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Abstract 

This thesis makes use of machine learning (ML) algorithms to solve problems in 

electric power systems. 

The specific issue tackled here is voltage regulation in MV networks with high 

penetration of distributed generation (DG) and electric vehicles, using Electronic 

On Load Tap Changers (E-OLTC) and Line Voltage Regulators (LVR). 

This thesis contains two studycases, hence, two MV feeders are built from scratch 

using PowerFactory software. One of them is fictive while the other one is based on 

a real life feeder, the former is sub-urban and the latter is rural. 

The process starts with creating hourly characteristics of loads and photovoltaic 

systems (PVs) of the feeder. That is done by collecting and processing millions of 

datapoints. For the PVs irradiation the data comes from PVGIS tools, while for the 

load characteristics, the data is based on real yearly curves which are then adapted 

accordingly with the peak loads of the feeder. 

After modelling the feeders and preparing the characteristics, two Quasi-Dynamic 

(Q-D) simulations are run for a period of 2-years in hourly steps (17520 load flows). 

One Q-D analysis is done without employing automatic tap changers, while the 

other is done using automatic tap changers. Then comparisons are made. 

The results of the Q-D simulations offer information on correct tap positions of 

transformers given various inputs, which are loads and PV productions. 

The last step is to use these results and build a Multi-output Deep Neural Network 

(DNN). 

The DNN, using forward propagation and backward propagation, will be able to 

learn by fitting the inputs to the relevant outputs. This way, in the future the DNN 

will be able to predict the correct tap positions of transformers in the feeder 

(outputs), only knowing the loads and PV productions (inputs). 

After the machine learning algorithm is trained, it will then be tested with a set of 

inputs it has not seen before. 

Although this thesis does not address other voltage regulation methods, the DNN 

model is flexible in a manner that allows to potentially include them in the future 

with ease. Various software tools are used in this study, some of them are 

PowerFactory, Python (lib. Pandas, Tensorflow/Keras, Scikitlearn etc.), Matlab etc.  

Key-words: Medium Voltage, Voltage regulation, E-OLTC, LVR, Machine 

Learning, Deep Neural Network, Quasi-Dynamic analysis. 
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Abstract in italiano 

Questa tesi utilizza algoritmi di machine learning (ML) per risolvere problemi nei 

sistemi di alimentazione elettrica. 

La questione specifica qui affrontata è la regolazione della tensione nelle reti MT ad 

alta penetrazione della generazione distribuita (DG) e dei veicoli elettrici, mediante 

l'utilizzo di commutatori elettronici sotto carico (E-OLTC) e regolatori di tensione 

di linea (LVR). Questa tesi contiene due casi di studio, quindi, due alimentatori MV 

sono costruiti da zero utilizzando il software PowerFactory. Uno di questi è fittizio 

mentre l'altro si basa su un alimentatore di vita reale. Il processo inizia con la 

creazione delle caratteristiche orarie dei carichi e degli impianti fotovoltaici (PV) 

dell'alimentatore. Ciò viene fatto raccogliendo ed elaborando milioni di punti dati. 

Per l'irraggiamento PV i dati provengono da strumenti PVGIS, mentre per le 

caratteristiche di carico i dati si basano su curve annuali reali che vengono poi 

adattate di conseguenza. Dopo aver modellato gli alimentatori e preparato le 

caratteristiche, vengono eseguite due simulazioni Quasi-Dynamic (Q-D) per un 

periodo di 2 anni in fasi orarie (17520 flussi di carico). Un'analisi Q-D viene eseguita 

senza l'utilizzo di commutatori di presa automatici, mentre l'altra viene eseguita 

utilizzando commutatori di presa automatici. I risultati delle simulazioni Q-D 

offrono informazioni sulle corrette posizioni di presa dei trasformatori dati i vari 

ingressi, che sono carichi e produzioni fotovoltaiche. L'ultimo passaggio consiste 

nell'utilizzare questi risultati e creare una rete neurale profonda multi-output 

(DNN). Il DNN, utilizzando la propagazione in avanti e la propagazione 

all'indietro, sarà in grado di apprendere adattando gli input agli output pertinenti. 

In questo modo, in futuro il DNN sarà in grado di prevedere le corrette posizioni di 

presa dei trasformatori nell'alimentatore (uscite), conoscendo solo i carichi e le 

produzioni fotovoltaiche (ingressi). Dopo che l'algoritmo di apprendimento 

automatico è stato addestrato, verrà quindi testato con una serie di input che non 

ha mai visto prima. Sebbene questa tesi non affronti altri metodi di regolazione della 

tensione, il modello DNN è flessibile in un modo che consente di includerli 

potenzialmente in futuro con facilità. In questo studio vengono utilizzati vari 

strumenti software, alcuni dei quali sono PowerFactory, Python (lib. Pandas, 

Tensorflow/Keras, Scikitlearn ecc.), Matlab ecc.  

Parole chiave: Media Tensione, Regolazione della tensione, E-OLTC, LVR, Machine 

Learning, Deep Neural Network, Analisi Quasi-dinamica. 
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Motivation 

The electric power system has been developing continuously parallel to the 

development of various other technologies, especially communications and 

materials technologies. 

The goal is to achieve a highly reliable, automated, ‘self-healing’ power system. A 

power system which will require almost no inputs from an engineer’s hand, rather, 

a system that knows exactly how to react on any occasion.  

EU Directive 2018/2001 has set a target that requires 32% of total energy demands 

to be covered by RES by 2030 [1]. 

This is becoming more and more important every day now that the system needs to 

support and accommodate renewable energy sources [2]. 

RES are key to a sustainable system, however, they are not easy to integrate in the 

grid.  

For example, although everyone having solar panels on their roofs may seem like a 

great idea at first glance, it also has a serious downside, which is the unpredictability 

it brings to the system’s parameters if the sun doesn’t shine, if there are clouds, or 

if the irradiation prediction is wrong for any reason. A wind farm may decrease the 

overall CO2 emissions, but if the predictions on wind velocity turn out to be 

incorrect, it may cause severe trouble to whichever entity that is trying to balance 

the system. Maybe it will even be necessary to import hundreds of megawatts of 

power, potentially spiking the energy prices that consumers pay. 

So, on one hand more work is needed to move towards a more sustainable system 

which is good for the planet and the economy. On the other hand, there will be 

many more problems trying to maintain the system’s parameters within allowed 

limits, due to the hardly predictable nature of these resources [3]. 

One of the parameters that proves problematic is the voltage. The presence of many 

DGs may cause voltage fluctuations, over-voltages and even flicker [4]. 

Ultra-modern networks may be H-shaped [5] or 2-step ladder shaped [6]. These 

networks are designed to have very low voltage drops, which may be problematic 

when we deal with high DG.  

This brings us to the motivation for this thesis. Therefore, this study will try to come 

up with some sort of a machine learning solution to voltage regulation. 
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1 Introduction 

This chapter offers a quick introduction to power systems relevant to this study and 

briefly discusses basic voltage regulation methods. 

The goal is to understand the general evolution of networks as far as the power flow 

direction is concerned.  

1.1. Operation of classic networks 

The basic components of any power system are generators, transformers, lines, and 

loads. 

The first ever electric network was developed by Edison in New York in 1882, where 

59 consumers were connected through a 110 [V] DC line to a 30 [kW] generator. Just 

three years later William Stanley built the first commercial transformer. The power 

system continued developing extremely fast because long distance lines, three-

phase lines, Tesla’s alternative motors and other elements, were invented and put 

to use within that first decade. 

The networks continued to grow and improve constantly for the next 100 years. The 

power flows had a quite intuitive direction, the energy would flow from the 

generators downstream to the consumers, relays and protection were easy to 

design, voltage drops were easy to calculate and simple to fix from the engineering 

point of view. 

Figure 1 shows a portion of a random network that operates in the classical way. 

The direction of power flow is intuitive. Power flows downstream from the 

generators down to the loads. The voltages drop throughout the lines in the load’s 

direction. 
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Figure 1. Classic network: Downstream power flow. 

1.2. Operation of modern networks 

The power system started to change in the 2000s. That is when global warming 

attracted more attention and a lot of financial resources were allocated to 

researching more sustainable ways of power generation. Intense research and 

worldwide interest on solar panels made it possible for their price to drop from 105 

[$/Watt] in 1975 to just 0.2 [$/Watt] in 2021 [7]. 

This made it possible for PV systems to be used commercially, which in turn would 

mean that anyone could install a few panels on their rooftop and inject energy into 

the grid. Many incentive schemes were offered by governments, attracting 

businesses to invest in large scale PV systems investments. 

When the DGs power output surpasses the feeder’s load, the power will start 

flowing upwards towards the substation that supplies that feeder.  

Such a situation is shown in the next figure, taken from a real case of a 3 [MW] PV 

system near Ulpiana, rep. of Kosovo. 
 



1| Introduction 5 

 

 

 

 

 

Figure 2. Modern network operation: Upstream power flows 

If the power injected by the PVs happens to also be larger than the sum of all loads 

connected to the LV side of the SS, then the power will flow upstream through the 

transformer and it will be injected to the HV side of the SS. As indicated by the 

arrows in the PowerFactory model in Figure 2, the power flows upstream towards 

the substation that has supplied that feeder. 

These complications are some of the traits of modern networks. In these networks, 

voltage regulation becomes a troublesome process which will be dealt with here, 

using machine learning. 

1.3. Introduction to voltage regulation methods 

Depending on the country or region, there are different ranges of allowed voltage 

values. In Europe it is usually ±10% Un [8]. In feeders where there is injection from 

renewable sources, voltage varies, especially if the reactive power output changes 

unpredictably. If the voltage increases, there will be problems. 

In both classical and modern networks there are several ways of voltage regulation, 



6 1| Introduction 

 

 

the main ones are the following: 

a) Transformer Tap Changers – every transformer in the network has 

several levels of voltage it can operate on. This is made possible by 

either mechanically or digitally changing the effective number of 

turns in one of the windings in the transformer [9]. For example, a 

transformer with a ratio of 10000:400 which is equal to 25, can change 

its ratio to 25.25. This is done in increments of small percentages such 

as 1.25%, 2.5% or similar. Depending on the voltage level, 

transformers may have anywhere from ±2x1.25% to ±11x1.25% or 

similar. 

So, transformers have multiple levels of voltage they can switch to. 

This helps the overall power system to operate smoothly, as changing 

the voltage level in various busbars across the network helps balance 

the system parameters. In the more recent times, taps are mainly 

changed from control rooms while on load (E-OLTC), while some 

older and usually smaller transformers must be off load and their tap 

positions must be changed mechanically, which is their biggest 

disadvantage. 

b)  Reactive power flow settings - The voltage in the system depends 

mainly on the reactive power, therefore, manipulating the reactive 

power will change the voltage as well. This is mainly done using 

capacitors installed in shunt to the line or using static VAR regulators. 

There are several types of configurations to realize such systems. 

c) Line voltage regulators – Also referred to as simply ‘voltage 

regulators’ are transformers installed somewhere along the feeder. 

They make up for the voltage drop by using tap changers. The 

difference from usual transformers is that LVRs have a smaller ratio 

of transformation. 

d) Others 

This report is only concerned with a) and c). 
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2 Line Voltage Regulators vs 

Electronic – On Load Tap Changers 

This chapter will cover Line Voltage regulators (LVRs) and Electronic – On Load 

Tap Changers (E-OLTCs). First, they will be discussed independently, then 

compared to each other. This chapter will raise and support hypotheses regarding 

the most suitable feeders for each type of voltage regulator to operate on. 

2.1. Line Voltage Regulator (LVR) 

Line voltage regulators are basically transformers installed somewhere along the 

lines. 

Voltage drops along the lines are caused by loads and line losses. If there is 

distributed generation as well, the voltage will vary also depending on PVs reactive 

power output.  

In case the infeed is high, the voltage will steeply increase and the local PV or wind 

plants will have to reduce their power output or even completely stop injecting to 

avoid faults. This is where LVR comes in handy. LVR will be able to automatically 

adjust the voltage level to a specific range specified by the distribution company.  

That translates to more distributed generation allowed in the feeder/area, which 

now will not cause violations on voltage parameters. In other words, LVR allows 

the infeed to increase by avoiding overvoltages. 

Many companies have been paying extra attention to LVRs in the past few years 

since it is a feasible way to accommodate the ever-increasing distributed generation. 

LVRs are cheaper and easier to install than having the entire feeder upgraded with 

higher section lines or similar interventions 

LVRs are appropriate in feeders that are longitudinal instead of feeders that are 

short and branchy. That means that LVRs are not the optimal choice in networks 

with high penetration of DGs, as overvoltages mainly occur on busbars where PVs 

inject directly. However, as mentioned before, LVRs are useful in long feeders. 

One such feeder is the following: 
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Figure 3. Prizren-Zhupa feeder in the Sharr Mountains. 

The feeder shown in Figure 3 is a 10 [kV] feeder that is over 35 [km] long in total. Its 

main axis is around 22 [km] long and it also has some shorter side branches.  

Due to line lengths at a voltage level this low, there are always under-voltages at 

the busbars located the end of the feeder.  

According to KEDS measurements at the last 10/0.4 [kV/kV] transformer of this 

feeder, the voltage drops at around 0.82 [p.u]. That is around 0.8 [kV] under the 

allowed voltage drop range in normal conditions, and around 0.3 [kV] under the 

allowed voltage drop range in extra-ordinary conditions. 

This is exactly the type of line and feeder where a LVR can prove to be an excellent 

solution.  

The LVR can be installed somewhere around the middle of the main branch, with 

its tap settings at one of the levels that would increase the voltage for around 5% 

Un. This would make it possible for the busbars at the end of the line to operate at 

a voltage level within the allowed range set by the Distribution Code. 

LVR would not be as useful in short feeders with many branches as it would only 

solve the voltage of the problem for a branch, which in this case would be a very 
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small portion of the feeder. To tests this hypothesis, LVRs were installed in one of 

the feeders of this study and their impact is analyzed at times of large PV 

production, such as noontime of summer days. 

 

Figure 4. LVR installed along the feeder - inactive. 

Figure 4 offers a view of how LVRs is installed somewhere along the main branch 

of the feeder. In this case, the LVR is not active (LVR is by-passed), and since it is a 

critical time of high PV injection, busbars experience overvoltages (colored in red). 

The impact of the LVR being activated is showcased in Figure 5. 

 

Figure 5. LVR installed along the feeder – activated. 
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LVR is able to decrease the voltage on one side of the feeder. However, if the feeder 

has many branches at the ends of which there is DG, LVR would not be able to help 

as much without a large number of them being installed at various points in the 

feeder.  

 

Figure 6. Impact of a single LVR installed in the feeder. 

It suffices to zoom out on the feeder to have a better overview of LVR’s impact, as 

seen in Figure 6. The upper part of the network (before the LVR) is experiencing 

overvoltages, while the lower part (after the LVR) has better voltage values.  

In Figure 5 and Figure 6, LVRs are not operating alone, also the E-OLTCs of 

transformers where DGs inject are equipped with automatic tap changers. 

So, LVRs are only able to decrease the voltages for a portion of the network, and 

when the network is large, a several LVRs will be needed. For this particular feeder, 

as seen in Figure 7, four LVRs are needed to secure plausible voltages for all buses 

in it. This may not be easy to do. LVRs are also suitable in cases when there are 

undervoltages. In any case, LVRs are not optimal for feeders with many long 

branches. 

Even after installing four LVRs at strategic points in the feeder, there are still 

overvoltages caused in proximity of DG (busbars colored red). The difference is that 

in Figure 7, E-OLTCs of transformers where DGs are injecting are not operative. 

That is done to better understand the impact of LVRs individually. 
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Figure 7. Feeder with four LVRs. 

This means, LVRs are not suitable as a sole solution of these types of feeders. 

Therefore, in this study, they will only be considered in combination with E-OLTCs 

and not alone.  

An informative graph of how LVRs are good with undervoltages is if the feeder’s 

voltage profile. 

As Figure 8 shows for long feeders such as is Rugova, if the loads are large and there 

is no distributed generation to somehow support undervoltages, the voltage drops 

by the end of the line will be very large. To counter this, several LVRs along the 

lines will aument the voltage up to plausible values. 

 



12 

2| Line Voltage Regulators vs Electronic – On Load Tap 

Changers 

 

 

 

Figure 8. Feeder Rugova voltage profile, with large loads and small DGs [p.u]. 

 

Figure 9. Feeder Rugova voltage profile when loads are large and small DGs – with LVRs 

installed [p.u] 

Figure 9 shows quite an unusual voltage profile. However, it also proves that 

installing several LVRs along the line may help with undervoltages. In this case, 

there are 4 LVRs installed, whose impact can be identified with four instances of 

voltage jumps in the feeder’s voltage profile. 
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As far as LVRs go, to illustrate better, model DEABB 5153 line voltage regulator for 

medium voltage networks from ABB will be briefly discussed next. This LVR uses 

the so called ‘booster/feeder’ technology and uses mechanical switches. According 

to the manufacturer’s catalog, energy losses are minimal [10]. 

Another important feature of LVRs is that they can be programmed and operate 

automatically at a fixed level of voltage or at a range of voltages depending on the 

power, without any manual input. Another advantage is that they can be monitored 

and controlled from distance at all times [11]. 

The design of the LVR and its enclosing is simple and can even be relocated, thus 

increasing the overall feasibility of LVRs [12]. 

LVRs are usually able to regulate the voltage in the range of ±10% Un, however, it 

can be slightly more than that. The following figures show the basic work principle 

of LVRs. Another specific of recent models of LVRs is that they operate completely 

free of oil, which means that there is no risk of fire [12]. 

 

Figure 10. Line Voltage Regulator single line diagram 

From Figure 10, on the left side of the LVR, there is the normal line voltage (UL) 

which is unregulated. The regulator itself has two parts, the booster on the line’s 

side and the booster on the regulator’s side, with respective voltages UB and URB. 

The voltage on the right side of the LVR will be the regulated voltage and it is 

expressed as UR= UL - UB. 

So, from the scheme we can see that the regulated voltage UR will decrease as UB 

increases. 
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Figure 11. LVR regulation of voltage. 

From Figure 11 we see the voltage tending to high values due to large DG, even 

surpassing the +10% Un limit. However, if the LVR is deployed, the voltage 

decreases within allowed limits.  

Of course, besides lowering the voltage, the opposite can be done as well.  

The voltage can be increased instead of being decreased. A LVR decreasing the 

voltage would be fit for feeders with high DG, on the other hand, a LVR increasing 

the voltage would be suitable for longitudinal feeders such as the one introduced 

earlier in this subchapter. 

This LVR also supports a relatively large amount of power, up to 20 [MVA], that 

amount should be enough for almost any feeder in MV. According to recent catalogs 

from certain manufacturers, the losses are very small, less than 0.2%. 

The technical characteristics of ABB’s MV LVR are given on Table 1. 

Rated power [MVA] up to 20* 

Frequency [Hz] / Phases 50 / 3 

System voltage [kV]] * up to voltage class 24 kV 

Insulation class [kV, BIL/AC] 125/50 

Number of steps 11 

Total voltage regulation range ±10% 

Step voltage 2% (±5 X 2%)  

Number of switching operations (mechanical) >1'000'000 

Installation location Outdoor 
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Installation type 
Concrete substation (other solutions 
on request) 

Grid connection Gas-insulated MV-switchgear 

Dimensions (L X W X H) [mm] 6x 2,5 X 3,3 

Weight (approx.) [t] 38 

Control modes 
Fixed set-point load-dependent voltage 
set-point 

 Energy efficiency 

Energy efficiency and losses depend on 
the P. 

P [MVA] 2.0 ; 4.0 ; 6.0 ; 8.0 ; 

n [%] 99,86 ; 99,88 ; 99,85 ; 99,83 ; 

Losses [kW] 2.9 ; 4.6 ; 8.7 ; 13.9 ; 

Table 1. ABB’s Catalog data for MV LVR model DEABB 5153. 

2.2. Electronic On Load Tap Changer (E-OLTC) 

The most vastly used method of voltage regulation in today’s networks is by using 

electronic on load tap changers. 

The operating principle of basic tap changers is shown in Figure 12. 

 

Figure 12. Drawing of Tap Changer’s simplified work principle. 

As mentioned in sub-section 1.3, what a tap changer does is change the effective 

number of turns in one of the transformer’s windings. In other words, it changes 

the transformation ratio of a transformer.  

Each tap position may add or remove a small percentage of the winding’s nominal 

voltage. For example, an MV transformer usually has 5 tap positions, each step 

adding or removing 2.5% of the nominal voltage. That translates to a voltage 

regulating range of ±5% Un. 

Almost all transformers installed at high voltages are equipped with E-OLTCs. That 

means, they can be controlled from the control room using SCADA systems, even 



16 

2| Line Voltage Regulators vs Electronic – On Load Tap 

Changers 

 

 

while energy is flowing through them. 

In the lower levels of voltage, most of the transformers do not have the option of 

being controlled remotely. Instead, they must be off load and manipulated 

mechanically by technicians. That makes it very hard to change the settings often, 

rendering them practically useless tools to maintain the desired voltage levels at 

times of high volatility of voltage. 

Mechanical tap-changers are also more expensive in terms of maintenance and 

operability [13]. 

Firstly, when tap-changers were being designed to operate on-load, only electronic 

switches were tried as a solution, while other components were kept unchanged. It 

turned out that changing the entire system and building fully electronic on-load tap-

changers is a better approach than just replacing the switches [14]. 

So, E-OLTCs were engineered not very long ago, and it was done by taking 

advantage of the semi-conductor technology sophistication. The semi-conductor 

technology improvement made it possible to design equipment that is able to 

withstand charges, arcing, carbonization of contacts etc., due to the switches being 

solid state types. 

That is how Electronic On Load Tap Changers came to be and started replacing 

classical off-load mechanical tap changers. 

Differently from LVRs which were deemed unfit to independently regulate the 

voltages of feeders with high penetration of DGs, the E-OLTCs prove to be more 

suitable. That happens because usually PV systems are connected on the LV side, 

where they inject energy. That energy then goes through the LV/MV transformer 

and then flows in the medium voltage network. That means, if any overvoltages 

occur at the busbar where the PV system injects, that overvoltage can be mitigated 

by that transformer’s tap changers before it reaches the other side to cause 

overvoltages in the medium network.  

Having the possibility to remotely control the tap positions and regulate the voltage, 

combined with proper communication systems installed in these devices, made the 

transformers ‘smart’. That means the transformer will offer other functions such as 

load shedding, power dispatch control of distributed generation, load measurement 

etc. 

Next, a sophisticated type of a transformer with E-OLTC will be briefly discussed. 

This particular type comes from a design, that takes into consideration issues that 

were overlooked in early designs, those are: a) the dielectric withstand analysis, b) 

steady-state voltage across the electronic switches, c) steady-state current through 

the electronic switches, d) analysis of the commutation process etc. 
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To make sure the E-OLTC is reliable, the protection systems must also be 

sophisticated. 

The main protection systems of this device are: a) starting circuit and short-circuit 

protection (SCSCP), b) overcurrent and overvoltage protection, c) atmospheric 

discharge protection, d) voltage spike protection (VSP). 

Figure 13 shows the single line diagram of an E-OLTC. 

In the scheme above, the E-OLTC is designed in the primary side of the HV/MV 

transformer. That is purposely done because power losses are lower on the higher 

voltage side. 

However, that also means that the OLTC device will be exposed to higher stresses 

from the insulation point of view. That is the reason why the aforementioned design 

and protection lists are important during the engineering of this device. 

 

 

 

Figure 13. E-On Load Tap Changer scheme, transformer, bidirectional switch, and 

protection circuit 

All in all, it is also possible for the tap changer to be installed on the LV side. 

2.3. Comparing LVR and E-OLTC 

E-OLTCs have shown in various studies that they are able to regulate the voltage 

when dealing with networks that have high levels of PV generation [15] [16]. 

According to studies where combining E-OLTCs and adjustable PV inverters is 

studied, results show that it will suffice as a measure to regulate the voltage [16]. 

However, this study assumes a fixed PV penetration level, which is not the case in 
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real life. That is the reason why this study does a 2-year Quasi-Dynamic analysis 

with varying PV outputs hourly. 

Another problem is that the phases may not be balanced, which is what many 

studies do not get into, this thesis included. In studycases analyzed here, the system 

is assumed to be 3-phase balanced. 

As for another study carried out by a German distribution system operator named 

EnBW Regional AG, it shows that the voltage was kept within the allowed range 

even when loads were fluctuating. That was made possible by installing an E-OLTC 

in the MV/LV transformer, where the PV injection was coming from [13].  

However, E-OLTCs may not be sufficient every time, and help is needed from other 

tools. This thesis has a similar approach, but it is arguably more sophisticated, as it 

performs a Quasi-Dynamic analysis of 17520 load-flows with detailed hourly 

characteristics for every element of the feeder. 

As inferred earlier, LVRs are better suited when dealing with longitudinal feeders, 

while E-OLTCs deal better with short feeders with many branches. LVRs perform 

very well when dealing with under-voltages. 

With that being said, as it was predicted at the beginning of this thesis, the answer 

of voltage regulation in networks with high DG, probably lies in some sort of 

combination of E-OLTCs and LVRs.  

Such combination will be thoroughly studied in the second studycase of this thesis. 

In that case, both E-OLTCs and LVRs will be installed, where E-OLTCs mainly deal 

with overvoltages directly in the busbars where DGs inject, and LVRs mainly deal 

with undervoltages throughout the main branch of the feeder. 

In conclusion, a mix of the two, together with adjustable inverters in PV plants, is 

what will make sure that the system’s voltage constraints are not violated. If even 

that does not prove to be enough, capacitor banks can also be added into the mix.  
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3 Machine learning approach on 

voltage regulation 

3.1. Introduction to Machine Learning 

Machine learning is a relatively new field in the natural sciences.  

Generally speaking, ML recognizes patterns from some given inputs/outputs and 

then is able to predict the outputs for future inputs that have not been seen before. 

As ML pioneer Arthur Samuel put it: Machine Learning is the field that gives 

computers the ability to learn without being explicitly programmed.  

ML is generally divided in two categories, Supervised Learning and Unsupervised 

Learning, depending on whether the program is told about the results (the former) 

or is left alone to group the outputs without knowing what the results should look 

like (the latter). 

ML is based on mathematical concepts, and it can be applied virtually in any sector, 

from mere car sales to diagnosing cancer using X-ray scans [17]. 

The theory behind the mathematical concepts used in ML, such as linear and logistic 

regressions, gradient descent, neural networks, and others, may at times be 

complicated to grasp profoundly. However, in day-to-day applications of ML, 

models are programmed quite superficially thanks to high-level programming 

languages. 

Various open-source libraries, of various programming languages, make it easier 

for the user to apply machine learning to their problem without having to dig too 

deep into the mathematics behind it. In recent years, Python has had the main word 

amongst ML programming languages, especially thanks to Tensorflow/Keras 

library. 

ML possesses quite a range of concepts and tools. However, only the basics of ML 

and tools that will be directly used in voltage regulation in MV grids will be 

introduced here. 

Keeping in mind that inputs are referred to as features and outputs as labels, the 

following standard notations that will be used later are: 
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𝑥(𝑖)- the vector that includes all features of the ith training example. 

𝑥𝑗
(𝑖)

- feature j of ith training example. 

m - the number of training examples 

n - the number of features 

When there are training examples with multiple features, we will also be dealing 

with a large number of vectors and matrices.  

When coding such algorithms, the best approach is to use vectorized versions of 

expressions. Otherwise, many for-loops would be needed, which is less efficient in 

terms of code size and memory. 

After the basics are discussed briefly, Multi-output classification Deep Neural 

Networks will be introduced as the chosen algorithm for our goal of voltage 

regulation using transformer tap changers and line voltage regulators. 

3.1.1. Linear regression and gradient descent 

 

Figure 14. Linear Regression 

The most basic ML algorithm, Linear Regression (LR) is shown in Figure 14.  

The blue points in the graph show a set of a data that have specific X and y values1. 

The red line is what the linear regression algorithm comes up with. It shows the 

system’s prediction for future values, built by training on this dataset. 

 
1 By convention, X (capital letter) denotes features/inputs while y (miniscule letter) denotes the 

outputs/labels. 
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The blue points can represent any 1-dimensional data. That means, 1 feature only. 

Next, in Figure 15 we see how the algorithm works from the inside. 

 

Figure 15. Mathematics behind LR. 

The program starts with a hypothesis function of the form: 

ŷ = ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥, 

which is none other than the generic line equation 𝑦 = 𝑎𝑥 + 𝑏 . In Figure 14 this line 

is shown in a blue, dashed line.  

The way the program measures the accuracy of our hypothesis is by calculating the 

Cost Function (CF).  

CF uses the least mean squares of the errors, which are the distances of the actual 

data points from the predicted line. These distances are shown in Figure 15 with 

black, dashed lines. 

Cost function is calculated using the following formula: 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑(ŷ𝑖 − 𝑦𝑖)

2

𝑚

𝑖=1

=
1

2𝑚
∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

2

𝑚

𝑖=1

 

The better the line fits our data, the lower the cost function will be. In the ideal case 

of a perfect fit, the cost function would be zero.  

Besides CF, other fitness indicators related to linear regression are Correlation 

Coefficient (r) and Coefficient of Determination (r-Squared). 

‘r’ and ‘r-Squared’ coefficients range from -1 to 1 and 0-100%, respectively. 
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An r-Squared coefficient equal to 0 means that the predicting variable cannot 

explain the response variable at all. On the other hand, if r-Squared coefficient, the 

predictor variable explains the response variable perfectly. 

The CF can be lowered using mathematical tools such as gradient descent. 

So, the goal is to minimize 𝐽(𝜃0, 𝜃1) by changing 𝜃0 and 𝜃1. 

When dealing with linear regression, the CF 𝐽(𝜃0, 𝜃1) has the shape of a bowl, as 

represented in Figure 16. 

 

Figure 16. Cost function graphic representation. 

When dealing with linear regression, it is easier to represent the CF graphically. 

From this point onwards, using mathematical tools such as gradient descent, we try 

to minimize 𝐽(𝜃0, 𝜃1).  

Gradient descent is a mathematical tool that uses the derivative to find lower values 

of the CF. This step is repeated multiple times until the minimum is found. If the 

regression is linear, the minimum found will always be the global minimum. In 

other cases, we may find a local minimum but fail to find the global one. 

A 2-D graphical representation of CF and gradient descent is shown below in Figure 

17. 

 

Figure 17. Gradient descent principle of work. W represents 𝜃. 
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First, an initial value is chosen.  

Then, the derivative of CF is found at that point. The derivative is also the slope of 

that same point. Hence, if the derivative is positive, it means that choosing another 

point to the right of it would give a higher CF, while choosing another point to the 

left of that point gives a lower CF, which is desired.  

The contrary can also happen, if the derivative at that point is negative, it means 

that choosing another point to the right of it would give a lower CF, this is the case 

in Figure 17. This step is repeated many times until the minimum is found.  

Using mathematical expressions, 𝜃𝑗  will be assigned new values on each step: 

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
∂

∂𝜃𝑗
 𝐽(𝜃0, 𝜃1), for j=0,1. 

Where α is the Learning Rate.  

The Learning Rate determines how fast the algorithm will get to zero, however, if it 

is too large, the algorithm may overshoot the minimum value. Thus, choosing the 

right learning rate is very important. 

Besides constant Learning Rates, there are adjustable learning rates as well, that go 

on increasing/decreasing after a number of steps. This adaptive method of α makes 

it possible for the algorithm to perform much better and faster.  

 

Figure 18. Choosing Alpha: Learning Rate of Gradient Descent 

As mentioned before, a wrong value of α may cause the algorithm to either 

overshoot or take too long to converge. 

Let’s discuss the choice of Learning Rate, represented in Figure 18. 

In the first case, we have a very small α, it means the algorithm will need to update 

the 𝜃𝑗  values way too many times. That in turn will slow down the algorithm and 

convergence will not be achieved in a conveniently fast time. 
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In the second case, α is not too small nor too large, meaning the algorithm will not 

take too much time to converge, yet it will still allow our CF to converge to zero. 

In the third case, α is too large. When the learning step is too high, the global 

minimum will be overshot, and the algorithm will not converge because the 

solution will be missed. 

An illustrative case of gradient descent is shown in the figure below. 

 

Figure 19. Gradient descent being applied to lower a Cost Function. 

So far, we have seen linear regression, meaning our hypothesis was made of 

variables that are of exponent one, regardless of how many variables our hypothesis 

has. However, they can be of higher powers as it will be discussed in the following 

sections. 

3.1.2. Polynomial regression 

Regression does not have to be linear every time, it can be of higher orders as well.  

Polynomial Regression (PR) comes in handy when the data we are working on is 

not characterized by linear dependency between the dataset’s points. In day-to-day 

applications, polynomial regression of orders 2, 3 and up, is used more often than 

the linear regression.  

This is true because that happens to be the nature of the phenomenons we encounter 

more often. 
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In PR, the hypothesis will be more sophisticated. The features will be:  𝜃𝑗
𝑛, where j 

– number of features and n – exponent of the hypothesis. For example, if dealing 

with cubic regression, n=3. 

 

 

Figure 20. Linear Regression (green) vs Polynomial Regression (red) fitting a random 

dataset. 

As seen in Figure 20, linear regression is not a good fit for datasets that have no 

linear dependency. In this particular case, the dataset values shown in blue dots, are 

better fitted using a polynomial hypothesis function (red curve) rather than a linear 

one (green line). Polynomial regressions can be of any order, but if the order is too 

high, there may be overfitting. 

3.1.3. Bias/Variance tradeoff 

Overfitting a particular set of training data is a problem encountered oftentimes, 

and it must kept in mind as something to avoided while modelling a ML algorithm. 

So, although it is counter-intuitive, that means we do not want our CF to be exactly 

zero and r-Squared coefficient to be exactly one.  

If the CF is zero, it means that the hypothesis fits the training data perfectly, but if 

we feed the machine another set of data, the results will most likely be poor. That is 

called overfitting.  

If the opposite happens and the CF and r-Squared coefficient are large, we will have 

underfitting. That happens when a hypothesis has coefficients that do not fit any 

dataset.  
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Figure 21 shows these cases graphically. 
 

 

Figure 21. Regression model: a) Underfitting, b) Good fit, c) Overfitting. 

In the first graph of Figure 21, we are dealing with underfitting. Our linear 

hypothesis is not accurate for this dataset. The CF will be too high and r-Squared 

coefficient will be too low. Both indicate that we have a model that is underfit. This 

case is also known as High Bias. 

In the second graph, the CF and r-Squared will be better suited, although purposely 

not perfect.  

This means that in the future, when this model is fed with a dataset unseen before, 

it will most likely perform well.  

In the third graph, the cost function will be zero and r-Squared coefficient will be 

100%. Both pointing to a perfect fit. Though it means the model found the exact 

hypothesis to describe our dataset, it most likely means that this model will perform 

poorly when fed with a new dataset that was not part of the training set. This is 

known as High Variance. 

Evidentially, we need to find a middle ground between ‘un-fitting’ the training 

model, and overfitting it. This is a famous concept in ML, and it is called as the 

Bias/Variance trade-off. 

Algorithms discussed thus far were simple cases of one-dimensional training sets. 

In real life cases, we will have to deal with multiple dimensions of datasets. These 

dimensions represent features. 

In other words, our hypothesis will not have only 𝜃0 and 𝜃1 but it may have 𝜃𝑗
𝑛, 

where j=0,1,2,,… and n=2,3,… 

The higher the number of features, the harder it is to visualize the CF with respect 

to hypothesis coefficients.  

For training examples with multiple features, cost function and gradient descent are 

the similar, but adapted. 
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3.2. Deep Neural Networks and activation functions – 

Utilization of machine learning tools in 

distribution networks 

This subchapter will introduce the perceptron, activation functions and basic 

architectures of neural networks. Those are the prerequisites to Deep Neural 

Networks.  

3.2.1. The perceptron 

Before getting to our specific model, the basics of Neural Networks will be 

introduced and the potential choices of using particular algorithms will be 

explained. 

Neural Network are a relatively new idea. Their name and inspiration comes from 

the human brain neural networks. The human brain has around 869 (eighty-six 

billion) neurons that are interconnected and fire electric signals to each other. [18] 

 

Figure 22. Brain neuron. 

The electric impulses happen when the cell wall (membrane) changes its voltage.  

Each neuron is connected to thousands of other neurons. Neurons send and receive 

signals through the conductors (axons) to and from neighboring neurons. Whether 
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a neuron will ‘fire’ or not depends on the voltage threshold. If the threshold is 

reached, the neuron will fire. This happens to be the inspiration of Artificial Neural 

Networks (ANNs). 

The basic artificial neuron is shown in Figure 23. 

 

Figure 23. Basic Artificial Neuron topology. 

Figure 23 shows a similarity in design between a natural neuron and an artificial 

one. 

Here, the neuron is connected to two other neurons. Neurons connected to each 

other exchange impulses according to their voltages, which in this case are called 

weights. The weights are then accumulated and their aggregate determines whether 

the neuron receiving the impulses will now emit forward to other neurons an 

impulse of its own or not. The value that determines whether a neuron will have an 

impulse is called a threshold.  

In algebraic terms:  

Output = {
0 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗

1 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗
 

So, a 0 signifies that the neuron will not be producing any impulse on the output, 

while a 1 implies that the neuron will ‘fire’. 

This basic single artificial neuron in ML is known as the perceptron. 

The perceptron can be used to determine outcomes or outputs of some event or 

phenomenon when given inputs. Each input has its weight. The weights 𝑤𝑗 

determine the importance of input j.  

The expression ∑ 𝑤𝑗𝑥𝑗 𝑗 determines the output depending on whether the threshold 

is reached or not. This expression is better written as a multiplication of vectors or 

matrices 𝑤𝑗 ∙ 𝑥𝑗 . 
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In neural networks, bias is used as a parameter instead of the threshold. Bias and 

threshold are equal but of opposite signs. Bias can be used to re-write the output 

equation as follows: 
 

Output = {
0   𝑖𝑓   𝑤 ∙ 𝑥 + 𝑏 ≤ 0

 1   𝑖𝑓   𝑤 ∙ 𝑥 + 𝑏 > 0 
 

 

So, the output of a perceptron is determined by the multiplication of the weights to 

their respective inputs, and then adding that to the bias. 

The bias determines the nature of the perceptron, because if it is large, the 

perceptron will have an output equal to one. If the opposite happens, meaning the 

bias is a small or a negative number, the chances are higher for the output to be 

equal to zero. 

Building a perceptron using a day-to-day example 

Perceptrons are the building blocks of neural networks. Basically, ANNs are really 

just many perceptrons (neutrons) linked with each other in a similar fashion to the 

brain neurons, hence them being introduced first. 

Let’s take an illustrative example; You want to build a perceptron that determines 

whether you want to go out drinking with your colleagues on a Friday night. 

Some inputs could be the following: your level of tiredness, the amount you like the 

colleagues who invited you, your bank balance at the time, your plans for the next 

morning etc.  These inputs can be designed in any manner, here is one. 

I) If you work really hard throughout the week and on Friday night you get 

way too tired to do things, that means that the weight of input 1 is large and 

negative as it lowers the probability for the threshold to be reached, so let’s 

say it is (-3).  

II) If when you go out drinking, you are not picky about who you are going out 

with, that means the weight of input 2 is small, let’s say (1).  

III) If your stomach has low tolerance and you get sick easily, rendering you 

unable to commit to your plans the next morning, it means that the weight 

of input 3 is also large and negative, let’s say (-2). 

Modeling a perceptron that tries to predict whether you will go out on a Friday 

night could look something like this: 
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Figure 24. Perceptron trying to determine whether to go out or not. 

In this case, the bias is 2, which is quite high, assuming that momentarily the person 

felt like going out because they have not been out in a long time. This is the biases 

job, to influence the outcome considering the fixed weights. 

Let’s assume the person to not be tired (X1=0), to like the people they are going out 

with (X2=1), and finally, to have plans early the next day (X3=1). 

The outcome of this result would be: y = ∑ 𝑤𝑗𝑥𝑗𝑗 + 𝑏 = (-3)∙0+1∙1+(-2)∙1+2 = 1 which 

is > 0, meaning the perceptron thinks you will be going out.  

It is noteworthy how bias plays a huge role in the outcome. 

Every model, or in this case person, has different inputs, with different weights, and 

a different bias. 

Depending on the circumstances, the inputs multiplied by their weights will 

determine whether the output will be a 1 (output larger than 0) or a 0 (output 0 or 

less), where 1 means going out, and 0 means staying home. 

Many processes can be modelled and predicted in a similar fashion. 

Basic logical functions such as AND and OR are used as primary examples of how 

perceptrons work. The following figure shows how the AND gate is realized using 

a perceptron. 
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Figure 25. AND gate realized using a perceptron. 

As seen in Figure 25, the bias is (-1), weights of inputs X1 and X2 are both 1.  

Let’s try some input values to check whether the outputs really correspond to an 

AND gate. 

The equation is ∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑗 . 

If X1 = 1, X2 = 1, b=-1: (1∙1) + (1∙1) + (-1) = 1 which is > 0 so we get 1. 

If X1 = 1, X2 = 0, b=-1: (1∙1) + (1∙0) + (-1) = 0 which is not >0 so we get 0. 

If X1 = 0, X2 = 1, b=-1: (1∙0) + (1∙1) + (-1) = 0 which is not >0 so we get 0. 

If X1 = 0, X2 = 0, b=-1: (1∙0) + (1∙0) + (-1) = -1 which is not >0 so we get 0. 

Thus, using the previous perceptron equations we have verified that if those 

weights and that bias is used in a perceptron with two inputs, we will have built an 

AND gate. We can confirm our perceptron model from Table 2 below. 

 

A B A AND B 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Table 2. Logical gate AND 
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That is pretty much all there is to a perceptron as the most basic unit in a neural 

network, on which we will expand next. A perceptron is the fundamental block of 

large neural networks which may contain tens of thousands or even more 

perceptrons.  

The only sophistication of neural networks with respect to perceptrons is that, in 

the former, the outputs of a perceptron, happen to also be inputs of another 

perceptron.  

3.2.2. The basic architecture of Neural Networks 

In this subchapter, a first glance will be given at neural networks. 

The following figure offers visual understanding on how neural networks are made 

out of perceptrons. 

 

 

Figure 26. Neural networks with single output. 

Figure 26 shows a generic neural network. All the circles represent perceptrons, 

which is what makes the neural network what it is, a vast network of 

neurons/perceptrons. 

For clarification, neurons and perceptrons are the same thing, with the sole 

difference being their activation function. However, they are used interchangeably 

here. 

Neural networks are made of layers, the first one is called the input layer, the last 

one is called the output layer, and any layer in between the input and the output 

layer is considered as part of the hidden layer. 
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The hidden layer may contain a single layer, it is not necessary to have multiple 

layers in-between the input and the output layers. 

Neural Networks can be Deep Neural Networks or not based on whether there are 

multiple layers in the hidden layer or there is a single layer in the hidden layer, 

respectively. 

As seen from this neural network, there are three neurons in the input layer, which 

is equal to the number of inputs as well. Now, instead of the Layer 1 neuron’s 

outputs to be the final outputs, in the case of neural networks, they become inputs 

of the neurons placed in the next layer (Layer 2). 

This goes on until the final layer is reached and the output is the final output instead 

of being an input for the next layer of neurons. 

Forward propagation and backward propagation are the main concepts when it 

comes to how a neural network is trained from the technical point of view. 

These concepts are rather difficult to derive mathematically. Therefore, since this 

thesis is more concerned about applying electric power system’s problems to neural 

networks, we will not dive any deeper in them.  

It is only important to remember the following generic steps: an input goes through 

the net with the initial weights and bias, reaches the output, the output value is 

compared to some reference values (cost function is checked), the algorithm starts 

going backwards towards the input and updates the weights depending on what 

the loss function shows, the cycle re-starts with updated weights and bias. 

So, all the network needs to do is to minimize the loss/cost function by changing 

weights and biases. 

Neural networks are largely more robust than single neurons when it comes to 

learning. 

3.2.3. Activation functions 

Some problems arise if we model neural networks using the activation function we 

have used for perceptrons, namely zeros and ones. If that is done in neural 

networks, the output of the entire NN will be highly correlated to any changes in 

the weights and/or biases in any part of the network. 

In other words, a small change in weights and/or biases will cause a large change in 

the output. That is not desirable because the output should be very ‘stable’. 

There are many activation functions, some of them are briefly discussed and shown 

graphically in the following pages. 
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a) Sigmoid function 

Instead of using zeros and ones as inputs, we will use a function called sigmoid, 

introduced next. 

σ(z) =  
1

1 + 𝑒−𝑧
 

where z=∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑗 . 

Therefore, the final expression of the output of a sigmoid neuron will be: 

σ(z) =  
1

1 + 𝑒− ∑ 𝑤𝑗𝑥𝑗 +𝑏𝑗
 

Sigmoid is also referred to as the logistic function. 

 

Figure 27. Sigmoid function. 

By using the sigmoid function, we will make it possible for the inputs to take any 

value ranging between 0 and 1. That means, instead of making a steep change when 

trying to adjust the inputs, changes such as from 0 to 1 and vice-versa, now we can 

go smoothly.  

We can change the input from 0.34 to 0.38 for example. That would not bewilder the 

output because the change is only 0.04, while previously the change was 1. In other 

words, we have increased the resolution of the input values. 

The sigmoid function represented graphically in Figure 27, give a better 

understanding of its probabilistic nature. The sigmoid function has some semblance 

with the unit step function (Heaviside signal). The difference is around the ordinate. 
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The unit step function has discontinuity at value x=0 (ordinate), while sigmoid is 

smoothed out, continuous and derivable function. 

Now, the difference between a neuron and a perceptron should be clearer. A 

neuron’s activation function is sigmoid function while a perceptron’s activation 

function is the step function. Of course, a neuron can have other activation functions 

as well, the statement of sigmoid being a neuron’s activation function is valid only 

in explanatory differentiation from the perceptron. 

Always referring to the sigmoid function’s graphical representation in Figure 27, 

we will analyze its behavior. 

We keep in mind that z is the output of a neuron, which is in direct proportion of 

the inputs, input weights and bias such as z=∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑗 .  

If the input weights or the bias is large, z will be a large positive number. When 

plugging that z into the sigmoid function, it will look as follows:  

σ(z) =
1

1 − 𝑒−∞
 

Since 𝑒−∞ ≈ 0, we will have σ(z) ≈ 1. 

From this, we infer that large weights and biases will make that neuron ‘fire’. 

If we analyze the opposite extreme, where we have very low or even negative values 

for our input weights and bias, the expression will look as follows: 

σ(z) =
1

1 − 𝑒+∞
 

Since 𝑒+∞ ≈ ∞, we will have σ(z) ≈ 0. 

As mentioned before, the idea behind using a sigmoid function instead of a step 

function is to allow for small changes in weights and bias without causing large 

changes in outputs. 

This makes it significantly easier for the algorithm to get to a desired output by 

changing the weights and bias. 

b) Hyperbolic tangent activation function (Tanh) 

The hyperbolic tangent (tanh) activation function assumes negative values as 

opposed to sigmoid. It also has a slightly more complicated mathematical 

expression: 

σ(z) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 



36 3| Machine learning approach on voltage regulation 

 

 

 

Figure 28. Hyperbolic tangent activation function. 

c) Rectified linear unit activation function (ReLU) 

 

Figure 29. Rectified Linear Unit (ReLU) activation function. 

The rectified linear unit, commonly referred to as simply ReLU is a very popular 

activation function. From the mathematical standpoint, it is simpler than sigmoid 

and tanh. On the negative side of the abscissa the function is zero, while on the 

positive side it is equal to z itself. 

ReLU(z)  = {
𝑧  𝑖𝑓  𝑧 > 0
0  𝑖𝑓  𝑧 ≤ 0 

 

 

d) Leaky rectified linear unit activation function (Leaky-ReLU) 

Leaky Rectified Linear Unit (Leaky ReLU) is a sophistication of the ReLU 

activation function seen in Figure 29. 
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Figure 30. Leaky Rectified Linear Unit (Leaky ReLU) activation function. 

The difference between the two types of ReLU activation functions is on the 

negative side of x-axis. The Leaky ReLU is not zero but instead it is equal to a 

constant a, multiplied by z itself, as depicted in Figure 30.  

In mathematical terms: 

Leaky ReLU(z)  = {
𝑧      𝑖𝑓  𝑧 > 0

𝑎 ∙ 𝑧  𝑖𝑓  𝑧 ≤ 0 
 

In the graphical representation, constant a is set at 0.2, however, it can be changed 

accordingly. 

Derivatives of Activation functions 

One very important consideration when choosing the activation function is their 

derivative. 

Earlier, we mentioned that the dependency of outputs on weights and bias is very 

important. In technical terms, that dependency is described by partial derivatives 

as follows: 

∆𝑜𝑢𝑡𝑝𝑢𝑡 ≈  ∑
𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)

𝜕(𝑤𝑗)
𝑗

∆𝑤𝑗 +
𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)

𝜕(𝑏)
∆𝑏 

Without analyzing this expression too profoundly, we can see that the change in 

output (∆output) depends linearly on the changes in weights and changes in bias. 

So, in order to easier control and improve our outputs, the machine will have to deal 

with derivatives.  

That is the reason for activation function derivatives to be an important 
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consideration when choosing what activation function to use in a model. 

In Figure 31, the derivatives of some popular activation functions are shown 

graphically. 

 

Figure 31. Derivatives of some popular activation functions. 

The less computational power our machine needs to calculate the derivative of the 

activation function, the better pick that activation function is. 

3.2.4. Choosing the right ML algorithm 

As previously mentioned briefly, the most suitable Machine Learning algorithms to 

be applied to our problem are Artificial Neural Networks (ANNs). 

There are tens of algorithms in neural networks, as illustrated in Figure 32. 

Some of the most popular ones are Convolutional Neural Networks (CNNs), Deep 

Convolutional Network (DCN), Recurrent Neural Networks (RNNs), Hopfield 

Network (HN), Boltzmann Machine (BM), Support Vector Machine (SVM) etc. 

Each of these has proven worthy in some specific use.  For example, in image 

classification algorithms CNNs work best, in natural language processing RNNs 

work best, and so on. 

Generic Deep Neural Networks (DNNs) are the choice of this study. 

Specifically speaking, we can model our voltage regulation algorithm as a Multi-
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class Multi-output (M-C/M-O) Deep Neural Network. However, building a M-C/M-

O is still widely not supported from Python’s relevant libraries, rendering this 

choice as too costly in terms of time and skills concerned for this thesis. 

Therefore, the specific algorithm used will be a Multi-Output (binary classification) 

Deep Neural Network. 

The number of outputs will be equal to Nnntap∙Ntransformers. 

So, the total number of outputs will be the total number of tap positions of all 

transformers of the analyzed feeder that are equipped with E-OLTCs. 

Figure 32. Neural Networks algorithms. 
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3.2.5. Building a Multi-Output Deep Neural Network for voltage 

regulation with E-OLTCs 

We have introduced the basic neural network architecture earlier in 3.2.2 and said 

that Neural networks can contain tens of thousands of neurons or even more. We 

also mentioned what the input layer, hidden layer and output layer are.  

In this subchapter we will dive deeper into the specific algorithm we will utilize for 

voltage regulation in MV networks with the help of E-OLTCs. 

It is not mandatory for NNs to have only one output, there can be many outputs. 

If there are many outputs, the algorithm will be a multi-output algorithm, which 

happens to be the one used in our model. 

The algorithm we will use in regulating the voltage in medium voltage networks in 

grids with high penetration of distributed generation and electric vehicles, will be a 

Deep Neural Network (DNN) with multiple outputs (neurons). 

Depending on how we build the algorithm and what activation function we use, the 

output can assume different values. If we have a single output and it takes values 

from 0 to 1, it means we are using a binary classification, e.g., if a photo fed to the 

algorithm shows a crosswalk or not. This particular NN, with a single output, is 

shown below in Figure 33. 

 

Figure 33.Single output NN with binary classification. 

The output layer gives a single probability value that represents the chances of the 

input to be or not to be what we are testing it for.  

For example, if the probability of outcome P(outcome) = 0.95, it means that the input 

we have feed to the algorithm has a 95% chance of being what we expected it to be.  

If the NN has two outputs, they give the probabilities of each output being the 
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correct one. In our algorithm, we will use an output for each tap position of each 

transformer. Those outputs will give the probability of that tap position to be the 

correct one with respect to the inputs.  

To illustrate this concept more clearly, a NN designed to find out whether a photo 

fed to the algorithm shows a dog or a cat is shown below. 

 

 

Figure 34. Neural Network determining: Cat or Dog. 

Here, we feed an image to the NN, and on the output layer we have two neurons, 

the upper one gives the probability of the fed image to be a dog, while the lower 

neuron gives the probability of the fed image to be a cat. Outputs can be re-arranged 

in any manner. 

In this particular case in Figure 34, the algorithm determines that there is a 95% 

chance the fed image is a dog, and rightfully so. Curiously, this particular model 

has reached a 97% level of accuracy. 

The types of values shown on the last layer, depend directly on the activation 

function we choose.  

It is important to clarify that in general there are two ways to program the output 

layer: 

a) Exclusive multi-output classification Algorithm. 

 

That means that the sum of all probability values of all outputs will always 

be equal to 1. That is natural in cases where the input’s result can only be one 

of the choices/outputs, for example when trying to figure out if the photo is 
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showing a dog or a cat. If the photo shows a cat, it definitely is not showing 

a dog, and vice versa. 

b) Non-exclusive multi-output classification Algorithm. 

As the name infers, the categories in this case are not mutually exclusive. 

That means, a set of inputs can assume many categories/outputs 

simultaneously. This will be the case in our model, in order to not break the 

voltage constraints, a transformer’s tap position can be set at more than one 

of the settings.  

For example, let’s say that at substation Feroleto, a transformer’s tap position 

is (-1) and voltage at that busbar shows 0.97 [p.u], then, the transformer’s tap 

position is set at (0) and the voltage at the busbar now shows 0.99 [p.u]. 

According to |ENTSO-E the voltage constraint of ±5% will not be broken in 

neither of the aforementioned tap positions. [8] 

In this case, the sum of all probabilities in the output layer does not have to 

be 1. 

The difference from the introductory topology of the NN we saw in Figure 26 and 

the one we will use in our model, is on the output layer. While in Figure 26 there 

was only one neuron in the output, in our model, there will be 5∙Ntransformers outputs. 

As mentioned previously, we will train a multi-output classification NN, which 

means that we will have a fixed number of outputs, each with a result between 0 

and 1. We will feed the model some inputs which will go through the net, to finally 

reach the output layer. The outputs represent none other than tap changing 

positions of MV transformers. 

Transformers, depending on the date of production and the standards used by the 

manufacturer, may have different ranges of adjustable voltages. 

For medium voltage transformers, the number of tap positions usually happens to 

be 5. That means, positions -2, -1, 0, 1, 2. The neutral position is at 0. 

From a heuristic approach, it was deduced that the most accurate way to build the 

NN would be to choose a non-exclusive multi-output classification algorithm, 

which was explained earlier. 

If we decided to run with a mutually exclusive multi-output classification 

algorithm, the training/results would be unrealistic because the transformer tap 

changers can, in fact, have more than one valid setting. Valid meaning no voltage 

constraint is breached. 

To put it simply, multiple options can be right at the same time. 

 



3| Machine learning approach on voltage regulation 43 

 

 

So far, for our task of voltage regulation, we have concluded the following: 

i) We should use Deep Neural Networks. 

ii) We should use Multi-Output networks. 

iii) We should use a Non-exclusive algorithm. 

iv) Our Classification should be Binary, using Sigmoid activation function. 

v) The number of neurons in our output layer will be 5∙Ntransformers. 

These choices are valid in general terms and will be employed for our studycases.  

The algorithm will measure its accuracy using Sigmoid as its activation function 

and Binary Cross-Entropy function as its loss function. In mathematical terms the 

binary cross-entropy loss functions is: 

𝐶𝐸 =  −𝑡1 log(𝑓(𝑠1)) − (1 − 𝑡1)log (1 − 𝑓(𝑠1)) 

Where 𝑓(𝑠1) =
1

1+𝑒−𝑠1
  and t1 means the output is positive. 

The Binary Cross-Entropy loss function can also be expressed as: 

𝐶𝐸 =  {
− log(𝑓(𝑠1))             if 𝑡1 = 1 

− log(1 − 𝑓(𝑠1))     if 𝑡1 = 0
 

So, the loss function graphs we will see later are logarithmic. 

Next, specific to the studycase parameters such as number of layers, neurons, 

outputs, epochs etc., will be discussed independently. 

Figure 36 represents the first model at building a DNN for voltage regulation. This 

model is only concerned with a single transformer with 5 tap positions. The idea 

has evolved to building a DNN that predicts the taps of multiple transformers 

instead of a single one. 

Each of the output neurons shows whether a specific tap position is the correct one 

or not. Our sophisticated model has 92 inputs and 65 outputs (13 TRs ∙ 5 tap 

positions) for Sub-Urb feeder (CS-I). For the Rugova feeder (CS-II), the model has 

88 inputs and 45 outputs (9 TRs ∙ 5 tap positions).  

It is difficult to draw our real NN in a single sheet, however, just to give an idea, 

our primitive model was illustrated using online tools [19]. 

In that NN, there are 40 neurons in the input layer, 75 neurons in the hidden layer 

(4 layers summed), and finally 5 neurons in the output layer. This should help build 

a better idea of how our DNN model works. 

From a generic approach, Figure 35 is effectively the best representation of our Deep 

Neural Networks algorithm. The only difference is the number of neurons.  
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Figure 35. Multi-output Deep Neural Network with binary classification. 

DNN terms such as multi-output, multi-class, and multi-label can be confusing. In 

this study, the intention is to predict multiple outputs (multiple tap positions), but 

for each output there can be only a probability value from 0 to 1 value as a result. If 

we were to build a neural network for a single transformer as previously described, 

we would have a multi-class algorithm as the one in Figure 36. 

 

Figure 36. Neural Network architecture for voltage regulation, adapted for a single 

transformer. 

5 outputs represent 5 possible tap positions of a single transformer. In this topology, 

the bias neurons can be spotted on the left side.
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4 CASE STUDY I – 20 [kV] feeder Sub-

Urb, Sicily. 

4.1. Introduction 

This section will briefly explain the general approach and methodology used in both 

of these studies. 

The most difficult part of almost any machine learning project is obtaining and 

cleaning the data. It is estimated that around 80% of the time and work it takes to 

build a ML model goes towards data preparation and only 20% for the algorithm 

itself. 

The quality of data is the number one factor that determines the quality of the 

learning model itself. That is why, the PowerFactory models were troubleshooted 

tens of times. 

First, both feeders are modelled in PowerFactory from scratch. They are both 3-

phase balanced systems. 

Feeder Sub-Urb is based on the standard IEEE 33 bus MV network. It is called Sub-

Urb as it represents a random sub-urban feeder with OHL. The DG of this feeder 

are connected on newly made LV busbars that serve only for the DGs and not loads. 

In the second studycase, the model is different. After some testing, it was not 

deemed very useful to carry out these studies in urban feeders supplied by cable, 

because usually there is not enough physical space to have large amounts of DGs 

such as to cause significant overvoltages. 

Feeder Sub-Urb operates at 20 [kV]. Active power (P_Lx) and reactive power (Q_Lx) 

inputs  for each load come directly from the standard model’s public data. On the 

other hand, line parameters such as resistance and reactance come from various 

manufacturer’s catalogs. Line lengths were chosen intuitively. Transformers were 

modelled based on the loads of the busbar where the transformers are connected.  

The following chronological steps explain the approach of how this study will be 
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carried out for both feeders: 

1. Collect realistic MV network data on all feeder elements, especially loads, 

transformers, lines. 

2. Use standard programming methods and intuition to fill any missing data. 

3. Use the collected and prepared data to model the feeder from scratch using 

PowerFactory. 

4. Model photovoltaic systems at random points in the feeder, making sure 

their output is high enough to cause realistic overvoltages. Each PV system 

must have a different installed power. 

5. Use GIS tools to extract irradiation data and use it to calculate the PVs 

outputs. Use exact coordinates for each feeder. 

6. Create a 2-year characteristic of every PV output based on the irradiation 

data for that specific location. The data should be hourly and it will have 

17520 values in total. These vectors would mostly consist of zeros, as the PVs 

do not generate at sunless hours. 

7. Analyze daily and seasonal load profiles of residential users located in the 

feeder’s geographic region. Then, use those load profiles to generate 2-year 

characteristics for each and every load, separately for both active and reactive 

power consumption. Again, the data should have 17520 values to represent 

hours of a 2-year period. 

8. Adjust all relevant settings and run a few load flows then update any element 

parameter if necessary. 

9. Analyze the power flow results, with special care at busbar voltages, line 

voltages drops, and most importantly, tap changer positions.  

10. Run the power flow with and without ticking the Automatic Tap Changer 

option. Compare the results to see if they make sense. 

11. Now that the feeder’s correct modelling is verified, prepare for Quasi-

Dynamic Analyses. 

12. Run a Quasi-Dynamic analysis for a period of 2 years in hourly steps, that is 

17520 load flows in total. Do it without employing the Automatic Tap 

Changer option. 

13. Repeat step 12 but this time do it employing the Automatic Tap Changer 

option. 

14. Save 2 year graphs of loads, tap positions, load profiles, voltage levels etc. 

15. Export the Quasi-Dynamic analysis data to ‘.csv’ or ‘.xlsx’. Focus especially 

on exporting the tap positions of each transformer with E-OLTC, for each 

step. 

16. Use Python to import the data, clean it, re-organize it, delete what is not 

needed. 

17. When the data is prepared, separate the features/inputs X (Loads, PV outputs 
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etc.) from labels/outputs y (Tap Positions). Export them afterwards. 

18. Divide the data in two: the training set and the validation set. 

19. Now comes the ML part. Create a Deep Neural network with a couple of 

hundred neurons in 4-5 layers. The output layer being equal to the number 

of dataset’s outputs. 

20. Run the DNN and based on results adjust its parameters by varying 

activation functions, number of epochs, ratio of train/test data, including 

early stopping, changing the architecture etc. 

21. Reach a good result in both the training and testing datasets and save them. 

22. Visualize results, calculate accuracy statistics and measure DNN’s overall 

performance. 

23. Now the model is ready to predict the tap changer positions of several 

transformers if it is feed new inputs, never seen before. 
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The above-mentioned steps are perhaps too detailed to paint the big picture, but the 

flowchart in Figure 37 might help. 

Figure 37. Simplified flowchart of the steps carried out for voltage regulation. 

While this was a quick overview, we will see everything in detail while discussing 

the studycases individually. 

Before getting into the study cases, we will take a look inside PowerFactory’s 

automatic tap changer settings and options. These will be valid for both feeders so 

going through them once only is more efficient. 

4.1.1. Tap changing settings in PowerFactory 

PowerFactory has two different windows to change the tap changer’s settings, one 

in the Transformer type (TypTr2) and another in the load-flow window of the 

transformer element (ElmTr2). 
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Figure 38. Tap Settings in TypTr2. 

Figure 38 shows the settings inside the transformer type, in PowerFactory known 

as (*TypTr2). 

From this window of settings, the user is able to decide the following attributes of 

the Tap Changer: 

1) Type: 

-Ratio/Asym. Phase Shifter  

-Ideal Phase Shifter / Does not change the voltage magnitude 

-Sym. Phase Shifter / Does not change the voltage magnitude 

2) Side at which the tap changer is installed: 

-High voltage side 

-Low voltage side 

3) Additional voltage per tap: Can be any number in percentage, usually around 

1.25 or 2.5 

4) Phase of du: Can be any number of degrees 

5) Neutral Position, Minimum Position, Maximum Position: The range of positions 

the transformer is able to operate on. Neutral Position setting means the 

transformer operates at its nominal transformation ratio. 
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Figure 39. Tap Changer settings in ElmTr2 in PowerFactory. 

Figure 39 is yet another window of settings for the automatic tap changer. In this 

case, it is related to the specific load-flow being run, rather than the transformer 

type. 

In this window, the user is able to regulate the voltage setpoint at the busbar, voltage 

range (lower and upper bounds), control node of the E-OLTC etc. 

4.1.2. Running a Quasi-Dynamic Simulation 

A Quasi-Dynamic Analysis is essentially just a set of usual load flows done one after 

another in fixed time steps. 

For our analysis, in order to increase the number of data, which in turn will increase 

the quality of our ML model, we will be working with 2 years of data. 

Our dataset contains hourly data for a full two years. That translates to 17520 values 

for each of the inputs and outputs. 

Before executing the Q-D Analysis, we must insert time characteristics to all the 

inputs we want to change with time.  

We can think of these characteristics as vectors where every element represents the 

value of that input, at a given hour/step. 
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PV outputs should have their individual characteristics as well. This characteristic 

will be deterministic as it comes from irradiation data and is adapted to the installed 

power of each photovoltaic plant.  That will be discussed in detail together with the 

studycases. 

The main window of a Quasi-Dynamic Analysis is shown below. 

 

Figure 40. Running a Quasi-Dynamic Analysis main window. 

In the main window of a Q-D Analysis the user will decide what type of Load Flow 

to run, and the settings of that load flow which may include the Power Flow 

Analysis method (default is Newton-Raphson), number of max iterations, reactive 

power control etc. 

Besides the power flow type, the user will also define the time range and step size. 

As it can be seen in Figure 40, in our case, we have a 2-year period with a step size 

of 1 hour. However, PowerFactory may not perform well with characteristics that 

are longer than a full year, hence, under the hood, two 1-year Q-D analysis were 

run for each 2-year Q-D analysis reported here. 

Figure 41 and Figure 42 are windows of settings that deal with exporting the data. 

After the analysis is complete and 17520 load flows have been run, the results must 

be saved and exported to a ‘.csv’ or another format easy to work with. 

Using these settings, the user will be able to select the time period of results being 

exported. This comes in handy if the user is interested in only a portion of the results 

rather than the entire timeframe. The user is also able to select what variables are to 
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be saved. PowerFactory has tens of variables to save for each element. 

Finally, these saved data will be then used in the ML part, where they will make it 

possible for the models to be trained. 

 

Figure 41. Exporting Quasi-Dynamic analysis results – Basic Data. 

 

Figure 42. Exporting Quasi-Dynamic analysis results – Advanced Options. 

4.2. Modelling feeder Sub-Urb in PowerFactory 

The 20 [kV] feeder Sub-Urb is based on the standard IEEE 33 bus network. The 

topology and the loads come directly from IEEE, while line’s electric parameters, 

line lengths, transformers etc., are modelled carefully without referring any 

previous networks. 

Feeder Sub-Urb has 33 busbars, 33 loads, 13 PV systems and 46 transformers, of 

which 13 transformers are equipped with E-OLTC, because they are the ones 

connected to the PV systems. 
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The full topology of feeder Sub-Urb is shown in Figure 44. 

Balancing the power flows of the feeder will be done by the External Grid connected 

at Busbar 1 which is modelled as a Slack busbar with voltage setpoint at 1.0 [p.u].  

However, the voltage setpoint at the slack bus could be different from 1.0 [p.u], in 

these cases it usually tends to be higher in longitudinal feeders with significant 

voltage drops throughout the lines. 

A voltage setpoint of 1.05 [p.u] is a common choice in certain cases. That is made 

possible by the HV/MV transformers in the substation. More specifically, utilizing 

tap changers that are usually installed on the HV side in order to decrease losses, 

although in terms of insulation it is worse. 

Here is a zoomed-in portion of Sub-Urb Feeder first. 

 

Figure 43. Feeder Sub-Urb 20 [kV] zoomed in a portion. 
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Figure 44. Feeder Sub-Urb 20 [kV] topology. 
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As Figure 43 shows, PV systems inject on LV side which is 400 [V].  

In the LV busbar where energy is injected, there are 0.4/20 [kV]/[kV] transformers. 

This way, the energy is injected into the MV grid, may cause overvoltages in the 

MV side busbar but also potentially on the neighboring busbars as well. 

Expectingly, with the use of E-OLTCs, the transformers will be able to change their 

tap position and lower the voltage on the MV side, avoiding overvoltages. 

Important feeder data such as PVs, transformer, lines, and loads, will be given in 

the tables below. 

Table 3. Photovoltaic systems installed in Feeder Sub-Urb. 

In Table 3, relevant data of PVs installed in the feeder are given.  

It shows that each PV has a different installed power which also means they will 

have a different time characteristic. 

 
Load 

Name 
Act.Pow.[kW] React.Pow.[kVAr] 

I 

[kA] 
Pow.Fact. 

Load01 200 120 0,337 0,857 

Load02 200 120 0,337 0,857 

Load03 180 80 0,284 0,914 

Load04 240 160 0,416 0,832 

Load05 120 60 0,194 0,894 

Load06 120 40 0,183 0,949 

Load07 400 200 0,645 0,894 

Load08 200 100 0,323 0,894 

Load09 120 20 0,176 0,986 

Load10 120 40 0,183 0,949 

Load11 90 60 0,156 0,832 

Name Act. Power [kW] Pow.Fact. 
Efficiency 

[%] 
Tilt Angle [deg] Inom [kA] 

Low.V limit 

[p.u] 

Up.V limit 

[p.u] 

DG PV08_L27 1450 0,95 98,4 44 2,165 0,9 1,1 

DG PV09_L10 790 0,95 98,4 44 1,155 0,9 1,1 

DG PV03_L20 666 0,95 98,4 44 1,01 0,9 1,1 

DG PV01_L08 500 0,95 98,4 44 0,866 0,9 1,1 

DG PV04_L24 511 0,95 98,4 44 0,794 0,9 1,1 

DG PV02_L33 355 0,95 98,4 44 0,577 0,9 1,1 

DG PV10_L31 367 0,95 98,4 44 0,57 0,9 1,1 

DG PV07_L14 290 0,95 98,4 44 0,433 0,9 1,1 

DG PV05_L17 276 0,95 98,4 44 0,404 0,9 1,1 

DG PV11_L23 235 0,95 98,4 44 0,354 0,9 1,1 

DG PV13_L04 172 0,95 98,4 44 0,253 0,9 1,1 

DG PV06_L02 106 0,95 98,4 44 0,159 0,9 1,1 

DG PV12_L22 32 0,95 98,4 44 0,13 0,9 1,1 
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Load12 120 70 0,201 0,864 

Load13 120 70 0,201 0,864 

Load14 240 160 0,416 0,832 

Load15 120 20 0,176 0,986 

Load16 120 40 0,183 0,949 

Load17 120 40 0,183 0,949 

Load18 180 80 0,284 0,914 

Load19 180 80 0,284 0,914 

Load20 180 80 0,284 0,914 

Load21 180 80 0,284 0,914 

Load22 180 80 0,284 0,914 

Load23 180 100 0,297 0,874 

Load24 840 400 1,343 0,903 

Load25 840 400 1,343 0,903 

Load26 120 50 0,188 0,923 

Load27 120 50 0,188 0,923 

Load28 120 40 0,183 0,949 

Load29 240 140 0,401 0,864 

Load30 400 200 0,645 0,894 

Load31 300 140 0,478 0,906 

Load32 420 200 0,671 0,903 

Load33 120 80 0,208 0,832 

Table 4. Loads of Sub-Urb feeder 20 [kV] 

Table 4 shows the loads of the feeder, their active power and reactive power, 

nominal current, and power factor. 

Name Type 
Length 

[km] 

Inom 

[kA] 

X' 

[Ω/km] 

R'(AC,20°C) 

[Ω/km] 

Line 01 AL/FE_70/12 0,0412 0,235 0,3960 0,4430 

Line 02 AL/FE_70/12 0,0412 0,235 0,3960 0,4430 

Line 03 AL/FE_70/12 0,0412 0,235 0,3960 0,4430 

Line 04 AL/FE_70/12 0,0412 0,235 0,3960 0,4430 

Line 05 AL/FE_70/12 0,0528 0,235 0,3960 0,4430 

Line 06 AL/FE_70/12 0,1320 0,235 0,3960 0,4430 

Line 07 AL/FE_35/6 0,0528 0,145 0,4210 0,8200 

Line 08 AL/FE_50/8 0,0412 0,170 0,4090 0,5900 

Line 09 AL/FE_50/8 0,0198 0,170 0,4090 0,5900 

Line 10 AL/FE_50/8 0,1320 0,170 0,4090 0,5900 

Line 11 AL/FE_50/8 0,0528 0,170 0,4090 0,5900 

Line 12 AL/FE_35/6 0,0412 0,145 0,4210 0,8200 

Line 13 AL/FE_50/8 0,1320 0,170 0,4090 0,5900 

Line 14 AL/FE_25/4 0,0198 0,125 0,4780 1,2000 

Line 15 AL/FE_50/8 0,0528 0,170 0,4090 0,5900 

Line 16 AL/FE_50/8 0,1320 0,170 0,4090 0,5900 
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Line 17 AL/FE_50/8 0,0528 0,170 0,4090 0,5900 

Line 18 AL/FE_50/8 0,3630 0,170 0,4090 0,5900 

Line 19 AL/FE_50/8 0,0198 0,170 0,4090 0,5900 

Line 20 AL/FE_50/8 0,0198 0,170 0,4090 0,5900 

Line 21 AL/FE_25/4 0,0198 0,125 0,4780 1,2000 

Line 22 AL/FE_50/8 0,2310 0,170 0,4090 0,5900 

Line 23 AL/FE_50/8 0,1155 0,170 0,4090 0,5900 

Line 24 AL/FE_35/6 0,0412 0,145 0,4210 0,8200 

Line 25 AL/FE_70/12 0,2310 0,235 0,3960 0,4430 

Line 26 AL/FE_35/6 0,0528 0,145 0,4210 0,8200 

Line 27 AL/FE_35/6 0,0412 0,145 0,4210 0,8200 

Line 28 AL/FE_35/6 0,1320 0,145 0,4210 0,8200 

Line 29 AL/FE_25/4 0,0198 0,125 0,4780 1,2000 

Line 30 AL/FE_25/4 0,0198 0,125 0,4780 1,2000 

Line 31 AL/FE_50/8 0,1155 0,170 0,4090 0,5900 

Line 32 AL/FE_25/4 0,0248 0,125 0,4780 1,2000 

Line 33 AL/FE_35/6 0,3630 0,145 0,4210 0,8200 

Line 34 AL/FE_70/12 0,2310 0,235 0,3960 0,4430 

Table 5. Feeder Sub-Urb 20 [kV] Lines data. 

In Table 5 we see the data for lines. They all are of type AL/FE (Aluminum 

Conductor Steel Reinforced - ACSR), but of different cross sections.  

Their resistance and reactance are given as well. 

In the next table we will see the data of transformers used in this feeder. 

Name Auto.Tap 
Sn 

[MVA] 

Shc 

Volt. 

[%] 

Cop.Los

.[kW] 

Ph.Shift 

[*30deg] 

HV-

rtd.Volt.[kV] 

LV-

Rtd.Volt.[k

V] 

TR-PV01 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV11 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV02 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV03 Yes 1,600 5,0 17,9 5 20,0 0,4 

TR-PV04 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV05 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV06 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV07 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV08 Yes 1,600 5,0 17,9 5 20,0 0,4 

TR-PV09 Yes 1,600 5,0 17,9 5 20,0 0,4 

TR-PV10 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV12 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR-PV13 Yes 0,630 4,0 8,4 5 20,0 0,4 

TR1 No 0,315 6,0 4,0 7 20,0 0,4 

TR10 No 0,160 4,0 2,8 5 20,0 0,4 

TR11 No 0,160 4,0 3,1 5 20,0 0,4 
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TR12 No 0,250 6,0 3,7 5 20,0 0,4 

TR13 No 0,250 6,0 3,7 5 20,0 0,4 

TR14 No 0,400 6,0 4,8 5 20,0 0,4 

TR15 No 0,160 4,0 3,1 5 20,0 0,4 

TR16 No 0,160 4,0 3,1 5 20,0 0,4 

TR17 No 0,160 4,0 3,1 5 20,0 0,4 

TR18 No 0,315 6,0 4,0 7 20,0 0,4 

TR19 No 0,315 6,0 4,0 7 20,0 0,4 

TR2 No 0,315 6,0 4,0 7 20,0 0,4 

TR20 No 0,315 6,0 4,0 7 20,0 0,4 

TR21 No 0,315 6,0 4,0 7 20,0 0,4 

TR22 No 0,315 6,0 4,0 7 20,0 0,4 

TR23 No 0,315 6,0 4,0 7 20,0 0,4 

TR24 No 1,000 6,0 9,6 1 20,0 0,4 

TR25 No 1,250 6,0 11,0 5 20,0 0,4 

TR26 No 0,160 4,0 3,1 5 20,0 0,4 

TR27 No 0,160 4,0 3,1 5 20,0 0,4 

TR28 No 0,160 4,0 3,1 5 20,0 0,4 

TR29 No 0,400 6,0 4,8 5 20,0 0,4 

TR3 No 0,315 6,0 4,0 7 20,0 0,4 

TR30 No 0,630 4,0 8,4 5 20,0 0,4 

TR31 No 0,400 6,0 4,8 5 20,0 0,4 

TR32 No 0,630 4,0 8,4 5 20,0 0,4 

TR33 No 0,400 6,0 4,8 5 20,0 0,4 

TR4 No 0,400 6,0 4,8 5 20,0 0,4 

TR5 No 0,250 4,3 3,6 5 20,0 0,4 

TR6 No 0,160 4,0 3,1 5 20,0 0,4 

TR7 No 0,630 4,0 8,4 5 20,0 0,4 

TR8 No 0,630 4,0 8,4 5 20,0 0,4 

TR9 No 0,160 4,0 3,1 5 20,0 0,4 

Table 6. Feeder Sub-Urb 20 [kV] Transformer data. 

In Table 6 we have the transformer data of our feeder. The names of the 

transformers in the feeder tell whether that transformer is connected to a PV system 

or it is just an ordinary transformer. 

As far we are concerned, the second column is the most important one because it 

shows whether that transformer is equipped with an E-OLTC or not. As expected, 

the transformers connected to PV systems are, while the ordinary transformers are 

not equipped with automatic tap changers. 

Now that the feeder is modelled, we can move on to the next step which is creating 

the characteristics of loads and PVs. 
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4.3. Generating, extracting, and preparing the data 

Feeder Sub-Urb has a peak PV production of 8.28 [MVA] while the peak aggregate 

load is 5.95 [MVA]. 

This study-case contains around 2,978,400 data values in total! 

Since our PowerFactory model is complete, we will start to prepare the data. 

The tasks that must be completed at this phase will be dealt with one by one in this 

subchapter. All works done here were using Python and PowerFactory almost 

exclusively. 

4.3.1. Creating time characteristics for PVs 

To obtain the correct outputs for the photovoltaic plants of this feeder, real 

irradiation data will be used. 

The European Commission has developed a tool called PVGIS which gives access 

to their irradiation databases. 2 There are three databases in total. In our case, the 

chosen irradiation database is PVGIS-SARAH2, as it is also the system’s default one. 

Of course, not all PVs are in the same pinpoint, however, they are close enough 

between each other for us to consider that they are subject to the same irradiation. 

The interface of PVGIS tool is shown below in Figure 45. 

 

Figure 45. EU Commission's PVGIS tool – Sub-Urb feeder irradiation. 

As seen from the map, feeder Sub-Urb is based in Piana degli Albanesi in Sicily. 

From the website’s interface, we first regulate the settings according to our study 

then download the irradiation data. 

 
2 https://re.jrc.ec.europa.eu/pvg_tools/en/ 
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The Mounting Type chosen is Fixed, as it is the cheapest and most common one. 

That means the panels will be fixed in a position determined by a slope, which is 

automatically optimized by the system using the given location’s coordinates. The 

PV technology is Crystalline Silicon as it is the most common one. Its system losses 

are left to default. The database offers information on Direct Normal Irradiance data 

(DNI), Diffuse Horizontal Irradiation (DHI), and Global Horizontal Irradiance 

(GHI), however, it also offers data directly in terms of power, measured in kilowatt, 

which is much easier to work with. 

As for the installed peak PV power [kWp], it is purposely left at 1 [kWp].  

Since we have 13 PVs in Feeder Sub-Urb, each with a different installed peak power, 

it would be inefficient to download and then compile 13 sets of data. Because our 

PVs get the same sunshine at all times, we can use normalization to build a ‘0 to 1 

scaled’ irradiation characteristic for the entire period.  

This the normalized PV characteristic that shows the irradiation represents a vector. 

Let’s call this vector Ipv since it represents irradiation. 

𝐈𝐩𝐯 = (0, 0, 0, … , 0.89, 0.91, 0.93, 0.88, … )1 × 17520 

Ipv contains hourly values of active power outputs measured in [kW], for an 

arbitrary PV system that has 1 [kWp] installed power. 

Now, we create another vector of our PVs installed peak power, using data from 

Table 3, column of Active Power [kW]. Let’s call this vector Ppv. 

𝐏𝐩𝐯 = (1450, 790, . . , 32)1𝑥13 

Ppv contains the active powers [kW] of each PV system in our feeder, 13 in total. 

If we multiply vectors Ipv and Ppv, we will get a matrix of size 17520×13, where 

each column will represent the active power output of their respective PV system, 

and the rows would represent the time-steps. 

𝐏𝐨 = (𝐈𝐩𝐯’ ×  𝐏𝐩𝐯)17520𝑥13 

Matrix Po has the characteristics for each PV system. It suffices to save this matrix 

and then access its relevant columns. Note that Ipv is transposed as the inner 

dimensions of two vectors being multiplied must match. The columns can be sorted 

by name. 
 

PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9 PV10 PV11 PV12 PV13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 
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... ... ... ... ... ... ... ... ... ... ... ... ... ... 

17515 0 0 0 0 0 0 0 0 0 0 0 0 0 

17516 0 0 0 0 0 0 0 0 0 0 0 0 0 

17517 0 0 0 0 0 0 0 0 0 0 0 0 0 

17518 0 0 0 0 0 0 0 0 0 0 0 0 0 

17519 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 7. PV characteristics - Sub-Urb Feeder. 

At first glance, matrix Po in Table 7 can look wrong with all these zeros.  

In fact, that is not the case. It just so happens that the hours seen in the table are 

night-time hours, meaning there is no irradiation, consequently, no PV production. 

To avoid confusion,  Table 8 shows Po values of some random hours of our 2-year 

period. 

  
PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9 PV10 PV11 PV12 PV13 

4440 0 0 0 0 0 0 0 0 0 0 0 0 0 

4441 0 0 0 0 0 0 0 0 0 0 0 0 0 

4442 0 0 0 0 0 0 0 0 0 0 0 0 0 

4443 0 0 0 0 0 0 0 0 0 0 0 0 0 

4444 3 2 4 3 2 1 2 9 5 2 1 1 1 

4445 21 15 28 21 11 4 12 60 33 15 10 4 7 

4446 79 56 105 80 43 17 46 228 124 58 37 14 27 

4447 168 119 223 171 93 36 97 486 265 123 79 30 58 

4448 246 175 328 252 136 52 143 714 389 181 116 44 85 

4449 309 219 411 316 170 65 179 895 488 227 145 56 106 

4450 343 244 457 351 189 73 199 995 542 252 161 62 118 

4451 358 254 476 365 197 76 207 1037 565 262 168 64 123 

4452 348 247 464 356 192 74 202 1010 550 256 164 63 120 

4453 326 231 434 333 180 69 189 945 515 239 153 59 112 

4454 280 199 373 286 154 59 162 811 442 205 131 50 96 

4455 212 151 283 217 117 45 123 615 335 156 100 38 73 

4456 126 89 167 128 69 27 73 364 199 92 59 23 43 

4457 44 31 58 45 24 9 25 126 69 32 20 8 15 

4458 14 10 19 14 8 3 8 41 22 10 7 3 5 

4459 0 0 0 0 0 0 0 0 0 0 0 0 0 

4460 0 0 0 0 0 0 0 0 0 0 0 0 0 

4461 0 0 0 0 0 0 0 0 0 0 0 0 0 

4462 0 0 0 0 0 0 0 0 0 0 0 0 0 

4463 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 8. PV outputs of a random period - Sub-Urb feeder. 

In this table, a quick review of any of the columns indicates a power production 

curve that is in line with usual PV output in a full day. 

After Po is saved to ‘.csv’, the characteristic of any PV plant can be directly accessed 

from PowerFactory using Po.csv file with the relevant column as an address.  

Another approach is to use Pandas library of Python and save each column of this 
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dataframe as an individual ‘.csv’ file, then access those files from PowerFactory 

without needing to specify the column. 

One such PV characteristic as the ones created is given in Figure 46. 

Figure 46. PV01 Active power output characteristic [kW]. 

In this case, the characteristic of PV1 was extracted from column 1 of Po. 

Same goes for all PVs in the feeder which will be automatically used in the Quasi-

Dynamic Simulation, a step for each load flow it runs. 

4.3.2. Creating time characteristics for loads 

The methods of creating time characteristics of loads do not differ too much in 

principle from the methods of creating time characteristics of PV outputs. 

At this point, the only data we have are maximum values of loads (yearly peaks). 

Obtaining several real load profiles from distribution companies is hard, therefore 

a little bit of improvisation is inevitable.  

First, a yearly load profile of a residential consumer is secured and analyzed. If that 

load profile proves to be reliable and matches the type of loads connected to our 

feeder, which in this case are households mainly, then we can use that load profile 

for all of our loads, again, with normalization.  

The load profile is first scaled from 0 to 1, so it becomes a unit load profile. If the 

vector of that load profile is of 2 years, even better. Let’s call that vector of raw load 

profile data Lr. 

𝐋𝐫 = (𝐿ℎ1, 𝐿ℎ2 , 𝐿ℎ3, … , 𝐿ℎ17520)1𝑥17520 



4| CASE STUDY I – 20 [kV] feeder Sub-Urb, Sicily. 63 

 

 

Lr has 17520 values, each representing the load at a certain hour. If the highest 

values of Lr is Lrmax, then then the normalized vector, let’s call it Ln, will be an 

elementwise division of Lr to Lrmax. 

Ln = Lr/Lrmax 

Ln is unit load profile as it is Lr normalized, that means its values will range from 0 

to 1, and the matrix’s dimensions are unchanged. Ln gives us an appropriate base 

to build load profiles for all other loads in the feeder. It is important to remember 

that we already have the peak values of each load.  

 

Figure 47. Unit Load Profile Ln. 

Figure 47 shows the characteristic of the normalized or unit load profile, which is 

scaled from 0 to 1. Practically speaking, this will be the characteristic for all the 

loads, only the magnitude will change. 

Let’s build a new vector and call it Lp. Lp consists of peak values of loads in the 

feeder. 

𝐋𝐩 = (𝐿𝑝1, 𝐿𝑝2 , 𝐿𝑝3, … , 𝐿𝑝33)1𝑥33 

Lp contains the peak values of 33 loads of Sub-Urb Feeder.  

If we now multiply the normalized load profiles vector Ln, with the vector of peaks 

Lp, we will get the matrix of all load characteristics of the feeder. Let’s call this 

matrix L. 
𝐋 = (𝐋𝐧’ ×  𝐋𝐩)17520𝑥33 
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Again, Ln has to be transposed to be compatible for a vectorial multiplication with 

Lp. 

So far, we referred to the load but we did not specify which parameter it was really 

though intuitively it could have inferred Apparent Power [kVAr]. 

In fact, Lp is just for illustration as in reality our load data contains both Active 

Power (Pp) and Reactive Power (Qp) components. The principle does not change, 

it just means that the process has to be done twice for Pp and Qp, instead of just 

once for Lp. 

That means, our matrix of loads L has in fact dimensions of 17520 × 66, where for 

each of the feeder’s 33 loads, we have the values for active and reactive power. 

We can now take a look at the final matrix of loads L. 

  P1 P2 P3 P4 P5 P6 P7 P8 … Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 

0 57 52 69 35 35 116 59 35 ... 113 114 14 14 12 40 58 40 55 

1 50 46 60 31 30 102 52 31 ... 99 100 13 13 10 35 51 35 49 

2 47 43 56 29 28 95 48 28 ... 92 93 12 12 9 32 47 32 45 

3 47 43 56 29 28 95 48 28 ... 92 93 12 12 9 32 47 32 45 

4 50 46 60 31 30 102 52 31 ... 99 100 13 13 10 35 51 35 49 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

17515 143 131 171 88 87 291 149 88 ... 282 286 36 36 29 100 145 99 139 

17516 136 124 163 84 83 276 141 83 ... 268 271 34 34 28 95 138 94 132 

17517 124 113 148 76 75 251 128 76 ... 243 246 31 31 25 86 125 85 120 

17518 100 92 120 62 61 204 104 61 ... 197 200 25 25 20 70 101 69 97 

17519 77 70 92 48 47 156 80 47 ... 152 154 19 19 16 54 78 53 75 

Table 9. Matrix of loads in Sub-Urb feeder 

Load characteristics can be extracted in a similar fashion with last time where 

individual PV outputs were extracted from the big matrix, i.e., using columns. First, 

matrix L is exported in ‘.csv’ format or any other supported format. 

So, each load will have two characteristics, one for active power and one for reactive 

power. In PowerFactory, we must assign the relevant column of matrix L to the 

specific load and specific parameter. For example, for the active power characteristic 

of Load 23 connected at Busbar23, we access Load 23 settings window and refer the 

active power characteristic to column 23 of matrix L.  

Alternatively, each column of L can be saved as an independent file and then 

accessed from PowerFactory’s relevant Load/Parameter without having to specify 

the column. 

One of the 66 characteristics is graphed in Figure 48. 
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Figure 48. Active Power characteristic of Load 12 in Sub-Urb feeder [kW]. 

4.4. Running the Quasi-Dynamic simulation and 

exporting the results of Tap Positions 

This step is probably the core one. All relevant prerequisites of this section were 

already introduced in 4.1.2. Therefore, here, the focus is on the graphical 

representation of parameters and the results of the Q-D simulation. 

It is important to keep in mind that the Q-D simulation will be run twice, the first 

time without automatic tap changers and the second one with automatic tap 

changers. This will be done in order to compare the results between the two, which 

effectively would help understanding the effect of E-OLTCs in our network. A good 

comparison is the number of voltage constraints violations caused in each of the 

cases. 

Building the characteristics for PVs and loads were discussed in the last two 

sections, but we have not seen these parameters visualized altogether as a whole, 

instead, here we will see the superposed curves of the loads and PVs. 

Figure 49 shows the characteristics of all 13 PV systems in our network. This is none 

other than a graphical representation of Table 7 (matrix Po). 
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They are all different in magnitude because they installed peak power differs. 

However, as described at the beginning of this chapter, the irradiation is the same 

for all of them, as there are no vast sunshine differences in areas as small as the ones 

an MV feeder occupies.  

A graphical representation  that covers 2 whole years may have a resolution a bit 

too high to see clearly what is going on. 

Figure 51 represents the same characteristics but it is zoomed in a random period of 

the year. 

These curves show the PV outputs for a few days. From the graphics, one can infer 

that PV outputs are subject to meteorological changes such as clouds, rain etc. 

 

 

Figure 49. PV Outputs of Sub-Urb feeder (first year) [kW]. 

 

Figure 50. PV Outputs of Sub-Urb feeder (second year) [kW]. 
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Since all PVs have the same characteristic, some of the PV outputs may not be visible 

in the graph, as they hide behind each other. 

 

Figure 51. PV Output Sub-Urb feeder of random 5 days [kW]. 

Next, let’s see the feeder’s loads in Figure 52. As explained earlier, load 

characteristic does not change in the second year, it suffices that PV generation 

changes.  

 

Figure 52. Loads (active power) of feeder Sub-Urb [kW]. 
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Since matrix L contained both active and reactive powers of loads, this figure 

corresponds to the first half of Table 9 (matrix L). Figure 53 shows the same 

characteristic, zoomed into a short period of the simulation. The hourly steps are 

visible here. 

 

Figure 53. Loads (active power) in Sub-Urb feeder, zoomed in [kW]. 

Let’s see both these load graphs again, this time for the reactive power instead. 

These characteristics correspond to the second half of Table 9. Matrix of loads in 

Sub-Urb feeder (matrix L).  

Figure 54. Loads (reactive) of Sub-Urb feeder [kVAr]. 
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Figure 55. Loads (reactive) of Sub-Urb feeder, zoomed, [kVAr]. 

Not many differences, although each load has their specific power factor. 

Characteristics of PV outputs and loads are the same regardless of whether the 

automatic tap changer is employed or not. As planned, from here we proceed with 

running two Q-D simulations, first without E-OLTCs then with E-OLTCs.  

First let’s take a look at the Q-D Simulation without employing the automatic tap 

changers (ATP). 

 

Figure 56. Q-D simulation without Automatic Tap changers - Tap positions 
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Since ATP is off, of course that taps of transformers will remain at their neutral 

position (0) for the whole duration of the analysis. 

The simulation is done as explained, now the results of the simulation must be 

exported to a suitable format. After exporting the results from PowerFactory to a 

file named ‘Sub-Urb_noEOLTC.csv’, we will use Pandas library of Python to work 

on the saved data. 

import pandas as pd 
 

SU_raw_noEOLTC = pd.read_csv('QD_Sub-Urb_noEOLTC.csv', delimiter=';')  

This file contains all sorts of parameters for all elements of the feeder, however, 

since this is our Q-D analysis without ATP, the only service we need here is to 

extract the number of voltage violations. 

Therefore, we will delete the rest of the data, and only keep the 13 columns that 

show the voltage results at the busbars where PVs are connected. That is because 

we are considering that busbars connected directly where the energy is injected will 

be the most critical ones, and if they do not suffer overvoltages, the rest of the 

network can be considered as good to go. 

SU_voltages_noEOLTC = SU_raw_noEOLTC.iloc[:,:-13]  

We have now created a new dataframe named ‘MI_voltages_noEOLTC’ that has 

copied the last 13 columns of the previous dataframe. 

Now all there is left is to count the over-voltage constraint violations. Under-

voltages are not considered as they are not the problem when dealing with high DG 

penetration. The violations will be divided in two groups, violations over 5% and 

violations over 10%.  

SU_noEOLTC_violations_5percent = (SU_voltages_noEOLTC>1.05).sum().sum()  
print(SU_noEOLTC_violations_5percent) 
21924 

 

SU_noEOLTC_violations_10percent = (SU_voltages_noEOLTC>1.1).sum().sum()  
print(SU_noEOLTC_violations_10percent) 
0  

Always according to ENTSO-E [8], Sub-Urb feeder experiences 21924 over-voltage 

violations in a 2-year timespan. All of them are between 5% and 10% over the 

nominal voltage, so 1.05 [p.u] to 1.1 [p.u]. On the other hand, Sub-Urb feeder has no 



4| CASE STUDY I – 20 [kV] feeder Sub-Urb, Sicily. 71 

 

 

overvoltages that go beyond 10% of the nominal voltage, which is quite optimal 

already.  

 

Figure 57. Voltages in Sub-Urb feeder without ATPs [p.u]. 

As Figure 57 shows, Sub-Urb feeder performs quite well although not perfect. That 

is all as far as Q-D analysis is concerned about the no ATP case.  

Next comes the Q-D analysis with ATP, after which, the numbers of violations 

between the two cases will be compared. 
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Figure 58. Q-D Analysis with ATP – Tap Positions. 

Differently from  Figure 56 where ATPs were off, Figure 58 shows that E-OLTCs are 

working as the state of the network changes. Since the chosen period is January, 

there aren’t many jumps between tap positions. 

This graphic is zoomed in to get a clearer view of what happens. For each step of 

the simulation, the tap position of each transformer will be saved to be later used in 

the ML algorithm. 

Next we analyze the voltages in all busbars where PVs are connected. 

Busbar names are correlated to the PV systems that are connected to them. As we 

see, busbar 1, due to its physical position in the grid, is almost always at a higher 

voltage than 1.0 [p.u], however, it never causes any overvoltage violations as it 

never reaches 1.05 [p.u]. 
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Figure 59. Voltages of feeder Sub-Urb with ATP [p.u].  

As a matter of fact, Figure 59 shows that upon employing E-OLTCs, there will not 

be any voltage constraint violation, not even undervoltages. All the values are 

between 0.95 [p.u] and 1.05 [p.u]. So, although the feeder was doing quite well, it 

has improved even further. Since there are no under-voltages, LVRs will not be 

added to this feeder. 

At this point, needless to say, E-OLTCs have shown great results, going from 

around 22 thousand instances of overvoltages, down to zero. 

Similar to the previous case, we will use Pandas to count and verify the results. 

import pandas as pd 
 

SU_raw_withEOLTC = pd.read_csv('QD_SU_withEOLTC.csv', delimiter=';') 

 

SU_voltages_withEOLTC = SU_raw_withEOLTC.iloc[:,:-13] 

 

SU_withEOLTC_violations_5percent = (SU_voltages_withEOLTC>1.05).sum().sum()  
print(SU_withEOLTC_violations_5percent) 
0 

 

SU_withEOLTC_violations_10percent = (SU_voltages_withEOLTC>1.1).sum().sum()  
print(SU_withEOLTC_violations_10percent) 
0  
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In conclusion, using E-OLTCs in Sub-Urb feeder makes 100% of voltage violations 

disappear. As expected, the results from the code confirm what Figure 59. 

All there is left to do now is to use the exported data we got from running the Q-D 

simulation with ATP and continue with preparing it for the Machine Learning part. 

4.5. Cleaning, re-organizing and filling the missing 

data points 

Now that we have run the Q-D Simulation and extracted the files, we will need to 

prepare the files for the ML algorithm. 

First, we create a dataframe from the Q-D simulation results. 

import pandas as pd 

 

SU_raw = pd.read_csv('QD_Sub-Urb_withEOLTC.csv', delimiter=';')  

Let’s check whether there is any missing data. 

(SU_raw == 'NaN').sum().sum() 
0  

In Python, string ‘NaN’ means Not a Number, and it indicates missing data which 

may prove problematic later. In our dataset, there are no missing values as the 

results shows zero. In these cases, there is no need to fill any data. The ‘sum()’ 

method used is to first sum the number of NaN values across rows, then across 

columns, which gives us the total number of NaN values in the whole dataset. 

The columns of our data aren’t necessarily ordered as we need them, so let’s sort 

them lexicographically. 

SU_raw = SU_raw.reindex(sorted(SU_raw.columns), axis=1)  

If when exporting the results we also opted to save the busbar voltages, those 

columns must be deleted as they are not inputs for our ML algorithm.  

To reiterate, as inputs or features for the ML algorithm we will use: 

• Loads (Active Power) 

• Loads (Reactive Power) 

• PV Outputs (Active Powers) 

• PV Outputs (Reactive Powers) 

While as outputs or labels for the ML algorithm we will use Tap Positions only. 

As far as PV Outputs are concerned, the power factor is considered 0.95 in all cases, 

therefore Active and Reactive powers hold the same interrelation at all times.  
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A power factor of 0.95 was chosen as it is the worst case scenario and the limit 

allowed in many countries. In reality, modern inverters have a power factor range 

that goes up to 0.99. 

4.6. Dividing and exporting the dataset features and 

labels 

At this point our data is clean, complete, and only contains the columns of inputs 

and outputs that we will use directly in the algorithm. 

It means, we will have 105 columns in total, as follows: 

• 33 columns for active powers of loads 

• 33 columns for reactive powers of loads 

• 13 columns for PVs active power outputs 

• 13 columns for PVs reactive power outputs 

• 13 columns for Transformers Tap Positions 

 

Table 10 represents the prepared dataframe of our full dataset, including both 

inputs and outputs. This dataframe has a size of 17520 × 105.  

  PLoad01 QLoad01 … PV01_P PV01_Q … 
TR-

PV01 
… 

0 57 34 … 0 0 … -1 … 

1 50 30 … 0 0 … -1 … 

2 47 28 … 0 0 … -1 … 

3 47 28 … 0 0 … -1 … 

4 50 30 … 0 0 … -1 … 

… … … … … … …  … … 

Table 10. Final data -  inputs and outputs 

Now, we have to divide the features (inputs) and labels (outputs) into separate ‘.csv’ 

files. We already know that the last 13 columns are our columns of the outputs, 

therefore the following ensues: 

X = SU_raw.iloc[:,:-13] 
X.to_csv('X.csv') 
 

y = SU_raw.iloc[:, -13:] 
y.to_csv('y.csv')  

However, there is one more issue. In our DNN algorithm, we will use binary 

classification for multiple outputs. On the outputs, we will have a neuron for each 

tap position of all transformers, so in this case we will have 5∙13=65 neurons. This 
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means that we have to find a way to transform our outputs from integer values (-2, 

-1, 0, 1, 2) to some binary notation. 

The way to do that is by assigning zeros and ones to each possible tap position. For 

example, if the tap position is at (-1), instead of the result being simply ‘-1’, now it 

will have to be [0, 1, 0, 0, 0]. So, in a vector of 5 binaries, a one will be assigned to 

the correct position and zeros to the rest. This means, our outputs file ‘y’ will now 

become of size 17520×65, instead of 17520×13 as it was earlier. 

This way, we will have 5 outputs for each transformer, and these outputs will be 

either zeros or ones. Figure 35 offers a general topology.  

After completing this operation, ‘y’ will be overwritten. 

The data are now split into inputs and outputs and saved in external files, ready to 

be used in the algorithm. This step concludes the long process of data preparation. 

4.7. Coding the Deep Neural Network in Python 

Now that we have our features file and labels file ready, we can start to build the 

Deep Neural Networks. In this section, the algorithm will be explained step by step. 

The first step always is importing the relevant libraries.  

import pandas as pd 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt  

These are the basic libraries we start with, however, more libraries will be needed 

later, so they will be imported during the process. 

Let’s continue by importing the files we have prepared earlier. 

X = pd.read_csv('X.csv') 

y = pd.read_csv('y.csv')  

If the files we need are saved in a different folder, the directory must be adapted. 

Panda’s ‘read_csv’ method uses comma as its default delimiter, however, if the files 

are saved on Excel for example, that must be adapted as well. 

A machine learning algorithm will take examples of correct inputs and outputs and 

try to learn from them. However, the algorithm will have to make sure that it is not 

overfitting a certain dataset and will be failing new datasets. This was covered in 

detail in 3.1.3.  

The way to avoid overfitting is by shuffling the dataset really well, i.e., randomly, 

and then dividing it in two parts, one for training, and the other for validation. 
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This means that our algorithm will train and improve itself using some data, and 

after it reaches an acceptable result with that data, it will test itself with new, unseen 

data, called testing data. In an optimal model, the results of the training set and the 

test set should be similar. The ratio of the testing set and the training set depends 

on the overall amount of training examples we have. In our case, since we have 

17520 training examples, we can afford to leave only 20% of our data for the testing 

set. Now they will be split. 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=74)  

Here we needed to import function ‘train_test_split’, of module ‘model_selection’, 

from ‘sklearn’ library of Python. This module shuffles your dataset according to a 

random seed of your choice. Then splits it in a training set and a testing set. The 

arguments passed are the files we imported earlier, then the test size relative to the 

total number of training examples. In our dataset, 80% is used to train the model 

and 20% is used to test or to validate the model. 

When we have all sorts of inputs such as powers, voltages, integers representing 

tap positions etc., there might be large disparity in magnitudes. For example, 

powers can be in the order of hundreds or thousands, while voltages in per unit are 

around 1, that discrepancy boggles the algorithm. To avoid that, we use scaling on 

the inputs as for outputs it is not needed. Yet again, there exists a high-level 

programming module that does it for the user, without having to code low-level 

functions. Let’s see that next. 

from sklearn.preprocessing import MinMaxScaler 

 

scaler = MinMaxScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test)  

Module ‘MinMaxScaler’ will fit our training data only, where it will find a suitable 

range and scale all the data to it. The testing data is not scaled as we emulate the 

real-life case where we have no information about it. So, both the training and 

testing sets are scaled to the training scale, here called ‘scaler’. 

Our data is shuffled, split, and now scaled as well. Everything is ready for the 

Neural Network to be built. 
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The neural network is built as follows, 

 
from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout 

 

model = Sequential() 

 

model.add(Dense(92, activation='relu')) 

model.add(Dense(82, activation='relu')) 

model.add(Dense(72, activation='relu')) 

 

model.add(Dense(65, activation='sigmoid')) 

 

model.compile(optimizer='adam',loss='binary_crossentropy')  

Thanks to Tensorflow/Keras libraries, what once took quite some time to be coded, 

now is done in just a few lines, although this is only our primitive DNN model that 

will go on evolving. 

Method ‘Sequential’ builds the Neural network, then, we add layers to it using 

method Dense. 

Dense takes two mandatory arguments: the number of neurons and the activation 

function. We have discussed both in the previous chapter.  

In the first layer, the number of neurons is 92, as per a rule of thumb stating that the 

number of neurons in the input layer should be pretty much the same as the number 

of total inputs. The activation function is ReLU of Figure 29.  

Another empiric law is that the number of neurons should be reduced in half on 

every layer, but since our last layer has to have 65 neurons, we have to reduce less 

neurons on each layer. 

The number of neurons in the output layer, however, cannot be different from the 

number of outputs. If they do not match, the program will indicate an error, which 

is the reason why we have 65 layers on our output layer. The activation function 

here is Sigmoid of Figure 27. Sigmoid will give high-resolution probability values 

from 0 to 1. 

Since there are two layers in the hidden layer, this is considered a Deep Neural 

Network. 

The final line compiles all the data of our DNN by optimizing the learning rate using 

an optimizer named ‘adam’ which is the best one, and by choosing the desired loss 

function, which in our case has to be ‘binary_crossentropy’ as we are dealing with 

outputs that must normally be either zero or one. 

The modelling is done, now is time to train our model. 

model.fit(x=X_train, y=y_train, epochs=250)  
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This is the most basic fitting option where the training inputs and outputs are 

passed as arguments together with the number of epochs. An epoch is a complete 

run of all inputs into the model. So, when all training examples go through the 

model by forward propagation, then they come back by backward propagation and 

update the weights and biases, that counts as an epoch. The more epochs, the more 

the model is trained. 250 epochs is just an arbitrary number. 

For each epoch, the program returns the results of the loss function. 

Epoch 1/250 

438/438 [==============================] - 2s 2ms/step - loss: 0.0705 

Epoch 2/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0300 

Epoch 3/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0291 

Epoch 4/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0287 

Epoch 5/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0285 

… 

Epoch 246/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0253 

Epoch 247/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0252 

Epoch 248/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0252 

Epoch 249/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0252 

Epoch 250/250 

438/438 [==============================] - 1s 2ms/step - loss: 0.0252  

It is not practical to add results of 500 epochs as that takes many pages, however, 

even with the first few and the last few epochs, we see that the values of loss 

function as very low. A better idea is to graphically visualize the loss function 

throughout the epochs. 

import matplotlib.pyplot as plt 

 

loss =pd.DataFrame(model.history.history) 

plt.plot(loss)  

Figure 60 shows the loss function values as the number of epochs increase. This is 

not exactly  a typical DNN loss function curve as perhaps the learning is 

happening a bit too fast. 

That could be reasoned by the robustness of this DNNs, that is used for very 

complex problems. In this case, since all the parameters have clear numerical 

relations between each other, the machine is able to learn everything exceptionally 

fast. 



80 4| CASE STUDY I – 20 [kV] feeder Sub-Urb, Sicily. 

 

 

 

Figure 60. Loss function as Epochs increase. 

Up until now, we trained the model using our training set, and we saw the loss 

function decreasing very fast in the first few epochs, after which not many changes 

occurred. Now, we put our model to test by having it predict our test data that it 

was not trained with, meaning that the model now will deal with unseen data. 

model.evaluate(X_test, y_test, verbose=0) 
0.027296315878629684 

 

model.evaluate(X_train, y_train, verbose=0) 
0.024843977764248848  

The model’s results when dealing with the training set and when dealing with the 

test set are close enough. That is an indication of a well-performing DNN. 

This concludes our basic model.  We can enhance our model by adding new tools 

or specifications to it. That will surely improve the results. To build the model, we 

could either delete the memory and restart from the top where we import the data, 

or simply adjust the parts of code that change, which is a better choice. 

The first improvement we can intervene on, is the number of epochs. In our first 

model graphed in Figure 60, one can note that somewhere between the 50th and 100th 

epoch, the loss function reaches a value that is pretty much left unchanged for the 

rest of the epochs. In this case, almost 150 of our epochs are useless or even harmful, 

as they may cause overfitting. To avoid that, we could use some mechanism of early 

stopping which will stop the model from training when a loss function value does 

not change much for a certain number of epochs. 
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The second improvement is to add Dropout, which is a mechanism that turns off a 

portion of neurons to see whether that improves the results. Effectively, that 

changes the number of neurons in every layer. The value of Dropout of the layer 

may vary from 0 to 1, where 0 means no neurons are being turned off, while 1 means 

that 100% of the neurons are turned off. Years of trial and error have proven that 

the best value for Dropout is around 0.25 to 0.5, which is the choice here as well. 

The third sophistication of our code is to add a validation set to the results, which 

means that our training set and our testing set will be compared to each other from 

the start. This is what makes early stopping possible, by comparing the loss function 

of the training set and the validation set (test set). The redacted code is as follows: 

import pandas as pd 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt 

 

X = pd.read_csv('X.csv') #importing the features (inputs) 

y = pd.read_csv('y.csv') #importing the labels (outputs) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=74) 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 
 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout 

 

model = Sequential() 

 

model.add(Dense(92, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(82, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(72, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(65, activation='sigmoid')) 

 

model.compile(optimizer='adam',loss='binary_crossentropy') 

 

from tensorflow.keras.callbacks import EarlyStopping 

early_stop = EarlyStopping(monitor='val_loss', mode='min',verbose=1, 

patience=25)  
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model.fit(x=X_train, y=y_train, epochs=600, 

validation_data=(X_test,y_test),callbacks=[early_stop]) 

 

losses = pd.DataFrame(model.history.history) 

losses.plot() 

 

model.evaluate(X_test, y_test, verbose=0) 
0.028434421867132187 

 

model.evaluate(X_train, y_train, verbose=0) 
0.02784004434943199  

The first part of the code is identical to the previous model, except for the training 

set which is now 30% instead of 20% in the previous model, that is because we can 

afford a larger test set if we have a lot of data. The difference is in adding the early 

stop function with a patience of 25, which means that the function will allow 25 

epochs without improvement before stopping. If improvements happen 

continuously, the model will go up to 600 epochs, which is a very large number. 

Patience number can be changed to allow for fluctuations but 25 seems to be a good 

number. Inside the network modeling section of code, the only difference is adding 

the Dropouts. The activation functions and number of neurons are not changed as 

they were already optimal, although it is advisable to try different formations. On 

the other hand, the loss function cannot be changed even if we wanted to, that is 

because binary cross-entropy is the only one that applies to our problem. 

Let’s check the results of these improvements on the model. 

Epoch 1/600 

384/384 [==============================] - 4s 6ms/step - loss: 0.1026 - 

val_loss: 0.0311 

Epoch 2/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0335 - 

val_loss: 0.0301 

Epoch 3/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0312 - 

val_loss: 0.0298 

Epoch 4/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0306 - 

val_loss: 0.0294 

Epoch 5/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0301 - 

val_loss: 0.0295 

… 
Epoch 59/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0285 - 

val_loss: 0.0284 

Epoch 60/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0286 - 

val_loss: 0.0286 
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Epoch 61/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0284 - 

val_loss: 0.0285 

Epoch 62/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0285 - 

val_loss: 0.0285 

Epoch 63/600 

384/384 [==============================] - 2s 5ms/step - loss: 0.0287 - 

val_loss: 0.0284 

Epoch 00063: early stopping  

Even in the first epoch, the loss function decreases very steeply, for both the training 

set and the validation set. With the early stopping option we added in the model, 

the training only goes up to epoch 63. That means, the model has not seen any 

improvements since epoch 38. This will save time from the simulation and memory 

space for the machine.  

Figure 61 shows the results graphically.  

The ML model performing this well may be an indication that Sub-Urb feeder was 

already in a satisfactory state, generally speaking. 

 

Figure 61. Loss function of the training set and validation set as epochs increase 

If we go back to the results of the Quasi-Dynamic analysis when E-OLTCs were 

employed, we will note that there were no overvoltage constraints. Using this ML 

model with new inputs of PV generation, loads, electric vehicles both as loads or 

when injecting to the grid, we will always be able to find a combination of tap 

changer positions that guarantees no overvoltages. 
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The binary classification cross-entropy loss function may not be as informative as 

needed. Hence, the next step is to export the predictions of tap changers of the Deep 

Neural Networks. Then, these predictions will be plugged in PowerFactory to run 

another Quasi-Dynamic analysis in hourly steps, this time only 6-month long. The 

difference this time is that PowerFactory will not use its inter algorithms to figure 

out which tap position is the correct one with respect to voltage constraints 

violations. This time, a 5000 hour characteristic of each transformer with E-OLTC is 

built directly from the predictions of the Deep Neural Network, then registered in 

the sofware. So, this time we will input tap positions and monitor the voltages, 

instead of having the software choose the correct positions. Upon doing that, we 

can see in electrical engineering terms how well the DNN model is performing, 

without having to figure out what the loss function is telling us. 

 

Figure 62. Voltages in Feeder Sub-Urb when tap positions are set according to DNN 

predictions [p.u]. 

Figure 62 supports the results loss function of Figure 61.  

This graphical representation comes from a randomly shuffled dataset of inputs 

(this time taps are inputs as well, together with loads and PVs), and it proves that 

the DNN model’s predictions on tap position are optimal eventhough it was fed a 

test set it has never seen before and was not trained on.  
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Of course, the fact that voltages do not go beyond the allowed limit but stay in the 

range of 0.98 [p.u] and 1.035 [p.u] is also thanks to the fact that this feeder was well 

designed even before using ATPs, since there were very small voltage contraint 

violations 

Figure 59 (PowerFactory’s calculations of taps) can be compared to Figure 62 

(DNN’s predictions of taps). The results show that, for this feeder, DNN performs 

as good as PowerFactory in choosing the right tap postions. 

4.8. Additional results and visualizations 

Depending on the task in question, several types of visualizations can be used to 

better understand the input data and the model’s results. Since there are practically 

countless data to visualize, let’s just take an arbitrary example where we try to 

figure out the times Transformer 10 has operated at tap position (-1). 

 

Figure 63. Countplot of TR10 operating at tap position (-1). 

Figure 63 shows that Transformer 10 has operated at tap position (-1) only for a 

short time, which is understandable. The False bar shows all the instances of TR10 

operating at all tap positions other than (-1). In similar fashion, we could use 

boxplots, scatterplots etc., to understand the interrelations of certain transformers 

and their tap positions. However, since our values are zeros and ones, there are not 

many benefits from doing so, apart from counting the number of voltage constraint 

violations which was already done. 

This subchapter concludes our first studycase. 
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5 CASE STUDY II – 10 [kV] feeder 

Rugova, Kosovo 

5.1. Introduction 

Feeder Rugova is the second studycase of this thesis. The procedures in Rugova 

feeder are identical to the ones of Sub-Urb feeder. The only difference stands in the 

network model and parameters, which in terms of programming is irrelevant. In 

Case Study II (CS-II), the DGs are connected directly to LV busbars where loads are 

connected, while in Case Study I (CS-I) Feeder Sub-Urb, DGs had their own LV 

busbar. In order to avoid repetitiveness, most of the concepts that were introduced 

and explained in CS-I, will be omitted here in CS-II. In any case, the chapter layout 

has not changed, therefore, the reader can always address the equivalent subchapter 

in CS-I for detailed explanations.  

Feeder Rugova is a real-life feeder in the Accursed mountains in the republic of 

Kosovo. Loads, line parameters, line lengths, transformers etc., are modelled 

according to the real ones. Data used to model them is curtesy of Kosovo’s national 

DSO called Kosovo’s Energy Distribution Services (KEDS). 

Since the quality of an ML algorithm can only be as good as the data used to train 

it, the second studycase should yield even better results than the first one, because 

most of the data used for Rugova feeder is real and not randomly generated. Instead 

of reviewing the 24 steps basic steps of this research that were introduced in CS-I, 

let’s simply take a new look at the flowchart of Figure 37, which shows the steps in 

less detail. 

Running Quasi-Dynamic analysis basics were already discussed in detail in CS-I, 

therefore we can move forward to modelling Rugova feeder in PowerFactory. 

5.2. Modelling Rugova feeder in PowerFactory 

The 10 [kV] feeder Rugova is based on the real-life feeder with the same name, 

located in Kosovo. All data of elements and their parameters come from 

measurements and are exported directly from smartmeters in the feeder. 

The full topology of feeder Rugova is shown in Figure 65. 
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Balancing the power flows of the feeder will be done by the at the HV/MV busbar 

where normally a transformer is connected. That busbar has an External Grid which 

is modelled as a Slack with voltage setpoint at 1.0 [p.u].  

In practice the voltage setpoint at the slack bus is not always 1.0 [p.u]. For feeder 

Rugova especially, in wintertime when the loads reach their peaks, the HV/MV 

transformer’s tap is usually set at a position that sets the voltage at 1.05 [p.u]. This 

makes it possible to keep the voltage levels within the allowed range. 

In Rugova feeder, same as in Sub-Urb feeder, the PV systems inject in the LV side 

that is 400 [V]. This can be seen clearer in Figure 66. A LV/MV transformer of ratio 

0.4/10 [kV]/[kV] then transforms the voltage to the MV, right for the energy to flow 

through the feeder, and in certain moments, even flow all the way up to the HV 

network busbar.  

The latter case happens when the sum of loads in the feeder is exceeded by the PV 

production in the feeder. This particular case is shown in Figure 64, where the 

arrows on lines indicate the directions of power flows. 

 

Figure 64. Feeder Rugova 20 [kV] upstream flow of energy. 
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Figure 65. Feeder Rugova 20 [kV] topology. 

 

Figure 66. Feeder Rugova 20 [kV] topology of a random portion. 
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High production of PVs with respect to the load is the main cause of overvoltages 

in MV networks, so E-OLTCs will be put to use to try and minimize these 

overvoltages. Important feeder data pertaining lines, transformers, loads, PVs, will 

be given in upcoming tables. 

PV Name 
App.Pow. 

[kVA] 
Pow.Fact. 

Inom 

[kA] 
Efficiency Factor [%] Tilt Angle [deg] 

PV System_01 124 0,95 0,179 95 30 

PV System_02 304 0,95 0,439 95 30 

PV System_03 54 0,95 0,078 95 30 

PV System_04 178 0,95 0,257 95 30 

PV System_05 40 0,95 0,058 95 30 

PV System_06 332 0,95 0,479 95 30 

PV System_07 450 0,95 0,65 95 30 

PV System_08 372 0,95 0,537 95 30 

PV System_09 56 0,95 0,081 95 30 

Table 11. Photovoltaic systems installed in Feeder Rugova 10 [kV]. 

Table 11 gives the relevant data of PVs installed at various locations throughout the 

feeder. Each PV here has the same characteristic, but of different magnitudes. 

 

Name 
Length 

[km] 

Inom 

[kA] 

Cable / 

OHL 0/1 

R'(AC.20°C) 

[Ω/km] 

X' 

[Ω/km] 

100389;AL/FE_35/6(4) 0,020 0,145 1,000 0,820 0,421 

50051006 Rugova(1) 0,300 0,290 1,000 0,320 0,392 

50051006 Rugova_a 0,300 0,290 1,000 0,320 0,392 

100389;AL/FE_35/6(5) 1,215 0,145 1,000 0,820 0,421 

100389;AL/FE_35/6(1) 1,215 0,145 1,000 0,820 0,421 

Line(9) 0,187 0,125 1,000 1,200 0,478 

50051006 Rugova_a(1) 5,178 0,290 1,000 0,320 0,392 

50051006 Rugova 0,943 0,290 1,000 0,320 0,392 

101180;AL/FE_35/6(87) 0,030 0,145 1,000 0,820 0,421 

Line(20) 1,087 0,170 1,000 0,590 0,409 

100417; 2,761 0,290 1,000 0,320 0,392 

100389;AL/FE_35/6(3) 0,133 0,145 1,000 0,820 0,421 

100417;(1) 0,531 0,290 1,000 0,320 0,392 

101301;(1) 0,052 0,125 1,000 1,200 0,478 

100384,000 1,635 0,125 1,000 1,200 0,478 

101261;(1) 0,228 0,125 1,000 1,200 0,478 

101261; 2,467 0,125 1,000 1,200 0,478 

101301; 0,505 0,170 1,000 0,590 0,409 

101248;AL/FE_35/6(97) 0,377 0,145 1,000 0,820 0,421 

100413; 1,087 0,290 1,000 0,320 0,392 

Line_a(1) 0,061 0,125 1,000 1,200 0,478 
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100428;AL/FE_35/6(11) 2,509 0,145 1,000 0,820 0,421 

Line_a(3) 0,061 0,170 1,000 0,590 0,409 

101048; 0,241 0,125 1,000 1,200 0,478 

100486; 2,668 0,170 1,000 0,590 0,409 

100447; 0,863 0,170 1,000 0,590 0,409 

101070;(1) 0,029 0,125 1,000 1,200 0,478 

Line(21) 0,091 0,125 1,000 1,200 0,478 

Line_a(2) 2,664 0,170 1,000 0,590 0,409 

Line(23) 0,742 0,170 1,000 0,590 0,409 

Line_a(4) 0,061 0,125 1,000 1,200 0,478 

101070; 3,064 0,125 1,000 1,200 0,478 

100466; 1,545 0,125 1,000 1,200 0,478 

100452; 0,045 0,125 1,000 1,200 0,478 

100462; 0,077 0,125 1,000 1,200 0,478 

100452;AL/FE_35/6(113) 0,172 0,145 1,000 0,820 0,421 

100457,000 1,060 0,125 1,000 1,200 0,478 

101242; 1,211 0,290 1,000 0,320 0,392 

101242;(1) 0,198 0,290 1,000 0,320 0,392 

100482;AL/FE_35/6 0,096 0,145 1,000 0,820 0,421 

101077;AL/FE_35/6(70) 0,313 0,145 1,000 0,820 0,421 

Line(27) 1,325 0,125 1,000 1,200 0,478 

100683,000 0,595 0,125 1,000 1,200 0,478 

101642;(2) 1,194 0,125 1,000 1,200 0,478 

101642; 0,028 0,125 1,000 1,200 0,478 

100446; 0,180 0,170 1,000 0,590 0,409 

100893;AL/FE_35/6(44) 0,210 0,145 1,000 0,820 0,421 

100893;AL/FE_35/6 0,072 0,145 1,000 0,820 0,421 

100886; 0,360 0,125 1,000 1,200 0,478 

100873; 0,267 0,170 1,000 0,590 0,409 

100493; 0,114 0,170 1,000 0,590 0,409 

101642; 0,028 0,125 1,000 1,200 0,478 

101642;(1) 1,194 0,170 1,000 0,590 0,409 

101642; 0,056 0,125 1,000 1,200 0,478 

100495,000 0,863 0,290 1,000 0,320 0,392 

100522; 0,652 0,125 1,000 1,200 0,478 

Line(14) 1,003 0,125 1,000 1,200 0,478 

100500; 0,183 0,125 1,000 1,200 0,478 

Line(26) 1,304 0,170 1,000 0,590 0,409 

100477;AL/FE_35/6(118) 0,015 0,145 1,000 0,820 0,421 

100482; 2,882 0,170 1,000 0,590 0,409 

Line(24) 1,501 0,290 1,000 0,320 0,392 

101642; 1,194 0,170 1,000 0,590 0,409 

100402; 2,287 0,125 1,000 1,200 0,478 

100544; 2,357 0,125 1,000 1,200 0,478 

Table 12. Feeder Rugova 10 [kV] lines data. 
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Table 12 contains line data. In this case, the names are unorderly, which is the case 

in real life as it is very hard to have specific names for all sections of lines in MV. 

The lines are all overhead-lines and not a single significant section of the feeder is 

in cables. Cables are used in very small sections in in-outs of transformers located 

in private property. Line resistances and reactances are included in the table as well. 

The table of loads is provided next table. 
Load name Active P. [kW] Reactive P. [kVAr] Inom [A] 

01_L_50051006001 - Shtypeqi i Vogel 8 2 12 

02_L_50051006002 - Llazi 100 0 144 

03_L_50051006003 - Shtupeq i Madhe 1 98 19 145 

04_L_50051006004 - Shtupeq i madhë 2 100 0 144 

05_L_50051006005 - Llotov 27 5 40 

06_L_50051006006 - Reka e Allages 57 11 83 

07_L_50051006007 - Malaj 79 16 117 

08_L_50051006008 - Pepaj 100 0 144 

09_L_50051006009 - KOSHUTAN 38 8 57 

10_L_50051006010 - SHKREL 66 13 97 

11_L_50051006011 - DUGAIVË 163 0 235 

12_L_50051006012 - Drelaj 102 20 151 

13_L_50051006013 - Drelaj 2 38 7 55 

14_L_50051006014 - Kuqisht 2 20 4 30 

15_L_50051006015 - Kuqisht 1 30 6 44 

16_L_50051006016 - Haxhaj 48 10 71 

17_L_50051006017 - Stankaj 77 15 113 

18_L_50051006018 - Boge 205 41 302 

19_L_50051006019 - Guri i Kuq 85 17 125 

20_L_50051006020 - UNIOR AQUA Drelaj 151 30 222 

21_L_50051006021 - Bregu Kuqishtë 16 3 23 

22_L_50051006022 - Fab. e Djathit 63 12 93 

23_L_50051006023 - Rugova kamp 34 7 49 

24_L_50051006024 - Magra Boge 46 9 68 

25_L_50051006025 - Elkos Group R. K.Kur 11 2 16 

26_L_50051006026 - Ipko Shtupeq i vogël 37 7 54 

27_L_50051006027 - Laxha Kurtaj  Stanka 87 0 126 

28_L_50051006028 - Flamur Kelmendi 2 0 2 

29_L_50051006029 - KOSHUTAN HAJLË 30 6 45 

30_L_50051006030 -Shkreli 2 50 10 74 

31_L_50051006031 Shtupeq i madh 3 8 2 12 

32_L_50051006032 - Maja e zez 8 2 12 

33_L_50051006033 maja e zez 2 8 2 12 

34_L_50051006034 Fatmir kelmendi 46 9 68 

35_L_50051006035 Restoran ERA 8 2 12 

Equivalent load of SS Peja 2(w/o Rugova) 11,5 2,9 0,671 

Table 13. Feeder Rugova 10 [kV] loads data. 
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In Table 13 we have the data of our feeder’s loads. These loads correspond to the 

transformer they are connected to. Line resistances and reactances are included in 

the table as well. 

As far as transformers go, there is one for each load. So, 35 generic transformers, of 

which 9 are also transformers where PV plants inject. Instead, in Sub-Urb feeder, all 

PVs were injecting in the LV side of transformers that had no loads connected. 

Name 
Loading 

[%] 

Snom 

[MVA] 

uk0 

[%] 

Automatic Tap 

Changer on/off 

TRPV01_50051006006 - Reka e Allages 23,4 0,100 3,8 1 

TRPV02_50051006026 - Ipko Shtupeq i vo 34,6 0,050 3,8 1 

TRPV03_50051006012 - Drelaj 24,6 0,160 4,0 1 

TRPV04_50051006030 -Shkreli 2 13,7 0,160 4,0 1 

TRPV05_50051006017 - Stankaj 31,2 0,100 3,8 1 

TRPV06_50051006027 - Laxha Kurtaj  Sta 82,9 0,050 3,8 1 

TRPV07_50051006004 - Shtupeq i madhë 2 22,6 0,160 4,0 1 

TRPV08_50051006002 - Llazi 31,3 0,160 4,0 1 

TRPV09_50051006034 Fatmir kelmendi 19,7 0,100 3,8 1 

TR_50051006001 - Shtypeqi i Vogel 2,3 0,160 4,0 0 

TR_50051006003 - Shtupeq i Madhe 1 22,8 0,160 4,0 0 

TR_50051006005 - Llotov 6,6 0,160 4,0 0 

TR_50051006007 - Malaj 29,2 0,100 3,8 0 

TR_50051006008 - Pepaj 38,6 0,100 3,8 0 

TR_50051006009 - KOSHUTAN 15,8 0,100 3,8 0 

TR_50051006010 - SHKREL 17,3 0,160 4,0 0 

TR_50051006011 - DUGAIVË 67,3 0,160 4,0 0 

TR_50051006013 - Drelaj 2 14,4 0,100 3,8 0 

TR_50051006014 - Kuqisht 2 8,4 0,100 3,8 0 

TR_50051006015 - Kuqisht 1 12,8 0,100 3,8 0 

TR_50051006016 - Haxhaj 12,4 0,160 4,0 0 

TR_50051006018 - Boge 20,7 0,400 4,3 0 

TR_50051006019 - Guri i Kuq 21,5 0,160 4,0 0 

TR_50051006020 - UNIOR AQUA Drelaj   0,160 4,0 Out of Service 

TR_50051006021 - Bregu Kuqishtë 4,5 0,160 4,0 0 

TR_50051006022 - Fab. e Djathit 15,3 0,160 4,0 0 

TR_50051006023 - Rugova kamp 14,0 0,100 3,8 0 

TR_50051006024 - Magra Boge 12,4 0,160 4,0 0 

TR_50051006025 - Elkos Group R. K. 3,3 0,160 4,0 0 

TR_50051006028 - Flamur Kelmendi 25,9 0,050 3,8 0 

TR_50051006029 - KOSHUTAN HAJLË 12,8 0,100 3,8 0 

TR_50051006031 Shtupeq i madh 3 3,5 0,100 3,8 0 

TR_50051006032 - Maja e zez 2,3 0,160 4,0 0 

TR_50051006033 maja e zez 2 2,3 0,160 4,0 0 

TR_50051006035 Restoran ERA 3,5 0,100 3,8 0 

Table 14. Transformer data of Rugova feeder 10 [kV] 
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Each transformer is named with their unique national code, except for the ones 

connected to PVs which bear ‘PV’ in their name, listed in the first 9 rows. 

For this study, the last column is the main one as it tells whether E-OLTCs are 

implemented or not. As expected, the ones that are connected to PV systems are 

equipped with automatic tap changers, while the others are not. 

The PowerFactory modelling part is now complete. The next step is to create the 

characteristics of PVs and loads. 

5.3. Generating, extracting, and preparing the data 

Feeder Rugova has a peak PV production of 1.91 [MVA] while the peak aggregate 

load is 2.08 [MVA].  

Rugova study-case contains around 2,417,760 values in total! 

These procedures were explained in detail in the previous study-case, therefore, 

here they will be significantly shorter and more result based. 

5.3.1. Creating time characteristics for PVs 

European Commission’s PVGIS tool SARAH2 will be used to obtain the irradiance 

data of the area where Rugova feeder is located, as shown in Figure 67. 

Figure 67. EU Commission's PVGIS tool – Rugova feeder irradiation. 

The settings such as year of irradiation, mounting type, PV technology etc., must be 

changed accordingly. To create the characteristics of our PV plants that have various 

installed peak powers [kWp], we will first build the characteristic of a 1 [kWp] plant 

then find the irradiation of our plants using linearity. 
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After downloading the irradiation data for our fictious ‘Unit PV plant’, we will have 

a normalized vector, scaled from 0 to 1. 

𝐈𝐩𝐯 = (0, 0, 0, … , 0.89, 0.91, 0.93, 0.88, … )1 × 17520 

Ipv holds hourly values of active power output of our arbitrary plant. 

Each of our PVs have their unique installed peak power according to Table 11, 

vector Ppv contains those values. 

𝐏𝐩𝐯 = (124, 304, . . , 96)1𝑥9 

It is enough to multiply vectors Ipv and Ppv to get a dataframe or matrix that 

contains the characteristics of each PV plant. This a matrix will have a size 17520×9. 

The 9 columns represent the characteristics of feeder’s 9 PVs. The rows are hourly 

steps of a period of  2 full years. 

𝐏𝐨 = (𝐈𝐩𝐯’ ×  𝐏𝐩𝐯)17520𝑥9 

Ipv had to be transposed in order to make the vectors suitable for multiplication. 

Matrix Po shown in Table 15 contains all relevant characteristics. Po is then saved 

and manipulated using Pandas.  

 PV01 PV02 PV03 PV04 PV05 PV06 PV07 PV08 PV09 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 11 27 5 16 4 31 42 34 5 

8 14 34 6 20 4 39 52 42 6 

9 14 34 6 21 4 39 52 42 6 

10 16 38 7 23 5 44 59 47 6 

11 15 36 6 22 5 41 55 44 6 

12 14 32 6 20 4 38 50 41 5 

13 10 23 4 14 3 27 36 29 4 

14 4 9 2 6 1 11 14 12 2 

15 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 

… … … … … … … … … … 

Table 15. PV characteristics - Rugova Feeder. 
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This is only a day of the 2-year characteristics of our 9 PV systems that are contained 

in matrix Po(17520x9). 

The characteristic of a random PV of our feeder is represented in Figure 68. 

 

Figure 68. PV7 output characteristic – Rugova [kW]. 

From this point on, all there is left to do is go to PowerFactory and assign these 

characteristics to their respective PVs. That can either be done by accessing Po and 

then the relevant column, or by saving all the columns in separate ‘.csv’ files and 

then accessing those files directly. 

5.3.2. Creating time characteristics for loads 

For the following procedures, Tables in the beginning of this chapter will be 

referred. 

To create time characteristics of loads, first, a vector (Lp) of peak loads in the feeder 

will be built. Then, a vector (Lr) whose elements contain a reliable yearly 

characteristic will be built and normalized in a scale from 0 to 1 and renamed (Ln). 

Afterwards, the aforementioned vectors will multiply and create a matrix which 

contains all the load characteristics of our feeders, organized in columns. All these 

operations are shown below without further descriptions. 

𝐋𝐫 = (𝐿ℎ1, 𝐿ℎ2 , 𝐿ℎ3, … , 𝐿ℎ17520)1𝑥17520  
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Lr has 17520 elements pertaining to load’s hourly unit values. If max(Lr) = Lrmax, 

then: 

Ln = Lr/Lrmax 

Ln will be the curve (characteristic) of all loads, but they each will have different 

magnitudes according to their peaks indicated by real measurements. 

A generic Lp will be: 

𝐋𝐩 = (𝐿𝑝1, 𝐿𝑝2 , 𝐿𝑝3, … , 𝐿𝑝33)1𝑥35 

Lp holds the peak values of 35 loads found in feeder Rugova. 

As advised, Ln and Lp are to be multiplied. 

𝐋 = (𝐋𝐧’ ×  𝐋𝐩)17520𝑥35 

Again, Ln is first transposed then for compatibility issues. 

The loads matrix is now ready and it contains 70 columns, 35 for active powers of 

loads and 35 for reactive powers loads. The load matrix L(17520x70) can be divided in 

two different matrixes, one pertaining to the active powers, the other to the reactive 

powers, Lp(17520x33) and Lq(17520x33), respectively. 

L, as shown in Table 16, is a standard matrix, already seen several times throughout 

this study. 

  P01_L Q01_L P02_L Q02_L … P34_L Q34_L P35_L Q35_L 

0 2 1 37 1 … 15 3 2 1 

1 2 1 32 1 … 13 3 2 1 

2 2 1 30 1 … 12 2 2 1 

3 2 1 30 1 … 12 2 2 1 

4 2 1 32 1 … 13 3 2 1 

… … … … … … … … … … 

17515 5 1 93 1 … 37 8 5 1 

17516 5 1 89 1 … 35 7 5 1 

17517 5 1 81 1 … 32 7 5 1 

17518 4 1 66 1 … 26 5 4 1 

17519 3 1 52 1 … 21 4 3 1 

Table 16. Matrix of loads in Rugova feeder. 

The characteristics are now ready to be accessed from PowerFactory, each column 

from its relevant load and parameter. 70 characteristics, for 35 loads with two 

parameters each (active power and reactive power). 
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If for example we want to add an active power characteristic to Load 18, we refer 

PowerFactory to L[‘P18_L’], which is the corresponding column of matrix L. 

 

Figure 69. Active Power characteristic of Load 18 in Rugova feeder [kW].  

Figure 69 shows the  active power load characteristic of Load number 18. 

5.4. Running the Quasi-Dynamic simulation and 

exporting the results of Tap Positions 

Up to this point, the feeder has been modelled, the data has been collected and 

processed into characteristics for all PVs and loads. Next come the Quasi-Dynamic 

analysis which will allow us to collect large datasets of correct outputs when given 

certain inputs. 

To reiterate, our outputs (labels) are the transformer tap positions. After running 

the Q-D simulation, we will have 17520 correct outputs which we will use to train 

our Deep Neural Network. Running the Q-D analysis was covered in CS-I 4.1.2, 

which is why on this section is on the graphical representation of the aggregate 

parameters and on the outcomes of the Q-D simulation. 

Before proceeding with the simulations, a final check at our superposed 

(aggregated) characteristics is in order since in the previous two sections they were 

not included graphically. The PV characteristics of all 9 plants of our feeder are 

shown in Figure 70, which corresponds to Table 15 (matrix Po).  
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The peak power output of these PVs is significantly lower than the ones of feeder 

Sub-Urb, which is natural because the load is much smaller in Rugova, Rugova is 

located in a mountainous area in which it is difficult to find plane land to install the 

panels, and the fact that Rugova operates at 10 [kV]. 

 

Figure 70. PV Outputs Rugova feeder (first year) [kW]. 

 

Figure 71. PV Outputs Rugova feeder (second year) [kW]. 

Figure 72 represents the aggregate PV production of the feeder as well, however, 

since the resolution is higher, the curves may be easier to understand when zoomed 
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in. 

Curves of the PVs in the zoomed in version confirm that PV outputs are subject to 

clouds, rain, and other meteorological phenomenons. 

 

Figure 72. PV Output Rugova feeder zoomed. 

Meanwhile Figure 73 depicts the aggregate loads (active component) of the feeder. 

 

Figure 73. Loads (active power) of feeder Rugova. 

Figure 74 depicts the same characteristic as before, just zoomed in. 
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Figure 74. Loads (active power) in Rugova feeder, zoomed in. [kW] 

Moving forward, Figure 75 depicts the reactive component of the feeder’s loads. 

 

Figure 75. Loads (reactive) of Rugova feeder. [kVAr] 

Figure 76 represents the zoomed in version of Figure 75, reactive loads. 
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Figure 76. Loads (reactive) of Rugova feeder, zoomed in. [kVAr] 

The figures of PV outputs and loads we have seen so far are the same regardless of 

whether the Q-D simulation is run with ATPs or without them. The same cannot be 

said about the voltages and naturally, E-OLTCs positions. 

Let’s first run the Q-D simulations without activating automatic tap changers. 

 

Figure 77. Q-D simulation without Automatic Tap changers - Tap positions 



5| CASE STUDY II – 10 [kV] feeder Rugova, Kosovo 103 

 

 

Figure 77 simply confirms that our settings in PowerFactory were correct, as the tap 

positions are at neutral (0) at all times because ATPs are not employed. 

Same as for the Sub-Urb feeder but in much less detail, the number of voltage 

constraint violations will be counted using Pandas. 

import pandas as pd 
 

RU_raw_noEOLTC = pd.read_csv('QD_Rugova_noEOLTC.csv', delimiter=';')  

‘RU_raw’ dataframe contains columns of many data we have no need of, therefore 

we will delete everything but keep the voltages. 

RU_voltages_noEOLTC = RU_raw_noEOLTC.iloc[:,-18:-9]  

Our new dataframe ‘RU_voltages_noEOLTC’ only contains 9 columns of the 

voltage values at the busbars where PVs inject. We will simply count the instances 

where the voltages exceed 5% and 10%. 

ru_noEOLTC_violations_5percent = (RU_voltages_noEOLTC>1.05).sum().sum()  
print(ru_noEOLTC_violations_5percent) 
11174 

 

ru_noEOLTC_violations_10percent = (RU_voltages_noEOLTC>1.1).sum().sum()  
print(ru_noEOLTC_violations_10percent) 
2404  

Differently from Sub-Urb feeder, in Rugova feeder we have overvoltages that 

exceed 10% of the nominal voltage. We are always speaking of overvoltages, as they 

are a side effect of high penetration of DGs in MV networks.  

Undervoltages are not of primary no concern here, especially since Kosovo’s 

distribution code (Kodi i Shpërndarjes) allows for -10% Un at all times, and -15% 

Un for short periods [20]. However, we will later have an additional Q-D run of CS-

II where E-OLTCs are combined with LVRs, which will especially take care of 

undervoltages. 

As far as ENTSO-E is concerned [8], Rugova suffers 11,174 instances of overvoltages 

in a window of 2 years, of which, 2,404 are over 10% of the nominal voltage. 

Figure 78 shows these counts graphically. Although the voltages date says two 

years, in fact it is a single year – mirrored for the reasons explained at the beginning 

of the chapter. 

These results that stem from no ATP Q-D simulation, will later be compared to the 

Q-D simulations with ATPs. 
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Figure 78. Voltages in Rugova feeder without ATPs [p.u]. 

Now, the Quasi-Dynamic simulation is run with automatic tap changers. 

 

Figure 79. Q-D Analysis with ATP – Tap Positions, zoomed in. 
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In contrast to the previous case where tap positions were at their neutral position at 

all times, in the second case, when running a Q-D simulation with ATPs, one can 

clearly see the tap positions changing very often to appropriate the voltage in the 

feeder, as shown in Figure 79. 

Figure 79 clearly shows that a transformer’s tap position can range from its 

minimum tap position (-2) to its maximum tap position (+2). All that can happen 

within a single day, in function of PV production in different the hours of the day. 

Figure 80 follows the same parameter, but it covers the entire 2 years of the 

simulation, which makes it difficult to understand. 

 

Figure 80. Q-D Analysis with ATP – Tap Positions. 

Next, on Figure 81 we analyze the voltages in all busbars where PVs are connected, 

which are our busbars of interest since they are the most critical ones. 

As the voltage results show, there are no more overvoltages of +10%Un. Meaning 

that all voltages are under 1.1 [p.u]. In the first case where E-OLTCs were not 

employed, we had 2,404 instances where voltage increased more than 1.1 [p.u].  

There are undervoltages as well, and they will be addressed with re-modelling the 

feeder where four LVRs are installed at various parts of the feeder. The goal in this 

case is to combine LVRs and E-OLTCs. LVRs will improve the undervoltages 

throughout the line that are experienced in times of no PV production and large 

aggregate loads. On the other hand E-OLTCs will have the same function as in the 

previous analysis, which is decreasing the voltage next to high levels of distributed 

generation. Let’s first confirm numerically the instances of overvoltages when we 

do employ ATPs. 
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import pandas as pd 
 

RU_raw_withEOLTC = pd.read_csv('QD_Rugova_withEOLTC.csv', delimiter=';') 

 

RU_voltages_withEOLTC = RU_raw_withEOLTC.iloc[:,-18:-9] 

 

ru_withEOLTC_violations_5percent = (RU_voltages_withEOLTC>1.05).sum().sum()  
print(ru_withEOLTC_violations_5percent) 
2432 

 

ru_withEOLTC_violations_10percent = (RU_voltages_withEOLTC>1.1).sum().sum()  
print(ru_withEOLTC_violations_10percent) 
0  

Code has verified once again the effects of E-OLTCs on the grid. From 2,404 

violations of over 1.1 [p.u] to zero, and around 80% less violations of over 1.05 [p.u]. 

 

Figure 81. Voltages of feeder Rugova with ATP. 

This concludes our Quasi Dynamic Analysis on our basic model. 

5.4.1. Combining LVRs and E-OLTC  

Now, let’s take an extra step and do an additional analysis where the feeder will be 

re-modeled to include LVRs, as explained earlier.  

In CS-I this was not performed as Feeder Sub-Urb did not have problems with 

undervoltages like Feeder Rugova does in CS-II. Running the Q-D simulations 

process, load characteristics, and PV characteristics do not change, hence most of 

the steps are omitted in this explanation.  
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To run the LVR and E-OLTC combo analysis, modifications must be done in the 

network because the LVRs must be modelled and then their tap positions must be 

saved for later use to train any eventual machine learning algorithm, which will not 

be done at this time. 

 

Figure 82. Voltages of Rugova when combining E-OLTCs and LVRs (first year) [p.u]. 

Figure 82 is the equivalent of Figure 81. The difference between the two is the 

addition of LVRs as means of augmenting undervoltages. This proves that for 

longitudinal feeders, the best approach is to combine E-OLTCs and LVRs. This 

combination makes it possible to regulate the voltage in such a manner that both 

overvoltages and undervoltages are taken care of. 

This combo option is more expensive and harder to deploy. If installing this 

combination of LVRs and E-OLTCs is not feasible and a decision must be made to 

choose only one of the two, the right decision is E-OLTCs, as far as these types of 

feeders are concerned. 
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Figure 83. LVR and E-OLTC combination for voltage regulation in Rugova feeder. 

If a DNN algorithm is to be trained with this new model of the feeder, the only 

difference would be to add 20 columns (4∙5) in the labels/outputs. Since 4 LVRs are 

added and they each have 5 possible tap positions, 20 tap positions in total should 

be added in the outputs, translating to 20 extra neurons on the output layer. Nothing 

else besides the model and number of output neurons changes with respect to the 

previous case where LVRs were not included. 

5.5. Cleaning, re-organizing, and filling the missing 

data points 

The tap position results are exported to ‘.csv’ or some other supported format and 

are ready to be cleaned for the ML phase. Similarly, to the first studycase but with 

fewer explanations, we will check for missing data, fill the missing data if there is 

any, re-organize and clean the needed data, and finally save it. 
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import pandas as pd 

 

RU_raw = pd.read_csv('QD_Rugova_withEOLTC.csv', delimiter=';')  

Checking for missing data: 

(RU_raw == 'NaN').sum().sum() 
0  

There are zero missing data, meaning there is no need to fill any data and we can 

move forward with data preparation. 

In case our columns are not sorted rightfully, we need to do that in a manner such 

as extracting columns will be easy to do with little code. That means our columns 

of loads, PVs, and outputs, are not mixed with each other, rather, go one after the 

other. Before saving the results from PowerFactory, it is always a good idea to make 

sure that the parameters are named in some order that makes it easy to identify. If 

that is done, we just need to sort the columns alphabetically as follows: 

RU_raw = RU_raw.reindex(sorted(RU_raw.columns), axis=1)  

At this point, our dataframe must contain only the outputs (labels), which are tap 

positions, and the inputs (features), which are the following: 

• Loads (Active Power) 

• Loads (Reactive Power) 

• PV Outputs (Active Powers) 

• PV Outputs (Reactive Powers) 

Any other column in the dataframe must be deleted at this point, or the results of 

the ML algorithm may be unpleasant. 

5.6. Dividing and exporting the dataset features and 

labels 

This is the final step before starting the Machine Learning part. By now, the data 

should be analyzed, cleaned, sorted, and complete. For any ML algorithm, the 

features (inputs) and outputs (labels) need to be saved in such a manner that allows 

them to be imported in a non-contaminated way. The safest way, as done here, is to 

simply divide them earlier and save them in completely different files, in any of the 

supported formats. 

For Rugova feeder, we will have the following layout of columns: 

• 35 columns for active powers of loads 

• 35 columns for reactive powers of loads 
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• 9 columns for PVs active power outputs 

• 9 columns for PVs reactive power outputs 

• 9 columns for Transformers Tap Positions 

Table 17 represents the prepared dataframe of our full dataset, including both 

inputs and outputs. This dataframe has a size of 17520 × 105.  

  PLoad01 QLoad01 … PV01_P PV01_Q … 
TR-

PV01 
… 

0 57 34 … 0 0 … -1 … 

1 50 30 … 0 0 … -1 … 

2 47 28 … 0 0 … -1 … 

3 47 28 … 0 0 … -1 … 

4 50 30 … 0 0 … -1 … 

… … … … … … …  … … 

Table 17. Final data -  inputs and outputs. 

When dividing the features (inputs) and labels (outputs), we know that we can do 

that by dividing Table 17 across the minus 9th column. In other words, if we take out 

the last 9th columns and save it as outputs (‘y.csv’) and save the rest of the table as 

inputs (‘X.csv’). 

X = RU_raw.iloc[:,:-9] 
X.to_csv('X.csv') 
 

y = RU_raw.iloc[:, -9:] 
y.to_csv('y.csv')  

As explained for Sub-Urb feeder, we need to modify the outputs now that they are 

saved independently. That happens because we will be using Sigmoid function in 

the last layer of neurons, which has binary outputs, so either zero or 1. So, for each 

transformer, we will use 5 neurons in the output layer, each one showing the 

probability of that tap position of that transformer to be the correct one. 

So, as explained in 3.2.5, the number of outputs will be Nnntap∙Ntransformers. That is 5∙9=45 

neurons (outputs) in the output layer. This topology was explained in Figure 35. 

The way to code it is by using binary values, for example, tap position (+1) is correct, 

the 5 neurons corresponding to the transformer in question will be [0,0,0,1,0]. 

With this change, there will be 45 outputs instead of the initial 5. After this step is 

complete, we can re-save ‘y.csv’ and rewrite the original file. 



5| CASE STUDY II – 10 [kV] feeder Rugova, Kosovo 111 

 

 

At this point, everything is ready to start to build the Neural Networks. 

5.7. Coding the Deep Neural Networks in Python 

Features and labels are saved in separate files and are ready for use. The tools and 

steps of our DNNs code will be the same as in the Sub-Urb feeder because our 

problem application is identical. For that reason, in this case, both models will be 

treated with less explaining. 

First, importing the relevant libraries. 

import pandas as pd 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt  

Next, we use the features and labels that were saved on the previous section and 

make Pandas dataframes of them. 

X = pd.read_csv('X.csv') 

y = pd.read_csv('y.csv')  

To avoid overfitting, the data must be shuffled and then divided in a training set 

and a test (validation) set. The ratio of the two this time will be 80/20. 

from sklearn.model_selection import train_test_split 
 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=13)  

These operations are done using function ‘train_test_split’ from ‘sklearn’ library, 

module ‘model_selection’. The shuffling has to be random, which is why the user 

chooses a seed, in this case it is 13.  

Since the inputs have different magnitudes, they must be scaled in a manner that 

makes it easier for the DNN to figure out the weights of neurons, which in turn 

gives better results. For this step, library ‘sklearn’ comes in handy again. This time, 

‘MinMaxScaler’ function of module ‘preprocessing’. 

from sklearn.preprocessing import MinMaxScaler 

 

scaler = MinMaxScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test)  

It is important to only fit to the training dataset ‘X_train’, and not to the testing set 
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‘X_test’, as we supposedly do not have any information on it, as we will not have 

information on future sets we will have to predict. After fitting to the training set, 

we can now transform both the training set and the testing set. 

Now comes the Network itself. 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout 

 

model = Sequential() 

 

model.add(Dense(88, activation='relu')) 

model.add(Dense(75, activation='relu')) 

model.add(Dense(58, activation='relu')) 

 

model.add(Dense(45, activation='sigmoid')) 
 

model.compile(optimizer='adam',loss='binary_crossentropy')  

With the help of Tensorflow and Keras the basic Neural Network is built very fast. 

The number of neurons in all layers has of course changed from the previous study-

case. In the first layer there are 88 neurons, which coincides with the number of 

inputs, although it is not mandatory. For the hidden layer, many ‘constellations’ 

have been tried, and the one shown above proved most successful. As for the last 

layer, it must have the same number of neurons as there are outputs. 

CS-I already covered what ‘Sequential’ and ‘Dense’ do. The activation functions, the 

optimizer, and loss function have not changed as they fit this kind of problem best. 

ReLU activation function is offered graphically in Figure 29, next to the Sigmoid 

function. 

The model is ready for training at this point. 

model.fit(x=X_train, y=y_train, epochs=250)  

So, the model will try to fit its weights and biases in order to reach optimal results 

as the ones fed to it. The number of epochs is an arbitrary number – 250. Depending 

on the problem, the number of epochs can be higher or lower. On each epoch, the 

entire dataset will be run once, and through backpropagation, the weights and 

biases will be updated for the next epoch.  

The loss function value is reported after every epoch is run. 
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Epoch 1/250 

438/438 [==============================] - 1s 682us/step - loss: 0.1918 

Epoch 2/250 

438/438 [==============================] - 0s 663us/step - loss: 0.1152 

Epoch 3/250 

438/438 [==============================] - 0s 678us/step - loss: 0.1094 

Epoch 4/250 

438/438 [==============================] - 0s 660us/step - loss: 0.1064 

Epoch 5/250 

438/438 [==============================] - 0s 654us/step - loss: 0.1045 

… 

Epoch 246/250 

438/438 [==============================] - 0s 677us/step - loss: 0.0848 

Epoch 247/250 

438/438 [==============================] - 0s 678us/step - loss: 0.0846 

Epoch 248/250 

438/438 [==============================] - 0s 695us/step - loss: 0.0847 

Epoch 249/250 

438/438 [==============================] - 0s 679us/step - loss: 0.0845 

Epoch 250/250 

438/438 [==============================] - 0s 700us/step - loss: 0.0846  

Only the first 5 and the last 5 epochs are shown for space-saving reasons. 

In the first epoch, one can already note that the loss function decreases from 0.1918 

to 0.1152, that happens due to the first update of weight and biases, which is usually 

the most beneficial one. Next, we graph the loss function with the number of epochs 

in the other axis, to better visualize the training procedure. 

import matplotlib.pyplot as plt 

 

loss =pd.DataFrame(model.history.history) 

plt.plot(loss)  

Figure 84 shows a steep decline of the loss function initially, afterwards it tends to 

be constant. The learning curve here is even more natural than in Sub-Urb feeder, 

understandable when considering the fact that Rugova has real data and not 

randomly generated. DNNs are robust enough even for feeder Rugova, and it is 

probably safe to say that they are robust enough for any MV feeder, in a largely 

feasible computational time and memory consumption.  

Now is time to numerically evaluate the testing data and the training data. Their 

similarity in values is a sign of a well performing algorithm. 

model.evaluate(X_test, y_test, verbose=0) 
0.027296315878629684 

 

model.evaluate(X_train, y_train, verbose=0) 
0.024843977764248848  
They are very similar in value, and even more importantly, low values. This tells 

that our algorithm is well trained but also that it has not overfit only a certain 
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dataset, rather it is performing well even on the test set that is used for validation. 

 

Figure 84. Loss function as Epochs increase. 

Although this model can pass as a complete one, next, we will make some 

improvements in the model in order to achieve even better results. The 

modifications are the same ones as in CS-I, namely Dropouts and Early Stopping. 

Dropouts try different and random topologies by switching random neurons on and 

off, then measuring the results of each configuration. The number of neurons that 

will be stopped is given in relative terms as a percentage of all neurons of that layer. 

On the other hand, Early Stopping keeps track of the loss function of both the 

training set and the validation set simultaneously, and if it notices that no 

improvements were made after a certain number of epochs (patience), it will stop 

the training. Early stopping will not only save time and memory, but it may also 

prevent overfitting. Now that the modifications are explained, here is the full 

improved model code.  

import pandas as pd 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt 
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X = pd.read_csv('X.csv') #importing the features (inputs) 

y = pd.read_csv('y.csv') #importing the labels (outputs) 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=74) 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout 

 

model = Sequential() 

 

model.add(Dense(88, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(75, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(58, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(45, activation='sigmoid')) 

 

model.compile(optimizer='adam',loss='binary_crossentropy') 

 

from tensorflow.keras.callbacks import EarlyStopping 

early_stop = EarlyStopping(monitor='val_loss', mode='min',verbose=1, 

patience=25) 

 

model.fit(x=X_train, y=y_train, epochs=600, 

validation_data=(X_test,y_test),callbacks=[early_stop])  

And the results: 

Epoch 1/600 

384/384 [==============================] - 2s 4ms/step - loss: 0.2714 - 

val_loss: 0.1404 

Epoch 2/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1551 - 

val_loss: 0.1275 

Epoch 3/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1421 - 

val_loss: 0.1223 

Epoch 4/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1348 - 

val_loss: 0.1191  
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Epoch 5/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1310 - 

val_loss: 0.1173 

… 
Epoch 83/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1125 - 

val_loss: 0.1042 

Epoch 84/600 

384/384 [==============================] - 1s 3ms/step - loss: 0.1133 - 

val_loss: 0.1041 

Epoch 85/600 

384/384 [==============================] - 1s 4ms/step - loss: 0.1125 - 

val_loss: 0.1039 

Epoch 86/600 

384/384 [==============================] - 1s 4ms/step - loss: 0.1123 - 

val_loss: 0.1035 

Epoch 00086: early stopping  

The sophisticated model has stopped training on epoch number 86. That means, the 

algorithm has not seen any significant improvements since epoch 61. In the figure 

showing the loss function, now we can include the validation set as well. 

 

Figure 85. Loss function of the training set and validation set as epochs increase. 

Figure 85 shows a loss function that decreases steeply in the very first few epochs. 

After some time, small noise is visible, however, the loss function of the training set 

and the validation set do not change drastically. 

Since there is a large amount of randomization in these algorithms, the results will 

be slightly different every time they are run. Same goes for the number of epochs 
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when Early Stopping is employed. However, the final loss function values are pretty 

much the same. 

A final interesting point to notice is that our primitive model of the DNN has 

yielded better results than our more sophisticated model. That could be for various 

reason that pertain to this specific dataset, but most importantly, it happens because 

the epochs go up to 250, instead of stopping at 86. 

Similar to the last section of section 4.7, after the DNN model is finalized, it will be 

fed around 5000 training examples that contain inputs the model has not seen or 

trained on beforehand. The outputs or predictions of the DNN, which are the tap 

positions, will then be used in PowerFactory, thus inversing the process. So, now, a 

Quasi-Dynamic simulation of around 5000 hourls will be run with the usual inputs 

which are loads and PVs, and this time also with tap positions as inputs. 

Throughout the Q-D analysis, the voltages will be monitored, to evaluate the 

performance in electrical terms instead of data science terms (binary cross-entropy 

loss function). 

 

Figure 86. Voltages of Rugova feeder when taps are controlled by the DNN model [p.u]. 

In the second feeder, as expected, the results show that the DNN does pretty much 

as good of a job as PowerFactory in determining the right tap positions. That 
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conclusion is reached by comparing Figure 86 and Figure 81, where the former 

shows the voltages in the feeder when DNN model does the predictions, while the 

latter represents the voltages of the feeder when PowerFactory adjusts the 

transformer’s taps automatically. 

It is important to keep in mind that feeder Rugova has had significant problems 

with both undervoltages and overvoltages before using E-OLTCs. That is why 

PowerFactory nor the DNN model is able to keep the voltage range between 0.95 

[p.u] and 1.05 [p.u] at all times. However, always according to the local Distribution 

Code (Kodi i shpërndarjes) [20], the allowed voltage range in MV networks is 

between 0.9 [p.u] to 1.1 [p.u], with some exceptions when it is allowed to go down 

to 0.85 [p.u]. 

5.8. Additional results and visualizations 

Due to our studycase type, not many worthy visualizations can be illustrated here. 

Just to take an example of utilizing libraries such as ‘seaborn’ or ‘matplotlib’, we can 

once again make a countplot of a certain transformers tap position being used or 

not throughout the 2-year simulation. For example, we analyze how often TR7 was 

on tap position (-2), and how often it was on the other 4 positions. 

(y['TR7[tap(-2)]']==1).sum() 

4136 

 

(y['TR7[tap(-2)]']==0).sum() 

13384  

The count shows that there are 4,136 instances where TR7 operates at tap position 

(-2) and 13,384 instances where it operates at positions other than (-2), so positions 

[-1,0,1,2]. 
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Figure 87. Countplot of TR7 operating at tap position (-2). 

Results in Figure 87 are realistic, as they claim that TR7 operates at tap position (-2)  

around 24% of the time. 

Seaborn library can be used for various types of countplots, scatterplots, etc. As 

previously said, they are not as helpful in studycases like this one, where the 

outputs are mainly zeros and ones. 

That is all as far as our studycases are concerned. 
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6 Conclusion and future developments 

The two studycases carried out in this study reach two conclusions. First one is the 

fact that E-OLTCs can have immense impact in voltage regulation of MV networks 

with high penetration of DGs, even without the help of some sort of reactive power 

control method. The second conclusion is that ML and DNNs can be used to find 

the correct tap positions of all transformers in a feeder, providing a new approach 

instead of the classical approach of software modelling and running load flows.  

The results show that DNNs can learn fast and in such a manner that voltage 

constraint violations are almost eliminated or completely eliminated.  

This study is focused mainly on tap changing transformers, especially those E-

OLTCs of transformers directly connected to the LV busbars where photovoltaic 

systems inject energy. Line Voltage Regulators were deemed as unfit for voltage 

regulation in longitudinal feeders due to the fact that overvoltages are mostly 

encountered in the immediate busbars where DGs inject, and not the ones further 

along the line, which is where LVRs are installed usually. In cases of feeders with 

shorter side branches, or when the DGs are located close to the main branch of the 

feeder, LVRs may prove worthy. 

Always depending on the feeder’s topology, E-OLTCs may be effective with 

overvoltages, however, they may not help with undervoltages if the feeder already 

has large voltage drops at times when DGs are not producing, such as night-hours. 

In this case, a new Q-D simulation was run combining E-OLTCs and LVRs, and the 

results were improved. E-OLTCs fixed the overvoltage issues as they are connected 

directly to the LV busbars where DGs inject. On the other hand, LVRs fixed the 

undervoltage issues that occurred throughout the longitudinal feeders, as they are 

installed in the main branch of the feeder. That proves the initial hypothesis of this 

thesis which suggests that the best solution for voltage regulation is in fact a 

combination of multiple methods, such as LVRs and E-OLTCs. 

To the best of the author’s knowledge, the novice element of this study is the 

approach of performing Quasi-Dynamic analysis to obtain as many correct outputs 

as possible for tap positions, which later are used to train Deep Neural Networks.  
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In order to obtain as much data as possible, the Q-D simulations are run without 

including any outages or maintenance. In the future, upon finding relevant data of 

multiple years, outages and maintenance could be included for more realistic 

results. 

The method of combining Q-D analysis and Deep Neural Networks showed 

promising signs as it took less than 100 epochs to reach optimal values of the loss 

functions, even with simplistic 4-layer DNN models. The trained model predicts tap 

positions of not just one, but of all transformers of the feeder that are equipped with 

automatic tap changing technology. That mostly includes transformers connected 

directly to PV systems but also any potential LVRs installed elsewhere in the feeder. 

The first studycase shows that the loss function was already significantly lower than 

the loss function of the second studycase, that makes perfect sense provided that 

the first studycase had a much lower number of voltage constraints violations even 

before using ATPs. 

The models were computationally cheap, both in terms of time and memory usage. 

As far a potential wide-scale deployment of this method is concerned, if we refer to 

multiple papers on this topic, communication could pose as the biggest problem. 

However, in recent years, manufacturers of PV inverters have developed cloud-

based systems where reading the live metering, historical energy injection, 

controlling the live production of the plant, etc., is as easy as using a smartphone 

application to read the news.  

An initial idea that DSOs could use for a potential pilot project is to obligate new 

PV producers to only inject energy through LV/MV transformers that are equipped 

with E-OLTCs, also obligate them to make the live meter readings accessible to the 

control room/dispatching center. The control room already has access to live meter 

readings of loads connected to each transformer in the feeder. If these two inputs 

are combined, it would emulate our studycases, and if a DNN model of the feeder 

is already trained and saved in the control room machines, the E-OLTCs throughout 

the grid could be controlled automatically with zero human inputs and with very 

high accuracy. The DNN model could be programmed to learn nonstop from new 

inputs/outputs as well.  

As for the complexity of developing and installing a software in control room 

servers, it most likely is a negligible problem. That software will only have to be 

programmed to read the smartmeters of loads and PV productions in real time and 

adjusts the E-OLTCs according to the Deep Neural Network model that is already 

trained. The software could be sophisticated with a ‘wait time’ between E-OLTC 
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manipulations in order to lower frequent voltage fluctuations and wear and tear of 

E-OLTCs. 

A control room of a HV/MV substation with 30-50 feeders should easily afford a 

DNN model for each of the feeders, in terms of time and random access memory 

(RAM) required. This definitely constitutes a cheaper and more efficient alternative 

to installing and paying for expensive software licenses, training staff to model 

networks run power flow analysis using that software, and perhaps even having to 

hire engineers instead of technicians in HV/MV substations where the control room 

is located. 

As far as PV productions are concerned, in case access to live metering is not 

possible, another approach could be to have the model predict the PV outputs by 

using irradiation measurements data, which is sufficiently accurate and easier to do 

than what it may sound, even using free tools/databases. 

In cases where the DSO has not installed smartmeters, hence has no digital live 

reading of the equivalent loads at transformers throughout the feeder, a new study 

similar to this one may be helpful. The only difference in that case would be the use 

of aggregate feeder load as an input, instead of using all loads independently. It is 

likely that the results would not be as good as in the actual case, that is because the 

physical positioning of loads in the feeder plays a significant role, and it would not 

be taken into consideration in this second case. 

The aforementioned machine learning model could be enriched further by also 

imposing constraints on reactive power control devices and including other voltage 

regulating methods. Thus, instead of just E-OLTCs, combining multiple voltage 

regulation methods with machine learning. 
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