
Executive Summary of the Thesis

The application of ray tracing to efficiently simulate fisheye lenses.

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Simone Abelli

Advisor: Prof. Marco Gribaudo

Academic year: 2022-2023

1. Introduction
In computer graphics, traditional rendering
techniques are based on rasterization, a process
that turns 3d geometries into 2d images, assum-
ing that their basic primitives - i.e. the triangles
- will not change their shape. For this reason
they struggle in trying to simulate the visual dis-
tortion caused by some lenses. This is the case
of fisheye images, which usually require a slow
procedure to be rendered.
However another rendering method, the ray
tracing, known for the superior level of realism
it can achieve, is not based on rasterization and,
as such, doesn’t suffer this problem.
The purpose of this work is to show that, since
hardware acceleration for ray tracing has be-
come available in 2018, ray tracing is more effi-
cient than traditional methods in rendering fish-
eye images and therefore not only produces bet-
ter images, but it also has better performance.
To do so I have implemented fisheye both with a
rasterization-based approach and with ray trac-
ing, and I performed a comparison between their
results.

2. Fisheye
Fisheye lenses are ultra wide-angle lenses, that
produce pictures with wide field of view, while
introducing strong visual distortion. These

lenses are characterized by two factors: the focal
length and the mapping function.
The focal length is a value that measure how the
lens converges (positive focal length) or diverges
(negative focal length) light. The smaller the fo-
cal length, the wider the angle of view will be.
The mapping function, instead, is a mathemati-
cal function that maps the angle of a point from
the optical axis θ to the distance of that point
from the center of the final image r, given the
focal length f. In other words, it maps the di-
rection of the incoming ray of light to its new
direction, after it has passed through the lens.
The general form of any fisheye mapping func-
tion is the following:

r =


f

k1
tan(k2θ) for 0 < k2 ≤ 1

fθ for k2 = 0

f

k1
sin(k2θ) for − 1 ≤ k2 < 0

(1)

By fixing the parameters k1 and k2 a specific
mapping function is defined. The most impor-
tant and most used mapping functions however,
are the following four:

r = 2f tan
θ

2
r = fθ

(2)

(3)

1

Executive summary Simone Abelli

r = 2f sin
θ

2
r = f sin θ

(4)

(5)

(2) refers to the "stereographic" fisheye function;
it tends to compress the center of the image,
while keeping marginal objects bigger.
(3) is the "equidistant" mapping function; it
maintains angular distances and can be practi-
cal for angle measurement.
(4) is the mapping function for "equisolid an-
gle"; it compresses marginal objects and looks
like a mirror image on a ball.
(5) corresponds to the "orthographic" function;
It highly distorts objects near the edge of the
image.

3. Ray tracing
Ray tracing is a rendering technique that tries
to model light transport, by emulating the be-
haviour of rays of light and their interactions
with the environment.
The image is produced by casting a ray for ev-
ery pixel and then tracing its path, checking for
intersections with the environment. Each ray is
assigned a payload, that will store its informa-
tion. When the ray hits a surface, a program
is executed to define how this collision affects
the ray itself. This may entail some color to be
stored in the payload and, potentially, one or
more recursive rays to be cast. When the trac-
ing of the ray is completed, the payload of the
ray will return the color that the pixel should
assume.
The only part of this process affected by fisheye
is the primary ray generation: instead of a nor-
mal generation, where every ray points towards
the center of its corresponding pixel, the ray di-
rection is modified by the fisheye effect. This
new direction can be computed starting from the
inverse of the mapping function, which returns
the angle θ that the outgoing ray forms with the
optical axis given the focal length f and the dis-
tance r of a pixel from the center of the screen.
The inverse mapping function for the main fish-
eye types are:

θ = 2arctan
r

2f

θ =
r

f

θ = 2arcsin
r

2f

θ = arcsin
r

f

Once the angle is defined, the direction vector
can be computed by imposing that it lies on the
same plane of the optical axis and the relative
pixel of the screen. Calling v1 the normalized
optical axis, v2 the normalized vector pointing
to the pixel and v3 the final normalized direction
vector, the equation of the plane is:

a ∗ v1 + b ∗ v2 = 0

And since v3 lies on that plane, there exist some
values a′ and b′ such that:

v3 = a′ ∗ v1 + b′ ∗ v2 (6)

The second condition, knowing that the vectors
are normalized, is that:

cos θ = v1 · v3 (7)

The third condition is that:

|v3| = 1 (8)

Solving the system of equations (6), (7) and (8)
(where v1 and v2 are known) for a′, b′ and v3,
the result is:

a′ = cos θ − b′(v1 · v2)

b′ =

√
sin2 θ

1− (v1 · v2)2

v3 = a′ ∗ v1 + b′ ∗ v2

This solution, then, is used during the ray gen-
eration to define the direction of each ray, as if
it was distorted by a fisheye lens. The ray will
then be traced as normal and return the pixel’s
color.
Therefore, this is the only extra computation
needed to apply fisheye in the case of ray trac-
ing. Moreover, the fisheye direction can also be
stored in a texture, so that it doesn’t need to be
recalculated each frame. In the end, fisheye can
be applied to ray tracing almost at no cost.

4. Rasterization
If the ray tracing procedure stays for the most
part the same in case of fisheye, with rasteriza-
tion it is impossible to directly render the fisheye

2

Executive summary Simone Abelli

image. As such, an intermediate step is needed:
the rendering of a cube map. Since this implies
rendering the scene six times, the cost of apply-
ing fisheye becomes very high.
Some techniques can be used to lower this cost:
for example it is possible to use deferred render-
ing. This involves to split each rendering in two
passes: in the first the full scene is rendered, but
instead of computing the lighting directly, the
values needed to do so are saved in the textures
of a buffer called G-Buffer. Then, the G-Buffer
is used to compute the actual image in the sec-
ond pass. The advantage of this technique is
that the lighting is calculated only for the vis-
ible surfaces, since the G-Buffer only contains
what can be seen by the camera.
An alternative to deferred rendering is to use
the "single pass render to cube map" algorithm.
It relies on a particular shader program called
geometry shader, which receives as input the
vertices of a single primitive and can trans-
form them, possibly generating more vertices
and primitives, before sending them to the next
pipeline stage. Therefore, instead of repeat the
rendering of the same scene six times, it is more
convenient to let the geometry shader produce a
new triangle for each cube map face, projected
according to the corresponding view matrix. In
this way the cube map is rendered in a single
rendering pass.
Once the cube map is ready, its faces can be used
to generate the final image.
First the fisheye direction vector must be defined
for each pixel; this can be done either by com-
puting it from scratch or by sampling it from a
texture (as seen in section 3). Then, every pixel
of the resulting fisheye image is sampled from
the position of the cube map that the direction
vector was pointing at.
The right face of the cube map can simply be
determined by finding the component of the di-
rection vector with the greater absolute value.
For example, if it is the y component and its
value is positive, then the target face is the top
one; if it is negative then the direction vector
points to the bottom face. If it is the x compo-
nent the face will either be the left or the right,
and if it is the z component, then the front or
back face will be sampled.
Then, by dividing the other two component by
the greatest one, it is possible to obtain the UV

coordinates of the face to sample. For instance,
if the greatest component is z and it is positive,
then the face to sample is the front one and the
sampling point is:

UV = (
fisheyeDir.xy

fisheyeDir.z
+ 1)/2

By similar reasoning the UV coordinates for the
other faces can be found.
Clearly this whole process is much more costly
than the normal rendering of a scene, even when
using deferred rendering or the geometry shader.
For this reason fisheye has a huge impact on the
performance of rasterization-based algorithms.

5. Validation
In order to validate the fisheye algorithm I
checked the correctness of some rendered images
of a grid with respect to the corresponding pic-
tures obtained through real fisheye lenses. By
setting the correct parameters in the model, the
resulting render corresponds to the real picture.

Nikon Nikkor AF-S Fisheye 8-15 mm
f/3.5-4.5E ED

Camera Focal l. Map. func. Focal l.

Nikon D500 15 mm Orthographic 1.54

Nikon D500 12 mm Orthographic 1.35

Nikon D3x 10 mm Orthographic 0.72

Nikon D3x 8 mm Orthographic 0.62

Samyang 7.5 mm f/3.5 UMC Fisheye
MFT

Camera Focal l. Map. func. Focal l.

Olympus
E-PL1

7.5 mm Equisolid an-
gle

0.93

Canon EF 8-15 mm f/4 L Fisheye USM

Camera Focal l. Map. func. Focal l.

Canon 1Ds
MkIII

15 mm Equidistant 0.785

Canon 1Ds
MkIII

8 mm Equidistant 0.42

3

Executive summary Simone Abelli

There are a few things to notice:
• A real lens, for obvious physical reasons, has

a limited field of view, often smaller than
the simulated one (which can easily reach
360 degrees and, for the equidistant map-
ping function, even more).

• The mapping function of real lenses of-
ten doesn’t match perfectly with one of
the four main mapping functions (stereo-
graphic, equidistant, equisolid angle and or-
thographic). However most fisheye lenses
can be traced back to one of the four main
functions with a fairly small error, possibly
with an adjustment to the distance between
the camera and the target.

• There is not a direct correlation between the
focal length of a real fisheye lens and the one
in the model, since the former has a phys-
ical meaning, while the latter does not. In
reality the final image is influenced by the
curvature, size and number of the lenses,
by their distance from the film or sensor,
the size of the latter, etc. Different film or
sensor sizes produce different effects, even
if the focal length is the same. The digital
version, instead, doesn’t have any sensor,
and the effect is simulated with the mathe-
matical model. Here the screen always has
the same - normalized - size, and thus only
the focal length is required. However, this
focal length, since it doesn’t refer to the size
of any sensor, is just a positive number. For
this reason, different lenses with the same
focal length can have rather different focal
lengths in the model.

With the parameters in the tables, the software
fisheye is able to correctly reproduce the optic
effect, applying the same distortion on the grids
of a real lens.

Figure 1: Example: Samyang 7.5 mm f/3.5
UMC Fisheye MFT

6. Experimental results
To compare the two algorithms I have first
checked their performance: to do so I consid-
ered some 3d scenes and I defined the path of
the camera in each of them. Then, running the
program in different setups(fisheye on/off, RTX
on/ off, deferred/forward rendering), I have reg-
istered the frame rate. These tests were done
on a desktop Windows computer with a Nvidia
RTX3050 GPU and an i5-11500 Intel Core CPU
and the application was made with DirectX 12.
The results show a trade off between ray tracing
and rasterization: in case of scenes with many
small objects, the former outperforms the latter,
while the opposite happens in scene with few
highly-detailed objects. This can be explained
by the nature of ray tracing: when there are
many small meshes, most of them will be eas-
ily discarded during the BVH traversal; at the
end the ray will intersect only a very small num-
ber of triangles, so the computation is not too
expansive. On the other hand, with few com-
plex meshes finding the collision may become
much more complex, since the bounding volumes
of the BVH’s nodes will be tightly packed and,
thus, more tests must be performed.
Scanline-based algorithms, instead, are very effi-
cient at drawing complex objects, but when the
number of draw calls increases, the performance
drops.
Another observation is that in almost all cases,
ray tracing’s frame rate is much less stable with
respect to traditional rendering techniques.

Figure 2: Frame rate in the "Sun Temple" scene
(Open Research Content Archive).

Figure 2 is a clear example of this: for the most
part, rasterization is better than ray tracing, but
the latter has some very high peaks in a couple
of points, which increase the average frame rate

4

Executive summary Simone Abelli

(131.28 fps with a variance of 10282.15 for ray
tracing against 118.28 fps with a variance of 3.18
for rasterization). This can also be explained by
the fact that the cost of a trace ray call depends
on the BVH traversal: when rays have to inter-
sect a complex structure, the rendering is slow,
but when the intersection is easily found (for
example when pointing to a wall) the speed can
increase tremendously.
However, when it comes to fisheye, ray tracing
always outperforms rasterization.

Average 1 2 3 4 5

Raster 118.3 62.8 76.1 685.4 14.7

RTX 131.3 133.6 62.0 409.2 190.0

Forward
512p

95.3 56.2 31.7 165.2 14.1

Forward
1024p

68.4 52.4 28.3 158.2 14.1

Forward
1920p

44.2 42.7 22.7 142.0 13.9

Deferred
512p

29.9 14.6 18.1 465.3 3.9

Deferred
1024p

29.8 14.1 18.1 348.9 3.9

Deferred
1920p

29.9 13.9 17.9 180.5 3.9

RTX
fisheye

99.4 108.3 54.0 574.2 209.4

Table 1: Mean values of the frame rates in vari-
ous scenes. The first two rows are relative to the
experiments without fisheye.

Table 1 shows evidently that simulating fisheye
strongly degrades the performance of all non-
RTX renderings, due to the multiple scene ren-
ders necessary for the cube map. Ray tracing
frame rate, instead, is generally similar with or
without fisheye. Sometimes fisheye can even in-
crease the performance, in case the camera fo-
cus on a highly detailed object (like in the fourth
scene): since fisheye increases the field of view, a
smaller number of rays will intersect the object,
and, as such, the number of slow BVH traversal
is lower.
On the rasterization side, between the single
pass forward rendering and the six deferred ren-
dering the former is in general the best (except
in scene 4, where the number of draw calls is

very small).
A possible way to improve the frame rate is to
reduce the resolution of the cube map’s textures,
however this implies the reduction of the image
quality as well. In order to consider the impact
of this modifications, as well as the general dif-
ference between the quality of ray tracing and
rasterization, I have also compared images ob-
tained with the various methods, computing the
Mean Squared Error between the RGB values of
their pixels.
Having used recursive ray tracing, the main dif-
ferences between ray tracing and rasterization is
in three aspects: reflection, refraction and shad-
ows.

Figure 3: RTX on the right, rasterization on the
left.

There is also a clear quality drop between a
1920p and a 512p cube map, with usually a MSE
greater than 0.1% (>1% in average). This ap-
parently small number makes a big difference, as
shown in the following image:

Figure 4: Difference between a 512p (left) and
a 1920p (right) cube map in the "Amazon Lum-
beryard Bistro" scene (Open Research Content
Archive).

7. Conclusions
The results presented here show that ray trac-
ing is a very efficient way to simulate the pres-

5

Executive summary Simone Abelli

ence of a fisheye lens. Not only the image can
benefit from the advantages in terms of realism
provided by the ray tracing, like dynamic re-
flections, refraction, precise shadows and, possi-
bly, even more (with advanced ray tracing tech-
niques), but the rendering itself is faster, since
fisheye has a minimal effect on the computa-
tional load. Its implementation with traditional
rendering methods, instead, requires a consider-
able extra cost, due to the need to render a cube
map per frame.
This application of ray tracing could be imple-
mented in the major 3D game engines, like Un-
real Engine, Unity and CryENGINE, giving in
this way the developers another tool for their
applications.
Moreover fisheye is not the only type of lens that
can take advantage of the structure of the ray
tracing algorithms. Many other optical effects
present in real lenses can be simulated with this
method, just by applying the model of the light
transmission through the lens to the ray gener-
ation program.
Obviously the use of this technique comes with
a cost: in order to take advantage of the hard-
ware acceleration required for efficient ray trac-
ing, a modern - and possibly more costly - GPU
is indispensable. Nevertheless, the advancement
brought by ray tracing to the field of computer
graphics is undeniable. As the most recent fron-
tier in this scope, many studies have been con-
ducted in the last few years to test its potential
and undoubtedly there will be further develop-
ments and applications. With this work I tried
to add my contribution to this research, showing
another use of ray tracing that gives great ben-
efits over the normal rasterization procedures.

References
[1] F. Bettonvil. Fisheye lenses. WGN, Jour-

nal of the International Meteor Organiza-
tion, 33(1):9–14, February 2005.

[2] Adam Marrs, Peter Shirley, and Ingo Wald.
Ray Tracing Gems II - Next Generation
Real-Time Rendering with DXR, Vulkan,
and OptiX. Springer Nature, 2021.

[3] Microsoft. DirectX Raytracing (DXR) Func-
tional Spec, October 2018.

[4] Turner Whitted. An improved illumination

model for shaded display. Commun. ACM,
23(6):343–349, jun 1980.

[5] R. W. Wood. Xxiii. fish-eye views, and vision
under water, August 1906.

6

	Introduction
	Fisheye
	Ray tracing
	Rasterization
	Validation
	Experimental results
	Conclusions

