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Abstract

WHEN the performance of robot functionalities and robot software components
is evaluated, functionalities and software components are usually assumed
independent from characteristics of the robot system and environment in

which they operate. However, these aspects influence the performance, e.g., the per-
formance of a software component implementing a robot functionality depends on the
robot system configuration, such as which sensors are used, the sensor properties, or the
robot platform kinematics, characteristics of the environment where the robot operates,
and the component configuration parameters. This thesis proposes a benchmarking
methodology which models the impact of the characteristics of the robot system and its
environment on the performance of functionalities and their implementation as software
components. However, measuring the performance of a software component for every
combination of the variables which influence the performance would be untractable.
To make the problem tractable, we propose to sample a relatively small number of
combinations, conduct experiments for each of them, and from these results estimate
a statistical model of the software component performance, which we call component
performance model. To study the performance dependency between components, we
build component performance models for multiple functionalities of a robot system.
A performance model allows the comparison of different components implementing
the same functionality to determine the best one to be used in a given setting and its
optimal configuration. Moreover, the performance models enable us to predict the per-
formance of a robot system given the performance models of its components. Two case
studies illustrate application of this methodology to extract performance models: a first
case study about benchmarking the Simultaneous Localization and Mapping (SLAM)
functionality and the second case study focusing on an autonomous navigation system
composed of a localization component and a navigation component.
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CHAPTER1
Introduction

Benchmarking can be defined as a standardized procedure to measure the performance
of a software/hardware solution against a reference performance. Several areas of re-
search require benchmarking to assess the value of new results against some reference
performance. An example of wide-spread use of benchmarking in the fields of machine
learning, robotics and computer vision research are publicly available datasets against
which algorithms are compared and ranked [11, 16, 28].

Benchmarking, to be a useful tool in science and engineering, requires the appli-
cation of the concepts of reproducibility and repeatability. A scientific work is repro-
ducible when other researchers are able to independently reproduce the results of an
experiment by using an equivalent setup and following the same experimental tech-
niques. Repeatability is a quality of the scientific results and it describes the ability to
confirm the outcome of the experiments through systematically repeated trials [2].

Some sub-fields of robotics research and engineering are affected by a lack of repro-
ducibility and repeatability, as highlighted in the works of Bonsignorio et al. [5,6], due
to the complexity of hardware and software architectures of the robot systems and the
environments in which the systems or methods are tested, as well as methodological
obstacles such as the need for specific test equipment.

Important developments have happened in the last decade concerning the availabil-
ity of development frameworks. In the academic sphere, the most important is the ROS
framework [35], which among other aspects, provides access to a database of software
packages developed by the robotics community which implement robot functionalities
with standardized communication interfaces. Examples of the most common func-
tionalities are navigation, arm motion planning, localization, and Simultaneous Local-
ization And Mapping (SLAM). Regardless of a specific framework, benchmarking is
needed to assess the quality of the software packages and the methods used in the robot

1



i
i

“output” — 2023/4/14 — 15:10 — page 2 — #8 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.1: Taxonomy of benchmarking methodologies.

systems. Some form of evaluation is usually performed in the literature presenting the
methods, but these usually do not provide a comprehensive evaluation or a comparison
with the competing methods. Some literature works propose benchmarks of the most
popular methods or software packages for a specific robot functionality to evaluate their
strengths and weaknesses and rank them by their performance [18, 41, 45]. Some other
works estimate the effect of the complexity or difficulty of the task on the performance
of robot software and methods [2, 10, 18, 21, 29].

In these benchmarking works, the performance of the methods is evaluated in isola-
tion from other components of a robot system. Benchmarking of methods implement-
ing a specific functionality can provide a comparison of their performance, but the per-
formance of one method is often dependent on the performance of other methods used
in the robot, as well as properties of the robotic platform and characteristics of the en-
vironment in which the robot operates. When benchmarking methods which are meant
to work in complex robot systems, these aspects must be included in the methodology
in order to obtain a comprehensive evaluation. A few works proposed methodologies
to evaluate the effect of single components on the performance of the system, such
as [3,4,12,13,26,27], but these methodologies have not been demonstrated in practice.

Studying how to benchmark complex systems rather than single functionalities can
also improve the use of benchmarking in the development process. Being able to eval-
uate the overall performance of the robot system requires to evaluate the performance
of each component and understand its impact on the system. Even when building a
system by integrating components provided by third parties, choosing which compo-
nents to use requires not only information on their performance, but also knowledge
on how they interact. Therefore, the developer of a component that wants to docu-
ment the performance of their software, would need to evaluate how the performance
of a component depends on properties of the robot platform and characteristics of the
environment.

The objective of this thesis is to introduce a methodology for benchmarking of au-
tonomous robot systems which enables characterizing the impact of the performance
of the components of a system on the performance of the system itself, the perfor-
mance dependency between software components, and supporting good experimental
methodology.

2
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1.1. Benchmarking Methodologies: A Taxonomy

Benchmark framework Environment type Execution mode Target Subject Target Use
Proposed methodology any any complex system technical specification
Plug and Bench any any complex system technical specification
ERL Consumer Service Robots real world closed-loop complex system rank
KITTI Vision Benchmark Suite dataset open-loop single component rank
Pascal VOC dataset open-loop single component rank
COCO dataset open-loop single component rank
OpenAI Gym leaderboard simulation closed-loop single component rank

Table 1.1: Notable examples of benchmark methodologies and classification with respect to our taxon-
omy.

1.1 Benchmarking Methodologies: A Taxonomy

In this section we present a taxonomy of benchmarking methodologies from the scien-
tific literature. Since our methodology can be categorized as a specific type of bench-
marking, it is useful to list the differences between established and emerging bench-
marking methodologies. In our taxonomy, we define the following fundamental aspects
of benchmarking methodologies: target subject, target use, execution mode, and envi-
ronment type. In Fig. 1.1 we show the taxonomy graphically. In Tab. 1.1 we list some
notable examples and their classification.

The target subject describes the subject of the benchmark. Single component
benchmarks aim at measuring the performance of an algorithm, method or software
component in isolation. Whereas complex system benchmarking methodologies aim
at measuring the performance of a subject structured as a system and its components.
Implying the methodology evaluates the effect of the performance of one component
on other components, or the effect of features of the robot system (e.g., sensors or
kinematic) on the performance of the components under evaluation.

Object detection and object classification benchmarks, such as [11, 16, 28], are gen-
erally single component benchmarks, since they evaluate different algorithms with one
or more performance metrics, and the algorithms are executed by themselves, rather
than in a system. An example of complex system benchmark methodology is the one
applied in the European Robotics League (ERL) competition [4,27], in which the chal-
lenges are framed as benchmark experiments. Two types of benchmarks are organized:
functionality benchmarks, which measure the performance of a single functionality,
and task benchmarks, which measure the robot system’s overall performance in a com-
plex task. Another example of complex system benchmark methodology is presented
in Plug and Bench [12,13], which proposes to integrate performance evaluation into the
model-driven software development framework of RobMoSys1. The idea put forward
in the work is to provide a way to estimate the performance of a robot system from
performance data of its software components, allowing a robot software developer to
estimate the performance of the system at design time, i.e., before actually deploying
the software to a real robot.

The target use categorizes how the benchmark results are used. The target use can
be ranking or technical specifications. Ranking implies the results of the benchmarks
are used to compare different subjects with each other or with a reference. The output

1https://robmosys.eu/
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Chapter 1. Introduction

is a ranking of subjects ordered by one (or more) performance metrics. Results are
compared through leaderboards, e.g., to publish research results and compare them to
the state of the art. The technical specifications category implies the result of the
benchmark is a higher level description of the performance. A technical specification
provides its user with the ability to predict the performance as a function of relevant
parameters such as characteristics of the environment or the robot system.

Object detection and object classification benchmarks, such as [11, 16, 28], are ex-
amples of methodologies to produce rankings based on different performance metrics.
The Plug and Bench methodology [3, 12, 13] is an example of technical specification,
in fact, we derive the term technical specification from the work of [3]. The idea be-
hind the methodology is to enable the developer of a robot system to use the results
of benchmarking to predict, at design time, the performance of software components
from: characteristics of the robot system (e.g., which sensors are used and their proper-
ties, kinematic type of the robot platform, etc); characteristics of the output or behavior
of software components on which the benchmarked component depends; and charac-
teristics of the environment.

The execution mode categorizes the benchmark into the open-loop and closed-loop
categories. A benchmark execution is considered to be in closed-loop if the subject
is able to act on the environment, affecting subsequent action decisions, open-loop
otherwise.

The environment type describes how the subject of the benchmark receives its in-
put. The environment type can be a dataset, a simulation, or the real world. Dataset
benchmarks rely on pre-recorded data that is fed to the subject. Dataset benchmarks
naturally support the implementation of open-loop benchmarks, since the state of the
environment is captured in each dataset and can not be changed by the behavior of
the subject. In simulation benchmarks, the environment is simulated, allowing the
subject to influence state of the environment and allowing us to set specific initial con-
ditions. A simulation benchmark naturally fits with the implementation of closed-loop
benchmarks, although open-loop benchmarks can derive advantages from a simulated
environment, where the state can be controlled exactly and is fully observable, allow-
ing to generate a considerable amount of dataset-based equivalent environments. Real
world benchmarks are implemented in a real environment. Compared to simulation
benchmarks, reality benchmarks allow higher fidelity in the data fed to the subject of
the benchmark and avoid approximations that may be required for the modelling of the
simulated environment. On the other hand, executing experiments with real robots in a
real environment makes replicating exact conditions and full observability very hard if
not impossible.

Examples of dataset benchmarks are the object detection and classification bench-
marks [11, 16, 28], which publish datasets of images and annotations used to train the
machine learning algorithms and evaluate their performance. The benchmark method-
ology presented in [46] uses a photorealistic simulation of 3D building interiors to
train and evaluate the performance of visual navigation algorithms. Additionally, the
methodology takes advantage of the physics simulation to evaluate the ability to com-
plete the navigation task by interacting with the objects in the environment. An inter-
esting cross-over between the simulation and dataset categories can be found in object
detection datasets [1] obtained by synthesizing datasets from real background images

4
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1.2. Contributions

to which high fidelity rendering of the objects from 3D models are added. An exam-
ple of real world benchmark methodology is presented in [43], which evaluates the
performance of a navigation component in two real environments for extended periods
of time. A second example of real world benchmark methodology is the ERL com-
petition [4, 27], which organizes the competition’s events in various testbeds built to
realistically replicate domestic and industrial environments.

1.2 Contributions

Our contributions consists in producing a review of benchmarking methodologies and a
taxonomy to classify them, the formalization of the concept of performance modelling
of robot software components and robot systems, the development of a software frame-
work which supports producing benchmarks following the proposed methodology, and
lastly, in producing two case studies which demonstrate the proposed methodology.

In more details, we produce a taxonomy of benchmarking methodologies which
classifies them based on four key characteristics. We then review and classify works
from literature which are relevant to benchmarking in robotics. We developed our
methodology by formalizing the concept of performance model. We define and for-
malize the entities relevant to the performance model: the robot system, the environ-
ment, the experimental protocol, and the structure of the data. We describe how these
entities are used to build the performance model of software components, and how
these are composed in order to apply the methodology to a complex robot system. We
developed a software framework supporting our methodology which allows us to de-
fine a set of parameters used to automatically run simulation experiments for different
system and environment configurations and automatically collect the data required to
build the performance models. The software framework has been developed iteratively
while producing performance models for different robot functionalities, improving its
generality and adding tools to aid the benchmark developer in its use.

We produced two case studies to demonstrate the proposed methodology, the first on
performance modelling of SLAM methods, and the second on performance modelling
of an autonomous navigation system composed by multiple components. We devel-
oped simulation models of two robots. One was obtained by modifying a pre-existing
simulation model, and one was developed from scratch. Additionally, we developed
a tool to create simulation environments from grid-maps, which allows to quickly add
environments to the experimental setup.

The first case study, developed concurrently to the performance modelling software
framework, required us to set up a robot system using the ROS framework which al-
lowed us to run experiments and collect the experimental data. We developed the met-
rics needed to measure the performance of the SLAM methods, some of which were
taken from scientific publications and adapted to our needs, while some were devel-
oped from the ground up. We then developed different ways to measure characteristics
of the environmet, one of which was suitable to be used in the case study. Finally, using
the data from the experiments we were able to produce a performance model for three
SLAM methods. The proposed methodology and the case study were published to the
IEEE Robotics and Automation Letters (IEEE RAL) journal [34].

We developed the second case study to demonstrate the composition of performance

5
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Chapter 1. Introduction

models for a complex robot system. The system, implemented in the ROS2 framework,
includes a localization component and a navigation stack, which is itself a set of compo-
nents. In order to evaluate the performance of both the localization and the navigation
components, we developed and adapted the two robot simulation models and added
more environments to the set already used in the first case study. We developed the
metrics needed to measure the performance of the navigation and localization compo-
nents.

1.3 Thesis Organization

In Chapter 1, we introduce the reader on the concept of benchmarking methodologies
in robotics. We briefly describe different classes of methodologies, from commonly
used but too simple for our purpose, to methodologies which aim at benchmarking
complex systems but still not tested in practice. In Sec. 1.1, we propose a taxonomy of
benchmarking methodologies. The taxonomy classifies methodologies with respect to
four key aspects, allowing us to classify existing methodologies and define the aspects
of the methodology we propose.

In Chapter 2, we review the scientific literature regarding benchmarking methodol-
ogy. Firstly, we review works about experimental methodology, which is a fundamental
aspect of scientific research, and even more so of benchmarking. Then we review works
of benchmarking methodologies of specific areas of interest for the thesis: object de-
tection and classification, 2D SLAM an localization, and autonomous navigation. We
classify each benchmarking methodology within our taxonomy, highlighting their key
aspects.

In Chapter 3, we introduce the proposed methodology. We define our objectives
with respect to our taxonomy and motivate them by describing in more details how
the proposed methodology improves and enables the evaluation of robot systems and
components in research and engineering, including practical examples. In Sec. 3.1,
we formalize the concept of performance model. In Sec. 3.2, we describe the software
framework developed to support our methodology and how it is used to run experiments
and produce the performance models. Finally, in Sec. 3.3, we describe and provide ex-
amples for the composition of performance models, which allows us to study complex
robot systems.

In Chapter 4, we describe two use cases which we use to demonstrate our method-
ology. In the first case study, in Sec. 4.1, we show how to produce performance models
for a single functionality, SLAM, and in the second case study, in Sec. 4.2, we demon-
strate how we produce composed performance models for a complex system.

In Chapter 5, we analyse the experimental results obtained in the case studies, show-
ing how to make use of the performance models and which decisions are supported by
the results.

In Chapter 6, we draw our conclusions and propose possible future directions of our
work.

6
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CHAPTER2
Background and Literature Review

2.1 Experimental Methodology

Experimental methodology is a fundamental aspect of research but lagging behind in
robotics research if compared with other disciplines such as physics or medicine. Bon-
signorio et al. [5, 6] highlighted the importance of repeatability and reproducibility of
research, to support industrial adoption of new solutions and allow research groups
to build on previous results. The authors point to some of the main difficulties in re-
producing robotics experiments such as the high variability in hardware and software
architectures of the robot systems, the high variability of the environments in which
the systems or methods are tested, the need for specific test equipment to conduct the
experiments, etc. Bonsignorio et al. also point to methodological issues affecting the
reproducibility of research in robotics, such as the lack of experimental protocols and
the lack of assessment of the statistical significance for the results. Additionally, they
assert the need to provide the data and sufficient description of the hardware and soft-
ware used in the evaluation of the system or method, the parameters, the environment,
the task, as well as a precise description of the evaluation metrics and criteria. Bon-
signorio and other researchers from specific fields participated to a Special Interest
Group on Good Experimental Methodology and Benchmarking (SIG GEM) and pro-
duced a set of guidelines [7] regarding the review of experimental research in robotics
and some of its sub-areas (e.g., SLAM, Motion Control, Obstacle Avoidance, etc).

Some works, such as [24,25], provide tools to support the complete development, re-
production and modification process of robot systems aiming to facilitate reproducibil-
ity of robotics experiments and provide a systematic approach to aggregate and link
information on publications, version of component releases, systems, datasets, and so
on.

Relatively recent developments in computer engineering tools and data sharing plat-

7
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Chapter 2. Background and Literature Review

forms can be used to alleviate the difficulty of replication of scientific results in robotics.
Containerization tools such as Docker1 greatly reduce the effort needed to run software
setups developed by researchers and can ensure that a software setup can be run even
when some of the software packages stop being supported or become available.

Code and data sharing platforms, such as GitHub2 and Zenodo3, allow researchers
to share code and scientific data. Specifically, the data sharing service Zenodo allows to
share data, even in large volumes, with the promise that it will remain available for an
unlimited time, citeable using Digital Object Identifiers (DOI), and versioned. GitHub
has a similar promise for open source code. The availability of datasets is not always to
be taken for granted. For instance, the original data of the Radish dataset [19], which we
used in our work, is not available from the original source anymore. The data used in
our work has been found in alternative sources which republished the original dataset4.

2.2 Benchmarking Object Detection and Classification Methods

The KITTI Vision Benchmark Suite5 [16], Pascal VOC6 [11] and COCO7 [28] frame-
works provide multiple datasets of images and ground truth data for computer/robot vi-
sion tasks such as object detection, visual odometry, etc. We classify these framework
as single component with respect to our taxonomy since each benchmark assesses the
performance of methods with no connection to a complex system. These frameworks
provide a public leaderboard ranking algorithms by multiple performance metrics. In
particular, in COCO the leaderboard shows the average performance of each metric for
each method, allowing to identify the best performing method for each metric. In Pascal
VOC, the leaderboard only reports one metric, average precision, for each class of the
dataset. This allows to identify the best performing method for specific classes or the
best performing method overall. In KITTY, specifically for the object detection tasks,
the leaderboard reports the performance divided in three levels of detection difficulty,
the detection time, and information on the computation device used (i.e., CPU/GPU,
number of cores, frequency). The detection difficulty levels (i.e., easy, moderate, and
hard), are based on the size, occlusion and truncation of the objects in the images.

Huang et al. [20] measure the trade-off between speed, memory and accuracy for
different object detection Convolutional Neural Network (CNN) architectures with dif-
ferent architecture parameters. The approach is not meant to benchmark object detec-
tion methods per se, but provides a more complete characterization of the performance
than common practice for object detection benchmark methodologies such as [8,11,28],
where the dependency between detection speed, memory requirements, and detection
accuracy is not reported in such level of details. In their work, many CNN architec-
tures are built with different combinations of parameters: feature extractor, number of
proposals, output stride, loss function, and input size. Some of these combinations, but
not all, correspond to architectures that have been used in state-of-the-art object detec-

1https://www.docker.com/. Accessed on 2022-09-27.
2https://github.com/. Accessed on 2022-09-27.
3https://zenodo.org/. Accessed on 2022-09-27.
4https://www.ipb.uni-bonn.de/datasets/,

http://www2.informatik.uni-freiburg.de/˜stachnis/datasets.html. Accessed on 2022-09-27.
5http://cvlibs.net/datasets/kitti. Accessed on 2022-09-27.
6http://host.robots.ox.ac.uk/leaderboard. Accessed on 2022-09-27.
7http://cocodataset.org/#detection-leaderboard. Accessed on 2022-09-27.
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2.2. Benchmarking Object Detection and Classification Methods

Figure 2.1: Simplified example of trade-off curve (gray continuous line) for two metrics, A and B (higher
values are better). Green dots have the best performance for the metrics A and B. The blue dot
represents a performance which is not best in any metric, but can still be a good compromise. The
red dot is not a good compromise, since its performance is worse than the blue dot for all metrics.

(a) (b)

Figure 2.2: Reprinted from [20]. Overall mAP (higher is better) vs GPU time (lower is better) colored
by (a) meta-architecture and (b) feature extractor. Each (meta-architecture, feature extractor) pair
can correspond to multiple points on this plot due to further parameter changes.

9
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Chapter 2. Background and Literature Review

tors. The results allow the authors to find the trade-off curve, which identifies the set of
architectures with competitive performance when all metrics are considered. These are
the architectures which are not outperformed for every single metric by another archi-
tecture, and are thus a valid compromise. See Fig. 2.1 for a simplified example of the
trade-off curve, and Fig. 2.2 for an example of the trade-off curves presented in [20].
The architectures which do not produce the best performance for any metric, but are
still good compromises, would not be highlighted in a ranking based on single metrics.

2.3 Benchmarking Complete Robot Systems

The following two works present methodologies which tackle the problem of evaluat-
ing the performance of software components in relation to each other in the context of
complete robot systems, although they do not produce practical developments. Com-
petitions such as RoboCup8, RoCKIn and the European Robotics League (ERL) aim at
evaluating entire robot systems. The ERL competition [4, 27] specifically aims at inte-
grating a benchmarking methodology with a robot competition. To do so, two types of
challenges are organized: functionality benchmarks and task benchmarks. The func-
tionality benchmarks evaluate the performance of single functionalities: object per-
ception, navigation, people perception, person following, grasping and manipulation.
These benchmarks are executed in isolation to measure the performance of the robot
system without interference from the performance of other functionalities. Task bench-
marks evaluate the performance of the integrated robot system executing tasks that
require multiple functionalities. The evaluation is done in testbeds that replicate an
apartment or factory layout, with all its environmental aspects, like walls, windows.
The methodology proposes to quantify the impact of each functionality on the perfor-
mance of the robot system in each task using the scores obtained in each benchmark
challenge.

These competitions also have some limits. The competition setting, indeed, of-
fers limited repeatability as the robot systems (hardware and software) are frequently
changing, even within a single competition event. Because of the limited repeatabil-
ity, it is too complex to study the relationship between the performance of a complete
robot system, the performance of the system’s functionalities and the characteristics of
the environment. We classify this methodology as complex system since the competi-
tion provides both system-level and functionality-level benchmarks in order to assess
the integration quality of the components. With respect to our taxonomy, we classify
the methodology’s subject type as complex system since both single components and
the entire robot system are evaluated, and the methodology proposes to analyse how
the functionalities affect the overall system performance. We classify the target use
as ranking since the competition results are published as a ranking at the end of each
season, for each functionality and task benchmark. The environment type is real world
and the execution mode is closed-loop.

The methodology presented in Plug and Bench [3,12,13] developed a formalism that
integrates benchmarking methodology with the Model Driven Software Development
(MDSD) concept of software component in the RobMoSys ecosystem9. The work pro-
poses to develop benchmark procedures and performance metrics for each component

8https://www.robocup.org/. Accessed on 2022-02-02.
9https://robmosys.eu
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2.4. Benchmarking 2D SLAM and Localization Methods

(a) HectorSLAM (b) GMapping (c) KartoSLAM (d) CoreSLAM (e) LagoSLAM

Figure 2.3: Reprinted from [41]. Maps obtained through simulation in the MRL arena environment. Red
represents the ground truth and blue represents the final map.

available in the framework’s library. This would be possible thanks to the standard-
ized interfaces of each component in the software framework used in RobMoSys. The
benchmark of each component would be run by the developer of the software com-
ponent. The developer of the robot system, which integrates software components
produced by third parties, can than use the benchmark results of each component to
estimate its performance given characteristics of the robot platform and characteristics
of the environment. Additionally, the authors propose as future work the possibility
of composing the benchmark results of different components in order to estimate the
performance of the whole system at design time. They suggest this is possible provided
that:

• Each component of the robot system has been benchmarked;
• The performance of each component can be fully characterized by information

regarding the robotic platform and environment;
• The performance of each component which depends on other components can be

fully characterized by information regarding those components.

We classify the methodology’s target subject as complex system since the methodol-
ogy is centered on the idea of predicting the performance of software components tak-
ing into consideration their dependence. The target use is technical specification since
the results of the benchmark the software components are conceived to allow predicting
the performance from characteristics of the robot system, other components, and envi-
ronment. The environment type and execution mode can be any since the formalism
specifies how the benchmarking process is integrated into the RobMoSys framework,
rather than specifying a specific protocol.

2.4 Benchmarking 2D SLAM and Localization Methods

The work of [41] benchmarks five SLAM algorithms in two simulated environments
and one real world environment. The performance is evaluated with two metrics: map
accuracy, which computes the difference between the ground truth map and the one es-
timated by the methods, as shown in Fig. 2.3, and CPU load. We classify the methodol-
ogy’s subject type: as single components since the performance of the SLAM methods
is computed in isolation from other components or features of a robot system which
may influence their performance. The methodology’s target use is ranking, since the
benchmarked methods are compared by the two performance metrics. The environ-
ment type is simulation, since the work is applied to a simulation and the real world.

11
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Chapter 2. Background and Literature Review

Figure 2.4: Reprint from [29]. A floor plan (left) and the corresponding Voronoi graph (right; cells are
red and blue pixels)

Figure 2.5: Reprint from [29]. The regression lines representing the models that correlates the Voronoi
Traversal Distance (VTD) with the four components of the localization error (black dots are values
relative to individual environments in E) for maps obtained using the GMapping SLAM algorithm.

Although the environment type could also be classified as dataset since the SLAM
methods are fed the odometry and LIDAR sensor data which was recorded in the real
and simulated environments. For the same reason, the execution mode can be classified
as either open-loop or closed-loop.

The works of [2, 29] have introduced a methodology that exploits simulations to
generate a large number of test data on which SLAM algorithms are automatically
evaluated. The authors apply their methodology to the SLAM methods GMapping and
KARTO. The simulated robot has realistic characteristics, such as noisy odometry read-
ings and a LIDAR sensor with properties corresponding to a commercial product. A
large number of heterogeneous environments is used in their experiments. From the
collected data, the authors are able to extract a statistical relationship between the lo-
calization error and different geometrical features of the environment. In Fig. 2.4 we re-
port the Voronoi graph computed on the grid-map of the environment which the authors
use to compute geometrical features of the environment, such as the Voronoi Traversal
Distance (VTD), which is the distance of the path of a robot traversing the graph in
order to visit every node. In Fig. 2.5 we report the data and statistical model obtained
in [29] regarding the GMapping SLAM method. The localization error is measured
with four performance metrics measuring the mean and variance of the translation and
rotation relative localization error. The effect of the properties of the sensors on the
performance are not investigated by their work. With respect to our taxonomy, we clas-
sify the methodology’s subject type as single component since the performance of the
SLAM methods is computed in isolation from other components or features of a robot
system which may influence their performance. We classify the target use as technical
specification since the performance of the SLAM methods is evaluated against differ-
ent features of the environment. The environment type is simulation, since the work is
applied to a simulation, although in principle the methodology can also be applied to
experiments executed with a real robot and from datasets since the SLAM method only

12
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2.5. Benchmarking Autonomous Navigation Methods

requires the odometry and LIDAR data, in fact the authors include experiments from
datasets recorded on real robots to validate the simulation results. For the same reason,
the execution mode can be both open-loop or closed-loop.

2.5 Benchmarking Autonomous Navigation Methods

The following works tackled the problem of measuring the performance of navigation
algorithms in relation to characteristics of the environment. No work showed the effect
of other components of a system on the performance of navigation methods.

An evaluation framework for measuring the performance of a navigation stack for
autonomous robots in relation to a measure of the environment’s complexity is pre-
sented in [10]. The complexity of an environment is computed as the average of the
shortest path distance computed between every pair of accessible locations in the envi-
ronment. The authors show that the complexity of the environment has a considerable
impact on the performance and it is, therefore, useful to consider this relationship when
evaluating the performance of navigation methods. Three environments and six start/-
goal positions (two start/goal positions for each environment) are used to evaluate the
relation between performance and environment complexity. Only one navigation soft-
ware is evaluated, the Husky ROS navigation stack 10. Although the work proposes
a complexity metric rather than a benchmarking methodology, we can still classify
the proposed methodology with respect to our taxonomy. The subject type is a single
component, since a navigation stack is evaluated as a monolithic component. The tar-
get use could be classified as technical specification since the approach could evaluate
the impact of the environment complexity on the performance of different navigation
components. Although this would require to compare the dependency for multiple nav-
igation components. The approach can be applied to a simulation or to a real world
environment, so we can classify the methodology’s environment type as simulation and
real world, and the execution mode as closed-loop.

In the work of [21], a local planner based on Deep Reinforcement Learning (DRL)
and three other local planners available in the ROS framework (DWA, TEB, and MPC)
are evaluated in different environments. The difficulty of the navigation task is set by
varying the number and velocity of dynamic obstacles, representing people walking
in the environments. The results quantify the effect of the dynamic obstacles on the
performance of each local planner. The localization and odometry readings of the robot
are assumed to be ideal, meaning that the ground truth pose of the robot is provided to
the navigation methods, rather than computing an estimated pose with a localization
method. With respect to our taxonomy, we can classify the methodology’s subject
type as single components, since the effect of the localization on the performance of
the local planners is ignored. The methodology’s target use is technical specification,
since the methodology allows to estimate the dependency of the performance on the
difficulty of the navigation task caused by the dynamic obstacles. The methodology
relies on simulation to apply specific properties to the dynamic obstacles, therefore the
environment type is simulation, and the execution mode is closed-loop.

The work of [18] presents a benchmarking tool for sampling-based global plan-
ners. The environments used to evaluate the global planners are generated as indoor

10http://www.clearpathrobotics.com/assets/guides/kinetic/husky/HuskyGmapping.html. Ac-
cessed on 2022-09-26.
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Figure 2.6: Reprint from [18]. Path length and normalized curvature of different combinations of the
feasible motion-planning algorithms and post-smoothing algorithms compared against the asymp-
totically (near) optimal motion-planning algorithms. Both performance metrics are reported with
different computation time limits. The initial paths of the feasible motion-planning algorithms are
marked with ⋆, and the paths of the post-smoothing algorithms are marked with • for GRIPS, ×
for B-Spline, + for Shortcut and ▼ for SimplifyMax. The paths of the asymptotically (near) optimal
motion-planning algorithms are solid lines marked with ·.

Figure 2.7: Reprint from [18]. Number of cusps for different global planners with a computation time
limit of 15 seconds each in 5 random indoor-like environments with desired minimum corridor widths
from 3 to 8 cells in increments of 1 cell (left) and 5 random outdoor-like environments with obstacle
density ranging from 1.0% to 3.0% in increments of 0.5% (right).
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2.5. Benchmarking Autonomous Navigation Methods

or outdoor with two parameters which set the difficulty of the global planning: min-
imum corridor width and obstacle density. The environment difficulty is related to
the performance measured as the number of cusps present in the generated plan, see
Fig. 2.7. The trade-off curves for some performance metrics are shown in the paper
for different combinations of motion planning algorithms, post-smoothing algorithms,
and computation time limits, as shown in Fig. 2.6. A limitation of this work is that
only static environments are considered. With respect to our taxonomy, we can classify
the methodology’s subject type as single component, since no interaction with other
components of a robot system is considered. The methodology’s target use is technical
specification since the performance dependency on the difficulty of the environments
is estimated for different planning algorithms. The data used to evaluate the algorithms
consists in grid-based maps, therefore we can classify the methodology’s environment
type as dataset, and the execution mode as open-loop.

15
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Performance Modelling Methodology

We can frame the objective of this thesis with respect to the taxonomy described in
Sec. 1.1 into a benchmarking methodology that falls into the categories of techni-
cal specifications and complex system benchmarking. Complex system benchmarking
methodologies aim at measuring the performance of a subject structured as a system
and its components. Such methodology evaluates the effect of the performance of one
component on other components, or the effect of features of the robot system on the
performance of the components under evaluation. Technical specifications benchmark
methodologies provide the ability to predict the performance as a function of relevant
parameters such as characteristics of the robot system and characteristics of the envi-
ronment.

Taking into consideration the characteristics of the system and environment allows
us to determine what influences the performance of the component and the conditions
necessary to maximize its performance, or more realistically, to obtain a sufficient per-
formance given constraints on the robot system such as its cost. As a practical example,
the performance of a 2D SLAM component depends on the information produced by
the odometry and LIDAR sensors. As we will show in Sec. 5.1.1 (Fig. 5.2a and 5.2b),
we find that the performance falls off when using a LIDAR sensor with field of view
and range lower than certain values. This information is key to choose a sensor with
characteristics which allow the SLAM component to maintain a sufficient performance,
and at the same time, minimizing the cost of the system by considering the diminishing
returns of a more expensive sensor that only produces a small performance increase.

When comparing the performance of different components, a technical specification
methodology allows us to identify in which conditions one component performs better
than the others. For instance, in Sec. 5.1.1 (Fig. 5.2b), we find that when using a
LIDAR sensor with low field of view, the SLAM component with the best localization

17
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Chapter 3. Performance Modelling Methodology

performance is GMapping, and when using a LIDAR sensor with high field of view,
the best localization performance is obtained by SLAM Toolbox.

Benchmarking a robot system by assessing the performance of each component with
independent single component benchmarks would not capture the gain or loss of per-
formance of the system due to the interaction between components. Components can
interact directly, when one component relies on information generated by another com-
ponent, or indirectly, when a component is affected by the actions of another com-
ponent. The performance of a component which relies on information generated by
another component, may - in general - be affected by some characteristics of this in-
formation. A practical example of this occurrence, which we will show in Sec. 5.2.2
(Fig. 5.19), is found in a robot system which includes a localization component and
a local planning component. The local planning component is responsible for follow-
ing a path by sending motion commands while avoiding obstacles. The local planning
component relies on the estimated position and orientation of the robot in the environ-
ment, which is provided by the localization component. We find that, in some cases,
the probability of success of the local planning component is affected by the accuracy
of the estimation error of the localization component.

The study of the performance of multiple components can also provide a more
significant performance measure. For example, a mapping component can be bench-
marked with a general performance metric measuring the similarity between the esti-
mated map and the ground truth [41]. This measure may generally tell the quality of
the estimated map, but if the map is utilized by another component, the quality of the
map should be judged by how well it supports the execution of the other component.
In the work of [23], the authors point out that a map may be locally or globally con-
sistent. A globally consistent map will achieve a higher performance when measuring
the similarity of the estimated map with the ground truth map. A map which is locally
consistent but not globally consistent, will achieve a lower performance with the simi-
larity metric, but it may still be adequate for a navigation component if the topology of
the environment is preserved.

By applying the technical specification and complex system benchmarking, we pos-
tulate that the overall system performance can be measured in relation to the perfor-
mance of its components and characteristics of the environment. The result of unifying
the technical specification and complex system benchmarking is what we call com-
ponent performance model: a statistical model which allows us to predict the perfor-
mance of the software components from features of the system and the environment. In
robotics research, such methodology allows us to evaluate comprehensively the meth-
ods against the state-of-the-art, and in engineering, it can be used as a tool to improve
the development of robot systems.

3.1 Formal Definition

Let us define the terminology of functionality and component. A functionality iden-
tifies a set of abilities required by the robot system to work. The definition of what
constitutes a specific functionality is arbitrary. Benchmarking of robot systems can
and should take advantage of the componentization that comes into existence from the
development of the software packages in the robot frameworks. Since we base our
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work on the ROS framework, we make the definition of specific functionalities coin-
cide with the structure that came into existence in the ROS framework. For example,
the most basic and common feature of a mobile autonomous robot is the ability to lo-
calize itself and navigate in an environment, which we divide into the following (non
exhaustive) set of functionalities: localization, SLAM (Simultaneous Localization And
Mapping), global planning, and local planning. These functionalities include different
abilities that may be considered separate in different fields of research or even different
software frameworks. For instance, the local planning functionality may be split into
further sets of abilities such as motion planning, motion control and obstacle avoid-
ance. We define a software component as the software implementation of a method or
algorithm which provides a specific functionality. For instance, in the ROS framework,
different software packages are available to provide the localization functionality, such
as the AMCL and the SLAM Toolbox software packages.

We define a component performance model as a set of statistical models able to pre-
dict the value of the software component’s performance metrics from the characteristics
of the system in which the component is used, the characteristics of the environment in
which the system is deployed, and the configuration of the component itself.

We call system features those features representing characteristics of the robotic
hardware and software system that affect the performance of a software component.
For instance, the performance of a local planner may depend on the quality of the
localization as computed by a localization or SLAM component, which in turn, depends
on the number of beams of a LIDAR sensor. In this case, the system features would be:
quality of the localization and number of LIDAR sensor beams.

In our approach, we call environment features those values representing some char-
acteristic of the environment that we can compute and which affect the performance
of the component. For instance, the performance of a Simultaneous Localization and
Mapping (SLAM) method depends on the environment’s clutterness, size, or richness
in corners. While the motion commands of a local planner are affected by the obstacles
surrounding the robot, the tightness of the passages, and the dynamics of the obstacles.
In this case, the environment features would include: environment clutterness, mean or
minimum width of the passages, velocity and number of dynamic obstacles.

While developing performance models for different functionalities we identified the
parts of our methodology that apply generally. These are represented as entities and
relationships in the diagram in Fig. 3.1. The entities are represented by rectangles. The
relationship between entities is represented by edges. The cardinality of a relationship
from entity A to entity B, labeled as n : mR, indicates that A has relationship R with
m B entities, and entity B has relationship R with n A entities. The symbol ”*” in the
edge labels indicates a number greater or equal to 0. This diagram can be used as a
meta-model, meaning that it can be used as the definition of the diagrams describing
specific performance models. The entities of the meta-model are classes, while in the
diagram of a specific performance model the entities are instances. Examples of spe-
cific performance model diagrams will be shown in Sec. 4.1 and Sec. 4.2.

The entities of the meta-model can be divided in two groups, those representing the
protocol and those representing the data, which is generated using the protocol. The
following are the entities representing the protocol:

• an experimental setup, consisting in the implementation of the experimental sys-
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Figure 3.1: The meta-model representing the relationships between the entities (rectangles) constituting
a performance model. The relationship between entities is represented by edges.
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tem and experimental environments;

• an experimental protocol, which identifies the actions executed by the system and
the behavior of the environment;

• a set of run parameters, which control aspects of the experiments that are relevant
to the performance of the component;

The following are the entities representing the data of the methodology:

• a set of run data, which are collected during the experiments and used to compute
the performance metrics and features;

• a set of environment and system features, which are quantifiable characteristics of
the environment and system that might influence the overall performance;

• a set of performance metrics, which provide a measure of the performance of the
component that can be used to compare different implementations;

• a set of performance metric statistical representations, each of which allows to
predict the value of a performance metric from the relevant features.

In the following paragraphs, we describe each entity in more detail and provide
examples.

Experimental Setup The experimental setup describes how we collect the data regard-
ing the component we wish to model and it manages the execution of experiments.
One experimental system and one or more experimental environments are used in the
setup to simulate the conditions in which the component is deployed in the real sce-
nario. The experimental system represents the software residing in the robot system.
Multiple experimental environments may be used by an experimental setup to test a
variety of environmental conditions. The experimental environment may be a real set-
ting, based on a simulation or based on a dataset. While experiments conducted in the
real world could in some cases provide more realistic performance measurements, the
use of datasets or simulation enables to execute a high number of experiments, which
makes it possible to collect more data. Additionally, the use of datasets and simulation
simplifies the collection of ground truth information, which in some cases may not be at
all possible or too expensive in a real setting. For instance, continuously and accurately
measuring the pose of a robot in a large indoor environment would require an expensive
motion capture system, while in simulation it comes for free. The experimental setup
of [4] uses multiple real world environments, implemented in different testbeds. The
pose of the robot is measured using a visual marker fixed to the robot platform and a
motion capture system using cameras to observe every location of the environment. An
example of experimental setup is the one used in the first use case demonstrating our
methodology, in Sec. 4.1. The experimental setup is used to evaluate different SLAM
components by running them in a robot system which visits every location of multiple
simulated environments. The experimental environments are simulated buildings rep-
resented by 3D models. The experimental system includes the navigation software that
commands the simulated robot platform in order to visit every location of the environ-
ment and the sensors providing the information to the component under evaluation.
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Experimental Protocol The experimental protocol defines how the environment behaves
(e.g., defining the dynamics of an environment with moving obstacles) and how the
experimental system interacts with the component and with the environment. The pro-
tocol should ensure that the component is faced with realistic events and behaviors.
Since the experimental protocol affects the performance of the component, it is impor-
tant to provide a description that allows the user of the performance model to evaluate
if the results are compatible with their use of the component. Using our first use case
as example (Sec. 4.1), the experimental protocol consists in the procedure used to auto-
matically generate a list of locations of the environment which are visited in a specific
order. Additionally, the experimental protocol defines the conditions for the termination
of the experiment.

Experimental Run and Run Parameters We organize the experiment execution in runs.
We define an experimental run as an instance of the experimental system and experi-
mental environment configured with a specific set of run parameters. The run param-
eters, to which we assign different values in each run, are used to set every aspect of
the experimental setup which may produce a change in performance of the software
components under evaluation. For instance, when evaluating a component that relies
on information from a sensor, which has different properties affecting the quality of the
information, we would use a run parameter for each relevant property of the sensor and
assign to them different values that could be realistically found in a real robot system.
Other examples of run parameters, which we will use in the demonstration of the pro-
posed methodology, are the type of kinematic model of the robot platform, kinematic
constraints related to each kinematic model, specific properties of multiple sensors of
the robot, and run parameters which affect the configuration of the components them-
selves. Run parameters are also used to set lower level aspects of each run. If we are
interested in evaluating multiple components implementing the same functionality and
in the same experimental setup, we would use a run parameter to select which of mul-
tiple components are used in the experimental run. If we test multiple components in
the same experimental setup, we use a run parameter for each functionality for which
we have multiple component choices. If multiple experimental environments are avail-
able, we use a run parameter to select which one to use in each run. Additionally, we
can repeat multiple times the execution of runs with the same configuration of the ex-
perimental environment and experimental system by using a run parameter that does
cause changes in them, which can be useful to test the variability of the results in the
same conditions. Since we do not yet know the effect of each experimental setup con-
figuration generated by the run parameters on the performance, we must, in principle,
execute a run for all combinations of run parameter values. This would result in a large
number of runs: with n run parameters to which we assign m values each, the num-
ber of combinations to run is mn, so we need to reduce the number of run parameters
and values. To do this, we can execute different sets of runs with limited number of
run parameters and/or limited number of values, observe the effect on the performance,
and select which run parameters and values are actually significant. Additionally, we
can start with a small set of run parameters values, apply the whole methodology end-
to-end, observe whether the results provide sufficient details, and iteratively add more
values to each run parameter as needed.
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Run Data The run data is data collected during the execution of the runs, and is an in-
termediate step in the computation of the performance metrics, the system features, and
the environment features relative to each run. The run data contains all the information
necessary to compute the metrics and features, such as the values of the run parameters
used to setup the experimental system and environment, events that happened during
the execution of the run, and the state of the environment and system through time.
This allows to make changes to the implementation of the performance metrics and the
algorithms that compute system features and environment features, even after the run
data has been collected. Collecting the run data also allows us to implement additional
metrics and features from the collected data. For instance, to compute the localization
error of a localization component, which estimates the position and orientation of the
robot with respect to the environment’s frame of reference, we collect two run data.
The first run data contains the ground truth position and orientation of the robot at dif-
ferent times. In case of a simulated environment, this data is provided by the simulation
software every time the state of the simulation is updated. The second run data con-
tains the position and orientation estimated by the localization component, and the time
at which it is provided by the localization component. These two run data can then
be compared to compute the error of the estimation with respect to the ground truth
information throughout the execution of the run.

Environment and System Features The environment features and system features are val-
ues representing some characteristic of the environment, robotic hardware and software
system that affect the performance of the software components. The system features
and environment features are computed from the run data. The features may correspond
to run parameters that define characteristics of the system/environment relevant to the
performance of the component, or they may be computed with algorithms from infor-
mation regarding the environment and information available to the component during
the execution of the run. environment features and system features in our method-
ology are essential to find the statistical relationship between the performance of the
components and the characteristics of the system and environment. This is essential to
comprehensively evaluate the software components of robot systems that we are most
interested in benchmarking, i.e., the components developed as a general solution to
complex problems, such as SLAM, trajectory planning, object detection, and so on.
These components have to be adaptable to a variety of conditions, as they most likely
will face environments and systems which present different degrees of difficulty. We
postulate it is possible to describe the difficulty of the problem solved by the compo-
nent in terms of environment features and system features. The difficulty of the prob-
lem solved by methods and algorithms is not always explicitly taken into account, even
when it could provide a more thorough evaluation, such as the works of [11, 28, 41]. A
few methodologies study the difficulty of the problem and use it to categorize the per-
formance in different classes, such as [16], in which the performance of object detection
methods is measured for three levels of detection difficulty based on the size, occlusion
and truncation of the objects in the images; the work of [10], in which the difficulty of
the navigation problem is estimated for three environments; and the work of [45], in
which local planners are evaluated in different environments that are designed to pose
different levels of difficulty. And finally, a few methodologies propose to study the rela-
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tionship between the performance and the difficulty of the problem or characteristics of
the environment, such as the work of [21], which tests different local planners against
environments with dynamic obstacles producing different levels of difficulty and shows
that different local planners perform best in more or less dynamic environments; and
the work of [29], which produces statistical models of the relationship between the
performance of SLAM algorithms and characteristics of the environmet in which they
operate. In our methodology, we exploit these features via a statistical model, which
allows us to study how a component performance is affected by them and to find what
are the operational limits of a component while giving us information on how to change
the system and environment to improve its performance.

Performance Metrics Performance metrics measure the performance of the software
components from the run data collected during the experimental runs. The measure-
ment of the performance is then used to evaluate whether each performance metric is
affected by environment features and system features, and in such case, to build a sta-
tistical model that allows us to predict the performance from the features. In general,
multiple performance metrics are required to provide a comprehensive evaluation of
a robotics software component. Providing a statistical model able to predict the per-
formance for a multitude of aspects allows us to maximize an objective function that
weights each performance metric based on our needs. Different users of a compo-
nent may care about different aspects of its performance. For instance, a mobile robot
motion planning component may produce paths that maintain a higher safety distance
between the robot platform and surrounding obstacles, but these paths will be longer,
take more time to execute, and result in lower velocity. When the component is used in
different applications, one performance metric may be considered more important than
another: in an environment shared with humans, safety may be prioritized, while in a
more controlled and predictable environment, efficiently executing the task may be the
primary concern. An example of the usefulness of evaluating methods or algorithms
with multiple metrics is the work of [20], which measures the trade-off between three
performance metrics, speed, memory and accuracy, for different object detection CNN
architectures, allowing us to identify the architectures with competitive performance
when all metrics are considered, rather than the architectures which perform best for
each metric by itself.

Performance Metric Statistical Representation We are interested in producing statistical
models predicting each performance metric of a component from features of the sys-
tem and the environment. The performance metric statistical representation is a statis-
tical model predicting a specific performance metric from certain environment features
and system features, and for specific conditions. Each performance metric can then
be predicted by multiple performance metric statistical representations using different
statistical modelling techniques, from different sets of features and for different condi-
tions. The performance model of a component contains multiple performance metric
statistical representations. Multiple statistical representations of the same performance
metric may be useful when different representations have different advantages. For ex-
ample, a performance metric which depends on multiple features can be represented
with a set of univariate statistical models, each predicting the performance from a sin-
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3.2. Performance Modelling Software Framework

gle feature, or it can be represented with a multivariate statistical model which predicts
the performance from all the features at once. The univariate representations allow us
to have an overview of the dependency from each feature which is easier to visualize
and study, while the multivariate statistical model allows us to actually predict the per-
formance given the value of the features, but the predicted values are more difficult to
visualize and interpret due to the multidimensional nature of the data. Additionally,
we may want to provide statistical representations of a performance metric computed
in different conditions, which is equivalent to produce the statistical models only con-
sidering specific ranges of values for each feature. For example, a system feature may
determine the type of robot platform and different components implementing the same
functionality may only be compatible with some of these platforms. In such case, it is
convenient to produce a different statistical representation which considers each plat-
form separately, allowing us, for each platform, to compare the performance of the
components and find which component performs best. At the same time, it is also con-
venient to compare the performance of each component when using different platforms
and determine the best platform given the component.

3.2 Performance Modelling Software Framework

To support our methodology, we developed the performance modelling software frame-
work, which automates the execution of the experiments, the collection of the data, and
the computation of the performance metrics and the features used to produce the per-
formance models. Since we want to evaluate the performance of software components
over an extensive number of run parameter combinations, manually managing the ex-
ecution of the experiments would be unfeasible, therefore we automate the execution
of runs and the collection of data. The automation of the experiments also allows us to
make our work more reproducible by packaging in software containers, such as Docker
containers1, the data and software needed to re-execute all the experiments and, in prin-
ciple, obtain equivalent results.

The software framework is organized as a pipeline, shown in Fig. 3.2. A set of run
parameters and their values are used to create the list of combinations of run parameter
values by the grid executor. Each combination of run parameter values is passed to the
run script, which uses them to configure the experimental setup and execute the experi-
mental run. The experimental setup contains the experimental system, the experimental
environment and one or multiple components we want to evaluate. The experimental
system includes all the software necessary to execute the run: the run data logger,
which collects the run data; the supervisor, which coordinates the execution of the
run; and the accessory software, which fulfills the functions of a robot system needed
to evaluate the components. For instance, in order to evaluate a SLAM or localization
component, the accessory software includes a navigation stack which controls the robot
motion and the software needed to provide the information from the sensors. The per-
formance and features computation script computes the metrics and features from the
run data for all runs that have been completed. This script can be executed even while
runs are being executed, allowing us to compute partial results for the statistical models
while experiments are still in progress. The statistical models and other information

1https://www.docker.com/resources/what-container/. Accessed on 2022-10-13
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run param 1 param 2 param 3

1 1 A
2 1 B
3 2 A
4 2 B
5 1 0.1
6 1 0.2
7 2 0.1
8 2 0.2

Table 3.1: List of combinations produced by the grid executor from the parameters in Listing 3.1.

regarding the experiments are computed using Jupyter notebooks2. The time-sequence
diagram in Fig. 3.3 shows the sequence of interactions between the parts of the software
framework throughout the execution of multiple runs. In the following paragraphs, we
provide more details on the parts of the software framework.

Grid Executor Because of the non-linearity of the performance in function of the run
parameters, we need to test exhaustively the system for all combinations of run pa-
rameter values. The grid executor takes a configuration file containing a list of run
parameters and respective list of values, which we call run parameter grid, and gener-
ates the list of all parameter-value combinations. For instance, in Listing 3.1 we have
three run parameters, param 1, param 2, and param 3, with two values each. The grid
executor produces the 8 combinations of run parameter values in Table 3.1. Each row
of the table corresponds to the run parameters used to configure an experimental run.
Additionally, the grid executor takes care of only running the runs with parameter com-
binations that have not been already executed. This allows to add parameters and values
to the input file and run the grid executor to extend the tested combinations.

1 c o m b i n a t o r i a l p a r a m e t e r s : [
2 {
3 param 1 : [ 1 , 2 ] ,
4 param 2 : [A, B] ,
5 } ,
6 {
7 param 1 : [ 1 , 2 ] ,
8 param 3 : [ 0 . 1 , 0 . 2 ] ,
9 } ,

10 ]

Listing 3.1: Example of run parameter grid, which is used as input of the grid executor.

Run Script The grid executor passes a set of run parameters and their value to the run
script. The run script has two functions: configuring the run and launching the experi-
ment. The run is configured by creating a run directory in which all configuration files
(run configuration in Fig 3.3) and information relative to the run are stored (including,
for instance, the run data). All information needed to configure the run is stored in the
run directory, in this way it is always possible to determine how the system was config-
ured and replicate the run in the same conditions. Additionally, the list of all software

2https://jupyter.org/. Accessed on 2022-10-13.
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3.2. Performance Modelling Software Framework

Figure 3.2: Overview of the performance modelling software framework, developed to support our
methodology by automating the execution of the experiments, the collection of data, and the compu-
tation of the performance metrics, environment features, and system features.
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grid executor run script launch manager supervisor software component other software
run con�guration

run start

generate run con�guration
from run parameters

save software con�guration

execute run

launch system nodes

launch supervisor

load sw parameters

launch software component

load sw parameters

launch other software

load sw parameters

terminate run

supervisor terminated

terminate

terminate

system nodes terminated

run end

loop [for all run parameters combinations]

Figure 3.3: Time-sequence diagram describing the sequence of events in a session of experiments as
implemented in our software framework.
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3.3. Performance Model Composition

packages installed in the system or used in the run is included in the run directory,
allowing to keep track of which software versions are used in each run. The run is ex-
ecuted by launching the required software packages, namely, the software component
being tested, the simulation software if the run is executed in simulation, or the dataset
software if the run is executed from a dataset, the supervisor and data logger, and any
other software needed to implement the experimental system. The run is considered
terminated when the supervisor terminates.

Supervisor The supervisor is the part of the experimental setup which coordinates the
software component and other software packages of the experimental setup in order to
implement the experimental protocol. This includes sending commands to the software
component and deciding when to terminate the run.

Run Data Logger The data logger writes the run data to files, which are saved in the
run directory. The run data is all the information required to compute the performance,
system features and environment features data relative to the run. The run data is raw
information, such as events that occurred during the run, the trajectory of the robot,
ground truth information from the simulator or dataset, etc.

Experimental Environment The experimental environment can be implemented as a sim-
ulator, a dataset or a real-world setup. In the case of simulation, the experimental en-
vironment consists of the implementation of the surrounding of the robot system. A
simulation can provide different representations of the environment based on the fi-
delity required to accurately measure the performance of the software components. For
instance, the environment used to evaluate a robot that autonomously navigates in a
building using a LIDAR sensor may be represented with a 3D model of a building con-
stituted by a flat floor and flat walls, while a robot which navigates relying on images
from a camera sensor requires a more sophisticated simulation, such as the one pro-
posed in the work of [46]. The interface between the environment and the robot system
consists of the physical simulation of the robot and the simulated sensors, which can
also provide different degrees of realism. The physical model of the robot is represented
in the simulation by a 3D model, including geometric and kinematic information, ac-
tuator models, and sensor models. The simulated sensor models are implemented by
algorithms which replicate the measurements and information that would be generated
by the sensors in a real robot system, and can approximate the errors of real sensor
measurements. Similarly, the actuators are represented by algorithms simulating the
physical behavior of the commands sent by the robot system and can approximate lim-
itations present in a real robot system.

3.3 Performance Model Composition

We define performance model composition as joining component performance models
to obtain a performance model of a complex system. This allows us to evaluate multiple
components in a complex robot system, to analyze the dependency of the performance
between components, and to predict the performance of a complex system given the
choice of which component is used for each of its functionalities.
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Figure 3.4: Bayes network in which the performance of two components are conditionally independent.

Different aspects can influence the performance of a component in a robot system.
The performance of a component can depend on the characteristics of the information
generated by other components and from the actions executed by other components. We
use performance metrics to characterize any aspect of a component A that can influence
another component B. For the component performance model of B, these metrics are
considered system features.

We identify three general cases of how we can model the dependency between the
performance metrics of one component with respect to another. The dependency of the
performance metrics on other performance metrics, system features, and environment
features is represented using Bayesian networks [33], where the performance metrics
and system/environment features are variables and their conditional dependency is rep-
resented by directed edges. We propose examples for these general cases with two
components, with one performance metric each, but the same reasoning can be applied
to each pair of performance metrics of any two components in a complex system, and
to components with more than one performance metric.

Case 1: the performance of two components, A and B, are correlated, but they are
conditionally independent given the environment features and system features that are
common to the two component performance models. This case is shown as a Bayes
network in Fig. 3.4.

Case 2: the performance of component B depends on the performance of component
A. This case is shown as a Bayes network in Fig. 3.5a, where the performance of
component A depends on a system feature or environment feature, and the performance
of component B depends on the performance of component A.

Case 3: component A depends on some environment/system feature and the perfor-
mance of component B depends on both the performance of component A and the same
system/environment features on which the performance of component A depends. This
case is shown as a Bayes network in Fig. 3.5b.

When evaluating a complex system, often we are able to choose between different
components implementing a functionality and we can evaluate the performance of these
components with the same set of metrics. We propose three examples for general cases
of how we can model the dependency in a system in which two components, A1 and
A2, implement a functionality FA, that influences the performance of component B. In
Fig. 3.6, we show a Bayes network representing each example. In these examples,
the performance of the components A1 and A2 depends from an environment/system
feature and the performance of the component B depends on the performance of the
component used to implement the functionality FA. What differentiates these cases is
how we model the dependency of the performance of B on the performance metrics of
FA.
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(a) (b)

Figure 3.5: Bayes networks in which the performance of component B is correlated with the performance
of component A.

Case 1: we are not able to characterize the dependence of component B on the per-
formance of the components A1 and A2, therefore, we can only predict the performance
of component B from a variable identifying which component is used to implement the
functionality FA, named component choice for FA in the Bayes network. This variable
is considered a system feature for the performance model of component B. This is
shown in the Bayes network in Fig.3.6a. Although we are not able to study how the
performance of A1 and A2 affects the performance of B in detail, we can determine the
performance of component B given the choice of component for FA.

Case 2: we are able to partially characterize the dependence of component B on the
performance of the components A1 and A2, and the prediction is most accurate with the
knowledge of which component is used to implement the functionality FA. This case is
shown as a Bayes network in Fig. 3.6b. In this case, we can predict the performance of
component B from the performance of the components A1 and A2, unified in the variable
functionality FA performance in the Bayes network, but using the variable identifying
which component is used to implement the functionality FA (variable component choice
for FA in the Bayes network), we can improve the prediction of the performance of
component B. The improvement of the prediction is due to the performance metric of
B only partially characterizing the dependence on the performance of FA.

Case 3: we are able to fully characterize the dependence of component B on the per-
formance of the components A1 and A2, meaning that we can predict the performance of
component B from the performance of the component implementing functionality FA,
regardless of which component, A1 or A2 in our example, implements the functionality
FA. This is shown in the Bayes network in Fig.3.6c. If we are able to completely char-
acterize the dependency of B on the component implementing FA, then we can build the
performance models of A1, A2, and B separately, then use the composed performance
model to predict their performance without the need to build the actual composed sys-
tem.

3.3.1 Synthetic Example of Composition

To clarify the composition of component performance models we synthesize two ex-
ample datasets representing simple systems. The first example, shown in Fig. 3.7, rep-
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(a) Bayes network in which the
performance of component B

depends on which component is
used to implement a functionally

FA.

(b) Bayes network in which the
performance of component B

depends on which component is
used to implement a functionally
FA and the performance of the
component implementing the

functionality FA.

(c) Bayes network in which the
performance of component B

depends on the performance of
the component implementing the

functionality FA.

Figure 3.6: Bayes networks representing different levels of characterization of the dependency of the
performance of a software component B on the performance of the multiple software components
which implement the same functionality FA.
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3.3. Performance Model Composition

Figure 3.7: Example of composition of two performance models. The component A performance model
has one system feature, x, and a performance metric, pA. The component B performance model has
one system feature, pA, and a performance metric, pB.
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Figure 3.8: Example of composition of two performance metrics. In (a) the ⟨x, pA⟩ datapoints and the
estimated function p̂A(x). In (b) the ⟨pA, pB⟩ datapoints and the estimated function p̂B(pA). In (c)
the ⟨x, pB⟩ datapoints, the estimated function P̂comp

B (x), and the composed function p̃comp
B (x).

resents a system with two components, A and B. The performance of component A,
named pA, depends from a system feature, named x. The performance of component
B, named pB, depends from the performance of component A, therefore we treat the
performance pA as a system feature for component B.

We generate a set of datapoints, shown in Fig. 3.8, for x, pA and pB using Eq. 3.1 and
Eq. 3.2, where N (µ,σ) is the normal distribution with mean µ and standard deviation
σ . These datapoints, in a real performance model, would be the measurements of the
system feature and the performance metrics collected in different experiments.

pA(x) = 1+(1+ x)2 + εA, εA ∼ N (0.0,0.6) (3.1)
pB(pA) = log(pA(x))+1+ εB, εB ∼ N (0.0,0.2) (3.2)

Since we know, in this example, the true relationship between x, pA and pB, it is easy
to fit a generalized linear model estimator [31] to the data and obtain the estimated func-
tions p̂A(.) and p̂B(.). This is done by fitting the linear regression p̂A = β0 +β1 fA(x),
where fA(x) is the function that transforms the feature x to make p̂A linear with respect
to x, and p̂B = β2 +β3 fB(pA), where fB(pA) is the function that transforms the feature
pA to make p̂B linear with respect to pA.

The data and estimated function for p̂A(.) are shown in Fig. 3.8a, and the data and
estimated function for p̂B(.) are shown in Fig. 3.8b. Additionally we can produce a
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function estimating the performance pB from x with one of two following approaches.
Either we collect the data from the same experiments, then we can directly estimate the
function p̂comp

B (x) with a generalized linear model estimator from the dataset, shown in
orange in Fig. 3.8c, or we collect the data for component A and component B in two
separate sets of experiments, then we can obtain the function p̃comp

B (x)= p̂A(.)◦ p̂B(.)=
p̂B(p̂A(x)) by composing the estimated functions.

We propose a second example based on a synthesized dataset representing a system
with two functionalities: functionality FA, which can be implemented by two compo-
nents, A1 and A2, and functionality FB, which can be implemented by two components
B1 and B2. The performance of components A1 and A2, named pA1 and pA2 , depend
from a system feature, named x. The performance of components A1 and A2 is measured
with the same performance metric. The performance of components B1 and B2, named
pB1 and pB2 , depend from the performance of the component implementing the func-
tionality FA. We assume that the performance of the components A1 and A2 completely
characterized the dependency with the performance of components B1 and B2, there-
fore we treat the performance of the components implementing the functionality FA as
the same performance, regardless of which components implements the functionality,
and we name this performance pA, which is used as a system feature for components
B1 and B2.

We generate a set of datapoints, shown in Fig. 3.9, for x, pA1 , pA2 , pB1 , and pB2

using the same equations as the first example, Eq. 3.1 and Eq. 3.2. We fit multiple gen-
eralized linear model estimators to the data and obtain the estimated functions p̂A1(.)
and p̂A2(.) for the functionality FA, shown in Fig. 3.9a, and the estimated functions
p̂B1(.) and p̂B2(.) for the functionality FB, shown in Fig. 3.9b. The data is generated for
two separate robot systems. Robot system S1, with components A1 and B1, and robot
system S2, with components A2 and B2.

We then compose the resulting models of the two functionalities, obtaining the func-
tions predicting the performance pB from the feature x. In Fig. 3.9c are shown the func-
tions p̃comp

Bi
(x) = p̂Ai(.) ◦ p̂Bi(.) = p̂Bi(p̂Ai(x)) obtained by composing the estimated

functions of components A1 and B1 (i = 1), and components A2 and B2 (i = 2). In
Fig. 3.9d are shown the functions p̃cross

Bi
(x) = p̂A j(.) ◦ p̂Bi(.) = p̂Bi(p̂A j(x)) obtained

by composing the estimated functions of components A2 and B1 (i = 1, j = 2), and
components A1 and B2 (i = 2, j = 1). Because the performance of the components
implementing each functionality are equivalent, the resulting functions p̃comp

Bi
(x) and

p̃cross
Bi

(x) are also equivalent. The small difference between them is due to the random
noise.

Producing performance models for a complex system may be unfeasible since the
number of run parameter combinations explodes when the run parameters necessary
to evaluate each component are joined. Collecting the data in separate experiments
allows us to simplify the evaluation of a complex system by dividing the system in
sub-systems which are tractable, and then predicting the performance of the complete
system by composing the performance models. Producing performance models from
separate experiments is a difficult problem to solve. When evaluating the performance
of a component B, which depends on the performance of component A, the experimen-
tal setup for component B requires the information or behavior equivalent to the one
which would have been produced by the component A in the same conditions (i.e., with
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Figure 3.9: Example of composition in a system with multiple components implementing two function-
alities. In (a), the ⟨x, pA1⟩ and ⟨x, pA2⟩ datapoints and the estimated functions p̂A1(x) and p̂A2(x). In
(b), the ⟨pA1 , pB1⟩ and ⟨pA2 , pB2⟩ datapoints and the estimated functions p̂B1(pA1) and p̂B2(pA2). In
(c), the ⟨x, pB1⟩ and ⟨x, pB2⟩ datapoints and the estimated functions p̃comp

B1
(x) and p̃comp

B2
(x). In (d),

the ⟨x, pB1⟩ and ⟨x, pB2⟩ datapoints and the estimated functions p̃cross
B1

(x) and p̃cross
B2

(x).
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equivalent system features and environment features). In principle, it may be possible
to design an experimental setup for component B in which we synthesize an equivalent
information or behavior that substitutes the presence of component A, but this requires
knowledge on how the components A and B interact, which may require us to have
studied their dependency in the same experimental setup in the first place.
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CHAPTER4
Component Performance Modelling

In this chapter, we describe two use cases which we use to demonstrate our method-
ology. In the first use case, we show how to produce performance models for a single
functionality by evaluating the performance of three Simultaneous Localization and
Mapping (SLAM) components and their dependency on different features of the sys-
tem and a feature of the environment. In the second use case, we demonstrate how we
produce a composed performance model for a complex system which includes three
functionalities needed for autonomous navigation: local planning, global planning and
localization. We evaluate three local planning components, two global planning com-
ponents, and one localization component. In the two use cases, we describe the ex-
perimental setup and the experimental protocol which allows us to evaluate different
software components, the run parameters used to configure the experimental setup, and
the run data which we collect from the experiments. Finally, we describe how we
compute the environment features and the performance metrics used to evaluate the
performance of the software components and their dependency from features of the en-
vironment, features of the robot system, and the dependency between the performance
of different components used in the same system. The resulting performance models
obtained with our methodology will be shown in Chapter 5.

4.1 SLAM Component Performance Modelling

In this section, we present a use case of the proposed performance modelling method-
ology applied to the SLAM functionality. The experiments consist of a navigation task
which visits every location of various indoor environments. The robot system has two
sensors, a LIDAR sensor and an odometry sensor. The SLAM component uses infor-
mation from these sensors to simultaneously estimate the pose of the robot and map
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Figure 4.1: High level view of the SLAM performance models. Various features (odometry error, LIDAR
range, LIDAR field of view, and translation geometric similarity) are used to predict multiple perfor-
mance metrics of the SLAM components.

of the environment. The experimental setup, described in more details in the following
section, includes all the software needed to simulate the environment and to support and
coordinate the execution of the run, such as the navigation stack software and the soft-
ware which sends commands to the navigation stack in order to navigate through every
location of the environmet. A high-level view of the performance models is shown
in Fig. 4.1, highlighting the environment features and system features from which we
predict the performance metrics.

We evaluate three SLAM components, GMapping1 [17] (a combination of particle
filter for the localization and Extended Kalman Filters for the map landmarks), and
two graph-SLAM-based methods: SLAM Toolbox2 [30] and Hector SLAM3 [22]. All
software components estimate a map of the environment and the current pose of the
robot from 2D LIDAR sensor readings, while only GMapping and SLAM Toolbox
use the odometry information. The SLAM performance model allows us to predict
the performance of the SLAM component from three system features relative to the
LIDAR and odometry sensors and an environment feature which quantifies the amount
of information provided by the geometry of the environment as encoded in the LIDAR
measurements.

The diagram, split in three parts and shown in Fig. 4.2-4.4, describes the entities that
are part of the SLAM performance model and their relationship. The first part of the
diagram, shown in Fig. 4.2, lists the run parameters used to configure the experimental
setup in each run, the experimental environments, the components evaluated and the
functionality they implement, which in this case, is the single functionality being eval-
uated in the experimental setup. Note that, although the experimental setup includes
multiple SLAM components, they are never used at the same time, but rather in differ-
ent runs. The second part of the diagram, shown in Fig. 4.3, lists the run data collected
during the experiments, the performance metrics, the system features and the environ-
ment features included in the performance model. The relationships, represented by
edges, in this part of the diagram specify which run data is used to obtain each metric
and feature. The third part of the diagram, shown in Fig. 4.4, lists the performance met-
ric statistical representations included in the performance model, which performance
metric they predict, and which features are used to predict the performance metric.

1http://wiki.ros.org/gmapping. Accessed on 2022-10-14.
2http://wiki.ros.org/slam_toolbox. Accessed on 2022-10-14.
3http://wiki.ros.org/hector_slam. Accessed on 2022-10-14.
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4.1. SLAM Component Performance Modelling

Figure 4.2: Part 1 of 3 of the SLAM performance model diagram, listing the entities used in the perfor-
mance model: the experimental setup, the experimental system, the experimental environments, the
components evaluated in the experimental setup, the functionality implemented by the components,
and the run parameters used to configure the experimental setup.

Figure 4.3: Part 2 of 3 of the SLAM performance model diagram, listing the entities used in the per-
formance model: the run data, the performance metrics, the environment features and the system
features. The relationships in this diagram show which run data is used to compute each metric and
feature.
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Chapter 4. Component Performance Modelling

Figure 4.4: Part 3 of 3 of the SLAM performance model diagram, listing the entities used in the per-
formance model: the performance metrics, the system features, the environment features, and the
performance metric statistical representations. The relationships in this diagram show which per-
formance metric is predicted by each statistical representation, and from which features they are
predicted.
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4.1. SLAM Component Performance Modelling

Figure 4.5: The software used to implement the experimental setup. The SLAM component is highlighted
in green. The edges of the graph represent the communication between the software.

In the following sections we describe in details the experimental setup, the experi-
mental protocol, the run parameters used to configure the experimental setup, the run
data which we collect from the experiments, and finally the environment feature and
the performance metrics that we will later use to evaluate the SLAM components.

4.1.1 Experimental Setup

The experimental setup needed to execute the experiments provides the environment
and system software of a robot that autonomously navigates and visits every location
of a building. The experimental setup is divided in an experimental environment and
an experimental system. The experimental environment includes the 3D model of a
building, the 3D model of the robot, and the plugins implementing the sensors and
actuators of the robot. The experimental system includes the Move base navigation
stack and the supervisor. A diagram of the setup is shown in Fig. 4.5.

The navigation stack ensures that the robot navigates towards navigation goals sent
by the supervisor, and provides feedback to the supervisor to communicate that the goal
was reached or that the navigation has failed. The navigation stack relies on ground
truth information to avoid any interference by the performance of the SLAM compo-
nent, which would otherwise require us to treat the navigation stack software as addi-
tional software components, but in this case we are not yet interested in evaluating a
complex system. The navigation stack utilizes three plugins: the DWA local planner,
the ROS global planner named GlobalPlanner, and a recovery behavior named escape
lethal cost.

The recovery behavior was developed on purpose for this experimental setup to
increase the reliability of the navigation. The DWA local planner often maneuvers the
robot closer than a safety distance from the obstacles, causing it to stop to avoid a
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Chapter 4. Component Performance Modelling

Figure 4.6: View of the Gazebo simulation. The 3D model generated from the fr079 grid-map and the
Turtlebot robot. The blue lines correspond to the LIDAR beams.

potential collision. In this state, the local planner is not able to resume the navigation
by itself. The recovery behavior, which is activated by the navigation stack when the
local planner can not make progress, consists of rotating the robot in place away from
the nearby obstacles and then slowly moving forward until the robot is far enough to
resume the navigation.

The supervisor is in charge of sending commands to the navigation stack in order to
visit every location of the environment, deciding when to stop the run, and collecting
the run data.

The experimental environment is implemented using the Gazebo simulator4. Gazebo
is sufficient to simulate an environment with the features that impact the performance
of the SLAM components being evaluated. A more complex simulator, such as the ones
able to provide a photorealistic representation of the environment, would not improve
the quality of the simulation in our setup since in this case we evaluate software compo-
nents that only rely on information from a 2D LIDAR sensor and wheel odometry. The
simulation consists of a 3D representation of a physical environment and a 3D robot
model, see Fig. 4.6.

We craft the 3D environments by extruding the 2D gridmaps in Fig. 4.7. Three
environments (airlab, 7A-2, office b) represent empty buildings of varying sizes gener-
ated from gridmaps from the dataset presented by [2]. One environment, named fr079,
is generated from a gridmap obtained by running GMapping on data from the radish
dataset5 [19], which was collected in real buildings. These environments have different
characteristics: airlab is small, office b presents repetitive patterns on a global scale,
7A-2 is made of very large and empty rooms, fr079 represents a realistic scenario for
highly cluttered indoor space.

4https://www.gazebosim.org/. Accessed on 2022-02-02.
5The data was provided by Cyrill Stachniss, and is available at http://ais.informatik.uni-freiburg.de/

slamevaluation/datasets.php. Accessed on 2022-02-02.
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4.1. SLAM Component Performance Modelling

Figure 4.7: The gridmaps of the experimental environments (top to bottom): airlab, fr079, office b, 7A-
2. All the gridmaps have the same scale, 0.05m per pixel.
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Chapter 4. Component Performance Modelling

The modeled robot is the Turtlebot 3 Waffle6, a robot platform widely used both
in simulation and the real world. The LIDAR sensor is simulated with the default
Gazebo plugin. The measurement noise is implemented as Gaussian noise added to
each range measurement independently from the range value (constant standard devia-
tion of 0.01m and zero mean). The angular increment between beams is 1 degree. The
measurement frequency is set to 10Hz. The maximum range and field of view are as-
sumed, for the sake of simplicity, as the system features of the LIDAR sensor affecting
the performance of the SLAM methods under evaluation, therefore we run experiments
with different values which are common in commercial products, i.e., the maximum
range is set to 3.5, 8, 15,and 30 meters, and the field of view is set to 90, 180, 270, and
360 degrees.

The odometry data is computed with a version of the differential drive Gazebo
plugin that we modified to simulate an odometry sensor affected by a rotational and
translational Gaussian noise proportional to the amount of rotation and translation per-
formed between each odometry measurement. The standard deviation of the transla-
tion and rotation odometry error is βδρ and βδθ respectively, where δρ and δθ are
the ground truth translation and rotation of the odometry reading. The amount of
odometry noise has a significant effect on the performance of the two SLAM meth-
ods, therefore we consider it a system feature, and run experiments with a range of
values: β = (0.0,0.5,1.0,1.5,2.0). This noise model is inspired by the one described
in [44].

4.1.2 Experimental Protocol

The navigation procedure used to acquire the data to build our performance model is
based on a traversal path which is computed from the ground truth gridmap and which
visits every location of the environment accessible to the robot. The traversal path is
obtained from the graph G1 (Fig. 4.8a) obtained by computing a Delaunay triangulation
based on the occupied cells of the gridmap and the corresponding Voronoi graph. G1
is reduced to a simpler graph G2 by keeping only the nodes connected to one or three
edges, and then by removing leaf nodes (see Fig. 4.8b).

The traversal path is then obtained from the graph G2 by randomly selecting an
initial vertex from the graph G2 then the next vertex is selected as the vertex of graph
G2 with the shortest distance to the current vertex among the vertices that have not
been included in the traversal path. The distance is computed with respect to the graph
G1. The procedure terminates when all vertices of graph G2 are added to the traversal
path. A further simplification of the path is made by discarding every vertex closer
than 2m to the previous before building the traversal path to speed up the execution
of the run and simplify the navigation task. The traversal path is traversed in both
directions, allowing the SLAM components to produce complete gridmaps even with
LIDAR sensors having a field of view smaller than 180 degrees. Two criteria determine
the termination of the run: the completion of the navigation on the traversal path, and a
timeout of 7200s (2 hours). No experiment has been terminated by timeout.

6https://github.com/ROBOTIS-GIT/turtlebot3_simulations/tree/melodic-devel/
turtlebot3_gazebo/models/turtlebot3_waffle. Accessed on 2022-02-02.
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4.1. SLAM Component Performance Modelling

(a) Voronoi graph G1 (b) Reduced graph G2

Figure 4.8: Graphs used to compute a path that visits every location of an environment.

4.1.3 Run Parameters

Five run parameters are used to produce the experiments, odometry error, laser scan
max range, laser scan field of view, environment name, and slam component. Addition-
ally, each combination of parameters is repeated 5 times to account for variability. The
run parameter slam component is used to select between the three SLAM algorithms
that come packaged in the ROS framework: GMapping, SLAM Toolbox, and Hector
SLAM. The run parameter environment name is used to select which of the simulated
environments is used in each run.

The run parameter odometry error is a vector describing the four components of
odometric error, similarly to the odometry error model in [44]: beta 1 controls the
amount of odometry rotation error caused by the effective rotation, beta 2 controls the
amount of odometry rotation error caused by the effective translation, beta 3 controls
the amount of odometry translation error caused by the effective translation, and beta 4
controls the amount of odometry translation error caused by the effective rotation. Al-
though in a real robot the odometric error would manifest in all four components, to
reduce the number of run parameters combinations, only beta 1 and beta 3 are used
and set to the same value, which we call beta, and is also used as a system feature in
the performance model. The run parameters laser scan max range and laser scan field
of view are used to set the maximum range and field of view of the LIDAR sensor.
These run parameters limit the quality of the sensor information which is available to
the SLAM component, and are also used as system features in the performance model.

In order to reduce the number of parameters combinations while still testing many
values of odometry and LIDAR parameters, two parameter grids are used. Using two
grids allows us to obtain data with sufficient resolution for odometry error and the LI-
DAR parameter values, with fewer parameter combinations than the same grid with all
parameter values. The number of parameters combinations is computed as the product
of the number of values of slam component, environment name, odometry error, laser
scan max range, and laser scan field of view. The number of runs is the number of
parameters combinations multiplied by the number of repetitions of each combination.
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1 c o m b i n a t o r i a l p a r a m e t e r s : [
2 {
3 s lam component : [ gmapping , s l a m t o o l b o x , h e c t o r s l a m ] ,
4 env i ronment name : [ a i r l a b , 7A−2 , o f f i c e b , f r 7 9 ] ,
5 o d o m e t r y e r r o r : [ [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] , [ 2 . 0 , 0 . 0 , 2 . 0 , 0 . 0 ] ] ,
6 l a s e r s c a n m a x r a n g e : [ 3 . 5 , 8 . 0 , 1 5 . 0 , 3 0 . 0 ] ,
7 l a s e r s c a n f o v : [ 9 0 , 180 , 270 , 3 5 9 ] ,
8 } ,
9 ]

Listing 4.1: Run parameter grid used in the SLAM performance model, with more values for LIDAR
parameters.

1 c o m b i n a t o r i a l p a r a m e t e r s : [
2 {
3 s lam component : [ gmapping , s l a m t o o l b o x , h e c t o r s l a m ] ,
4 env i ronment name : [ a i r l a b , 7A−2 , o f f i c e b , f r 7 9 ] ,
5 o d o m e t r y e r r o r : [
6 [ 0 . 5 , 0 . 0 , 0 . 5 , 0 . 0 ] ,
7 [ 1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 ] ,
8 [ 1 . 5 , 0 . 0 , 1 . 5 , 0 . 0 ]
9 ] ,

10 l a s e r s c a n m a x r a n g e : [ 8 . 0 , 3 0 . 0 ] ,
11 l a s e r s c a n f o v : [ 1 8 0 , 3 5 9 ] ,
12 } ,
13 ]

Listing 4.2: Run parameter grid used in the SLAM performance model, with more values for odometry
parameters .

In the run parameter grid in Listing 4.1, four values are used for the laser scan max
range and laser scan field of view run parameters, and only two values are used for
the odometry error run parameter, resulting in 384 parameters combinations and 1920
runs.

In the run parameter grid in Listing 4.2, only two values are used for the laser scan
max range and laser scan field of view run parameters, and three additional values are
used for the odometry error run parameter, resulting in 144 parameters combinations
and 720 runs.

The two run parameter grids can be visualized in Table 4.1, in which for simplicity
only the laser scan max range and odometry error run parameters are present. Using
two smaller grids, the sum of the number of parameters combination is 528 (2640
runs), while a single grid with all parameter values would generate 960 parameters
combinations (4800 runs).

4.1.4 Run Data

The following run data are collected in each run:

• run info: this run data stores the value of the run parameters with which the run is
configured.

• run events: this run data is a series of events identified by a name and a times-
tamp. The relevant events are: run start identifies when the run has started, tar-
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4.1. SLAM Component Performance Modelling

odometry error
0.0 0.5 1.0 1.5 2.0

3.5 G1 G1

laser scan 8 G1 G2 G2 G2 G1

max range 15 G1 G1

30 G1 G2 G2 G2 G1

Table 4.1: G1 are combinations from grid 1 (Listing 4.1), G2 are combinations from grid 2 (Listing 4.2).

get pose set indicates that the supervisor successfully sent a navigation goal to
the navigation stack, waypoint timeout indicates that the navigation stack did not
reach the goal within a timeout, target pose reached indicates that the naviga-
tion stack reported that the goal was reached, target pose not reached would in-
dicate that the navigation goal reported that it failed to reach the navigation goal,
run timeout indicates the run has reached the timeout, run completed indicates the
run is finished, supervisor finished indicates the supervisor is about to terminate.

• scans: this run data stores a series of laser scan readings, including information on
the time of generation of the data from the sensor, the characteristics of the sensor
(i.e., field of view, minimum and maximum range, and number of beams), and the
list of range measurements.

• estimated poses: this run data contains a series of the poses of the robot as es-
timated by the SLAM component, including the time. The pose is sampled at
10Hz.

• ground truth poses: this run data contains a series of the ground truth poses of the
robot as published by the simulator, including the time. The pose is sampled every
time the simulator publishes the information, which is around 100Hz.

• ps info: this run data contains a series of snapshots of all the experimental envi-
ronment and system processes running on the machine, obtained with the psutil
Python library7. This allows to retrieve information about the processes such as
memory and CPU utilization. The snapshots are collected every 10 seconds.

4.1.5 Environment Features

The performance of the SLAM and localization methods that use LIDAR measurements
in their estimation process depends on the information provided by the geometry of the
environment surrounding the sensor. At one extreme, an environment may have geo-
metric features such that localization can be obtained with LIDAR information alone,
at the opposite extreme, an environment may be geometrically ambiguous resulting in
the LIDAR information being almost useless.

7https://psutil.readthedocs.io/en/latest/#psutil.Process. Accessed on 2022-07-01.
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We measure the amount of information provided by a LIDAR measurement with an
environment feature we call environment geometric similarity8. The geometric similar-
ity is a measure of the uncertainty in the estimation of a small translation and rotation
based on the information encoded by a LIDAR sensor. The feature ranges from 0 for
complete certainty to 1 for complete uncertainty. We named this feature geometric
similarity because it measures the self-similarity of the environment with respect to
translation and rotation at a specific position and orientation within the environment.

The metric is computed employing the real-time scan matching method presented
in [32], which computes an approximation of the probability p(x|z,m), (where z is
the LIDAR information, x is the pose of the robot and m is the gridmap information).
The original method in [32] is used to solve the scan-matching problem, which con-
sists in matching the LIDAR information z to the gridmap m within a small window
x+∆x in order to find the translation and rotation ∆x. We are interested in the prob-
ability p(∆x|z,mz), where mz is the gridmap information equivalent to the LIDAR in-
formation z itself (i.e., the probability of a scan-match of the surrounding environment
with itself). We neglect the pose in the global reference frame x since we represent
all data in the robot frame of reference. The window ∆x used to compute the fea-
ture is (0± 1m,0± 1m,0± 11deg). The translation geometric similarity is computed
as tgs = 1− vmin/vmax, where vmin,vmax are the smaller and larger eigenvalues of the
translation covariance matrix Cov[∆x|z,mz].

In our experiments, we aim at finding the relation between the environment feature
translation geometric similarity relative to a trajectory and the performance metrics
normalized translation and rotation relative errors (see Sec. 4.1.6) along the same tra-
jectory. To relate the geometric similarity to a trajectory we average the value of this
feature sampled at different poses within the trajectory.

4.1.6 SLAM Performance Metrics

The output of a SLAM method are the robot poses and the map. Another important as-
pect of these components is the computational resources used during the execution, i.e.,
the average CPU and maximum memory utilization. To measure the pose accuracy we
use three metrics: the normalized translation relative error εnorm

T , the normalized rota-
tion relative error εnorm

R and the absolute trajectory error. The normalized translation
relative error εnorm

T and the normalized rotation relative error εnorm
R measure the amount

of translation and rotation error that is accumulated in the estimation of the robot pose
by the SLAM component between successive waypoints (wa,wb) of the traversal path,

8The code of the implementation can be found at https://github.com/AIRLab-POLIMI/cartographer/blob/
geometric-similarity-dev/cartographer/geometric_similarity/geometric_similarity.cc. Ac-
cessed on 2022-10-14.
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Figure 4.9: Example of estimated trajectory (continuous black line), ground truth trajectory (dashed
black line), ground truth trajectory with zeroed previously accumulated error (dashed blue line),
waypoints a and b.

as visualized in Fig. 4.9. Their values are computed as

ε
norm
T (i, j) =

||trans(δ E
i, j ⊖δ GT

i, j )||
li, j

(4.1)

ε
norm
R (i, j) =

|rot(δ E
i, j ⊖δ GT

i, j )|
li, j

(4.2)

li, j =
j−1

∑
k=i

||trans(pGT
k+1, pGT

k )|| (4.3)

AT E =
1
N

N−1

∑
k=0

||trans(pE
k , pGT

k )|| (4.4)

where i, j are the indices of the poses closest in time to waypoints wa and wb respec-
tively, δ E

i, j and δ GT
i, j are the homogeneous transformations from the i-th to the j-th es-

timated pose and ground truth pose respectively, pGT
k are ground truth poses. ⊖ is the

inverse of the transformation composition operator. trans is the translation component
of an homogeneous transformation or the translation between poses. rot is the rotation
component of an homogeneous transformation. The relative errors disregard the error
accumulated before the waypoint wa, and it only considers the error accumulated from
a waypoint to the next one. We normalize these metrics with the length of the trajec-
tory li, j followed by the robot between the waypoints to decrease the dependence of the
performance on the length of the trajectory.

The Absolute Trajectory Error (ATE) is computed as Eq. 4.4. Note that this metric
is computed for a whole run, rather than for each pair of waypoints. To evaluate the
probability of success of the SLAM process, we establish an arbitrary threshold for
the absolute trajectory error of 100m. Using this threshold we define the performance
metric success rate. When the SLAM process fails, the values of the ATE may become
meaningless or too large to compute the mean, thus when aggregating the data of the
absolute trajectory error we only consider the data under the threshold and represent
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Figure 4.10: High level view of the Localization and Local Planning performance models. Various
features (odometry error, robot model, alpha factor and global planner) are used to predict the per-
formance of the localization components. These performance metrics, which are used as system
features, are used to predict the performance of the local planning components, together with addi-
tional system features (odometry error, robot model, minimum turning radius, and global planner).

the success rate as a separate metric.
We compute the CPU utilization metric as the total user and system CPU time accu-

mulated by the ROS node implementing the SLAM component divided by the duration
of the run. This metric is dependent on the processor hardware and can only be used
to compare results obtained on the same machine or with the same hardware. We run
all experiments on the same machine. The max memory metric measures the maximum
amount of memory allocated to the ROS node implementing the SLAM component
during a run in MiB (220 Bytes). The allocated memory is counted as Unique Set Size,
i.e., the memory which is unique to the ROS node’s processes and which would be
freed if those processes were terminated.

4.2 Localization and Local Planning Performance Modelling

In this section, we present a use case of the proposed performance modelling methodol-
ogy applied to a complex system with three functionalities: localization, local planning
and global planning. We build a composed performance model by designing an ex-
perimental setup in which the components implementing the three functionalities are
evaluated simultaneously, therefore obtaining a performance model for multiple func-
tionalities as well. A high-level view of the performance models is shown in Fig. 4.10,
highlighting the system features and the performance metrics used in the performance
models, and the use of performance metrics of one functionality (i.e., localization) as
system features of performance models of other functionalities (i.e., local planning).

The experiments consists of a navigation task from one location to another in vari-
ous indoor environments. The robot system has two sensors, a LIDAR sensor and an
odometry sensor. The localization component uses information from the LIDAR and
odometry sensors to estimate the pose of the robot in the environment. The local plan-
ner component sends motion commands to the robot platform in order to follow the path
generated by the global planner and reach the goal location. The experimental setup,
which will be described in more details in the following section, includes all the soft-
ware needed to simulate the environment and to support and coordinate the execution
of the run, such as the navigation stack software which coordinates the communication
between the local planner and the global planner, and the software which sends requests
to the navigation stack in order to navigate to a specific location.
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We evaluate one component implementing the localization functionality, AMCL9

[14]. The localization performance model allows us to predict the performance of the
localization component from two system features, beta and AMCL alpha factor. The
system feature beta represents the amount of error of the odometric sensor, specifying
the amount of rotation and translation drift resulting from the motion of the robot.
The system feature AMCL alpha factor specifies the over- or under-estimation of the
odometry error provided to AMCL. The performance of the localization component is
evaluated with multiple metrics which measure the error of the estimated pose, and are
additionally used as system features to evaluate the dependency of the local planning
component.

We evaluate three local planning components, TEB (Timed Elastic Band)10 [36–40],
DWB (based on Dynamic Window Approach)11 [15] and RPP (Regulated Pure Pur-
suit)12. The local planning performance model allows us to predict the performance of
the local planner from the system feature beta and from the system features character-
izing the localization error.

We use two global planning components in the experimental setup: the NavFN
global planner13, using wavefront Dijkstra planning, and the SMAC global planner14

[9], an SE2 Hybrid-A* using a Reeds-Shepp motion model. Although characteristics
of the global plan may influence the performance of the local planning and localiza-
tion components, to simplify the modelling problem and because the available global
planners have a limited amount of configuration, we do not produce a global planning
performance model, instead, we only represent which global planner is used in each
run as a system feature and show the effect of using each global planning component
on the performance of the other components.

The diagram, split in five parts and shown in Fig. 4.11-4.15, is an instance of the
meta-model for the composed performance model, and describes the entities that are
part of the performance model and their relationship. The first part of the diagram,
shown in Fig. 4.11, lists the run parameters used to configure the experimental setup in
each run, the experimental environments, the components evaluated and which func-
tionality they implement. Note that, although the experimental setup includes multiple
components implementing the same functionality, they are never used at the same time,
but rather in different runs, as specified by the localization component, local planner
component, and global planner component run parameters. The second and third parts
of the diagram, shown in Fig. 4.12 and Fig. 4.13, list the run data collected during the
experiments, the performance metrics, the system features and the environment fea-
tures included in the performance model. The relationships, represented by edges, in
this part of the diagram specify which run data is used to obtain each metric and fea-
ture. The entities used to evaluate the localization component are shown in Fig. 4.12
and the entities used to evaluate the local planning components are shown in Fig. 4.13.
The fourth and fifth parts of the diagram, shown in Fig. 4.14 and Fig. 4.15, list the per-

9https://index.ros.org/p/nav2_amcl/#foxy. Accessed on 2022-10-13.
10https://index.ros.org/r/teb_local_planner/#foxy. Accessed on 2022-10-13.
11https://index.ros.org/p/nav2_dwb_controller/github-ros-planning-navigation2/#foxy.

Accessed on 2022-10-13.
12https://index.ros.org/p/nav2_regulated_pure_pursuit_controller/#foxy. Accessed on 2022-

10-13.
13https://index.ros.org/p/nav2_navfn_planner/#foxy. Accessed on 2022-10-13.
14https://index.ros.org/p/smac_planner/#foxy. Accessed on 2022-10-13.
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Figure 4.11: Part 1 of 5 of the Localization And Local Planning (LALP) performance model diagram,
listing the entities used in the performance model: the experimental setup, the experimental system,
the experimental environments, the components evaluated in the experimental setup, the functional-
ities implemented by each component, and the run parameters used to configure the experimental
setup.

Figure 4.12: Part 2 of 5 of the Localization And Local Planning (LALP) performance model diagram,
listing the entities used in the performance model with regard to the localization performance metrics
and features: the run data, the performance metrics, the environment features and the system features.
The relationships in this diagram show which run data is used to compute each metric and feature.
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Figure 4.13: Part 3 of 5 of the Localization And Local Planning (LALP) performance model diagram,
listing the entities used in the performance model with regard to the local planning performance
metrics and features: the run data, the performance metrics, the environment features and the system
features. The relationships in this diagram show which run data is used to compute each metric and
feature.

formance metric statistical representations included in the performance model, which
performance metric they predict, and which features are used to predict the performance
metric. The entities used to evaluate the localization component are shown in Fig. 4.14
and the entities used to evaluate the local planning components are shown in Fig. 4.15.

In the following sections we describe in details the experimental setup, the experi-
mental protocol, the run parameters used to configure the experimental setup, the run
data which we collect from the experiments, and finally the performance metrics we
use to evaluate the localization component and the local planning components.

4.2.1 Experimental Setup

The experimental setup used to evaluate the localization and local planning compo-
nents is very similar to the one used in the SLAM use case, although there are some
differences, which we will point out while we describe it.

The environments used to conduct the experiments are implemented using the Gazebo
simulator, like in the SLAM use case, although we developed and use more environ-
ments in this use case. As in the SLAM use case, Gazebo is sufficient to simulate an
environment with the features that impact the performance of the local planning and
localization components, which only rely on information from a 2D LIDAR sensor,
wheel odometry and 2D environment information, such as the gridmap used by the lo-
calization component to estimate the pose of the robot. The simulation consists of a 3D
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Figure 4.14: Part 4 of 5 of the Localization And Local Planning (LALP) performance model diagram,
listing the entities used in the performance model with regard to the localization performance metrics
and features: the performance metrics, the system features, the environment features, and the perfor-
mance metric statistical representations. The relationships in this diagram show which performance
metric is predicted by each statistical representation, and from which features they are predicted.

representation of a physical environment and a 3D robot model. The Gazebo models of
the robot and environments are made available for experiment replication15.

As in the SLAM use case, we craft the 3D environments by extruding the 2D
gridmaps in Fig. 4.16. Some of these environment gridmaps are equivalent to the
SLAM use case: airlab, 7A-2, office b, fr079, while the gridmaps intel and mexico
are only used in this use case. Three environments (fr079, intel, mexico) are gen-
erated from a gridmap obtained by running GMapping on real data from the radish
dataset16 [19], as was done in the SLAM use case. The additional environments, intel
and mexico, both represent realistic scenarios indoor spaces, although mexico is a large,
mostly uncluttered environment, while intel is a highly cluttered environment with tight
passages.

The robots modeled are the Turtlebot 3 Waffle, a robot platform widely used both in
simulation and real world and the Hunter 2.017 produced by AgileX Robotics, an Acker-
mann steering platform. The constraints of the Ackermann kinematic model, consisting
of the maximum angle that can be applied to the steering wheels, increase the difficulty
of the navigation. In order to evaluate the effect of the kinematic constraints on the
performance of the local and global planners, we use the system feature min turning
radius, derived from the maximum steering angle of the robot and its wheelbase.

Both robots have two sensors: a LIDAR and a differential odometry sensor. The
15https://github.com/AIRLab-POLIMI/performance_modelling_test_datasets/tree/

local-planning-devel
16The data was provided by Cyrill Stachniss, Dirk Hähnel, and Nick Roy, and is available at http:

//ais.informatik.uni-freiburg.de/slamevaluation/datasets.php and https://dspace.mit.edu/
handle/1721.1/62236. Accessed on 2022-07-29.

17https://global.agilex.ai/products/hunter-2-0. Accessed on 2022-07-26.
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Figure 4.15: Part 5 of 5 of the Localization And Local Planning (LALP) performance model diagram,
listing the entities used in the performance model with regard to the local planner performance
metrics and features: the performance metrics, the system features, the environment features, and
the performance metric statistical representations. The relationships in this diagram show which
performance metric is predicted by each statistical representation, and from which features they are
predicted.
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Figure 4.16: The gridmaps of the experimental environments (top to bottom): airlab, fr079, intel, of-
fice b, 7A-2, mexico. All gridmaps have the same scale, 0.05m per pixel.
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Figure 4.17: The software used to implement the experimental setup. The software components being
evaluated are highlighted in green. The edges of the graph represent the communication between the
software.

LIDAR sensor is simulated with the default Gazebo plugin. The measurement noise is
implemented as Gaussian noise added to each range measurement independently from
the range value (constant standard deviation of 0.01m and zero mean). The angular
increment between beams is 1 degree. The measurement frequency is set to 10Hz.

The odometry data is computed from the differential drive18 and Ackermann drive19

Gazebo plugins that we modified to simulate an odometry sensor affected by a rota-
tional and translational drift. The amount of odometry drift β has a significant effect
on the performance, therefore we consider the odometry error a system feature and run
experiments with multiple values.

The navigation stack used in the experimental system, Nav220, is composed by mul-
tiple parts, three of which are important in our setup: the local planner (called controller
in the Nav2 terminology), the global planner (called planner in the Nav2 terminology)
and the BT navigator, which receives navigation requests from the supervisor and co-
ordinates the parts of the navigation stack based on a behavior tree.

The diagram in Fig. 4.17 illustrates the parts of the experimental system and experi-
mental environment, the software components, and the communication between them.

4.2.2 Experimental Protocol

The navigation procedure used to acquire the data to build our performance model
consists in navigating between a start pose and a goal pose. The start pose is manually
selected in each environment. The goal pose is picked using the run parameter run

18https://github.com/AIRLab-POLIMI/gazebo_ros_pkgs/blob/foxy/gazebo_plugins/src/
gazebo_ros_diff_drive.cpp. Accessed on 2022-07-29.

19https://github.com/AIRLab-POLIMI/gazebo_ros_pkgs/blob/foxy/gazebo_plugins/src/
gazebo_ros_ackermann_drive.cpp. Accessed on 2022-07-29.

20https://navigation.ros.org/. Accessed on 2022-07-29.
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(a) Voronoi graph. (b) Graph obtained from the Voronoi graph
(Fig. 4.18a). The vertices (blue dots) are used

as navigation goal positions.

Figure 4.18: Graph used to compute the set of navigation goals.

index from the set of navigation locations which are automatically generated from the
2D gridmap. The orientation of the goal pose is randomly sampled between 0 and τ .
The set of navigation locations is the set of vertices of the graph in Fig. 4.18. The
graph is obtained by computing a Delanuay triangulation based on the occupied cells
of the gridmap and the corresponding Voronoi graph shown in Fig. 4.18a, which is then
reduced to a simpler graph by keeping only the nodes connected to one or three edges,
and then by removing leaf nodes.

The run is terminated when the BT navigator terminates the execution of the naviga-
tion request, which can be a success or failure to reach the goal pose, or when a timeout
occurs.

4.2.3 Run Parameters

The run parameters used have been chosen to test three local planning components
and the localization component in different environments, with different sensors and
different kinematic models. The set of components to use in the run are selected with
three run parameters: localization component, local planner component, and global
planner component.

The parameter robot model specifies which robot is used in the run, therefore spec-
ifying the kinematic model. The Turtlebot robot is a differential drive and the Hunter
robot is an Ackermann drive. The max steering angle parameter specifies the maximum
angle of the steering wheels of the robot. This parameter can also be specified for the
Turtlebot robot and it is set to 90 degrees, which is the equivalent value for a differential
drive robot.

The odometry error run parameter is a vector describing the four components of
odometric error, although in this setup the implementation is different from the setup
of the SLAM experiments. Rather than computing a random error, the odometry sen-
sors are affected by a constant drift. The error caused by drift is specified for these
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four components: beta 1 controls the amount of odometry rotation error caused by the
effective rotation, beta 2 controls the amount of odometry rotation error caused by the
effective translation, beta 3 controls the amount of odometry translation error caused
by the effective translation, and beta 4 controls the amount of odometry translation er-
ror caused by the effective rotation. Although in a real robot the odometric error would
manifest in all four components, to reduce the number of run parameters combinations,
only beta 1 and beta 3 are used and set to the same value, which we call beta. This
run parameter has been chosen to limit the quality of the sensor information which is
available to the localization component.

When the localization component is set to AMCL and the odometry error is greater
than 0, the run parameter AMCL alpha factor is used to specify the alpha parameters
of the AMCL component. The alpha parameters of AMCL specify the expected pro-
cess noise in the rotation and translation of the odometry estimate from rotation and
translation. Specifically, alpha 1 is the expected process noise in odometry’s rotation
estimate from rotation, alpha 2 is the expected process noise in odometry’s rotation es-
timate from translation, alpha 3 is the expected process noise in odometry’s translation
estimate from translation, alpha 4 is the expected process noise in odometry’s transla-
tion estimate from rotation. The component parameter alpha factor specifies the value
of the parameters al pha1..4 of AMCL21 in relation to the actual amount of odometry
error beta: al phai = betai ×al pha f actor. When the localization component is set to
AMCL and the odometry error is 0, the alpha parameters are set to a small value, but
greater than 0. AMCL would not work with alpha parameters set to 0.

Environment name is used to select which of the available environments is used in
each run. Run index is used to select the goal pose from the list of positions gener-
ated for each environment. Run replication index is used to create replication of the
experiments and it does not cause any change in the experimental setup.

Some parameters are not valid in some combinations, therefore it is necessary to
specify three pairs of parameter grids. Specifically, max steering angle is only specified
when the local planner component parameter is set to TEB, The parameter AMCL
alpha factor can only be specified when the odometry error is greater than 0. When the
odometry error is set to 0, the alpha parameters of AMCL will be set to a fixed value.
The run parameter grids in Listing 4.3 produce the experiments for the Hunter robot
using the TEB local planner and the SMAC global planner. The run parameter grids in
Listing 4.4 produce the experiments for the Turtlebot robot using the TEB local planner
and both NavFN and SMAC global planners. The run parameter grids in Listing 4.5
produce the experiments for the Turtlebot robot using the DWB and RPP local planners,
and the NavFN global planner.

4.2.4 Run Data

The following run data are collected in each run:

• run info: this run data stores the value of the run parameters with which the run is
configured.

• run events: this run data is a series of events identified by a name and a times-
tamp. The relevant events are: run start identifies when the run has started, navi-

21https://navigation.ros.org/configuration/packages/configuring-amcl.html
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1 r u n d u p l i c a t e i n d e x : &id003 [ 1 , 2 ]
2 r u n i n d e x : &id001 [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
3 env i ronment name : &id002 [7A−2 , a i r l a b , f r079 , i n t e l , mexico , o f f i c e b ]
4 c o m b i n a t o r i a l p a r a m e t e r s : [
5 {
6 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
7 l o c a l p l a n n e r c o m p o n e n t : [ t e b ] ,
8 g l o b a l p l a n n e r c o m p o n e n t : [ smac ] ,
9 r o b o t m o d e l : [ h u n t e r 2 ] ,

10 m a x s t e e r i n g a n g l e d e g : [ 2 0 , 4 0 ] ,
11 o d o m e t r y e r r o r : [ [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ] ,
12 env i ronment name : * id002 ,
13 r u n i n d e x : * id001 ,
14 r u n d u p l i c a t e i n d e x : * id003 ,
15 } ,
16 {
17 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
18 l o c a l p l a n n e r c o m p o n e n t : [ t e b ] ,
19 g l o b a l p l a n n e r c o m p o n e n t : [ smac ] ,
20 r o b o t m o d e l : [ h u n t e r 2 ] ,
21 m a x s t e e r i n g a n g l e d e g : [ 2 0 , 4 0 ] ,
22 o d o m e t r y e r r o r : [ [ 0 . 0 2 , 0 . 0 , 0 . 0 2 , 0 . 0 ] , [ 0 . 0 5 , 0 . 0 , 0 . 0 5 , 0 . 0 ] , [ 0 . 1 , 0 . 0 , 0 . 1 ,

0 . 0 ] ] ,
23 a m c l a l p h a f a c t o r : [ 0 . 5 , 0 . 7 5 , 1 . 0 , 1 . 5 , 2 . 0 ] ,
24 env i ronment name : * id002 ,
25 r u n i n d e x : * id001 ,
26 r u n d u p l i c a t e i n d e x : * id003 ,
27 } ,
28 ]

Listing 4.3: Run parameter grid used in the Localization and Local Planning performance model, for
the experiments with the Hunter 2 robot.

gation goal sent indicates that the supervisor successfully sent a navigation goal to
the navigation stack, target pose reached indicates that the navigation to the goal
pose was successful, navigation failed indicates that the navigation stack failed to
reach the goal pose, run timeout indicates the run has has terminated because of
timeout, run completed indicates the run was finished, supervisor finished indi-
cates the supervisor was about to terminate.

• scans: this run data stores a series of laser scan readings, including information on
the time of generation of the data from the sensor, the characteristics of the sensor
(i.e., field of view, minimum and maximum range, and number of beams), and the
list of range measurements.

• estimated poses: this run data contains a series of the poses of the robot as esti-
mated by the localization component, including the time. The pose is sampled at
10Hz.

• estimated correction poses: this run data contains a series of the poses of the
robot as estimated by the localization component, including the time. The poses
are added to the data when received by the localization component after updating
its estimate.

• ground truth poses: this run data contains a series of the ground truth poses of the
robot as published by the simulator, including the time. The pose is sampled every
time the simulator publishes the information, which is around 100Hz.
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1 r u n d u p l i c a t e i n d e x : &id003 [ 1 , 2 ]
2 r u n i n d e x : &id001 [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
3 env i ronment name : &id002 [7A−2 , a i r l a b , f r079 , i n t e l , mexico , o f f i c e b ]
4 c o m b i n a t o r i a l p a r a m e t e r s : [
5 {
6 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
7 l o c a l p l a n n e r c o m p o n e n t : [ t e b ] ,
8 g l o b a l p l a n n e r c o m p o n e n t : [ navfn , smac ] ,
9 r o b o t m o d e l : [ t u r t l e b o t 3 w a f f l e p e r f o r m a n c e m o d e l l i n g ] ,

10 m a x s t e e r i n g a n g l e d e g : [ 9 0 ] ,
11 o d o m e t r y e r r o r : [ [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ] ,
12 env i ronment name : * id002 ,
13 r u n i n d e x : * id001 ,
14 r u n d u p l i c a t e i n d e x : * id003 ,
15 } ,
16 {
17 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
18 l o c a l p l a n n e r c o m p o n e n t : [ t e b ] ,
19 g l o b a l p l a n n e r c o m p o n e n t : [ navfn , smac ] ,
20 r o b o t m o d e l : [ t u r t l e b o t 3 w a f f l e p e r f o r m a n c e m o d e l l i n g ] ,
21 m a x s t e e r i n g a n g l e d e g : [ 9 0 ] ,
22 o d o m e t r y e r r o r : [ [ 0 . 0 2 , 0 . 0 , 0 . 0 2 , 0 . 0 ] , [ 0 . 0 5 , 0 . 0 , 0 . 0 5 , 0 . 0 ] , [ 0 . 1 , 0 . 0 , 0 . 1 ,

0 . 0 ] ] ,
23 a m c l a l p h a f a c t o r : [ 0 . 5 , 1 . 0 , 2 . 0 ] ,
24 env i ronment name : * id002 ,
25 r u n i n d e x : * id001 ,
26 r u n d u p l i c a t e i n d e x : * id003 ,
27 } ,
28 ]

Listing 4.4: Run parameter grid used in the Localization and Local Planning performance model, for
the experiments with the Turtlebot robot and the TEB local planner.

• ps info: this run data contains a series of snapshots of all the experimental envi-
ronment and system processes running on the machine, obtained with the psutil
Python library22. This allows to retrieve information about the processes such as
memory and CPU utilization. The snapshots are collected at 1Hz.

4.2.5 Localization Performance Metrics

The output of a localization method is the estimated robot pose, which is communicated
to the other components in the system by updating a transform between the map and
odom frames. We characterize the localization component using the following metrics:
the translation relative error εT , the rotation relative error εR, the absolute translation
error and the absolute rotation error.

The translation relative error εT and the rotation relative error εR measure the mean
translation and rotation relative errors that are accumulated in the estimation of the

22https://psutil.readthedocs.io/en/latest/#psutil.Process. Accessed on 2022-07-01.
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1 r u n d u p l i c a t e i n d e x : &id003 [ 1 , 2 ]
2 r u n i n d e x : &id001 [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
3 env i ronment name : &id002 [7A−2 , a i r l a b , f r079 , i n t e l , mexico , o f f i c e b ]
4 c o m b i n a t o r i a l p a r a m e t e r s : [
5 {
6 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
7 l o c a l p l a n n e r c o m p o n e n t : [ dwb , rpp ] ,
8 g l o b a l p l a n n e r c o m p o n e n t : [ nav fn ] ,
9 r o b o t m o d e l : [ t u r t l e b o t 3 w a f f l e p e r f o r m a n c e m o d e l l i n g ] ,

10 o d o m e t r y e r r o r : [ [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ] ,
11 env i ronment name : * id002 ,
12 r u n i n d e x : * id001 ,
13 r u n d u p l i c a t e i n d e x : * id003 ,
14 } ,
15 {
16 l o c a l i z a t i o n c o m p o n e n t : [ amcl ] ,
17 l o c a l p l a n n e r c o m p o n e n t : [ dwb , rpp ] ,
18 g l o b a l p l a n n e r c o m p o n e n t : [ nav fn ] ,
19 r o b o t m o d e l : [ t u r t l e b o t 3 w a f f l e p e r f o r m a n c e m o d e l l i n g ] ,
20 o d o m e t r y e r r o r : [ [ 0 . 0 2 , 0 . 0 , 0 . 0 2 , 0 . 0 ] , [ 0 . 0 5 , 0 . 0 , 0 . 0 5 , 0 . 0 ] , [ 0 . 1 , 0 . 0 , 0 . 1 ,

0 . 0 ] ] ,
21 a m c l a l p h a f a c t o r : [ 0 . 5 , 1 . 0 , 2 . 0 ] ,
22 env i ronment name : * id002 ,
23 r u n i n d e x : * id001 ,
24 r u n d u p l i c a t e i n d e x : * id003 ,
25 } ,
26 ]

Listing 4.5: Run parameter grid used in the Localization and Local Planning performance model, for
the experiments with the Turtlebot robot and the DWB and RPP local planners.

robot pose between estimation updates. The metrics are computed as

εT = meani, j||trans(δ E
i, j ⊖δ

GT
i, j )|| (4.5)

li, j =
j−1

∑
k=i

||trans(pGT
k+1 ⊖ pGT

k )|| (4.6)

εR = meani, j|rot(δ E
i, j ⊖δ

GT
i, j )| (4.7)

ri, j =
j−1

∑
k=i

|rot(pGT
k+1 ⊖ pGT

k )| (4.8)

AT E =
1
N

N−1

∑
k=0

||trans(pE
k ⊖ pGT

k )|| (4.9)

ARE =
1
N

N−1

∑
k=0

|rot(pE
k ⊖ pGT

k )| (4.10)

i, j are time indices for the estimated poses and ground truth poses from the run data.
These two series of poses are sampled at different times, therefore, to have matching
indices, the ground truth series is interpolated in time. U is the set of pairs of con-
secutive indices of the estimated poses, i.e., {(0,1),(1,2), ...}. δ E

i, j and δ GT
i, j are the

homogeneous transformations from the i-th to the j-th estimated pose and ground truth
pose respectively. pGT

k are ground truth poses. ⊖ is the inverse of the transformation
composition operator. trans is the translation component of an homogeneous transfor-
mation or the translation between poses. rot is the rotation component of an homoge-
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neous transformation. The relative errors disregard the error accumulated before the
estimation update wa, and it only considers the error accumulated between estimation
updates.

The Absolute Translation Error (ATE) and Absolute Rotation Error (ARE) are com-
puted as in Eq. 4.9 and 4.10.

4.2.6 Local Planning Performance Metrics

The metric navigation success rate indicates whether the navigation was successful.
The navigation is considered successful if the navigation stack has reached the naviga-
tion goal pose within some tolerance, and if there was no collision between the robot
and the environment. The collision is detected when any point corresponding to the
LIDAR measurements fall within the footprint of the robot at any time during the run.
The footprint of the robot is the geometrical representation of the shape of the robot for
the local and global planners. Two additional metrics are derived from the navigation
success rate, the global planner success rate and the local planner success rate. The
global planner success rate indicates whether the global planner was able to produce
a global plan that the local planner could attempt to follow. The local planner success
rate indicates whether the navigation was successful, and the metric is only defined for
the runs in which the global planner was successful.

lrun =
N−1

∑
k=0

||trans(pGT
k+1, pGT

k )|| (4.11)

Lnorm =
lrun

lshortest
(4.12)

The normalized trajectory length, Lnorm (Eq. 4.12), is computed for each run, by
dividing the length of the trajectory taken by the robot (Eq. 4.11) by the shortest trajec-
tory length among the runs in which the navigation was successful (i.e., success rate =
1), and that were executed in the same environment and with the same start and goal
positions (lshortest in Eq. 4.12). The lowest value of this metric is 1 for the runs with
successful navigation. Runs with unsuccessful navigation may produce a value lower
than one since the run may terminate before reaching the goal position. The value of
pGT

k is the k− th ground truth position recorded in the ground truth poses run data.

trun = tend − tstart (4.13)

T norm =
trun

tshortest
(4.14)

The normalized execution time, T norm (Eq. 4.14), is computed for each run, by di-
viding the execution time (Eq. 4.13) by the shortest execution time among the runs in
which the navigation was successful (i.e., success rate = 1), and that were executed in
the same environment and with the same start and goal positions (tshortest in Eq. 4.14).
The lowest value of this metric is 1 for the runs with successful navigation. Runs with
unsuccessful navigation may produce a value lower than one since the run may termi-
nate before reaching the goal position. The value of tstart corresponds to the time of
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Chapter 4. Component Performance Modelling

the event navigation goal accepted, which corresponds to the time that the navigation
stack acknowledges that the navigation request has been accepted. The value of tend
is the time of the event navigation succeeded or event navigation failed. One of these
two events must always be present in the run events run data. These events correspond
to the navigation stack reporting that the navigation goal was reached or that the navi-
gation has failed.

Another important aspect of these components is the computational resources used
during the execution, i.e., the average CPU and maximum memory utilization. We
compute the CPU utilization metric as the total user and system CPU time accumulated
by the ROS node implementing the local planner component divided by the duration of
the run. This metric is dependent on the processor hardware and can only be used to
compare results obtained on the same machine or with the same hardware. We run all
experiments on the same machine.

The max memory metric measures the maximum amount of memory allocated to the
ROS node implementing the component during a run in MiB (220 Bytes). The allocated
memory is counted as Proportional Set Size, i.e., the memory which is unique to the
ROS node’s processes and which would be freed if those processes were terminated,
plus the amount of memory shared with other processes divided by the number of
processes using it.
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CHAPTER5
Experimental Results

In this chapter, we present the results of the two case studies used to demonstrate our
methodology. We will describe how we use statistical models to predict the perfor-
mance metrics from the system and environment features and to evaluate the effects of
the performance of one component on other components. We will analyse these results,
showing how to make use of the information provided by the performance models and
which decisions are supported by the results.

5.1 SLAM Performance Model Results

In this section, we present the performance models relating to five metrics presented
in Sec. 4.1.6. The results are only valid for the conditions in which we evaluate the
performance, and our analysis is limited to the aspects of the performance that have
been measured with the performance metrics included in our work. Other aspects may
be considered to decide which component performs best depending on its use. For in-
stance, the quality of the map produced by the SLAM component during or at the end
of the exploration, which can be measured in different ways [41,42]. Characteristics of
the methods or their implementation that are not strictly related to a measurable perfor-
mance may also be important in deciding which component best suits an application,
such as the data type used to represent the map or the ability to resume the SLAM
process.

Our performance models aim at representing the stochastic relationship between the
system features, the environment features and the performance of the SLAM compo-
nents. In particular, in our setting we have four values for laser scan max range (3.5,
8.0, 15.0, 30.0) in meters, four values for laser scan fov deg (90, 180, 270, 359) and
five values for the odometry noise β (0.0, 0.5, 1.0, 1.5, 2.0). The values of translation
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Chapter 5. Experimental Results

geometric similarity are discretized into five values, so that 0 corresponds to the low-
est value of translation geometric similarity and 4 corresponds to the highest possible
value. We execute 2,640 runs from which we obtain 285,410 datapoints corresponding
to trajectories between successive waypoints in the four environments. The results for
the performance models, each corresponding to a performance metric, are presented in
the following sections.

The data used to compute the performance models is made available online1. The
experiments are executed with 4 threads of a Intel® Xeon® CPU E5-2687W v4 and
252GB of RAM memory on Ubuntu 18.04. The code used to implement and run the
experiments, and the data for robots and environments is made available in our reposi-
tory2.

5.1.1 Normalized Relative Translation Error Metrics

We have fitted a set of generalized linear regression univariate models predicting the
performance from each individual feature. The features laser scan field of view and
laser scan max range are used in the linear model after computing their inverse (i.e.,
1/ f eature) and we fit a second degree polynomial model with interaction variables for
max range, field of view, and beta features, while we fit a fourth degree polynomial
model with interaction variables for the translation geometric similarity feature. Each
plot in Fig. 5.2 shows the measured performance data and the prediction of the univari-
ate models. Note that the legend of these plots, and all following plots, is reported in
Fig. 5.1. The univariate models allow us to visualize the dependency of the component
performance for each system and environment feature. For instance, from the model
in Fig. 5.2a, we can tell that the performance of SLAM Toolbox degrades with a laser
scan max range lower than 8 meters, and a laser scan max range equal or greater than
8 meters will not significantly increase its performance. From the model in Fig. 5.2b,
we can tell the dependency of SLAM Toolbox on the laser scan field of view is greater
than GMapping, and that GMapping is able to perform better than SLAM Toolbox with
a laser scan field of view lower than 180 degrees. From the model in Fig. 5.2c, we can
tell the dependency of GMapping on the odometry noise beta is greater than SLAM
Toolbox, and that SLAM Toolbox is able to perform better than GMapping with very
high and very low beta values. Finally, from the model in Fig. 5.2d, we can tell Hector
SLAM suffers from performance degradation with high translation geometric similar-
ity, which can be explained by the fact that Hector SLAM only relies on the LIDAR
sensor and does not use the odometry information.

A drawback of these univariate models is that the performance refers to a system
with average features. For example SLAM Toolbox always outperforms GMapping
if we only consider the laser scan max range (Fig. 5.2a), nevertheless GMapping can
outperform SLAM Toolbox when we consider the laser scan field of view (Fig. 5.2b).
To get a better insight into these aspects we can use a multivariate generalized linear
model comprising all our features.

Also with the multivariate model, features laser scan field of view and laser scan
max range are first inverted to be used in the model. We used in this case a second

1https://doi.org/10.5281/zenodo.5482936. Accessed on 2022-02-02.
2https://github.com/AIRLab-POLIMI/slam_performance_modelling/tree/melodic-devel. Ac-

cessed on 2022-02-02.
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gmapping, pred

gmapping, data

slam toolbox, pred

slam toolbox, data

hector slam, pred

hector slam, data

Figure 5.1: Legend for all performance model plots: measured performance data (points connected by
dashed lines) and prediction of the models (continuous lines) for GMapping (orange), SLAM Toolbox
(blue) and Hector SLAM (cyan).
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Figure 5.2: Normalized relative translation error univariate performance model. Legend in Fig. 5.1.
Lower values are better.
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degree polynomial model with interaction variables for all features, as shown in Eq. 5.1,
where ŷ is the predicted value, βi1i2i3i4 are the regression coefficients, and x1...4 are the
four features. In Fig. 5.3 four of the 100 plots that can be generated to compare the
measured performance data and the prediction of the models are shown. These models
allow us to visualize the dependency of the component performance from one system
or environment feature (laser scan max range in the four examples in Fig. 5.3), while
the rest of the features are fixed to specific values. Fixing a set of features allows us to
compare the predicted performance of the components for a system and environment
pair characterized by those features.

(5.1)

ŷ = β0000 + β1000x1 + β0100x2 + β0010x3 + β0001x4

+ β2000x2
1 + β0200x2

2 + β0020x2
3 + β0002x2

4
+ β1100x1x2 + β1010x1x3 + β1001x1x4
+ β0101x2x4 + β0110x2x3 + β0011x3x4

With the multivariate model, we can now tell when SLAM Toolbox actually out-
performs GMapping. In Fig. 5.3a we fix the laser scan field of view to 180 degrees,
the odometry noise beta to 0 (ideal odometry sensor) and the translation geometric
similarity of the environment to 4 (the highest value). In this setup, GMapping outper-
forms SLAM Toolbox when the laser scan max range is greater than 8 meters, and they
perform similarly otherwise. By increasing the odometry noise beta to 2 (Fig. 5.3b),
SLAM Toolbox now outperforms GMapping for every value of the laser scan max
range. By upgrading the laser scan field of view from 180 to 359 degrees (Fig. 5.3c),
the gap in performance between SLAM Toolbox and GMapping increases. By decreas-
ing the translation geometric similarity from 4 to 3 (Fig. 5.3d), the performance of both
components increases for all values of laser scan max range. Hector SLAM can outper-
form the other components in certain conditions when evaluated with the normalized
relative metrics, but as discussed later, it is always outperformed when considering the
success rate metric.

5.1.2 Other Performance Metrics

In Fig. 5.4 we can see the performance measured with the Normalized relative rotation
error multivariate model for the same combinations of feature values as in Sec. 5.1.1.
Note that the discrepancy between prediction and the data is due to the noise in mul-
tiple dimensions since this is also a multivariate model. SLAM Toolbox outperforms
GMapping in most cases.

Fig. 5.5 shows two plots for the success rate, indicating the probability of the ab-
solute error being above a threshold during the run. The threshold is chosen as 100m,
by observing that above this value the SLAM component has definitely produced an
invalid map. Not all maps with lower absolute error are valid, but this metric still
allows us to compare the probability of failure for the components. GMapping and
SLAM Toolbox have a negligible number of runs in which the absolute error is above
the threshold, while for Hector SLAM, the values are significantly worse.

The Absolute Trajectory Error model allows us to evaluate the performance of the
components relative to the complete exploration task. In Fig. 5.6 two plots from the
model in which SLAM Toolbox outperforms Gmapping and Hector SLAM are shown.
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(c) fov=359deg, beta=2, tgs=4
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Figure 5.3: Normalized relative translation error multivariate performance models. Legend in Fig. 5.1.
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(c) fov=359deg, beta=2, tgs=4
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Figure 5.4: Normalized relative rotation error multivariate performance models. Legend in Fig. 5.1.
Lower values are better.
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Figure 5.5: Success rate multivariate performance models. Legend in Fig. 5.1. Higher values are better.
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Figure 5.6: Absolute trajectory error multivariate performance models. Legend in Fig. 5.1. Lower
values are better.

Note that the performance of Hector SLAM appears to be comparable with the other
components, but the low success rate means that many runs incurred in a failure to
produce a map with sufficient absolute error, and are therefore not included in these
results. For this reason, this model and the success rate model must be evaluated jointly.
The difference in the performance of Hector SLAM is attributable to the exclusive use
of LIDAR information and not odometry, which increases the likelihood of a failure
when the LIDAR information alone is not sufficient.

In Fig. 5.7 are shown the CPU utilization and max memory univariate models. Al-
though we compute the multivariate model here as well, the univariate model allows us
to provide an overview of the computational performance of the components. Hector
SLAM utilizes fewer CPU resources than SLAM Toolbox, which performs better than
GMapping. In Hector SLAM the map size has to be set to a predefined value before
running the software, which explains the fixed and higher use of memory.

5.2 Localization and Local Planning Performance Model Results

In this section, we present the performance models relating to the localization perfor-
mance metrics (see Sec. 4.2.5 and Fig. 4.2.6). The results are only valid for the condi-
tions in which we evaluate the performance, and our analysis is limited to the aspects
of the performance that have been measured with the performance metrics included in
our work.

Our performance models aim at representing the stochastic relationship between
the system features, the performance of the localization and local planning compo-
nents. The system features we set from run parameters are the odometry error, beta,
and AMCL’s alpha parameter, amcl alpha factor. Additionally, the local planner and
global planner features are used to identify which local and global planner are used in
each experiment.

We execute 11531 runs, 11062 with the Turtlebot robot and 469 with the Hunter
robot. The accumulated navigation time during the experiments is 226 hours (9.4 days),
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Figure 5.7: CPU utilization and max memory univariate performance models. Legend in Fig. 5.1.
Lower values are better.
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Figure 5.8: Overall absolute translation and rotation error from the runs with the Turtlebot robot (lower
is better).
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Figure 5.9: Overall relative translation and rotation error from the runs with the Turtlebot robot (lower
is better).

202 with the Turtlebot robot and 24 with the Hunter robot. The experiments are exe-
cuted with 16 threads of an AMD Ryzen™ 7 3700X CPU and 32GB of RAM memory
on Ubuntu 20.04. The code used to implement and run the experiments, and the data
for robots and environments is made available in our repository3.

5.2.1 Localization Performance Model Results

Fig. 5.8 and Fig. 5.9 show the overall localization error for each combination of local
planner and global planner using the Turtlebot robot.

Fig. 5.8 shows the overall absolute translation and rotation error. There is a depen-
dency between the performance of the localization component, specifically the absolute
translation error, and which global planner is used. The average absolute translation er-
ror is 0.095 meters when using the NavFn global planner and 0.062 meters when using
the SMAC global planner. The average absolute rotation error varies relatively little,
between 0.02 and 0.023 radians.

Fig. 5.9 shows the overall relative translation and rotation error. The average relative
rotation error is 0.011 radians when using the NavFn global planner and 0.007 when
using the SMAC global planner. The average relative translation error varies relatively
little, between 0.008 and 0.010 meters, with the NavFn global planner causing the
lowest overall localization performance.

Although the SMAC global planner causes lower absolute translation and relative
3https://github.com/AIRLab-POLIMI/local_planning_performance_modelling/tree/

foxy-devel. Accessed on 2022-09-13.
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Figure 5.10: Localization performance data for absolute error metrics (lower values are better).

rotation errors, as shown later in Sec. 5.2.2, it also causes the probability of successfully
reaching the navigation goal to be much lower, making it a poor choice in most realistic
cases.

Fig. 5.10 and Fig. 5.11 show the localization error metrics resulting from different
values of odometry error beta and amcl alpha factor. Only the data obtained using the
Turtlebot robot and the NavFn global planner are considered. These plots are obtained
by computing the mean of the performance metrics for each value of the system feature.
The values corresponding to different local planners (i.e., TEB, DWB, RPP) are shown
in different colors. The datapoints are also shown as a scatter plot.

The absolute error is greatly influenced by the odometry error, as shown in Fig. 5.10a
and Fig. 5.10c. Note that the absolute error metrics measure the error when the local-
ization component updates the estimate of the robot pose, and not while the robot pose
is integrating the odometry error. Therefore, the error measured by the metrics indi-
cates that the localization component is not able to completely correct the odometry
error. As shown in Fig. 5.10b and Fig. 5.10d, the absolute translation and rotation er-
rors are greater for values of amcl alpha factor lower than 1, indicating that, in the case
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Figure 5.11: Localization performance data for relative error metrics (lower values are better).
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of AMCL, to achieve a lower absolute error, it is better to over-estimate the odometry
error rather than under-estimating it.

In Fig. 5.11a and Fig. 5.11c, we can see the relative errors are also affected by the
odometry error. As shown in Fig. 5.11b, the relative translation error tends to increase
when the alpha parameters are over-estimated, which is the opposite behavior when
compared to the absolute translation error. The relative rotation error, as shown in
Fig. 5.11d, is not affected by the alpha parameters. The relative rotation errors, as
opposed to the absolute rotation errors, are affected by which local planner is used. In
particular, the TEB local planner causes lower relative rotation errors.

5.2.2 Local Planning Performance Model Results

Fig. 5.12 shows the global planner success rate and the navigation success rate, the
local planner success rate and collision rate using the two robot platforms, identified
by the system feature robot model, the Turtlebot robot and the Hunter robot. These
platforms have different kinematic models, the turtlebot uses a differential drive kine-
matic model, while the Hunter robot uses an Ackermann kinematic model. Among the
evaluated local planning methods, as implemented in the ROS2 software framework,
only the TEB local planner is able to control a robot with Ackermann kinematic con-
straints. Similarly for the global planning methods, as implemented in the ROS2 soft-
ware framework, only the SMAC global planner is able to plan a path which enforces
Ackermann kinematic constraints. For this reason, while comparing the performance
across kinematic models, we only consider the runs with the TEB local planner even
for the Turtlebot robot, and later, we will compare the performance of all local planning
components using the same kinematic model. The Hunter robot is evaluated for two
values of the system feature min turning radius, computed from the robot’s wheelbase
and its maximum steering angle (set by the run parameter max steering angle). The
global planner success rate and local planner success rate are higher with the Turtlebot
robot, as we can see in Fig. 5.12a and Fig. 5.12c respectively, which is to be expected
since the additional constraints of the Ackermann kinematic model make the planning
and navigation more difficult. The performance of the SMAC global planner results
surprisingly low with the Turtlebot robot, although configured with a min turning ra-
dius of 0 meters, which in principle should constitute an easier problem. This could be
due to a problem related to effectively using primitives representing a rotation in place
(i.e., having a 0 meters turning radius). The collision rate, shown in Fig. 5.12d, shows
that the SMAC global planner allows the TEB local planner to avoid collisions when
using the Turtlebot robot, although this is at the cost of lower local planner and global
planner success rates, meaning that the probability of obtaining a global plan and being
able to reach the goal following it will be inferior with respect to using the Turtlebot
robot with the NavFN global planner, or the Hunter robot. Finally, in Fig. 5.12b, we
can assess the overall navigation success rate, which considers both the global planner
and local planner success rate, which in turn includes the collision rate.

Fig. 5.13, Fig. 5.14 and Fig. 5.15 show the overall local planning and global planning
performance for each combination of local planner and global planner, but only using
the Turtlebot robot.

Fig. 5.13 shows the global planners success rate. The SMAC global planner has a
substantial failure rate, with only a 28% probability of producing a global plan, while
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Figure 5.12: On top, the overall global planner success rate (higher is better) and navigation success
rate from the runs with the TEB local planner, comparing the Turtlebot and Hunter robots. On the
bottom, the overall local planner success rate and collision rate (lower is better) from the runs with
the TEB local planner in which the global planning was successful, comparing the Turtlebot and
Hunter robots.
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Figure 5.13: Overall global planner success rate (higher is better) from the runs with the Turtlebot
robot.

the NavFn global planner can produce a global plan with a probability of 98.5%. This
means that, in conditions similar to our experiments, the SMAC global planner would
not be feasible in a real system if we value its reliability above its efficiency. On the
other hand, contrary to the NavFn global planner, the SMAC global planner allows to
produce plans with kinematic constraints for an Ackermann robots.

Fig. 5.14a shows the local planner success rate, i.e., the navigation success rate of
the runs in which the global planner produced a plan which the local planner could
attempt to use. The SMAC global planner reduces the success rate of all local planners.
In particular, the TEB local planner achieves a lower success rate compared to the RPP
and DWB local planners. The highest performance, 97.1%, is achieved by the RPP and
DWB local planners, with the NavFn global planner. The lowest performance, 79.9%,
is achieved by the TEB local planner, with the SMAC global planner.

Fig. 5.14b shows the collision rate. The TEB local planner causes the lowest and
highest collision rate when paired with the SMAC and NavFn global planners respec-
tively. Meaning that, although the SMAC global planner only produces a global plan
in 28% of the runs, when it does, the plan allows TEB to navigate with no collision.
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Figure 5.14: Overall local planner success rate (higher is better) and collision rate (lower is better)
from the runs with the Turtlebot robot, in which the global planning was successful.
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Figure 5.15: Overall navigation success rate (higher is better) from the runs with the Turtlebot robot.

Fig. 5.15 shows the overall navigation success rate. This performance metric allows
us to choose the best combination of local and global planner, with respect to the prob-
ability of successfully reaching the navigation goal without collisions. The best results,
96.6% and 96.5%, are obtained by using the NavFn global planner, and the RPP and
DWB local planners respectively. The worst result, 21.7%, is obtained by using the
TEB local planner and the SMAC global planner.

Fig. 5.16 shows the local planner success rate and collision rate metrics resulting
from different values of odometry error beta (along the abscissa of each plot). Only
the data obtained using the Turtlebot robot, the NavFn global planner and a successful
global planning are considered. These plots, as before, are obtained by computing the
mean of the performance metrics for each value of the system feature. The values
corresponding to different local planners (i.e., TEB, DWB, RPP) are shown in different
colors. The datapoints are not shown in these plots, because the values of success rate
and collision rate are either 0 or 1 in each run, so the points would be overlapping.

The success rate, shown in Fig. 5.16a, is only affected by the odometry error when
the TEB local planner is used. The RPP and DWB local planners are relatively unaf-
fected by the odometry error. In particular, the success rate of TEB drops from around
0.9 (i.e., 90%) to 0.8 (i.e., 80%), when the odometry error increases from 0 to 0.1. The
collision rate, shown in Fig. 5.16b, is also only affected by the odometry error when the
TEB local planner is used. TEB’s collision rate increases from around 0.01 (i.e., 1%)
to 0.175 (i.e., 17.5%), when the odometry error increases from 0 to 0.1.

In Fig. 5.17 and Fig. 5.18 the local planner success rate and collision rate are com-
puted against different values of localization errors (along the abscissa of each plot),
and for the three local planners (in different colors). Only the runs obtained using the
Turtlebot robot, the NavFn global planner and in which the global planning is success-
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Figure 5.16: Local planner success rate (higher values are better) and collision rate (lower values are
better) against different values of odometry error, beta. Each local planner is plotted in a different
color.

ful are considered. Similarly to the dependency of these metrics on the system feature
beta (in Fig. 5.16), the performance of the TEB local planner is degraded when the
absolute and relative translation errors increase. The dependency on the absolute and
relative rotation errors is not as clear since the local planner success rate and collision
rate improve up to some localization error value, but then degrade before improving
again.

The localization error metrics are themselves strongly correlated with the odometry
error beta. Fig. 5.19 shows the logistic regression prediction of the TEB local planner
success rate from the absolute translation error for each value of beta. We can ob-
serve that, even within runs with the same odometry error beta, the TEB local planner
success rate still presents a downward trends with respect to the absolute translation er-
ror, meaning that the performance depends from both the odometry error beta and the
absolute translation error. In Fig. 5.20, we show the Bayes network describing the de-
pendency of the TEB local planner success rate on the feature beta and on the absolute
translation error, which is itself dependent on the feature beta.
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Figure 5.17: Local planner success rate (higher values are better) and collision rate (lower values are
better) against different values of absolute localization error metrics. Each local planner is plotted
in a different color.
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Figure 5.18: Local planner success rate (higher values are better) and collision rate (lower values are
better) against different values of relative localization error metrics. Each local planner is plotted in
a different color.
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Figure 5.19: Logistic regression prediction of the TEB local planner success rate from the absolute
translation error (along the abscissa), for different values of odometry error beta (in different colors).
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Chapter 5. Experimental Results

Figure 5.20: Bayes network in which the performance of the local planner component TEB, local plan-
ner success rate, depends from one of the performance metrics of the localization component, abso-
lute translation error, and a system feature, beta.
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CHAPTER6
Conclusions and Future Work

We presented a general methodology to produce performance models of robotics soft-
ware components allowing to predict the performance from characteristics of the en-
vironment and the system in which they operate. We developed a software framework
supporting the proposed methodology by allowing to automatically execute experi-
ments and collect the data. Finally, we presented two case studies of our methodol-
ogy applied to three SLAM components and a complex system capable of autonomous
navigation. The performance models built in the case studies allowed us to inspect
the dependency of the performance metrics from each of the analyzed features and to
evaluate the dependency of the performance between components.

Future works in the context of the proposed methodology include adding more soft-
ware components to the performance models of the existing case studies, and producing
more performance models for additional functionalities and more complex systems:

• The performance model on autonomous navigation could be expanded by imple-
menting dynamic obstacles and by including additional local planning compo-
nents, as in the work of [21], which would additionally allow us to replicate and
validate their results.

• Performance modelling could be applied to visual SLAM methods. Producing
performance models for visual SLAM would be interesting in itself, and it would
allow us to compare the performance of visual SLAM components using cameras
with the performance of 2D SLAM components using LIDAR sensors.

• Performance modelling could be applied to a robot system for autonomous ex-
ploration of an unknown environment, consisting in estimating the map of the
environment by using a SLAM component while navigating towards the bound-
aries of the known environment until the environment is completely explored. In
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such a system we can expect the dependency between the SLAM component,
navigation components, and the component planning the destination to explore
to be inter-dependent, making such system an interesting subject. More complex
robot systems could be studied, such as manipulating objects with a robotic arm,
for example for grasping, transportation and placement of the objects. This task
requires functionalities to localize the objects, positioning the robot in their prox-
imity, building a representation of the environment suitable for motion planning
and obstacle avoidance, and executing the arm motion.

A future evolution of the proposed methodology is to study the feasibility of building
component performance models obtained by evaluating subsets of the system’s com-
ponents, while still evaluating which components affect each other and model their
dependence. This may reduce the number of run parameter combinations needed to
obtain a comprehensive evaluation of the entire system and make the problem tractable
even for extensive systems. If this was possible, the composition of these performance
models would allow us to compose the performance models and predict the perfor-
mance of an extensive robot system without the need to actually build it and evaluate it
in its entirety. This opens the possibility of estimating the performance of an extensive
robot system at design-time as envisioned in the Plug and Bench methodology [3].

Real-world experiments can in general provide a better evaluation of the perfor-
mance, on the other hand, it can be very expensive and time consuming to execute runs
with real robots. Therefore, studying how to minimize the number of runs while still
obtaining sufficiently representative statistical models is important. Simulation allows
us to continuously collect data for very extended periods of time, even experiments
which require a real-time simulation can be executed in parallel to speed up the collec-
tion of data. Two approaches could be applied to tackle the problem, the first to limit
the number of runs, and the second to use both results of simulated and real experiments
and gain from the respective benefits.

• The choice of run parameters and their values in our case studies followed an
approach similar to brute force: we defined a set of run parameters and for each
of them, a list of values, then, we executed a run for each combination of run
parameter values (i.e., the Cartesian product of the sets of values of each run
parameter). Instead, by automating the choice of run parameter values, it could be
possible to minimize the number of runs while obtaining equally or more accurate
statistical models. This could be obtained by manually producing a set of coarse
statistical models, then applying a method which iteratively refines the statistical
models by choosing which run parameter values to use for the next run.

• Simulation could be used to get a relatively approximated performance model
which provides the information on how the functionalities/components interact
in the system and what range of run parameter values provide interesting results.
With this information, a limited number of real-world experiments can be car-
ried out to validate the performance models obtained in simulation, and if a non-
negligible difference is found, to calibrate the uncertainty of the simulation results.
In this way, it could be possible to exploit the advantages of simulation with the
improved confidence of real-world results. For instance, Amigoni et al. [2, 29]
have validated their extensive simulation results with a small set of real-world
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