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1. Introduction
The worldwide demand for agricultural prod-
ucts is rapidly increasing due to the growing
population, but, in parallel, rural human labor
shortage due to different factors is becoming a
limit. Moreover, the recent Covid-19 pandemic
has shown how possible travel restrictions can
limit the affluence of seasonal farmworkers. This
means that the agricultural chain is still strongly
dependent on human labor, which is very risky
in the current era. The automation of agricul-
ture can be the solution to tackle the increasing
load on farming businesses. Despite several at-
tempts to develop a robotic solution for harvest-
ing strawberries and other crops, a fully viable
commercial robotic system has yet to be estab-
lished. This thesis deals with some main prob-
lems for the development of a strawberry har-
vesting robotic technology: ready-to-be-picked
strawberries detection, fruit weight estimation
before picking, and path planning from visual
information to reach the target fruit.

2. Related Works
Fruit detection: Different machine vision sys-
tems for fruit localisation exist since it is a fun-
damental part to be developed for agriculture

robotization. For example, some famous works
exploited the conversion of strawberries images
from RGB to HSI colour map to manually set a
threshold to identify ripe berries. However, the
inability to generalise and being prone to noise
are among the weaknesses of colour threshold-
ing, geometry-based algorithms, and other tra-
ditional approaches. Thus, authors begun to
adopt some Deep Learning (DL) techniques for
fruit perception. Some researchers utilized Con-
volutional Neural Networks (CNNs) to calculate
the relative 3-D location of fruit. CNNs perform
well in image-specific tasks such as classification,
but for the pixel-wise understanding of images
(semantic segmentation) Regional-CNNs (RC-
NNs) are preferred. Mask-RCNN (MRCNN) has
been implemented in some public works to de-
termine strawberries’ shapes and to localise the
picking point. MRCNN is the de facto standard
for successful object identification, and this is
the reason why it has been chosen in this work
for strawberry perception and key-points detec-
tion.
Fruit weight estimation: Another important
need for robotic automation in agriculture is a
system able to determine the volume, area, and
mass information of agricultural products, rely-
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ing on visual data only. Both classic computer
vision (CV) techniques and DL have been ex-
ploited to this end (for example determining the
linear relation between the measured area and
the actual weight of the mangoes, or regress-
ing the food volume trough CNNs). Based on
these works an original strawberry weight esti-
mation method has been developed, exploiting
both state-of-the-art machine learning (ML) and
DL techniques.
Path planning: Learning from demonstration
(LfD) is a method used for training the robot
to perform a certain task (in this case it would
be to reach a certain ripe target berry to be
picked) with several demonstrations performed
by an expert. Dynamic Movement Primitives
(DMP) is a well-known LfD approach able to
encode the desired motion to be learned with
a certain set of parameters (weights). Recently,
DL has been used to generate the DMP parame-
ters directly from an image of the environment in
which the movement has to be executed. If there
is some variability in the execution of a certain
task (as in the strawberry picking case, where
the fruit can be approached in multiple ways),
it can be captured with the Probabilistic Move-
ment Primitives (ProMPs) framework, able to
represent the probability distribution of a set of
demonstrations with a distribution of weights.
The path planning approach that is proposed,
called Deep Probabilistic Movement Prim-
itives (Deep-ProMP), maps the visual infor-
mation into a distribution of robot trajectories
expressed by the ProMPs weights. Deep-ProMP
has a two-fold design: from the input image
to a latent representation and from the latent
representation to the desired trajectory. More-
over it has been designed exploiting the archi-
tecture of Autoencoder (AE), Variational Au-
toencoder (VAE)or conditional Variational Au-
toencoder (cVAE). Finally, being inspired by [2]
regularisation and domain-specific training have
been implemented to improve the latent space
representation of the input image.

3. Fruit detection trough
key-points

3.1. Datasets and proposed approach
To determine picking points and suitability for
picking, a DL-based key-points detection ap-
proach, which has been successfully applied in

Figure 1: Strawberry key-points.

other domains, e.g. face landmark detection,
has been utilized. The proposed approach in-
cludes Detectron-2 [5], an open-source object
detection system from Facebook AI Research.
It is based on MRCNN and has become the de
facto standard for instance segmentation. Ex-
periments with three backbone networks, R50-
FPN, X101, and X101-FPN have been per-
formed. Two novel datasets have been created
to train the model since the public strawber-
ries datasets do not include key-points anno-
tations. Dataset-1 is collected at a new 15-
acre strawberry glasshouse in Carrington, Lin-
colnshire, and presents strawberries’ weights,
suitability for picking, instance segmentation,
and key-points for grasping and picking action.
Dataset-2 has been derived from the pub-
lic Strawberry Digital Images (SDI) [4] dataset
adding the key-points annotations. For each
strawberry, the datasets present annotations for
five different key-points: picking point (PP), top
and bottom points, left and right grasping points
(LGP, RGP) (Fig. 1). Each strawberry is la-
beled as "pluckable"–ready to be picked– or "un-
pluckable"–not to be picked–. In total, Dataset-
1 and Dataset-2 include 1588 and 3100 straw-
berries images respectively. Table 1 summarises
the results for segmentation and key-points de-
tection for both the datasets with Detectron-
2 [5]. X101-FPN and X101-based models per-
form better than R50-FPN based model. The
first two columns show segmentation Average
Precision (AP) values for "pluckable" and "un-
pluckable" berries. The sub-columns show AP
for Intersection over Union (IoU) thresholds of
0.5, 0.7, and 0.9. Using Dataset-2 decent AP
values are obtained at IoU 0.5 but the perfor-
mance drops significantly for stricter IoU 0.7 and
0.9. Dataset-1 shows very reliable AP values
for "pluckable" strawberries across IoU thresh-
olds. With IoU threshold of 0.5, 93.32 (R50-
FPN), and (X101-FPN) 94.19 AP values are ob-
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Table 1: Segmentation and key-points detection results with Detectron-2.
Dataset Backbone Segm "pluck" Segm "unpluck" KP "pluck" KP "unpluck"

0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

1 R50-FPN 93.3 90.9 83.5 59.4 53.6 42.9 91.2 89.1 81.9 51.3 46.2 37.3
X101 94.1 92.8 88.7 61.1 56.2 45.6 92.7 91.4 87.7 61.2 56.5 46.8

2 X101-FPN 71.1 64.7 43.2 76.8 74.5 68.7 64.3 58.9 39.9 73.2 71.3 66.4
X101 72.1 66.8 47.8 78.0 76.6 70.3 59.2 54.4 42.1 74.6 71.4 65.3

Figure 2: Strawberry RGB (a), segmented RGB
(b) and depth (c) images, point cloud (d) and
graph (e).

tained, while with IoU of 0.9, Detectron-2 pro-
vides AP of 83.55 (R50-FPN) and 88.70 (X101-
FPN). This shows that for selective harvesting
the proposed datasets can be reliably used. For
Dataset-1, the performance on "unpluckable"
berries is comparatively less reliable as there
are fewer samples of "unpluckable" berries in
this dataset, while the situation is reversed in
Dataset-2. The results of the key-points de-
tection expressed in terms of AP at different
OKS thresholds (0.5, 0.3, and 0.1) are similar
to segmentation. OKS and IoU are the stan-
dard performance metrics used by MSCOCO [3]
for key-point detection and segmentation. The
experimental results are consistent across the
two backbones although X101-FPN performs
slightly better.

4. Berries weight estimation
4.1. Implemented solutions
For strawberry weight estimation, different
state-of-the-art neural networks have been
trained. Dataset-1 has been used for this pur-
pose since it contains the annotations of the
berries’ weights. First, all the strawberries in-
stances from each RGB image have been ex-
tracted through Detectron-2 (Fig. 2.b). The
segmentation mask is also applied to the depth
image (Fig. 2.c). These two segmented im-
ages (color and depth) are then combined to
reconstruct the point cloud (Fig. 2.d). This
is fed into PointConv , PointNet and Point-
Net++, which are well-known point cloud-based
deep networks. Recently there has been an in-
creased interest in graph-based neural networks,
thus DGCN , GCN and HGNN have also been
tested. The graph dataset (Fig. 2.e) is ob-
tained starting from the point clouds exploiting
the k-nearest neighbor graph generation func-

Figure 3: Results of weight estimation.

tion. Also, the well-known EfficientNet has been
implemented using a two-stream architecture fed
with RGB and depth data. However, the model
which turned out to perform better is the sim-
pler Random Forest model [1] with Deci-
sion Trees. It is fed with a feature vector with
the strawberry bounding box area, the segmen-
tation mask, the histogram of depth values, and
the point cloud primary principal components
(PCA). The inclusion of the PCA improves the
weight estimation since it gives the model in-
sights into the 3-D orientation of the berry,
which causes the variation of the apparent size of
the fruit segmentation mask. To measure the ac-
curacy of the different models, the Percentage of
Correct Weights (PCW@tol) protocol has been
proposed, which measures the regression error in
percentage to the ground truth. The percentage
of predictions within the tolerance (tol) values
gives the model accuracy. Figure 3 illustrates
the result of strawberry weight estimation ex-
periments. PointConv provides only 15% (PCW
@0.1) to 28% (PCW @0.2). PointNet and Point-
Net++ perform in similar way, as well as graph-
based networks. EfficientNet B0 and B7 give
67% and 68% accuracy at PCW @0.2, still far
from suitability for selective harvesting but bet-
ter than point cloud and graph-based networks.
This motivates the proposal of the most accu-
rate Random Forest model with Decision Trees
(51% at PCW @0.1 and 23% at PCW @0.2).
The main novelty is that the inclusion of PCA
helps with slightly more accurate weight estima-
tion (e.g. the performance improves from 28%
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to 29% at PCW @0.05).

5. Path planning trough LfD
After the recognition of the target fruit, the
robotic system ultimate goal is the ability to effi-
ciently reach-to-pick harvest-ready strawberries.
This is solved in a LfD setting and exploiting the
ProMP formulation.

5.1. Problem formulation
The problem is formulated in joint space, but
it can be easily extended to task space. Let’s
consider a set of Ntr demonstrations T :=
{{Q1, I1}, . . . , {QNtr , INtr}} for the reach-to-
pick task. Qn are the joints sets of trajecto-
ries, and In is the RGB image of the robot’s
workspace. A set of trajectories instead of a sin-
gle one is collected since the probabilistic face of
the behaviour should be captured. A set of joint
trajectories is defined as per Eq. 1.
qj :=

{
qj
s

}
s=1,...,S

:=
{
qjt,s

}
t=1,...,T ;s=1,...,S

(1)

qjt,s ∈ R is the joint position during trial s at
time instant t. Considering all the joints to-
gether: Q := {q1, ...,qNjoint}. The ProMPs
framework is exploited to represent the demon-
strated sets of trajectories. The robot single tra-
jectory is described as per Eq. 2, where ψi are
basis functions (Gaussian for stroke-like move-
ments) evaluated at z(t), z is a phase function
that allows time modulation, θi ∈ R are the
weights and an observation uncertainty ϵ

qj
s

adds
zero-mean Gaussian observation noise with vari-
ance Σ

qj
s
.

qj
s =

Nbas∑
i=1

θiψi(z(t)) + ϵ
qj
s

(2)

Eq. 2 can be written in matrix
form qj

t,s = ΨT
t Θ

s
j + ϵ

qjt,s
where

Ψt := (ψ1(z(t), . . . , ψNbas
(z(t)) ∈ RNbas×1,

Θs
j := (θ1, . . . , θNbas

) ∈ RNbas×1,
Ω := (Θs

1, . . ., Θs
Njoint) ∈ RNbasNjoint×1

and Φ := [Ψ1, . . . ,ΨT ]
T ∈ RT×Nbas . It follows

from Eq. 2 that the probability of observing qjt,s
is given by p(qjt,s|Θ) = N

(
qjt,s

∣∣ΨT
t Θ

s
j ,Σqjt,s

)
.

Σ
qjt,s

is the same for every time step t and every

trial s (Σ
qjt,s

= Σqj ) so the values qjt,s are taken
from independent and identical distributions. It
can be assumed that the weight parameters are
taken from a distribution, thus, the distribution

of qjt,s, which does not depend on Θs
j , but on

ρ := (Θmean,j ,ΣΘj ), can be estimated.
This means that the demonstrated trajectory
distribution for joint j can be represented by
its mean and covariance values (qmean,j ,Σqj ),
which in turn can be derived by the mean
and covariance values of the ProMPs weights
(Θmean,j ,ΣΘj ), as described in Eq. 3.

qmean,j = ΦTΘmean,j ,

Σqj = ΦTΣΘjΦ
(3)

Deep-ProMP is the proposed probabilistic
deep model that maps visual information to
the distribution of robot trajectories. For each
joint j the relative trajectory distribution can be
expressed in weights space with Θmean,j and
ΣΘ,j . The deep model learns the relation be-
tween these two parameters and the input im-
age.

Θmean,j ,ΣΘj
= fj(Ŵj , I

n, σ̂j) (4)

Eq. (4) shows that Θmean,j , ΣΘ,j
are equiva-

lent to a non-linear deep model (fj) of the in-
put image In, the weight parameter Ŵj and the
node activation σ̂j. The predicted weights dis-
tribution generates the corresponding trajecto-
ries distribution using Eq. (3). Different base-
lines for Deep-ProMP models architectures have
been proposed to improve the accuracy in the
prediction of the demonstrated behaviour, but
all have two parts: (1) part-1 encodes the
high-dimensional input RGB image in a low-
dimensional latent space vector, preserving all
the relevant information, using a set of convolu-
tional layers, as per Eq. (5);

En = Encoder(Wenc, I
n, σenc) (5)

(2) part-2 maps the latent embedded vector to
the relative ProMP weights distribution using
a Multi Layer Perceptron (MLP) (one for each
joint) as per Eq. (6).

Θ̂j , Σ̂Θj = hj(Wj ,E
n, σj) (6)

This twofold design of the model has been
proven to have an advantage over a direct map-
ping of the image to the trajectories distri-
butions. The first deep-ProMP architecture
(deep-ProMP-AE) uses the encoding layers
(Encoder) of an AE network for part-1 to re-
duce the input dimensionality while preserving
the important information. In the second base-
line (deep-ProMP-VAE), the latent represen-
tation En is stochastic (En ∼ N (µEn ,ΣEn))
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Figure 4: Deep-ProMP-cVAE (tr-1).

and obtained training a VAE. Part-2 of both
models is a MLP that maps the deterministic or
stochastic latent representation to the ProMP
weights distributions as per Eq. (6). In the
third model (deep-ProMP-cVAE), a condi-
tional variable c is concatenated with the latent
vector to help the consequent MLP to tailor its
behaviour according to some abstract informa-
tion, e.g., the pixel coordinate of a target berry
(Fig. 4). There are two ordered training stages
for the previous models: (tr-1) unsupervised
training of part-1 (using image reconstruction
loss to train AE or VAE) and (tr-2) supervised
training of part-2 to train MLPs (one for each
joint) using the loss in Eq. 7, where α is a tuning
parameter that weights the loss components.
e = ∥qmean,j − q̂mean,j∥+ α∥Σq,j − Σ̂q,j∥ (7)

tr-1 and tr-2 are completely decoupled, so the
latent space maintains the information necessary
for RGB image reconstruction independently
from the trajectories distributions. While this
non-domain-specific training is useful for CV,
it is not relevant for robotic tasks. Hence, it
has been proposed to continue the training of
the weights of Encoder using the loss in Eq. 8
while the MLP part is kept fixed. This is called
domain-specific latent space training. In
this way, there is a direct mapping of the latent
space to the information useful both for image
reconstruction and trajectory prediction.

5.2. Experimental results
To validate the models, the experimental setup
consists of a 7-DoF Panda robotic arm manufac-
tured by Franka Emika with a custom gripper
specific for strawberry picking. An Intel Re-
alSense D435i RGB-D camera is mounted on
the top of the gripper. A mock set up with
plastic strawberries is used. 250 demonstrations
samples have been collected where each sam-
ple includes an RGB image (VGA resolution)
of the scene and the robot trajectory starting

Figure 5: Robotic arm in home position.

from a home configuration (Fig. 5). After tak-
ing an image, the robot is manually moved to
reach the target berry in kinesthetic teaching
mode. The target berry in the input RGB im-
age is masked with a white bounding box. The
movement is repeated 10 times for a single tar-
get strawberry to capture the demonstrations’
variations. 5 different strawberry plant config-
urations, each including 5 target berries have
been created. Deep-ProMP-AE, Deep-ProMP-
VAE, and Deep-ProMP-cVAE ( which is condi-
tioned concatenating the pixel coordinate of the
target berry bounding box center to the VAE
latent vector) have been trained to make pre-
dictions both in task and joint space. More-
over, the domain-specific latent space learn-
ing of these three models (l-Deep-ProMP-AE,
l-Deep-ProMP-VAE, l-Deep-ProMP-cVAE) has
been implemented using the prediction error loss
as per Eq. (8).

e = ∥qmean,j(tend)− q̂mean,j(tend)∥+
α∥Σq,j (tend)− Σ̂q,j (tend)∥

(8)

For the first experiment, the prediction perfor-
mance of the 7 joint trajectories distributions
has been evaluated on a test set never seen in
training or validation stages. The evaluation
metric is the loss in Eq. 7. It has been no-
ticed that the prediction error improves from
Deep-ProMP-AE, to Deep-ProMP-VAE (-62%
of Deep-ProMP-AE error), to Deep-ProMP-
cVAE (-70% of Deep-ProMP-AE error). Hence,
Deep-ProMP-cVAE is outperforming all others.
The same observation applies in task space (Ta-
ble. 2). Another experimentation on the same
test set has been done to compare the model
performances between task and joint space pre-
dictions. The evaluation metric in Eq. 9 has
been used.
epos =

√
(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2

eori = min[∥q − q̂∥, ∥q + q̂∥] (9)
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Table 2: Task space predictions.
Task dP-AE dP-VAE drop dP-cVAE drop

X 1.4×10−4 1.4 × 10−4 -0% 1.4 × 10−4 -0%
Y 15.3×10−4 7.0 ×10−4 -53% 0.8 × 10−4 -88%
Z 0.9×10−4 0.1 × 10−4 -88% 0.1 × 10−4 -0%
Q1 1.5×10−4 0.5 × 10−4 -68% 0.5 × 10−4 -0%
Q2 24.×10−4 4.1×10−4 -83% 1.5 × 10−4 -75%
Q3 1.1×10−4 0.3 ×10−4 -80% 0.2 × 10−4 -43%
Q4 0.7×10−4 0.3 ×10−4 -68% 0.3 × 10−4 -8%

In Eq. 9, (x, y, z) and (x̂, ŷ, ẑ), and q and q̂
represent the ground truth and predicted posi-
tions and orientation (quaternions) of the end
effector at the final time step. Task space pre-
dictions are 50% more accurate than joint space
ones. Moreover, the most accurate model is
again Deep-ProMP-cVAE. The third set of ex-
periments has been done using the real robot. 5
new (different) strawberry plant configurations
each including again 5 different target berries
have been created. This demonstrates the gen-
eralisation ability of the model in predicting
the reaching movement in unseen settings. The
robot has been firstly moved to the desired fi-
nal pose necessary for picking a target berry
and the (x, y, z) position has been recorded, to
have a reference for evaluation. The predicted
mean trajectory together with the trajectory at
2σ and at −2σ from the mean have been eval-
uated. epos in Eq. (9) has been used as met-
ric. The predictions have been made in task
space since they have been proven to be more
accurate. Fig. 6 shows that the model perfor-
mance increases after the domain-specific train-
ing. Furthermore, the most accurate model is l-
Deep-ProMP-cVAE. The mean predicted trajec-
tory performance is always better than the tra-
jectories sampled at some σ from the mean. Ad-
ditionally, the probabilistic framework has been
exploited to perform the task in different ways;
for example, the robot can reach the target point
with different orientations sampling from the
predicted quaternion distribution. Finally, the
clustering level of the latent space before and af-

Figure 6: Real robot experimental results.

Table 3: Davies-Bouldin Index.
DB score

AE base 0.616
latent space tuned 0.482

VAE base 0.424
latent space tuned 0.352

ter the domain-specific training has been inves-
tigated. Table 3 shows the Davies-Bouldin score
which indicates the average similarity measure of
each cluster with its most similar cluster, where
similarity is the ratio of within-cluster distances
to between-cluster distances. Thus, the lower
the scores, the higher the level of clustering of
the latent space. The clustering level increases
from AE to VAE and it increases even more with
the domain-specific latent space learning.

6. Conclusions
The increase in the worldwide demand for agri-
cultural products due to the growing popula-
tion coupled with labor shortage is an issue
that automation in the field of agriculture can
solve. This thesis deals with some main prob-
lems for a successful robotic strawberries har-
vesting technology: ready-to-be-picked straw-
berry segmentation, strawberry weight estima-
tion, and path planning from visual informa-
tion to reach the target fruit. The first prob-
lem has been addressed with Detectron-2 [5].
In particular, it has been trained to segment
berries, classify them as ripe or unripe, and de-
tect the key-points necessary for picking and
grasping action. Moreover, two new datasets
useful for selective harvesting of strawberries
have been presented. Strawberry weight esti-
mation is achieved training a Random Forest
Model [1] with Decision Trees. This approach
outperforms many state-of-the-art methods. Fi-
nally, a novel framework named deep Proba-
bilistic Movement Primitives which maps the
visual information of a robot’s workspace into
the corresponding robot trajectories, according
to a set of human expert demonstrations has
been presented. A few model architectures have
been proposed (Deep-ProMP-AE, Deep-ProMP-
VAE, and Deep-ProMP-cVAE). In addition, a
novel domain-specific latent space training has
been implemented. This allows learning a la-
tent space that is relevant both for the specific
robotic task and CV. The results suggest that
the deep-ProMP conditioning with a relevant
feature and domain-specific training of the la-
tent space yields the best performances.
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