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Abstract: The lack of a formal definition makes the design, im-
plementation, and deployment of deep neural network a time-
consuming and highly specialized task. We test the paramet-
ric machine framework—a formal generalization of deep neural
architectures—on two classical deep-learning applications: time se-
ries forecast and classification. First, we show how novel architec-
tures drawn form the space of parametric machines can compete
and perform better than their classical counterpart on an electro-
cardiogram classification task. There, we introduce a regularization
technique for parametric machines and an explainability algorithm
allowing us to compute a notion of uncertainty on an input-by-input
basis. Second, we employ parametric machines to forecast electrical
energy consumption. We compare the performance attained by the
machines with comparable classical deep neural networks. Then,
we investigate the generalization capabilities of the models.
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1. Introduction

Deep learning is becoming progressively more challenging to navigate and comprehend:
deep neural architectures are increasing in complexity to deal with novel and more complex
problems. These architectures are generally hand-crafted and devised following a trial-and-
error protocol. Based on highly parallel, nonlinear computations and lacking a natural
theoretical framework, deep learning models turn out to be often unintelligible to both
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experienced and naive users. Thus, currently, the design and implementation of neural
networks requires the intervention of specialized programmers and data scientists making
the adoption of such models in real-world scenarios a time-consuming activity. Furthermore,
deep neural networks require significant amounts of high-quality data to train and are
endowed with only partial generalization abilities. Finally, complex, deep architectures
incur in pathologies that are not simply explained by overfitting [4], e.g., vanishing gradient
and instability during training.

Attaining a formal definition of neural architecture and thus being able to represent
deep learning models as points in a well-defined mathematical space would accelerate the
design and implementation of neural networks, make models more easily shareable, and
possibly provide guarantees of convergence and stability of such models. We want to show-
case through a variety of applications how parametric machines [32]—a unified mathemat-
ical framework generalizing classical deep-learning architectures—can lead to more efficient
model design, interpretable results, and enhance the generalization abilities of classical deep
learning models.

Aim We aim to compare classical deep-learning networks and novel models drawn from
the parametric machines framework on tasks such as classification and forecast of time-
varying signals. We investigate the foundational parametric-machine framework to discuss
the generalization power (i.e., the ability to forecast or classify data with different features
than the ones belonging to the training set) of parametric machines and probe their internal
dynamics to provide a notion of explainability for such models.

Contributions First, we briefly discuss the mathematical foundation of parametric ma-
chines. Then, we showcase an application of parametric machines to the classification of
electrocardiograms. After discussing the performance of several parametric-machine archi-
tectures and comparing their performance with the current state of the art, we implement
and discuss an explainability pipeline for parametric machines. We show how such pipeline
can be leveraged to provide a measure of the machine uncertainty in classifying test samples,
but also yield intuitive visualization accessible to inexperienced users. Another application,
which also considers time series, involves studying the energy demand in a particular region
of Ecuador. There, we compare parametric machines’ performance to other deep learning
architectures, and test the ability of both classes of models to produce reliable forecast
on test signals, endowed with different statistical properties than the training samples. In
both cases, it is equally crucial to maintain a practical perspective towards the specific
objectives set by the case studies, and consequently ensure that they could be beneficial to
the end-user.

Structure In section 2 we introduce the fundamental notions of parametric machines
covered extensively in [32]. Section 3 focuses on the first practical case of time series classi-
fication using clinical data. The section introduces the architectures and presents the best
results achieved. In section 4, the concept of explainability is explored through sensitivity
maps obtained from the parametric machine architecture used on these data. Then, we use
dimensionality reduction and clustering algorithms to provide practical advice to potential
users of this methodology. Section 5 considers a second practical case involving time series
forecasting of energy consumption data. This section also discusses the architectures used
and showcases the results obtained. In section 6, we explore the generalization property
of parametric machines (i.e., the ability to generalize on users with significantly different
distributions).
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2. Theoretical framework

Using a well-defined mathematical framework in which differentiability is guaranteed allows
us to use optimization techniques avoiding pathologies, hence backpropagation (computa-
tion of loss function’s gradient at each step updating weights to minimize loss) is ensured by
machines mathematical properties. The intuition behind machines is that neural networks
can be considered as an endofunction f : X → X on a space of global functions X (defined
on all neurons on all layers). Instead, in a classical deep learning framework, different layers
in a network are combined using composition. However, this framework brings with it some
disadvantages: shortcut connections are not supported and non-sequential architectures fail
to be created.

In [32] the authors consider a global space X =
⊕d

i=0Xi and the global endofunction

f =
d∑

i=1

li ∈ C1(X,X)

In order to establish a relation between the composition of functions and the sum of func-
tions, the output space of the network is considered to be the entire X and not only the
last layer space Xd. Thanks to the sum-based structure of the global function, layers are no
longer required to be sequential, but they must obey a weaker condition of independence
(see [32, Sec. 2.3]).

In particular, by composing independent machines of depth one it is possible to devise
architectures of arbitrary complexity. This allows us to deal with complex, high-dimensional
data as in the classical neural network framework. For a formal description of depth in the
context of parametric machines, we refer the reader to [32, Sec. 2.2].

Architectures Shortcut connections emerged in the recent literature [8, 15, 21] to over-
come pathologies such as the vanishing gradient problem and the degradation problem.
The theoretical framework introduced so far provides naturally a definition of complete
architecture—i.e., an architecture with all shortcuts [32, Sec. 2.3]. This rich connectivity
among layers augments the computational cost of the model. However, this issue is tamed
by the framework itself.

Moreover, the mathematical framework introduced in [32] creates a searchable space of
architectures. It is also natural to seek special cases which generalize existing architectures.
In particular, we shall recall here the definition of dense, convolutional, and time machine.
The implementation of these examples is available in [5]. Here, we provide an intuitive
definition and exemplification of these notable machines. See [32, Sec. 3] for details.

Firstly, we discuss feedforward architectures (dense and convolutional machines), in
which the information moves in only one direction. As we can visualize in fig. 2, panel
a), all layers of higher depth take knowledge from all layers of shallower depth, building a
network with complete shortcuts.

A different type of architecture is the time machine. Here, an additional knowledge
dimension is added: the timestamp. All layers, as well as learning from the previous layers,
also evolve with past knowledge, as we can see in fig. 2, panel b). In practice, a time machine
is a hybrid of recurrent and convolutional architectures, based on parameters choice.
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3. Classification

Affordable hardware and effective data compression means acquiring vast amount of high-
resolution data is becoming common practice in modern healthcare pipelines. While data
acquisition is gradually becoming effortless, massive, highly-variable data sets are still hard
to process. However, deep learning methods are particularly effective when trained on
large, high-quality data sets. In particular, such techniques showed tremendous potential
in healthcare applications and have been successfully applied to a wide variety of tasks [24],
e.g., medical image analysis [30], disease diagnosis and prediction [23], drug discovery [19],
and personalized medicine [26]. Moreover, the nonlinear nature of deep learning algorithms
allows them to detect patterns and correlations that may be difficult for humans or tra-
ditional machine-learning algorithms to identify (see, e.g., [27]), and perform with high
accuracy in extremely specialized diagnostic tasks [11].

Despite the promising results, there are still challenges to be addressed in the usage
of deep learning in healthcare, such as ensuring the reliability and explainability of the
models’ output, guaranteeing robustness to noisy inputs, and overcoming regulatory and
ethical issues.

3.1. Dataset

Aim and motivation We aim to test parametric machines on time series classification
and provide strategies to regularize and interpret the parameters learned by the machine
during training. With this aim in mind, we consider the ECG200 dataset [34], a benchmark
data set for time series classification. Each series traces the electrical activity recorded dur-
ing one heartbeat. Time series are labelled as normal or abnormal heartbeats (myocardial
ischemia). Importantly, alterations of the hearbeat signal due to ischemia can be extremely
varied. This variability and the complexity of the mechanics underlying heart dynamics
make the ECG200 dataset suitable for testing novel techniques and architectures such as
parametric machines.

Medical setting Myocardial ischemia occurs when blood flow to the heart is reduced,
leading to necrosis of heart muscle due to lack of enough oxygen. The reduced blood
flow is usually the result of a partial or complete blockage of the heart’s arteries [28].
This pathology can be recognized observing different locations of electrical signals in the
heartbeat, namely the ST and T-wave segments. The ST segment is the plateau phase
where the potential differences in the heart remains relatively steady. In healthy patients,
this phase has a long duration which enables the majority of the ventricular myocardium to
contract simultaneously. The T-wave is instead representative of the rapid repolarization
phase (i.e., potential decrease) and can have a negative or positive slope. The ST and
T-wave locations depend on each other. Indeed, changes in the ST segment are typically
followed by changes in T-wave. Ischemia affects the plateau phase in which the ST segment
may be depressed (or elevated) respect to a normal heartbeat. The T-wave may decrease
in amplitude, become negative or increase markedly (see fig. 1). The changes in the signal
depend on the localization, extension and timing of the ischemia. It is important to note
that the ECG is only a preliminary diagnostic tool used to determine whether there may
be evidence of ischemia. It is not typically considered to be a definitive diagnostic test, and
further evaluations and assessments may be necessary to make a final diagnosis.
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Figure 1: The ECG200 dataset is composed of 200 heartbeat samples labelled as
normal or abnormal. Each time series consists of 96 electrical potential measurements
(mV). a) Work pipeline. b) Example image of a normal heartbeat and a myocardial
ischemia heartbeat. Adapted from [18]. c) Mean and standard deviation of each
sample of ECG200 split by label. d) Normal heartbeat time series. e) Abnormal
heartbeat time series.
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Data structure The ECG200 dataset consists of predetermined train and test set. Both
sets are composed by 100 time series, each comprised of 96 observations. The difference
in ECG between a normal heartbeat and a myocardial ischemia can be better seen by
analyzing the average of all measurements. See fig. 1 for an encompassing representation
of the ECG200 dataset.

3.2. Methods

In the following paragraphs, we discuss the preprocessing, model selection, and training
pipelines we devise to analyze the ECG200 dataset.

Preprocessing The ECG200 dataset comes already split into training and test sets.
Each set contains 100 samples of either normal or abnormal heartbeats. The ECG200
samples are bounded and do not present outliers. For this reason, we designed an extremely
simple preprocessing pipeline encoding labels as one-hot vectors and adding a channel
dimension to the data, as it is customary in deep-learning practice.

Architectures As mentioned above, we consider two types of architectures: the dense
and time machines. In the dense machine case, we choose the sigmoid function as nonlin-
earity, which constrains output values between zero and one. The model also includes a
dense output layer. For time machine, we divide the global space into six subspaces, each
of size 16. Moreover, we use the sigmoid function as nonlinearity and a timeblock of length
16. The model also includes a convolutional output layer.

Training and testing We set the optimizer as well as the loss function we want to
work with. During this stage, we explore several possibilities. We finally chose cross entropy
as the loss function and we found that the ADAM optimizer is the most effective option
for this purpose due to its simplicity with a learning rate of 0.005.

During training, we save the best model parameters computed using backpropagation
and performance measures on every training epoch. Finally, we visualize performance
measures fig. 2 to gain insight into how well the model performed using accuracy measure.

3.3. Regularization

Regularization is a technique commonly used in deep learning to prevent overfitting. Over-
fitting occurs when a model is too complex and overspecializes its parameters to perfectly
fit the training data. This specialization results in poor generalization to data endowed
with different features or following a different distribution than the training ones. Regu-
larization involves adding a penalty term to the loss function of the neural network during
training. As an example, the penalty term can be proportional to the squared magnitude
of the weights in the network, which encourages the network to learn smaller weights and
thus learn smoother solutions.

In our scenario, the regularization term is more sophisticated. The smoothing process
is only applied to the temporal dimension, which involves squaring the difference between
model weights in two consecutive data points in the time series:

τ = λ ·
T∑
t=1

(w(t)− w(t− 1))2 (1)
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When performing regularization on the time dimension, the goal is to encourage the
model to learn smooth patterns over time. By regularizing only on the time dimension,
the model is encouraged to learn patterns that are consistent over time, which can improve
its ability to predict future outcomes. Additionally, this approach can help to reduce the
impact of outliers or noise in the data that may be present in individual time steps, but not
across the entire time series. In practice, the smoother the weights in time, the smaller the
regularization term will be. The strength of time smoothness regularization is controlled by
a hyperparameter λ, which determines the tradeoff between fitting the training data well
and keeping the weights smooth. Larger values of the regularization parameter result in
more emphasis on the penalty term, and therefore smaller weights in the network.

3.4. Results

Using dense machines, the training process is monitored through the value of the loss
function on the train set and of the accuracy both on the train and on the test set (see fig. 2).

The results surpass the state of the art achieved by other models with an accuracy of
0.9 (for more details, see [34]).

A dense machine accurately represents the problem due to its simplicity. With time
machine, the achieved accuracy is 0.91, and once again, above the state of the art. The
training loss and accuracy can be found in fig. 2.

Moreover, in fig. 2, we can observe dense and time machine losses after adding a regu-
larization parameter of 0.01. In this case we can observe a dense model accuracy of 0.91,
higher than that of the state of the art. Regarding the time machine, accuracy is equal to
0.9 with a regularization parameter of 0.01.

We have also tested a convolutional machine’s architecture, but despite obtaining quite
satisfactory results, we decided not to go in depth here as the characteristics of this network
are not exploited on this type of data. If the reader is interested in these results, they can
consult [12].

4. Explainability

The word explainability refers to the ability to understand and interpret the decision-making
process of a machine-learning model in an input-dependent fashion. In many applications,
such as healthcare [31] and finance [33], explainability plays a crucial role: a medical doctor,
as well as an auditor, needs access to the internal mechanisms dictating the model’s output.
There are techniques that can be used to increase model explainability, and several methods
have been developed specifically for deep learning models. For example, layer-wise relevance
propagation is a technique for attributing importance scores to individual neurons in a
deep neural network [7]. Integrated gradients is another technique that can be used to
attribute importance to individual features in a deep learning model [29]. Finally, there
is ongoing research in the field of explainable artificial intelligence (XAI) to develop more
comprehensive and standardized methods for model explainability [9]. The goal of XAI is
to enable users to understand and trust the decisions made by machine learning models,
especially in sensitive applications where the consequences of errors could be significant.

In this sense, our aim is to devise a technique that could effectively communicate the
workings of deep learning models to individuals who lack expertise in the field, by utilizing
sensitivity maps.
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Figure 2: Graphical representation of a neural network with complex
shortcuts as sum of machines of depth 1. This graphical representation
corresponds to the neural network mapping (x1, x2, x3, x4, . . . , x8) to
(y1, y2, y3, y4, . . . , y8) via layers {f1, . . . , f5}.
Explicitly, output values are computed as follows:

y1 = x1

y2 = x2

y3 = f1(x1, x2) + x3

y4 = f3(f1(x1, x2) + x3) + x4
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y7 = ⇡X7f4(f3(f1(x1, x2) + x3) + x4) + x7

y8 = f5(⇡X6f4(f3(f1(x1, x2) + x3) + x4) + x6) + x8

14

X1

X2

X3 X4

X5

X6

X7

X8

f1 : X1 ⇥ X2 ! X3

f2 : X1 ! X5

f3 : X3 ! X4

f4 : X4 ! X5 ⇥ X6 ⇥ X7

f5 : X6 ! X8

Figure 2: Graphical representation of a neural network with complex
shortcuts as sum of machines of depth 1. This graphical representation
corresponds to the neural network mapping (x1, x2, x3, x4, . . . , x8) to
(y1, y2, y3, y4, . . . , y8) via layers {f1, . . . , f5}.
Explicitly, output values are computed as follows:

y1 = x1

y2 = x2

y3 = f1(x1, x2) + x3

y4 = f3(f1(x1, x2) + x3) + x4

y5 = f2(x1) + ⇡X5f4(f3(f1(x1, x2) + x3) + x4) + x5

y6 = ⇡X6f4(f3(f1(x1, x2) + x3) + x4) + x6

y7 = ⇡X7f4(f3(f1(x1, x2) + x3) + x4) + x7

y8 = f5(⇡X6f4(f3(f1(x1, x2) + x3) + x4) + x6) + x8

14

X1

X2

X3 X4

X5

X6

X7

X8

f1 : X1 ⇥ X2 ! X3

f2 : X1 ! X5

f3 : X3 ! X4

f4 : X4 ! X5 ⇥ X6 ⇥ X7

f5 : X6 ! X8

Figure 2: Graphical representation of a neural network with complex
shortcuts as sum of machines of depth 1. This graphical representation
corresponds to the neural network mapping (x1, x2, x3, x4, . . . , x8) to
(y1, y2, y3, y4, . . . , y8) via layers {f1, . . . , f5}.
Explicitly, output values are computed as follows:

y1 = x1

y2 = x2

y3 = f1(x1, x2) + x3

y4 = f3(f1(x1, x2) + x3) + x4

y5 = f2(x1) + ⇡X5f4(f3(f1(x1, x2) + x3) + x4) + x5

y6 = ⇡X6f4(f3(f1(x1, x2) + x3) + x4) + x6

y7 = ⇡X7f4(f3(f1(x1, x2) + x3) + x4) + x7

y8 = f5(⇡X6f4(f3(f1(x1, x2) + x3) + x4) + x6) + x8

14

Figure 3: Ratio of runtime of backward pass over forward pass. The run-
times of backward and forward pass are comparable, across di�erent models,
problem sizes, and devices. The computation of the backward pass assumes that
the forward pass has been computed already, and that its result is available. The
backward pass denotes the backpropagation of cotangent vectors from machine
space to input space. Backpropagating to parameter space requires an extra op-
eration (see e.g. eq. (14) for the dense case).
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Figure 3: Ratio of runtime of backward pass over forward pass. The run-
times of backward and forward pass are comparable, across di�erent models,
problem sizes, and devices. The computation of the backward pass assumes that
the forward pass has been computed already, and that its result is available. The
backward pass denotes the backpropagation of cotangent vectors from machine
space to input space. Backpropagating to parameter space requires an extra op-
eration (see e.g. eq. (14) for the dense case).
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Figure 2: Loss and performance. a) Feedforward machine architecture showing the
shortcuts structure. b) Time machine architecture showing the shortcuts structure.
c) loss on train data with and without regularization for dense machine during 300
epochs. d) accuracy on train and test data with and without regularization for dense
machine during 300 epochs. c) loss on train data with and without regularization
for time machine during 300 epochs. d) accuracy on train and test data with and
without regularization for time machine during 300 epochs.
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4.1. Sensitivity maps

In section 3, we developed a model that provides predictions with 91% accuracy, but it
may not be sufficient in a medical context. It is essential for models employed in sensitive
contexts to be endowed with a mechanism that can determine the degree of uncertainty of
the model and provide guidance to medical doctors, highlighting regions of the input that
could potentially invalidate the model’s output. Therefore, the aim of this section is to
provide a mathematical interpretation of how machines operate on input data, enabling

• detection of critical regions of the input sample;
• extraction of relevant samples from the training set that could help identify the

detected criticalities;
• quantification of the model’s uncertainty on an input-by-input basis.
Each machine consists of a non-sequential juxtaposition of linear and nonlinear com-

ponents. We use the sigmoid function to illustrate the construction of explainability maps
for parametric machines that we shall call sensitivity maps. However, the following con-
struction holds for any pointwise nonlinear function. For the sake of intuition, we can think
about the sigmoid function (i.e. the activation function we utilize in section 3) as a piecewise
linear function defined on three intervals: first, the function is nearly flat and tends towards
zero. Then, the function has a positive slope, and hence positive derivative. Finally, the
function returns to be constant and of value one. The input data traverse this function,
crossing through these three sections. The data that pass through the outermost sections
will not contribute to the output because they have almost zero derivative. Instead, points
mapped to regions of positive slope contribute actively to the model’s output. Practically,
we compute the derivative of the nonlinear function with respect to the machine’s output
before the nonlinearity is applied to the input. We call this construction a sensitivity map.
In symbols, we express the sensitivity ρ as

y = W ∗ z + x0

z = σ(y)

ρ = σ′(y)

where y is the machine’s output before the nonlinearity σ, W is the weights matrix, x0 is
the input vector and z the machine’s output after the nonlinearity.

The implications of this concept can vary depending on the type of machine used to
develop our models.

Dense machine The sensitivity map of a dense machine can be used to efficiently
compute optimal depth, contrary to the stochastic approach developed in [16]. Figure 3
panel a) shows the sensitivity maps for normal and abnormal data samples. We believe
that changes in values of sensitivity on a given dimension correlate with the classification
performance of the model.

Time machine In time machines, the sensitivity map assumes a different meaning. In
this scenario, the sensitivity map provides insights into individual time series by identifying
the specific time points and learning depths where the model is more sensitive to the signal,
as we can see in fig. 3, panel b).

Moreover, the mean of the first rows of the sensitivity map (e.g., the channels of the
input layer) tells us which part of the signals is more sensitive during training. In time
machines, the first layer holds the most significant representation of the inputs. Therefore,
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incorporating this information when analyzing time series data can offer us a perspective
on how to interpret the sensitivity map. It is important to note that this is just one of the
many possible interpretations, and several others will be taken into consideration. In fig. 3,
panel c), we can observe that the most sensitive parts of the signal are the relative maxima
and the initial slope (e.g., the beginning of the ST depression).

4.2. An uncertainty measure for parametric machines

The sensitivity map provides us with a general indication of how the model is learning
from our observations and what the critical points are for each individual. Although very
informative for an expert, it cannot be used in a medical context, so it is necessary to
develop a strategy to make these interpretations user-friendly. The goal now is to find a
way to quantify this level of uncertainty and, most importantly, to determine whether a
new observation falls within an uncertain case or a case with a high certainty.

The idea is to initially develop an algorithm that reduces the dimensionality of the
sensitivity maps. This will be followed by reducing the cardinality of the data and analyzing
it using a graph-based approach. The aim is to cluster the training observations based on
their loss function and gain insights into their distribution. To achieve this goal, we utilize
UMAP (Uniform Manifold Approximation and Projection) for dimensionality reduction,
and Mapper for cardinality reduction.

UMAP algorithm UMAP is a dimensionality reduction algorithm that is used to
transform high-dimensional data into a lower-dimensional representation based on manifold
learning techniques and ideas from topological data analysis [22]. This algorithm has several
advantages over other methods. Firstly, UMAP can preserve both the global and local
structure of high-dimensional data sets. This means that it can accurately capture the
relationships between points in a lower-dimensional space, while maintaining the important
details and structure of the original data. Secondly, it is highly scalable and flexible with
various type of data. UMAP constructs an initial high-dimensional graph by creating a
fuzzy simplicial complex, which is essentially a weighted graph where edge weights indicate
the likelihood of two points being connected. To determine connections, UMAP extends
a radius outward from each point and connects points when their radii overlap. However,
selecting the appropriate radius is crucial as a too-small radius leads to small, isolated
clusters while a too-large radius connects everything together. To address this, UMAP
selects a radius locally, based on the distance to each point’s nth nearest neighbor, and
decreases the likelihood of connection as the radius grows. UMAP also ensures that each
point is connected to at least its closest neighbor, preserving the balance between local and
global structures. After constructing the high-dimensional graph using the fuzzy simplicial
complex, UMAP aims to optimize the layout of a low-dimensional analogue to make it as
similar as possible to the high-dimensional graph [22].

Mapper algorithm Mapper is a data analysis and visualization algorithm that is used
for topological data analysis (TDA) [14]. First, data are divided into overlapping subsets,
known as cover sets. These sets are defined by a filter function that maps each point in
the data to a real number. Next, a graph is constructed where the nodes represent the
cover sets and the edges represent overlaps between them. The size of the overlap between
each pair of sets is measured using a metric such as Jaccard similarity or intersection. The
graph is then simplified by collapsing nodes and edges based on a clustering algorithm such
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a) Sensitivity map, dense machine

b) Sensitivity map, time machine

c) Sensitivity over series, time machine
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Figure 3: Sensitivity maps represent the values of the derivative of the non-linear
activation function on the entire machine architecture. a) Sensitivity map generated
by training a dense machine. b) Sensitivity map for a time machine. c) Normal
and abnormal heartbeat series colored by sensitivity. We can observe that the most
sensitive part of the signal are the peaks in the normal heartbeat that correspond to
a ST depression in the ischemia sample and the initial slope.
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ID µ(σ) loss Ischemia Accuracy Precision Recall F1 score

1 0.0032 (0.0040) 0.55 0.50 0.50 0.40 0.44

2 0.0009 (0.0014) 0.24 0.76 0.88 1 0.83

3 0.0048 (0.0065) 0.50 0.76 0.86 0.67 0.80

4 0.0045 (0.0039) 0.55 0.77 0.33 0.17 0.40

5 0.0008 (0.0004) 0.90 1 1 0.33 1

6 0.0004 (0.0002) 1 0.94 0 0 0

7 0.0003 (0.0003) 1 0.50 0.50 0.40 0.57

8 0.0006 (0.0007) 0.80 0.61 0.83 0.67 0.74

9 0.0001 (0.0011) 0.61 0.92 0 0 0
10 0.0003 (0.0004) 1 0.78 0.86 0.55 0.77

Table 1: Graph representation parameters regarding fig. 4. Columns represents the
ID of the nodes, the mean loss value in each node, the standard deviation in the
node, the percentage of ischemia heartbeat’s cases in the node, the accuracy on test
set, the precision on test set, the recall on test set and the F1 score on test set.

as k-means or hierarchical clustering. This step reduces the complexity of the graph and
highlights the most salient features of the data. Finally, the simplified graph is visualized
in a lower-dimensional space, such as a 2D plane, using a layout algorithm such as force-
directed placement. This allows the user to explore the structure of the data and identify
patterns and relationships between the cover sets.

Medical application of sensitivity maps In our case, we reduce the dimensionality
of the data using the sensitivity matrices generated from the training data, selecting 40
components for the reduction process. For the Mapper algorithm, we use a simple x-axis
projection as the filter function, and used the k-means clustering algorithm with k = 3 to
identify clusters. We select hyperparameters choosing the best graphical representation,
given the fact that all representations shows the same theoretical patterns. The output of
the analysis is visualized in fig. 4. The two observed clusters divide the observations based
on the degree of loss, providing an indication of their reliability in terms of classification.
Specifically, the cluster with lower loss is considered more reliable, while the cluster with
greater loss is less reliable. The next step is to identify, given a new observation, which of
these two clusters it will belong to, so as to be able to say something about the degree of
uncertainty of the classification.

For instance, as shown in fig. 4, there are two distinct cases: a sample that has been
correctly classified and appears as green, and a sample that has been misclassified and
appears as red. A doctor can evaluate the algorithm’s effectiveness by examining cases that
fall into an uncertain cluster, such as a cluster with a higher loss, and comparing them to
other samples in the same cluster. This recommendation serves as a cautionary note about
the reliability of the classification. Once the doctor has been made aware of this, they can
examine the image visually and draw more detailed conclusions.
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c) Graph representation via Mapper algorithmb) Umap representation of sensitivity on training data
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Figure 4: Sensitivity-based confidence measure. a) Explainability analysis pipeline,
from sensitivity maps to medical advices. b) Sensitivity map visualization after
dimensionality reduction (UMAP). c) Mapper graph on reduced sensitivity maps.
The sensitivity maps obtained from the training set are first vectorized and reduced
to 40-dimensional points through UMAP. Then, the projected points are clustered
via Mapper. The graph presents connected components organized according to the
loss realized by the samples associated with their nodes. The green star represents
the mapping of a correctly classified test sample according to its sensitivity map
(fig. 4, panel c, left). Symmetrically, the red star corresponds to a misclassified
sample (fig. 4, panel c, right).
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5. Forecast

The second task we try to solve is a forecasting problem regarding energy consumption
time series. Every year, global energy consumption continues to rise, making it impera-
tive for energy providers to explore and develop models that can better forecast and plan
for energy demand. Accurately predicting the behavior of the energy system is critical in
mitigating potential uncertainties and facilitating load shaping, which can help to reduce
waste. Moreover, electric energy must be consumed at the same time it is generated in the
power plant due to its physical characteristics. Deep neural networks have demonstrated
their effectiveness in this regard, as they are capable of learning complex patterns and mak-
ing precise predictions based on large amounts of historical energy consumption data [25].
This, in turn, can lead to cost savings and improved energy efficiency. Furthermore, accu-
rate energy consumption forecasts can guide decision-making in the energy sector, ensuring
a stable and reliable energy supply.

5.1. Dataset

Data structure The dataset is composed by 255 time series about energy consump-
tion, one per user, sampled every 15 minutes. Data were harvested in 2017 in Guayaquil
(Ecuador), capturing values for the entire year from January 1st to December 31st. The
data is presented in tabular form, consisting of seven columns, with one column indicating
the timing, and the other columns representing various types of power usage:

• Timeline;
• Real or Active Power (kW), the power that is actually utilized or consumed;
• Real Power without Power Factor, that is the ratio between Real Power and Total

Power;
• Reactive Power (kVA), the power that is developed in the circuit reactance;
• Reactive Power without Power Factor;
• Real Power Demand;
• Reactive Power Demand.
Overall, total energy demand refers to the amount of energy consumed by all appliances,

machineries and systems in a particular area or building. Total demand may exceed actual
power due to factors such as transmission losses, power factor and other factors affecting
energy efficiency. These losses can cause total demand to exceed the actual power delivered
to end-users because a minimum value of reactive power is always necessary to maintain
constant voltage and supply useful active power.

5.2. Methods

Preprocessing The ultimate objective is to predict real power demand for week 44. To
achieve this goal, we conduct a thorough analysis of the data, including data cleaning and
standardization. We eliminate 33 users from the analysis due to anomalies such as different
time samples or a lack of measurements until the week we want to predict. The differences
in distribution among various users are significant, as the areas and energy usage can vary
greatly. These differences can have important implications for understanding patterns of
energy usage and identifying areas where energy efficiency improvements may be needed.
Furthermore, this property will be crucial in enabling us to further explore one of the main
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Figure 5: Energy consumption analysis pipeline.

features of parametric machines.
The input data is generated by selecting all demand values except for the last week of the

period. The output is created by shifting the input values by one week, which corresponds
to the beginning of the second week up to the end. Therefore, the first week of input is not
included in the output, and the last week of output is not included in the input. The model
is trained using data up to the end of the 43rd week and then evaluated on the 44th week.
The reason for choosing the 44th week for evaluation is that not all users have demand
values in the last weeks of the year. Finally, we split the dataset into training and testing
sets.

Architectures Unlike the ischemia dataset, we don’t have a state of the art to compare
with parametric machine, so we implement three different models: a time machine and two
classical convolutional neural networks (CNNs).

After experimenting with various combinations of dimensions, we determine that di-
viding the space into four subspaces, each with a depth of four and one with a depth of
one, yielded the best results. This approach results in a total of 13 subspaces. We utilize a
time block of two days. Additionally, to ensure the preservation of a full day, we incorpo-
rate a padding value of 96, which corresponds to 24 hours with 4 observations every hour.
For nonlinearity, we implement the sigmoid function. The model also includes a convolu-
tional layer with a kernel size of one, which accepts 13 channels as inputs representing the
subspaces, and generates a single output channel.

The second model we have defined is a CNN consisting of 4 convolutional layers (CNN-
1). The architecture is composed of a sequence of convolutional layers that are connected
in a sequential manner without any shortcuts. We carefully selected the architecture of the
convolutional model to resemble the structure of the time machine so that a fair comparison
could be made between the two models. We did not use a recurrent model, which is typically
used for time series, because a different data arrangement is required, which would not be
compatible with the time machine. The convolutional neural network utilized for this task
is a one-dimensional CNN, as the input data consists of time series. We chose four layers
because this corresponds to the number of subspaces in which the time machine is divided.
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We chose a one-day filter as kernel, which consists of 24 hours with four observations every
15 minutes in an hour. Regarding the padding setting, we added 95 zero-values to the left
side (representing the past) of the input data, and zero-values to the right side (representing
the future).

Both models share the same parameter settings with the aforementioned configurations.
However, there is a fundamental difference between them. In the sequential model, the last
layer only takes the output of the previous layer as input without any shortcuts, while
in the time machine, the last layer takes all the previous layer’s output using all possible
shortcuts as input. Nevertheless, the number of parameters in the sequential model and the
time machine cannot be directly compared. To make the number of parameters comparable,
we attempted to increase the number of parameters in the CNN. In the second architecture
version of the CNN (CNN-2), which still contains four convolutional layers, we arrange the
layers hyperparameters in order to have a comparable number of model parameters with
the time machine. We retain all other settings from the first convolutional model. This
change results in a total of 16923 parameters, allowing us to make a fair comparison. All
of these architectures are implemented in [13].

Training and testing In order to test the generalization power of both classical and
time machine models, we decided to train our models on a single user due to the high
electrical demand variance across users discussed in fig. 6. Even though this strategy may
not capture the full complexity of the dataset, it allows us to compare the performance of
all models not only on the test set associated with the selected user but also on all users.
By doing so, we can obtain a more encompassing view of how parametric machines and
convolutional neural networks generalize on unseen, highly variable data.

During the training process, we use the mean squared error (MSE) and the mean ab-
solute error (MAE) as loss functions. Regarding the optimization step, we choose to work
with the LBFGS optimizer.

5.3. Results

The parametric machine model showed better performance than CNN-1 model even with
a lower number of epochs. CNN-2, which had additional parameters compared to the first
model, performed slightly better in both training and testing for the trained user.

After training, we evaluate the models prediction power showing how models predict
on the trained user, as we can see in fig. 6.

The results show that the parametric machine outperforms the CNNs in terms of predic-
tions accuracy in all users. The CNN models seem to predict a sinusoidal trend, while the
parametric machine is able to accurately predict the real trend during time. This suggests
that the parametric machine is better able to capture the underlying patterns in the data
and generalize to new, unseen data (we will discuss more on this in section 6).

6. Generalization

Our goal has always been to uncover general patterns that enable us to make accurate
predictions on new examples drawn from the same underlying population [17]. The ability
of a deep learning model to generalize to new, unseen data is evaluated through the use
of validation and test sets. During the training process, the model is optimized on the
training set, while the validation set is used to monitor its performance on data that it has
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Figure 6: Data representation, train loss and prediction for a single user. a) Ground
thruth for the 44th week and predictions for the three models. Parametric machine
is able to predict accurately the behaviour of the energy demand, the two CNNs
tend to predict a sinusoidal trend over time. b) Two new user’s predictions example
using models trained on a single different user. Parametric machines perform well
also on new users showing their generalization power. c) MSE and MAE barplot
showing that the parametric machine model performs better then the other models
in the majority of the observations.
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not been trained on. By adjusting the model’s hyperparameters based on the validation set’s
performance, we can help prevent overfitting and improve the model’s ability to generalize.
Once the model has been optimized, it is evaluated on a separate test set that has not been
used in either the training or validation process. This final evaluation provides a measure of
the model’s ability to generalize to new data. Additionally, statistical measures such as bias
and variance can also provide insights into a model’s generalization capabilities. A model
with high bias may underfit the training data and perform poorly on both the training and
validation sets, while a model with high variance may overfit the training data and perform
well on the training set but poorly on the validation and test sets. By balancing bias and
variance, we can improve a model’s ability to generalize to new data. In addition, there
are also techniques that can be used to improve a deep learning model’s generalization
properties. One such technique is regularization. Other techniques include dropout, early
stopping, data augmentation, and transfer learning.

It is also worth noting that the generalization properties of a deep learning model can
be influenced by the quality and quantity of the training data [20]. Having a diverse and
representative training set can help the model learn more generalized patterns and improve
its ability to generalize to new data. Ultimately, the ability of a deep learning model to
generalize is a key factor in its effectiveness and applicability to real-world problems [3]. As
such, understanding and improving the generalization properties of deep learning models is
an important area of research in machine learning.

Generalization in energy context In section 5, the study led us to observe a fun-
damental characteristic of parametric machines: their capacity for generalization. Initially,
the study focused on individual users due to computational issues, but it ultimately led to a
surprising discovery. By analyzing individual users, our model demonstrated generalization
abilities that extended to all other users, resulting in highly accurate predictions.

In this energy consumption forecasting problem, the results indicate that the time ma-
chine outperforms convolutional architectures. The machine’s capacity to process all inputs
and retain more information through the presence of shortcuts allows for better detection
of fluctuations. This architecture is more effective in capturing the complex and varied
patterns in the data, giving the machine an advantage over convolutional neural networks
in energy consumption forecasting.

In fact, the results demonstrate that the time machine is capable of generalizing data
with different magnitudes (e.g., user 1362155) and greater oscillations, as evidenced by the
prediction examples of different users, as seen in fig. 6.

To assess the overall performance of the models, we generated a distribution plot of the
mean absolute error (MAE) and mean squared error (MSE) for each user in fig. 6. In both
cases, the parametric machine consistently demonstrated the lowest mean and standard
deviation in the error distribution. This finding suggests that the other models are less
accurate than the machine in energy consumption case.

7. Conclusion

We consider a novel deep-learning framework—parametric machines—that generalizes deep
neural architectures and provides a formal mathematical definition of operators and mod-
els commonly used in deep learning. There, classical and novel neural architectures are
described as points of a function space. Among these points, we find novel architectures
with a rich shortcut structure that, in line with recently described hand-crafted models,
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e.g., [8, 15, 21], could enable us to overcome issues such as vanishing and exploding gradi-
ent or instability.

To test the hypothesis mentioned above, we apply parametric machines to two case
studies. The two proposed case studies are, by their very own nature, challenging for classi-
cal deep-learning models. First, we test parametric machines on a time series classification
task with a very limited training set; then, we investigate a time series forecasting appli-
cation where the model needs to infer periodicity at several time granularities and predict
672 time steps.

In the first application, namely classification of the ECG samples from ECG200, we
show that parametric machines outperform the current state of the art. We devise and
implement an explainability module—sensitivity maps—that takes advantage of the formal
definition of parametric machines. Since machines are endofunctions on a global space, we
compute the derivative of the nonlinear activation function on the linearized machine. On
the one hand, sensitivity maps allow us to highlight parts of the signal that are relevant
for the model. Hence, sensitivity maps could be useful to the end-user to gain intuition on
the model’s decisions. On the other hand, via a dimensionality and cardinality reduction
algorithm, we provide a measure of classification uncertainty on test data. We believe that
this type of approach can be complementary to approaches such as saliency maps [1], with
a strong difference in that sensitivity maps consider the entire architecture rather than only
the input layer.

In the second application, we compared a parametric machine with its classical sequen-
tial counterparts on an energy-consumption forecast. Parametric machines better grasp
multiscale periodicities of the signal yielding more accurate long-term predictions. This
application enables us to explore the generalization capability of parametric machines. By
training parametric machines and classical models on a single user and testing them on
the other 221 users, we show that the former model better generalizes to unseen, out-of-
distribution data.

While this article has directly addressed the two open problems mentioned above,
namely explainability and generalization, further research can explore and discover ad-
ditional properties such as adaptability [10]. Adaptability refers to the ability of a model
to adjust its parameters in response to changes in the input data. This means that the
model is able to learn and improve its performance over time, as it is exposed to more
data, making it useful in a wide range of applications, such as recommendation or fraud
detection.

In a forthcoming paper, we plan to further explore the potential of these models in
different fields and applications, which could lead to the development of more accurate,
reliable, and explainable deep learning solutions.
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A. Julia programming language

The programming language chosen to pursue this project is Julia. While it is not yet widely
recognized in the data science field, Julia has significant advantages in terms of performance
and usability [6]. Julia is a flexible and dynamic language that is especially well-suited for
scientific and numerical computing. Furthermore, it boasts a performance level that is
comparable to that of more traditional statically-typed languages.

The decision to use Julia as the programming language for this project was not arbi-
trary, but based on its high performance and potential for exploration, compared to other
languages. A brief comparison between Julia and the better-known Python language can
help illustrate this choice [2]. In terms of speed, Julia is much faster than Python, with an
execution speed that is close to that of C. From a community perspective, Python has been
around for a long time and has a large network of programmers, making it easier to find
online solutions to problems. However, Julia code can be easily converted to Python, while
the reverse is not true. While Python has a large number of advanced libraries, Julia can
interface with C and Fortran libraries to handle tasks that have not yet been implemented.
Lastly, Julia is dynamically typed and allows for code development without specifying the
type of object being used, but as previously mentioned, type declarations are what make
Julia highly efficient. Python is also dynamically typed, but lacks the benefits of type
declaration.

The two main packages that we have used in this project are Flux and Optim. In Julia,
Flux is a machine learning package for building and training neural networks. It provides
a set of high-level abstractions and utilities for defining, training, and evaluating neural
network models. Flux allows users to define neural network models using a simple and
intuitive syntax, and provides a wide range of layer types and activation functions that
can be easily combined to create complex models. It also supports various types of loss
functions, optimizers, and regularization techniques for training these models. One of the
key features of Flux is its support for automatic differentiation, which allows users to define
custom loss functions and backpropagation algorithms for their models. This makes it easy
to build and train complex neural network models with minimal boilerplate code. Flux also
provides a range of utilities for working with data, including loading and preprocessing data,
splitting data into training, validation, and test sets, and data augmentation techniques such
as random cropping and flipping.

Optim is a package for optimization algorithms. It provides a wide range of optimiza-
tion algorithms, including unconstrained optimization, constrained optimization, global
optimization, and derivative-free optimization. Optim allows users to define objective func-
tions and constraints using a simple and flexible syntax, and provides a range of optimization
algorithms that can be easily applied to these functions. It also supports various types of
constraints, including linear and nonlinear equality and inequality constraints, and provides
utilities for working with sparse matrices and nonlinear functions. One of the key features
of Optim is its support for automatic differentiation, which allows users to define custom
objective functions and gradients for their optimization problems. This makes it easy to
optimize complex functions with minimal boilerplate code.
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Abstract in lingua italiana

La mancanza di una definizione formale rende l’implementazione di reti neurali un compito
altamente specializzato e che richiede molto tempo. In questo articolo, abbiamo proposto
due casi studio riguardanti la classificazione e la predizione di serie temporali utilizzando le
macchine parametriche, una generalizzazione formale di reti neurali. Nel corso di questi casi
studio, abbiamo dimostrato come le macchine parametriche siano in grado di competere e
di conseguire prestazioni migliori rispetto ai corrispondenti omologhi classici, in particolare
in un compito di classificazione di elettrocardiogrammi. In aggiunta, abbiamo introdotto
una tecnica di regolarizzazione per le macchine parametriche e un algoritmo finalizzato
al calcolo di una nozione di incertezza. Abbiamo poi applicato le macchine parametriche
ad un problema di forecasting riguardante consumo di energia elettrica, confrontando le
performance con quelle ottenute da architetture moderne, dopo averli resi comparabili a
livello di struttura, per poi investigare sulla capacità di generalizzazione di questi modelli.

Parole chiave: Macchine parametriche, serie temporali, intelligibilità, sensibilità,
generalizzazione

Acknowledgements

First and foremost, I would like to express my gratitude to professor Secchi for giving me
the opportunity to work on a project in a new and unfamiliar research field for him. I am
deeply appreciative of his interest in everything I proposed and for his guidance throughout
this journey.

I would also like to extend my thanks to Mattia and Pietro, my co-advisors, who have
been instrumental in this thesis with their unwavering patience and eagerness to teach.
Their constant support and assistance has been invaluable. I would also like to extend
my gratitude to Maurizio for being the first to take an interest in my thesis needs and for
consistently imparting his knowledge and wisdom to me.

I am deeply grateful to my family, especially my father Giovanni, mother Cinzia and
sister Valeria, who have been my rock through the years, offering their support and encour-
agement during both the high and low moments of this journey.

I would also like to express my gratitude to my little nephew Alessandro and my brother
in law Andrea, who brought joy and laughter to my days.

A special thank you to my lifelong best friend Valeria, who has always been there for
me, wherever she is and whatever she does.

I would like to extend my gratitude to my friend Alice, for always being present and
providing comfort with her sweet words.

I would like to express my thanks to Virginia, Francesca, Ilaria, Federica and Alessan-
dro, my university mates who shared many memorable moments of study and laughter
throughout this degree program.

Thank you to all my friends at JustZebrallo, the two Andrea, Claudia, Erika, Giacomo,
Mattia and Laura, for always being interested in me and for providing support.

I would also like to express my gratitude to my new friends Daniele and Paolo, with
whom I enjoy playing beach volley and spending evenings filled with laughter.

I am also thankful to all my colleagues at SDG for making me feel welcome and at ease

24



from day one. A special thank you to Paola, who has been a constant source of support
during this project.

I would also like to express my gratitude to Simone who, despite our recent acquaintance,
listened to me when I needed it the most. Thanks for showing me that coming in last place
is just as valuable as coming in first.

Lastly, I would like to thank everyone who has supported me on this journey, but
especially to those who challenged me and helped shape me into the person I am today.

25


	Introduction
	Theoretical framework
	Classification
	Dataset
	Methods
	Regularization
	Results

	Explainability
	Sensitivity maps
	An uncertainty measure for parametric machines

	Forecast
	Dataset
	Methods
	Results

	Generalization
	Conclusion
	Julia programming language

