
Contractive and Robust Deep Neu-
ral Network in Continuous Time

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
Dell’Automazione

Author: Daniele Martinelli

Student ID: 970953
Advisor: Prof. Riccardo Scattolini
Co-advisors: Prof. Giancarlo Ferrari Trecate, Luca Furieri, Clara Galimberti
Academic Year: 2021-22

i

Abstract

In this thesis, we present a new class of deep neural networks in continuous time that
can be used in different learning tasks, from classification problems to control applica-
tions such as continuous-time system identification and optimal control. The name of this
architecture is: Recurrent Equilibrium Network Ordinary Differential Equations (REN-
ODEs). This new class of neural networks consists of nonlinear dynamical systems that
assures contractivity (a powerful form of stability) by design and can also guarantee in-
cremental integral quadratic constraints (IQCs). IQCs are used to enforce properties of
incremental dissipativity and passivity, as well as Lipschitz bounds. These properties
provide robustness to the model. With this term we mean a mitigation of the sensitivity
of the system’s outputs with respect to small perturbations in the inputs. This feature is
important in applications in which signals are affected by noise (e.g., system identification
from real acquired data). Being contractive and robust by design means that the N pa-
rameters, characterizing a REN-ODE, are unconstrained. This property makes possible,
during the learning phase, to use unconstrained iterative first-order optimization meth-
ods such as gradient descent (and its variations). The structure of the class is inspired by
the Recurrent Equilibrium Networks (RENs) which, however, are formulated in discrete
time. Moreover, the REN-ODE’s architecture belongs to the family of Neural Ordinary
Differential Equations (Neural-ODEs). As a result, REN-ODEs inherit all the advantages
of Neural-ODEs, including the possibility to use modern and sophisticated ODE solvers
for the evaluation of the model’s trajectories. Furthermore, latest ODE solvers can pro-
vide high level of precision and adapt the evaluation strategy on the fly to achieve the
requested level of accuracy. In this work, the properties of contractivity and robustness
are validated on a nonlinear system identification problem and an optimal control task.
Moreover, we evaluate the performance of the REN-ODEs over benchmark binary classi-
fication problems.

Keywords: Contractivity, Robustness, Lipschitz bound, Deep Neural Networks,
Neural-ODE, Recurrent Equilibrium Network.

iii

Contents

Abstract i

Contents iii

Introduction 1

1 Preliminary Knowledge 5
1.1 Contractivity . 5
1.2 Dissipativity . 7

1.2.1 General Dissipativity . 7
1.2.2 Incremental Dissipativity . 8

1.3 Passivity . 8
1.4 Integral Quadratic Constraints (IQCs . 9
1.5 Machine Learning background . 12
1.6 Recurrent Equilibrium Networks (RENs) 13

1.6.1 Acyclicity . 15
1.6.2 Well-Posedness . 16
1.6.3 Learning Stable & Robust Models 16
1.6.4 Convex Parametrization . 17
1.6.5 Direct Parametrization . 18

1.7 Neural-ODEs . 21
1.7.1 Adjoint Method . 23
1.7.2 Augmented Neural-ODEs . 25

2 REN-ODEs 27
2.1 REN-ODE model . 27

2.1.1 Assumptions . 28
2.1.2 Well-Posedness . 28

2.2 Contracting and Robust REN-ODEs . 28

2.2.1 Robust REN-ODEs are Contractive 33
2.2.2 Convex Parametrization . 34
2.2.3 Assumptions on the symmetry of P 37

2.3 Direct Parametrization . 38
2.4 Comments on REN-ODE . 41

3 Simulations & Results 45
3.1 Implementation . 45
3.2 Validation of Contractivity, ℓ2-Bound and Passivity 47
3.3 Use Case 1: Binary Classification . 52
3.4 Use Case 2: System Identification . 57
3.5 Use Case 3: Optimal Control . 61

4 Conclusions and future developments 67

Bibliography 69

A Appendix A 75

B Appendix B 77

1

Introduction

Nowadays, Machine Learning (ML) methods have become more and more popular: im-
age processing [1], pattern recognition [2], speech-to-text conversion [3], protein structure
prediction [4] and learning to play complex games [5] are just few of the many possible
areas of applications.
Thanks to their generality, flexibility and ability of learning from experience (i.e., from
data), a rapid and still growing spread of ML methods has been reported in the control
field, especially for large systems or non conventional applications, like driving soft and
continuum robots or smart buildings management [6, 7]. Indeed, thanks to the possibility
of training flexible machine learning models, exploiting big amount of data and having
access to high computational power, many solutions to problems in automation, that were
previously not achievable, are now possible. For example, when considering applications
such as fault detection and/or control over large-scale systems, it is now feasible to re-
trieve non-linear models that are closer to reality, rather than using standard linearized
versions of them [8].
Among the ML community, the Deep Learning computing paradigm has become one of
the most widely used computational approaches, achieving impressive results on several
complex tasks, matching or even beating those provided by human performance [9]. Deep
Neural Networks (DNNs) have been more and more exploited, thanks to their ability to
learn from massive amounts of data. However it has been observed that neural networks
can be very sensitive to small changes in inputs [10] and thus not ideal for control appli-
cations in their generic form.
In [11], the authors introduce an innovative DNN architecture: Recurrent Equilibrium
Networks (RENs). RENs are able to guarantee properties of stability and robustness
while keeping a smooth mapping from the space RN to the N weights and biases (i.e., the
parameters) of the REN: this unconstrained parametrization is defined by the authors as
direct parametrization and it makes the training process be an unconstrained optimization
problem. Robustness, in the control field, is a general concept. In this thesis, more details
will be provided and, in particular, further concepts that will lead to robust networks
will be formally introduced (e.g., Lipschitz bounded gain, dissipativity and passivity).

2 | Introduction

Moreover, about robustness it has been shown in [10, 12] that different recurrent neural
network models suffer of high sensitivity, i.e., small changes to the input produce substan-
tial changes in the output. This collateral effect may be problematic in case of control
systems, in which signals are usually affected by noise and disturbances. On the other
hand, there are many empirical proofs that suggest that limitating Lipschitz constants of
DNNs can have a positive impact in terms of speed of training and model performance in
system identification [13] and generalization in ML [14]. However, even just calculating
Lipschitz constant of a feedforward-NN has been proven to be a NP-hard problem [15].
Also, during the last few years, many different approaches to enforce Lipschitz-bounds
have been provided, but they required the use of Alternating Direction Method of Multi-
pliers or convex implicit parametrization of the networks to train [13, 16]. These problems
can be usually estimated only for small neural networks, due to the poor scaling.
On the other side, all the models in the class of RENs are contracting or they can satisfy
prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds
and incremental passivity. Moreover, this new architecture has shown really good perfor-
mances, outperforming popular models like LSTM, RNNs and Resnets in many different
tasks such as system identification, nonlinear observers and data-driven feedback control
designs. However, in the control community are well known the problems of implemen-
tation of discrete-time and sampled-data controllers for linear and nonlinear continuous-
time systems due to the presence of sampling zero dynamics and the possibility of losing
closed-loop stability [17–19]. In fact, there is no guarantee of preserving the properties
of stability once the system is sampled (Figure 1). Additionally, if RENs are used as
controllers or observers, the model returned after being trained, will depend from the
sampling time Ts of data used during this phase. If, on the other hand, the real system
suffers of time-varying delays in the communication between devices, highly possible in
case of large-scale systems, the trained discrete REN system may not work as designed,
while a continuously-defined dynamical system could automatically include data arriving
at arbitrary times.
In this thesis, we present a new version of REN in continuous time: REN-ODE. It will
be also shown that it is able to keep guarantees on properties of contractivity and passiv-
ity/dissipativity. This new system is inspired by the state-of-the-art Neural-ODEs [20].
Indeed, the authors proposed an innovative deep neural network class in which the num-
ber of hidden layers is not specified; instead, a continuous number of layers is considered,
where the derivative of the hidden state is parameterized using a neural network. Suc-
cessively, the trajectories of the system are obtained using modern ODE solvers, that can
guarantee high level of precision and adapt the evaluation strategy on the fly to achieve
the requested level of accuracy.

| Introduction 3

Organization of the Thesis

The thesis is organized as follows:

• In chapter 1, we provide preliminary knowledge about the definition of contrac-
tivity and some formal concepts to characterize robustness in a dynamical system:
incremental dissipativity, passivity and IQCs. Furthermore, an introduction to the
Recurrent Equilibrium Network and the Neural-ODE architecture is given. Details
on the training procedure, as well as their key features, are reported.

• In chapter 2, we show that all REN-ODEs are contractive by design. This means
that this property is guaranteed independently of the parameters. Moreover, we in-
troduce a subclass of REN-ODEs, called robust REN-ODEs (RREN-ODE), that can
also guarantee implicitly prescribed properties of incremental dissipativity/passivity
or satisfy any given IQC.

• In chapter 3, we validate through simulations the properties of the REN-ODEs. We
evaluate their performance in three different kind of problems: system identification
of a nonlinear system, binary classification and optimal control of a multi agent
system with safety policies.

• Finally, chapter 4 presents the conclusions of our work, as well as some future
developments of REN-ODEs.

REN SYSZOH+ -

Figure 1: Equivalent scheme of the closed-loop system obtained using the
hold-equivalence(HE) method.

5

1| Preliminary Knowledge

Non-linear system analysis is still an open and hot topic due to the complexity of the sub-
ject. Concepts as contractivity, dissipativity and passivity are frequently used in this field.
In this chapter, we fornally define these concepts, that will be of use for characterizing
the properties of the REN-ODEs. Furthermore, we will introduce the architectures and
properties of Neural-ODEs [20] and RENs [11]. The former is discussed, since REN-ODEs
are a subclass of these models and thus, their properties will be exploited. The latter is a
discrete-time NN architecture that also guarantees contractive and robustness properties.
Our new models are inspired by RENs, while keeping the propertis of continuous-time
NNs.

1.1. Contractivity

Based on a differential analysis of convergence, contractivity was introduced for the first
time in [21] as a nonlinear system analysis method, inspired from fluid mechanics and
differential geometry.
Consider a general deterministic dynamical system Σ of the form:

Σ =

 ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(1.1)

where x ∈ X ⊆ Rn, y ∈ Y ⊆ Rp, u ∈ U ⊆ Rm are respectively the system state, output
and input. Furthermore, f : X × U → X and g : X × U → Y are the state evolution and
output functions. The functions f and g are C1, i.e., they are continuous and differentiable.
We denote by xa(t) the state function starting from the initial condition a ∈ X at time
t0 up to the time instant t with an input u (from t0 → t).
It is assumed that the possible trajectories of the system Σ are restricted to have left-
compact support, i.e., it exists a t0 ∈ R such that (x, u, y) is zero outside [t0,∞).
Thus, now we are ready to introduce the definition of a contracting system.

6 1| Preliminary Knowledge

Definition 1.1.1 (Contracting System). A system Σ in the form (1.1) is said to be
contracting if for any two initial conditions a,b∈ X , ∀t ≥ t0, the state functions xa(t) and
xb(t) with the same input function u(t) satisfy:

∥xa(t)− xb(t)∥ ≤ κe−c(t−t0)∥a− b∥ (1.2)

for some c > 0 and κ > 0.

The Definition 1.1.1 can be interpreted as follow: a contractive model is a model that
"forgets" the initial condition with a certain rate c. Indeed, we have that

lim
t→+∞

∥xa(t)− xb(t)∥ = 0.

This property can be useful especially in applications such as system identification or
state estimation (i.e., state observer design), in which the initial state can be affected by
uncertainty.
An equivalent definition of contractivity can be provided for discrete time systems. Let
us consider a general discrete-time deterministic dynamical system ΣDT of the form:

ΣDT =

 x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k)),
(1.3)

where k ∈ N denotes a time-step of the model and x, u, y, f and g have the same
dimension/structure of the continuous-time counterpart. As done previously, we denote
by xa(k) the state sequence starting from the initial condition a ∈ X at time k0 up to the
time step k with an input sequence u (from k0tok). The following definition introduces
the concept of a discrete-time contracting system.

Definition 1.1.2 (Contracting Discrete-Time System). A system ΣDT in the form (1.3)
is said to be contracting if for any two initial conditions a,b∈ X , the state sequences xa(k)

and xb(k) with same input sequence u(k) satisfy ∀k ≥ k0:

∥xa(k)− xb(k)∥ ≤ c αk∥a− b∥, (1.4)

for some c > 0 and α ∈ [0, 1).

1| Preliminary Knowledge 7

1.2. Dissipativity

We define supply rate a function s(u(t), y(t)):

s : U × Y → R. (1.5)

The symbol R+ denotes R+ = [0,∞).
Dissipativity, in many physical systems, may be roughly interpreted as the way the system
exchanges its internal energy with the external through the inputs and outputs. Thus, it
is intuitive how the concept of dissipativity is important in control theory: under certain
conditions of controllability and reachability, then the way the system stores and expels
energy, based on inputs and outputs, can provide information about the overall stability
of the process. Thus, a definition of a dissipative system can be provided [22].

1.2.1. General Dissipativity

Definition 1.2.1 (Generally Dissipative System). Given a supply rate s, a system Σ

in the form (1.1) is said to be dissipative with respect to s if there exists a function
S : X → R+, called storage function, such that for any initial condition x(t0) ∈ X at any
time t0, and for any input u(·) ∈ U and the following inequality holds:

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(u(t), y(t))dt , ∀t1 ≥ t0, (1.6)

where the integral
∫ t1
t0

s(u(t), y(t))dt is assumed to be well defined for all allowed u(·) ∈ U
and y(·) ∈ Y .

If the function S(x(t)) is differentiable, (1.6) can be rewritten as:

d

dt

(
S(x(t))

)
≤ s

(
u(t), y(t)

)
, (1.7)

and it is called differentiated dissipation inequality. If (1.6) holds with equality for all
initial conditions x(t0), t1 ≥ t0 and any allowed u(·), then the system Σ is said to be
conservative with respect to the supply rate s.

Indeed, the storage function S(·), as the name suggests, can be seen as the energy that
the system can store and the supply rate s(·) as the law that describes how this energy
balance varies with respect to inputs and outputs.

A definition of dissipativity can also be introduced for the discrete-time case.

8 1| Preliminary Knowledge

Definition 1.2.2 (General Discrete-Time Dissipative System). Given a supply rate s, a
system ΣDT in the form (1.3) is said to be dissipative with respect to s if there exists a
function S : X → R+, called storage function, such that for any initial condition x(k0) ∈ X
at any time step k0, and for any input u(·) ∈ U and ∀k1 ≥ k0 the following inequality
holds:

S(x(k1)) ≤ S(x(k0)) +
k1∑

i=k0

s(u(i), y(i)) (1.8)

1.2.2. Incremental Dissipativity

Dissipativity, as per Definition 1.2.1 or Definition 1.2.2, describes the way the system
exchange its internal energy with the external. This notion can be extended to the
incremental form of the system. Hence, incremental dissipativity is the study of the energy
flow between any two trajectories of the system, where two trajectories may variate due
to possible different initial conditions or sequence of inputs.
We denote with:

∆y(t) = y(t)− ȳ(t) , ∆u(t) = u(t)− ū(t) , ∆x(t) = x(t)− x̄(t) (1.9)

the finite differences between the two possible trajectories (x, u, y), (x̃, ũ, ỹ) of the sys-
tem Σ.

Definition 1.2.3 (Incrementally Dissipative System). Given a supply rate s, a system Σ

in the form (1.1) is said to be incrementally dissipative with respect to s if there exists a
function S : X → R+, called storage function, such that for any two possible trajectories
(x, u, y), (x̄, ū, ȳ):

S(∆x(t1)) ≤ S(∆x(t0)) +

∫ t1

t0

s(∆u(t),∆y(t))dt , ∀t1 ≥ t0 (1.10)

where the integral
∫ t1
t0

s(·)dt is assumed to be well defined for all allowed u(·) ∈ U and
y(·) ∈ Y , and ∆x,∆y,∆u are defined in (1.9).

1.3. Passivity

Once the definition of dissipativity has been stated, the property of passivity can be given.
As a premise, a necessary condition for a system to be passive is that the input and output
must have the same dimensions, i.e., m ≡ p and U ,Y ⊆ Rm

1| Preliminary Knowledge 9

Definition 1.3.1 (Passive System). A system Σ in the form (1.1) is said to be passive if
it is dissipative with respect to the supply rate s(u, y) = u⊤y.

Additionally, definitions of input strictly passive and output strictly passive systems can
be given.

Definition 1.3.2 (Input Strictly Passive System). A system Σ in the form (1.1) is said
to be input strictly passive if ∃ν > 0 such that Σ is dissipative with respect to the supply
rate s(u, y) = u⊤y − ν∥u∥2.

Definition 1.3.3 (Output Strictly Passive System). A system Σ in the form (1.1) is said
to be output strictly passive if ∃ε > 0 such that Σ is dissipative with respect to the supply
rate s(u, y) = u⊤y − ε∥y∥2.

1.4. Integral Quadratic Constraints (IQCs

At this point, it would be interesting to find a parameterized form of the supply rate
s(·), in such a way that, choosing properly the parameters, it is possible to retrieve the
supply rate for specific cases (e.g., passivity, Lipschitz bounded system). This is the main
idea behind the incremental integral quadratic constraints (IQCs). Before reporting the
definition of IQCs, let X ≥ 0 and X ≤ 0 denote that the generic square matrix X is
semi-positive definite and semi-negative definite, respectively.

Definition 1.4.1 (Incremental Integral Quadratic Constraint (IQC)). A system Σ in the
form (1.1) is said to satisfy the incremental integral quadratic constraints (IQCs) defined
by the matrices (Q,S,R) where 0 ≥ Q ∈ Rp×p, S ∈ Rm×p and R = RT ∈ Rm×m if
there exists a storage function S : X → R+ such that for any pair of initial conditions
(x(t0), x̄(t0)) and input sequences (u(t), ū(t)) ∈ U , the respective output sequences y, ȳ

(following (1.1)) satisfy:

∫ t1

t0

[
y(t)− ȳ(t)

u(t)− ū(t)

]⊤ [
Q S⊤

S R

][
y(t)− ȳ(t)

u(t)− ū(t)

]
dt ≥ −S(x(t0)− x̄(t0)), ∀t1 ≥ t0. (1.11)

where the integral
∫ t1
t0

is assumed to be well defined for all allowed u(·) ∈ U and y(·) ∈ Y ,
and ∆x,∆y,∆u are defined in (1.9).

It is interesting to note that (1.11) can be seen as a special reformulation of the incremental

10 1| Preliminary Knowledge

dissipation inequality (1.10) with s(∆u,∆y) =

[
∆y(t)

∆u(t)

]⊤ [
Q S⊤

S R

][
∆y(t)

∆u(t)

]
:

∫ t1

t0

[
∆y(t)

∆u(t)

]⊤ [
Q S⊤

S R

][
∆y(t)

∆u(t)

]
dt ≥ S(∆x(t1))− S(∆x(t0)) (1.12)

For definition, S(x) ≥ 0 ∀x, thus:

∫ t1

t0

[
∆y(t)

∆u(t)

]⊤ [
Q S⊤

S R

][
∆y(t)

∆u(t)

]
dt ≥ S(∆x(t1))− S(∆x(t0)) ≥ −S(∆x(t0)) (1.13)

So we have just shown that (1.11) is the reformulation of (1.10) with a particular supply
rate s(·) that now is parametrized with respect to the matrices (Q,S,R).
Let ∥y∥T denote the finite 2-norm of the signal y from time t0 up to time T ; in formula:

∥y∥T =
(∫ T

t0

|y(τ)|2dτ
)1/2

. (1.14)

One of the main interesting applications of incremental IQCs is the possibility to test
properties of the system (such as dissipativity and passivity) by choosing proper values
of the fixed matrices (Q,S,R). Indeed, taking:

• Q = − 1
γ
I, R = γI, S = 0 → the model satisfies an ℓ2 Lipschitz bound of γ:

Proof. Using the values of (Q,R, S) in (1.11) and the definition of ∆x,∆y,∆u from
(1.9), where two possible trajectories are considered, i.e., (x, u, y), (x̄, ū, ȳ):

∫ t1

t0

[
∆y(t)

∆u(t)

]⊤ [
− 1

γ
I 0

0 γI

][
∆y(t)

∆u(t)

]
dt ≥ −S(∆x(t0)) (1.15)

Then it can be possible to compact everything using the notation (1.14) and denoting
with S ′(·) = γS(·):

−1

γ
∥∆y∥t1 + γ∥∆u∥t1 ≥ −S(∆x(t0))

−∥∆y∥t1 + γ2∥∆u∥t1 ≥ −S ′(∆x(t0))

γ2∥∆u∥t1 + S ′(∆x(t0)) ≥ ∥∆y∥t1

(1.16)

(1.17)

(1.18)

Then it is possible to prove [22, Proposition 1.2.7] that the input-output map of the

1| Preliminary Knowledge 11

incremental model has ℓ2-gain ≤ γ, i.e.:

∥y − ȳ∥t1 ≤ γ∥u− ū∥t1 , ∀t1 ≥ t0 (1.19)

• Q = 0, R = −2νI, S = I, ν ≥ 0 → the system is incrementally input passive.

Proof. Using the values of (Q,S,R) into (1.11):∫ t1

t0

2∆u⊤(t)∆y(t)− 2ν∆u⊤(t)∆u(t)dt ≥ −S(∆x(t0)), (1.20)

Defining a storage function S ′ = 1
2
S, then (1.20) can be rewritten as:

∫ t1

t0

∆u⊤(t)∆y(t)− ν∆u⊤(t)∆u(t)dt ≥ −S ′(∆x(t0)), (1.21)

where two possible trajectories are considered, i.e., (x, u, y), (x̄, ū, ȳ) and ∆x,∆y,∆u

are obtained as in (1.9). Finally, (1.21) is the definition of a incrementally dissipative
system with supply rate
s(∆u,∆y) = ∆u⊤∆y−ν∆u⊤∆u, or, in other words, an incrementally input passive
system (Definition 1.3.2).

• Q = −2εI, R = 0, S = I, ε ≥ 0 → the system is incrementally output passive.

Proof. We can just use the values of (Q,S,R) into (1.11):∫ t1

t0

2∆u⊤(t)∆y(t)− 2ε∆y⊤(t)∆y(t)dt ≥ −S(∆x(t0)), (1.22)

Defining a storage function S ′ = 1
2
S, then (1.22) can be rewritten as:

∫ t1

t0

∆u⊤(t)∆y(t)− ε∆y⊤(t)∆y(t)dt ≥ −S ′(∆x(t0)), (1.23)

where two possible trajectories are considered, i.e., (x, u, y), (x̄, ū, ȳ) and ∆x,∆y,∆u

are obtained as in (1.9). Finally, (1.23) is the definition of a incrementally dissipative
system with supply rate
s(∆u,∆y) = ∆u⊤∆y−ε∆y⊤∆y, or, in other words, an incrementally output passive
system (Definition 1.3.3).

12 1| Preliminary Knowledge

1.5. Machine Learning background

RENs and REN-ODEs (the model proposed in this thesis) belong to the family of the
artificial neural networks (ANNs). An ANN is a type of ML architecture composed,
as the name suggests, by a network of artificial neurons, inspired by the human brain.
These neurons are organized in three or more layers that connect the input features x

(of dimension n), up to the outputs y (of dimension p). The main advantages of ANNs
is that, according to the universal function approximation theorem, it is possible, with a
finite number of neurons, to approximate any continuous function belonging on compact
subsets of Rn. This flexibility in the mapping between inputs and outputs makes ANN,
theoretically, able to solve any kind of problem, and thus, applicable to many different
cases. A neuron, sometimes called also "linear threshold unit" (LTU) with (n+1) inputs
and p outputs, is characterized by the following relation:

y = σ

(
n∑

j=0

wjxj

)
(1.24)

where xj denotes the jth input feature (with w0x0 a constant, called bias), y the output, wj

a weight coefficient that multiplies the jth input xj and σ(·) a nonlinear function applied
element-wise called activation function with σ : R → R. Neurons are organized in layers
that are interconnected in many possible ways, generating thus a network. Usually, in a
feed-forward neural network, each layer, starting from the first one that takes as input
the features x, is connected to the next one through nodes up to last one, that returns
the p outputs. Each node is characterized by its own weights, one for each connection to
another node. Thus, the net is composed mainly by three parts: (Figure 1.1):

1. a layer of neurons that are connected to the inputs, called "input layer";

2. a layer of neurons that return the outputs, called "output layer";

3. one or more layers of neurons that connect the input layer to the output one, called
"hidden layers".

Furthermore, deep neural networks (DNNs) are ANNs with multiple hidden layers: indeed,
the term deep refers to the large amount of layers that they can present inside.

A particular type of DNN are the recurrent neural networks (RNNs), which present a
feedback interconnection inside the net. In other words, the output at time k (yk) depends
on the inputs at time k (uk), but also on the states at the time k−1 (hk−1). In Figure 1.2,
a scheme of a generic RNN is reported. The dependencies on the previous state, allows the

1| Preliminary Knowledge 13

system to have a memory of the past, (i.e., as the concept of state in dynamical systems)
making them useful in case of estimation or predictions from time sequences (such as
audio or video).

Figure 1.1: Scheme of a generic ANN having n input features and m outputs features.

Unfold

Figure 1.2: Compressed (left) and unfolded (right) generic RNN. The unitary delay is
represented here with z−1.

1.6. Recurrent Equilibrium Networks (RENs)

Firstly introduced by the authors in [11, 13, 23], Recurrent Equilibrium Networks (RENs)
are a subset of RNNs. Architectures such as ResNets [24] and RNN encoder/decoders [25]
are based on the fact that the hidden layers are given by a sequence of transformations
that follow:

hk+1 = hk + f(hk, θ) (1.25)

where k ∈ {0, . . . , T − 1} is one of the T hidden-layers, θ ∈ RN
k are the parameters of the

net and hk ∈ Rn are the hidden-states of each hidden-layer with n neurons per layer. For
this reason, RENs can be considered as discrete-time systems. A more general class of

14 1| Preliminary Knowledge

RNN are given by the new architecture introduced as RENs by [11]:

xk+1

vk

yk

 =

W︷ ︸︸ ︷A B1 B2

C1 D11 D12

C2 D21 D22

xk

wk

uk

 +

b︷ ︸︸ ︷bxbv
by

, (1.26)

wk = σ(vk) (1.27)

where xk ∈ Rn, vk ∈ Rq, wk ∈ Rq, uk ∈ Rm and yk ∈ Rp are respectively the state,
the nonlinear output, the nonlinear input, the exogenous input and output. Moreover,
the matrices in W , called weights, and the vectors in b, called biases, are the learnable
parameters of the system. The function σ(·) is a nonlinear fixed "activation function"
applied element-wise to each channel. Thus, RENs can be framed as a linear part (1.26),
plus a nonlinear feedback (1.27). In Figure 1.3, we present a scheme of a REN where G
denotes the linear part and σ the nonlinear one.

Figure 1.3: Recurrent Equilibrium Network(REN) schematized as a linear system(G) and
a nonlinear static feedback(σ)

Once the model of the system has been given in (1.26)-(1.27), it is interesting to analyze
how the system behaves if two initial conditions or input functions are considered. Con-
sider the difference between two trajectories (xa, wa, va, ua) and (xb, wb, vb, ub) of a REN,
then we can denote with:

∆xk = xa
k − xb

k , ∆vk = vak − vbk , ∆yk = yak − ybk , ∆uk = ua
k − ub

k. (1.28)

The two trajectories have been generated by (1.26)-(1.27) starting from two different
initial conditions a, b ∈ Rn and from two input sequences ua and ub. At this point, it is

1| Preliminary Knowledge 15

possible to provide the incremental form of the REN:∆xk+1

∆vk

∆yk

 =

A B1 B2

C1 D11 D12

C2 D21 D22

∆xk

∆wk

∆uk

 , (1.29)

∆wk = σ(vk +∆vk)− σ(vk), (1.30)

We make the following assumption on σ, which is valid for most activation functions in
the literature.

Assumption 1 (Rate-Limited σ). The activation function σ(·) is piece-wise differentiable
and slope-restricted in [0, 1], i.e.,

0 ≤ σ(y)− σ(x)

y − x
≤ 1 , ∀x, y ∈ R , x ̸= y (1.31)

Note that (1.31) can also be rewritten for each jth channel as a conic combination with
multipliers ξj > 0, resulting in an incremental IQC:

Γk =

[
∆vk

∆wk

]⊤ [
0 Λ

Λ −2Λ

][
∆vk

∆wk

]
≥ 0 , ∀k ∈ N (1.32)

where Λ = diag(ξ1, . . . , ξq). It is worth to highlight that the previous assumption is not
restricting the use of the most popular activation functions used in ML literature, such
as ReLU (·), sigmoid(·), tanh(·), since they do satisfy Assumption 1.
Subsequently a subclass of RENs will be presented, characterized by some assumptions
made on the structure of the parameter D11. Furthermore, direct parametrization of the
contractive and robust RENs (called CREN and RREN, respectively) is obtained.

1.6.1. Acyclicity

A subset of RENs, as called by the authors in [11], are the acyclic RENs (aRENs). The
name takes origin by the so called directed acyclic graphs in which there are no direct
cycles. A directed cycle in a directed graph is a non-empty directed trail in which only
the first and last vertices are equal (a directed graph is a graph in which the edges have
a direction). The property of acyclicity can be enforced into the RENs assuming that
the weight matrix D11 is always constrained to be strictly lower triangular; rephrasing
it, it means that the ith channel of v(k) with i ∈ [1, q] will depend only by the channels

16 1| Preliminary Knowledge

from {1, . . . (i − 1)}. Assuming an acyclic grapch, allow to simplify the calculation of
wk at every layer/time k and consequently the simulation of xk and yk. However, this
simplification is not necessary and different approaches can be used in order to solve the
implicit equation [26, 27], resulting in a full matrix D11.

1.6.2. Well-Posedness

Due to the presence of biases and of a nonlinear activation function σ, it is important
to verify that the system is well-posed. Well-posedness means that, given any particular
input (x̄k, ūk, b̄v), a unique solution w̄k exists, where (x̄k, ūk, b̄v) correspond to all the
inputs used to calculate w̄k. This property can be reformulated as follows.

Definition 1.6.1 (Well-posedness). An equation in the form:

wk = σ(vk) = σ(D11wk + C1xk +D12uk + bv) (1.33)

is said to be well-posed if and only if:

∀x̄k, ūk, b̄v then ∃! w̄k : w̄k = σ
(
D11w̄k + C1x̄k +D12ūk + b̄v

)
(1.34)

In [26] the authors show that if there exists a positive definite diagonal matrix Λ such
that:

2Λ− ΛD11 −D⊤
11Λ > 0, (1.35)

then the problem in (1.33) is well-posed. This important result will be used in the next
section and in Chapter 2.

1.6.3. Learning Stable & Robust Models

One of the main results obtained in [11] is the possibility to obtain a set of learnable
parameters (i.e., the matrix W and the vectors in b in (1.26)) such that the RENs can be
contractive (called C-RENs) or robust (called R-RENs). With robustness, we mean the
system’s sensitivity of the model’s output is small with respect to small perturbations in
the input. This problem has been recently noticed in many different RNN models [12],
making the use of standard RNN impractical in control theory, in which small perturbation
in data are quite common. For sake of clarity, the propositions guaranteeing the necessary
conditions for contractivity and robustness are reported here.

Proposition 1.1 (LMI for C-REN). A discrete-time REN in the form (1.26)-(1.27) is

1| Preliminary Knowledge 17

well-posed and contracting if there exists a matrix P > 0 and a diagonal matrix Λ > 0

such that [
P −C⊤

1 Λ

−ΛC1 W

]
−

[
A⊤

B⊤
1

]
P

[
A⊤

B⊤
1

]⊤
> 0, (1.36)

where
W = 2Λ− ΛD11 −D⊤

11Λ. (1.37)

Proposition 1.2 (LMI for R-REN). Given the matrices (Q,S,R), a discrete-time REN in
the form (1.26)-(1.27) is well-posed and satisfies the incremental IQC described by (Q,S,R)

if there exists a matrix P > 0 and a diagonal matrix Λ > 0 such that P −C⊤
1 Λ C⊤

2 S
⊤

−ΛC1 W D⊤
21S

⊤ − ΛD12

SC2 SD21 −D⊤
12Λ R + SD22 +D⊤

22S
⊤

−

A
⊤

B⊤
1

B⊤
2

P

A
⊤

B⊤
1

B⊤
2

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0 (1.38)

where W is defined in (1.37).

The proofs of Propositions 1.1 and 1.2 can be found in the authors’ paper[11].

1.6.4. Convex Parametrization

It is possible to notice that the matrix inequalities in (1.36), (1.38), are not convex in
their parameters (e.g., the presence of the element A⊤PA). This detail would make not
possible later a direct parametrization. For this reason, as reported in [23], a convex
parametrization of C-RENs/R-RENs is done. First of all, the REN’s model (1.26) can be
rewritten multiplying the first two rows by two matrices (E, Λ), with E invertible and Λ

positive definite and diagonal.Exk+1

Λvk

yk

 =

F B1 B2

C1 D11 D12

C2 D21 D22

xk

wk

uk

 + b̃,

wk = σ(vk),

(1.39)

where F = EA, B1 = EB1, B2 = EB2, C1 = ΛC1, D11 = ΛD11, D12 = ED12, and b̃ is
the column concatenation of Ebx, Λbv, by. The passage from the initial matrices of (1.26)

18 1| Preliminary Knowledge

to the new ones (and vice versa) is guaranteed by the invertibility of E and Λ (Λ > 0).
Thus, Propositions 1.1 and 1.2 can also holds for (1.39).

Proposition 1.3 (Convex Parametrization of C-REN). Let a REN be in the form (1.39),
then if there exists a matrix P > 0 such that:E + E⊤ − P −C⊤

1 F⊤

−C1 W B⊤
1

F B1 P

 > 0, (1.40)

with
W = 2Λ−D11 −DT

11, (1.41)

then the REN is well-posed and contractive.

Proposition 1.4 (Convex Parametrization of R-REN). Let a REN be in the form (1.39),
then, given the matrices (Q,S,R), if exists a matrix P > 0 such that:E + E⊤ − P −C⊤

1 C⊤
2 S

⊤

−C1 W D⊤
21S

⊤ −D12

SC2 SD21 −D⊤
12 R + SD22 +D⊤

22S
⊤

−

F
⊤

B⊤
1

B⊤
2

P−1

F
⊤

B⊤
1

B⊤
2

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0, (1.42)

with W given by (1.41), then the REN is well-posed and satisfies the incremental IQCs
characterized by (Q,S,R).

The proofs of Propositions 1.3 and 1.4 can be found in [11].

1.6.5. Direct Parametrization

Now, it is finally possible to obtain a direct parametrization of the RENs, i.e., find an
unconstrained mapping from the free/learnable parameters θ ∈ RN to the matrices W

and b from (1.26) that guarantees contractivity or robustness of the model.

1| Preliminary Knowledge 19

Contractive Direct Parametrization

Let the matrix from the left handside of inequality (1.40) be H, with
H ∈ R(2n+q)×(2n+q). Then, for any matrix X ∈ R(2n+q)×(2n+q) and an ϵ > 0, imposing that:

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 = X⊤X + ϵI , (1.43)

makes H satisfy the inequality (1.40) by construction. Comparing (1.43) with (1.40),
leads to:

F = H31 , B1 = H32 , P = H33 , C1 = −H21. (1.44)

Additionally we can set:

E =
1

2
(H11 + P + Y1 − Y ⊤

1) (1.45)

where Y1 ∈ Rn×n is a free matrix that allows us to obtain also non-symmetric E matrices.
If the system is acyclic, then D11 must be strictly lower triangular, thus from H22:

H22 = W = 2Λ−D11 −D⊤
11. (1.46)

It is possible to obtain Λ from 1/2 of the main diagonal of W and D11 from the strict lower
triangular part of W . The remaining parameters do not impact on the contractivity of the
model and can be considered free. In conclusion, to define a CREN, first one can set X ∈
R(2n+q)×(2n+q),B2 ∈ Rn×m, C2 ∈ Rp×n,D12 ∈ Rq×m, D21 ∈ Rp×q, D22 ∈ Rp×m, b ∈ R(n+q+p)

and Y1 ∈ Rn×n. Then, the remaining matrices are obtained through (1.44)-(1.46). Note
that a possible implementation in case of full D11 can be carried out. In order to do so,
the full matrix must be constructed as per:

D11 = Λ− 1

2
(H22 + Y2 − Y ⊤

2), (1.47)

where Y2 ∈ Rq×q, Λ = ediag(g) and g ∈ Rq.

Robust Direct Parametrization

We introduce an intermediate step that will be helpful for the direct parametrization of
robust RENs. By defining:

R = R + SD22 +D⊤
22S

⊤ +D⊤
22QD22 > 0, (1.48)

20 1| Preliminary Knowledge

It can be shown that the inequality (1.42) is equivalent to:

E + E⊤ − P −C⊤
1 F⊤

−C1 W B⊤
1

F B1 P

 >

 C⊤
2

D⊤
21

B2

R−1

 C⊤
2

D⊤
21

B2

⊤

−

C
⊤
2

D⊤
21

0

Q

C
⊤
2

D⊤
21

0

⊤

, (1.49)

with
C2 = (D⊤

22Q+ S)C2 , D21 = (D⊤
22Q+ S)D21 −D⊤

12 (1.50)

The equivalence between ((1.42)) and (1.48)-(1.49) is based on the use of Schur Comple-
ment. The detailed proof can be found in [11].
However, it can be shown that, in case of the given matrix S to be null, then (1.48)
becomes:

R = R +D⊤
22QD22 > 0, (1.51)

Moreover, doing a direct parametrization as in the conctractive would imply solving (1.51)
in D22 given a fixed value of R. This may lead to complex solutions, not acceptable for
real signals. Then, it is necessary to find a construction of D22 such that Equation (1.48)
is satisfied, for any S. To do so, we can define:

s = max(p,m) , X3, Y3 ∈ Rs×s (1.52)

M = X⊤
3 X3 + Y3 − Y ⊤

3 + ϵI (1.53)

Z =
[
(I −M)(I +M)−1

]
p×m

(1.54)

where ϵ > 0 and [V]p×m indicates the block matrix with the first p rows and m columns
of a matrix V . Assuming Q < 0, Q and R can be factorized as:

L⊤
QLQ = −Q , L⊤

RLR = R− SQ−1S⊤ (1.55)

and finally:

D22 = −Q−1S⊤ + L−1
Q ZLR (1.56)

Constructing D22 as per (1.56), guarantees that the matrix R is positive definitive (i.e.,
(1.48) holds true). The proof can be found in [11].
Now, the direct parametrization in the robust case proceeds in the same way as done in
the contractive case.
Denoting with d̃ = (n+ q +m), let H∗ ∈ Rd̃×d̃ be the resulting matrix from the inequal-

1| Preliminary Knowledge 21

ity (1.49):

H∗ =

E + E⊤ − P −C⊤
1 C⊤

2 S
⊤

−C1 W D⊤
21S

⊤ −D12

SC2 SD21 −D⊤
12 R + SD22 +D⊤

22S
⊤

−

 C⊤
2

D⊤
21

B2

R−1

 C⊤
2

D⊤
21

B2

⊤

+

C
⊤
2

D⊤
21

0

Q

C
⊤
2

D⊤
21

0

⊤

.

(1.57)

Additionally, let H be defined as:

H =

E + E⊤ − P −C⊤
1 C⊤

2 S
⊤

−C1 W D⊤
21S

⊤ −D12

SC2 SD21 −D⊤
12 R + SD22 +D⊤

22S
⊤

 . (1.58)

Combining (1.49) and (1.58) we have:

H∗ = H −

 C⊤
2

D⊤
21

B2

R−1

 C⊤
2

D⊤
21

B2

⊤

+

C
⊤
2

D⊤
21

0

Q

C
⊤
2

D⊤
21

0

⊤

(1.59)

Then, for any matrix X ∈ Rd̃×d̃ and an ϵ > 0:

H∗ = X⊤X + ϵI > 0 . (1.60)

Finally, using (1.59) and (1.60):

H = XX⊤ + ϵI︸ ︷︷ ︸
H∗

+

 C⊤
2

D⊤
21

B2

R−1

 C⊤
2

D⊤
21

B2

⊤

−

C
⊤
2

D⊤
21

0

Q

C
⊤
2

D⊤
21

0

 > 0 . (1.61)

Now, it is possible to follow the same partitions done for C-REN (using (1.44)-(1.46)) and
obtain a direct parametrization of a R-REN, given the matrices (Q,S,R).

1.7. Neural-ODEs

Based on studies about relations between neural networks and differential equations [28,
29], Neural Ordinary Differential Equations (Neural-ODEs) have been introduced for the
first time in [20]. The main idea about this new type of deep neural network is that,

22 1| Preliminary Knowledge

differently from the classical neural networks used in literature, the number of discrete
sequences of the hidden layers is not specified; instead, the derivative of the hidden states
using a neural network is parameterized (Figure 1.4). Normally, the hidden states inside
general networks (e.g., ResNets) follow an evolution as in Equation (1.25), reported here
for clarity:

hk+1 = hk + f(hk, θk)

Afterwards, the numerical computation of this evolution depends on the considered model’s
architecture(for few cases, see Table 1.1). If for example, using Forward Euler(FE), in-
finitesimal steps are considered, Equation (1.25) can be rewritten in a differential form:

d

dt
h(t) = f

(
h(t), t, θ

)
(1.62)

At this point the ODE in (1.62) can be solved using optimized and efficient black-box
differential equation solvers. However, in order to perform the weights’ updates during the
training phase, the reverse-mode differentiation (a.k.a. back-propagation step) must be
carried out through the use of a special adjoint method for ODEs. The adjoint method was
introduced for the first time in [30] and it benefits of different advantages: it scales linearly
with the problem size, it has low memory cost, and it explicitly controls numerical error.
We will detailed these advantages in Section 1.7.1. The use of black-box ODE solvers can
bring multiple benefits with respect to the traditional method of differentiating through
the operations of the forward pass. These advantages are reported here for sake of clarity:

RNN Neural-ODE

Figure 1.4: Comparison of the representations of the hidden-layer between a generic
RNN(left) and a Neural-ODE(right). The unitary delay is represented here with z−1.

• Memory efficiency During the computation of the gradients of a scalar-valued loss

1| Preliminary Knowledge 23

Neural Network Fixed-Step Numerical Scheme

ResNet[24], ResNeXt[31], ... Forward Euler
PolyNet[32] Approx. to Backward Euler
FractalNet[33] Runge-Kutta
DenseNet[34] Runge-Kutta

Table 1.1: Interpretation of classical deep learning networks as ODE solvers.

with respect to all inputs of any ODE solver, it is not required to back-propagate
through the operations of the solver (for details, see Section 1.7.1). Intermediate
quantities of the forward pass don’t need to be stored; thus, the memory cost to
train the models is kept constant as a function of depth. This problem was one of
the major bottlenecks of training deep models.

• Adaptive computation During the past few centuries many different ODE solvers
have been developed, way more accurate then the simple Euler’s method, achieving
high level of precision and efficiency[35–37]. Modern ODE solvers can provide prop-
erties such as monitoring the level of the error, growth of the approximation error
and adaptation of the evaluation strategy on the fly to achieve the requested level
of accuracy. Thus, the cost of evaluating the cost of the model can be scaled func-
tionally to the problem complexity. Indeed, after the training phase, the accuracy
of the returned model can be reduced for real-time or low-power applications.

• Continuous time-series models Differently from RNNs, that are based on fixed-
intervals observations and emissions, the continuous-defined dynamics of Neural-
ODEs can automatically include data arriving at arbitrary times. This can bring
high benefits in the control field, due to the presence of possible time-varying delays
in the communications between devices.

1.7.1. Adjoint Method

Let’s denote with L(z(t)) the loss/cost function evaluated on the sample z(t) and with θ ∈
RN the parameters of the neural network. During the training phase, in order to update
the weights for each batch of data, optimization techniques require the computation of
the gradient of the loss function L with respect to the parameters θ of the network.
In formula:

∇θL =
∂L

∂θ
(1.63)

24 1| Preliminary Knowledge

Considering a continuous system governed by Equation (1.62), the evolution between two
time instants t0 and tf can be made explicit:

z(t1) = z(t0) +

∫ tf

t0

f(z(t), t, θ)dt (1.64)

Thus, the calculus of the loss L(z(·)) at time tf can be rewritten as:

L(z(tf)) = L

(
z(t0) +

∫ tf

t0

f(z(t), t, θ)dt

)
= L

(
ODESOLVE

(
f(·), z(t0), [t0, tf], θ

)) (1.65)

Let’s assume at first that the error depends only on the last time instant tf . This as-
sumption will be removed later. Hence a first call to the black-box ODE solver is done
to compute z(tf) and then L(z(tf)). At this point, the traditional back-stepping method
would require differentiating through the operations. However, this can be done in a way
more efficient way using the adjoint method firstly presented in [30].
In order to evaluate the gradient of L w.r.t. θ, the sensitivity of the loss function w.r.t.
z(t) is needed, i.e., ∂L/∂z. Let’s denote it as the adjoint state a(t). In formula:

a(t) =
∂L

∂z(t)
(1.66)

It can be shown that the evolution of a(t):

d

dt
a(t) = −a(t)⊤

∂f(z(t), t, θ)

∂z
(1.67)

The proof of Equation (1.67) can be found in [20] (Hint: it is obtained using the chain
rule and the definition of derivative, i.e. da(t)

dt
= limϵ→0+

(a(t+ϵ)−a(t)
ϵ

)
). However, for Equa-

tion (1.67), it is required to know the values of z(t) along its entire trajectory. But,
instead of computing them forward, they can be obtained together backward with the
adjoint evolution, starting from the final value z(tf). After that, computing the gradients
with respect to θ requires evaluating the integral depending on both z(t) and a(t):

dL

dθ
= −

∫ t0

tf

a(t)⊤
∂f(z(t), t, θ)

∂θ
dt (1.68)

As for Equation (1.67), the proof of Equation (1.68) can be found in the authors’ paper[20][Appendix
B.2]. Thus, for the backward-step, only one call to the black-box ODE solver for an aug-
mented variable s(·) must be done (see Algorithm 1.1).

1| Preliminary Knowledge 25

Algorithm 1.1 Backward Propagation of a adjoint-ODE solver
Input: param. θ, start time t0, final time tf , final state z(tf), loss gradient ∂L/∂z(tf)
s0 = [z(tf),

∂L
∂z(tf)

, 0|θ|] ▷ Define initial augmented state
def aug_dynamics([z(t), a(t), ·], t, θ): ▷ Define dynamics on augmented state

return [f(z(t), t, θ),−a(t)⊤ ∂f
∂z
,−a(t)⊤ ∂f

∂θ
] ▷ Compute vector-Jacobian products

[z(t0),
∂L

∂z(t0)
, ∂L
∂θ
] = ODESolve(s0, aug_dynamics, tf , t0, θ) ▷ Solve reverse-time ODE

return ∂L
∂z(t0)

, ∂L
∂θ

▷ Return gradients

What if the loss function L(·) depends also from N intermediate steps of z(·) between the
time instants t0 and tf? Then the interval [t0, tf] must be broken into N different sub-
problems and then each parts must be solved individually backward, starting from the
last one [tN , tf] up to the first one [t0, t1]. A schematical representation of it is reported
in Figure 1.5. A study case of loss function is the system identification of a dynamical
model. Indeed, the loss function is described as the mean squared error(MSE) between
the N-measured states [z(t1), . . . , z(tN)] and the N-simulated states [ẑ(t1), . . . , ẑ(tN)]. An
application of it will be provided in Section 3.4.

Figure 1.5: Representation of the evolution of the augmented states in a adjoint-ODE
solver. In this case, the loss function depends from the z(t0), z(tf) and also from the
values at intermediate steps.

1.7.2. Augmented Neural-ODEs

Despite the new capabilities of Neural-ODEs and its great promises on a number of tasks
including modeling continuous time data and building normalizing flows with low com-
putational cost [20, 38], many different limitations of this advanced deep neural network

26 1| Preliminary Knowledge

have been shown[39]. The authors of [39], however, have introduced a simple extension of
the Neural-ODEs: Augmented Neural-ODEs (ANODEs). The brilliant idea is to enlarge
the number of state of the net model. These new "degrees of freedom" allow the system
to learn approximation of (sometimes even simple) functions, impossible to achieve with
standard Neural-ODEs. For the proof of the impossibility of Neural-ODE to learn some
functions, the reader is invited to the authors’ paper [39]. From it, an example of function
g(z) that cannot be approximated is the following:

g(z) =

−1 if ∥z∥ ≤ r1,

+1 if r1 ≤ ∥z∥ ≤ r2
(1.69)

where ∥·∥ is the Euclidean norm, r1, r2, r3 ∈ R and 0 < r1 < r2 < r3. Additionally, an-
other limitation of standard Neural-ODEs, is the computation burden when the flow gets
complex: this is caused by the number of steps required by ODE solvers raising [20, 38].
Instead, as ANODEs learn simpler flows, they would presumably require fewer iterations
to compute, without causing any increase in complexity. A graphical representation of
g(z) is reported in Figure 1.6, with z ∈ R2. It can be shown that the ANODEs are able to
learn an approximation of g(z). For this reason, from now on, the architecture introduced
in this thesis, i.e., REN-ODE, is going to have an enlarged number of states w.r.t. the
original data. Indeed, in Section 3.3 the mapping of function g(z) will be obtained.

Figure 1.6: Graphical representation of function g(z), with z ∈ R2.

27

2| REN-ODEs

The contribution of this work is the introduction of a new deep neural network model:
REN-ODE. As the name suggests, it consists in a particular architecture, capable of
providing a direct parametrization with guarantees of stability (like a REN), while being
in continuous time, and thus, trainable through the use of black-box ODE solvers (like a
Neural-ODE). In this chapter the model of the system will be provided. Then, through
similar steps as done in Section 1.6, direct parametrization for contractive and robust
models (respectively defined as CREN-ODE and RREN-ODE) will be given.

2.1. REN-ODE model

REN-ODE shares similar structure to the original REN[11]. The system model is the
following:

ẋt

vt

yt

 =

W︷ ︸︸ ︷A B1 B2

C1 D11 D12

C2 D21 D22

xt

wt

ut

 +

b︷ ︸︸ ︷bxbv
by

, (2.1)

wt = σ(vt) (2.2)

where xt ∈ Rn, vt ∈ Rq, wt ∈ Rq, ut ∈ Rm and yt ∈ Rp are respectively the state, the
nonlinear output, the nonlinear input, the exogenous input and the linear output. Also in
REN-ODE, σ(·) is a nonlinear "activation function" applied element-wise. Additionally,
the incremental form of the system (for the definition, see Section 1.2.2) can be provided:

∆ẋt

∆vt

∆yt

 =

A B1 B2

C1 D11 D12

C2 D21 D22

∆xt

∆wt

∆ut

 (2.3)

∆wt = σ(vt +∆vt)− σ(vt) (2.4)

28 2| REN-ODEs

where the finite difference between two possible trajectories (x,w, v, u) and (x̄, w̄, v̄, ū) of
the system has been considered:

∆xt = xa
t − xb

t , ∆vt = vat − vbt , ∆yt = yat − ybt , ∆ut = ua
t − ub

t (2.5)

2.1.1. Assumptions

In order to achieve properties of contractivity and robustness, some assumptions must be
introduced. Indeed, as in the discrete case, also here the activation function σ(·) must be
rate-limited and piece-wise differentiable (Assumption 1). However, the inequality (1.31)
can be also rewritten in continuous time for each jth channel as a conic combination with
multipliers ξj > 0, resulting in an incremental IQC:

Γt =

[
∆vt

∆wt

]⊤ [
0 Λ

Λ −2Λ

][
∆vt

∆wt

]
≥ 0 , ∀t ∈ R (2.6)

where Λ = diag(ξ1, . . . , ξq). ∆vt and ∆wt represent the difference between the two trajec-
tories having (vt, wt) and (v̄t, w̄t).

2.1.2. Well-Posedness

The concept of well-posedness has already been established in Section 1.6.2. However,
despite the new REN-ODE being in continuous time, the formulation does not change
and, thus, it is still valid. Indeed, finding a positive definite diagonal matrix Λ such that:

2Λ− ΛD11 −D⊤
11Λ > 0 (2.7)

makes the problem wt = σ(vt) well-posed (proof in [26]).

2.2. Contracting and Robust REN-ODEs

In this section, LMIs in order to verify properties of contractivity and robustness of
REN-ODEs are going to be provided.

Theorem 2.1 (Contractive REN-ODE). A REN-ODE in the form (2.1)-(2.2) is con-

2| REN-ODEs 29

tracting if there exists a matrix P > 0 and a diagonal matrix Λ > 0 such that:[
−A⊤P − PA −C⊤

1 Λ− PB1

−ΛC1 −B⊤
1 P W

]
> 0, (2.8)

with:
W = 2Λ− ΛD11 −D⊤

11Λ. (2.9)

Proof. By left-multiplying and right-multiplying the inequality (2.8) with [∆x⊤
t ∆w⊤

t] and[
∆xt
∆wt

]
respectively:

[
∆x⊤

t ∆w⊤
t

] [−A⊤P − PA −C⊤
1 Λ− PB1

−ΛC1 −B⊤
1 P W

][
∆xt

∆wt

]
> 0. (2.10)

Then:
∆x⊤

t (−A⊤P − PA)∆xt +∆w⊤
t (−ΛC1 −B⊤

1 P)∆xt

+∆x⊤
t (−C⊤

1 Λ− PB1)∆wt +∆w⊤
t (W)∆wt > 0.

(2.11)

Rearranging the inequality:

−

=∆ẋ⊤
t︷ ︸︸ ︷

(A∆xt +B1∆wt)
⊤P∆xt −∆x⊤

t P

=∆ẋt︷ ︸︸ ︷
(A∆xt +B1∆wt)

− 2∆w⊤
t ΛC1∆xt +∆w⊤

t W∆w⊤
t W∆wt > 0.

(2.12)

Using the definition of ∆ẋt from (2.3) in (2.12), with (∆u = 0)1, we obtain:

−∆ẋ⊤
t P∆xt −∆x⊤

t P∆ẋt − 2∆w⊤
t ΛC1∆xt +∆w⊤

t W∆wt > 0. (2.13)

At this point, we can define a function V∆(t) as:

V∆(t) = ∆x⊤
t P∆xt → V̇∆(t) = ∆ẋ⊤

t P∆xt +∆x⊤
t P∆ẋt (2.14)

And, thus, plugging (2.14) in (2.13):

−V∆(t)− 2∆w⊤
t ΛC1∆xt +∆w⊤

t W∆wt > 0. (2.15)

1The study of contractivity considers two trajectories with different initial conditions, but same input
sequences, i.e., ∆u = 0

30 2| REN-ODEs

After that, the definition of W can be used (2.9):

−V∆(t)− 2∆w⊤
t ΛC1∆xt +∆w⊤

t (2Λ− ΛD11 −D⊤
11Λ)∆wt > 0. (2.16)

Then, rearranging and using the definition of V̇∆:

−V̇∆(t) > 2∆w⊤
t Λ

=∆vt︷ ︸︸ ︷
(C1∆xt +D11∆wt)−2∆w⊤

t Λ∆wt. (2.17)

Using the definition of ∆v⊤t from (2.1) in (2.17) and remembering the definition of Γt

(2.6):

−V̇∆(t) > 2∆w⊤
t Λ∆vt − 2∆w⊤

t Λ∆wt = Γt. (2.18)

Finally:

V̇∆(t) < −Γt ≤ 0. (2.19)

The function V∆(t) can be chosen as a valid Lyapunov function for the incremental system
in (2.3)-(2.4) and thus, if there exists a matrix P > 0, then:

V∆(t) > 0 ,

V̇∆(t) < 0.
(2.20)

Since V∆(t) is a quadratic form in the vector [∆x⊤
t ∆w⊤

t]⊤ then it follows that:

V̇∆(t) ≤ −αV∆(t) (2.21)

with α > 0 (the proof is reported in Appendix B). The relation in (2.21), with (2.20),
guarantees, thanks to the Lyapunov exponential stability theorem, that the system is
globally exponentially stable, i.e.,

∥∆x(t)∥ ≤ κe−c(t−t0)∥a− b∥ (2.22)

with c = α
2
> 0, that is the Definition 1.1.1 of a contractive system.

Theorem 2.2 (Robust REN-ODE). A REN-ODE in the form (2.1)-(2.2) is well-posed
and satisfies the incremental IQC described by (Q,S,R) if there exists a matrix P > 0

2| REN-ODEs 31

and a diagonal matrix Λ > 0 such that:

−A⊤P − PA −PB1 − C⊤
1 Λ −PB2 + C⊤

2 S
⊤

−B⊤
1 P − ΛC1 W D⊤

21S
⊤ − ΛD12

−B⊤
2 P + SC2 SD21 −D⊤

12Λ R + SD22 +D⊤
22S

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0 (2.23)

with:
W = 2Λ− ΛD11 −D⊤

11Λ. (2.24)

Proof. By left-multiplying and right-multiplying the inequality (2.23) with [∆x⊤
t ∆w⊤

t ∆u⊤
t]

and [∆x⊤
t ∆w⊤

t ∆u⊤
t]⊤ respectively:

∆xt

∆wt

∆ut

⊤ −A⊤P − PA −PB1 − C⊤

1 Λ −PB2 + C⊤
2 S

⊤

−B⊤
1 P − ΛC1 W D⊤

21S
⊤ − ΛD12

−B⊤
2 P + SC2 SD21 −D⊤

12Λ R + SD22 +D⊤
22S

⊤

∆xt

∆wt

∆ut

+

+

∆xt

∆wt

∆ut

⊤ C

⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤ ∆xt

∆wt

∆ut

 > 0

(2.25)

Then:

−∆x⊤
t A

⊤P∆xt −∆w⊤
t B

⊤
1 P∆xt −∆u⊤

t B
⊤
2 P∆xt −∆x⊤

t PA∆xt

−∆x⊤
t PB1∆wt −∆x⊤

t PB2∆ut − 2∆x⊤
t C

⊤
1 Λ∆wt + 2∆x⊤

t C
⊤
2 S

⊤∆ut

+∆w⊤
t W∆wt + 2∆w⊤

t (D
⊤
21S

⊤ − ΛD12)∆ut +∆u⊤
t (R + SD22 +D⊤

22S
⊤)∆ut

+(∆x⊤
t C

⊤
2 +∆w⊤

t D21 +∆u⊤
t D

⊤
22)Q (C2∆xt +D21∆wt +D22∆ut) > 0

(2.26)

Using the definition of ∆ẋt from (2.3) in (2.26), we obtain:

−∆ẋ⊤
t P∆xt −∆x⊤

t P∆ẋt − 2∆x⊤
t C

⊤
1 Λ∆wt + 2∆x⊤

t C
⊤
2 S

⊤∆ut

+∆w⊤
t W∆wt + 2∆w⊤

t (D
⊤
21S

⊤ − ΛD12)∆ut +∆u⊤
t (R + SD22 +D⊤

22S
⊤)∆ut

+(∆x⊤
t C

⊤
2 +∆w⊤

t D21 +∆u⊤
t D

⊤
22)Q (C2∆xt +D21∆wt +D22∆ut) > 0

(2.27)

At this point, we can define a function V∆(t) as:

V∆(t) = ∆x⊤
t P∆xt → V̇∆(t) = ∆ẋ⊤

t P∆xt +∆x⊤
t P∆ẋt (2.28)

32 2| REN-ODEs

Thus, using (2.28) in (2.27):

−V̇∆(t)− 2∆x⊤
t C

⊤
1 Λ∆wt + 2∆x⊤

t C
⊤
2 S

⊤∆ut +∆w⊤
t W∆wt

+2∆w⊤
t (D

⊤
21S

⊤ − ΛD12)∆ut +∆u⊤
t (R + SD22 +D⊤

22S
⊤)∆ut

+(∆x⊤
t C

⊤
2 +∆w⊤

t D21 +∆u⊤
t D

⊤
22)Q (C2∆xt +D21∆wt +D22∆ut) > 0

(2.29)

Considering the definition of ∆yt from (2.3), (2.29) becomes:

−V̇∆(t)− 2∆x⊤
t C

⊤
1 Λ∆wt + 2∆x⊤

t C
⊤
2 S

⊤∆ut +∆w⊤
t W∆wt

+2∆w⊤
t (D

⊤
21S

⊤ − ΛD12)∆ut +∆u⊤
t (R + SD22 +D⊤

22S
⊤)∆ut

+∆y⊤t Q∆yt > 0

(2.30)

Rearranging (2.30):

−V̇∆(t) + ∆y⊤t Q∆yt +∆u⊤
t R∆ut + 2∆u⊤

t S(D22∆ut + C2∆xt)

−2∆w⊤
t Λ(C1∆xt +D11∆wt) + 2∆w⊤

t Λ∆wt + 2∆w⊤
t (D

⊤
21S

⊤ − ΛD12)∆ut > 0
(2.31)

From equations (2.3), it easy to verify that:

(C1∆xt +D11∆wt) = (∆vt −D12∆ut)

(D22∆ut + C2∆xt) = (∆yt −D21∆wt)
(2.32)

Using (2.32) in (2.31):

−V̇∆(t) + ∆y⊤t Q∆yt +∆u⊤
t R∆ut + 2∆u⊤

t S(∆yt −D21∆wt)

−2∆w⊤
t Λ(∆vt −D12∆ut) + 2∆w⊤

t Λ∆wt + 2∆w⊤
t (D

⊤
21S

⊤ − ΛD12)∆ut > 0
(2.33)

Simplifying and gathering (2.33):

−V̇∆(t) +
(
∆y⊤t Q∆yt +∆u⊤

t R∆ut + 2∆u⊤
t S∆yt

)
−
(
2∆w⊤

t Λ∆vt − 2∆w⊤
t Λ∆wt

)
> 0

(2.34)
Rearranging (2.34):

−V̇∆(t) +
[
∆y⊤t ∆u⊤

t

] [Q S⊤

S R

][
∆yt

∆ut

]
−
[
∆v⊤t ∆w⊤

t

] [0 Λ

Λ −2Λ

][
∆vt

∆wt

]
︸ ︷︷ ︸

= Γt

> 0 (2.35)

2| REN-ODEs 33

Remembering the definition of Γt from (2.6), (2.35) becomes:

−V̇∆(t) +
[
∆y⊤t ∆u⊤

t

] [Q S⊤

S R

][
∆yt

∆ut

]
− Γt > 0 (2.36)

In the end, changing the sign of (2.36):

V̇∆(t)−
[
∆y⊤t ∆u⊤

t

] [Q S⊤

S R

][
∆yt

∆ut

]
< −Γt ≤ 0 (2.37)

Defining with s̃(·):

s̃(∆yt,∆ut) =
[
∆y⊤t ∆u⊤

t

] [Q S⊤

S R

][
∆yt

∆ut

]
(2.38)

Then we obtain that:

V̇∆(t) < s(∆ut,∆yt) (2.39)

Assuming the function V∆ is differentiable, then (2.39) can be rewritten as:

V∆(t) < V∆(t0) +

∫ t

t0

s(∆uτ ,∆yτ)dτ (2.40)

That is exactly the inequality that a system must guarantee in order to satisfy the in-
cremental IQC, defined by the supply rate s(·) with storage function V∆ (see Defini-
tion 1.4.1).

At this point, using the special choices of the matrices (Q,S,R) in Section 1.4, it is possible
to verify properties of the architecture to be incrementally dissipative and passive.

2.2.1. Robust REN-ODEs are Contractive

It is important to notice that, observing the form of the inequalities (2.8),(2.23), it can be
proven that, choosing a matrix Q negative definite, the property of incremental robustness
implies contractivity.

Theorem 2.3 (Robust REN-ODE are Contractive). A REN-ODE in the form (2.1)-(2.2)
that is well-posed and satisfies the incremental IQC described by (Q,S,R), with Q negative
definite and R = R⊤, is also contractive.

Proof. If the REN-ODE is well-posed and satisfies the incremental IQC described by

34 2| REN-ODEs

(Q,S,R), it means that there exists a matrix P > 0 and a diagonal matrix Λ > 0 such
that (2.23) is satisfied. If the matrix Q is definite negative and R = R⊤, then (2.23) can
be rewritten as:−A⊤P − PA −PB1 − C⊤

1 Λ −PB2 + C⊤
2 S

⊤

−B⊤
1 P − ΛC1 W D⊤

21S
⊤ − ΛD12

−B⊤
2 P + SC2 SD21 −D⊤

12Λ R + SD22 +D⊤
22S

⊤

 > −

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0

(2.41)

Thus defining with K the matrix on the left-side of (2.41), i.e.:

K =

−A⊤P − PA −PB1 − C⊤
1 Λ −PB2 + C⊤

2 S
⊤

−B⊤
1 P − ΛC1 W D⊤

21S
⊤ − ΛD12

−B⊤
2 P + SC2 SD21 −D⊤

12Λ R + SD22 +D⊤
22S

⊤

 > 0 (2.42)

Using the Sylvester’s criterion, the positive definiteness of matrix K implies that its
upper-left (n+ q)-by-(n+ q) sub-matrix is positive definite, or, in another way:[

−A⊤P − PA −PB1 − C⊤
1 Λ

−B⊤
1 P − ΛC1 W

]
> 0 (2.43)

That is the LMI in (2.8) that guarantees the model to be contractive. Thus, robustness
implies contractivity.

2.2.2. Convex Parametrization

In order to obtain direct parametrization, the inequalities (2.8),(2.23) must be convex in
the parameters (A,B1, B2, . . . , D22, P,Λ) all together. However, at the time being, they
are not due to the presence of non-linearity. For this reason, the inequalities will be
rewritten.

Convex Parametrization of CREN-ODE

It can be observed that (2.8) is not linear in its parameters (e.g., A⊤P,C⊤
1 Λ). However, it

is possible to cast it, under a suitable reformulation, as a linear one. To do so, we define
the following matrices:

2| REN-ODEs 35

U = C⊤
1 Λ , U ∈ Rn×q

Y = PA , Y ∈ Rn×n

Z = PB1 , Z ∈ Rn×q

(2.44)

(2.45)

(2.46)

Then (2.8) becomes: [
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
> 0 (2.47)

Note that, now, the inequality (2.47) is linear and convex, having the independent vari-
ables (U,W, Y, Z) as free/design variables.

Convex Parametrization of RREN-ODE

It can be observed that (2.23) is not linear in its parameters. However, in order to obtain
a convex version of the LMI, some intermediate steps must be introduced. We can define
the following matrices:

V = PB2 , V ∈ Rn×m

T = ΛD12 , T ∈ Rq×m

(2.48)

(2.49)

Using these new definitions and (2.44)-(2.46), (2.23) becomes:

 −Y ⊤ − Y −U − Z −V + C⊤
2 S

⊤

−U⊤ − Z⊤ W D⊤
21S

⊤ − T

−V⊤ + SC2 SD21 − T⊤ R + SD22 +D⊤
22S

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0 (2.50)

We can define, additionally, the matrices:

Ṽ = −V + C⊤
2 S

⊤ + C⊤
2 QD22 , Ṽ ∈ Rn×m

T̃ = −T +D⊤
21S

⊤ +D⊤
21QD22 , T̃ ∈ Rq×m

R = R + SD22 +D⊤
22S

⊤ +D⊤
22QD22 , R ∈ Rm×m

(2.51)

(2.52)

(2.53)

It is easy to check that, using (2.51)-(2.53), (2.50) can be rearranged as:

 −Y ⊤ − Y −U − Z Ṽ
−U⊤ − Z⊤ W T̃

Ṽ⊤ T̃⊤ R

+

C
⊤
2

D⊤
21

0

Q

C
⊤
2

D⊤
21

0

⊤

> 0 (2.54)

36 2| REN-ODEs

At this point, using the Schur Complement, it is possible to rewrite the inequality (2.54)
as:

R > 0,[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
−

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤
+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
> 0

(2.55)

(2.56)

Even though it might seem linear and ready for the direct parametrization, a problem can
appear due to the definition of the matrix R. Indeed, taking in consideration the cases in
which S may be chosen equal to 0 (e.g., for dissipativity/passivity), then the matrix R
would be:

R = R +D⊤
22QD22 (2.57)

with Q definite negative. Fixed the value of R, the equation (2.57), solved in D22 could
lead to complex matrices, obviously not acceptable for real signals2. Thus, the matrix
D22 cannot be a free learnable parameter and additional steps on how to choose it must
be added in order to enforce (2.55).

We can define with:
s = max(p,m) , X3, Y3 ∈ Rs×s (2.58)

M = X⊤
3 X3 + Y3 − Y ⊤

3 + ϵI (2.59)

Z =
[
(I −M)(I +M)−1

]
p×m

(2.60)

with ϵ > 0 and indicating with [V]p×m the block matrix with the first p rows and m

columns of the generic matrix V . Assuming Q < 0 and R = R⊤(in the special cases
considered in Section 1.4, it is always verified), Q and R can be factorized as:

L⊤
QLQ = −Q , L⊤

RLR = R− SQ−1S⊤ (2.61)

and finally:

D22 = −Q−1S⊤ + L−1
Q ZLR (2.62)

Constructing D22 as (2.62), guarantees the inequality (2.55) always holds, for any choice
of the IQC matrices, even for S = 0.

2The matrix R will be fixed during the direct parametrization, in which it will be put equal to the
block matrix H33 (see Section 2.3).

2| REN-ODEs 37

2.2.3. Assumptions on the symmetry of P

In many steps, during the reformulation of the LMIs (2.8),(2.23) in (2.47),(2.54) respec-
tively, it has been taken for granted that the matrix P is symmetric, i.e., P = P⊤.
However, this assumption is not restrictive. Indeed, being P a square matrix, it can
always be rewritten as:

P =
P + P⊤

2︸ ︷︷ ︸
symmetric

+
P − P⊤

2︸ ︷︷ ︸
skew-symmetric

= Psymm + Pskew (2.63)

We can show that:

x⊤Px = x⊤(Psymm + Pskew)x

= x⊤Psymmx+ x⊤Pskewx

= x⊤Psymmx+
1

2
x⊤Pskewx+

1

2
x⊤Pskewx

= x⊤Psymmx+
1

2
x⊤Pskewx+

1

2
(x⊤Pskewx)

⊤

= x⊤Psymmx+
1

2
x⊤Pskewx− 1

2
x⊤Pskewx

= x⊤Psymmx

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

Thus, determining the definiteness of a matrix there is no loss of generality in restricting
the matrix to be symmetric. This property can be extended to the LMI in (2.8), due to
the particular structure of it. Indeed, substituting (2.63) in the matrix:[

−A⊤P − PA −C⊤
1 Λ− PB1

−ΛC1 −B⊤
1 P W

]
(2.70)

results in:

[
−A⊤Psymm − PsymmA −C⊤

1 Λ− PsymmB1

−ΛC1 −B⊤
1 Psymm W

]

+

[
−A⊤Pskew − PskewA −PskewB1

−B⊤
1 Pskew 0

] (2.71)

where it can be easily checked that the right matrix is still skew-symmetric, for any choice
of A,B1. Hence, as shown in (2.64)-(2.69), the skew-symmetric part will not affect the
matrix inequality. Similarly, the same considerations can be done for (2.23).

38 2| REN-ODEs

2.3. Direct Parametrization

Now we are ready to retrieve a direct parametrization of CREN-ODEs and RREN-ODEs.

Contracting Direct Parametrization

Let the matrix from the left-part of the inequality (2.47) be called H, with
H ∈ R(n+q)×(n+q). Then, for any matrix X ∈ R(n+q)×(n+q) and an ϵ > 0, imposing that:

H =

[
H11 H12

H21 H22

]
= X⊤X + ϵI , ∀X (2.72)

satisfies necessarily the inequality (2.47) by construction. At this point, comparing (2.72)
with (2.47):

−Y ⊤ − Y = H11

−U − Z = H12

(2.73)

(2.74)

From (2.73):

Y = −1

2
(H11 + Y1 − Y ⊤

1) (2.75)

where Y1 is a free matrix that allows to obtain also non-symmetric Y matrices. Considering
(2.74), it is possible to keep one of the matrices (U,Z) free (e.g., U), and then obtain the
remaining one by the relation (2.74). In case U is chosen freely:

Z = −H12 − U (2.76)

If the system is acyclic, then D11 must be strictly lower triangular, thus from H22:

H22 = W = 2Λ−D11 −D⊤
11 (2.77)

it is possible to obtain Λ from 1/2 of the main diagonal of W and D11 from the strict lower
triangular part of W . It must be noted that the matrix P never appears by itself, thus it
does not need to be calculated from H. However, P must be positive definite. In order
to enforce this condition, P can be built as follows:

P = P1P
⊤
1 + ϵI > 0 , ∀P1 ∈ Rn×n (2.78)

2| REN-ODEs 39

where P1 is a generic free matrix and ϵ > 0.
From (2.73)-(2.78) the following matrices can be retrieved:

Y = PA → A = P−1Y

Z = PB1 → B1 = P−1Z

U = C⊤
1 Λ → C1 = (UΛ−1)⊤

(2.79)

(2.80)

(2.81)

The remaining parameters do not impact the contractivity of the model and, thus, they
can be considered free. Summing up, the free parameters (i.e., X ∈ R(n+q)×(n+q), B2 ∈
Rn×m, C2 ∈ Rp×n, D12 ∈ Rq×m, D21 ∈ Rp×q, D22 ∈ Rp×m, b ∈ R(n+q+p), P1 ∈ Rn×n, U ∈
Rn×q and Y1 ∈ Rn×n) can be updated without any restriction, and, afterwards, the con-
strained remaining matrices are obtained through (2.72)-(2.81). Please note that a pos-
sible application in case of full D11 can be carried out. In order to do so, the full matrix
must be constructed in the following way:

D11 = Λ− 1

2
(H22 + Y2 − Y ⊤

2) (2.82)

where g ∈ Rq, Y2 ∈ Rq×q are free parameters and finally Λ = ediag(g).
The possibility of having an unconstrained parametrization of the network model, allows
to use the most common iterative optimization methods for the update of the parameters
in such a way to optimize a desired cost function. An example of iterative optimization
methods can be gradient descent and its variations like SGD, Adam[40], AdaGrad[41],
AMSGrad[42], etc. For a deeper and more accurate review about the topic, the reader is
referred to [43]. Additionaly, in Chapter 3 more information about the implementations
of them in Python will be provided.

Robust Direct Parametrization

Once the required steps to retrieve a convex parametrization of the matrix inequality(2.23)
have been done (i.e.,(2.55)-(2.56)), the direct parametrization in the robust case proceeds
similarly to the contractive one.
As first step, given the matrices (Q,S,R), the construction of the matrix D22 is carried
out, using (2.58)-(2.62); consequently, the inequality (2.55) is guaranteed. After that,
denoting with d̃ = (n + q), let H∗ ∈ Rd̃×d̃ be the resulting matrix from the inequality

40 2| REN-ODEs

(2.56):

H∗ =

[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
−

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤
+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
(2.83)

Additionally, let H be defined as the matrix:

H =

[
−Y ⊤ − Y −U − Z

−U⊤ − Z⊤ W

]
(2.84)

Furthermore:

H∗ = H −

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤
+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
(2.85)

where matrices (Ṽ , T̃) are obtained using (2.51) and (2.52) respectively, with (V , T) as
free parameters. Then, for any matrix X ∈ Rd̃×d̃ and an ϵ > 0:

H∗ = X⊤X + ϵI > 0 . (2.86)

Finally, using (2.84)-(2.86):

H = XX⊤ + ϵI︸ ︷︷ ︸
H∗

+

[
Ṽ
T̃

]
R−1

[
Ṽ
T̃

]⊤
−

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
> 0 , ∀X (2.87)

In addition, D12 is obtained:

T = ΛD12 → D12 = Λ−1T (2.88)

Now, it is possible to follow similar steps as done for contractive REN-ODEs (using
(2.72)-(2.81)). Summing up, the free parameters (i.e., X ∈ R(n+q)×(n+q), B2 ∈ Rn×m, C2 ∈
Rp×n, T ∈ Rq×m, D21 ∈ Rp×q, X3, Y3 ∈ Rs×s, b ∈ R(n+q+p), P1 ∈ Rn×n, U ∈ Rn×q and
Y1 ∈ Rn×n) can be updated without any restriction and, afterwards, the constrained
remaining matrices are obtained through (2.72)-(2.81) and (2.88). Thus, we have been
able to obtain a direct parametrization of a REN-ODE that satisfies the incremental IQC
given by (Q,S,R). On how to update the parameters, in a way to minimize a desired cost
function, the reader is invited, as said before, to [43]. As previously said, the assumption
of acyclicity of the REN-ODE is not necessary and how to construct the matrix D11 is
the same as it has been provided during the contractive direct parametrization.

2| REN-ODEs 41

2.4. Comments on REN-ODE

REN-ODEs introduce some differences with respect to its discrete-time counterpart. In-
deed, even though it has not been showed in its entirety, during the passage from the
initial LMIs (1.36), (1.38) to their convex versions (1.40), (1.42) respectively, the follow-
ing inequality is used:

E⊤P−1E ≥ E + E⊤ − P (2.89)

This guarantees that (1.40), (1.42) imply (1.36), (1.38), but not vice versa. On the
other hand, due to the use of only linear reformulations and of the Schur Complement,
between the REN-ODE’s LMIs there is a one-to-one correspondence (i.e., the relations are
bijections). A scheme of this statement is reported in Figure 2.1 just for the contractive
case. This passage is relevant for what concerns the property of robust REN-ODE to be

REN

REN-ODE

MODEL Ini�al LMI for Contrac�vity Convex LMI

Figure 2.1: Comparison between the passages from contractive LMIs and their convex
version. The discrete-time RENs do not preserve one-to-one correspondence.

also contractive. It needs to be commented that the same steps done in Theorem 2.3 can
be used, with some changes, also for the discrete-time REN matrix inequalities (1.36),
(1.38). The proof is reported in Appendix A. However, during the passage to direct
parametrization of the models, the discrete-time RENs lose the possibility to show that a
robust direct parametrization implies a contractive one (the form of the inequalities are
completely different). On the other hand, thanks to the fact that the REN-ODE’s convex
matrix inequalities use only linear reformulations and Schur complement, it is easy to
verify that, even after direct parametrization, Theorem 2.3 is still valid.

Proposition 2.1. If a REN-ODE is obtained through a robust direct parametrization,
then the model is also contractive.

42 2| REN-ODEs

Proof. Using the robust direct parametrization for a REN-ODE, it has been proven that
(2.55), (2.56) are always satisfied. Additionally, (2.55), (2.56) can be rewritten equiva-
lently as (2.23), report here for clarity:

−A⊤P − PA −PB1 − C⊤
1 Λ −PB2 + C⊤

2 S
⊤

−B⊤
1 P − ΛC1 W D⊤

21S
⊤ − ΛD12

−B⊤
2 P + SC2 SD21 −D⊤

12Λ R + SD22 +D⊤
22S

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0 (2.90)

with:
W = 2Λ− ΛD11 −D⊤

11Λ. (2.91)

Thanks to Theorem 2.2, the system is guaranteed to be robust. At this point, using
Theorem 2.3, the robust REN-ODE is contractive as well.

Summing up, a RREN-ODE is also a CREN-ODE, while the same cannot be guaranteed
for discrete-time RENs (Table 2.1).

Property CREN RREN CREN-ODE RREN-ODE

Contractivity ! ! !

Robustness ! !

Table 2.1: Properties of the different models.

This is an important result: given a robust (and contractive) RREN-ODE and an input
function, if there exists a stable equilibrium point of the system for that input, then,
for any initial condition, the model will always converge exponentially to the equilibrium
state while keeping guarantees of incremental dissipativity. Additionally, this incremental
form of robustness also becomes valid for the general form of the system, as shown in [44,
Theorem 10]. This opens up to new possibilities: for example, if a passive REN-ODE is
used to control a passive system (through an optimal policy) then, it can be proven that
the overall negative feedback interconnection is still passive. This statement comes from
[45][Theorem 4.23], reported here for completeness:

Theorem 2.4. The feedback connection of two passive systems Σ1,Σ2 is passive.

A scheme of a feedback connection of two passive systems is represented in Figure 2.2a.
The proof of the theorem can be found in [45]. At this point, a negative feedback inter-
connection (Figure 2.2b) can be seen as a special case of feedback connection in which
u2 = 0 and e2 ≡ y1. In this way, all the techniques based on the properties of control using

2| REN-ODEs 43

passivity, i.e., Passivity Based Control (PBC), can be applied. Indeed, this property is
relevant in the study of networked system: it is possible to apply a modular method for the
construction of large-scale passive networked systems while also providing some degrees of
robustness to unmodeled passive dynamics. About the topic, the reader is invited to [46].
An example of application is provided in Section 3.5. It is also important to remind to
the reader that, REN-ODE, being a subclass of Neural-ODEs, inherits from them all the
benefits reported in Section 1.7. In fact, it is possible to implement state-of-the-art ODE
solvers that make use of variable-step strategies in order to guarantee requested levels of
accuracy and much more. The possibility to solve the ODE with many different methods
allows the user to choose the solver based on the problem complexity and the available
hardware. Additionally, different methods can be applied even between the training phase
and the testing one: thus, a slow and heavy solver can be used during the training phase
and then in real-time application the returned model could be implemented with a lighter
integration method.

+ -

+
+

(a)

+ -

(b)

Figure 2.2: Scheme of a feedback connection of two systems (left) and of a negative
feedback interconnection (right).

45

3| Simulations & Results

In this chapter, the proposed REN-ODE will be used in different fields of application:
binary classification, system identification and optimal control. Initially, details about
the technical implementations are going to be provided and then simulations to show the
properties of contractivity and robustness will be reported.

3.1. Implementation

The implementation was carried out using Python as main programming language. The
main third-party libraries used for REN-ODEs are:

• PyTorch[47] for the neural network framework. It allows the possibility to use GPU
acceleration.

• Torchdiffeq[48], developed by the authors of the Neural-ODE architecture. It allows
the use of the adjoint-method for the back-propagation during the training phase
(for details, check Section 1.7.2). It supports different integration methods.

• Scikit-learn[49] and NumPy[50] have been used respectively for the evaluation of
classical observational errors (e.g., accuracy score, precision) and the simulation of
the mechanical systems to be identified.

Additionally, the Torchdiffeq library allows the use of different integration methods, re-
ported here with their ’code-name’ for sake of clarity:

• Methods with Variable-step of integration:

– ’dopri8’, Runge-Kutta of order 8 of Dormand-Prince-Shampine.

– ’dopri5’, Runge-Kutta of order 5 of Dormand-Prince-Shampine.

– ’bosh3’, Runge-Kutta of order 3 of Bogacki-Shampine.

– ’fehlberg2’, Runge-Kutta-Fehlberg of order 2.

– ’adaptive_heun’, Runge-Kutta of order 2.

46 3| Simulations & Results

• Methods with Fixed-step of integration:

– ’euler’, (Forward) Euler method.

– ’midpoint’, Midpoint method.

– ’rk4’, Fourth-order Runge-Kutta with 3/8 rule.

– ’explicit_adams’, Explicit Adams-Bashforth.

– ’implicit_adams’, Implicit Adams-Bashforth-Moulton.

The main used methods during this work have been: ’dopri5’, ’euler’, ’rk4’. One of the
most well-known limitations of the Neural-ODE package[20] is the possibility of setting
only the initial state and the time vector for the simulation through the ODE solver: the
introduction of any kind of predefined input sequence or arguments from outside(such
as model parameters) is not allowed out-of-the-box. This can be really inconvenient in
applications such as system identification, in which the training phase can be done using
pre-recorded experiments(i.e., sequences of input-output that have been collected before-
hand). For the REN-ODE, thus, in order to solve this problem, a simple solution has
been considered. It is possible to introduce a composition of classes as schematized in
Figure 3.1. The new component "signal generator", as the name suggests, has the role to
evaluate at each time t the input u(t) to pass to the REN-ODE system. A pseudo-code
of the forward function of the REN-ODE is reported in Algorithm 3.1: this function will
be called at each iteration by the ODE solver.

REN-ODESIGNAL GENERATOR

REN-ODETot

Figure 3.1: Scheme of the implementation of a REN-ODE with an input signal u(t) using
Torchdiffeq library.

Algorithm 3.1 Pseudo-code of the Feed-Forward function of REN-ODETot

Input: model, time instant t, state at time x(t).
u(t) = model.signal_generator(t) ▷ Get the input at time t
ẋ = model.RENODE(t, x(t), u(t)) ▷ Evolution of the dynamical part

return ẋ ▷ Return the derivative

Similarly, this limitation can appear also in the realization of any kind of negative feedback

3| Simulations & Results 47

interconnection (see Figure 3.2). In order to implement it, a composition with the REN-
ODE and the system "SYS" to control is carried out. It must be noted that the system
"SYS", in order to be simulated, has been assumed to be strictly proper, i.e., the output y
at time t does not depend by the input at the same instant. Additionally, if the reference
signal r is variable with respect to time t, then an additional "signal generator" (as seen
before), must be added inside the final composed closed-loop system. A pseudo-code of
the total system is reported in Algorithm 3.2 and an application of it can be found in
Section 3.5.

SYSREN-ODE

Closed-Loop System

Figure 3.2: Scheme of the implementation of a feedback closed-loop system using Torchd-
iffeq library. The reference signal r must be defined a priori or generated by a "signal
generator" inside the closed-loop system.

Algorithm 3.2 Pseudo-code of the Feed-Forward function in a Closed-Loop system.
Input: model (total system), time instant t, state of the total system xTOT (t).
xRENODE, xSYS = split(xTOT(t)) ▷ Split state vector in two.
y(t) = SYS.output(t, xSYS) ▷ output evaluation of SYS
ẋREN-ODE(t) = RENODE.forward(t, xSYS) ▷ state evolution of RENODE
uRENODE(t) = RENODE.output(t, xSYS) ▷ output evaluation of RENODE
ẋSYS(t) = SYS.forward(t, xSYS, uRENODE(t)) ▷ state evolution of SYS

return [ẋRENODE , ẋSY S] ▷ Return the derivative of both states

3.2. Validation of Contractivity, ℓ2-Bound and Pas-

sivity

In Chapter 2, it has been proven that properties of contractivity and robustness can
always be guaranteed, using the direct parametrization described in Section 2.3. Thus,
in this section, simulations are carried out to show practically that these properties are
respected by the model’s implementations. Starting with contractivity, in Figure 3.3 is
shown that (1.2) is satisfied ∀t, simulating the model from two different initial conditions
a, b ∈ Rn. The two initial conditions were sampled randomly from a normal distribution

48 3| Simulations & Results

with zero mean and unitary variance. The experiment’s model is a CREN-ODE with
n = 4, q = 3,m = 1. All the free parameter of the CREN-ODE were drawn from a normal
distribution with zero mean and variance σ2 = 0.01. The input u(t) is chosen as:

u(t) = 1(t) (3.1)

where 1(t) denotes the unit step-signal. It is clearly visible how all the modules of the
difference between the two trajectories’ states (i.e., |xb − xa|) are always lower (or equal)
than an exponential curve κe−ct|b− a|, with c, κ > 0. In this example, c was chosen equal
to 0.5 and κ = 1.

0 2 4 6 8 10
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x(
t)

|xb
1 xa

1|
|xb

2 xa
2|

|xb
3 xa

3|
|xb

4 xa
4|

e ct|b a|

Figure 3.3: Plot of the module of the difference between two evolution of a model (n = 4)
starting from two different initial conditions a, b. In violet, the curve e−ct|b− a|.

In order to show that it is possible to guarantee that the model is incremental ℓ2 Lipschitz
bounded, a RREN-ODE is picked, with free parameters drawn randomly from a normal
distribution with zero mean and variance σ2 = 0.01. Then, the model has been simulated
twice, using two different initial conditions xu(t0), xv(t0) and two different inputs u(t), v(t):

u(t) = −2e−0.2t sin
(π
2
t+

π

3

)
1(t)

v(t) = 3e−0.3t cos
(
πt
)
1(t)

(3.2)

(3.3)

The initial conditions were randoly sampled from a normal distribution with zero mean
and unitary variance. They were chosen differently, because, thanks to Theorem 2.3, the
RREN-ODE is also contractive, thus the two evolutions will converge to each other after

3| Simulations & Results 49

some time, no matter the two initial conditions. The plots of u(t) and v(t) are reported
in Figure 3.4. Thus, given a value of γ bound, the parameters of the model are obtained
as reported in Section 2.2. The experiments were carried out using different values of
γ. Chosen one RREN-ODE, at each γ, only the constrained parameters were calculated,
while the free ones were left the same. Fo each γ, the finite l2-norm of the difference
between the two returned output trajectories, i.e., ∥yu− yv∥t is computed and normalized
with respect to the finite l2-norm of the difference between the inputs, i.e., ∥u− v∥t. The
result are then compared with the bound γ and shown in Figure 3.5. It can be noticed
that, for different values of γ, the Lipschitz bound is always kept, or, in other words:

∥yu − yv∥t
∥u− v∥t

< γ , ∀t (3.4)

0 2 4 6 8 10
Time

2

1

0

1

2

3 u(t)
v(t)

Figure 3.4: Plots of the inputs u, v (right).

50 3| Simulations & Results

0 2 4 6 8 10
Time

0.090

0.092

0.094

0.096

0.098

0.100

||yu yv||t
||u v||t

(a) γ = 0.1

0 2 4 6 8 10
Time

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

||yu yv||t
||u v||t

(b) γ = 1

Figure 3.5: Plots of the normalized finite l2-norm of the difference between the outputs
yu(t), yv(t) with γ = 0.1 (left) and γ = 1 (right).

Finally, experiments to show passivity of the RREN-ODE are carried out. The model
must have the same number of inputs and outputs, i.e., m ≡ n. The free parameter
of the model have been drawn from a normal distribution with zero mean and variance
σ2 = 0.01.

The system is perturbed with two different inputs u(t), v(t), chosen for simplicity as in
(3.2), (3.3), starting from two (random and different) initial conditions xu(t0), xv(t0). The
motivation is the same as before (a RREN-ODE is always contractive). In order to show
that the system is passive, the differentiated form of the incremental dissipation inequality
(2.40) must hold, reported here for clarity:

V̇∆(t) < s(∆ut,∆yt) (3.5)

where V̇∆(t) is the derivative of the storage function and s(∆yt,∆ut) is the supply rate,
respectively given by:

V̇∆(t) = ∆ẋ⊤
t P∆xt +∆x⊤

t P∆ẋt

s(∆yt,∆ut) =
[
∆y⊤t ∆u⊤

t

] [Q S⊤

S R

][
∆yt

∆ut

] (3.6)

(3.7)

This result has been previously obtained in Section 1.4. The passage from the differenti-
ated to the standard dissipativity inequality, and vice versa, can always be guaranteed if
the function V∆(·) is differentiable (see [22]). Two types of passivity have been enforced,
using the matrices (Q,S,R) as provided in Section 1.4:

3| Simulations & Results 51

1. Strictly output passivity ⇒ s(∆ut,∆yt) = ∆u⊤
t ∆yt − ε∥∆yt∥

2. Strictly input passivity ⇒ s(∆ut,∆yt) = ∆u⊤
t ∆yt − ν∥∆ut∥

Thus, during simulations, different values of ν and ε have been used. However, throughout
the experiments, the free parameters of the model have been left constant, while only the
constrained parameters have been modified, according to the robust direct parametriza-
tion in Section 2.2. The plots of V̇∆(t) and s(t) for each choice of ν and ε are reported in
Figures 3.6 and 3.7. It is clear that the supply rate (orange) is always greater(or equal)
than the derivative of the storage function(blue).

0 2 4 6 8 10
Time

1

0

1

2

3

4

5

6
V
s

(a) ε = 1

0 2 4 6 8 10
Time

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
V
s

(b) ε = 10

Figure 3.6: Plots of the storage function V̇∆ and supply rate s of strictly output passive
REN-ODE with ε = 1(left) and ε = 10(right).

0 2 4 6 8 10
Time

10

0

10

20

30

40 V
s

(a) ν = 1

0 2 4 6 8 10
Time

5

0

5

10

15

20

25
V
s

(b) ν = 10

Figure 3.7: Plots of the storage function V̇∆ and supply rate s of strictly input passive
REN-ODE with ν = 1(left) and ν = 10(right).

52 3| Simulations & Results

3.3. Use Case 1: Binary Classification

The first study-case of the REN-ODE is the binary classification of different benchmarks
from the state-of-the-art literature[51]. The data sets have always two classification labels
{0, 1} and two features (x1, x2). The classification is obtained in this way: the data-set
has N points and a time window Tend is chosen. For any ith point of the data-set (xi

1, x
i
2),

with i ∈ {1, N}, the sample is used as initial condition for the evolution of the REN-ODE,
done up to time Tend; then the output y(Tend) is retrieved and passed through a Sigmoid
layer returning a (normalized) value between 0 and 1. Finally, comparing this result with
a 0.5 threshold, the binary classification p is obtained (see Figure 3.8). The goal of the

REN-ODE
REN-ODE

REN-ODE
REN-ODE

Figure 3.8: Scheme of the implementation of REN-ODE for a binary classification of the
point xi. The returned binary classification is pi.

problem is to obtain a REN-ODE that, given any point (xi
1, x

i
2) from the data-set with

expected label ŷi, the returned binary classification pi is always equal too the expected,
i.e., ŷi. As loss function it has been used the Binary Classification Entropy(BCE) loss,
typical of binary classification problems. The BCE is defined as follow:

ℓ(ρ̃, ŷ) = −
(
ŷ log(ρ̃) + (1− ŷ) log(1− ρ̃)

)
(3.8)

where ρ̃ = Sigmoid(y(Tend)) and ŷ is the expected one. However, during the training phase
in iterative optimization techniques, the loss function is evaluated as the mean value of
the loss function of η classification estimations, with η ≤ N . Thus, the final loss function
L(·) is defined as follow:

Lη =
1

η

η∑
i=0

ℓ(yi, ŷi) (3.9)

η is defined as a hyper-parameter, i.e., a parameter that is not learnt/trained through the
training phase. The choice of the number η of points used to evaluate the loss function L

3| Simulations & Results 53

is an important topic still discussed in literature. Indeed, from η depends how many infor-
mation is used at each time the parameters are updated to reach iteratively the optimum.
In literature, η is called batch-size. Using a too small amount of data can produce a curve
of values of L(·) with time to be highly non-smooth and monotone-decreasing, causing
much more time to reach a stable system; from the other hand, choosing η ≈ N brings
usually to a degradation of the ability of the model to generalize well, i.e., to perform well
with data different from the ones used during the training. The following three types of
optimizing techniques differ from the opted value of η :

• Gradient Descent(GD): η = N . The whole data-set is used to update the model.

• Stochastic Gradient Descent(SGD): η = 1. Only one sample is used to update the
model (i.e., update its parameters).

• Mini-Batch Gradient Descent: 1 < η < N . A group of data are used to update the
model.

Furthermore, as explained in Section 1.7.1, after the evaluation of the loss function,
through the back-propagation step, the evaluation of the gradient ∇Lθ of L with re-
spect to the model’s parameters θ is carried out. Then, the technique to update the
parameters θ using ∇Lθ depends on the implemented optimizer. A simple version of the
update rule of the parameters θ at iteration k can be represented as follows:

θk+1 = θk − ℓr∇Lθk (3.10)

where ℓr is the learning rate, an important hyper-parameter. Intuitively, it determines
how much θ must be updated with respect to the error of the last batch of data considered
for the loss evaluation. In the standard versions of gradient descent, the learning rate is
fixed a priori. However, during the last decades, many variations of the update algorithm
have been proposed: an example is Adaptive Moment Estimation(Adam)[40]. Adam is an
adaptive learning rate optimization algorithm that utilises both momentum and scaling,
combining the benefits of RMSProp and SGD with momentum[43]. The optimizer is
designed to be appropriate for non-stationary objectives and problems with very noisy
and/or sparse gradients. In the paper, the authors show empirically that Adam works well
in practice and compares favorably to other adaptive learning-method algorithms. For
this reason, Adam has been chosen for all classification applications. Another important
question in ML is how many updates of the model must be done: a too short number
may not bring the system to a minimum point, while a too big number may not be
necessary due too over-training and leading also to over-fitting of the data used to train

54 3| Simulations & Results

the model. In the years, many different ideas have been considered [52]. In this thesis,
the implemented stopping-criteria for the training phase are:

• the loss function is smaller than a threshold value for a certain number of optimiza-
tion steps (i.e., the loss has reached a desired value)

• the gradient of the loss function is smaller than a threshold value for a certain
number of optimization steps (i.e., the loss is stuck in a local minimum)

Finally, it must be reported that, in order to verify that the trained model performs
well even with cases not observed earlier, a common practice is to divide the data-set of
experiments in two parts: training set (used by the model to optimize the parameter)
and a testing set (used to test the performance of the model). During the experiments
reported in this thesis the training set and the testing one have the same amount of
samples, and, in the classification case, with the same amount of labelled data (i.e., each
set is composed by half samples labelled ’0’ and half ’1’). Before jumping into the results,
the definition of accuracy in binary classification must be reported:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.11)

where:

• TP is the number of true positive, i.e. a point is classified correctly as positive.

• TN is the number of true negative, i.e. a point is classified correctly as negative.

• FP is the number of false positive, i.e., a point is classified as positive, but it is
negative.

• FN is the number of false negative, i.e., a point is classified as negative, but it is
positive.

Results

For the simulations, some of the benchmarks from the state-of-the-art have been used[51].
The following data-sets have been considered: "double moons"(Figure 3.10), "double
circles"(Figure 3.11), "swiss roll"(Figure 3.12) and "checker board"(Figure 3.13). In red
are represented the points with label ’0’, and in blue the ones with label ’1’. The model
used for this experiment is the CREN-ODE. However, as discussed in Section 1.7.2, using
a CREN-ODE with the same amount of states as the input features (i.e., n = 2) would
not allow the system to map correctly the space of the features (aka the data points). For

3| Simulations & Results 55

this reason, the model has been considered with an augmented amount of initial states
ñ ≥ 2, thus, each 2D point has been augmented as:

xPoint =

[
x1

x2

]
2×1

→ x̃aug =

x1

x2

0
...
0

ñ×1

(3.12)

Indeed, in Figure 3.9 is reported the different values of accuracy obtained in function of
the number of augmented states for the "double moons" benchmark.

2 3 4 5 6 7 8 9 10
Augmented state n

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Figure 3.9: Plot of the accuracy obtained in function of the number ñ of augmented states
in the prediction of the "double moons" benchmark.

Below is reported a table with the minimum number ñ of augmented states in order to
obtain 100% for each data-set:

DataSet ñ

Double Moons 10
Double Circles 16
Checker Board 40

Swiss Roll 45

56 3| Simulations & Results

(a) (b)

Figure 3.10: Labeled input features representing the "Double Moons" data-set (left),
predictions of the REN-ODE (colors in the background) superimposed by the validation
data.

(a) (b)

Figure 3.11: Labeled input features representing the "Double Circles" data-set (left),
predictions of the REN-ODE (colors in the background) superimposed by the validation
data.

3| Simulations & Results 57

(a) (b)

Figure 3.12: Labeled input features representing the "Swiss Roll" data-set (left), predic-
tions of the REN-ODE (colors in the background) superimposed by the validation data.

(a) (b)

Figure 3.13: Labeled input features representing the "Checker Board" data-set (left),
predictions of the REN-ODE (colors in the background) superimposed by the validation
data.

3.4. Use Case 2: System Identification

REN-ODE has been tested for the system identification of a nonlinear pendulum in free
evolution, namely building an approximated mathematical model of the system using the
collected output signals. The main goal of the experiment is to find a REN-ODE that is
able to find a good approximation of the real physical system, i.e., given the same initial
conditions, to return the same outputs as the measurements of the pendulum’s outputs.

58 3| Simulations & Results

The pendulum is governed by the following equation:

ℓα̈(t) + βα̇(t) + g sinα(t) = 0 (3.13)

where α is the angle of the pendulum with respect to the vertical axis, β is the viscous
damping coefficient, g is the gravitational acceleration and ℓ is the length of the pendulum
(see Figure 3.14). Then, (3.13) can be rewritten as:

Figure 3.14: Scheme of the pendulum.

α̈(t) +
β

ℓ
α̇(t) + ω2 sinα(t) = 0

ω =

√
g

ℓ

(3.14)

(3.15)

The system can be reformulated in a state-space form defining with x1 = α, x2 = α̇ and
x(t) = [α(t) α̇(t)]⊤:

ẋ(t) =

[
α̇(t)

α̈(t)

]
=

[
x2(t)

−ω2 sinx1(t)− β
ℓ
x2(t)

]

y(t) =

[
1 0

0 1

]
x(t)

(3.16)

(3.17)

We want that the output of the REN-ODE at each time instant to be as close as possible
to the measurements of the pendulum. In order to do so, the loss function used for this
task is the Mean Squared Error(MSE):

L(y, ŷ) = MSE(y, ŷ) =
1

η

η∑
i=0

Tend∑
t=0

∥yi(t)− ŷi(t)∥2 (3.18)

where the loss is evaluated on a batch of η experiments and y, ŷ are respectively the
measured outputs vector and the predicted one. In order to use REN-ODE for system
identification, the following strategy has been used: starting from N random initial con-
ditions on the angle α and the velocity α̇, the N experiments of the mechanical system
are simulated from T0 up to time Tend, chosen with respect to the dynamics of the pen-

3| Simulations & Results 59

dulum; afterwards, η values are used as initial conditions of the neural network and then
the model is let free to evolve up to the time Tend. Finally, the estimated outputs are
compared with the previously simulated ones through the MSE loss function. Then the
system’s parameters θ are update using a learning strategy characterised by the chosen
optimizer (for details, see Section 3.3). The scheme of the implementation is reported in
Figure 3.15. The initial conditions have been sampled from the following distributions:

α(0) ∼ U

(
−π

2
;
π

2

)

α̇(0) ∼ N

(
0 ;

(
π

180

)2
)

where U(a, b) denotes a uniform distribution with boundaries a, b and N (µ, σ2) represents
a normal distribution with µ mean and σ2 variance. It must be noticed that for (free
evolution) system identification, the properties of dissipativity and passivity (i.e., RREN-
ODE) have not been enforced due to the lack of any sort of exogenous input u(t). For
this reason, experiments have been carried out only for CREN-ODEs. The simulations
have been carried out with the following parameters:

Parameter Value

β 0.75 m/s
ℓ 0.5 m
T0 0 s
Tend 10.0 s

No. experiments 400
batch-size 20 exp.

The system has been chosen with an augmented dimension ñ = 7 and q = 3. CREN-ODE
was trained mainly using two different integration methods: ’rk4’ and ’euler’ (for details
Section 3.1). ’rk4’ was able to obtain way better results, but with a longer time required by
’euler’ to be trained: An additional comment about the choice of the integration method

Integration Method Time for Training Final Loss (200 exp.)

Forward Euler 1264 s 1.67 e-3
Runge-KuttaIV 3762 4.85 e-4

is that Euler is "higly" conditionally stable (i.e., the stability depends on the choice of

60 3| Simulations & Results

the sampling time chosen for the ODE solver) and it has shown during the simulations an
higher chance to reach numerical instability, causing the loss of all the results obtained
up to that moment. On the other hand, being rk4 more accurate, has experienced less
cases of numerical instability. For this reason, it is suggested to use, if possible, higher
order methods.

REN-ODE
REN-ODE

REN-ODE
REN-ODE

Figure 3.15: Scheme of the implementation of a REN-ODE for system identification of a
free evolution system with initial condition xi simulated from T0 to Tend. The predicted
output of the net is the vector ŷi.

0 1 2 3 4 5 6 7 8
Time

0.50

0.25

0.00

0.25

0.50

0.75

1.00

[ra
d]

(t)
RENODE(t)

(a)

0 1 2 3 4 5 6 7 8
Time

3

2

1

0

1

2

[ra
d/

s]

(t)
RENODE(t)

(b)

Figure 3.16: Validation of the REN-ODE, starting from an initial condition (α(0), α̇(0))

not used during the training phase. In blue the actual trajectories and red the predicted
one by the net.

In Figure 3.16 the trained model is tested comparing the evolution of the pendulum’s states
and the prediction of the REN-ODE, starting from an initial state condition (α(0), α̇(0))

not used during the training phase.

3| Simulations & Results 61

3.5. Use Case 3: Optimal Control

The last considered use case of the REN-ODE is the optimal control of a dynamical system
that consists of two robots that must reach two different targets, while avoiding any kind
of collision and obstacles. A scheme of it is represented in Figure 3.17. Each robot has
been modeled as a 2D point mass, subject to drag forces (e.g., friction) with state (pt, qt),
where pt ∈ R2 and qt ∈ R2 represent the position and speed, respectively. For each agent:[

ṗt

q̇t

]
=

[
qt

m−1(−C(qt)qt + Ft)

]
(3.19)

where m is the mass of the robot, Ft ∈ R2 is the force control input and C : R2 → R is the
drag-force, modeled as: C(qt) = b1 + b2|qt|, with b1, b2 ∈ R1×2. The robots need to achieve
the target position p̄ ∈ R2 with zero velocity, i.e., q̄ = 0 in a finite time window Tend (or
less, if possible). For this setting, we consider that a base controller F̄t = −K(pt − p̄)

has already been implemented for each agent, acting as a virtual spring able to push the
robots linearly to the targets with K = diag(k1, k2) and k1 = k2 ∈ R. This base controller,
thus, makes the target points a global asymptotically equilibrium of the system. For each
agent, thus, the control input will be F ′

t ∈ R2 and Ft = F̄t + F ′
t . Finally the total model

of the system can be considered, defining the overall state and input

xt = [p1t , q
1
t , p

2
t , q

2
t] ∈ R8

ut = [F 1
t , F

2
t] ∈ R4

(3.20)

(3.21)

This scenario is motivated by the examples in [46, 53]. The scheme of the implementation
of a REN-ODE as a controller has been previously reported in Figure 3.2. The REN-
ODE’s control optimal policy is trained considering the following loss function, sampled
with a sampling period Ts:

Tend/Ts∑
k=0

l(xtk , utk) =

Tend/Ts∑
k=0

ltraj(xtk , utk) + lca(xtk) + lobst(xtk) (3.22)

where (·)tk denotes the value of a signal sampled at time t = k Ts and each loss function
is:

ltraj(xtk , utk) =
2∑

i=1

αx[p
i
tk
, qitk]

⊤Q[pitk , q
i
tk
] + αu(u

i
tk
)⊤(ui

tk
)

lca(xtk) =

αca(d12(tk) + ϵ)−2 if d12 ≤ D,

0 otherwise.

(3.23)

(3.24)

62 3| Simulations & Results

with αx, αu, αca weights of each policy, d12(tk) the euclidean distance between the two
robots at time tk (d12 = d21), D a "safe" value of distance, Q a positive definite matrix
of weights and ϵ > 0 small used to have (3.24) well-defined. Finally, we denote with:

N (p;µ; Σ) =
1

2π
√

det(Σ)
exp

(
−1

2

(
p− µ

)⊤
Σ−1

(
p− µ

))
(3.25)

a Gaussian density function with mean µ ∈ R2 and covariance Σ ∈ R2×2. Then, the term
lobst(xtk) is given by:

lobst(xtk) = αobst

2∑
i=1

(
N
(
pitk ;

[
2.5

0

]
; 0.2I

)
+N

(
pitk ;

[
−2.5

0

]
; 0.2I

))

+

(
N
(
pitk ;

[
1.5

0

]
; 0.2I

)
+N

(
pitk ;

[
−1.5

0

]
; 0.2I

))
(3.26)

(3.27)

where αobst is a weight and the points
[
−1.5 0

]⊤
,
[
1.5 0

]⊤
,
[
−2.5 0

]⊤
,
[
2.5 0

]⊤
are

the locations of the obstacles (see Figure 3.17), denoted in [46] as "mountains". In order to
study REN-ODE with different properties introduced in this thesis, the measured outputs
of the system are the velocities of the robots: in this way m ≡ p ≡ 4. It must be pointed
out that the model was trained on multiple initial positions of the two robots; indeed,
their initial positions were sampled from the following normal distributions:

p10 ∼ N
([

−2

−2

]
; 0.25I

)
, p20 ∼ N

([
2

−2

]
; 0.25I

)

where I ∈ R2×2 is the identity matrix. The model has been simulated with the following
parameters:

Parameter Value Parameter Value
m 1 kg Ts 1 s
b1 3 kg/s Tend 70 s
b2 0 kg/m n 20

k1 = k2 0.5 N/m q 4
αx 100 σ(·) tanh(·)
αu 0.15 No. experiments 750 exp.
αobst 1 Batch size 75 exp.
αca 50 Safe distance D 0.7 m
Q diag([1 1])

The experiment has been performed considering different types of controllers guaran-

3| Simulations & Results 63

Robot1 Robot2

Target2 Target1

Obstacles Obstacles

Figure 3.17: Scheme of the problem to optimally control. The two robots must reach the
targets while avoiding crushes or collisions with the obstacles.

teeing contractivity and/or dissipativity. Due to different number of free parameters,
CREN-ODE and RREN-ODEs did not have the same free parameters. The results of
the simulations are reported in the following table, in which the same hyper-parameters
and data have been used: Highlighted in blue the best result (a passive system with a

Loss on Testing set
Model lossx lossu lossca lossobst Total

Contractive 38 583 1.21 e3 744 2575
ℓ2-bounded (γ = 1) 42 208 327 473 1050

Passive 39 244 105 124 511
Input Passive (ν = 0.01) 39 269 0.0 126 433
Input Passive (ν = 0.1) 38 18 314 121 661
Input Passive (ν = 1) 62 2.76 e4 5.64 e5 184 5.92 e5

Table 3.1: Loss evaluated on the same Testing set of different models of REN-ODE.

small coefficient ν = 0.01) whose plots of positions, velocities and inputs are reported in
Figure 3.18 and, additionally, its optimal path is represented in Figure 3.19. The model
has showed zero collision for any of the 375 experiments that compose the testing set,
considering as safe distance the value D = 0.7m: this can be noted by lossca that is equal
to 0.

64 3| Simulations & Results

It is important to notice that the overall feedback-loop system is composed by passive
systems. In fact, as shown in [44, Theorem 10], an incrementally passive system, is also
generally passive (see Definition 1.2.3) for a given equilibrium point. In this experiment
we chose to set the vector b̃ of biases to zero. Now, it is easy to verify that the system has
an equilibrium point in zero. Additionally, we want to check if the two robots are passive.
This property can be verified finding a matrix Φ = Φ⊤ ≥ 0 such that the following LMI
are satisfied:

A⊤Φ + ΦA ≤ 0 , B⊤Φ = C (3.28)

where A,B,C are the matrix that characterized the linear system of the two robots (the
coefficient b2 = 0 and it follows that the system is linear). The proof of (3.28) can be
found in [22, Proposition 4.1.2]. In this case, the matrices have the following values:

Arobot =

0 0 1 0

0 0 0 1

−0.5 0 −3 0

0 −0.5 0 −3

→ A =

[
Arobot 04×4

04×4 Arobot

]
,

Brobot =

0 0

0 0

1 0

0 1

→ B =

[
Brobot 04×2

04×2 Brobot

]
,

Crobot =

[
0 0 1 0

0 0 0 1

]
→ C =

[
Crobot 02×4

02×4 Crobot

]
.

(3.29)

(3.30)

(3.31)

And thus, a solution can be:

Φ = diag
([

0.5 0.5 1 1 0.5 0.5 1 1
])

. (3.32)

This discovery is important because the negative feedback interconnection of RREN-ODE
and the two robots is still passive, thanks to Theorem 2.4. It has been tested that, even
if the problem was solved for a fixed time horizon Tend, the system will not diverge if the
time is prolonged. Indeed, the system will remain indefinitely in the equilibrium point,
independently from time.

3| Simulations & Results 65

0 20 40 60
t

2

1

0

1

2
Positions

x1

y1

x2

y2

0 20 40 60
t

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Velocities

x1

y1

x2

y2

0 20 40 60
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Inputs

u1
x

u1
y

u2
x

u2
y

Figure 3.18: Plot of the positions, velocities and inputs with time, respectively simulated
by the RREN-ODE strictly input passive with ν = 0.01.

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Figure 3.19: Path generated by the trained RREN-ODE strictly input passive with ν =

0.01 starting from a random initial position of the robots.

67

4| Conclusions and future

developments

In this thesis, a new class of deep neural networks in continuous time, named REN-ODE,
has been presented. We show that, through direct parametrization, it is always possible
to obtain a contractive dynamical model by design and to, additionally, satisfy integral
quadratic constraints (IQCs). IQCs can be used to enforce properties of incremental
dissipativity and passivity, as well as Lipschitz bounds. The main results of my thesis are
the mathematical characterizations of the class of REN-ODE that guarantee contractivity
and robustness (called CREN-ODE and RREN-ODE, respectively). Hence, there are no
constraints on the parameters and they can be learnt through the use of the most modern
iterative optimization algorithms such as gradient descent and its variants (e.g., Adam,
AMSGrad). The structure of the proposed class has been inspired by RENs[11] which,
however, are formulated in discrete time. REN-ODE’s architecture belongs to the family
of Neural-ODEs [20]. As a result, REN-ODE inherits all the advantages of this neural
network class, including the possibility to use modern and sophisticated ODE solvers for
the evaluation of the output. Furthermore, these black-box ODE solvers are also adopted
during the training phase, in which they can provide high level of precision and adapt the
evaluation strategy on the fly to achieve the requested level of accuracy. Thanks to their
flexibility, REN-ODEs can be used in different tasks in the control field. In this work, we
have tested our new architecture, using it to identify the model of a nonlinear pendulum
with different integration methods. Additionally, CREN-ODEs have been used in binary
classification benchmarks from literature, obtaining great results. Finally, we implemented
a RREN-ODE in a multi agent control scenario, where it was used as a regulator in order
to be optimal with respect to a given policy function. RREN-ODE was able to achieve
good performances, while trying to avoid obstacles and collisions between the agents. The
guarantees of contractivity and robustness of this new class of neural networks, opens up
the possibility in which REN-ODE’s properties will be exploited, such as modeling of
more challenging and complex systems like reaction-diffusion systems [54] or continuous
normalizing flows [55]. Furthermore, future works will regard the use of REN-ODEs in

68 4| Conclusions and future developments

distributed and decentralized cases, in which large-scale systems will be considered.

69

Bibliography

[1] R. Gargeya and T. Leng, “Automated identification of diabetic retinopathy using
deep learning,” Ophthalmology, vol. 124, no. 7, pp. 962–969, 2017.

[2] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4.
Springer, 2006.

[3] S. Ö. Arık, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li,
J. Miller, A. Ng, J. Raiman, et al., “Deep voice: Real-time neural text-to-speech,” in
International Conference on Machine Learning, pp. 195–204, PMLR, 2017.

[4] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-
suvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back,
S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with Al-
phaFold,” Nature, vol. 596, pp. 583–589, jul 2021.

[5] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint arXiv:1912.06680, 2019.

[6] X. Wang, Y. Li, and K.-W. Kwok, “A survey for machine learning-based control of
continuum robots,” Frontiers in Robotics and AI, vol. 8, p. 730330, Sept. 2021.

[7] D. Djenouri, R. Laidi, Y. Djenouri, and I. Balasingham, “Machine learning for smart
building applications: Review and taxonomy,” ACM Computing Surveys (CSUR),
vol. 52, no. 2, pp. 1–36, 2019.

[8] M. Said, K. b. Abdellafou, and O. Taouali, “Machine learning technique for data-
driven fault detection of nonlinear processes,” Journal of Intelligent Manufacturing,
vol. 31, no. 4, pp. 865–884, 2020.

[9] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,

70 | Bibliography

J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning:
Concepts, cnn architectures, challenges, applications, future directions,” Journal of
big Data, vol. 8, no. 1, pp. 1–74, 2021.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[11] M. Revay, R. Wang, and I. R. Manchester, “Recurrent Equilibrium Networks: Flexi-
ble Dynamic Models with Guaranteed Stability and Robustness,” July 2021.

[12] M. Cheng, J. Yi, P.-Y. Chen, H. Zhang, and C.-J. Hsieh, “Seq2Sick: Evaluating the
robustness of sequence-to-sequence models with adversarial examples,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3601–3608, Apr. 2020.

[13] M. Revay and I. R. Manchester, “Contracting implicit recurrent neural networks:
Stable models with improved trainability,” 2019.

[14] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks
by enforcing lipschitz continuity,” Machine Learning, vol. 110, no. 2, pp. 393–416,
2021.

[15] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural networks: anal-
ysis and efficient estimation,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[16] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training robust neural
networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126,
2021.

[17] K. J. Åström, P. Hagander, and J. Sternby, “Zeros of sampled systems,” Automatica,
vol. 20, no. 1, pp. 31–38, 1984.

[18] S. Liang, C. Zeng, I. Mitsuaki, and J. Zhong, “The roles of sampling zero dynamics
in the discrete-time models for linear and nonlinear systems,” in Proceedings of the
33rd Chinese Control Conference, pp. 3887–3892, 2014.

[19] K. Ogata, Discrete-time control systems. Prentice-Hall, Inc., 1995.

[20] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary
differential equations,” 2018.

[21] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,”
Automatica, vol. 34, no. 6, pp. 683–696, 1998.

| Bibliography 71

[22] A. Van der Schaft, L2-gain and passivity techniques in nonlinear control. Springer,
2000.

[23] M. Revay, R. Wang, and I. R. Manchester, “A convex parameterization of robust
recurrent neural networks,” 2020.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[25] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[26] M. Revay, R. Wang, and I. R. Manchester, “Lipschitz bounded equilibrium networks,”
2020.

[27] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl. Comput.
Math, vol. 15, no. 1, pp. 3–43, 2016.

[28] Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations,” 2017.

[29] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse
Problems, vol. 34, p. 014004, dec 2017.

[30] L. S. Pontryagin, “The mathematical theory of optimal processes,” 1962.

[31] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

[32] X. Zhang, Z. Li, C. Change Loy, and D. Lin, “Polynet: A pursuit of structural
diversity in very deep networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 718–726, 2017.

[33] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep neural net-
works without residuals,” arXiv preprint arXiv:1605.07648, 2016.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

[35] C. Runge, “Ueber die numerische auflösung von differentialgleichungen.,” Mathema-
tische Annalen, vol. 46, pp. 167–178, 1895.

72 | Bibliography

[36] W. Kutta, “Beitrag zur naherungsweisen integration totaler differentialgleichungen,”
Z. Math. Phys., vol. 46, pp. 435–453, 1901.

[37] Solving Ordinary Differential Equations I. Springer Berlin Heidelberg, 1993.

[38] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud,
“Ffjord: Free-form continuous dynamics for scalable reversible generative models,”
2018.

[39] E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural odes,” 2019.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[41] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7,
2011.

[42] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” arXiv
preprint arXiv:1904.09237, 2019.

[43] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017.

[44] C. Verhoek, P. J. Koelewijn, R. Tóth, and S. Haesaert, “Convex incremental dissipa-
tivity analysis of nonlinear systems,” arXiv preprint arXiv:2006.14201, 2020.

[45] P. Al Hokayem and E. Gallestey, “Lecture notes on nonlinear systems and control
spring semester 2020 eth zurich,”

[46] L. Furieri, C. L. Galimberti, M. Zakwan, and G. Ferrari-Trecate, “Distributed neural
network control with dependability guarantees: a compositional port-hamiltonian
approach,” in Learning for Dynamics and Control Conference, pp. 571–583, PMLR,
2022.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[48] R. T. Q. Chen, “torchdiffeq,” 6 2021.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

4| BIBLIOGRAPHY 73

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[50] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–
362, Sept. 2020.

[51] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse
problems, vol. 34, no. 1, p. 014004, 2017.

[52] L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of the trade,
pp. 55–69, Springer, 1998.

[53] D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto, “A neural
network approach applied to multi-agent optimal control,” in 2021 European Control
Conference (ECC), pp. 1036–1041, IEEE, 2021.

[54] R. Martin and M. Pierre, “Nonlinear reaction-diffusion systems,” in Nonlinear Equa-
tions in the Applied Sciences (W. Ames and C. Rogers, eds.), vol. 185 of Mathematics
in Science and Engineering, pp. 363–398, Elsevier, 1992.

[55] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in In-
ternational conference on machine learning, pp. 1530–1538, PMLR, 2015.

75

A| Appendix A

Proposition A.1. If Q is a negative definite matrix and R = R⊤, then the LMI in (1.38)
implies the (1.36).

Proof. Considering the inequality in (1.38), reported here for clarity: P −C⊤
1 Λ C⊤

2 S
⊤

−ΛC1 W D⊤
21S

⊤ − ΛD12

SC2 SD21 −D⊤
12Λ R + SD22 +D⊤

22S
⊤

−

A
⊤

B⊤
1

B⊤
2

P

A
⊤

B⊤
1

B⊤
2

⊤

+

C
⊤
2

D⊤
21

D⊤
22

Q

C
⊤
2

D⊤
21

D⊤
22

⊤

> 0

(A.1)

Using the Sylvester’s criterion, it implies that:[
P −C⊤

1 Λ

−ΛC1 W

]
−

[
A⊤

B⊤
1

]
P

[
A⊤

B⊤
1

]⊤
+

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
> 0 (A.2)

Being Q definite negative, (A.2) can be rewritten as:

[
P −C⊤

1 Λ

−ΛC1 W

]
−

[
A⊤

B⊤
1

]
P

[
A⊤

B⊤
1

]⊤
> −

[
C⊤

2

D⊤
21

]
Q

[
C⊤

2

D⊤
21

]⊤
> 0 (A.3)

Finally: [
P −C⊤

1 Λ

−ΛC1 W

]
−

[
A⊤

B⊤
1

]
P

[
A⊤

B⊤
1

]⊤
> 0 (A.4)

that corresponds to (1.36).

77

B| Appendix B

We want to prove the following proposition:

Proposition B.1. Given the Assumption 1 and a REN-ODE in the form (2.1)-(2.2) and
its incremental form (2.3)-(2.4) such that:[

−A⊤P − PA −C⊤
1 Λ− PB1

−ΛC1 −B⊤
1 P W

]
> 0 (B.1)

with P a positive definite matrix, Λ a positive diagonal matrix and

W = 2Λ− ΛD11 −D⊤
11Λ. (B.2)

then ∃α > 0 such that:

V̇∆(t) ≤ −αV∆(t) (B.3)

where V∆(t) is a quadratic Lyapunov function defined as follows:

V∆(t) = ∆x⊤
t P∆xt (B.4)

Proof. Starting from the definition of V∆(t) and the definition of ∆ẋt from (2.3), then:

V̇∆(t) = ∆ẋ⊤
t P∆xt +∆x⊤

t P∆ẋt

= (∆x⊤
t A

⊤ +∆w⊤
t B

⊤
1)P∆x+∆x⊤P (A∆xt +B1∆wt)

=

[
∆x⊤

t

∆w⊤
t

]⊤ [
A⊤P + PA PB1

B⊤
1 P 0q×q

][
∆x⊤

t

∆w⊤
t

]
(B.5)

(B.6)

(B.7)

However, we showed during the proof of Theorem 2.1 that, using the definition of Γt (1.32)

78 B| Appendix B

and Assumption 1, it is possible to write that:[
∆x⊤

t

∆w⊤
t

]⊤ [
A⊤P + PA PB1

B⊤
1 P 0q×q

][
∆xt

∆wt

]
< −Γt ≤ 0 , ∀t (B.8)

Defining with M the matrix:

M =

[
A⊤P + PA PB1

B⊤
1 P 0q×q

]
(B.9)

Then, due to (B.8), the square matrix M ∈ R(n+q)×(n+q) is definite negative, i.e.:

[
∆x⊤

t

∆w⊤
t

]⊤
M

[
∆xt

∆wt

]
< 0 ; ∀

[
∆xt

∆wt

]
̸= 0 (B.10)

Being M a symmetric matrix, its eigenvalues are real and negative.
Defining with λmin(M) and λmax(M) the minimum and maximum eigenvalue of M, re-
spectively (with λmin(M) ≤ λmax(M) < 0), then it is always possible to write:

λmin(M)∥∆z∥2 ≤ ∆z⊤M∆z ≤ λmax(M)∥∆z∥2 < 0 ∀∆z ̸= 0 (B.11)

where ∆z is defined as:

∆z =

[
∆xt

∆wt

]
(B.12)

Thus, using (B.7), (B.11) and (B.12):

V̇∆(t) = ∆z⊤M∆z ≤ λmax(M)

∥∥∥∥∥∆xt

∆wt

∥∥∥∥∥
2

< 0 , ∀∆xt,∆wt :

∥∥∥∥∥∆xt

∆wt

∥∥∥∥∥
2

̸= 0 (B.13)

Defining with γ:

γ = −λmax(M) > 0 (B.14)

Then (B.13) becomes:

V̇∆(t) ≤ −γ

∥∥∥∥∥∆xt

∆wt

∥∥∥∥∥
2

< 0 , ∀∆xt,∆wt :

∥∥∥∥∥∆xt

∆wt

∥∥∥∥∥
2

̸= 0 (B.15)

At this point, we can consider the symmetric and positive matrix P . P has only real and
positive eigenvalues. Defining with λmin(P) and λmax(P) the minimum and maximum

B| Appendix B 79

eigenvalue of P, respectively (with 0 < λmin(P) ≤ λmax(P)), then it always holds that:

0 < λmin(P)∥∆xt∥2 ≤ ∆x⊤
t P∆xt ≤ λmax(P)∥∆xt∥2 , ∀∆xt ̸= 0 (B.16)

We can now define the "augmented" matrix P0 ∈ R(n+q)×(n+q) such that:

P0 =

[
P 0n×q

0q×n 0q×q

]
(B.17)

Notice that P0 is a symmetric semi-definite matrix. Then it is always possible to write:

0 ≤ ∆z⊤P0∆z ≤ λmax(P)∥∆z∥2 , ∀∆z (B.18)

Rearranging (B.18) and, being λmax(P) ̸= 0:

∥∆z∥2 ≥ ∆z⊤P0∆z

λmax(P)
(B.19)

Furthermore, using (B.4), (B.15) and (B.19):

V̇∆(t) ≤ −γ

∥∥∥∥∥∆xt

∆wt

∥∥∥∥∥
2

= −γ
∆z⊤P0∆z

λmax(P)

= − γ

λmax(P)
∆z⊤

[
P 0n×q

0q×n 0q×q

]
∆z

= − γ

λmax(P)

[
∆x⊤

t ∆w⊤
t

]⊤ [P 0n×q

0q×n 0q×q

][
∆xt

∆wt

]
= − γ

λmax(P)
∆x⊤

t P∆xt

= − γ

λmax(P)
V∆(t)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

We can now define the parameter α as:

α =
γ

λmax(P)
> 0 (B.25)

And finally, from (B.20) and the definition of α:

V̇∆(t) ≤ −αV∆(t) , ∀t (B.26)

	Abstract
	Contents
	Introduction
	Preliminary Knowledge
	Contractivity
	Dissipativity
	General Dissipativity
	Incremental Dissipativity

	Passivity
	Integral Quadratic Constraints (IQCs
	Machine Learning background
	Recurrent Equilibrium Networks (RENs)
	Acyclicity
	Well-Posedness
	Learning Stable & Robust Models
	Convex Parametrization
	Direct Parametrization

	Neural-ODEs
	Adjoint Method
	Augmented Neural-ODEs

	REN-ODEs
	REN-ODE model
	Assumptions
	Well-Posedness

	Contracting and Robust REN-ODEs
	Robust REN-ODEs are Contractive
	Convex Parametrization
	Assumptions on the symmetry of P

	Direct Parametrization
	Comments on REN-ODE

	Simulations & Results
	Implementation
	Validation of Contractivity, l2-Bound and Passivity
	Use Case 1: Binary Classification
	Use Case 2: System Identification
	Use Case 3: Optimal Control

	Conclusions and future developments
	Bibliography
	Appendix A
	Appendix B

