor and the Critic artificial neural network.
Before updating the neural network parameters, the first thing to do is to determine how
sensitive the objective function is on the different parameters of the network. This is what
stands behind the backpropagation algorithm.

The following explanation considers a single training example with an objective func-
tion J and a generic Feed-Forward Neural Network made of L layers. The goal is then
to quantify how sensitive is this objective function to small changes in the parameter
space. In other words, it is to compute the partial derivative of the objective function
with respect to the weights and biases.

Let us first understand the concept with the simple layer notation introduced in
equations 3.1. One could interpret it as a network with a single neuron per layer.

Much as forward propagation demonstrates how the inputs work their way through a
neural network, backpropagation starts from the outputs and moves back up the network.
Therefore, the first consideration must be done on the last layer characterised by the
activation aL and the preactivation pL .
By applying the chain rule and equations 3.1, the rate of change of the objective function
according to the preactivation of neurons is found.

∂J

∂pL
=

∂J

∂aL
∂aL

∂pL

=
∂J

∂aL
σ′
(
pL
) (3.3)

Where σ′
(
pL
)

stands for the rate of change of the activation function. To provide some
insight into the deeper meaning of this equation, the first term represents how sensitive
the objective function is to the neuron output. The second term is a measure of the speed
with which the activation function is changing.

The name backpropagation takes all its meaning when it comes to computing this
partial derivative at any previous layer of the network based on the layer ahead of it. In-
deed, this calculation is repeated, starting from the final layer, and propagated backwards
towards the input layer. The algebra is shown in equation 3.4 for an arbitrary layer l by
differentiating equations 3.1.

Paris Matthieu 20

Chapter 3 - Artificial Neural Networks

∂J

∂pl
=

∂J

∂pl+1

∂pl+1

∂al
∂al

∂pl

=
∂J

∂pl+1
wl+1σ′

(
pl
) (3.4)

Finally, the sensitivity of the objective function to small changes in the weights and
biases is derived by applying two simple chain rules. For any arbitrary layer, equations
3.5 are derived from equations 3.1.

∂J

∂wl
=
∂J

∂pl
∂pl

∂wl
=
∂J

∂pl
al−1

∂J

∂bl
=
∂J

∂pl
∂pl

∂bl
=
∂J

∂pl

(3.5)

These equations are the final pieces of the backpropagation algorithm. Nevertheless,
the same expressions must be derived at the scale of each neuron to be used. Hopefully,
the reasoning is the same as previously. Just the full subscript notation introduced in
equations 3.2 has to be added. Consequently, the derivation will not be repeated. Note
that in this case, a neuron influences the objective function through multiple different
paths. So all these paths need to be summed up.
Therefore, the rate of change of the cost function with respect to an arbitrary neuron j
in the final layer L or in any arbitrary layers are respectively similar to equation 3.3 and
3.4.

∂J

∂pLj
=

∂J

∂aLj
σ′
(
pLj
)

(3.6)

∂J

∂plj
=
∑
k

∂J

∂pl+1
k

wl+1
kj σ

′ (plj) (3.7)

And the final expressions representing the sensitivity of the objective function to small
changes in the weights and biases are similar to equations 3.5.

∂J

∂wljk
=
∂J

∂plj
al−1k

∂J

∂bl
=
∂J

∂plj

(3.8)

In summary, the backpropagation algorithm computes how a training example would
like to nudge the weights and biases. Not just in terms of up and down but in terms
of what relative proportion to those changes causes the most rapid optimisation in the
objective function.

Paris Matthieu 21

Chapter 3 - Artificial Neural Networks

3.4 Gradient Descent and Adam Optimizer

Now that the gradient of the objective function with respect to the parameter space
is known, it is time to optimize the neural network.
Gradient descent is one of the most popular algorithms for performing optimization and
by far the most common way to optimize neural networks. This section aims at providing
the readers with intuitions about the behaviour of the different algorithms of gradient
descent optimization up to the one used in this project: the Adam Optimizer.

3.4.1 Gradient Descent Variants

Gradient descent is a way to minimize an objective function J(θ) parameterized by
model parameters θ. To do so, the parameters are updated in the opposite direction
of the gradient of the objective function ∇θJ(θ) with a step size η called learning rate.
This process ends when the gradient is equal to zero. This will at least lead to a locally
optimal solution based on the data used to calculate the gradient, where this data are
known collectively as a batch.
In other words, we follow the direction of the slope of the surface created by the objective
function downhill until we reach a valley.

For the sake of clarity, it is worth specifying that the PPO algorithm used in this
work aims to maximise an objective function. Hopefully, one is not without knowing
that just a sign convention stands between maximisation and minimisation. Hence, the
maximisation is performed with a gradient descent algorithm.

The most straightforward intuition is to use the entirety of a dataset as the batch.

θ = θ − η∇θJ(θ) (3.9)

This is known as the Batch Gradient Descent, aka Vanilla Gradient Descent. This method
can be slow, faces memory issues, and does not enable the model to be updated online.
In other words, it is unable to accept new information into the data set as it becomes
available. Within the Reinforcement Learning framework, this limitation makes its use
impossible.

Stochastic Gradient Descent (SGD) is a variation of this method that is appropri-
ate for neural network optimization. In contrast with the Vanilla Gradient Descent, it
performs a parameter update for each randomly selected data point ξi to optimize the
network to produce ψi.

θ = θ − η∇θJ(θ, ξi, ψi) (3.10)

With the gradient calculations no longer requiring the entire dataset, new data can easily
be added during the process. However, the use of single data points to compute gradients
makes individual updates noisy. On one hand, it enables the optimizer to jump to new
and potentially better local minima. But on the other hand, the noisiness ultimately
complicates convergence to the exact minimum.

Vanilla Mini-batch Gradient Descent, or simply Mini-batch Gradient Descent finally

Paris Matthieu 22

Chapter 3 - Artificial Neural Networks

takes the best of both previous optimizers and performs an update for every small batch
of data of size n randomly selected from the complete dataset.

θ = θ − η∇θJ(θ, ξi:i+n, ψi:i+n) (3.11)

In this way, it reduces the variance of the parameter updates, which can lead to more
stable convergence; and makes use of highly optimized matrix optimizations that lead to
a very efficient gradient computation. [31]

Mini-batch Gradient Descent is typically the algorithm of choice when training a
neural network. To stay coherent with the literature, in the rest of this chapter the term
SGD is employed to refer to mini-batch optimization. In addition, to ease the notation,
the parameters ξi:i+n and ψi:i+n in equation 3.11 are left out.

3.4.2 Gradient descent optimization algorithms

SGD optimization appears to be slow where the error basin is long and narrow,
i.e. the surface curves much more steeply in one dimension than in another. In such a
situation and with a fixed learning rate in the direction of the gradient, the algorithm
tends to oscillate back and forth along the semi-major axis [32].
It has been demonstrated that by adding a momentum term based upon the gradient from
the previous mini-batch, these oscillations could be dampened [33]. The momentum-based
methods use a weighted sum of the previous gradient vu−1 and the current gradient∇θJ(θ)
to updates the parameters.

vu = ζvu−1 + η∇θJ(θ)

θ = θ − vu
(3.12)

A simple way to understand this algorithm is to picture a ball going downhill. The ball
accumulates momentum as it rolls downhill, becoming faster and faster until it reaches
its terminal velocity. The idea is the same with the parameter updates: the momentum
term increases for dimensions whose gradients point in the same directions and reduces
updates for dimensions whose gradients change direction. As a result, faster convergence
and reduced oscillation are gained. One drawback of these methods is that the momentum
of the gradient is built without any regard for the shape of the basin. Additionally, while
multiple parameters are being updated, all of the methods mentioned so far use the same
learning rate.

The algorithm Adagrad [34] has been developed in order to overcome this. Adagrad
algorithm adapts the learning rate to the parameters, performing smaller updates (i.e. low
learning rates) for parameters associated with frequently occurring features, and larger
updates (i.e. high learning rates) for parameters associated with infrequent features. In
its update rule, the algorithm modifies the general learning rate η at each step u for each
parameter θi ∈ θ based on the past gradients that have been computed for the same θi.
To achieve this, the algorithm defines a diagonal matrix Gu where each of the diagonal
terms is the sum of the outer product of the gradients from all previous steps.

gu,h = ∇θuJ(θu,h) (3.13)

Paris Matthieu 23

Chapter 3 - Artificial Neural Networks

Gu =
u∑
τ=1

gug
T
u (3.14)

The Adagrad update logic is then displayed in equation 3.15 with the added term κ
ensuring that division by zero is impossible.

θu+1,h = θu,h −
η√

Gu,hh + κ
gu,h (3.15)

Adagrad’s main weakness is its accumulation of the squared gradients in the denominator.
Since every added term is positive, the accumulated sum keeps growing during training
and causes the learning rate to eventually become infinitesimally small. Consequently,
sooner or later, the algorithm is no longer able to acquire additional knowledge.

To solve this flaw, the unpublished neural network optimization algorithm named
RMSprop has been developed [35]. Here, the sum of gradients is recursively defined as
a decaying average of all past squared gradients. The running average E [g2]u at step u
then only depends on the previous average and the current gradient.

E
[
g2
]
u

= 0.9E
[
g2
]
u−1 + 0.1g2

u

θu+1 = θu −
η√

E [g]u + κ
gu

(3.16)

Note that the weighting coefficients of 0.9 and 0.1 are recommended values.

3.4.3 Adam Optimizer

Finally, the optimization algorithm used in this work is described: Adaptive Mo-
ment Estimation (Adam) [36]. Adam algorithms have become among the most popular
optimization methods in Reinforcement Learning research.

In addition to storing an exponentially decaying average of past squared gradients vu
like Adagrad and RMSprop algorithms, it also keeps an exponentially decaying average
of past gradients mu similar to momentum-based methods.

mu = β1mu−1 + (1− β1) gu
vu = β2vu−1 + (1− β2) g2

u

(3.17)

mu and vu are respectively estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients, hence the name of the algorithm.
The uncentered nature of this last estimate is important. These estimates are initialized
to zero, and thus are biased towards that value especially during the initial steps. To
counteract it, bias correction is necessary.

Paris Matthieu 24

Chapter 3 - Artificial Neural Networks

m̂u =
mu

1− βu1
v̂u =

vu
1− βu2

(3.18)

The parameter update is then accomplished using a form identical to the Adagrad and
RMSprop algorithms.

θu+1 = θu −
η√

v̂u + κ
m̂u (3.19)

To sum up, the Adam algorithm requires four hyperparameters, which are settings
provided by the user to control the behaviour of the learning process:

• The exponential decay rates β1 and β2, for which the default values of 0.9 and 0.999
are recommended, respectively.

• The term preventing a division by zero, κ, for which the value 10−8 is suggested.

• The learning rate η that will be specified later on for the Actor and the Critic
networks.

Paris Matthieu 25

Chapter 4

Autonomous Rendezvous, Proximity
Operation, and Docking

So far, the concept of reinforcement learning was introduced without any considera-
tion of the physics of the problem. Indeed, reinforcement learning algorithms are among
the so-called model-free algorithms. This means that the Agent does not require any
knowledge of the problem, only the environment in which it is taking actions is specific to
a given problem. Hence, problems with very complex or even unknown dynamics could be
solved in theory. This chapter starts with a precise description of the problem the Agent
has to solve. Then the spacecraft model and the dynamics of a planar Autonomous Ren-
dezvous, Proximity Operation, and Docking (ARPOD) with three degrees of freedom are
formalized. Finally, the different constraints leading to a safe and feasible solution are
introduced.

Before dealing with the formalization of the problem, one may wonder where are the
boundaries between rendezvous, proximity operation and docking manoeuvres. Even if
there is no wrong answer as long as the docking is the final manoeuvre, a benchmark
is worth being given for clarity. This work considers a benchmark problem for hybrid
control during ARPOD [37] described in 2016. It enables techniques to be compared and
contrasted with each other by enumerating the phases of the ARPOD mission, including
the sensors and dynamics available at each phase.

• The far rendezvous phase describes the approach of one spacecraft to another usually
in the range of 10 km to 1 km.

• The close rendezvous phase, which can also be found as the proximity operation
phase, takes place in the range of 1 km to 100 m. This phase must end in the line
of sight region of the Target docking port.

• Then the docking phase describes the final manoeuvre executed to reach the docking
port within the line of sight region. It covers the range from 100 m to 0 m. During
this last phase, the attitude must be controlled to perform a successful docking.

Paris Matthieu 26

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

4.1 Problem Formulation

The problem considers two spacecraft orbiting around the Earth, with the overall
goal to dock both satellites together. One spacecraft, called the Target will be the subject
of docking. The other, called the Chaser, is controlled to approach the Target and docks
with it by ensuring the safety of itself and the Target at all times.
In this work, a successful docking is achieved when the Chaser reaches a distance of 1m
from the Target within the Target docking port line of sight. To safely dock, the Chaser
must reach the Target with a maximum absolute relative velocity of 0.2 ms−1 and with
an absolute relative angle lower than 5 degrees.
In addition, it is assumed that the Target does not rotate during the entire manoeuvre,
and the Chaser knows its relative position and attitude with respect to the Target.

Given the above statements, the problem can be summarized as follows. Note that
the notation will be properly introduced later on.

An omniscient Chaser satellite and a still Target satellite must achieve the following:

• The Chaser must remain within the Target docking port line of sight during the
entire docking phase.

• Safety of both the Chaser and the Target must be maintained throughout the duration
of the manoeuvre.

• The Chaser must asymptotically dock with the Target.

‖r‖ ≤ 1m and |θ| ≤ 5 deg

4.2 Model of the Chaser

The model of the controlled Chaser used in this work is a 6U CubeSat measuring
10cm× 20cm× 30cm, as pictured in figure 4.1.

Figure 4.1: 6U CubeSat Chaser with thrusters (red) aligned with the positive and negative
body x-axes, a reaction wheel (blue) aligned with the body z-axis, and the docking port
(green) normal to the positive body x-axes

Paris Matthieu 27

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

In this model, thrust is only possible from two thrusters assumed to be perfectly
aligned with the spacecraft body x-axis xb on either side of the spacecraft. By conven-
tion, a positive total thrust F induces a displacement in the direction of xb. The attitude
of the Chaser about its z-axis zb ≡ nrw is controlled by a reaction wheel. And finally, the
docking port of the Chaser is considered as being the surface with outward normal vector
xb.
Specific inertial values for the Chaser can be found in Table 4.1. Note that while nu-
meric values are given, the techniques developed can be used for other similar satellite
configurations.

Variable Description Value

D Reaction wheel spin axis mass moment of inertia 4.1× 10−5 kg m2

Izz Spacecraft mass moment of inertia in z-axis 5.6× 10−2 kg m2

m Spacecraft mass 12 kg

Table 4.1: Inertia properties of the Chaser

4.3 Dynamics

To begin with, a set of assumptions are made to derive the equations of motion.

Assumption 1 Both satellites are rigid bodies.

Assumption 2 The mass of the Earth is significantly greater than the mass of the
satellites.

Assumption 3 The mass loss of the Chaser is significantly smaller than the total
mass of the spacecraft.

Assumption 1 applies to most modern spacecraft as fuel slosh and moving mass is typically
not a significant part of spacecraft vehicle dynamics. Assumption 2 consolidates the
magnitude of gravity into the gravity parameter µ. Assumption 3 results in the mass
remaining constant and is reasonable as propellant usage over short time intervals is not
tremendous.
Under these assumptions, both the Target and Chaser revolve around the Earth, governed
by the following equation of motion in the inertial geocentric equatorial frame.

R̈j = − µ

R3
j

Rj (4.1)

Where j ∈ {t, c} is the subscript denoting respectively the Target and the Chaser, Rj is
the position vector of the spacecraft, and Rj = ||Rj||.
The equation of motion 4.1 describes a stable elliptical orbit about the centre of gravity
of the frame, which due to assumption 2, is approximately the centre of the Earth.

The following additional assumptions are made to linearize the spacecraft dynamics.

Paris Matthieu 28

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

Assumption 4 The Target is in a circular orbit with a radius Rt.

Assumption 5 The distance from the Target to the Chaser is significantly less than
that of the distance from the Target spacecraft to the centre of the
Earth.

Assumption 4 is reasonable as a good number of satellites are on near-circular orbits.
In this work, the altitude of the Target is fixed at 500 km. Concerning assumption 5,
rendezvous typically happens on the order of tens of kilometres, while the distance to
satellites from the Earth is on the order of at least thousands of kilometres.

With the Target in an equilibrium orbit due to assumption 4, a non-inertial frame
is attached to it, specifically for the purposes of rendezvous: the Hill’s Frame [38]. The
axes of the frame are defined as follow:

• er for the radial direction that points outward from the Earth’s centre.

• eN for the normal direction that is aligned with the angular momentum vector of
an orbit which is constant and always points orthogonal to the orbital plane.

• et for the tangential direction which completes an orthogonal coordinate system
with er and eN. Note that for a circular orbit, et and the inertial orbital velocity
are aligned.

In such a frame, the relative position vector of the Chaser with respect to the Target is
denoted as r.

r = x er + y et + z eN (4.2)

Figure 4.2: Position of the Chaser and the Target in both frames: the inertial frame in
green associated with capital letters, and the Hill’s frame in blue associated with small
letters.

In the Hill’s frame, the equation of motion of the Chaser can be written in the
following simple form.

Paris Matthieu 29

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

ẍ− 2

√
µ

R3
t

ẏ − 3
µ

R3
t

x = 0

ÿ + 2

√
µ

R3
t

ẋ = 0

z̈ +
µ

R3
t

z = 0

(4.3)

It is furthermore true for circular orbits that the mean motion of the Target n =
√

µ
R3
t

is

constant. Note that the linear equations of motion 4.3 can be decoupled into the orbital
in-plane motion which lives in the (er, et) plane, and out-of-plane motion.
While under more complex modelling, these equations of motion become re-coupled, it is
outside the scope of this problem [39]. In this work, only in-plane motion is considered.
Therefore, equations 4.3 may be rewritten as follows.

ẍ− 2n2 ẏ − 3nx = 0

ÿ + 2n ẋ = 0
(4.4)

These are known as the planar Clohessy-Wiltshire equations. The coefficients in these
equations are constant. Consequently, a straightforward analytical solution exists. Note
that the subscript ·0 refers to the quantity at t = 0.

x = (4− 3 cosnt)x0 +
sinnt

n
ẋ0 +

2

n
(1− cosnt) ẏ0

y = 6(sinnt− nt)x0 + y0 +
2

n
(cosnt− 1) ẋ0 +

1

n
(4 sinnt− 3nt) ẏ0

ẋ = 3n sinnt x0 + cosnt ẋ0 + 2 sinnt ẏ0

ẏ = 6n(cosnt− 1)x0 − 2 sinnt ẋ0 + (4 cosnt− 3) ẏ0

(4.5)

The rotational equation of motion is dictated by the conservation of the angular mo-
mentum. With regards to the above planar case, the rotational degree of freedom is only
about the eN axis. As the inertia of the Chaser about that axis is Izz, the inertia of the
reaction wheel about that spin axis is then D.
The rotation of the Chaser body axis xb ≡ nc about eN ≡ zb is denoted as θN . In
this work the Target does not rotate. Consequently, θN is also the relative rotation of
the Chaser with respect to the Target. By convention, θN is measured from the inward
normal vector of the Target docking port −nt.

Paris Matthieu 30

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

Figure 4.3: Convention of the attitude angle θN (red) in the Hill’s frame (blue). Both
spacecraft are characterised by their docking port and their normal vector nj (green). The
representation displays a generic Target with a docking port normal to et.

The Chaser rotational equation of motion is then derived.

Izz θ̈N = −Dψ̇ (4.6)

Where ψ̇ is the commanded acceleration given to the reaction wheel to produce a required
torque.
Finally, the analytical solution of equation 4.6 can easily be found.

θ̇N = − D

Izz
ψ̇ t+ θ̇N 0

θN = θ̇N t+ θN 0

(4.7)

4.4 Constraints

To assure the safety and feasibility of the trajectory, a set of constraints is imple-
mented. The following constraints are strongly inspired by a challenge published in 2021
aiming to find trajectories for safe proximity operations. [40]

The first constraints that must be respected are those about the physical limitations
of the actuators. In the case where one of these constraints is violated, the solution would
not be feasible anymore.

Constraint 1 Asymmetric bounded thrust
F ∈ [Fmin;Fmax]

Constraint 2 Maximum reaction wheel velocity
|ψ| ≤ ψmax

Constraint 3 Maximum reaction wheel acceleration

|ψ̇| ≤ ψ̇max

Constraint 1 implies that the Chaser should obey reasonable thrust limitations. In some
cases, thrust capabilities may not be equal in all directions or may be limited in some

Paris Matthieu 31

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

directions. As such, specific thrust limits are assigned for each direction.
Constraint 2 and constraint 3 consider the reaction wheel physical limitations and actua-
tor longevity. Indeed, to improve longevity one might prefer to stay below a given velocity
to reduce the overall wear. In addition, excessive wear leading to premature failures can
also be due to repeated and extended operation of reaction wheels at the extreme ends of
its feasible acceleration.

Additional constraints are introduced to enforce the relative velocity of the Chaser
to respect some safety considerations.

Constraint 4 Recoverable relative velocity limit
|ẋ| ≤ vxmax and |ẏ| ≤ vymax

Constraint 5 Bounded relative velocity limit
‖v‖ ≤ vdock + fs ‖r‖/Tc

Constraint 4 translates the idea that spacecraft manoeuvres shall maintain recoverable
relative motion. Indeed, it is possible for the relative velocity to be so high that it exceeds
the capability of the actuators to arrest motion within a limited time frame. In this work,
vmax is considered as the maximum velocity that the spacecraft can travel in the x or y
direction and stop within one minute given the available thrust.

vxmax = vymax = vmax =
Fmax
m

tstop (4.8)

Constraint 5 enhances the fact that the Chaser spacecraft should not be travelling ex-
ceedingly fast relatively to its distance from the Target. In the cases where spacecraft
formation flying or docking is intended, the magnitude of the acceptable relative velocity
decreases as the relative distance decreases. This concept is based on the idea of time-to-
collision Tc as a function of the available thrust, spacecraft mass, and distance from the
Target.

Tc =

√
2m

Fmax
‖r‖ (4.9)

The relative velocity limit of the Chaser is then defined by considering a safety factor fs
and the maximum final velocity vdock allowed to ensure a safe docking. From the mission
statement: vdock = 0.2ms−1.

The same considerations are made on the attitude of the Chaser and translated
through the following constraints.

Constraint 6 Maximum angular velocity

|θ̇N | ≤ θ̇N max

Constraint 7 Maximum angular acceleration

|θ̈N | ≤ θ̈N max

Constraint 6 is in place for the same reason as the translational velocity limits: to enable
the Chaser to react or recover from commands in a reasonable time frame.
On the other hand, constraint 7 deals with the structural integrity of the Chaser because
excessive rotational acceleration may cause damage to the spacecraft structure, payload
(which may be a sensitive instrument), or one of many possible deployable appendages.

Paris Matthieu 32

Chapter 4 - Autonomous Rendezvous, Proximity Operation, and Docking

A final constraint is implemented to oblige the Chaser to enter and remain in the
line-of-sight of the Target docking port sensors during the entire docking phase. The
line-of-sight is, in a planar problem, nothing more than the section of disk characterised
by the semi-angle αLoS with respect to the outward normal vector of the Target docking
port nt.

Constraint 8 Docking cone
αc ≤ αLoS

A summary of the safety and physical constraints formalization is presented in table
4.2. Note that while numeric values are given, the techniques developed can be applied
for other similar constraints.

ID Description Formalization Value

1 Asymmetric bounded thrust F ∈ [Fmin;Fmax] Fmin = −1N
Fmax = 2N

2 Maximum RW velocity |ψ| ≤ ψmax ψmax = 576.0 rad s−1

3 Maximum RW acceleration |ψ̇| ≤ ψ̇max ψ̇max = 181.3 rad s−2

4 Recoverable relative velocity
limit

|ẋ| ≤ vmax and |ẏ| ≤ vmax vmax = 10ms−1

5 Bounded relative velocity
limit

‖v‖ ≤ vdock+fs

√
Fmax
2m
‖r‖ vdock = 0.2ms−1

fs = 1

6 Maximum angular velocity |θ̇N | ≤ θ̇N max θ̇N max = 2 deg s−1

7 Maximum angular accelera-
tion

|θ̈N | ≤ θ̈N max θ̈N max = 1 deg s−2

8 Docking cone αc ≤ αLoS αLoS = 45 deg

Table 4.2: Constraints of the problem with their respective numerical values

Paris Matthieu 33

Chapter 5

Reinforcement Learning
Implementation

Chapters 2 and 3 explained the algorithm and the mathematical tools needed to un-
derstand the reinforcement learning concept. These two chapters are generic and explore
the different concepts without any specification on the problem to solve. Then, chapter 4
introduced the problem to solve: a safe three degrees of freedom autonomous rendezvous,
proximity operation, and docking. While the previous chapters can be read and under-
stood independently of each other, this chapter is built on all the concepts and ideas seen
so far. As such, it focuses on the implementation of the reinforcement learning framework
to solve the problem of this work.

First, the environment in which the learning Agent evolves is defined within the
Markov decision process framework. At this point, the state space and the action space
are formalized. Then, the discrete dynamics respecting the different modelisation choices
is formalized. Concerning the reward function, a proper section describes the logic used
to teach an Agent. Finally, the last section is dedicated to the Agent’s hyperparameters
introduced throughout the three previous chapters. Note that the implemented reward
logic and set of hyperparameters are specified in chapter 6.

5.1 ARPOD as a Markov Decision Process

For the sake of clarity, the definition and notations of a Markov decision process
presented in section 2.2 are briefly recalled below.

A Markov decision process is the underlying structure for a decision-making algorithm
providing a discrete-time mathematical framework. At each time step t = 0, 1, 2, ..., the
Agent is in a state St ∈ S , and it chooses an action At ∈ A (St). The environment
responds at the next time step by moving into a subsequent state St+1 ∈ S , and by
giving the Agent a corresponding reward Rt+1 ∈ R. This process goes on until an end
condition is met.

It follows that the different spaces have to be formalized to solve the specific problem
of this work. While the state space S and the action space A are described in this
section, the reward function, or reward logic, is presented in section 5.2.

Paris Matthieu 34

Chapter 5 - Reinforcement Learning Implementation

5.1.1 State Space

To satisfy the requirements of the Markov property, the Agent’s state must provide
sufficient information such that the transition to the following state is only a function of
the present state and the action. On the other hand, while unneeded information can be
added into the state without preventing the learning process, it slows it down considerably.

The Chaser dynamics introduced in equations 4.5 and 4.7 can be fully defined by
its position, velocity, attitude and angular velocity: x, y, ẋ, ẏ, θN , θ̇N . These accordingly
make up the six variables in the state.

St =
[
xt, yt, ẋt, ẏt, θN t, θ̇N t

]
(5.1)

In addition, a common trick to enhance the backpropagation process of artificial
neural networks is to scale the inputs so that their covariance is about the same and each
input variable has the same importance [41]. Therefore, six new variables taking their
values between −1 and 1 are built.

x̃ =
x

r0
; ỹ =

y

r0
; ˜̇x =

ẋ

vmax
; ˜̇y =

ẏ

vmax
; θ̃N =

θN
π

; ˜̇θN =
θ̇N

θ̇N max

Where r0 is the initial distance of the Chaser with respect to the Target, and θN is the
Chaser attitude wraps in [−π; π].
Consequently, for each time step t, the Chaser state St used as input for the artificial
neural networks is denoted S̃t and defined as follows.

S̃t =
[
x̃t, ỹt, ˜̇xt, ˜̇yt, θ̃Nt, ˜̇θNt] (5.2)

5.1.2 Action Space

While the state is the input of both the Actor and the Critic artificial neural networks
exploited by the Agent during the learning process, the output of the Actor network is
the action vector.
In this work, the actions of the Chaser are a velocity impulse ∆v from the thruster and a
commanded acceleration ψ̇ given to the reaction wheel. In addition, due to the discrete-
time model of a Markov decision process, a further assumption is made.

Assumption 6 Actuator actions are instantaneous impulses occurring at the
beginning of each time step.

Until now, the action vector was introduced as the output of the Actor artificial
neural network. This vision of the action vector was used to provide a simple explanation
but, at the same time, it shortcuts important details that are explained in this section.
The final layer of the Actor network uses a tanh activation function so that the mean of
each dimension of the distribution is between −1 and 1. However the standard deviation
of the distribution allows for values to be outside of this range, so the outputs are clipped

Paris Matthieu 35

Chapter 5 - Reinforcement Learning Implementation

element-wise back within this range if necessary. Let a tilde denote the real Actor artificial

neural network outputs (∆̃v, ˜̇ψ) ∈ [−1; 1]2. Consequently, at each time step t, the output
of the Actor network is defined as follows.

Ãt =
[
∆̃vt,

˜̇ψt] (5.3)

The goal is then to decrease the size of the action space A to ease the learning
process. Even if in theory, having an infinite action space and its proper reward logic
is a feasible strategy, in practice, it increases the complexity of the problem to such an
extent that the computing time becomes unfeasible. Consequently, the action space must
be large enough to include all the feasible actions, but also as small as possible to ease
the learning process.
Due to the time dependency of the problem, at each time step t the restricted sub-action
space At ⊂ A is defined from the state St. This sub-action space is divided into two
more sub-spaces: the reaction wheel acceleration space, and the thruster velocity impulse
space.

Before restricting these two action spaces, a few words must be devoted to the modeli-
sation of the actions. At each time step t, first the instantaneous reaction wheel action ψ̇t
changes the attitude of the Chaser to θN t+1 , then with this new orientation, the thruster
creates an instantaneous velocity impulse ∆vt that leads the Chaser to its subsequent
state St+1. With this sequence of actions in mind, it makes sense to first consider the
reaction wheel action space, and then the thruster action space.

Reaction Wheel Acceleration Space

The reaction wheel is the only actuator impacting the attitude of the Chaser and
therefore its action space is directly related to the constraints on both the attitude and
the actuator limitation. For the sake of clarity, the different constraints directly impacting
the attitude of the Chaser are recalled below.

ID Description Formalization

2 Maximum RW velocity |ψ| ≤ ψmax

3 Maximum RW acceleration |ψ̇| ≤ ψ̇max

6 Maximum angular velocity |θ̇N | ≤ θ̇N max

7 Maximum angular acceleration |θ̈N | ≤ θ̈N max

Table 5.1: Constraints on the attitude and the reaction wheel of the Chaser

By using the attitude dynamics described in equation 4.6 and its analytical solutions
in equations 4.7, one can easily determine the direct impact of these constraints on the
commended acceleration. Note that the discrete-time notation is used to stay coherent
with the Markov properties.

Paris Matthieu 36

Chapter 5 - Reinforcement Learning Implementation

ID Description Formalization

2 Maximum RW velocity |ψ̇t| ≤ ψmax−ψt
tstep

3 Maximum RW acceleration |ψ̇t| ≤ ψ̇max

6 Maximum angular velocity |ψ̇t| ≤ − Izz
D

θ̇N max−θ̇N t

tstep

7 Maximum angular acceleration |ψ̇t| ≤ − Izz
D
θ̈N max

Table 5.2: Constraints on the attitude of the Chaser and their impact on the commended
reaction wheel acceleration

where tstep refers to the length of the time step t. Consequently, the reaction wheel action
space at a given time step can be restricted by knowing the Chaser’s state and the reaction
wheel velocity. Hereafter, the boundaries of the reaction wheel action space at time step
t are denoted by ψ̇SUPt and ψ̇INFt .

Finally, the transition between the clipped output of the Actor network ˜̇ψt and the
reaction wheel acceleration ψ̇t is formalized.

ψ̇t = ˜̇ψt ψ̇SUPt − ψ̇INFt

2
+
ψ̇SUPt + ψ̇INFt

2
(5.4)

Thruster Velocity Impulse Space

The thrust action space is directly impacted by the constraints on the velocity of the
Chaser and the actuator limit. For the sake of clarity, the related constraints are recalled
below.

ID Description Formalization

1 Asymmetric bounded thrust F ∈ [Fmin;Fmax]

4 Recoverable relative velocity limit |ẋ| ≤ vmax and |ẏ| ≤ vmax

5 Bounded relative velocity limit ‖v‖ ≤ vdock + fs

√
Fmax
2m
‖r‖

Table 5.3: Constraints on the velocity and the thruster of the Chaser

First, the limit velocity must be determined. While the attitude dynamics is rela-
tively straightforward, the translational dynamics is more complex. Indeed, the latter is
described by the planar Clohessy-Wiltshire (CW) equations 4.4, which couple the velocity
and the position. To ease the following explanations, the analytical solution presented in
equations 4.5 is written with a matrix notation [39].

rt+1 = [Φrr(tstep)] rt + [Φrv(tstep)] vt (a)

vt+1 = [Φvr(tstep)] rt + [Φvv(tstep)] vt (b)
(5.5)

To respect constraints 5 and 4 at each time step t, it is needed to ensure that both the
initial velocity ‖vt+∆vt‖ and the subsequent velocity ‖vt+1‖ are lower than the bounded

Paris Matthieu 37

Chapter 5 - Reinforcement Learning Implementation

and recoverable relative velocity limits at their respective time step. In this work, the
limit imposed on the components of the velocity by constraint 4 is enforced by considering
the stricter constraint : ‖v‖ ≤ vmax.
In the case of the initial velocity, a temporary velocity limit vLIMtemp

t is directly computed
from constraints 4 and 5.

vLIMtemp
t = min

(
vmax, vdock + fs

√
Fmax
2m
‖rt‖

)
(5.6)

In addition, constraint 5 is a function of the relative distance. Therefore the final ve-
locity limit vLIMt must also ensure that the velocity vt+1 respects the constraints. To
do so, it is worth knowing the smallest relative distance rt+1 that could be reached
starting from rt with an attitude θN t+1. Since the velocity impulse ∆vt is still un-
known, the CW equation 5.5.a is applied with a guessed velocity. Hence, by consid-
ering vt ∈ {−vLIMtemp

t ; 0; vLIMtemp
t }, an approximation of the smallest reachable distance

rMIN
t+1 is found. Consequently, the smallest bounded relative velocity limit vMAX

t+1 is known.

vMAX
t+1 = vdock + fs

√
Fmax
2m

rMIN
t+1 (5.7)

Then, the velocity that must not be overcome at time step t to respect the constraints at
time step t+ 1 is computed by applying the CW equation 5.5.b with vMAX

t+1 and rt. This
velocity is denoted vMAX

t in the following equation.
Finally, the final velocity limit at time step t is derived.

vLIMt = min
(
vLIMtemp
t , vMAX

t

)
(5.8)

To sum up, at this point, the velocity that must not be overcome to respect con-
straints 4 and 5 is known. Now, the thruster velocity impulse space can be restricted by
considering the full set of constraints of table 5.3. Note that the bounded thrust constraint
can be translated into a velocity impulse constraint by equation 5.9.

∆vt =
Ft
m
∗ tstep (5.9)

where tstep is the length of time step t. In that case, the formalization of constraint 1 can
be rewritten: ∆vt ∈ [∆vtmin; ∆vtmax].

Finally, the boundaries of the thruster velocity impulse space at a given time step
can be derived.

∆vSUPt = min
(
∆vtmax, v

LIM
t − vt

)
∆vINFt = max

(
∆vtmin, −vLIMt − vt

) (5.10)

Then the transition between the clipped output of the Actor network ∆̃vt and the thruster
velocity impulse ∆vt is formalized.

Paris Matthieu 38

Chapter 5 - Reinforcement Learning Implementation

∆vt = ∆̃vt
∆vSUPt −∆vINFt

2
+

∆vSUPt + ∆vINFt

2
(5.11)

Note that the constraint on the actuator limit and the constraints on the Chaser
state have been handled separately, and in some cases, both limits cannot be respected
simultaneously. This case is faced when the impulse constrained by the upper velocity
limit vLIMt is lower than action space lower bond ∆vINFt or the other way round. In other
words, this case happens when the velocity impulse needed by the Chaser to remain in
the acceptable velocity range overcomes the physical capacity of its thruster.
When this situation is faced, the thruster velocity impulse is limited to its physical limi-
tation at the expense of the relative velocity constraints.

5.1.3 Discrete Dynamics

The set of equations describing the dynamics of the problem were introduced in
section 4.3 in their continuous form. This section aims to provide the reader with a clear
description of the discrete dynamics of the Chaser within the chosen modelisation of the
problem. The discrete dynamic equations are defined recursively, which means that the
state at any arbitrary time step is computed from the state at the previous time step.
This recursive behaviour highlights the complexity behind this problem: the final state
is the result of a sequence of actions. Therefore, when the Agent has to choose an action
at the beginning of the manoeuvre, it must take into account its consequences not only
in the next time step but after a sequence of steps. This choice-making mechanism is
formalized in chapter 2 and no additional words will be spent on it. This section dives
into the mathematical formalisation of this recursive problem.

The following description assumes that the state St at time step t is known and
computes the subsequent state St+1 where the initial state S0 is defined by the user. The
description of the state at any arbitrary time step is as follows.

St = [xt, yt, ẋt, ẏt, θN t, θ̇N t]

First, the subsequent attitude of the Chaser is computed from the previous one and
the instantaneous acceleration of the reaction wheel ψ̇t.

θ̇N t+1 = − D

Izz
ψ̇t tstep + θ̇N t

θN t+1 = θ̇N t+1 tstep + θN t

(5.12)

Then, the instantaneous velocity impulse of the thruster ∆vt is considered.

vx t = ẋt + sin(θN t+1) ∆vt

vy t = ẏt − cos(θN t+1) ∆vt
(5.13)

And finally, the remaining terms of the subsequent state are computed with the analytical

Paris Matthieu 39

Chapter 5 - Reinforcement Learning Implementation

solution of the CW equations.

xt+1 = [4− 3 cos(ntstep)]xt +
sin(ntstep)

n
vx t +

2

n
[1− cos(ntstep)] vy t

yt+1 = 6[sin(ntstep)− ntstep]xt + yt +
2

n
[cos(ntstep)− 1] vx t +

1

n
[4 sin(ntstep)− 3ntstep] vy t

ẋt+1 = 3n sin(ntstep)xt + cos(ntstep) vx t + 2 sin(ntstep) vy t

ẏt+1 = 6n[cos(ntstep)− 1]xt − 2 sin(ntstep) vx t + [4 cos(ntstep)− 3] vy t
(5.14)

This recurrence relation continues until an end condition is met. Hence, the episode
ends if the Chaser reaches the Target (i.e. r ≤ 1 m), if a terminal condition is met, or
simply if the limit on the number of time steps is reached. Note that more details about
terminal conditions are given during the reward logic design.

One may have noticed the strong importance of the time step length tstep on the
dynamic equations and the action spaces. Decreasing the time length implies a higher
control frequency leading to a more precise control of the Chaser. However, it increases
the sequence of actions needed to reach the Target and so the complexity of the problem.
Consequently, when the Chaser gets closer to the Target, precise control is preferable.
Hence, the length of the time step should decrease. A solution to realise it is to add the
time length into the Actor artificial neural network outputs. By doing so, the Agent has
the possibility to adjust it on its own according to its needs. However, it increases the
complexity of the learning process and therefore the computation time.
For this work, the will to keep the computation time as small as possible leads to a
decrease in the time length according to the logic presented in table 5.4.

Condition length of time step t

rt > 1000m tstep = 10 s

1000m ≥ rt > 100m tstep = 5 s

100m ≥ rt > 10m tstep = 2 s

10m ≥ rt > 5m tstep = 1 s

5m ≥ rt tstep = 0.5 s

Table 5.4: Switching logic of the time step length according to the relative distance

5.2 Reward logic

Central to reinforcement learning is the idea of a reward function, which indicates to
the learning Agent what states are preferred, and what states should be avoided. To make
reinforcement learning algorithms run in a reasonable amount of time, it is necessary to
use a well-chosen reward function that gives appropriate indications to the Agent. A
faulty reward logic or a too complex one often changes the problem in an unanticipated
way that leads to poor solutions.
The most common idea is to use so-called shaping rewards. These rewards are based on
potential functions over the state and give the Agent hints at each time step on how well

Paris Matthieu 40

Chapter 5 - Reinforcement Learning Implementation

it is performing [42]. These functions commonly take the form of linear and exponential
ones.
On the other hand, sparse rewards do not lead to the desired solution. It is explained
by the fact that, if the Agent does not receive any reward, then it does not know how
to update its parameters. So it continues to take random actions with the current set of
parameters until it gets nonzero rewards. The sequence of actions that resulted in the
reward might be very long, and it is not clear which of those actions were useful in getting
the reward. This problem is known as credit assignment in reinforcement learning [43].
However, sparse rewards are used in addition to shaping rewards. As such, the rewards
do not suffer from the credit assignment problem since shaping rewards tackle it. In this
case, sparse rewards are used to give the Agent strong positive or negative indications
when some user-defined conditions are met.

Consequently, the reward logic can be divided into two categories: shaping rewards
Rshaping
t , and sparse rewards Rsparse

t .

Rt = Rshaping
t +Rsparse

t

When designing these two functions, one must be careful not to create local maxima that
might teach the Agent a wrong solution. Hence, the general idea used in this work is to
give positive rewards for “good” actions and negative rewards otherwise.

5.3 The Agent’s Hyperparameters

So far in this chapter, only the environment in which the learning Agent interacts
has been designed. Unlike the Agent, the environment reflects the dynamics and the
constraints of the problem. As such, each environment is unique and must be specifically
designed for every problem. On the other hand, the Agent is built on a generic algorithm
that could be used in many different problems with just a minimum of changes. Never-
theless, Agent behaviour relies on parameters that have a major impact on the learning
process. These parameters are commonly called hyperparameters to differentiate them
from the learned parameters of artificial neural networks (i.e. weights and biases).
The hyperparameters of the Proximal Policy Optimisation algorithm (PPO) were intro-
duced throughout chapters 2 and 3. For the sake of clarity, they are recalled with their
meanings.

The PPO algorithm introduced in chapter 2 is a policy gradient method. Policy
gradient algorithms have two steps: first, transitions are gathered, and then the policy is
improved. In other words, policy gradient methods gather sequences of states, rewards,
and actions called transitions, and use them to update the policy. Then, the old transitions
are discarded and new transitions are gathered using the new policy. This leads to the
first grouping of hyperparameters that deal with experience collection:

Paris Matthieu 41

Chapter 5 - Reinforcement Learning Implementation

horizon The algorithm gathers trajectories as far out as the horizon limits
before gradient descent is performed. Typically a longer horizon
corresponds to more stable training updates.

mini-batches The mini-batch size corresponds to how many transitions are used for
each gradient descent update. This should always be a fraction of the
horizon.

epoch The number of epoch is the number of passes through the transition
buffer during gradient descent. The larger the mini-batch size, the
larger it is acceptable to do this. Decreasing the number of epoch
ensures more stable updates, at the cost of slower learning.

The second set of hyperparameters deals with how the old policy is updated to
the new policy. As seen in section 2.3.2, an advantage function translates how far out
should rewards in the future influence the policy. The implemented algorithm uses the
Generalized Advantage Estimation (section 2.3.3) to alter the reward stream with two
parameters: γ and λ. these two parameters perform a bias-variance trade-off of the
trajectories and can also be viewed as a form of reward shaping.

γ It is known as the discounting factor. It controls the greediness of the Agent: the
smaller γ is, the more immediate rewards are prioritized over long term rewards.

λ It can be seen as a parameter performing a time average of the advantage function.
Decreasing it induces bias when the value function is inaccurate, but also it
reduces the variance. As a rule of thumb, the best value of λ is lower than the best
value of γ.

In addition, to avoid too large updates of the policy that could make the learning process
collapse, the PPO algorithm uses a surrogate loss function. This work uses the clipped
loss version explained in section 2.4.2 to keep the step from the old policy to the new
policy within a safe range.

ε It corresponds to the acceptable threshold of divergence between the old and new
policies during a gradient update. Setting this value low results in more stable
updates, but it also slows the learning process.

Finally, the surrogate objective function formalized in equation 2.30 includes an entropy
term. It works as a regularizer: a policy has maximum entropy when all policies are
equally likely and minimum when one action probability of the policy is dominant.

entropy coefficient It acts on the exploitation/exploration dilemma by preventing
premature convergence of one action probability. It commonly
decreases during training to ensure exploitation at the end of
the process.

The last set of hyperparameters, introduced in chapter 3, refers to the two different
artificial neural networks used by the Agent. Both networks are characterised by their

Paris Matthieu 42

Chapter 5 - Reinforcement Learning Implementation

structure and their learning rate. Note that the latter is closely related to the learning
process through the gradient descent algorithm.

number of layers It corresponds to how many hidden layers are present between
the input layer and before the output layer. While fewer layers
are likely to train faster and more efficiently. More layers may
be necessary for complex control problems.

hidden neurons It represents how many units are in each fully connected layer of
the neural network. For problems where the action is a complex
interaction between the state variables, the number of hidden
neurons should be large.

learning rate It is the strength of each gradient descent update step. This
should typically be decreased if training is unstable, and the
reward does not consistently increase.

Together with the reward function, the hyperparameters need to be tuned to achieve
a desired level of performance. While some rules of thumb are given above to tune them,
it is not enough to reach values leading to correct behaviour. Therefore, most of the
tuning comes from a long series of trial and error.

Paris Matthieu 43

Chapter 6

Test Cases

Finally, this chapter aims to study test cases based on the reinforcement learning
implementation of an ARPOD problem presented in chapter 5. While the state space
and the action space are clearly defined in the previous chapter, the specific reward logic
and set of hyperparameters are specified for each test case. This structure emphasizes
the close relationship between a given problem and the design of the reward function and
hyperparameters.

The full description of the problem was presented throughout chapter 3. However, a
few words are worth being devoted to recall the main objectives of the problem.
The algorithm has to compute a trajectory allowing the Chaser to dock with the Target
by respecting a set of constraints modelling the limitation of the actuators and the safety
of the manoeuvre. This trajectory is made of three phases. First the rendezvous phase
between 10 km and 1 km where the Chaser has to get closer to the Target. Then, the
proximity operation phase between 1 km and 100 m in which the Chaser still has to go
closer but must also reach the docking cone by the end of the phase. Finally, the docking
phase where the Chaser has to safely dock with the Target while remaining inside the
docking cone.

The first test case with an initial relative distance of 1 km is analyzed. This case
focuses on the proximity operation and the docking phase to have a close look at the
ability of the algorithm to solve highly constrained problems. A second case studies the
behaviour of the algorithm when solving a full ARPOD problem.

The following results were produced using Python and Pytorch on a HP Pavilion 15
with an Intel Core i7 CPU, a NVIDIA GeForce 840M, and 6 GB of RAM.

6.1 Case 1: Proximity Operation and Docking

This case focuses on the ability of reinforcement learning algorithms to solve highly
constrained problems. Hence, by restricting the problem to the proximity operation and
the docking phases, the Agent has to solve the problem with the full set of constraints
presented in section 4.4. In addition, by skipping the rendezvous phase, the length of the
trajectory and therefore the length of the sequence of actions leading to docking is kept
to a minimum.

Paris Matthieu 44

Chapter 6 - Test Cases

To do so, the initial relative distance is fixed at 1 km, the Chaser is oriented toward
the Target, and both the relative translation and angular velocity are null. In addition,
two initial configurations are studied:

• The so-called V-bar configuration where the Chaser initial position is along the
tangential direction on the Hill’s frame.

S0 = [0, 1000, 0, 0, 0, 0]

• And the R-bar configuration where the Chaser initial position is along the radial
direction on the Hill’s frame.

S0 = [1000, 0, 0, 0, −π
2
, 0]

In both configurations, the Target does not rotate and has its docking port outward
normal aligned with the tangential direction et.

Figure 6.1: Unscaled representation of the R-bar and V-bar initial configurations with the
Target docking port outward normal aligned with the tangential direction (i.e. nt ≡ et).
The docking cone is displayed in red.

6.1.1 Reward Logic

During the design process of the sparse and shaping reward functions, a general idea
is respected to avoid creating local minima. Hence, the following reward function gives
positive rewards for “good” actions and negative rewards otherwise.

Paris Matthieu 45

Chapter 6 - Test Cases

Shaping Rewards

The overall goal of the Chaser is to reach the Target. Therefore, the first shaping
reward function is used to teach the Agent to decrease the relative distance separating
the two spacecraft. To do so, a function that strictly increases when the relative distance
decreases is needed. To respect the general design idea, the function also has to be
negative when the relative distance is bigger than the initial one. Hence, the function
used is as follows. Note that an exponential term is added to enhance the final docking
manoeuvre.

Rdistance
t = 10 + 10

rt
r0

+ 5 e1−0.01rt (6.1)

Once the Chaser enters the docking phase (i.e. rt ≤ 100 m) it must control its
attitude to dock with a relative angle lower than 5 degrees. The function is then designed
by following the same strategy as previously. The only difference is that, in this case,
the function must be positive when the absolute attitude angle is lower than 5 degrees.
However, it is important that this function does not overcome the previous one otherwise
the Agent might try to have a null attitude angle at the expense of reaching the Target.

Rattitude
t =

{
10 5−|θN t|

180
if rt ≤ 100m

0 otherwise
(6.2)

where θN t is the attitude angle in degrees clipped between −180 and 180.

Finally, the shaping reward function is then the sum of the two previous functions.

Rshaping
t = Rdistance

t +Rattitude
t

Sparse Rewards

Sparse rewards are used for two distinct purposes: to increase the stability with
positive reward named bonus, and to avoid some situations with negative reward named
penalty.

To begin with, the bonus logic is explained. Bonuses are positive values used to
reward the Agent for reaching some milestones. Hence, it helps the Agent to understand
its environment and therefore to solve the problem. In this implementation, a bonus is
given for the following reasons.

• When the Chaser is in the docking phase.

rt ≤ 100m

• When the Chaser is in the docking range. This condition ends the episode.

rt ≤ 5m

• When the Chaser is in the docking range with the acceptable attitude angle.

rt ≤ 5m and |θN t| ≤ 5 deg

Paris Matthieu 46

Chapter 6 - Test Cases

Furthermore, the Agent may also receive penalties when it is in some user-defined
situation. Concretely, penalties take the form of negative rewards that deter the Agent
from exploring a given part of the state space. In this test case, penalties are given for
the following reasons.

• When the relative distance increases to dissuade the Chaser from moving away from
the Target.

rt > rt−1

• When the Chaser explores the region farther than the initial relative distance. A
margin of 10m is added to help the Agent to find the correct direction to follow.

rt > r0 + 10m

This is a terminal condition for the episode since there is no use in exploring this
region. No other penalty conditions are terminal in order to enable the Agent to
learn even if it is in “bad” situations.

• When the Chaser does not respect the velocity constraints 4 and 5. Indeed, as
explained in section 5.1.2, despite the reduction of the thruster action space, it may
happen that the velocity impulse needed by the Chaser to remain in the acceptable
velocity range overcomes the physical capacity of its thruster.

vt > vmax or vt > vdock + fs

√
Fmax
2m

rt

• When the Chaser is in the proximity operation phase (i.e. rt ≤ 1000 m) and the
Agent explores a region outside of the docking cone. This point aims to teach the
Agent to respect constraint 8.

rt ≤ 1000m and (xt − yt > 1 or − xt − yt > 1)

To enhance this point, an extra penalty is also given if the Chaser misses the Target.

rt ≤ 1000m and yt < −1

Table 6.1 summarizes and quantifies the bonus and penalty logic in the same order
of their description.

Condition Sparse reward

rt ≤ 100m Rsparse
t = Rsparse

t + 10

rt ≤ 5m Rsparse
t = Rsparse

t + 500

rt ≤ 5m and |θN t| ≤ 5 deg Rsparse
t = Rsparse

t + 500

rt > rt−1 Rsparse
t = −10

rt > r0 + 10m Rsparse
t = −50

vt > vmax or vt > vdock + fs

√
Fmax
2m

rt Rsparse
t = −10

rt ≤ 1000m and (xt − yt > 1 or −xt − yt > 1) Rsparse
t = 0

rt ≤ 1000m and yt < −1 Rsparse
t = −10

Table 6.1: Case 1: Sparse reward logic for the attribution of bonuses and penalties

Paris Matthieu 47

Chapter 6 - Test Cases

Unlike bonuses, penalties are not added to sparse rewards but replace them. This
gives more importance to a penalty when the Chaser is in a closer phase. For instance,
if the Chaser is in the docking phase and makes an action that increases the relative
distance with the Target, then a sparse reward of -10 will replace one of 10. But if the
same situation occurs in the rendezvous phase, then -10 will replace 0. Hence, the Agent
receives hints telling it that violating this rule is worse when the Chaser is closer to the
Target.

6.1.2 Hyperparameters

While some rules of thumb are given in section 5.3 to tune the hyperparameters, it
is not enough to reach values leading to correct behaviour of the learning Agent. There-
fore, most of the tuning comes from a long series of trial and error. The selected set of
hyperparmeters is presented in the following table.

Name Value

Horizon 64

mini-batch 16

epoch 3

γ 0.99

λ 0.65

ε 0.001 if episode < 10000
0.0001 otherwise

entropy coefficient 0.001 if episode < 10000
0.0005 if 10000 ≤ episode < 20000
0.0001 if 20000 ≤ episode < 25000
0 otherwise

Table 6.2: Case 1: Hyperparameters

The Actor and the Critic neural networks have the same structure with the only
difference in the activation function of their output layer. This structure is inspired by
the literature and formalized in tables 6.3 and 6.4. [22].

Layer Neurons activation function

First hidden 130 ReLU

Second hidden 90 ReLU

Third hidden 60 ReLU

Output 2 tanh

Table 6.3: Case 1: Actor artificial neural network structure

Paris Matthieu 48

Chapter 6 - Test Cases

Layer Neurons activation function

First hidden 130 ReLU

Second hidden 90 ReLU

Third hidden 60 ReLU

Output 1 linear

Table 6.4: Case 1: Critic artificial neural network structure

To avoid too long simulations, the maximum number of time steps per episode is
fixed at 128.

6.1.3 Results

This test case focuses on the ability of the Agent to solve the problem while respecting
constraints. To do so, the two initial configurations displayed in figure 6.1 are analyzed.
The V-bar initial configuration appears as the easiest one since the Chaser starts the
manoeuvre within the extension of the docking cone. Hence, the Agent only has to learn
how to dock by remaining inside the docking cone. On the other hand, with the R-bar
initial configuration, the Agent must also learn how to reach the docking cone.

V-bar initial configuration

The best solution trajectory found by the Agent is displayed in figure 6.2 after training
the Agent for 30,000 episodes, which took about 3 hours.
The final state of the trajectory attests that the Chaser docks with the Target.

‖rfinal‖ = 0.89m and |θN final| = 2.4 deg

Figure 6.2: Case 1 - V-bar configuration: Full trajectory of the solution found (left), and
trajectory zoomed on the Target (right). The docking cone is displayed in red.

Paris Matthieu 49

Chapter 6 - Test Cases

It can be seen that the Chaser remains inside the docking cone during the entire
docking phase. Therefore, the implemented reward function enables the Chaser to respect
the docking cone constraint. In addition, the constraints enforced by the restriction of
the action spaces are also respected. This result can be observed in figure 6.3 for the
actuators physical limitation, and in figure 6.4 for the safety constraints.
Consequently, the solution found by the Agent represents a feasible trajectory leading to
a safe docking of the Chaser with the Target.

One may remember that the time step length is decreased when the Chaser gets
closer to the Target in order to have a more precise control. This can be observed in
the following figures by noticing the increase in the variation frequency of the different
quantities at the end of the manoeuvre. In addition, The variations in the velocity impulse
limits are also due to the reduction of the time step length. Indeed, since the thrust limits
are fixed, from equation 5.9 it can be understood that a decrease in the time step length
implies a decrease in the velocity impulse limits.

Figure 6.3: Case 1 - V-bar configuration: Behaviour of the Thruster in terms of thrust
and commanded velocity impulse (left), and of the Reaction Wheel in terms of angular
velocity and commanded angular acceleration (right).

Figure 6.4: Case 1 - V-bar configuration: Relative velocity of the Chaser (left), and its
angular velocity and acceleration (right).

Figure 6.4(left) displays two velocity limits: the fixed recoverable relative velocity limit,
and the bounded relative velocity limit that decreases when the Chaser gets closer to
the Target. The respect of the velocity constraints is due to both the reduction of the

Paris Matthieu 50

Chapter 6 - Test Cases

action space and the reward logic. Therefore, the latter implies that they can be violated.
Nonetheless, in this case the velocity constraints are respected.

To understand the learning behaviour of the Agent, the learning curve displayed
hereafter must be considered. In this simulation, the Agent does not converge to a solution
but instead finds one thanks to the variance of the learning process. In other words, the
Agent finds an open-loop solution. To have a close-loop solution, the artificial neural
networks should be fully trained which would imply that the learning curve converges to
the solution.

Figure 6.5: Case 1 - V-bar configuration: Learning behavior of the Agent (light blue),
and its running average over 100 episodes (dark blue).

R-bar initial configuration

In this more complex configuration, the Agent has to understand that there is a
docking cone by exploring its environment. Then, it has to learn how to dock by reaching
and remaining inside the docking cone.
A solution trajectory is found after training the Agent for 30,000 episodes, which took
about 3 hours.
The final state of the trajectory attests that the Chaser docks with the Target.

‖rfinal‖ = 0.56m and |θN final| = 4.9 deg

Paris Matthieu 51

Chapter 6 - Test Cases

Figure 6.6: Case 1 - R-bar configuration: Full trajectory of the solution found (left), and
trajectory zoomed on the Target (right). The docking cone is displayed in red.

The different constraints about the actuator physical limitation and safety are again
respected as can be seen in figures 6.7 and 6.8.

Figure 6.7: Case 1 - R-bar configuration: Behaviour of the Thruster in terms of thrust
and commanded velocity impulse (left), and of the Reaction Wheel in terms of angular
velocity and commanded angular acceleration (right).

Figure 6.8: Case 1 - R-bar configuration: Relative velocity of the Chaser (left), and its
angular velocity and acceleration (right).

Paris Matthieu 52

Chapter 6 - Test Cases

In this more complex configuration, the Agent again finds a solution thanks to the
variance of the learning process. By giving a closer look at the learning curve in figure
6.9, one can notice that only two episodes out of 30,000 are solutions. In the previous
configuration, about ten episodes were solutions. This reflects the higher complexity of
the R-bar configuration.

Figure 6.9: Case 1 - R-bar configuration: Learning behavior of the Agent (light blue),
and its running average over 100 episodes (dark blue).

6.2 Case 2: Full ARPOD manoeuvre

The second and last test case aims to solve the full problem. To do so, the initial
relative distance is fixed at 5 km, the Chaser is oriented toward the Target, and both the
relative translation and angular velocity are null. By starting this far from the Target,
the sequence of actions to dock is longer, and so the problem is harder to solve by the
Agent.
In order not to increase too much the complexity, this case focuses on the V-bar initial
configuration.

S0 = [0, 5000, 0, 0, 0, 0]

6.2.1 Reward Logic

The design of this reward logic follows the same ideas as the one in test case 1 (section
6.1.1). Only a few changes are made. For the sake of clarity, both shaping rewards and
sparse rewards are recalled below by specifying the changes with respect to the previous
case.

Shaping Rewards

While the shaping reward function dealing with the relative distance is the same, the
one concerning the attitude is slightly different. Indeed, the linear term is not changed
but an exponential term is added to encourage the Agent to keep an absolute attitude
lower than 5 degrees.

Rdistance
t = 10 + 10

rt
r0

+ 5 e1−0.01rt (6.3)

Paris Matthieu 53

Chapter 6 - Test Cases

Rattitude
t =

{
10 5−|θN t|

180
+ 4 e−0.6 |θN t| if rt ≤ 100m

0 otherwise
(6.4)

where θN t is the attitude angle in degrees clipped between −180 and 180.

Finally, the shaping reward function is then the sum of the two previous functions.

Rshaping
t = Rdistance

t +Rattitude
t

Sparse Rewards

With respect to the first case, only an extra bonus is given for the following reason.

• When the Chaser is in the proximity operation phase.

rt ≤ 1000m

Consequently, table 6.5 summarizes and quantifies the bonus and penalty logic of
this test case.

Condition Sparse reward

rt ≤ 1000m Rsparse
t = Rsparse

t + 10

rt ≤ 100m Rsparse
t = Rsparse

t + 10

rt ≤ 5m Rsparse
t = Rsparse

t + 500

rt ≤ 5m and |θN t| ≤ 5 deg Rsparse
t = Rsparse

t + 500

rt > rt−1 Rsparse
t = −10

rt > r0 + 10m Rsparse
t = −50

vt > vmax or vt > vdock + fs

√
Fmax
2m

rt Rsparse
t = −10

rt ≤ 1000m and (xt − yt > 1 or −xt − yt > 1) Rsparse
t = 0

rt ≤ 1000m and yt < −1 Rsparse
t = −10

Table 6.5: Case 2: Sparse reward logic for the attribution of bonuses and penalties

6.2.2 Hyperparameters

The set of hyperparmeters used in this second test case is as follows. Note that the
Actor and Critic neural networks are unchanged with respect to the first case.

Paris Matthieu 54

Chapter 6 - Test Cases

Name Value

Horizon 64

mini-batch 16

epoch 4

γ 0.98

λ 0.65

ε 0.001

entropy coefficient 0.001 if episode < 20000
0.0005 otherwise

Table 6.6: Case 2: Hyperparameters

Layer Neurons activation function

First hidden 130 ReLU

Second hidden 90 ReLU

Third hidden 60 ReLU

Output 2 tanh

Table 6.7: Case 2: Actor artificial neural network structure

Layer Neurons activation function

First hidden 130 ReLU

Second hidden 90 ReLU

Third hidden 60 ReLU

Output 1 linear

Table 6.8: Case 2: Critic artificial neural network structure

To avoid too long simulations, the maximum number of time steps per episode is
fixed at 150.

6.2.3 Results

A solution trajectory is found after training the Agent for 30,000 episodes, which
took about 5 hours. The longer simulation time is explained by the longer sequence of
actions needed to reach the Target.
The final state of the trajectory attests that the Chaser docks with the Target.

‖rfinal‖ = 0.98m and |θN final| = 4.6 deg

Paris Matthieu 55

Chapter 6 - Test Cases

Figure 6.10: Case 2: Full trajectory of the solution found (left), and trajectory zoomed
on the Target (right). The docking cone is displayed in red.

The different constraints about the actuator physical limitation and safety are still
respected as can be seen in figures 6.11 and 6.12.

Figure 6.11: Case 2: Behaviour of the Thruster in terms of thrust and commanded velocity
impulse (left), and of the Reaction Wheel in terms of angular velocity and commanded
angular acceleration (right).

Figure 6.12: Case 2: Relative velocity of the Chaser (left), and its angular velocity and
acceleration (right).

Paris Matthieu 56

Chapter 6 - Test Cases

While in the previous cases the bounded recoverable velocity limit is dominant, in
this test case starting with a bigger initial relative distance, both velocity constraints
are impacting the result. Indeed, as it can be seen in Figure 6.12(left), for a relative
distance higher than 1152.48m the fixed recoverable relative velocity limit (constraint 4)
is dominating the bounded relative velocity limit (constraint 5).

In this second case, the sequence of actions that has to be found is longer. As can
been seen in the figures above, the Chaser still manages to dock with the Target by re-
specting all the constraints. However, by considering the learning behavior of the Agent
represented in the figure below, it can be seen that it does not converge to a solution.

Figure 6.13: Case 2: Learning behavior of the Agent (light blue), and its running average
over 100 episodes (dark blue).

6.3 Discussion

Throughout these two test cases, the behaviour of the Agent and the implementation
of the problem can be put in perspective. Consequently, the promise of reinforcement
learning methodology and its limitations can be discussed.

It can be observed that all the test cases presented previously respect the constraints
imposed by the problem. This observation confirms the idea to model constraints by both
restricting the action space and designing a proper reward logic. Indeed, the former implies
that constraints cannot be violated and therefore are systematically respected. In this
work, the reward function is used only to enforce the docking cone constraint and partially
the velocity constraints. Both test cases prove that the Agent is able to understand and
respect these two constraints. Consequently, reinforcement learning algorithms appear to
be a promising technique to solve highly constrained problems.

However, none of the test cases converge toward the solution but instead find a
solution thanks to the variance of the learning process. Hence, the solutions found are
open-loop ones. It means that they provide a set of waypoints respecting all the constraints
of this non-linear problem that could help fulfil requirements for increased autonomy in
future spacecraft. Nonetheless, the motivation of using reinforcement learning algorithms
is to generate a policy that is implementable as a feedback control law. Therefore, having
fully trained networks that lead to successful learning convergence is a challenge that still
needs to be addressed.
Furthermore, by carefully tuning the hyperparameters, as well as the reward function,

Paris Matthieu 57

Chapter 6 - Test Cases

the previous limitation can be mitigated. However, the duration of the simulations makes
this task very challenging. One may have noticed that the simple cases presented in this
work already take a few hours to run with an average computer. For successful learning,
the simulation time could go up to days with powerful computers. Consequently, the trial
and error process necessary to properly tune the hyperparameters and reward function
turns out to be very time-consuming.

Paris Matthieu 58

Conclusion

The emerging field of reinforcement learning provides a potential route to solve some
of the hardest non-linear problems in spacecraft dynamics. In this Master’s thesis, the
reinforcement learning algorithm known as Proximal Policy Optimization (PPO) is ap-
plied to under-actuated spacecraft guidance and control problems to better understand
its applicability to such tasks. More specifically, this work focuses on the Autonomous
Rendezvous, Proximity Operation and Docking (ARPOD) manoeuvre problem. This spe-
cific problem is very relevant to new space applications. However, ensuring mission safety
is challenging. Hence, the objective and constraints of this work reflect the complexity
necessary for a safe and efficient trajectory.

To begin with, this work gives a clear insight into the implementation of the reinforce-
ment learning framework for a highly constrained problem. While the reward function
is at the core of such algorithms, designing an efficient function that can model various
constraints is tricky. In this thesis, constraints are handled by a hybrid modelisation
based on restricted action spaces, shaping rewards, and sparse rewards. The use of this
hybrid implementation eases the learning process and offers a way to ensure the respect
of constraints.
Furthermore, the dilemma of exploration vs. exploitation is a challenge in most applica-
tions of reinforcement learning. In this work, the variance enables the Agent to explore
different control actions and better improve its maximization of rewards. Thereby, it man-
ages to solve the problem on isolated episodes. Even if a successful learning convergence
would provide a low-cost control solution well suited for spacecraft, the solutions found
can be seen as open-loop ones. As such, they provide a set of waypoints respecting all
the constraints of this non-linear problem that could help fulfil requirements for increased
autonomy in future spacecraft.
Finally, a limitation of reinforcement learning techniques is highlighted. Indeed, long-
range manoeuvres such as a full ARPOD problem requires a long sequence of actions.
However, by increasing the sequence of actions the problem becomes harder to solve by
the Agent since action consequences are postponed. Consequently, the learning process
turns out to be longer and therefore the proper tuning of the reward function and the
hyperparameters of the PPO algorithm is more time-consuming.
Nevertheless, for short-range manoeuvres, the PPO algorithm appears to be a promising
technique to solve highly constrained problems in spacecraft dynamics.

Paris Matthieu 59

Bibliography

Future Work

While the results of this research demonstrate the promise of a reinforcement learn-
ing approach for solving highly constrained problems in spacecraft dynamics, more work
will be required to address its present limitations. The absence of successful learning
convergence is a significant challenge that needs to be addressed. Indeed, the optimality
and robustness of the reinforcement learning solution could only be studied with a fully
trained Agent. While Agent behaviour relies on the design of the reward function and the
tuning of the hyperparameters, the relatively long duration of the learning process makes
these tasks challenging.
A possible research focus lies in the improvement of the reinforcement learning algorithm.
The clipping variant of the PPO algorithm is used in this work. Since this version intro-
duced an additional hyperparameter, the KL divergence version would be worth investing
to shortcut the tuning of the clipping parameter.
In addition, giving a closer look at the internal status of the artificial neural networks
would enable their structure to be refined. In that case, a TensorFlow implementation of
the algorithm would be necessary.

Finally, while this work already considers a large set of constraints, additional con-
cerns on fuel consumption or mission time are worth being addressed. While the current
implementation teaches the Agent how to safely dock, it does not consider the duration
of the manoeuvre. Therefore, this richer problem would lead to a more realistic solution
at the expense of a trickier reward function design.

Paris Matthieu 60

Bibliography

[1] A. Flores-Abad et al. “A Review of Space Robotics Technologies for On-orbit Ser-
vicing”. In: Progress in Aerospace Sciences 68 (2014), pp. 1–26.

[2] K.G. Symonds et al. “Operational Reality of Collision Avoidance Manoeuvres”. In:
SpaceOps 2014 Conference (2014), p. 1746.

[3] D. Woffinden and D. Geller. “Navigating the road to autonomous orbital ren-
dezvous”. In: Journal of Spacecraft and Rockets 44.4 (2007), pp. 898–909.

[4] M.S. Smith. Soviet Space Programs, 1971–75: Overview, Facilities and Hardware,
Manned and Unmanned Flight Programs, Bioastronautics, Civil and Military Appli-
cations, Project of Future: Program Details of Man-Related Flights. Ed. by Science
Policy Research Division. Vol. 1. 1976. Chap. 3, pp. 173–242.

[5] B.C. Hacker and J.M. Grimwood. On the Shoulders of Titans: A History of Project
Gemini. Ed. by NASA SP-4203. 1977, pp. 1–16.

[6] B.C. Hacker and J.M. Grimwood. On the Shoulders of Titans: A History of Project
Gemini. Ed. by NASA SP-4203. 1977. Chap. 13, pp. 297–323.

[7] A.A. Siddiqi. Challenge to Apollo: The Soviet Union and the Space Race, 1945–1974:
Getting Back on Track. Ed. by NASA SP-4408. 2000. Chap. 14, pp. 609–652.

[8] I. Kawano et al. “Result of Autonomous Rendezvous Docking Experiment of En-
gineering Test Satellite-VII”. In: Journal of Spacecraft and Rockets 38.1 (2001),
pp. 105–111.

[9] I.T. Mitchell et al. “GNC Development of the XSS-11 Micro-Satellite for Autonomous
Rendezvous and Proximity Operations”. In: AAS Paper 06-014 (2006).

[10] S. McCamish, M. Romano, and X. Yun. “Autonomous distributed control algo-
rithm for multiple spacecraft in close proximity operations”. In: AIAA Guidance,
Navigation and Control Conference and Exhibit, Hilton Head, SC (2007).

[11] R. Bevilacqua, T. Lehmann, and M. Romano. “Development and Experimentation
of LQR/APF Guidance and Control for Autonomous Proximity Maneuvers of Mul-
tiple Spacecraft”. In: Acta Astronautica 68 (2011), pp. 1260–1275.

[12] S. Di Cairano, H. Park, and I. Kolmanovsky. “Model predictive control approach for
guidance of spacecraft rendezvous and proximity maneuvering”. In: International
Journal of Robust and Nonlinear Control 22.12 (2012), pp. 1398–1427.

[13] A. Weiss et al. “Model Predictive Control of Three Dimensional Spacecraft Relative
Motion”. In: American Control Conference, Montréal (2012), pp. 173–178.

Paris Matthieu 61

Bibliography

[14] I. Garcia and J.P. How. “Trajectory Optimization for Satellite Reconfiguration Ma-
neuvers with Position and Attitude Constraints”. In: American Control Conference,
Portland, OR (2005).

[15] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Na-
ture 518.7540 (2015), pp. 529–533.

[16] D. Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[17] D. Silver et al. “Mastering the game of Go without human knowledge”. In: Nature
550.7676 (2017), pp. 354–359.

[18] D.M. Chan and A. Agha-mohammadi. “Autonomous Imaging and Mapping of Small
Bodies using Deep Reinforcement Learning”. In: IEEE Aerospace Conference, Big
Sky, MT (2019).

[19] A. Scorsoglio et al. “Actor-Critic Reinforcement Learning Approach to Relative
Motion Guidance in Near-Rectilinear Orbit”. In: 29 AAS/AIAA Space Flight Me-
chanics Meeting, Ka’anapali, HI (2019).

[20] B. Gaudet, R. Linares, and R. Furfaro. “Deep Reinforcement Learning for Six
Degree-of-Freedom Planetary Powered Descent and Landing”. In: Advances in Space
Research 65.7 (2020), pp. 1723–1741.

[21] J. Broida and R. Linares. “Spacecraft Rendezvous Guidance in Cluttered Envi-
ronments Via Reinforcement Learning”. In: 29 AAS/AIAA Space Flight Mechanics
Meeting, Ka’anapali, HI (2019), pp. 1–15.

[22] C.E. Oestreich, R. Linaresy, and R. Gondhalekar. “Autonomous Six-Degree-of-
Freedom Spacecraft Docking Maneuvres via Reinforcement Learning”. In: AAS/AIAA
Astrodynamics Specialist Virtual Lake Tahoe Conference (2020).

[23] K. Hovell and S. Ulrich. “On Deep Reinforcement Learning for Spacecraft Guid-
ance”. In: AIAA SciTech 2020 Forum, Orlando, FL (2020).

[24] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. 2nd ed. The
MIT Press Cambridge, 2018.

[25] H. van Hasselt. Reinforcement Learning in Continuous State and Action Spaces.
Ed. by Springer Berlin Heidelberg. 2013, pp. 207–251.

[26] J. Schulman et al. High-Dimensional Continuous Control Using Generalized Advan-
tage Estimation. ICLR 2016, 2018.

[27] I. Grondman et al. “A Survey of Actor-Critic Reinforcement Learning: Standard
and Natural Policy Gradients”. In: IEEE Transactions on Systems, Man, and Cy-
bernetics - Part C 42.6 (2012).

[28] J. Schulman et al. “Trust Region Policy Optimization”. In: The Journal of Machine
Learning Research 37 (2015).

[29] J. Schulman et al. “Proximal Policy Optimization Algorithms”. In: OpenAI (2017).

[30] V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: The
Journal of Machine Learning Research 48 (2016).

[31] S. Ruder. “An overview of gradient descent optimization algorithms”. In: (2017).

[32] R.S. Sutton. “Two problems with backpropagation and other steepest-descent learn-
ing procedures for networks”. In: (1986).

Paris Matthieu 62

Bibliography

[33] N. Qian. “On the momentum term in gradient descent learning algorithms”. In:
Neural Networks : The Official Journal of the International Neural Network Society
12 (1999), pp. 145–151.

[34] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research
12 (2011), pp. 2121–2159.

[35] T. Tieleman and G. Hinton. “Lecture 6.5-RMSprop: Divide the gradient by a run-
ning average of its recent magnitude”. In: COURSERA: Neural networks for ma-
chine learning (2012).

[36] D.P. Kingma and J.L. Ba. “Adam: a Method for Stochastic Optimization”. In:
International Conference on Learning Representations (2015).

[37] C. Jewison and R.S. Erwin. “A Spacecraft Benchmark Problem for Hybrid Control
and Estimation”. In: IEEE 55th Conference on Decision and Control (CDC), Las
Vegas, NV (2016), pp. 3300–3305.

[38] G.W. Hill. “Researches in the Lunar Theory”. In: American Journal of Mathematics
1.1 (1878), pp. 5–26.

[39] H.D. Curtis. Orbital Mechanics for Engineering Students. Ed. by Butterworth-
Heinemann. 3rd ed. 2014.

[40] C.D. Petersen et al. “Challenge Problem: Assured Satellite Proximity Operations”.
In: AAS/AIAA Space Flight Mechanics Meeting (2021).

[41] Y. LeCun et al. “Efficient BackProp”. In: Neural Network: tricks of the trade (1998).

[42] A.Y. Ng. “Shaping and Policy Search in Reinforcement Learning”. PhD thesis.
University of California, Berkeley, 2003.

[43] M. Minsky. “Steps Toward Artificial Intelligence”. In: Investigative Reporters and
Editors (1961).

Paris Matthieu 63

