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Abstract

Electrons gyrating around magnetic field lines emit radiation at the frequency Ωc =

n eB/(γm), where e is the elementary charge, B is the magnetic field amplitude, m is
the electron rest mass, γ is the ralitivistic factor and n is the harmonic number. This
radiation mechanism is called electron cyclotron emission (ECE). In the presence of a
magnetic field amplitude gradient, as in a tokamak, the origin of emission is related to
the frequency of the emission and a temperature profile can be reconstructed by scanning
a range of frequencies, which is the general purpose of ECE diagnostics. The definition
of temperature assumes that the plasma is in thermal equilibrium with a Maxwellian
velocity distribution for its particles. In certain scenarios, the plasma may contain a
significant proportion of suprathermal particles whose energy exceeds that of the thermal
particles by several orders of magnitude, affecting both temperature measurements and
profile reconstruction. Measuring ECE at various frequencies along vertical lines of sight
(VECE) with constant magnetic field amplitude B provides a scan in electron energy
via the relativistic factor γ. On the other hand, reconstructing the 3D bounce-averaged
guiding center electron distribution function from ECE measurements is an ill-conditioned
problem and a more promising approach consists of constructing an equivalent synthetic
ECE diagnostic providing simulations that can be directly compared to measurements. A
new general synthetic ECE diagnostic that includes the effect of suprathermal electrons
is constructed: the Yoda code. This code is able to calculate: i) the EC emission and
(re)absorption based on any arbitrary numerical electron distribution function calculated
by any first-principle kinetic codes (as the 3-D bounce-averaged relativistic Fokker-Planck
code Luke) for arbitrary line of sight simulated using the c3po ray-tracing code (which
also model the detection system); ii) the transport of EC radiated intensity along the
propagation path. In this work, the Yoda code is validated for thermal plasmas, and two
direct application to TCV tokamak electron cyclotron current drive (ECCD) experiments
are envisioned with good agreement between the experimental vertical ECE measurements
and synthetic intensity trends, opening new paths regarding suprathermal electron studies
in tokamak plasmas.

Keywords: nuclear fusion, plasma physics, suprathermal electrons, runaway electrons,
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electron cyclotron emission, electron cyclotron resonance heating, electron cyclotron cur-
rent drive, microwave, synthetic diagnostic, Fokker-Planck.
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Abstract in lingua italiana

Gli elettroni che orbitano intorno a linee del campo magnetico emettono radiazione alla
frequenza di ciclotrone Ωc = neB/(γm), dove e rappresenta la carica elementare, B
l’ampiezza del campo magnetico, m la massa a riposo dell’elettrone, γ il fattore relativis-
tico e n il numero armonico. Questa radiazione è chiamata emissione ciclotronica degli
elettroni (ECE). In presenza di un gradiente nell’ampiezza del campo magnetico, come
nei tokamak, l’origine dell’emissione è legata alla frequenza dell’emissione e il profilo di
temperatura elettronica può essere ricostruito scandendo un range di frequenze, che è lo
scopo generale delle diagnostica ECE. Tuttavia, la definizione di temperatura assume che
il plasma sia in equilibrio termico con una distribuzione di velocità maxwelliana per le
sue particelle. In determinati scenari, il plasma può contenere una porzione significativa
di particelle sovratermiche la cui energia supera quella delle particelle termiche di diversi
ordini di grandezza. La presenza di una popolazione significativa di elettroni sovrater-
mici influisce sia sulle misurazioni della temperatura che sulla ricostruzione del profilo
degli elettroni. La diagnostica ECE può comunque fornire informazioni preziose sulla dis-
tribuzione degli elettroni sovratermici nello spazio delle fasi. La misura della ECE a varie
frequenze lungo una linea di vista verticale (VECE) con ampiezza del campo magnetico
costante B fornisce una scansione dell’energia degli elettroni tramite il fattore relativis-
tico γ. La ricostruzione della funzione di distribuzione degli elettroni a partire dalle
misurazioni della ECE è un problema mal condizionato e un approccio più promettente
consiste nella costruzione di una diagnostica sintetica equivalente che fornisce simulazioni
che possono essere direttamente confrontate con le misurazioni dell’ECE. In questo lavoro
viene costruita una nuova diagnostica sintetica per l’ECE che include l’effetto degli elet-
troni sovratermici: il codice Yoda. Questo codice è in grado di calcolare: i) l’emissione ed
il (ri)assorbimento di EC sulla base della funzione di distribuzione degli elettroni calcolata
utilizzando il codice 3-D bounce-averaged guiding center relativistic Fokker-Planck Luke,
per una linea di vista arbitraria simulata utilizzando il codice di ray-tracing c3po, che
modella anche il sistema di rilevamento; ii) il trasporto dell’intensità della radiazione di
EC lungo il percorso di propagazione. In questo lavoro, il codice Yoda viene sia validato
per plasmi termici e che utilizzato per applicazioni dirette in due esperimenti di guida



di corrente di elettrone ciclotrone (ECCD), ottenendo buoni risultati dai confronti diretti
tra i trend delle misure sperimentali della ECE verticale e le intensità sintetiche, aprendo
così nuove strade allo studio degli elettroni sovratermici nei tokamak.

Parole chiave: fusione nucleare, fisica dei plasmi, elettroni sovratermici, runaway elec-
trons, electron cyclotron emission, electron cyclotron resonance heating, electron cyclotron
current drive, microonde, diagnostica sintetica, , Fokker-Planck.
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1| Introduction

The energy crisis of 2022 will serve as a stark reminder of how the absence of diversification
in the world’s energy production systems can represent an enormous problem for the
survival of all humanity. In addition, countries have continued to use coal, oil, and
natural gas extensively to power their economy in spite of decades-long recommendations
to reduce dependence on fossil fuels whose combustion is the main cause of the increase
in the concentration of climate-altering agents in the Earth’s atmosphere, as proven in
several IPCC (Intergovernmental Panel on Climate Change) reports [57].

Figure 1.1: World electricity production by source - 2022 [46]

Thus, it becomes clear that finding a solution to meet the world’s increasing energy needs
in a way that is sustainable for both the environment and human communities is one of
the main problems humanity will face in the next decades. Therefore, renewable energy
sources, like hydroelectric, wind or solar technology, are considered by many as the main
solution to produce non-polluting clean energy. Although they can provide a significant
amount of clean energy (in terms of CO2 production), there are still substantial issues
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in terms of energy storage and availability due to uncontrollable seasonal/daily climate
intermittences. In addition, the current difficulties in sourcing materials such as silicon
and rare minerals, which are needed for the production of wind and solar power plants,
are a challenge not to be underestimated. Finally, nuclear fission power plants have the
potential to provide ultralow-emission power generation, but for reasons mainly related
to public opinion about their safety, radioactive waste management and nuclear weapons
proliferation, they still constitute a minority share in energy production.

The scientific community is looking for new methods of producing energy. Nuclear fusion
is predicted to be a significant possibility to enhance the energy grid supply in the second
part of the 21th century, while being a very difficult undertaking. To date, no nuclear
fusion power plants exist, but the scientific and technological effort around their future
realization constitutes an unmissable opportunity and one of the greatest challenges for
all of humanity. In the next section, both the nuclear fusion process and some of the
challenges to achieve this process are explored.

1.1. Thermonuclear Fusion

Nuclear fusion is a nuclear reaction between two light nuclei (e.g. the Hydrogen isotopes
Deuterium D and Tritium T ) with a given Q value1 which depends on the involved
nuclides. To talk about fusion, it is important to introduce the physical concept of binding
energy. It is defined, for the nucleus ground state, as [13]

B.E. = Zmpc
2 + (A− Z)mnc

2 − U (1.1)

where Z is the atomic number, A is the mass number, mp is the proton mass, mn is the
neutron mass, c is the speed of light in vacuum, while the total energy of the nucleus is
U = mnuclc

2. Figure 1.2 shows a plot of the binding energy per nucleon as a function of
the atomic mass.

1The Q value is the amount of energy absorbed or released during a nuclear reaction.
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Figure 1.2: Binding energy per nucleon vs mass number for the main nucleons. The
maximum of the binding energy per nucleon is achieved at Iron and then decreases for
light elements [Public Domain https://it.m.wikipedia.org/].

Energy may be collected from nuclear reactions, such as nuclear fusion and nuclear fission,
by taking advantage of the rise in binding energy per nucleon that results from these
reactions. Particularly in nuclear fusion, two light nuclei merge to form a heavier and more
stable product, and the the reaction releases net energy. In contrast to the electromagnetic
force that underlies chemical processes, the fundamental interaction involved in nuclear
fusion, the strong nuclear force, is ideed very strong, but has a short range of action. This
is the primary cause of the high energy density of nuclear fusion.

Very light nuclei are best suited for energy production via nuclear fusion, for two separate
reasons. First, the gain in binding energy per nucleon is often substantially larger for
the fusion of two extremely light nuclei. Secondly, using the lightest nuclei reduces the
amount of energy needed to start the reaction since the two nuclei must overcome the
Coulomb potential barrier that arises as a result of their positive charges in order to
fuse together. Therefore, hydrogen and helium isotopes are the most commonly studied
reactants in fusion applications. Three fusion reactions may be useful for the generation of
nuclear energy, according to studies on the nuclear characteristics of light element fusion.
Deuterium, Tritium, and 3He, are involved in these. Among them, the most studied in
the nuclear energy field is the fusion reaction between D and T:

D+ T → 4
2He (3.56MeV ) + 1n (14.03MeV ) (1.2)
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Figure 1.3: Experimentally measured cross sections for the D–T, D–3He, and D–D fusion
reactions as a function of deuteron energy KD = mDv

2
D/2 [58].

In fact, looking at the reaction cross section for these three reactions plotted vs. deuteron
energy (figure 1.3), it can be noticed how relatively high cross-section values can be
obtained only for energies between 10 keV and 100 keV2 and how the D-T reaction is
particularly advantageous compared to the others. These high temperatures required to
achieve sufficiently high fusion reaction rates, entails that the reactants of a fusion reaction
must be in the plasma state.

1.1.1. The plasma state

Chen defines a plasma as [25]

A plasma is a quasi-neutral gas of charged and neutral particles which exhibits
collective behaviour.

In general, it is composed of at least two sufficiently large populations of oppositely
charged particles, which are often ions and electrons produced during ionization pro-
cesses. It is also possible to distinguish between partially and completely ionized plasmas
depending on the presence of a neutral population among the plasma components.

The charged populations are in a concentration such that the physical properties of the
system are significantly affected by space charge effects and electromagnetic phenomena.
In fact, in contrast to short-range nearest-neighbor Coulomb interactions in common

2Roughly corresponding to more than a hundred million Celsius degrees, in fact E[eV ] = KBT [K],
e.g 1 eV = 11605K
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materials (including solids, liquids, and gases), this system is affected also by long-range
collective effects due to the charged species, which are affected by external electric and
magnetic fields. At the same time, small-scale charge separation has a significant impact
on the electromagnetic field, in fact if an unbalanced charge were to arise, electrons would
immediately redistribute to balance it out. The Debye length is the typical characteristic
length where charge imbalance may occur without being shielded by nearby particles:

λD =

√
ε0T

ne2
(1.3)

where n is the plasma density, T is the plasma temperature3, ε0 is the vacuum dielectric
constant and e is the elementary charge.

If one releases a certain charge density, after having displaced it, the charges will feel
an electromagnetic force related to the charge separation and start to oscillate with a
characteristic frequency called plasma frequency :

ωp =

√
Zne2

ϵ0m
(1.4)

where Z and m are respectively the atomic number and the mass of the considered
species4. Because of this, it is possible to give a more quantitative definition of plasma
by requiring that λD ≪ L, nλD ≫ 1 and ωp ≫ νen. It means that the collective effects
(e.g. charge shielding) dominate over binary interactions5.

Finally as is shown in the table (1.1), there is a very wide range of densities and temper-
atures that different plasmas may exist in.

3A plasma in general is composed of different species. In this Debye length definition, electrons and
ions are assumed to be in thermal equilibrium, which is not always true.

4For a plasma the total plasma frequency is ω2
p,total = ω2

p,e +
∑

ω2
p,i and since the ions inertia is

bigger than the electrons’, it is common to refer with plasma frequency to the electron plasma frequency
ωp,e =

√
nee2/(ϵ0me.

5L is the macroscopic length scale of the system and νen is the frequency of collision between electrons
and neutrals.
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Type of plasma Temperature T [K] Density n [m−3]

Intergalactic gas 108 1

Interstellar medium 104 106

Gas cloud in galaxies 104...106 1012

Fusion plasmas 108 1020...1032

Technical plasmas 103...105 1015...1025

Electron cloud in metals 105 8× 1028

Surface of stars 104 1022

Star center 107...108 1030

White dwarf 104 1036

Neutron star 104 1045

Table 1.1: Parameter range of plasmas in the universe and on Earth

Thus, it becomes evident that comparing the qualitative behavior of various plasmas is
not straightforward.

1.2. Magnetic Confinement Nuclear Fusion

The most promising fusion reactor concepts for energy production are based on mag-
netic confinement fusion (MCF), where external magnetic fields are exploited to confine
the plasma: in this section, some basic physical principles concerning this approach are
outlined. Subsection 1.2.1 describes the motion of charged particles in an external field,
while subsection 1.2.2 shows the features of one device specifically designed to achieve
magnetically confined fusion: the Tokamak.

1.2.1. Charged Particle Dynamics in External Field

A particle of mass m and charge q under the action of an external electric E and magnetic
B field will experience a force called the Lorentz force

FL = E + v ×B. (1.5)

Therefore, Newton’s equation of motion can be written as

m
d2x

dt2
= q [E(x(t), t) + ẋ×B(x(t), t)] , (1.6)
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which is, in general, not trivial to solve because the second temporal derivative of the
position x of the particle, at the time instant t, will be dependent on the electric and
magnetic fields that, in turn, will depend on the position considered: the problem is
intrinsically non-linear. To solve it, one can study the system under certain degrees of
ideality, gradually relaxing the assumptions made, making the description closer to reality.

From the theory [19], a charged particle subjected only to an external uniform and con-
stant magnetic field B, follows a helical trajectory as depicted in figure 1.4. In the plane

Figure 1.4: Orbit of a positive charged particle in a constant and uniform magneitc field
oriented as the z axis in a cartesian coordinate system [19].

of motion z = v∥t+ z0, the orbit exhibits uniform circular motion. In the non-relativistic
limit, the gyration frequency is known as cyclotron frequency

Ωc =
qB

m
, (1.7)

while the gyro-radius is called Larmor radius

ρL =
v⊥m

eB
. (1.8)

The orbit’s center, called the guiding center, describes a uniform rectilinear motion along
the magnetic field line itself.

If one adds to the system a generic constant external force F , the basic helical motion
described above is altered, resulting in a cycloidal trajectory [19]. The particle will gyrate
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in the plane orthogonal to the parallel component of the velocity v∥ around the guiding
center, whose motion is now obtained as the combination of a uniform acceleration in the
direction parallel to the magnetic field line and a uniform rectilinear motion with a drift
velocity

vD =
1

q

F ×B

B2
, (1.9)

in the direction orthogonal to both the magnetic field and the external force. In cases
of practical importance in MCF, if the external force is due to the action of an external
electric field, so that F = qE, the phenomenon is referred to as E × B drift. Also in
this case it involves a drift velocity that is either perpendicular to both the electric and
magnetic fields, in the same direction for both positively and negatively charged particles
[19].

Another drift can arise if one considers a varying magnetic field. If the magnetic field
only varies in the xy plane, an expansion to first order of the magnetic field in a Taylor
series centered around the guiding-center, it is possible to find an expression for the so
called ∇B drift velocity

v∇B = sgnq
v⊥ρL
2

B ×∇B
B2

. (1.10)

In addition, if the magnetic field line is not straight, there is another type of drift motion
caused by the eventual curved geometry of the field. This motion is generated by the
centripetal force acting on the particle Fc = mv2∥Rc/R

2
c , where Rc is the vector which

identifies the local curvature radius of the field. Inserting the centripetal force into equa-
tion 1.9, it is possible to find an expression for the curvature drift velocity

vc =
mv2∥
qB2

Rc ×B

R2
c

. (1.11)

An important result is the existence of an adiabatic invariant, which serves as an ap-
proximate constant of motion. However, it is approximate because its derivation involves
averaging over a gyro period, while assuming that the magnetic field is slowly varying.
The adiabatic invariant takes the form of the magnetic moment and it can be expressed
as

µ =
mv2⊥
2B

= const. (1.12)

In many in magnetic confinement devices, this quantity plays a very important role, since
it governs how the perpendicular energy of a charged particle evolves in time in the
presence of a weakly varying magnetic field.
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1.2.2. The Tokamak Principle

After having provided a general description of the motion of a single charged particle
in external magnetic and electric fields, now it is possible to focus on one of the most
promising machines designed to achieve nuclear fusion: the Tokamak. The term “tokamak”
originates from Russia and is derived from the Russian acronym “Toroidalnaya kamera
magnitnaya katuschka”, which means toroidal chamber with magnetic coils. The tokamak
is a machine primarily composed of a vacuum vessel with a toroidal shape, which is
symmetric toroidally and surrounded by an array of magnetic coils. The purpose of these
coils is to ensure the confinement of the charged particles that make up the plasma. The
tokamak reactor concept is currently the main direction of research in controlled nuclear
fusion. The magnetic confinement structure in a tokamak is schematically represented in
figure 1.5.

Figure 1.5: Schematic representation of the tokamak geometry
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The tokamak’s magnetic configuration can be described by means of the fundamental
properties of a static magnetic field

∇ ·B = 0 (1.13a)

∇×B = µ0J (1.13b)

An important property of equation (1.13a) is that the magnetic field lines do not have
starting or ending points. This condition is be met by either closed or open lines, which
may occupy a finite region of space or extend to infinity: in this latter case, one talks about
a magnetic surface. The magnetic field configuration of the tokamak, which falls under
the latter category, is the result of combining toroidal and poloidal field components:

B = Bθeθ +Bϕeϕ. (1.14)

In this case, as depicted in figure 1.6, each resulting magnetic field line is an infinitely
long open line that ergodically cover the associated toroidal magnetic surface, giving rise
to a set of nested magnetic surfaces. From equation (1.13b) it is possible to show that
the magnetic field configuration exhibits a 1/R radial dependence (where R is the major
radius). Therefore, in the presence of a purely toroidal magnetic field, the motion of
charged particles would not be confined in space since the onset of a ∇B drift and a
curvature drift would promote the motion of the particles either upward or downward,
thus separating oppositely charged particles and giving rise to a vertical electric field,
responsible for an E × B drift in the radial direction. In this perspective, the addition
of a poloidal component to the magnetic field, which provides the particles with the
possibility of exploring different radial positions during the zero-order gyro-motion along
the resulting helical magnetic field lines, is crucial in compensating the arising drifts, thus
making the overall motion confined in space: this is the basic principle on which the
tokamak is designed.

In a tokamak, the dominant toroidal component of the magnetic field Bϕ is generated
via poloidal coils that are distributed throughout the length of the chamber, whereas
the poloidal field component Bθ is produced by a toroidal current flowing in the plasma.
This plasma current, which is induced by a central transformer utilizing electromagnetic
induction, provides Ohmic heating thereby helping to increase the plasma temperature.
Additionally, toroidal coils are utilized to control the equilibrium of the plasma. In a
tokamak, the ohmic heating mechanism is not always sufficient to maintain the plasma
at the desired temperature level required for sustained fusion reactions. As a result,
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Figure 1.6: Illustration of nested magnetic sufaces in a toroidal + poloidal magnetic field.

alternative current drive mechanisms are needed to supplement or replace the ohmic
heating.

One reason for this is that the ohmic heating mechanism is limited by the resistivity of
the plasma, which decreases with temperature as ∝ T−3/2. The problem is related to that
turbulent transport becomes too strong for really high temperatures to be reached. A
solution to overcome this limitation is the Radio frequency (RF) wave resonance heating,
a mechanism which allows the energy transfer from waves to particles without depending
on collisions. In the plasma scenarios studied in this thesis, the suprathermal electrons
are generated by the heating of electrons through Electron Cyclotron Resonance Heating
(ECRH) and Current Drive (ECCD). This current drive technique can also be very useful
for mitigating various current-driven instabilities, like tearing modes.

1.3. Production of Fast Electrons

1.3.1. Electron Cyclotron Current Drive

The application of electron cyclotron wave injection is a method used to drive current in
tokamak plasmas. This technique’s ability to deposit energy in the plasma in a highly lo-
calized manner makes it well-suited for shaping current profiles and managing or suppress-
ing magnetohydrodynamic (MHD) instabilities, such as sawtooth crashes and neoclassical
tearing modes (NTM) [45].
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To selectively accelerate electrons with a particular sign of parallel6 velocity v∥, it is
necessary to inject electron cyclotron waves into the plasma with a finite tangential com-
ponent of the wave vector (k∥ ̸= 0). One theory developed to describe the ECCD process
hinges on the Fisch-Boozer effect [41], which generates an asymmetric resistivity in the
distribution function without imparting parallel momentum directly. This phenomenon
is achieved by boosting the perpendicular velocity of electrons moving in a specific di-
rection relative to the toroidal magnetic field, as depicted in figure 1.7. The decrease in

Figure 1.7: Illustration of the Fisch-Boozer current drive mechanism.

the cross section of Coulomb collisions with increasing relative speed between particles is
the main reason for the preservation of the Maxwellian distribution function in the bulk
of the distribution, where thermal particles with velocities close to the thermal velocity
reside. Suprathermal particles, on the other hand, have higher relative speeds compared
to other particles in their frame of reference, leading to reduced collisional coupling and
strong deviation from the Maxwellian equilibrium in the tail of the distribution function.
In typical experimental conditions, a steady-state situation is reached between heating,
collisions, and losses (such as radiation and radial transport). The induced current is
proportional to the anisotropy of the steady-state electron distribution function with re-
spect to the magnetic field direction, and the ion contribution is negligible due to the
large mass ratio between ions and electrons. A quantitative analysis showed that it may
be advantageous to invest more energy to accelerate fast electrons, in order to maintain a
steady-state tail anisotropy of the distribution function. Although more energy is required
for their acceleration, the reduced collisional coupling allows the induced perturbation to
resist collisional isotropization for longer times, making the investment profitable.

6The terminology parallel and perpendicular refer to the direction of motion relative to the magnetic
field lines.
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Being more quantitative, the absorption of EC waves causes a movement of electrons
from one velocity position to another, resulting in a displacement of a certain number
of electrons from position 1 (v = v1) to position 2 (v2 ≃

√
v21 +∆E/2me). A formula

proposed by Alikaev and Parail [3] can be used to express the EC-induced current:

j =
ev1P

EC
d

∆Eνe(v2)

(
1− νe(v2)

νe(v1)

)
(1.15)

where PEC
d indicates the EC power density. It can be clearly seen from this expression that

a positive net current drive j > 0 can be achieved thanks to the difference in collisionality
νe(v2) < νe(v1). Following the work of Fisch and Boozer, the ECCD efficiency can be
expressed as a function of the electron temperature Te, the electron density ne and the
plasma effective charge Zeff as

ηECCD ≡ jEC

PEC
d

≃ ε20
lnΛ ·R · nee3

Te
Zeff + 5

, (1.16)

where lnΛ is the Coulomb logarithm, R is the plasma major radius and ε0 is the vacuum
permittivity.

There are several factors which can influence the ECCD efficiency. Among them it is
worth to cite the effect of trapped particles and of the toroidal injection angle.

Trapped particles

For a particle in a tokamak the magnetic moment is an adiabatic invariant. Assuming that
the particle’s kinetic energy Ek is conserved, in the non-relativistic limit, the following
equation holds

Ek =
mv2∥
2

+ µB = const. (1.17)

As a particle moves along its orbit from the outer region to the inner region of a toka-
mak, the magnetic field strength rises. Since µ remains constant, to satisfy the energy
conservation principle, a reduction in the parallel velocity v∥ of the particle is expected.
One can imagine to have a particle in a tokamak with initial parallel and perpendicular
velocities v∥ = v∥,0 and v⊥ = v⊥,0 respectively, in a point where the magnitude of the
magnetic field is B = B0. The energy conservation implies that the parallel velocity v∥

vanishes if
v2⊥,0

v2∥,0 + v2⊥,0

≥ B0

Bmax

, (1.18)

where Bmax represents the highest magnetic field strength encountered by the particle as
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(a) (b)

Figure 1.8: Illustration of the guiding center trajectories projected on the tokamak
poloidal plane: (a) passing trajectory - (b) trapped trajectory.

it moves along its orbit. If this condition is fulfilled, the parallel velocity v∥ changes sign,
the particle will reverse direction and bounce back, resulting in an orbit that resembles
a banana shape when projected onto a poloidal cross-section. These orbits are called
trapped orbits, or informally, banana orbits in tokamaks, because the particle is effectively
confined between two poloidal angles in the magnetic field, causing it to bounce back and
forth. On the other hand, particles with smaller initial ratios of v⊥,0/v∥,0 will be able to
complete an orbit without reversing direction and instead follow passing or circulating
orbits. It is worth mentioning that trapped particles do not contribute to the plasma
current. Consequently, cyclotron absorption occurring within the trapped region leads
to a degradation of the current drive efficiency. Despite power deposition taking place
outside the trapped electron region, it is plausible for the EC wave absorption to push some
of the resonant electrons from the passing region into the trapped region. This not only
diminishes the current drive efficiency but may also result in a current component running
counter to the desired direction. Due to the bounce motion, the distribution function
becomes quickly symmetrized inside the trapped region, thereby prompting symmetric
detrapping on both sides of the trapped region boundaries (positive and negative v∥).
Therefore, asymmetric trapping, followed by symmetric detrapping, may create a net
current running in the injected wave direction, which is referred to as the Ohkawa effect
[72].
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Figure 1.9: Symmetric detrapping and asymmetric trapping illustration.

Toroidal injection angle

The efficiency of ECCD is reliant on the parallel refractive index N∥ with respect to the
wave frequency ω. Intiuitively, an increase in N∥ causes the Electron Cyclotron wave
to resonate with higher energy electrons. This, in turn, enhances the current-carrying
capacity of the wave. However, this effect is counteracted by a decrease in the number of
high-energy electrons. Thus, there exists an optimal finite value for N∥, corresponding to
an optimal toroidal angle for EC injection [45].

1.3.2. Runaway generation

In a tokamak, the current carried by the plasma must exceed a certain technical threshold
known as the Alfvén current, which typically has a value of 17kA. In a fusion reactor, the
tokamak current will typically have to be three orders of magnitude larger than the Alfvén
current. Under normal conditions, the bulk electrons in the plasma serve as the primary
current carriers, with electron thermal velocities far exceeding the average plasma velocity.
However, in certain cases, a small fraction of highly supra-thermal electrons may become
significant or even dominant current carriers. This is due to the fact that the friction force
decreases with increasing electron speed for fast electrons The phenomenon of acceleration
arises when the magnitude of the force applied to an electron by a macroscopic electric
field exceeds the magnitude of the braking force caused by collisions with other particles
within the plasma. As a result, these electrons can undergo “unlimited” acceleration by an
electric field, an effect first predicted in 1925 and now known as the runaway phenomenon
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[21].

The earliest comprehensive description of electron runaway was provided in 1959 by Dre-
icer [34, 35] who considered a homogeneous plasma consisting of electrons and ions in
thermal equilibrium. From the Fokker-Planck kinetic theory, an equation was derived
that characterizes the temporal evolution of the average momentum exhibited by elec-
trons in a plasma subjected to an external electric field and collisions, namely

∂p∥
∂t

+ eE∥ = −pthνeeΨ(p) (1.19)

where νee = e4mene ln Λ/4πε
2
0p

3
th is the thermal electron collision frequency, ln Λ is the

Coulomb logarithm7, pth =
√
2meTeis the thermal momentum and the function Ψ(p) de-

scribes the energy-dependence of the collisional friction as depicted in figure 1.10. The

Figure 1.10: Graphical representation of the dimensionless function Ψ(p), which describes
the momentum-dependent nature of the collisional friction force that an electron under-
goes within a plasma [53].

function Ψ exhibits a monotonically increasing behavior as a function of p until the mo-
mentum pth is reached, beyond which it decreases. In the limit as p approaches infinity,
the function Ψ(p) ≈ p2th/(mv)

2 while decreasing in magnitude as v−2. Ultimately, the
function approaches a small but non-zero value as the velocity tends to the speed of light
c.
If one normalizes the equation (1.19) to 2pthνee, it is possible to express the electric field

7It is a plasma parameter that for applications related to runaway electrons in tokamaks reaches values
between 10 and 20.
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term as E∥/ED with ED = 2pthνee/e called the Dreicer field. This peculiar field constitutes
a threshold value of strength above which electron runaway can be used to characterize
the electric field above which all electrons runaway, since the maximum of Ψ is indepen-
dent of temperature. As a result of the decreasing trend displayed by Ψ(p) for p > pth,
any electron that reaches sufficiently high velocity for the electric field to overcome the
collisional friction will exhibit unbounded acceleration. Consequently, an electron moving
with v ≫ vth = pth/mewill undergo runaway behavior when the electric field exceeds a
certain critical value, namely

eE∥ ≥ pthνeeΨ(p) ≈ νee
p3th
m2

ev
2
=

e4ne ln Λ

4πε20mev2
. (1.20)

It is noteworthy that owing to the fundamental speed limit imposed by the speed of light
c, electrons will not exhibit runaway behavior when the electric field intensity is below
the critical threshold value

Ec =
e4ne ln Λ

4πε20mec2
=

Te
mc2

ED. (1.21)

Using the relativistic relation between velocity and momentum, it is also possible to
calculate, for a given E∥ the minimum critical speed of the slowest runaway electrons as

vc
c
=

√
Ec

E∥
⇐⇒ pc

mec
=

1√
E∥/Ec − 1

. (1.22)

The maximum value of Ψ(p) corresponds to a critical value of the electric field E∥, above
which all electrons in the plasma will undergo instantaneous runaway behavior:

eE∥ ≥ pthνee max (Ψ(p)) ≈ 0.428pthνee = 0.214eED, (1.23)

so that if Ec < E∥ < 0.214ED, not all the electrons will be immediately accelerated, but
only a fraction. In a plasma system, collisions work to maintain the electron distribution
in a state of thermal equilibrium. This means that any gaps in the distribution created
by runaway electrons will be filled by collisional diffusion processes, resulting in a gradual
leaking of particles into the velocity region above the threshold value (vc). Consequently,
the bulk component of the distribution will gradually lose particles, leading to the con-
version of all electrons to runaways, even at electric field values lower than the threshold
value of 0.214eED. This diffusive leakage of particles into the runaway region is known
as the Dreicer runaway generation mechanism. While this is a common mechanism for
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generating runaway electrons, any particle with a velocity greater than vc will be contin-
uously accelerated and run away, regardless of its past. This includes interactions such as
electron-electron knock-on collisions, radioactive β-decay of elements producing energetic
electrons (i.e tritium in tokamaks), and collisions with cosmic radiation.

A comprehensive investigation of the implications of runaway electrons (REs) in tokamaks
necessitates a wider perspective that incorporates other pertinent physics. The high
inductance of the system implies that the electric field cannot be considered a constant,
as it varies considerably with the evolution of the REs, while altering the current is a
more challenging task. Consequently, a simultaneous analysis of the kinetics of the REs
and the changing electric field must be given priority in the research.

1.4. Electron Cyclotron Emission Diagnostics

Electron cyclotron emission (ECE) is produced by the resonant radiation emission by
electrons as they gyrate in a magnetic field with a frequency around multiple integers
n of the cyclotron frequency Ωc. ECE is observed in the upper microwave to lower
terahertz frequency range of magnetically confined fusion plasmas for electrons moving
with velocities v ≪ c, and its detection requires the ability to measure spectral intensities
at around ∼ 1 pW/(m2 ·Hz ·srad). While these specifications present technical challenges,
the potential of ECE diagnostics to offer measurements of cyclotron emission with high
temporal resolution makes this technique highly attractive both for fast electron studies
and electron temperature reconstruction. ECE diagnostics can be found at nearly all
magnetically confined fusion facilities, including JET [64, 80, 82] , ASDEX Upgrade [27,
78], DIII-D [4, 85, 89], W7-X [79], LHD [65, 71], KSTAR [62], and TCV [10, 12, 61]. In
ECE, it is important to distinguish between the high-field side (HFS) and low-field side
(LFS). In fact, since in a tokamak B ∝ 1/R, the magnetic field on the HFS has a greater
strength, while the LFS has a lower strength than the magnetic field at the center of the
plasma. The spectral intensity Iω measured at a frequency ω can be mapped to a unique
position where the resonance condition ω = nΩc(Rcold) is met, as the cyclotron frequency
is distinct for each radial position. Neglecting the finite velocity of electrons in a plasma,
this position is referred to as the cold resonance position.

1.4.1. Vertical ECE diagnostics

Over the years, ECE has been successfully used to diagnose plasma parameters such as
electron temperature and density fluctuations. However, obtaining quantitative informa-
tion on the non-thermal electron population can be challenging when using a horizontal
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Figure 1.11: Illustration of the different ECE configurations on TCV [8]

line of sight. This is due to the difficulty in determining the energy of non-thermal elec-
trons, which makes it complicated to attribute the radiation to a specific radial location
in the plasma.

Horizontal lines of sight can cause radiation from non-thermal electrons to originate in
different regions depending on electron energy. A vertical line of sight can avoid this issue.
Additionally, the Vertical ECE configuration allows for a more direct determination of
electron energies, as the ECE spectrum broadening due to the magnetic field gradient
can be reduced. In fact, since the tokamak magnetic field scales as ∼ 1/R, if one fixes
the radial position, the electron cyclotron frequency in the weakly relativistic limit is
proportional to

ωece ∝
n

γ
. (1.24)

Therefore, the frequency of the VECE is determined only by the harmonic number and
the energy of the electrons. When the radiation can be attributed to a single harmonic,
any broadening in frequency can be attributed to energy broadening alone. This allows a
direct calculation of electron energy from the frequency of the emitted radiation.

In the 1980s and 1990s, works on PLT [50], ALCATOR [60], and TORE SUPRA [43,
44] focused on the Vertical ECE configuration for the characterization of non-thermal
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electrons. However, this configuration also has its limitations. For example the emission
from non-thermal electrons can compete with thermal radiation from different regions in
the plasma at the same frequency, especially if the line of sight is not isolated from wall
reflected radiation. To mitigate this issue, retro-reflectors or microwave beam dumps can
be used at the termination of the line of sight. However, isolation of the line of sight can
be challenging if the refraction in the plasma shifts the line of sight out of the dump or
retro-reflector. Additionally, density or frequency constraints may be necessary to limit
the effect of refraction. In the early 1990s, Vertical ECE studies on DIII-D [59] were
limited to higher frequencies to mitigate the effects of plasma refraction, which resulted
in severe harmonic overlap.

This diagnostic has the potential to resolve the lower energies of the distribution and can
be particularly useful for studying non-thermal electrons created during electron cyclotron
current drive (ECCD) or for runaway electrons of energies in the order of a few hundreds
of keV [8].

1.5. Thesis Outline

This work focuses on the study of suprathermal electron dynamics in the TCV tokamak
by modelling the ECE. The development of a new ECE synthetic diagnostic (the Yoda

code) accounting for arbitrary numerical distributions is the main outcome of this master
thesis. To calculate the ECE synthetic intensity for any arbitrary line of sight, Yoda

takes in input different quantities:

• The magnetic equilibrium reconstructed by the liuqe code;

• Raytracing parameters calculated by the c3po code;

• The numerical electron distribution function calculated by the 3D bounce-averaged
Fokker-Planck code Luke.

After this general introduction (chapter 1), the thesis develops as follow:

In chapter 2: Electron Cyclotron Emission and Absorption Modelling, starting from
the general description of electromagnetic phenomena in matter, the theory of electron
cyclotron emission is presented. Also, the radiation transport equation is derived and the
wave propagation of electromagnetic waves in weakly inhomogeneous media is described.
At the end, the Fokker-Planck equation is presented.

In chapter 3: Experimental setup, the main characteristics of the TCV tokamak, along
with its electron cyclotron resonance heating system and its vertical ECE diagnostic is
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described.

In chapter 4: ECE numerical modelling, all the modelling efforts needed to simulate
the resonant EC emission and (re)absorption processes are detailed. The chapter starts
from the description of the raytracing code c3po used to model the vertical ECE antenna
pattern. Then it goes through the description of relevant features of the 3D bounce-
averaged Fokker-Planck code Luke needed to calculate the electron distribution function
in non-thermal plasma scenarios. Then, the implementation and the thermal validation
of the new ECE synthetic diagnostic (the Yoda code) is detailed.

In chapter 5: Suprathermal electrons at the tokamak à configuration variable, Yoda is
used to simulate some vertical ECE measurements from two ECCD shots (#73217 and
#72644).
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2| Electron Cyclotron Emission

and Absorption Modelling

This chapter offers a thorough description of the theory of electron cyclotron emission and
absorption. Section 2.4 describes the fundamental principles that form the basis of this
theory. To provide a complete understanding, section 2.1 employs the linear description
of electromagnetic phenomena to systematically review all the theory’s basic components.
This includes examining wave propagation in a weakly inhomogeneous medium, as out-
lined in section 2.2, and introducing the radiation transport equation, discussed in section
2.3. Additionally, section 2.4.3 presents the theory of blackbody emission for thermal
plasmas, and the chapter concludes with an overview of the theoretical description of
non-thermal electron distribution functions. In this thesis, this is accomplished through
solving the Fokker-Planck equation using the Luke code, as described in section 2.5.

2.1. Linear Description of Electromagnetic Phenom-

ena

In the study of physical processes within matter, it is often necessary to consider a large
number of particles at a macroscopic level. This allows for the treatment of the medium as
a continuous entity, disregarding the underlying discrete nature of the microscopic com-
ponents. Maxwell’s equations in conjunction with source terms provide a comprehensive
and adequate explanation of the electromagnetic phenomena that occur within:

∇ ·E(r, t) =
ρext(r, t) + ρint(r, t)

ε0
,

∇ · B(r, t) = 0,

∇× E(r, t) = −∂B(r, t)
∂t

,

∇× B(r, t) = µ0(Jext(r, t) + Jint(r, t)) +
1

c2
∂E(r, t)
∂t

.

(2.1a)

(2.1b)

(2.1c)

(2.1d)
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These equations link the macroscopic fields E and B at the position r at time t to the
sources that created them, as defined in terms of the spatial charge density ρ and the
current density J. The symbols ρext and Jext denote the external sources, whereas ρint and
Jint indicate the sources internal to the medium. The electric permittivity and magnetic
permeability of empty space are ε0 and µ0 respectively, and c is the speed of light.

The continuity equation, that can be obtained by combining equations 2.1a and 2.1d,

∂ρ

∂t
+∇ · J = 0, (2.2)

states that the amount of electric charge in any volume of space can only change by
the amount of electric current flowing into or out of that volume through its bound-
aries,therefore it implies the charge conservation.

However, without appropriate initial and boundary conditions, this mathematical problem
is not complete. Furthermore, it is also needed to make sure to have enough independent
equations to solve the system for all of the unknowns. This last requirement underlines
a severe missing ingredient in the problem: the connection between the electromagnetic
fields and the properties of the medium one is dealing with. The system, therefore, is not
closed, but one can address this issue under suitable and general assumptions. In fact,
it is feasible to establish a theory for the linear response of the medium, since a linear
relation between fields and the media may be sufficient to adequately describe a vast class
of phenomena.

In the most general case, according to linear electrodynamics, this relation between fields
and sources can be taken into account by writing the constitutive relations

P(r, t) =
∫
V

∫ t

−∞
χ(x,x’, t, t′) · E(x’, t′)d3x′dt′, (2.3)

J(r, t) =
∫
V

∫ t

−∞
σ(x,x’, t, t′) · E(x’, t′)d3x′dt′, (2.4)

D(r, t) =
∫
V

∫ t

−∞
ε(x,x’, t, t′) · E(x’, t′)d3x′dt′, (2.5)

where χ is the electric susceptibility tensor, σ is the electric conductivity tensor and ε

is the dielectric tensor (or permittivity), while P and D are the polarization vector and
electric displacement vector, respectively.
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The relations 2.4 - 2.5 are characterized by non-locality both in time, such that the value
of a quantity at a particular time instant is dependent on the electric field at previous
times instants, and spatial locations, where the properties at a certain point in space are
contingent upon the properties of other points. This results in the manifestation of spatial
and temporal dispersion.

In fact, since matter has a finite inertia when responding to a given field, the phenomenon
of temporal dispersion may appear an intuitive idea. The medium’s reaction will thus
not be instantaneous, and this attribute appears to be reasonably common among most
materials. A non-locality in space refers to the capability of the medium to transmit
information from one point to another. For example, electromagnetic phenomena can do
this by using charged particles that move within the body with a specific characteristic
length that is related to the medium considered.

This description may be confined to the scenario of a homogeneous medium. By assum-
ing spatio-temporal periodic perturbations, the Fourier analysis of equation (2.4) can be
performed with the unperturbed state defined as E = 0 and B = B0. This enables the
description of the medium’s behavior in terms of monochromatic waves in both time and
space. Since in the remainder of this section, all the equations live in the Fourier space,
for convenience, from now on the dependence of E and B on the wave vector k and the
frequency ω are left implicit. At this point it is possible to Fourier transform Maxwell’s
equations in order to turn them into algebraic equations:

k · E = − i

ϵ0
(ρext + ρint),

k · B = 0,

k × E = ωB,

k × B = −iµ0(Jext + Jint)− ε0µ0ωE.

(2.6a)

(2.6b)

(2.6c)

(2.6d)

By multiplying equation (2.6c) with k from the left and substituting in equation (2.6d),
it is possible to find the wave equation in Fourier space

c2

ω2
k × (k × E) + E = −iω0c

2

ω
(Jext + Jint). (2.7)

Introducing the dispersion tensor

Λ = N2

(
kk

k2
− I

)
+ε, (2.8)
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where N is the refractive index vector

N =
c

ω
k, (2.9)

and I is the unit tensor, it is possible to derive the equation

Λ ·E =
iµ0c

2

ω
Jext. (2.10)

In the absence of external currents, i.e. Jext,i = 0, equation (2.10) reduces to

Λ ·E = 0. (2.11)

With equation (2.11) the description of the macroscopic electromagnetic fields in matter
has been formulated as a homogeneous set of equations in the electric field E. In order
to find a non-trivial solution to equation (2.11), the condition that the determinant Λ be
zero must be imposed

det(Λ) = 0. (2.12)

This is the so called dispersion relation which, for a given frequency ω, defines the possible
refractive index N .

The refractive index can be decomposed, with respect to the local direction of the magnetic
field b̂ = B0/B0, in cylindrical components N∥ = N · b̂ and N⊥ = ||N × b̂||. Therefore,
the dispersion relation can be solved for either ω(N∥, N⊥), N∥(ω,N⊥) or N⊥(ω,N∥). By
finding the eigenvectors of the wave equation it is possible to determine the polarization
of the eigenmodes.

In general, the condition det(Λ) = 0 leads to a complex perpendicular refractive index
N⊥ = N⊥,r + N⊥,i if the quantities ω and N∥ are assumed to be real1. The dispersion
tensor Λ con be decomposed into its hermitian and anti-hermitian parts Λ = ΛH + iΛA,
where ΛH = (Λ +Λ†)/2 and ΛA = (Λ−Λ†)/2i. When |ΛA

ij| ≪ |ΛH
ij |, the weak damping

approximation (or WKB approximation) can be exploited [31, 74].

1N⊥,r and N⊥,i are respectively the real and the imaginary parts of N⊥.
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2.2. Wave Propagation in a Weakly Inhomogeneous

Medium

Now it is possible to continue the discussion with an examination of a weakly inhomoge-
neous medium in which radiation is transmitted, leading to the formulation of a suitable
approximation in which it is possible to associate a trajectory to the radiation passing
through a plasma, referred to as the geometric optics approximation.

In the WKB approximation, it can be shown [74] that |N⊥i| ≪ |N⊥r| and |N⊥r| can be
determined by solving the approximate wave equation

ΛH(N⊥r) · Ek = 0 (2.13)

with the corresponding dispersion relation ΛH = detΛH = 0. The time-averaged density
of the energy flow is

S = −ϵ0c
4

d

dN
(E∗

k · Λ ·Ek) (2.14)

and the time averaged density of dissipated power P can be expressed as

P =
ϵ0ω

2
E∗

k ·ΛA ·Ek (2.15)

The ray damping is mainly related to the imaginary part of the wave vector that can be
calculated by N⊥i = (c/2ω)P/S⊥ with S⊥ = ∥S × b∥.

Exploiting the WKB approximation, from now on k, N and Ek will refer to the zero-order
solution of ΛH(N⊥r) · Ek = 0 with respect to the small parameter

δ ∼ max(|ΛA
ij|/|ΛH

ij |) << 1 (2.16)

and the dispersion relation Λ will refer to its Hermitian part ΛH . The advantage of the
weak damping approximation is that within this framework it is possible to decouple the
propagation and the absorption processes in the wave calculations.

The WKB asymptotic expansion enables the ray-tracing representation of wave propaga-
tion, allowing wave characteristics – such as the conductivity tensor, group velocity, and
Fourier space description – that are typically applicable to uniform plasmas to be taken
into account locally in a slowly inhomogeneous plasma. For these kind of media, the
necessary conditions to be satisfied are that L≫ λ = 2π/|k| and t≫ T = 2π/ω where L
and t are the characteristic spatial and temporal scales of the inhomogeneities [40].
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The first step to derive the the equations which describe the ray trajectory is to introduce
the eikonal function2 Ψ(r′, t) such that

k(r′, t) = ∇Ψ(r′, t), ω(r′, t) = −∂Ψ(r′, t)
∂t

. (2.17)

Using this function it is possible to express the fields and the sources as oscillating func-
tions both in space and in time:

E(r′, t) =
1

2

(
E0(r′, t)eiΨ(r′,t) + E∗

0(r
′, t)e−iΨ∗(r′,t)

)
(2.18)

J(r′, t) =
1

2

(
J0(r′, t)eiΨ(r′,t) + J∗

0(r
′, t)e−iΨ∗(r′,t)

)
(2.19)

where the complex conjugate is indicated by an asterisk. In this context, the quantities
E0, J0 and k are slowly varying functions in space and time, i.e., their relative variation
is of the order of δ << 1 within a single spatial or temporal oscillation, where

δ =
2π

ω

∣∣∣∣1η ∂η∂η
∣∣∣∣+2π

|k|

∣∣∣∣1η∇η
∣∣∣∣ (2.20)

and η(r, t) is a scalar function characterizing the plasma. Under these assumptions,
keeping only terms up to first order during the linearization of the Maxwell’s equations,
the wave equation and the dispersion relation obtained for the case of uniform medium
can be found, but with the difference that now k, ω and Λ are explicit functions of the
position r and the time t [40], so that the dispersion equation detΛ(k, ω, r, t) = 0 is a
first order non-linear differential equation in Ψ.

The coordinates kj of the wavevector k and the coordinates ri of the position vector r

have to be canonically conjugate because the eikonal function Ψ is independent of the
choice of the ray trajectory. For the same reason, also the frequency ω and the time t are
canonically conjugate.

Remembering the Hamilton canonical equations for a single particle, where the action S,
the hamiltonian H and the momentum p are related by

p =
∂S

∂r
H = −∂S

∂t
, (2.21)

2The assumption that the surface of constant phase of the propagating wave is a smooth function
in space is made by introducing the wave vector as the gradient of the phase, which adds a further
restriction on the applicability of the WKB approximation. If the wave absorption occurs after an
integration period that is longer than the maximum Liapunov exponent, which describes the rate of
separation of infinitesimally close trajectories, the ray tracing has thus lost its physical significance [74].
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and the first derivative with respect to time of position and momentum are

dr

dt
= −∂H

∂p
, (2.22)

dp

dt
= −∂H

∂r
(2.23)

By equating the eikonal function Ψ with the action S, the wave frequency ω with the
Hamiltonian H, and the wave vector k with the momentum p, it is possible to establish a
correlation between wave propagation, under geometric optics approximation, and particle
motion. Following the Hamiltonian formalism, the general form of the ray equations can
be expressed as

dr
dt

= −
(
∂Λ/∂k
∂Λ/∂ω

)
Λ=0

(2.24)

dk
dt

=

(
∂Λ/∂r
∂Λ/∂ω

)
Λ=0

(2.25)

dω

dt
= −

(
∂Λ/∂t

∂Λ/∂ω

)
Λ=0

(2.26)

The trajectory r(t) travelled by the wave with the group velocity vg = ∂ω/∂k can be
obtained from equation (2.24) , while eqs. (2.25) and (2.26) are related to the variations
that k and ω have to experience in order to satisfy the dispersion relation.
In this thesis, equations (2.24)-(2.26) are solved using the c3po code, the details of which
will be discussed in more detail in section 4.1.

2.2.1. Cold Plasma Dispersion Relation

By solving the ray equations (2.24)-(2.26) it is possible to calculate the wave trajectory
through the plasma, assuming to know the dispersion relation form. The numerical calcu-
lation of the dispersion relation is outside the scope of this thesis, in fact it is carried out
in a special module of the luke-c3po suite which calculates it under the assumptions
associated with a cold magnetised plasma. In the following section, only the analytical
treatment of this problem is considered.

Referring to a cold magnetized plasma, with the magnetic field B0 oriented along the z
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axis, it is possible to demonstrate that the dielectric tensor reduces to [83]:

ε =

 ε1 −iε2 0

iε2 ε1 −N2 0

0 0 ε3

 (2.27)

where
ε1 = 1− X

1− Y 2
, ε2 =

XY

1− Y 2
, ε3 = 1−X (2.28)

and

X =
ω2
p

ω2
, Y =

Ωc

ω
. (2.29)

By respecting the coordinate system such that the wave vector k lies in the xz plane, one
can write the dispersion tensor as

Λ =

ε1 −N2
∥ −iε2 N∥N⊥

iε2 ε1 −N2 0

N∥N⊥ 0 ε3 −N2
⊥

 (2.30)

and then setting the determinant equal to zero det(Λ) = 0, the dispersion relation can be
found as

A ·N4
⊥ +B ·N2

⊥ + C = 0 (2.31)

where A,B and C are coefficient functions of the dielectric tensor elements defined as
follows:

A = ε1

B = (ε1 + ε3)N
2
∥ − [(ε1 + ε2)(ε1 − ε2) + ε1ε3]

C = ε3(N
2
∥ − (ε1 + ε2))(N

2
∥ − (ε1 − ε2))

(2.32a)

(2.32b)

(2.32c)

After that, the dispersion function may be factored as

Λ = ε1Λ+Λ− = ε1(N
2 −N2

+)(N
2 −N2

−), (2.33)

where

N2
± = 1−X − 1

2
XY 2

1 +N2
∥ ±

√
(1−N2

∥ )
2 + 4N2

∥ (1−X)/Y 2

1−X − Y 2
(2.34)

are the two roots of the equation. The solution N− is known as the Ordinary mode
(O) because it is described by the same dispersion relation as an isotropic medium and
corresponds to a fully transversal wave in perpendicular propagation with the electric field
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aligned to the external magnetic field. The wave that is connected to the solution N+ is
known as the eXtraordinary mode (X), and it contains both transverse and longitudinal
components in its electric field, which is parallel to the external magnetic field. These are
the 2 main polarizations of an electron cyclotron wave and they are thoroughly described
in the next section.

When computing the trajectory of cyclotron waves with ray and beam tracing codes, it
is customary to ignore kinetic effects since, in most cases, the cold dielectric tensor is
adequate to characterize the ray paths in a plasma [36–38]. While the aforementioned
method may generally yield accurate results, it is important to cite that the impact of
kinetic effects turns out to be non negligible in close proximity to cut-off layers, especially
as the refractive index approaches a purely imaginary value. [67].
If the electrons are fast (at least in weakly relativistic regime), the electron cyclotron waves
can propagate even when the refractive index determined by the cold dispersion relation is
purely imaginary. In Ref [88], it is shown that the propagation near a resonance layer can
be different from the cold dispersion approximation, due to kinetic warm plasma effects.
Actually, most of the beam and ray-tracing codes still use the cold plasma dispersion
relation [37, 38, 74] since that there are two main problems in the calculation of the ray
path from a dielectric tensor which takes into account relativistic effects:

• Near a resonance layer, the group velocity of the wave and the real part of the
refractive index approach zero [88];

• A numerical approach is needed to calculate the fully relativistic dispersion relation,
since an analytical solution does not exist;

Nevertheless, because the spatial length of the resonance is typically small compared to the
total length of the ray path (in ECE measurements in tokamak plasmas) the distortion of
the ray trajectory caused by resonances is negligible [86], therefore using the cold plasma
dispersion relation is an acceptable approximation.

2.2.2. EC Waves Polarizations in magnetized plasmas

In general, the the lines-of-sight of electron cyclotron emission (ECE) diagnostics are not
straight because the radiation is susceptible to refraction. The polarization of the wave
affects how much light is refracted. Electron cyclotron waves can have two separate,
decoupled polarization states in the cold plasma approximation, indicating with θ the
angle formed between the wave vector and the magnetic field [16, 33]:

• If θ = π/2 (perpendicular polarization), the polarization mode is called the eX-
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traordinary mode (X) and the electric field E of the wave is perpendicular to the
equilibrium magnetic field B0;

• If θ = 0 (parallel polarization) the polarization mode is the ordinary mode (O)
where E is parallel to B0;

In the vacuum limit, both modes are just transverse and linearly polarized. In a plasma,
this is only true for the ordinary mode, whereas the extraordinary mode produces a
longitudinal contribution to E that is parallel to the wave vector k, and it is therefore
elliptically polarised.

Both of the fundamental modes must be transverse and circularly polarized in both a
vacuum and a plasma in the case of θ = 0. Thus, there are two polarized waves: the
right-handed polarized wave, for which E rotates in the direction of electron gyration,
and the left-handed polarized wave, for which E rotates in the direction of ion Larmor
motion.

The eXtraordinary mode shifts into the right-handed mode for ω > ωp when the angle θ
of propagation is continuously varied from π/2 to 0, while the ordinary mode becomes the
left-handed. Except for in one specific case, the X-mode is almost always more strongly
coupled to the plasma than the O-mode. Therefore the former mode is called the strong
mode, while the second one is called the weak mode.

Formally, the names X-mode and O-mode only apply to propagation perpendicular to the
magnetic field. Today this nomenclature is however also applied to arbitrary propagation
directions, and this generalization will also be applied in this thesis for the purpose of
simplicity [33].

2.2.3. EC Waves Accessibility

The wave’s ability to propagate trhough the plasma is dependent on the value of N2,
where N2 and N2 = ∞ correspond to cutoff and resonance, respectively. To determine
the wave’s accessibility, cutoffs and resonances are plotted on the CMA diagram (Figure
2.1).

X-mode injection is more complex than O-mode injection due to the R-cutoff when launch-
ing from the low field side. Launching the fundamental resonance X-mode wave from the
high field side results in a density cutoff twice that of O-mode. However, this is challeng-
ing in practice due to tokamak geometry. To overcome these limitations, second harmonic
X-mode heating can be adopted from the low field side by doubling the injection frequency.



2| Electron Cyclotron Emission and Absorption Modelling 32

Figure 2.1: CMA diagram

2.3. The Radiation Transport Equation

Having described how to model the electromagnetic radiation trajectory and how its
group velocity and wave vector changes as it propagates through a weakly inhomogeneous
material, in this section the main purpose is to point out the theory describing how the
energy carried by a wave can evolve. In the geometric optics approximation, wherein the
wave propagation is described using rays, it is possible to derive an energy conservation
law called radiation transport equation. To understand its main aspects, it is necessary
to at least summarize its derivation [5].

Consider, to start with, a cylindrical volume element of an optical inhomogeneous medium,
as shown in Figure (2.2). A radiation beam of intensity Iω and solid angle dΩ1 enters one
face of the cylinder at an angle ξ1 to the normal n. The incoming beam is bent due to
the medium’s inhomogeneity, therefore the radiation that exits has an angle of ξ2 ̸= ξ1

and an intensity Iω+dIω within a solid angle dΩ2. Assuming that the medium is loss free
and that there are no sources or sink terms for the radiation, it is possibile to write the
energy balance:

(Iω + dIω)da cos(ξ2)dΩ2dω − Iωda · cos(ξ1)dΩ1dω = 0 (2.35)

which corresponds to the energy conservation equation for radiation propagating along a
bunch of rays. If the medium is homogeneous, the considered wave obeys Snell’s law of
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Figure 2.2: Radiation entering a small volume of plasma and leaving it after experiencing
a little degree of refraction because to a variation in refractive index values on the two
sides of the elementary cylinder.

refraction
N2 sin(ξ2) = N1 sin(ξ1) (2.36)

where N1 and N2 are the refraction index of the 2 sides of the cylindrical volume.

In these conditions (isotropic medium and lossless), it is found that

N2 da cos(ξ) dΩ = const. (2.37)

so that, from equation (2.35), the classical result of geometrical optics is obtained [5]:

Iω
N2

= const. (2.38)

Keep in mind that Iω = constant is valid along a ray propagating in vacuum, and it is
independent of the observer’s distance from the source. This property makes this quantity
highly useful in describing the emission properties of radiating bodies.

By relaxing the assumption of a homogeneous body, for an anisotropic medium Snell’s
law holds only for certain waves propagating in certain unique directions relative to the
static magnetic field: a generalization of equation (2.38) is then necessary.
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To proceed into the derivation, the technique outlined in [5] uses the analogy between the
ray trajectory and Hamilton’s equations expanded to an ensemble of many particles, and
an expression equivalent to (2.37) is found:

N2
r da cos(ξ) dΩ = constant (2.39)

where Nr is called ray refractive index, as

N2
r =

∣∣∣∣∣∣∣∣∣N
2sin(θ)

√
1 +

(
1
N

∂N
∂θ

)2
∂
∂θ

[
cos(θ)+

(
1
N

∂N
∂θ

)
sin(θ)√

1+( 1
N

∂N
∂θ )

2

]
∣∣∣∣∣∣∣∣∣ (2.40)

where θ is the angle formed by the wave vector k and the external magnetic field B0.
The meaning of the ray refractive index is different from that of the refraction index: N
describes the ray trajectory along the wave vector k, while Nr is related to the energy flux
along the group velocity vg of the wave. At this point, the energy conservation equation
for an anisotropic medium leads to

Iω
N2

r

= constant. (2.41)

This equation describes the transfer of radiation in an anisotropic passive media which
neither emits, absorbs nor scatters radiation.

Since every real physical process involves a loss of energy, such lossy media should also
be considered. These types of media can support spontaneous electric and magnetic
oscillations and thus they are capable of absorbing and emitting radiation.
The quantity of interest in the study of radiation transport is the spatial variation of the
energy flux. One can do so by proceeding to use the dispersion equation (2.31) to obtain
the complex value of k (for real ω). Thus, the exponential decrease in the amplitude of
the wave is specified by −Im(k) where the minus sign comes from a proper definition of
the Fourier components as exp(iωt − ik · r). What is called absorption coefficient αω is
twice the imaginary part of the wave vector, but since k and vg/|vg| can make an angle
β ̸= 0, the decrease in intensity along the ray trajectory can be written as

αω(s) = −2 Im(k) cosβ (2.42)

where s denotes the point along the ray path. α has the dimensions of reciprocal length
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[L−1]. In the transport equation, the absorption of energy experienced by the rays is given
by

−αω Iω ds da cosξ dΩdω (2.43)

If the considered volume is also a source of radiation, an emissivity coefficient jω can be
introduced as the power generated per unit volume of medium per frequency interval dω
per steradian, which is flowing along the ray path. Its contribution to the energy balance
can be expressed as

jω ds da cosξ dΩdω (2.44)

Finally, inserting the sum of (2.43) and (2.44)– the net power produced or consumed in the
volume – in the right-hand side of the energy balance equation (2.35) and using the relation
N2

r da cosξ dΩ = const, a relation between the absorption and emission characteristics of
the medium and the evolution of radiation intensity along the ray path may be found. It
is called the radiation transport equation (or equation of radiation transfer):

d

ds

(
Iω(s)

N2
ω,r(s)

)
=

1

N2
ω,r(s)

(
jω(s)− αω(s)Iω(s)

)
(2.45)

The goal of this thesis is to solve equation (2.45) numerically. Before doing so, however,
some additional physical insight can be gained by manipulating the equation analytically.
In fact, defining the source function:

Sω(s) =
1

N2
ω,r(s)

jω(s)

αω(s)
(2.46)

and the optical depth:

τ(s) = −
∫ s

L

αω(s
′)ds′ (2.47)

where the distance travelled by the ray path is L. Using this, equation (2.45) can be
rewritten as

d

dτ

(
Iω(s)

N2
ω,r(s)

)
=

Iω(s)

N2
ω,r(s)

− Sω(s). (2.48)
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Figure 2.3: Schematic representation of the ray path s and the optical depth τ through a
certain plasma volume. The optical depth is measured from the point of emergence.

In this form, it is trivial to integrate it along the ray path s to get

Iω(s2)

N2
ω,r(s2)

e−τ(s2) =
Iω(s1)

N2
ω,r(s1)

e−τ(s1) +

∫ τ(s2)

τ(s1)

Sω(s)e
−τdτ (2.49)

In this case s1 is the point in which the ray leaves the plasma, while s2 is the one in which
it enters, therefore τ(s2) = τ(s1) = τ0 and N2

ω,r(s2) = N2
ω,r(s1) = 1. Since the intensity

of the ray in the position in which it enters in the plasma is Iω(s2) = Iω,0, the emerging
intensity along the ray could be expressed as:

Iω = Iω,0e
−τ0 +

∫ τ0

0

Sω(τ)e
−τdτ (2.50)

The observed intensity is expressed by this equation as the product of the emission at
all interior points along the ray, decreased by a factor e−τ expressing the re-absorption
by the intervening material, and the intensity of the radiation incident from behind, also
lowered by absorption [40].

All contributions coming from outside the medium, as well as radiation emanating from
the body further away from the collecting optics are dampened if τ(s1)− τ(s2) >> 1.

Typically, it is assumed that radiation emitted from plasma regions where τ > 2 will
be nearly entirely reabsorbed before it reaches the collection optics. Therefore, only
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radiation emitted from regions where τ < 2 will effectively contribute to the collected
radiation intensity for a broadened ECE layer. In fact, if τ > 2 plasmas are considered
to be optically thick for the specified frequency [42]. Since in that case, the plasma is
perfectly absorbing at the considered frequency, it emits like a blackbody.

2.3.1. Plasma Optical Thickness Effects

The plasma optical thickness τ0 affects which approximations are allowed when solving
the radiation transport equation [40]:

• If τ0 << 0, it means that the plasma is optically thin and then the absorption can
be considered negligible. In this case, the presence of the plasma has essentially no
effect on the emitted radiation, and therefore:

I(ω) ≃ I0 +
ω2

8π3c2

∫ L

0

j(ω, s)

N2
ω,r

ds. (2.51)

There is no re-absorption effect, and the observed intensity is effectively the sum of
the emission contributions from all of the volume elements along the ray plus the
incoming radiation due to reflections;

• If τ0 ∼ 1 the intensity attenuation due to absorption cannot be neglected since the
factor exp(−τ0) this is not small enough. In that case in equation (2.50) has to
be considered, which means that also the details of the incoming radiation I0 is of
importance.

• If τ0 >> 1 the plasma is said to be optically thick and the re-absorption processes
are strong. For this scenario, the incident radiation can be neglected up to a spatial
position in the plasma where τ0 ≥ 1. The expression for the observed intensity
simply reduces to

I(ω ≈
∫ L

0

jω(s)e
−τ(s)ds. (2.52)

2.4. Electron Cyclotron Absorption and Emission

After having described both the propagation of the EC waves and their transport of en-
ergy, the aim here is to present a general theory explaining how a magnetically confined
plasma responds to radiation at frequencies around the electron cyclotron harmonics nΩc.
The complete treatment includes a detailed discussion of the phenomena of absorption
and emission of radiation in a weakly inhomogeneous medium and the derivation of the
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current and the correlation tensors within the relativistic kinetic theory framework. Only
the final expressions of the absorption and of the emission coefficient are provided in this
section.
Calculating the EC absorption coefficient αω(s) and emission coefficient jω(s) is a nec-
essary step to solve the radiation transport equation (2.45). The collective motion of
the electrons may be disregarded in a tenuous plasma when dispersion is negligible, and
the emissivity and absorption coefficient can be computed as the sum of the contributions
from each electron. To make these calculations rigorously the refractive index must satisfy
Nω ∼ 1 because the total emissivity is expressed as the momentum space integral of the
single electron emissivity weighted with the electron distribution function [54]. However,
for the plasma scenarios and frequency range in which the ECE is useful, this condition
is in general not met [33]. For the purposes of this thesis, a suitable approximation for
the absorption coefficient can be found in literature [2, 16, 17].
In the weak damping approximation, the collisionless absorption of electromagnetic waves
can be treated using the Poynting theorem. Therefore the absorption coefficient along
the direction of the energy flux s = S(k, ω)/|S(k, ω)| can be expressed as [16]

αω(s) =
ω

4π

E∗ · εa ·E
|S(k, ω)|

(2.53)

where the Fourier transform of the undamped wave electric field is E = E(k, ω), while
εa is the anti-Hermitian part of the dielectric tensor ε = εh(k, ω) + iεa(k, ω), and εh is
its Hermitian part .

For what concerns the energy S(k, ω), it is useful to remember that it is composed of 2
components: the Poynting flux that represents the flow of electromagnetic energy and the
sloshing flux which is thought to arise from particles moving coherently with the wave:

S(k, ω) ≡ c

4π
ℜ(E ×B∗)− ω

8π

∂εh,ij
∂k

E∗
iEj (2.54)

Except for the O-mode at ω = Ωc and the X-mode around ω = 2Ωc when (ωp/ω)
2 > 1,

the sloshing flux for EC waves is small in comparison to the Poynting vector3, therefore
the sloshing flux can be neglected. It should be noted that equations (2.53) makes no
mention of the group velocity, hence it is assumed that this formulation will be true even
when the dielectric tensor quickly changes with the wave frequency, as it does near the
resonance [17].

3The sloshing flux is important only if non-zero finite temperature effects are included in the dispersion
relation.
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Since the resonances in the EC range occur at different harmonics of the cyclotron fre-
quency Ωc, the total anti-Hermitian part of the fully relativistic dielectric tensor [18] has
to be expressed as the sum of each n’th harmonic contribution is εa =

∑
n=1 ε

(n)
a , where

ε(n)a = −π
(
ωp

ω

)2∫
d3p

γ
δ

(
γ −N∥p∥ −

nΩc

ω

)
VnV

∗
n · R̂nf(p∥, p⊥) (2.55)

and
∫
d3p = 2π

∫ +∞
0

p⊥dp⊥
∫ +∞
−∞ dp∥ indicates the momentum space average and f(p∥, p⊥)

the electron distribution function in the momentum space (p∥, p⊥) . Furthermore, the
electron momentum p = p∥b̂ + p⊥ is normalized to the thermal momentum pth = mec.
Furthermore

Vn =
1

N⊥

nΩc

ω

(
Jn ,

ib

n
J ′
n ,

ω

nΩc

N⊥p∥Jn

)
(2.56)

R̂n =
nΩc

ω

1

p⊥

∂

∂p⊥
+N∥

∂

∂p∥
(2.57)

with Jn = Jn(b) the Bessel function of the first kind of order n (which is the harmonic
number), the argument b = ω

Ωc
N⊥p⊥, J ′

n = dJn/db and f(p∥, p⊥) is the electron distribu-
tion function which has the dimensions of (phase-space) density [17].

Now by inserting the equation (2.55) into equation (2.53) it is possible to retrieve the
absorption coefficient for the n-th harmonic expressed as an integral in a cylindrical,
dimensionless momentum space:

α(n)
ω (s) = −2π2

ω2
p,0

c0ω

∫ ∫ (
n

ω̄N⊥

)2∣∣∣∣(ẽx + ω̄N⊥

n
p||ẽz

)
Jn(b)−

ib

n
J ′
n(b)ẽy

∣∣∣∣2×
R̂f(s, p⊥, p||)×

δ

(
γ − p||N|| −

n

ω̄

)
p⊥
γ
dp⊥dp||

(2.58)

keeping in mind that the absorption coefficient (2.58) is a local quantity (dependent on
the position s along the ray) for a plasma in a weakly inhomogeneous magnetic field.

On the other hand, the equation (2.9) of Ref. [87] may be used to calculate the emissivity
of the n-th harmonic from the absorption coefficient expressed by equation (2.58):
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j(n)ω (s) = mec
2
0

N2
ω,rω

2
p,0ω

4πc30

∫ ∫ (
n

ω̄N⊥

)2∣∣∣∣(ẽx + ω̄N⊥

n
p||ẽz

)
Jn(b)−

ib

n
J ′
n(b)ẽy

∣∣∣∣2×
f(s, p⊥, p||)×

δ

(
γ − p||N|| −

n

ω̄

)
p⊥
γ
dp⊥dp||.

(2.59)

In both the equations (2.58) and (2.59), the relativistic factor is γ =
√

1 + p2∥ + p2⊥, while
ω̄ = ω

Ωc
and the vector ẽ = (ẽx, ẽy, ẽz) is the polarization vector. Perhaps, the most

important feature of these equations is that f(s, p∥, p⊥) can be any arbitrary electron
distribution function, locally dependent on the ray position s: this allows the use of a
numerical distribution function, as will be further discussed in next chapters.
For what concerns the coordinate system, it follows the Stix convention, where k is located
in the x-z plane , and the z axis is aligned with B (Figure 2.4):

B0 = (0, 0, B0), k = (kx, 0, kz)

Figure 2.4: Cartesian coordinate system in relation with the orientation of the magnetic
field B and the wave vector k ( the Stix convention).
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Therefore, the polarization vector ẽ = (ẽx, ẽy, ẽz) follows this coordinate system and it is
expressed as the electric field normalized by the modulus of the poynting flux. It is also
important to underline that all the quantities derived from the cold plasma dispersion
relation, namely N∥, N⊥, Nω and ẽ are intrinsically dependent on the ray poisition s.
Summing up all the contributions for the different harmonics, it is possible to find the
global absorption coefficient αω(s) and emissivity jω(s):

αω(s) =
+∞∑
n=1

α(n)
ω (s) , jω(s) =

+∞∑
n=1

j(n)ω (s) (2.60)

In conclusion, the emissivity and the absorption coefficient can be seen as the composi-
tion of two different contributions weighted by the electron distribution function or its
directional derivative in the momentum space: the polarization filter and the relativstic
resonance condition.

2.4.1. Polarization Filter

The factor

|ẽ · V ∗
n |2 =

(
n

ω̄N⊥

)2∣∣∣∣(ẽx + ω̄N⊥

n
p||ẽz

)
Jn(b)−

ib

n
J ′
n(b)ẽy

∣∣∣∣2 (2.61)

takes into account the finiteness of the electron Larmor radius as well as the wave polar-
ization [2]. Once the cold plasma dispersion relation is calculated along the ray path it is
also possible to calculate the absolute value of the polarization vector as the eigenvector
of the wave equation in the Fourier space, namely the equation (2.11), as

ẽ = (Ex,−iEy, Ez), (2.62)

normalized to the modulus of the poynting flux. The equation (2.62) contains two compo-
nents: the Ex− iEy, which corresponds to the right-handed polarization and is associated
with the electric field perpendicular to the magnetic field B0, and the linear polarization
Ez, aligned with the equilibrium magnetic field direction [17].

2.4.2. Relativistic EC Resonance Condition

As is possible to observe from the expressions of αω(s) and jω(s), because of the presence
of a delta function in both formulas, not all the electrons described by the distribution
function f(p∥, p⊥) contribute to the integral. In fact, the ECE resonance condition may
be expressed as follows and has to be fulfilled in order for a particle to contribute to the
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integrals:

γ − n
Ωc

ω
−N∥p∥ = 0. (2.63)

From this expression it is clear that the electron cyclotron emission and absorption pro-
cesses involve only the portion of the electron population which fulfills (2.63)in the mo-
mentum space.
Since this condition is a direct consequence of the conservation of energy and momentum,
it is possible to rewrite the expression (2.63) as

ω − k||v|| =
nΩc

γ
(2.64)

in fact, since the electrons are moving along the magnetic field lines, when the frequency
ω of the wave, Doppler shifted by the factor k∥v∥, matches an integer multiple of the
cyclotron frequency Ωc corrected by the relativistic γ factor, the interaction between
those electrons and the waves occurs.

Since γ =
√
1 + p2⊥ + p2∥, for the electron cyclotron waves which |N∥| < 1 the resonance

condition makes a half ellipse in momentum space (p∥, p⊥) [33]:

p⊥(p∥) =

√(
N∥p∥ +

nΩc

ω

)2

−p2∥ − 1 (2.65)

This resonance half-ellipse exists only if

n
Ωc

ω
≥
√
1−N2

∥ (2.66)

where the equal sign corresponds to a null size ellipse [40]. For the full perpendicular
propagation, when N∥ = 0 all the electrons have the same energy because the resonance
condition reduces to

γ = n
Ωc

ω
(2.67)

It is then clear that, for N∥ = 0, only the relativistic effects can explain the wave-particle
interaction. There is a pole in momentum space and a non-zero anti-hermitian part of the
dielectric tensor in the wave-particle resonance[17]. Referring to Figure (2.5), the energy of
the resonating electrons is different between perpendicular (N∥ = 0) and oblique (N∥ ̸= 0)
propagation [40]:

• If (N∥ = 0), when nΩc

ω
increases, the interactions between waves and electrons occur

first with low energy electrons and then with more energetic ones;
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Figure 2.5: Plot for different nΩc

ω
of the resonance condition in the case of perpendicular

propagation N∥ = 0 (in black) which is centered around p∥ = 0 and oblique propagation
N∥ = −0.2 and N∥ = −0.4 (in red and blue) which is shifted towards positive p⊥ with a
bigger curvature radius.

• If ((N∥ ̸= 0), interactions occur first with high energy particles and then with weakly
energetic ones and then again with high energetic, but in the opposite half of the
momentum space.

If one fixes a magnetic field strength and a propagation direction, it is possible to find a
critical upper frequency

ωcrit = nΩc(1−N2
∥ )

−1/2 (2.68)

so that there is electron cyclotron radiation only if ω < ωcrit. As N∥ increases, correspond-
ing to an increasing angle between the magnetic field and the wave propagation direction,
this limit is shifted up (frequency up-shift).

On the other hand, if the frequency is fixed, it is also possible to find a critical value for
the magnetic field at which the resonance occurs

Bcrit =
mec

e

ω

n
(1−N2

∥ )
1/2. (2.69)

It sets a lower limit for the EC absorption and emission processes which occur only
if B > Bcrit. Since in a tokamak, the overall magnetic field strength varies radially
roughly as B(R) ∝ 1/R, where R is the major radius of the vacuum chamber coordinate,
the resonance occurs only from a radius value R = Rcrit where B(Rcrit) = Bcrit. Also
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this critical values up-shifts if N∥ increases. This constrain constitutes a limit for the
application of vertical LOS in the ECE operation, since the major radius R is fixed, while
it isn’t true for oblique and horizontal LOS.

2.4.3. Thermal Plasmas

The Maxwell-Jüttner distribution represents the distribution function, , it is normalized
so that its momentum-space integral is one for a relativistic, thermal plasma:

fe,MJ(s, p⊥, p∥) =
1

4πΘK2(1/Θ)
e−γ/Θ (2.70)

where Θ = Te/(mec
2
0) with Te expressed in energy units, while Kl with order l = 2

denotes the modified Bessel function of the second kind, also referred to as the MacDonald
function.

Since the main interest of this thesis is to study suprathermal electron populations de-
scribed by distribution functions slightly different from the Maxwell-Jüttner, the calcula-
tions of the absorption coefficient and the emissivity, and then of the radiation intensity
are allowed also for arbitrary numerical distribution functions. A more detailed descrip-
tion of the distribution functions used to obtain synthetic ECE intensities is presented in
the next chapters.
If the plasma is in thermal equilibrium one can express the absorption coefficient as a
function of the emissivity via the Kirchhoff law

IBB,ω(s) =
1

N2
ω,r

jω(s)

αω(s)
≃ 1

N2
ω,r

ω2Te
(2π)3c20

. (2.71)

The right hand side of the equation (2.71) is the so called Rayleigh-Jeans approximation
for the emitted blackbody intensity IBB,ω where the electron temperature is expressed in
energy units.
In the case of blackbody emission (as discussed in section 2.3), the intensity source function
(2.46) could be expressed as

Sω =
ω2

(2π)3c2
Trad,ω (2.72)

where Trad,ω is also expressed in energy units and it is known as radiation temperature.
Making use of the equation (2.46), this temperature can be expressed as a function of the
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absorption and emission as

Trad,ω =
(2π)3c2

ω2

1

N2
ω,r

jω(s)

αω(s)
. (2.73)

Substituting the full expressions for the absorption coefficient (eq. (2.58)) and emissivity
(eq. (2.59)) into equation (2.73) and considering a relativistic Maxwellian distribution
function

Trad,ω = −mec
2

∑
n

∫ ∫
|ẽ · V ∗

n |2fe,MJδ
(
γ − p||N|| − n

ω̄

)
p⊥
γ
dp⊥dp||∑

n

∫ ∫
|ẽ · V ∗

n |2R̂fe,MJδ
(
γ − p||N|| − n

ω̄

)
p⊥
γ
dp⊥dp||

(2.74)

Then equation (2.74) simplifies to

Trad,ω = Θmec
2
0 = Te (2.75)

Therefore a thermal plasma follows the same Kirchhoff rule as a blackbody, because the
source function Sω which is the ratio between jω and αω, is proportional to the electron
plasma temperature[54].

2.5. Non-Thermal Plasmas

In certain plasma scenarios, the system deviates from thermal equilibrium, leading to a
significant perturbation to the electron distribution. This section commences by outlining
several mechanisms that result in the generation of fast electrons, which are particularly
relevant to this thesis, followed by a succinct discussion on the kinetic modeling of non-
thermal electron distribution functions.

2.5.1. Fokker-Planck Modelling of the Non-Thermal Electron

Distribution Function

Due to the computational limitations of describing a tokamak plasma using a single parti-
cle model, statistical methods have been devised which utilize a time-dependent equation
to describe the evolution of the particle distribution function f(t, x, v). In this thesis it
is presented only an introduction to these complex topics, in fact for an in-depth un-
derstanding of these concepts, interested readers are directed towards relevant literature
sources [49].
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From Boltzmann Equation to Fokker-Planck Equation

A plasma kinetic theory can be developed by postulating that the forces acting on ions and
electrons arise from the self-consistent electric and magnetic fields that they experience.
Within the framework of kinetic theory, the total electric E and magnetic B fields, and
also the distribution function f , are typically expressed through a perturbative first order
expansion

E(x, t) = E0(x, t) + Ẽ(x, t)

B(x, t) = B0(x, t) + B̃(x, t)

f = f0(x,p, t) + f̃(x,p, t)

(2.76a)

(2.76b)

(2.76c)

where the quantities labelled with a zero as a subscript indicate the averaged macroscopic
components, while |Ẽ| ≪ |E0|, |B̃| ≪ |B0| and |f̃ | ≪ |f0| are the microscopic fluctuating
components, arising from particle interactions. The macroscopic distribution function4

f(t, x, p)dxdp is the number of particles in an infinitesimal phase-space volume x and p

(i.e. the number of particles at position x and with momentum p). Since the macroscopic
fields are described by the Maxwell equations (2.1),one needs to sum up the contributions
from all particles, expressing the sources of the electromagnetic fields as the velocity (or
momentum) moments of the electron distribution function as:

n(x, t) =

∫
f(x,p, t)dp

j(x, t) =
e

m

∫
pf(x,p, t)dp.

(2.77a)

(2.77b)

This procedure is possible only because Maxwell’s equations are a set of linear equations.

In the limit of a collisionless plasma, where the collisions between particles can be ne-
glected, the evolution of the distribution function in time is governed by the Vlasov
equation:

∂f

∂t
+

p

γm

∂f

∂x
+ q

(
E +

p

γm
×B

)
∂f

∂p
= 0. (2.78)

when collisions are accounted for, the Vlasov equation (2.78) can be modified to incor-
porate collisional effects by including a term that describes the resulting modification of
the distribution function. This modified form of the equation is commonly known as the
Boltzmann equation, or sometimes the Vlasov-Boltzmann equation and can be expressed

4Only electrons are considered in this thesis, so that all the quantities describe properties of the
electron population.
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as
∂f

∂t
+

p

γm

∂f

∂x
+ q

(
E +

p

γm
×B

)
∂f

∂p
= C[f ]. (2.79)

The term C[f ] is known as collision operator. In the case when one treats collisions as
dominated by long range Coulomb interaction, it is possible to say that the momentum
exchange per each collision is small. This kind of operator is called a Fokker-Planck
collision operator that can be expressed in an advection-diffusion form [53]

C[f ] =
∂

∂p

[
−Af + D

∂f

∂p

]
(2.80)

where from [6] and [20] is it possible to express the dynamical friction coefficient A =∑
j Aij and the diffusion coefficient D =

∑
j Dij. For example, Luke [30] solves a version

of equation (2.73) which has been averaged over particle orbits. This average is known
as a bounce-average and it is valid if the collision time is much longer than the poloidal
transit time (i.e. the time it takes for a particle to return to the same poloidal angle)5.

5More details about the involved timescales are provided in section 4.2
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In this chapter, the experimental framework employed in this thesis is outlined. In section
3.1, an overview is provided of the main characteristics of the Electron Cyclotron Heating
system of TCV, which is of critical importance in the formation of suprathermal electrons.
It is followed by a dedicated discussion one the Vertical-ECE diagnostic [8] developed and
utilized on TCV (section 3.2).

3.1. The TCV Tokamak

The Tokamak à Configuration Variable (TCV) [51] is a medium sized, highly elongated
tokamak device designed for the investigation of plasma shape effects on confinement and
stability (see Figure 3.1). In operation since 1992, TCV allows the generation of a wide
range of plasma shapes without the requirement for hardware modifications. The device’s
main operational parameters are comprehensively summarized in Table 3.1.

Parameter Symbol Value
Major radius R0 0.88 m
Minor radius a 0.25 m
Aspect ratio ε = R0/a ∼ 3.5

Vacuum vessel elongation κTCV 2.9
Toroidal field on axis B0 <1.54 T

Plasma current Ip <1MA
Loop voltage VLOOP <10 V

Disharge duration / <4 s

Table 3.1: Main TCV parameters

The TCV vessel’s elongated design affords the ability to generate a wide range of plasma
shapes, facilitated by the device’s set of sixteen independently powered field coils. Through
TCV’s shaping capabilities, a broad spectrum of plasma configurations have been achieved,
including highly elongated plasmas and negative triangularity arrangements, explored for
the study of plasma confinement (see Figure 3.2) [52, 68, 69]. Furthermore, TCV has been
utilized to examine the impact of plasma shaping on runaway electron beam formation
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Figure 3.1: Schematic drawing of the TCV tokamak: ports for ECRH power injection (yel-
low), vacuum chamber and access ports (cyan), poloidal field coils and Ohmic transformer
(orange), toroidal field coils (green), graphite-covered PFCs (white), plasma (pink).

[32] and to study electron transport enhancement by Electron-Cyclotron plasma-wave
interaction [23].

The first wall of TCV is nearly entirely covered with graphite tiles, thereby making carbon
the primary plasma impurity. The use of graphite as the main wall material has several
advantages for fusion experiments, including its resistance to melting in vacuum and
its ability to sublimate at temperatures above 3750 ◦C, leading to robustness against
accidental plasma wall contact. Additionally, graphite is a low-Z material, meaning its
radiation losses have a limited impact on core plasma performace, as opposed to high-Z
materials such as tungsten. Despite its widespread use in fusion experiments, carbon is
not suitable for use in a fusion reactor due to its high retention of hydrogen isotopes,
which would result in significant amounts of tritium being retained in the reactor PFCs
[22].

3.1.1. The TCV ECRH/ECCD System

TCV is equipped with a versatile Electron Cyclotron Resonance Heating (ECRH) and
Electron Cyclotron Current Drive (ECCD) system [73]. This system comprises two gy-
rotrons, operating at a frequency of 82.7GHz, with a nominal power output of 680 kW
and three additional gyrotrons, operating at 118GHz, with a nominal power output of
480 kW. Additionally, there are two dual frequency gyrotrons with a nominal power out-
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Figure 3.2: TCV shapes: a) limited plasma, b) conventional single null, c) long-lagged
divertor, d) super-X, e) connected double null, f) LFS snowflake minus (SF-), g) HFS
snowflake minus, h) snowflake plus (SF+)

put of 1000 kW, capable of heating at either 84GHz or 126GHz. The total ECRH power
installed on TCV is approximately 4800 kW which is exceptionally high for a machine
having a volume of approximately 4m3. The polarization of the electromagnetic wave
injected by the gyrotrons is carefully selected to be in the X-mode, because it has been
demonstrated that this polarization results in optimal power absorption. The heating of
the plasma electrons provided by the gyrotrons is achieved through the cyclotron reso-
nance at either the second (X2) or the third (X3) harmonic of the cyclotron frequency.
These gyrotrons are connected to launchers, which serve the purpose of directing the
beam into the plasma, and are positioned in the top ports, equatorial and upper-lateral
ports as depicted in figure 3.3 .

The ECCD experiments conducted on TCV primarily utilize the (X2) gyrotrons, which
are typically integrated with a launcher located at an equatorial port of the machine.
In general, the desired radial location of the beam power deposition is regulated by the
selected magnetic field value [73]. The toroidal and poloidal directions of the beam (in
the reference frame of the plasma) are controlled by the launcher angles, specifically the
toroidal angle, φL, and the poloidal angle θL . This last angle can be adjusted during
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Figure 3.3: Illustration of the TCV poloidal cross section including ECRH/ECCD ports

discharges, allowing for the variation of the toroidal direction of the injected beam within
the plasma. On the other hand, the toroidal angle, φL, can only be adjusted between
different plasma discharges.

3.2. The TCV Vertical ECE

In this section, the TCV VECE system is outlined following the work of [10]. The de-
scription of the radiometer system for the VECE is provided in section 3.2.1. Section 3.2.2
is devoted to outlining the optical configuration of the antenna which generates a vertical
line of sight with finite horizontal dimensions. The vertical LOS terminates on a viewing
dump [84] (section 3.2.3) to prevent background radiation pollution as recommended from
previous studies on Alcator C [60], PLT [63] and DIII-D [59].In section 3.2.4, the plasma
conditions necessary for Vertical ECE measurements with the diagnostic’s available com-
ponents are envisioned, resulting in an operational window for plasma operations that
can ensure the measurement of non-thermal emission from an isolated vertical region of
the plasma, free from harmonic overlap. Finally, in section 3.2.5, the estimation of the
energies and energy resolution that can be observed by the system is presented.
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3.2.1. The Heterodyne Radiometers

The heterodyne radiometers provide a high temporal and spectral resolution and good
sensitivity in a moderate frequency band. The frequency range for ECE measurements is
contingent upon the particular application and the strength of the magnetic field, which
determines the fundamental cyclotron frequency (fECEGHz ≈ 28B”). In a low magnetic
field machine such as TCV (where 0.9T < B0 < 1.54T), ECE measurements have been
performed in the past with frequencies up to around 110GHz. Heterodyne radiometers
have proven to be effective in detecting ECE in previous experiments on TCV, either
for the High Field Side ECE [12] or the Low Field Side ECE [61]. Given their successful
implementation in the past, a detection system incorporating heterodyne radiometers was
chosen for Vertical ECE measurements in order to investigate non-thermal ECE within
the low harmonic region of the spectrum.
The Vertical ECE diagnostic on TCV is equipped with a set of four heterodyne radiome-
ters. These radiometers consist of 42 channels, which are connected to a high-performance
acquisition card, the ACQ42ELF from D-TACQ Solutions Ltd, for digitalization of data.
One of the radiometers, with 24 channels, was developed by A. Tema Biwolè [7] and
covers a frequency range of 78-114GHz. The other three radiometers, each with 6 chan-
nels, were received from Forschungszentrum Julich GmbH. One of these radiometers can
switch between two LO frequencies to cover the range 89-104GHz or 133-148GHz, while
the others cover the frequencies 104-114GHz and 125-130GHz. A sketch of the overall
frequency coverage is summarized in figure 3.4 which shows also an overlap of frequencies,
allowing simultaneous measurements of the same frequencies with different radiometers
(e.g for X-mode and O-mode separation).

Figure 3.4: Frquency coverage of the TCV ECRH-ECCD system and of the heterodyne
radiometers

The time resolution allowed by the radiometers is sufficient for the VECE measurements.
The minimum acquisition time of 10 µs is shorter than the typical acceleration time for
electrons in TCV (∆tms to gain a kinetic energy of 511 keV
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Frequecy Band Peak Power

A very important feature of each radiometer channel is that, around the central frequency
exists also a frequency band with a finite extent. In fact, it has been demonstrated that
the radial extent of the channel bandwidth can be calculated as

∆R = R0
δf

f
, (3.1)

which for a frequency of 100 GHz is ∼ 0.67 com, which is less than the ECE emission
layer ∼ 2 cm.

Each radiometer channel exhibits a parabolic intensity profile, as illustrated in figure 3.5.
If a single pass emission signal1 reaches its maximum value, it is likely that the highest

Figure 3.5: spece modelled intensity in the bandwidth.

point of the emission layer in the plasma corresponds with the central frequency of the
bandwidth. To calculate the power of the bandwidth, one must integrate the spectral
intensity over the bandwidth frequencies, solid angle ΩS, and effective antenna area A,
using the formula

PBW =

∫
I(f)dfdAdΩS. (3.2)

By making the assumption that dAdΩS ≃ λ2 = 1/f 2, the formula for the power bandwidth
simplyfies to

PBW ≈
∫

2πc2
∫
I(f)

f 2
df. (3.3)

1Without taking into account any reflection from the tokamak walls.
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3.2.2. The VECE Antenna

The design of the VECE antenna incorporates an optical configuration that aims to
generate a LOS within the tokamak while maintaining minimal radial extent. The im-
plementation of this design features a top port with a diameter of 20 cm, upon which an
ellipsoidal mirror with a focal length of approximately 61 cm is securely attached. The
top port aperture is located at a height of 163.4 cm from the machine floor, and the center
of the mirror is situated approximately 101 cm above the mid-plane of the vessel.
The plasma radiation, after passing through the focusing mirror, is gathered by an over-
sized corrugated waveguide with a diameter of 63.5mm. The waveguide aperture is
situated approximately 72 cm from the center of the mirror and serves as a means of
transporting the plasma radiation to a quasi-optical telescope. The telescope, designed
by Thomas Keating, is equipped with several components to facilitate the detection of
the plasma radiation. These components include a wire grid polarizer, broadband scalar
horns, and focusing mirrors. The wire grid polarizer separates the incoming beam into
two polarizations, which are then each collected by a horn and fed into the transmission
lines for detection. The antenna is designed to center the beam at the major radius
R = 88 cm of the port, while keeping its radial extent at the mid-plane of the vessel to
a minimum. The desired height of the beam waist is approximately 20 cm, at the vessel
height Z, to ensure that the beam waist is positioned within the plasma for the majority
of experiments conducted on TCV.

The alignment of the antenna system during TCV openings is achieved through the use
of a laser that is directed from one of the horns of the quasi-optical telescope. Despite the
stability of this alignment being subject to discussion, given factors such as mechanical
vibrations of the vessel, the misalignment of the LOS can be monitored during plasma
experiments. This allows for the deduction of physics results even in instances where the
LOS has deviated from the vertical direction. The size of the beam is characterized by
the extent of the 1/e2 intensity level within the assumed Gaussian beam model. As per
the design, the beam waist has a radius of 3 cm (measured at 100GHz) and is positioned
approximately 20 cmabove the mid-plane of the vessel, at a distance of 81 cm from the
mirror and 95 cm from the machine floor. The size of the beam at the mirror and the
machine floor are 4 cm and 5 cm, respectively. The ellipsoidal mirror is intended to produce
a beam waist of 4 cm at the position of the waveguide, located 72 cm from the mirror in
the direction of the detection system. The divergence of the beam in vacuum is calculated
to be 2.14°, making the beam well collimated over the 176 cm path from the mirror to the
machine floor.
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Figure 3.6: Layout of the VECE antenna beam pattern in the TCV vessel

Figure 3.7: Layout of the Vertical ECE antenna beam pattern out of the TCV vessel

For what concerns the polarization tracking, it is important to mention that in the quasi-
optical telescope, the wire grid polarizer (depicted in Figure 3.8) is designed to separate
incoming radiation into two polarizations, which are assumed to be vertical and horizontal
for the X and O mode, respectively, assuming that the polarization has not been altered
by reflections on the components of the antenna. The wire grid reflects the polarization
with its electric field parallel to its fibers and allows the polarization with its electric
field perpendicular to pass through. For Vertical ECE experiments, the direction of
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the magnetic field vector is calculated taking into account both its poloidal and toroidal
components. The direction of the electric field vectors for the O and X mode polarizations

Figure 3.8: Layout of the Vertical ECE antenna beam pattern out of the TCV vessel

is inferred, and the polarizations are separated at the wire grid after being propagated
through the mirror using ECPOL [39]. The poloidal component of the magnetic field can
shift the ideal polarizations (vertical and horizontal) by a few degrees, making it critical
to ensure precise alignment to avoid cross polarization at the grid. This is because the
ratio of X to O mode intensities in a typical thermal plasma is on the order of 102, and
any cross polarization of just 1% would completely obscure the original O mode emission
from the plasma.

3.2.3. The Millimeter-Range Viewing Dump

Figure 3.9: TCV viewing
dump design.

The viewing dump in TCV is made of MACOR, a machin-
able glass-ceramic material that meets the requirements of
high electromagnetic absorption and compatibility with the
high temperature and high vacuum environment of the toka-
mak. MACOR glass-ceramics have been found to have ab-
sorption coefficients of 0.08 < α (mm−1) < 0.15 [1] in the
frequency range relevant to the measurements.

MACOR has a continuous operating temperature of 800 ◦C,
a peak temperature of 1000C, and is capable of withstanding
high heat fluxes. Additionally,it is strong, non-porous, and
radiation-resistant, making it an ideal candidate material for the viewing dump [28]. The
optimal shapes for the viewing dump in the tokamak are triangular grooves, an array
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of horns, or pyramid arrays. The triangular pyramids have dimensions of approximately
10mm × 10mm × 11.6mm, with an angle of 45 degrees between adjacent faces, which
leads to 4 reflections for a normally incident ray on the MACOR , thereby increasing the
absorption. The size of the pyramids was selected to be approximately 1 cm, based on
the MACOR’s optical thickness. The diameter of the dump is limited by the available
space within TCV.

Prior to the installation of the viewing dump on TCV, measurements of the dump prop-
erties revealed an average off-axis reflectivity of below −35 dB and an on-axis reflectivity
of approximately −30 dB, based on the average value over frequency. In 2019, after years
of exposure in the tokamak, the on-axis reflectivity of the dump was measured and found
to have an average value of around −31 dB in the range of 110 to 170GHz and −35 dB

in the range of 70 to 110GHz. These results were obtained using an uncalibrated vector
network analyzer (VNA) and may overestimate the dump’s reflectivity. However, they
are fully consistent with the first measurements of the dump’s properties taken prior to its
installation, indicating that the dump’s performance has not been significantly impacted
by the plasma. In practical terms, the reflectivity of the dump can be considered to be
below −30 dB, meaning that it reflects approximately 0.1% of incident wave power and
absorbs approximately 99.9% of it.

In figure 3.10, a cross-section of TCV, including a representation of the MACOR viewing
dump and the VECE antenna, is presented. Radiation reaching the antenna may come
from the LFS region that lies outside of the LOS, following the path 1′− 2− 3. This type
of radiation is unwanted and requires evaluation of the dump’s off-axis reflectivity. On the
other hand, radiation originating from within the vertical LOS takes the path 1− 2− 3.

3.2.4. The Plasma Conditions for VECE Measurements

After having described the main characteristics of the VECE setup, in this section the
set of plasma conditions required for the measurements are detailed. The main aim for
the diagnostic is to detect only radiation originating from an isolated vertical volume of
plasma. There are two main issues that one wants to avoid when dealing with VECE
measurements:

• The EC wave refraction in the plasma affects the direction of the antenna pattern,
potentially causing a reduction in the signal received by the detection system. To
minimize this effect, the conditions that lead to the minimum amount of refraction
in the plasma must be identified and studied;

• It is necessary to ensure that the EC waves within the LOS are not cut off.
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Figure 3.10: Schematic representation of the wanted and unwanted radiation for VECE
measurements.

For the latter problem, using the cold plasma wave theory for perpendicular wave propa-
gation [16] [47], it can be found that the cut-off density for the O-mode is a function of the
wave frequency only, while the cut-off density for the X-mode is influenced by both the
wave frequency and the magnetic field, through the cyclotron frequency [8, 9]. To express
the results in the most conservative way possible, the calculation of the minimum cut-off
electron densities were performed using a relatively low frequency of 80 GHz and the
maximum value of the TCV magnetic field equal to 1.54 T , finding that for the O-mode
ne ∼ 7.94×1019m−3, while for the X-mode ne ∼ 3.67×1019m−3. The cut-off density limit
is lower in the extraordinary mode, but the experiments for which one is typically inter-
ested in VECE, the densities are usually below this cut-off limit. It is noteworthy that the
majority of vertical ECE experiments utilize an fRF ∼ 80 GHz X2 ECHR beam to create
non-thermal electrons. Therefore, in such experiments, it is necessary to stay below the
X-mode cut-off density limit to prevent the gyrotron wave from entering a cut-off state.
Many other plasma experiments for vertical ECE require even lower densities.

On the other hand, minimizing the beam refraction in the plasma means determining
an optimal range of electron densities that results in the majority of the antenna beam
intensity falling within the viewing dump after its interaction with the plasma. The first
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step, well detailed in Ref. [8], was to simulate the beam propagation inside the plasma
with the spece code [40] that is able to accurately mimick the VECE antenna pattern,
but neglecting any diffraction. It has been shown that at high frequencies near 150 GHz,
the majority of the beam intensity falls within the viewing dump up to a density of
3.7 × 10−19m−3. This density limit is practical for the operation of the Vertical ECE
diagnostic in most plasma conditions. However, at low frequencies, the situation is not
practical due to the refraction constraints. For this case it is demonstrated that the
maximum density of 1.2 × 10−19m−3, half of the beam intensity at 80 GHz would miss
the dump, setting a stringent maximum density limit for refraction at below 1×10−19m−3.
This severely limits the operational window of the Vertical ECE and requires a solution.

Of the various methods, only one was found to be effective in widening the range of VECE
measurements: a variation of the magnetic field. To completely understand how this
method works it is necessary to stress the fact that the problem of antenna beam refraction
should not be considered separately from the multiple wall reflections of radiation in the
tokamak. In fact, when the antenna beam pattern moves away from the viewing dump,
there is a risk of contamination of non-thermal emission by background radiation from
multiple wall reflections. In this scenario, the measured radiation is a mixture of both
the background radiation and non-thermal radiation, making it challenging to separate
the two. Although reflection models exist and are widely used by various ECE synthetic
diagnostics, in the case of a vertical LOS, these models are inefficient because they are
unable to model the complex geometry of TCV tiles in sufficient detail, and they do not
take into account the diffraction effects between the tiles’ aperture and the change of the
EC wave polarization at each reflection.

Methods to minimize the background radiation

The background radiation can only come from specific radial locations, referred to as cold
resonances of the contributing harmonics. The radial location of the cold resonance Rn,cold

of a given harmonic n and ECE frequency, depends exclusively on the magnetic field B0

within the machine as

Rn,cold =
neB0R0

2πmefn,ece
, (3.4)

where R0 = 0.88m is the TCV major radius. According to theory [8–10], only two
consecutive harmonics can contribute to the background radiation on TCV. Given the
magnetic fields and frequency range on TCV, the cold resonance of the first harmonic
cannot be located within the vessel. The background radiation is instead primarily caused
by the higher harmonics, which are optically thick for extraordinary polarization. This
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means that the background radiation that can be measured by the refracted antenna
beam on TCV originates as X-mode emission from a specific location that is determined
by the magnetic field. In figure 3.11 the radial location of the harmonics contributing to
the background radiation is shown for selected frequencies. The emission layers, which are
not shown for simplicity, are located at the high field side of each vertical line representing
the major radius of the cold resonances. A schematic LOS is also drawn to indicate the
vertical region from which direct emission originates. In Figure 3.11a, the X2 harmonic,
a key contributor to the background radiation, has its cold resonace within the tokamak
vessel. In this case, multiple wall reflections of the original X2 emission can contaminate
the downshifted third harmonic emission in the 92− 104GHz frequency band if the LOS
is refracted out of the dump. In Figure 3.11b, the field is lowered to keep the X2 emission
outside the machine in the 92-104 GHz frequency band, resulting in clean operation of the
diagnostic with relaxed density constraints and no need for a viewing dump. However, the
gyrotrons cannot heat the plasma at the second harmonic at this field value. Figure 3.11c
shows a good compromise: the field value allows the gyrotrons to heat the plasma near
its center, and the X2 resonance location of the ECH frequency even lies within the LOS.
The diagnostic can measure the downshifted fourth harmonic emission from non-thermal
electrons in the 133-148 GHz frequency band, again without the need for a viewing dump
and with relaxed density constraints related only to wave cut-off [8].

(a) (b) (c)

Figure 3.11: Radial location of the harmonics contributing to the background radiation
for selected frequencies and magnetic field values.

Since the majority of the ECE radiometers primarly fall between 78 GHz and 114 GHz,
careful adjustment of the experimental parameters is necessary to obtain accurate mea-
surements also in this frequency range. As pointend out by A. Tema Biwolè [8] future
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radiometer designs for the Vertical ECE on TCV should prioritize the frequency range of
120-170 GHz as it offers the capability of obtaining clean measurements of non-thermal
X4/O4 and X3/O3 emission with minimal restrictions on experimental parameters.

3.2.5. The VECE Energy Range and Resolution

In order to assess the electron energy resolution of the VECE, one notes that the rela-
tivistic Lorentz factor γ of a resonant electron, in the case where there is no harmonic
overlap, is related to the measured frequency and magnetic field via:

γ ∝ B

ω
∝ B

f
(3.5)

It can be demosntrated [8] that the total uncertainty of the experimentally inferred rela-
tivistic factor is the sum of five different contributions:

δγ

γ
=
δγ

γ
|beam +

δγ

γ
|doppler +

δγ

γ
|instrument +

δγ

γ
|poloidal ≃ 13% (3.6)

The “beam” factor contributes approximately 7% to the overall uncertainty and reflects the
broadening induced by the limited spatial extent of the antenna pattern. The “Doppler ”
factor represents approximately 4% of the uncertainty and encompasses the uncertainties
associated with the Doppler effect. The “instrument” factor, which amounts to approxi-
mately 1%, accounts for the frequency broadening resulting from a 750 MHz bandwidth
around each recorded frequency. Lastly, the “poloidal ” factor, estimated to be around 1%,
considers that the magnetic field is not perfectly constant along the verical VECE LOS.

From the expression of the relativistic kinetic energy E = (γ − 1)mc2, it can be shown
that

δE

E
=
δγ

γ

(
1 +

mc2

E

)
. (3.7)

Equation 3.7 shows that with the uncertainty in gamma fixed, the resolution at higher
electron energies is better than at lower.
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Figure 3.12: Energy resolution of the Vertical ECE diagnostic calculated with a constant
δγ/γ ≈ 10% [8].
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4| ECE Synthetic Diagnostic: the

Yoda code

In this chapter a new ECE synthetic diagnostic, the Yoda code and its integration in
the starwars suite, is presented. The input parameters for Yoda are obtained from the
c3po raytracing code [74], which is described in section 4.1, and from the bounce-averaged
Fokker-Planck code Luke (presented in chapter 4.2) which calculates the electron distri-
bution function for different plasma scenarios. The numerical implementation of Yoda,
along with its validation for thermal plasmas through comparison with the spece code
[40], is described in section 4.3. The scheme represented in figure 4.1 shows how Yoda is
embedded in the Luke-c3po environment.

Figure 4.1: Schematic representation of the Yoda role in the Luke-c3po environment
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Before entering into the merit of the complex modelling chain developed to simulate the
ECE spectrum, it is worth to clarify the used coordinate system in both the configuration
space and in the momentum space.

Momentum Space

Two different momentum space coordinates are considered:

• The cylindrical coordinate system (p∥, p⊥, φ), where p∥ and p⊥ are respectively the
parallel and the perpendicular components (with respect to the magnetic field lines)
of the momentum normalized to the thermal one, while φ is the gyro-angle. This
system is the natural system for the wave-particle interaction, in fact Yoda is based
mostly on these coordinates.

• The spherical coordinate system (p, ξ, φ), where p = |p| is the magnitude of the
momenutm, while ξ = p ·B/(pB) is the cosine of the pitch angle. This coordinate
system is a natural coordinate system for collisions, therefore it is the primary
system used in Luke for an accurate description of collisions.

A formal definition of all these coordinate systems can be found in [30], and they are
illustrated in figure 4.2.

These two coordinate systems can be exchanged simply applying the relations p∥ = pξ

and p⊥ = p
√
1− ξ2.

Configuration Space

To take advantage of the axisymmetry and flux-surface magnetic configuration of toka-
maks, specific coordinates must be used in the configuration space. From all the different
coordinate systems, it is relevant to define the most important two for this thesis.

The first is the toroidal coordinate system (R,Z, ϕ), where R is the distance from the axis
of the tokamak and Z the distance along this axis. This coordinate system is defined by
local orthogonal basis vectors (R̂, Ẑ, ϕ̂). It is depicted in figure 4.3.

The second is the flux coordinate system (ψ, θ, φ), where ψ is the poloidal magnetic flux,
θ is the poloidal angle and φ the toroidal angle. In the approximations used in Luke,
the motion of particles can be accurately described by their movement along magnetic
field lines. Consequently, particles move along surfaces that have a constant value of ψ,
which represents a constant of motion. In the poloidal plane, the position of a particle
on the flux surface can be characterized by the poloidal angle θ, which is defined as the
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Figure 4.2: Momentum space coordinate systems (p∥, p⊥, φ) and (p, ξ, φ).

angle between the particle position and the outer midplane, with the origin located at
the magnetic axis. On the other hand, the toroidal angle refers to the angle between the
particle’s position and some reference position in the tokamak, in the toroidal direction.
Figure 4.4 illustrates the definition of the configuration space coordinates.

4.1. Ray-tracing: the c3po code

In this thesis, the c3po [74] code is employed as a raytracing code. It serves two purposes:

1. The mimicking of the VECE antenna pattern;

2. The simulation of the wave-particle interaction due to ECH.

The latter use of c3po is a routine application on TCV, whereas its utilization for mim-
icking the antenna pattern of an ECE diagnostic has never been done before this study.
Before entering into the details of the VECE antenna pattern mimicking, it is valuable to
provide an overview of c3po.

c3po is made to calculate power and power deposition resulting from radio frequency
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Figure 4.3: Tokamak toroidal coordinate system (R,Z, ϕ) in the configuration space.

Figure 4.4: Illustration of the 3D configuration space coordinate system used by Luke -
c3po - Yoda in a tokamak magnetic geometry. Any point in the plasma is parameterised
by the poloidal magnetic flux ψ, the poloidal angle θ and the toroidal angle φ (directed
out of the paper) [53].
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(RF) waves in plasmas1, starting from a magnetic equilibrium reconstruction, an electron
density profile and an electron temperature profile given as input2.

Figure 4.5: Schematic representation of the c3po input and output

The ray-tracing approach is based on a reciprocity theorem for the calculation of the re-
ceived ECE power. The reciprocal problem is related to the original problem by launching
a wave from the antenna, allowing it to propagate into the reciprocal plasma, and being
absorbed by the electron cyclotron resonance. To do that, it is mandatory to obtain a
comprehensive understanding of the wave characteristics within the propagating medium.
In plasmas that are quasi-stationary, wherein the scale of equilibrium changes is much
larger than the wavelength, it is feasible to compute the propagation of the waves from
antenna or mirror conditions as well as the equilibrium properties through the use of
ray-tracing techniques. This methodology has been extensively employed in the analysis
of lower-hybrid (LH) and electron cyclotron (EC) wave propagation [11, 14, 56, 75]. In
axisymmetric toroidal plasmas, many ray-tracing codes [55, 66, 81] adopt the toroidal
coordinate system (R,Z, φ), due to its simplicity in the implementation of differential
equations resulting from its orthogonality.

The utilization of magnetic flux coordinates (ψ, θ, φ) in the c3po code is a noteworthy
advantage despite its more complex metrics [74] (an illustration of this coordinate system
is depicted in figure 4.4). This is due to three benefits:

• Only 1D interpolations are necessary for flux functions, such as the equilibrium
density and temperature;

• The poloidal direction described by the angular coordinate θ leverages Fourier series
for efficient and precise interpolations and the computation of derivatives of any
order;

1Yoda does not use c3po to calculate the RF power absorbed, but to mimick the ECE antenna
pattern.

2In the framework of this thesis the magnetic equilibrium is reconstructed by the liuqe code and the
temperature/density profiles are provided by the Thomson scattering.
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• This system is the same used in the Fokker-Planck solver Luke [30], allowing a
better coupling between the two codes.

This curvilinear coordinate system associated with an axisymmetric toroidal MHD equi-
librium with nested magnetic flux surfaces, primarily focuses on studying the propagation
of any RF wave in the volume enclosed by the magnetic separatrix. The c3po code has
been created to support arbitrary wave frequencies, including those in the lower hybrid
and electron cyclotron frequency ranges, as long as the WKB approximation is still appli-
cable. The code structure is flexible and enables the selection of various dielectric tensor
types, including cold plasma, warm plasma [15], and kinetic plasma in the non-relativistic,
weakly relativistic, or fully relativistic regime. In addition to ray tracing, the software
determines several wave properties relevant to heating and current drive calculations, such
as polarization, energy flow, and linear absorption. c3po calculations are based on a 6th

order Runge-Kutta scheme and it employs a spline-Fourier expansion to interpolate the
magnetic equilibria, yielding efficient and precise calculations. The code is implemented
as a C language mexfile and it was extensively benchmarked for different wave types,
comparing its results to both established codes and analytical models. The outcomes
of the benchmarks demonstrate the code’s accuracy and reliability [74]. For a detailed
description and use of c3po it is possible to refer to [74] and [31].

4.1.1. Mimicking the VECE Antenna Pattern

As already outlined, the main purpose of the c3po code in Yoda is to mimick the ECE
antenna pattern in its vertical configuration described in section 3.2.2.

To simulate this Gaussian antenna pattern, a vertical synthetic EC wave launcher is
constructed using the c3po-matlab interface, specifying all the launching parameters
according to the real antenna parameters:

• RL = 0.88 is the last mirror radial position of the center [m];

• ZL = 0.99 is the last mirror vertical position of the center[m];

• φL = 0 is the last mirror toroidal position of the center [rad];

• αL = π is the launching direction from the last mirror center (horizontal angle with
respect to the R axis);

• βL = π is the launching direction from the last mirror center (vertical angle with
respect to Z axis);

• ωRF is the launched angular frequency to be simulated [rad/s];
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• PL = 106 is the launched power [W ];

• w0 = 0.03 is the beam waist [m];

• zL = 0.2 is the distance from the last mirror center to the waist [m];

• mmode is the selected polarization (1 for the X-mode and 0 for the O-mode).

In this way, the rays are launched from the antenna position and they are propagated
through the plasma until the last closed flux surface (LCFS). The ray trajectories in
the vacuum before and after the separatrix are modeled as straight lines. Only a single
passage of the rays through the plasma is necessary, since Yoda does not model the
reflection from the tokamak inner walls. It is also important to stress the fact that, since
the ray-tracing is performed only for points within the last closed flux surface (LCFS),
the wave polarization at the plasma boundary outlet is assumed to be conserved until the
antenna.

Figure 4.6: Poloidal view of a C3PO
simulation of the VECE antenna
pattern (#73003 t = 1.9s X-mode).

The EC emission layer width is a critical factor
that affects ray propagation in antenna patterns.
This factor becomes particularly significant in top-
launched configurations, where some rays may miss
the emission layer due to its finite spatial width,
making it necessary to increase the number and op-
timize the disposition of rays in the pattern. It is
interesting to note that the emission layer width is
not a significant issue in horizontal LOS configura-
tions, as a single ray traveling horizontally toward
the emission layer is unlikely to miss it. However,
when launching rays from the top, the situation
becomes more complicated. Some rays may mimic
the antenna pattern but miss the emission layer, re-
sulting in an inaccurate representation of the true
intensity distribution. To address this, the number
of rays must be optimized to ensure the most ac-
curate representation of the antenna pattern. The
c3po code is capable of using an arbitrary number of rays nrays inside the antenna beam
as

nrays = nangular nradial

where nangular is the number of rays in the same angular position, while nradial is the
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Figure 4.7: Convergence study of the minimum number of rays needed to model the
antenna pattern: shot #73003 t = 1.9s (X-mode)

number of rays in the same radial position. Every ray of the pattern carries the same
power,

therefore the gaussian shape of the antenna pattern is obtained only by an appropriate
placement of the rays in the pattern3 and, the overall synthetic intensity at the antenna
Iω(sant) calculated by Yoda can be simply expressed as

Iω(sant) =

∑nrays

n=1 I
(n)
ω (sant)

nrays

, (4.1)

where I(n)ω (sant) is the synthetic intensity calculated for the nth ray in the pattern. In order
to determine the minimum number of rays required to ensure adequate coverage of the
entire antenna pattern, it is necessary to calculate the synthetic antenna intensity with
Yoda using various patterns made by different number of rays, and perform a convergence
study with respect to the antenna intensity Iω(sant).

In figure 4.7 it is shown that the minimum number of rays required in the pattern is 24,
distributed in a 6 × 4 configuration (4 concentric circles with on each 6 rays not equally
spaced) which is shown in figure 4.8. Another aspect of the construction of the VECE
synthetic antenna pattern concerns the fact that, during a plasma disharge, the line of
sight can depart from its perfect vertical orientation due to mechanical vibrations. For
TCV, usually, the LOS shifts towards the HFS of the machine, as obeserved in [8]. In

3It means that, since the rays are not weighted directly in the carried power, their position in the
pattern is calculated by c3po in order to mimick a Gaussian beam pattern.
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(a) (b)

Figure 4.8: Toroidal zoom view of the antenna pattern: (a) Schematic representation of
the VECE antenna pattern - (b) C3PO simulation of the VECE antenna pattern (#73003
t = 1.9s ).

order to take into account this, it is possible to use an optimization process to match the
correct β angle, in the c3po launcher.

4.2. Fokker-Planck Equation Modelling: the Luke

code

The solution of the Fokker-Planck equation (2.79) describes the evolution of the electron
distribution function in the momentum space. Initially, a Maxwellian equilibrium distri-
bution undergoes diffusion in momentum space, resulting in an asymmetric distribution
due to the influence of the radio frequnecy wave field, Coulomb collisions, and external
electric fields. This is the fundamental cause of the presence of non-inductive plasma
current. Solving the Fokker-Planck equation represents the primary modeling technique
for ECCD plasmas in this thesis and the main modelling tool is Luke [30].

The Luke code is a fully relativistic 3D bounce-averaged Fokker-Planck solver and it
is strongly coupled with the ray-tracing code c3po. Luke can process any numerical
equilibrium data from a TCV shot, which is obtained from the Liuqe magnetic equi-
librium reconstruction code [70]. Additionally, it can take in other parameters such as
the EC injected power, mirror angles, wave polarization, as well as electron temperature,
and effective charge (Zeff ) data acquired from the Thomson scattering, soft X-ray, and
charge exchange diagnostics. Luke takes also into account the impact of an applied
electric field, specifically the inductive loop voltage (VLOOP). The code is formulated in
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a numerically conservative formalism, ensuring the conservation of the electron density,
thereby facilitating an accurate treatment of the current drive problem.

In the next sections, starting from the time scales involved in the description of the elec-
tron dynamics, an introduction on the drift kinetic equation is provided along with a
description of the anomalous radial transport operator and the induction equation imple-
mented in Luke.

4.2.1. Time Scales and Length Scales

The Fokker-Planck equation is solved by Luke assuming a ordering for various time
scales such that a magnetic field that is strong enough to ensure that the electron gyro-
motion period (Ω−1) is significantly shorter than both the collision time τc and bounce
times τb. The collision time is a measure of the typical timescale over which a particle
undergoes deflection from its unperturbed trajectory by a significant deflection angle.
This deflection occurs through the cumulative effect of numerous small deflections. A
mathematical expression for this characteristic time is given by [30]

τc =
4ε0m

2v3T
q4 n ln Λ

, (4.2)

where vT is the thermal velocity and n is the plasma density. On the other hand, the
bounce time is defined as the time it takes for the particle to complete a full turn in the
poloidal angle (for trapped and passing particles respectively) through the integration of
the particle’s (gyro-center) orbit

τb =

∮
dlB
v∥
, (4.3)

where lB is the arc-lenght along the magnetic field line.

It is assumed that electrons remain on a particular flux-surface for a duration that is
considerably longer than the poloidal electron bounce time. This assumption is equivalent
to expressing the condition as τb ≪ τd ≈ τf , where τf is the typical timescale for fast
electron radial transport and τd denotes the time for an electron to drift radially across
the plasma for a distance of the order of the plasma minor radius rp, owing to the magnetic
field gradient and curvature

τd ≃
2π Rp rp
vT ρL

B

Bϕ

. (4.4)

where Rp is the plasma major radius, ρL is the Larmor radius and Bϕ is the toroidal
component of the magnetic field. In addition, it is assumed that trapped electrons undergo
multiple bounce motions probably covered by the ordering above. The aforementioned
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assumptions can be expressed using the following time scales sequence:

Ω−1
c ≪ τb ≪ τc ≪ τd ≈ τf ≪ τeq (4.5)

where the equilibrium evolution time scale is represented by the last factor τeq.

For what concerns the length scales, the main assumption is the zero orbit width (ZOW)
limit in which the Larmor radius and the orbit width resulting from magnetic drifts are
considerably smaller than the length scale over which the magnetic field exhibits significant
variations

ρL , ρdrift ≪
B

|∇B|
(4.6)

where ρdrift refers to the gyro-averaged distance deviation from the flux surface.

4.2.2. The Bounce-averaged Fokker-Planck equation

Various orderings have been used in the derivation of the bounce-averaged Fokker-Planck
equation to reduce the dimensionality of the problem. In fact, the electron distribution
function in the guiding-center approximation exhibits a 2D structure in both configuration
space (ψ, θ) and momentum space (p,ξ), thus forming a 4D space.

However, when the collisionality is low (i.e. the ratio of the detrapping frequency to
the bounce frequency is very low), the fast bounce motion allows the 3D Fokker-Planck
equation to be derived via an additional averaging process [26]. Consequently, the solution
of the bounce-averaged Fokker-Planck equation for the electron distribution function can
be expressed as a function of ψ, p and ξ.

In the small gyro-radius limit [30, 45], the Fokker-Planck equation (2.79) can be reduced
to the so called drift kinetic equation for the electron distribution function fe as

∂fe
∂t

+ {fe, He} =
∑
s

C(fe, fs) +
∑
n

QRF,n(fe) + E(fe) + S(fe), (4.7)

where He is the Hamiltonian for electrons and {...} the Poisson brakets. The right hand
side of equation (4.7) accounts for physical phenomena affecting the electron distribu-
tion function fe. The collision operator C(fe, fs) accounts for the collisions between the
electrons and the other species s, the ohmic electirc field is accounted for by the Ohmic
operator E(fe), the quasilinear (QL) diffusive operator QRF,n(fe) describes the EC plasma-
wave interaction during the Electron Cyclotron Heating (ECH) phase, while S(fe) is an
ad-hoc transport operator. In this thesis, Luke also solves the Ampère-Faraday equation
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commonly known as the induction equation [29].

In the following, some details on the quasilinear operator and on the induction equation
used in Luke are described.

The Quasilinear Diffusion Operator and the Ad-Hoc Radial Trans-

port Operator

In the configuration space (v⊥, v∥, ρ) the QL diffusive operator can be written as

QRF,n = ∇ · (DEC,n · ∇fe) , (4.8)

where the tensor

DEC,n = DEC,n(v⊥, v∥, ρ)

s
⊥⊥ s⊥∥ 0

s∥⊥ s∥∥ 0

0 0 0

 . (4.9)

The factor DEC,n in the equation (4.9) is the diffusion coefficient and s⊥⊥, s⊥∥, s∥⊥ and s∥∥

are the phase space diffusion tensor elements [26]. The wave propagation is solved by the
ray-tracing software c3po , which is directly coupled to Luke, allowing three-dimensional
configurations of the electromagnetic waves.

Since in Luke, the drift kinetic equation (4.7) is bounce averaged and linearized, the
turbulent transport is suppressed by construction [24]. To overcome this issue, it is
possible to use an ad-hoc transport operator S in a diffusion-convection approximation

S = ∇ · (Dr · ∇fe − Frfe) , (4.10)

where Dr is the radial diffusion coefficient and Fr describes a pinch effect [26]. In this
way, the radial electron transport can be controlled by changing the value of the diffusion
coefficient in order to match the experimental plasma current.

The Induction equation

In Luke, to take into account the electric field response to a varying current density, the
induction equation is needed. This equation can be obtained by combining Ampère’s and
Faraday’s laws, respectively:

∇×B = µ0J (4.11)
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∇×E = −∂B
∂t

. (4.12)

Taking the curl of equation (4.12) and plugging in equation (4.11), after using the relations
∇× (∇×E) = −∇2E and ∇ ·E = 0, it is possible to find the expression

∇2E = µ0
∂J

∂t
, (4.13)

commonly known as induction equation. The electric field E results from either a non-
zero electrostatic potential Φ or it can be induced by means of a transformer or by a time
variation of the plasma current:

E = −∇Φ +
∂A

∂t
, (4.14)

where A is the magnetic vector potential. The electrostatic potential arises due to trans-
port, vanishing in the toroidal direction. The potential is typically of the order ∼ Te/e

[48], which allows one to assume that the induced component of the electric field is purely
toroidal for the problems solved by Luke. Here the assumption is that the electric field
variation arises either due to transformer action, or that the plasma current decays suf-
ficiently slowly that |∆Φ| ≫ |∂A/∂t|. As a result, the induction equation reduces to a
single partial differential equation

∇2Eϕ = µ
∂Jϕ
∂t

, (4.15)

where the subscript ϕ stands for the toroidal component of the considered physical quan-
tities. By projecting the toroidal electric field on the direction parallel to the magnetic
field, it is possible to determine the parallel component of the magnetic field

E∥ = (b · ϕ̂)Eϕ. (4.16)

It is also possible to correlate the electric field Eϕ to the tokamak loop voltage:

Vloop =

∮
EϕRdϕ = 2πREϕ. (4.17)

The loop voltage is measured at the plasma edge, therefore it is possible to find the
boundary condition

Eϕ(ψ = ψa) =
Vloop,a

2πR(ψa)
. (4.18)
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Luke solves an induction equation which is the toroidal projection of the general equation
in an axisymetric geometry, in the form

B0

q̄(ψ)

∂

∂ψ

(
B0 l(ψ)

∂Vloop
∂ψ

)
= 2πµ0

∂⟨Jϕ⟩
∂t

, (4.19)

where

l(ψ) =
1

B0

∫ 2π

0

r|∇ψ|
2π R

dθ, (4.20)

q̄(ψ) =

∫ 2π

0

1

2π cosα

rB0

|∇ψ|
dθ. (4.21)

The brackets ⟨...⟩ refer to the flux average of a quantity Γ(ψ, θ) as

⟨Γ⟩(ψ) = 1

q̄(ψ)

∫ 2π

0

1

2π cosα

rB0

Γ
(ψ, θ) dθ. (4.22)

While, to define the rotational angle α, it is necessary to define a local orthonormal basis(
ψ̂, ŝ, ϕ̂

)
as

ψ̂ =
∇ψ
|∇ψ|

, (4.23)

ŝ = ϕ̂× ψ̂. (4.24)

So that the transformation from the coordinates
(
r̂, θ̂
)

to
(
ψ̂, ŝ
)

is defined through [30]

(
ψ̂

ŝ

)
=

(
cosα − sinα

sinα cosα

)
·

(
r̂

θ̂

)
. (4.25)

4.3. ECE Synthetic Diagnostic: the Yoda code

The Yoda code was developed as part of this thesis. Starting from the input provided
by c3po and Luke it solves the radiation transport equation for EC waves. In the
present version, it is written in Python. Yoda distinuguishes itself from other ECE
synthetic diagnostic codes because it is able to calculate ECE spectra using any arbitrary
numerical electron distribution function, making it particularly suited for suprathermal
electron studies when used in its vertical antenna configuration to simulate VECE spectra.
A general overview of Yoda is presented in figure 4.9.
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Figure 4.9: Overview of the Yoda main classes and functions

4.3.1. Interpolation of ray-tracing parameters

To run a synthetic ECE simulation with Yoda, the ray-tracing parameters listed in table
4.1 are needed. These quantities are directly calculated by c3po and they are local
quantities dependent on the ray path s. Since the integrands of the absorption coefficient

Table 4.1: Main reaytracing parameters calculated by c3po.

Symbol Parameter
s Ray path

N∥(s) Refractive index parallel component
N⊥(s) Refractive index perpendicular component
Te(s) Electron temperature
ne(s) Electron density
B(s) Magnetic field

Sx,y,z(s) Poynting Flux in cartesian coordinates
ẽx,y,z(s) Polarization vector in cartesian coordinates

and of the emisivity, respectively in equations (2.58) and (2.59), are functions of the
ray position s, all the ray-tracing parameters are interpolated along s using a 1D linear
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interpolation scheme provided by the python scipy class interp1d.

4.3.2. EC Emission and Absorption

To solve the radiation transport equation, the step that requires the highest computational
resources is the calculation of the absorption coefficient (equation (2.58)) and the emis-
sivity (equation (2.59)). In principle, these two integrals are expressed as bi-dimensional
integrals in the momentum space (p∥, p⊥), but exploiting the properties of the Dirac delta
it is possible to reduce them to one-dimensional integrals, making calculations compu-
tationally less demanding. In the following, the procedure to do this simplification is
presented.
One can start by recalling one elementary property of the Dirac delta function:∫ ∞

−∞
f(x)δ(n)(x− a) dx = (−1)nf (n)(a) (4.26)

That said, the idea is to exploit the resonance condition (namely equation (2.63)) in order
to obtain it in the form δ

(
p∥ − p∥(p⊥)

)
. To do that, one can set the resonance condition

equal to zero as

1 + p2⊥ + p2∥ =

(
p∥N∥ +

nΩc,0

ω

)2

(4.27)

which can be seen as a second order equation in p∥. It can be solved finding that

p∥,±(p⊥) =
N∥

nΩc,0

ω
±
√
N2

∥ (1 + p2⊥) +
n2Ω2

c,0

ω2 − p2⊥ − 1

1−N2
∥

(4.28)

that is an explicit function of p⊥. The equation (4.27) has two roots, therefore another
property of the delta function must be taken into account. Let us express the resonance
condition in its explicit form, by calling it g(p∥)

g(p∥) =
√
p2⊥ + p2∥ + 1− p∥N∥ −

nΩc,0

ω
. (4.29)

Therefore, it can be demonstrated that

δ
(
g(p∥)

)
=

1∣∣g′(p∥,+)∣∣δ (p∥ − p∥,+
)
+

1∣∣g′(p∥,−)∣∣δ (p∥ − p∥,−
)

(4.30)



4| ECE Synthetic Diagnostic: the Yoda code 79

where the prime indicates the first derivative

g′(p∥) =
p∥
γ

−N∥. (4.31)

Then, rearranging the expression (4.30), it is found that

δ
(
g(p∥)

)
=

∣∣∣∣ γ

p∥ −N∥γ

∣∣∣∣ · δ (p∥ − p∥,±(p⊥)
)
. (4.32)

At this point, the one-dimensional integral form of both the absorption coefficient and of
the emissivity is retreived:

α(n)
ω (s) = −

∫ +∞

0

(
n

ω̄N⊥

)2∣∣∣∣(ẽx + ω̄N⊥

n
p∥,±(p⊥) · ẽz

)
Jn(b)−

ib

n
J ′
n(b)ẽy

∣∣∣∣2×
R̂f(s, p∥,±(p⊥), p⊥)×

2π2
ω2
p,0

c0ω

p⊥(
1 + p∥,±(p⊥)2 + p2⊥

) · 1∣∣∣p∥,±(p⊥)

γ
−N∥

∣∣∣dp⊥
(4.33)

j(n)ω (s) =

∫ +∞

0

(
n

ω̄N⊥

)2∣∣∣∣(ẽx + ω̄N⊥

n
p∥,±(p⊥) · ẽz

)
Jn(b)−

ib

n
J ′
n(b)ẽy

∣∣∣∣2×
f(s, p∥,±(p⊥), p⊥)×

mec
2
0

N2
ω,rayω

2
p,0ω

4πc30

p⊥(
1 + p∥,±(p⊥)2 + p2⊥

) · 1∣∣∣p∥,±(p⊥)

γ
−N∥

∣∣∣dp⊥.
(4.34)

These integrals are solved using adaptive quadrature algorithms present in the Python
SciPy package, derived from the Fortran library quadpack. To account for the two roots
of p∥,±, both integrals (4.33) and (4.34) are evaluated as the sum of the two integrals
corresponding to the p∥,+ and the p∥,− cases, taking into account only the computational
steps where the argument of the square root in the equation (4.28) is strictly higher
than zero. Another very important point to be made in order to ensure the stability of
numerical integration is that in both expressions there are points of singularity where
the quadrature algorithm encounters difficulties. These singular points arise because, for
some position in the momentum space, the denominator of the expression(4.32) vanishes,
leading to wrong infinities. In this case, these points ζ can be expressed as
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ζ =

√(
N∥ · σ + n

ω

Ωc,0

)2

− σ2 − 1, (4.35)

where

σ =
N∥ · nΩc,0

ω
(
1−N2

∥

) . (4.36)

This problem is handled by the quadpack routine by splitting the integration grid near
the singularity avoiding large numerical errors in the calculations [76].

In figure 4.10 it is possible to see profiles of the absorption coefficient, the optical thickness
and the emissivity coefficient for an example TCV shot.

As a final remark, to calculate the absorption coefficient it is necessary to numerically
compute the directional derivative present in the differential operator R̂. To solve the
problem, a two function evaluation in the symmetrized form is chosen4 [77]:

f ′(x) ≃ f(x+ h)− f(x− h)

2h
(4.37)

where h is selected to minimize the roundoff and the truncation errors as

h ∼

√
εff

f ′′ ∼ √
εfxc. (4.38)

in the expression of h, εf it is a number which can be chosen to be comparable to the
machine accuracy εm, while xc is the curvature scale of the function f which can be
chosen to be the variable over which the derivative is performed: in this case p∥ and p⊥.
By selecting the expression , the calculated derivative achieves a fractional accuracy of
√
εf . To conclude, the expressions for both the derivatives can be written as

∂

∂p⊥
f(p∥, p⊥, s) =

(
f(p∥(s), p⊥(s) + h⊥(s))− f(p∥(s), p⊥(s)− h⊥(s))

)
2h⊥

(4.39)

∂

∂p∥
f(p∥, p⊥, s) =

(
f(p∥(s) + h∥(s), p⊥(s))− f(p∥(s), p⊥(s)− h∥(s))

)
2h∥

. (4.40)

4It is true for arbitrary numerical distribution functions, while if f is a Mawellian the derivatives are
calculated analytically.
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Figure 4.10: (a) Absorption coeffient and optical thickness and (b) Emissivity coefficient
against the ray-path s, for the single ray VECE Yoda simulation of the shot #73003 at
fECE = 116GHz and t = 1.9 s.
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4.3.3. EC Radiation Transport

A this point, all the ingredients to solve the radiation transport equation are ready. To
attain the radiation intensity at the VECE antenna, the hypothesis of single pass EC
radiation (no reflection from the walls) is considered valid. Therefore, the solution of the
radiation transport equation in its integral form can be written as

Iω(sant) ≃
∫ L

0

jω(s)e
−τ(s)ds. (4.41)

The validity of this hypotesis is already discussed in chapter 3. From the reciprocity
theorem it is possible to propagate the rays from the antenna to the dump and then
trace them back from the dump to the antenna, taking as initial position s = sdump.
This method is not mandatory for ECCD scenarios when the experimental conditions for
VECE measurement are matched, but it is of great importance when one is dealing with
low density plasmas in the presence of a runaway electron beam since for these scenarios
the dump will absorb most of the EC radiation from RE generated outside the VECE
antenna pattern. Since the emission function jω(s)e

−τ(s) is, in general, well-behaved,
Yoda uses a simple trapezoidal quadrature rule to solve equation 4.41, which is less
computationally demanding than the adaptive quadrature rule.

4.3.4. Numerical Distribution Function Interpolation

Luke operates in the zero orbit-width (ZOW) limit when solving the bounce-averaged
Fokker-Planck equation. This means that it disregards the Larmor radius, assuming it to
be negligible, and ignores drifts. To simplify the problem, it is customary to express the
Fokker-Planck equation in terms of a set of quantities that remain constant along a given
flux surface. Luke uses a set of invariants of the motion: the poloidal flux ψ, the particle
momentum p, and the particle pitch ξ0 = cos θ0 at the location of minimum magnetic field
strength5 along the flux surface. The electron distribution function f f is independent of
the poloidal angle because it satisfies Liouville’s theorem. According to this theorem, f
remains constant along phase-space orbits, and in this context, it means that f remains
constant along particle orbits. Therefore, when expressing f using invariants of particle
motion, which identify unique orbits, f becomes independent of the poloidal angle.

In order to evaluate cyclotron emission, it is necessary to determine the local momentum
vector p of the particle. Although p is an invariant of motion and remains constant,

5The subscript 0 indicates that the quantity is evaluated at the location of minimum magnetic field
strength along the flux surface.
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the particle’s pitch ξ varies along the flux surface. Therefore, while integrating the cy-
clotron emission, one must calculate the value of the Luke distribution function using a
momentum coordinate pair (p, ξ) as the input as

f = f [r(s), p, ξ0(s, ξ)]. (4.42)

Requiring that the magnetic moment µ = p2⊥/2meB remains unchanged along the flux
surface, we can determine the invariant pitch ξ0:

p2(1− ξ2)

2meB
=
p2(1− ξ20)

2meBmin

. (4.43)

Then, it is possible to find a relation between ξ0 and ξ

ξ20 = 1− Bmin

B
(1− ξ2) (4.44)

Since f must be symmetric about ξ0 = 0 in the trapping region, the sign of ξ0 can be
assumed to be the same as that of ξ. Consequently, in Yoda, f is evaluated as

f = f

[
r(s), p, sgnξ

√
1− Bmin

B
(1− ξ2)

]
. (4.45)

In Yoda, the normalized poloidal flux ψ is interpolated using a rectangular bi-variate
spline along R and Z, while the distribution function itself is interpolated using a regular
grid interpolator, avoiding expensive triangulation of the input data by taking advantage
of its regular grid structure.

Figure 4.11: Illustration of the connection between Luke and Yoda.
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4.3.5. Thermal Benchmark

Both the Yoda benchmark and the antenna pattern convergence study were done using
a well diagnosed TCV plasma discharge: the #73003. In this scenario, for the first half
of the shot, the magnetic field B0 is first ramped down from ∼ 1.4T to ∼ 0.9T, while for
the second part it is ramped up from ∼ 0.9T to ∼ 1.4T. This evolution of the magnetic
field enables the VECE to detect only the X3 thermal radiation from the plasma, for very
specific values of the magnetic field itself, without the pollution of thermal X2 emission
due to reflections on the tokamak wall shown in figure 4.12. In particular, a time step of
t = 1.9 s is selected in order to be sure to have a value of the magnetic field which allows
X3 thermal emission at the selected frequency of 108.84GHz.

(a) (b)

Figure 4.12: Shot #73003: (a) Normalized VECE signal for fECE = 108.84GHz and
tokamak magnetic field B0 variation - (b) Electron temperature and density from the
Thomson scattering.

To assess the validity of the Yoda calculations, it is useful to benchmark it against an
existing ECE synthetic diagnostic, such as spece. This comparison is performed for the
specific time step of t = 1.9 s, the same used for the beam convergence. In this case, a
frequency range of f ∼ 113− 118GHz is selected for an X-mode beam composed by only
one ray.

This choice can be justified by the fact that, since the convergence of the beam is demon-
strated to be guaranteed at 24 rays, using only one ray to mimick the antenna pattern
when one wants to benchmark the codes this approach remains general while being easy
and convenient. As shown in figures 4.13 and 4.14, the Yoda calculations match with
very good accuracy the spece calculations. Since Spece is already validated for thermal
plasmas on several tokamaks (including TCV), it can be deduced from the correspondence
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Figure 4.13: Comparison between Yoda and Spece spectral X-mode intensity calcula-
tions for f ∼ 113− 118 GHz (#73003 t = 1.9 s)

between the two results that the calculations produced by the Yoda code are valid for
thermal plasma scenarios.

In figure 4.14, it is also possible to observe a poor agreement between the calculation of
Yoda and spece before s = 0.25m. This is mainly due to a slightly different calculated
ray trajectory before that point, and because of different numerical approaches used in
the two codes. In any case, these little differences do not affect strongly the ECE intensity
calculations.

In conclusion, it is worth mentioning here that all the synthetic ECE results in this thesis
are expressed as spectral intensities. In fact, the possibility of calculating the power
bandwidth, although trivial, is not yet implemented in the Yoda code, which is only able
(for the moment) to calculate the spectral intensity I(f). This is mainly due to the fact
that it is time demanding from the computational point of view, therefore an extensive
parallelization of the code is needed. It is worth to mention that the transformation (3.2)
is, in principle, required for a quantitative comparison between the code results and the
experimental measurements. However, as will be explained in chapter 5, it is possible
to extract meaningful information from the synthetic intensities trends even without the
direct calculation of PBW.
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(a)

(b)

Figure 4.14: Shot #73003, fECE = 116GHz, t = 1.9 s: (a) Comparison between Yoda

and spece absorption coefficient vs. ray trajectory - (b) Comparison between Yoda and
spece optical thickness vs. ray trajectory.
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5| Suprathermal Electrons at the
Tokamak à Configuration
Variable

In this final chapter, VECE synthetic simulations from non-thermal electron scenarios are
detailed and compared with experimental measurements.

5.1. Electron Cyclotron Current Drive

5.1.1. Scenario I

The TCV plasma discharge #73217 is an ECCD shot which has been specifically designed
to achieve VECE measurements in which thermal and non-thermal EC emission can be
observed separately during the shot [8]. Figure 5.1 displays time traces of the discharge
parameters and the normalized raw VECE signals for the ECE X-mode radiation, at the
frequency of fECE = 108.84GHz. The electron cyclotron heating phase occurs for about
1 second between ∼ 0.3 s and ∼ 1.3 s at a constant magnetic field of approximately 1.54T.
The magnetic field strength is kept constant for approximately 100 ms after the heating is
turned off until about ∼ 1.4s. The field is then ramped down from 1.54T to 0.9T for the
remainder of the discharge. The heating phase takes place at a constant ECH power of
around 500 kW and a constant launcher angle of approximately 10◦. The launcher angle
controls the direction of the ECH wave vector with respect to the toroidal magnetic field in
the plasma. Perpendicular launching means that the ECH wave purely heats the plasma
by increasing the perpendicular energy of the bulk electrons. Increasing the launcher
angle allows the ECH wave to resonate with higher energy electrons and selected velocity
parallel to the magnetic field, thereby driving a net toroidal current. In this discharge, the
plasma current is ramped down along with the magnetic field to maintain a quasi-frozen
equilibrium [8]. This preserves the same X-mode polarization from the current drive to
the calibration phase.
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Figure 5.1: Time trace of the main parameters and VECE normalized raw data
(108.84GHz) for the discharge #73217 .

A remarkable feature of this shot is the smooth ramp down of the magnetic field after t ∼
1.4 s, which allows for the identification of thermal peaks for each frequency. This happens
because, depending on the measured frequency, during the the ramp down the magnetic
field will reach the value needed to match the X3 EC resonance condition (equation
(2.63)). As an example, for the measured frequency of 108.84GHz shown in figure 5.1,
the thermal peak is observed around t ∼ 1.7 s for a magnetic field value of B ∼ 1.2T.
The thermal peak provides a self-calibration reference for the discharge #73217, using
the value of the ECE synthetic power calculated at the thermal peak.
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The radiation intensity decreases for all measured energies as soon as the heating is turned
off at 1.3 s. This decrease in radiation intensity indicates that the radiation detected
during the current drive phase is mainly produced by non-thermal electrons, with little
or no contribution from thermal electrons for the observed frequency 108.84GHz. The
intensity level of the polluting background radiation is higher for lower frequencies due
to the X2 cold resonances of lower frequencies being located at higher major radii in the
plasma. In fact, for frequencies that have their thermal X2 cold resonance position in the
plasma, the measured radiation during current drive is a combination of both thermal and
non-thermal radiation. In the specific case of interest, the chosen frequency of 108.84GHz

is high enough to ensure that the background radiation is not polluting the measurements
[8].

Simulations results

In order to simulate the synthetic VECE spectrum of the shot #73217, a specific strategy
has been chosen. Firstly, it is crucial to understand how much the VECE line fluctuate
from the perfectly vertical configuration due to mechanical vibrations. Hence, the time
evolution of the V-ECE expected thermal peak has been simulated with Yoda for different
inclinations. In this case, the experimental trend is matched using an inclination of 1◦

towards the TCV HFS in the c3po simulations1.

Once the appropriate line of sight has been chosen, one can proceed with the Yoda

simulation of the whole shot. To properly take into account the electric field response
for a plasma current density variation in time, Luke is set up to solve the drift kinetic
equation using time dependent simulations and solving the induction equation. The main
difference between time independent and time dependent Luke simulations resides in the
fact that in the former case one is looking for a time-asymptotic solution (i.e. ∂f/∂t = 0).
Time-independent calculations are much faster but only applicable during steady-state
plasma phases. The time discretization of the drift-kinetic simulations in Luke is chosen
equal to the Thomson scattering time resolution2 of ∼ 60Hz.

In the kinetic simulations, emphasis was placed on transitions between heating and non-
heating phases. The time discretization used in the transition intervals is more refined
with respect to the steady state ECH phase. In the kinetic simulations, fast electron radial
transport is neglected (i.e. Dr = 0) and the electron driven toroidal current calculated

1Actually, this corresponds to β = 180◦ − 1◦ in c3po settings.
2This choice is driven by the fact that Luke takes the Thomson scattering profiles for the electron

temperature and density as input. In principle, it is possible to have a more refined time resolution
interpolating the Thomson profiles in time.
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by Luke, accounting for ECRH and Ohmic heating, matches the plasma current with
less than 10% difference. In this simulation, named nhu100pl,a loss term for runaway
electrons that is proportional to the ECRH power is included to account for the enhanced
runaway electron transport observed in many recent experiment in the presence of ECRH.

The synthetic VECE intensity calculated by Yoda for the shot #73217 at the observed
frequency of 108.84GHz are shown in figures 5.2 and ??. First of all, simulations predict
with good accuracy the VECE experimental trend during the steady ECH phase. Also,
the VECE signal behaviour right after the heating is turned off is well matched. It means
that in the ∼ 100ms in which the ECH is turned off, while the magnetic field is left
constant, the electron distribution function is predicted to come back to the Maxwellian
distribution. It also confirms that all the measured EC emission in that case comes from
suprathermal ∼ 60 keV electrons generated during the ECCD phase.

Figure 5.2: Comparison between synthetic VECE intensity trends for nu100pl case and
VECE raw data measured at 108.84GHz in the #73217 disharge.

On the other hand, it is clear that the synthetic VECE intensity is strongly underestimated
during the heating onset. As shown in figure 5.3, the variation in time of the fraction
of 60keV electrons coming from the kinetic simulations predicts a small number of non
thermal electrons in the simulations, during the first phase of the heating. There is a
clear correlation between this fact and the underestimation of the modelled intensity, also
confirmed by the fact that the rise of the predicted number of fast electrons corresponds,
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in time, to the rise of the synthetic VECE signal. Further investigations are needed to
understand the reasons why the models do not match the experimental trends in the
initial phase.
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Figure 5.3: Time evolution of the ∼ 60keVelectrons corresponding to the measured fre-
quency of 108.84GHz.

5.1.2. Scenario II

In TCV shot #72644, the ECH power has a value similar to that of the hybrid discharge
#73217, while the launcher angle is varied in 5 stationary steps between 0.7 s and 1.9
s. Here as well, the toroidal angle of the X2 launcher is kept constant at ∼ −90◦. The
variation of the poloidal angle of the launcher from ∼ −10◦ to ∼ −26◦ in each stationary
step leads to stair-shape X-mode intensities, as is shown in figure 5.4. Also, in this case,
before the heating phase, the signal level is close to the noise level. When the heating is
turned on at ∼ 0.7 s, a sharp increase of the VECE signals is observed. This means that
these measurements are not polluted by background radiation.

As shown in figure 5.4, at the ECH onset, only the higher frequency shows a sharp increase
in measured intensity. The lower frequency signal - corresponding to a higher energy -
increases only at the third step in poloidal angle. Note that the corresponding jump is
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Figure 5.4: Time trace of the main parameters and VECE normalized raw data
(108.84GHz and 96.35GHz) for the discharge #72644 .

higher than that of the higher frequency.

Simulations of the ECH wave interaction with the plasma in discharge #72644 are con-
ducted using the c3po code [8]. The power deposition profiles of the ECH in the plasma
vs the radial position ρ are displayed in figure 5.5.
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Figure 5.5: Profile of the power deposition in the plasma for the various launcher angles,
swept during the discharge [8].

Simulations results

The emphasis in the simulations of the #72644 VECE spectrum was placed in predicting
the intensity jumps between the different steady state ECH phase and relate measurements
to the density of fast electrons at selected frequencies. It is not necessary to do time
dependent calculations in the kinetic simulation since the successive phases of constant
ECH poloidal angle are sufficiently long to assume a quasi-steady state. Radial transport
of fast electrons must be included to match the experimental plasma current during Luke

iterations. To stress the differences between the case in which the radial transport is taken
into account and the one in which it is not accounted for two sets of simulations are carried
out for two different ECE frequencies: 108.84GHz (figure 5.6) and 96.35GHz (5.7).

The first kinetic simulation performed using a zero diffusion coefficient (Dr = 0) over-
estimates the experimental plasma current. In this case, it is useful to inspect the left
hand side of figures 5.8 and 5.9, where the logarithm of the Luke distribution functions,
integrated over the pitch angle ξ, are shown in contour plots with respect to the normal-
ized electron momentum p and the radial location ρ, for each simulated time-step. Taking
advantage of this figure, it is possible to observe the presence of a spike of highly energetic
electrons at the radial position in which the ECH power is deposited.

Including radial transport is turned on with an ad-hoc diffusion coefficient of Dr = 5,
Luke matches the experimental plasma current, and the computed electron distribution
function is strongly different from the no-transport case. In fact, as can be seen in the
right panels of the same figures 5.8 and 5.9, the predicted energy peak is still at the radial
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Figure 5.6: Comparison between synthetic VECE intensity trends for Dr = 0 and Dr = 5

and VECE normalized raw data measured at 108.84GHz in the #72644 disharge.

position of the ECH power deposition, but it is are less pronounced with respect to the
electron momentum values.

The differences in the two kinetic simulations have a strong impact on the Yoda VECE
synthetic profiles, for both the simulated frequencies.

Both sets of simulations predict the step-like evolution of the VECE signal, with the
Dr = 0 simulation slightly overestimating the signal and the Dr = 5 simulation slightly
underestimating it, both sets of frequencies.

For the lower frequency - corresponding to the higher energy - the difference between the
Dr = 0 and the Dr = 5 cases is more pronounced, with the Dr = 5 case being sensibly
closer to experimental measurements. With the better match of the toroidal current, this
seems to indicate that radial transport of fast electrons indeed plays an important role.

In conclusion, looking at both the synthetic VECE intensities and the related energy maps,
it is possible to conclude that a more accurate anomalous transport model is needed to
match the experimental results, but still these simulations constitute a good starting point
for further investigations of fast electron physics.
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Figure 5.7: Comparison between synthetic VECE intensity trends for Dr = 0 and Dr = 5

and VECE normalized raw data measured at 96.35GHz in the #72644 disharge.
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Figure 5.8: Energy map evolution of the simulated distribution function on logarithmic
scale, for the #72644 discharge (part 1).
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Figure 5.9: Energy map evolution of the simulated distribution function (Dr = 0 and
Dr = 5) on logarithmic scale, for the #72644 discharge (part 2).
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Conclusion and Perspectives

The research goals at the beginning of this master thesis were

• To model the VECE detection system (antenna);

• To model the EC emission and (re)absorption based on the electron any arbitrary
distribution funciton;

• To model the transport of EC radiated power along the propagation path;

The VECE detection system was successfully modeled through the use of the raytracing
code c3po. In the vertical configuration, a good convergence is achieved for 24 rays in
the pattern, disposed in a 4× 6 configuration, as described in section 4.1. Also, it allows
the simulation of any arbitrary line of sight, opening the possibility of using it not only
for the vertical ECE, but also for low field side ECE and oblique ECE.

The Yoda code was developed. It is a new general ECE synthetic diagnostic which
allows the calculations of EC emission and (re)absorption taking into account the electron
distribution function. It is also able to calculate the EC radiation transport through the
plasma. Yoda was first validated for thermal plasmas, using an analytical Maxwellian
distribution, through the comparison with the ECE synthetic diagnostic spece. By
comparing the simulations of the TCV plasma discharge #73003, a match can be observed
between the absorption and spectral intensity profiles calculated by both codes.

Also, Yoda was coupled with the 3D fully relativistic bounce-averaged Fokker-Planck
code Luke, allowing the reconstruction of ECE spectra taking into account arbitrary
numerical distribution function. This is the main achievement of this work.

The VECE spectra of two TCV ECCD plasma scenarios (I : #73217 and II : #72644)
were analyzed. For the first time, experimental VECE measurements were qualitatively
compared with Fokker-Planck modeling (Luke) coupled to the ECE synthetic diagnostic
(Yoda - c3po).

For scenario I, a time dependent kinetic simulation was carried out with a zero ad-
hoc diffusion coefficient (Dr = 0), the induction equation and runaway electrons which
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accelerate above the maximum resolved momentum value accounted for. This simulation
leads to good agreement between the VECE raw data (for the radiometer frequency
fECE = 108.84GHz) and the synthetic intensity trends for t > 0.6 s. In fact, during the
ECCD onset, an underestimation of both the synthetic VECE signal and of the fraction
of suprathermal electrons is predicted. This is probably due to the fact that, for this shot,
the experimental plasma current density profile is not matched by the one calculated
during the kinetic simulations, not having accounted for anomalous transport.

In scenario II, emphasis was placed in predicting the intensity jumps between the different
steady state ECH phases, in the VECE signal. To do that, it is suffient to do time-
independent kinetic simulations. In this case two different ECE frequency were taken
into account (fECE = 108.84GHz and fECE = 96.35GHz). When a constant diffusion
coefficient Dr = 5 is taken into account, the current density profile calculated in the
kinetic simulation shows a good agreement with the experimental measurements. Also,
the VECE synthetic trend is in agreement with the experimental VECE raw data for the
most majority of simulated time steps.

As a remark, the major limitation of this work is that the synthetic ECE simulations can
not be compared directly with the experimental measurements by a quantitative point of
view; therefore they must be considered only preliminary. This is mainly due to

• The lack of the the power bandwidth calculation for each simulated VECE channel;

• The lack of a valid error estimation method for the synthetic results.

The first future development of this thesis should be to overcome these limitations.

The calculation of the power bandwidth is numerically straightforward, therefore it does
not constitute a big problem. On the other hand, the main challenge will be the integration
of Yoda in the starwars suite, allowing extensive parallel calculations, reducing the
running time. An idea could be to better couple Yoda and c3po in order to launch
in parallel, for each time step, simulation of different EC frequencies, while the kinetic
simulations are running. It should not be a big issue, since the Luke simulations are
more time demanding than the Yoda - c3po ones, for each time step.

For what concerns the error estimation, the most important sources of error should be the
uncertainties linked to the Thomson scattering electron temperature and density profiles
and the ones related to the magnetic equilibrium reconstruction and the ones. Further
investigations are needed to find a suitable way to propagate all the errors.

Future developments of this work do not stop to these two issues. In fact, as an example,
now that the starwars code suite is equipped with both synthetic ECE and synthetic
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hard x-ray spectroscopy (HXRS) diagnostics, it will be possible to make multiple constain
kinetic simulations which should help to resolve some of the standing issues by simulta-
neously using the data of the two diagnostics that are complementary in their multi-
dimensional resolution. This could open up new paths in understanding suprathermal
electron dynamics and associated phenomena, ranging from ECRH to MHD to runaway
generation.
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