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Abstract

The ever-increasing number of space debris may put at risk the accessibility of space in the

future. The recent development of large constellations means that, even with the proper

mitigation strategies, the number of unwanted objects orbiting Earth will rapidly increase.

To invert the growth in fragments number, missions such as Active Debris Removal (ADR)

and On-Orbit Servicing (OOS) are required. They strive to reduce the debris in space,

and this is achieved in di�erent ways; ADR plans to move large, mostly intact satellites

to orbits with a fast natural decay, while OOS aims to increase the operational life of

existing satellites. ESA's e.Deorbit mission has the aim of developing a multi-purpose

vehicle capable of both ADR and OOS missions.

The post-capture phase for ADR and OSS has seen fewer developments than the pre-

capture one, especially to what �exibility is concerned. Large solar panels and lightweight

manipulators introduce �exibilities that should be considered in the attitude determina-

tion process.

This thesis investigates the e�ects of �exibility in the attitude and inertial parameter

estimation performance in the post-capture scenario of ESA's e.Deorbit mission to the

Envisat satellite. In this work, the �exible system was modelled with the use of acausal

programming language, and the attitude estimation �lters were implemented within the

functional mock-up interface (FMI) standard. Two Kalman �lters are implemented, the

Extended Kalman Filter (EKF) and the Multiplicative Extended Kalman Filter (MEKF).

At last, the performance of the �lters is then evaluated and compared. Simulations show

that the EKF is much more capable than the MEKF in the estimation process, mainly

due to the EKF's use of the Functional Mock-up Unit (FMU) speci�c tools.

Keywords: Attitude estimation, EKF, MEKF, Parameter estimation, FMI





Abstract in lingua italiana

Il continuo aumento del numero di detriti spaziali potrebbe limitare l'accesso allo spazio

nel futuro prossimo. Il recente sviluppo di grandi costellazioni comporta che, nonostante

la corretta applicazione di strategie di mitigazione, il numero di frammenti in orbita au-

menterà rapidamente. A�nchè ci sia una inversione di questo trend è necessario l'utilizzo

di strategie di Active Debris Removal (ADR) e di On-Orbit Servicng (OOS). Il loro obbiet-

tivo è quello di ridurre il numero di detriti nello spazio. Una missione ADR vuole spostare

un satellite defunto in un'orbita che abbia un tempo di decadimento relativamente rapido,

mentre una missione OOS vuole aumentare la vita operativa di un satellite già in orbita.

L'Agenzial Spaziale Europea (ESA) ha all'attivo la missione e.Deorbit con l'obbiettivo di

sviluppare un veicolo multi funzione che sia in grado di portare a compimento entrambe

le missioni di ADR e di OOS.

Nelle missioni di ADR e OOS, la fase sucessiva alla cattura del satellite bersaglio è

stata indagata con un minore dettaglio in particolare per quanto riguarda gli e�etti della

�essibilità. L'utilizzo di grandi strutture leggere, come pannelli solari e bracci robotici,

introduce inevitabilmente �essibilità nel sistema. Tale e�etto dovrebbe essere considerato

nel processo di determinazione dell'attitude.

Questa tesi indaga gli e�etti della �essibilità nella stima dell'attitude e nella stima dei

parametri inerziali, in particolar modo della massa. La stima è e�ettuata nel contesto

proposto dalla missione e.Deorbit dell'ESA, il cui obbiettivo è quello di rimuovere il satel-

lite Envisat. In questo lavoro di tesi, il sistema è modellato attraveso l'utilizzo di un

linguaggio di programmazione acausale e l'implementazione dei �ltri è stata eseguita con

lo standard functional mock-up interface (FMI). Sono state implementate due tipologie di

�ltri di Kalman, un Extended Kalman Filter (EKF) e un Multiplicative Extended Kalman

Filter (MEKF). In�ne, sono state valutate e confrontate le performance dei due �ltri. Le

simulazioni e�ettuate mostrano come il �ltro EKF sia più abile rispetto al MEKF nel

processo di stima; questo è dovuto principalmente all'utilizzo estensivo nella implemen-

tazione dell'EKF degli strumenti forniti dalla functional mock-up unit (FMU).

Parole chiave: Stima dell'attitude, EKF, MEKF, Stima dei Parametri, FMI
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1| Introduction

This initial chapter seeks to provide a broad overview of the active debris removal (ADR)

and on-orbit servicing (OOS) missions that form the foundation of this thesis study. The

ESA e.Deorbit mission is presented within the paradigm introduced. A discussion of the

state of the art in the pre and post-capture of uncooperative spacecraft will precede it.

The dissertation regarding the thesis work is provided in the chapter's �nal section.

1.1. Active debris removal

The term "space debris" refers to any human-made detritus that orbits Earth. Such

elements can range in size from a few centimeters across to fully intact satellites or even

entire rocket stages. In 2022, ESA published its yearly technical report on the state of

the space environment [8]. ESA and other agencies have recorded and regularly tracked

space debris pieces. Today, more than 30 000 objects larger than 10 cm across are being

monitored. Figure 1.1 shows the evolution with time of the tracked elements. If an

object's origin can be traced to a payload, it is labeled P. If it can be traced to a rocked

body, it is given the name R. If it is unclassi�ed, it is given the label UI.

Figure 1.1: Evolution of number of objects in geocentric orbit by object class, source [8].

ESA estimates that the number of space debris pieces orbiting Earth larger than 1 cm is
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in the order of millions.

In recent years, there has been a sharp increase in satellite launches. New commercial

operators are primarily responsible for this trend as they work to build expansive satellite

constellations. The number of satellites launched into orbit each year is depicted in Figure

1.2.

Figure 1.2: Evolution of the launch tra�c near LEO per mass category, source [8].

Although the space industry has become more responsible than ever regarding how and

what is being launched, the ESA report [8] emphasizes that the amount of space debris is

destined to increase enormously in the future unless additional measures are taken. This

implies that strict adherence to the IADC's recommendations for space debris mitigation

is required to ensure the long-term viability of space activities. The following goals can

be connected to the suggested mitigation measures:

� Limitation of space debris released during normal operation;

� Avoid collision and anti-satellite rocket tests;

� Post mission disposal.

The third goal includes actively removing debris (ADR). Studies reveal that reducing

orbital collision events is necessary, along with new launches following mitigation pro-

cedures, to reverse the trend depicted in �gure 1.1. ESA estimates that around 2500

decommissioned satellites in Low Earth Orbit (LEO) are mostly intact [7]. These rela-

tively large objects could represent a risk for future space accessibility. Thus, it becomes

necessary to implement ADR as a remediation program to reduce the number of large

and mostly intact satellites orbiting Earth. Such action will be highly e�cient in reducing

space junk since it eliminates objects that could generate an enormous debris cloud.
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1.2. On-orbit servicing

The OOS missions are an alternative to the ADR for reducing space debris. OOS seeks to

prolong the operational life of the target satellites [17], as opposed to ADR, which strives

to remove large spacecraft from dense orbits. The inability to execute servicing, repairs,

or upgrades after deployments indirectly reduces the time a space system may maintain

its capabilities. Recent studies have found that such untimely equipment losses result

in billions of dollars in damages [6]. Due to a decrease in launch-related mishaps, in-

orbit issues are progressively taking the lead in space system failures. On-orbit servicing

is the general phrase for a spacecraft's post-launch modi�cation. Prior missions have

demonstrated the e�ciency and capability of OSS, such as the repair of the Hubble Space

Telescope or the upkeep of the International Space Station (ISS). The goal of the space

industry is to completely switch to robotic servicing missions to cut costs and enable

repairs even outside of low earth orbits.

OSS missions will require the development of the following capabilities:

� Robotic manipulation

� Rendezvous and proximity operations

� Refueling and repairs

A robotic manipulator provides the ability to grapple and manipulate payloads or other

spacecraft. This capability is one of the most developed with respect to others. The

Space Station Remote Manipulator System (SSRMS) and the Shuttle Remote Manipula-

tor System (SRMS), both of which have supported human space exploration since 1981,

are notable examples. New developments are being worked on within the robotic ma-

nipulation capability area. Planned manipulators designed for repair and assembly work

in open space with lightweight robotic elements are well underway: ROKVISS [2] can be

seen as an European space-tested example of recent innovations. The �rst fully unmanned

mating of two spacecraft was performed in 1998; nonetheless, there was no demonstration

of autonomous capture or mating with an uncooperative satellite. Since it will be neces-

sary to carry out any refueling or repairs in orbit, this is one of the critical capabilities

that must be developed to improve OOS feasibility. The most recent advancement in the

OSS was accomplished in 2021 by Northrop Grumman's MEV-2, which performed the

�rst space demonstration of docking to an operational geostationary satellite. Regarding

the refueling capability, the Russian Progress vehicle represents the most mature �uid

transfer system.

It is clear that OOS requires more developments to reach a su�ciently high technology
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readiness level before an actual mission can occur.

1.3. ESA e.Deorbit mission

In the context of ADR and OOS, ESA worked on the e.Deorbit mission. The mission

was developed by ESA's Clean Space initiative in 2013, with the deceptively simple aim

of capturing and safely deorbiting a derelict ESA-owned spacecraft in highly frequented

low-Earth orbit. The Envisat Earth-observing satellite, which had been operating for

ten years, was the target. It abruptly failed in 2012. During the 1980s, Space Shuttle

astronauts captured rogue satellites, but there was no precedent for the autonomous

robotic acquisition of such a recalcitrant target.

With a total of ten instruments and a weight of eight tonnes, Envisat is one of the

biggest Earth observation satellites ever constructed. Studying atmospheric chemistry

and enabling more e�cient resource monitoring and management were two of Envisat's

goals. Similarly to other Earth observation satellites, it was placed in a Sun-synchronous

orbit with an altitude of 782km. On the 8th of April 2012, the communication link with

the satellite was lost for still unknown reasons.

ESA is strongly committed to the reduction of space debris. With this objective in mind,

six tasks were identi�ed that would need to be ful�lled by the e.Deorbit mission [3]:

� Launch into space

� Perform commissioning

� Transfer and phase to target orbit

� Rendezvous with target

� Capture target

� De-orbit target

Phase A of the e.Deorbit program began in 2014. To carry out the earliest basic research,

a contract was given to three companies: Airbus, OHB and Thales Alenia. The �rms put

out similar proposals for phase B1, which calls for approaching the target satellite from

the launch adapter side and grabbing the adapter �ange using a manipulator with seven

degrees of freedom (DOFs). Figure 1.3 provides a visual representation of this process.



1| Introduction 5

Figure 1.3: e.Deorbit mission visualization by ESA�David Ducros, 2016.

A comprehensive review of the e.Deorbit mission was carried out in 2018, following several

delays. Since most of the capabilities needed to complete an ADR mission are best suited

for an OSS vehicle, ESA increased the scope of the initial mission. The e.Deorbit program

now seeks to create a more multifunctional satellite with the potential to undertake both

spacecraft removal and servicing while it is in orbit.

1.4. State of the art

The surge in literature studies and the space industry's interest in the ADR and OOS

missions are strongly related. Capturing the target satellite is one of the most impor-

tant stages that both types of missions share. This task divides the proximity operation

mission phase into three distinct phases: the pre-capture scenario, the grasping action,

and the post-capture operations. The design of a manipulator is di�erent for space ap-

plications compared to terrestrial ones. Space manipulator systems (SMS) are made to

be lightweight and long-reaching due to the lack of gravity loading, which introduces link

�exibilities. Additionally, deployable truss antennas, lightweight, �exible constructions,

and solar arrays are used [5]. Often, their joints are driven by harmonic drives with

large gear ratio and compact design, introducing joint �exibility [22]. During on-orbit

service, these kinds of �exibilities could generate vibrations in the manipulator and in

the spacecraft, especially when physical contact is involved [20]. Flexibilities introduce

unique e�ects in each of the three phases of which the capture process is made of.
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The biggest issue is with manipulator control when it comes to �exibility e�ects during the

pre-capture of the target satellites. In reality, if such e�ects are ignored, poor performance

and even control instabilities may happen. Meng et al. [16] derived the kinematics

equation governing a free-�oating satellite with a �exible manipulator and appendices. A

free-�oating model describes the system without any external action; thus, the center of

mass does not move, and the attitude of the spacecraft is in�uenced only by the movement

of the manipulator. In the same work, the coupling e�ect between the rigid movement of

the end-e�ector and the solar array has been modelled. The coupled dynamics equation

is required to conduct the pre-grasping motion planning.

While capturing high-speed orbiting objects, robotic arms undergo impact and require

appropriate modeling of the system. The contact phase represents another challenging

task in which the �exibility e�ects must be considered to determine exactly the forces

acting on the manipulator. Raina et al. [19] proposed a uni�ed framework for the modeling

of impact dynamics. The model for the robotic arm is obtained using the Decoupled

Natural Orthogonal Complements (DeNOC) with closed-loop constraints equations.

The post-capture scenario for an ADR or OOS mission has seen fewer analyses than the

contact phase or the pre-capture one. It would be very helpful for the subsequent controller

design if the target mass properties could be identi�ed. Accordingly, particular control

and parameter identi�cation techniques must be developed to cope with the challenging

issues. Wang et al. [23] developed a detumbling strategy and an impedance control

scheme for the post-capture scenario. The model comprises two satellites linked with one

another through a manipulator modelled with joint �exibility. In the same paper, an

approach is proposed to estimate the target satellite's inertia properties. It is possible

to identify the true values of the mass properties from the observations of the torque-

free tumbling motion of a target satellite without excitation [1]. The inertial parameters

are derived using a laser camera system (LCS). An algorithm is then used to match the

points from the CAD model and the scanned data to estimate the object pose. The

derived pose is then used with a Kalman �lter to estimate the inertial parameters of

the target object. Visual-based techniques to determine the inertia values of the target

satellite have been thoroughly researched. Although such solutions are viable, they may

result in poor performance when the target satellite has a high damage level that could

impede the correct identi�cation of the satellite features. If large �exible appendices or

solar panels are present, it is possible that, with their motion, they can interfere with the

pose determination algorithm.

Incorporating �exible modelling in the post-capture phase of an ADR or OOS mission

is an important step to increase the knowledge of such a mission and to see in advance



1| Introduction 7

any di�culties in the mission scenario. The research on this topic is less diverse than the

one performed in other phases. Most researchers, like Raina et al. [19], preferred to start

the modelling of the system with the manipulator as the only �exible element. Meng et

al. [15] derived a dynamical model and developed a closed-loop simulation system for a

post-capture phase of a large �exible spacecraft in order to supply a way to verify key path

planning and control algorithms. This work represents one of the most complete analyses

of the post-capture scenario with �exibility e�ects. It is important to underline that the

majority of such works do not provide any veri�cation for the attitude determination

algorithm with large �exible satellites. An analysis of the performance of the attitude

estimation process with �exibility e�ects is presented by Ghani et al. [10]. In addition

to that, the results of the estimation of the �exible states of the satellite are provided.

In their work, Ghani et al. showed that it is possible to estimate the deformation of the

solar panel through the use of a Kalman �lter.

1.5. Thesis dissertation

Research on �exibility e�ects in the aftermath of a target satellite's capture has been

found to be generally lacking, especially when paired with the study of attitude and

parameter estimation. This thesis aims to provide more information on the subject,

improve understanding of attitude estimation algorithm performance, and increase the

accuracy of inertial parameter identi�cation. In particular, the modelled system will be

mostly based on the research done in the phase B1 of the e.Deorbit mission [3]. The

Envisat is the target satellite, and the chaser satellite is derived from the preliminary

design work performed by OHB [18]. The overall system comprises the chaser satellite

and Envisat with one �exible solar panel each and a �exible 7 DOFs manipulator that

links the two spacecrafts together.

The modelling of the system is performed with the Modelica language, which allows

for the use of acausal modelling techniques. Quaternion elements have been chosen as

the attitude parametrization with which the chaser satellite is identi�ed. The Extended

Kalman Filter (EKF) and the Multiplicative Extended Kalman Filter (MEKF) are the

estimation algorithms for the attitude quaternion. The EKF is also used for estimating

the inertia properties. In particular, in this work, the mass of the Envisat is estimated.

The usage of the Functional Mock-up Interface (FMI) [9] for the attitude estimation pro-

cedure is another contribution of this study. The use of FMI represents a novel approach

for the non-linear �lter implementation in the attitude determination of a satellite.

The thesis is divided into four main chapters. First, the fundamental mathematical and



8 1| Introduction

informatics instruments required to comprehend the work are explained. In particular, the

Modelica language and the �lter derivation are described. Then, a detailed explanation

of the model derivation is given with a focus on the validation of the lumped parameter

model with which the �exible solar panels are implemented. A brief summary of how the

Kalman �lters needed have been implemented within the Modelica association FMI [9] is

given.

Chapter four presents the results obtained from the attitude estimation process. In partic-

ular, four di�erent analyses are carried out. The attitude estimation process is performed

with the EKF and MEKF �lter, and it is done using a model with �exibility e�ects and

a model with rigid bodies assumption. The performance of the �lters in both scenarios

is analyzed and compared. The �nal part of this thesis work summarizes the achieved

results and provides suggestions for future developments.
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2| Fundamentals

The mathematical background and informatics instruments, needed to understand the

work presented, are provided in this chapter. With the parts below, the contents are

succinctly listed.

2.1. Euler Lagrange formalism

Hamilton's principle, which de�nes the motion of a mechanical system when all the forces

can be determined from scalar potential, is used to construct the equations of motion in

Lagrangian mechanics. Hamilton's principle will be followed as the system evolves.

Theorem 2.1. (Hamilton's Principle). The motion of a dynamical system in a given

time interval is such as to maximize or minimize the action integral de�ned by:

J =

∫ T

t0

L(t, q, q̇)dt (2.1)

The Lagrangian is de�ned as L = K − U , where K represents the kinetic energy and U

represents the potential energy.

From Hamilton's principle, it is possible to derive the Lagrange equations of motion using

the calculus of variations.

The variation of the integral J is:

δJ = δ

∫ T

t0

L(t, q, q̇)dt (2.2)

J is now considered as a function of parameter α that labels a possible set of curves

q1(t, α).
q1(t, α) = q1(t, 0) + αη1(t)

q2(t, α) = q2(t, 0) + αη2(t)

. . .

(2.3)
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where q1(t, 0), q2(t, 0), etc. are the solutions of the extremum problem and η1, η2, etc. are

independent functions of t that vanish at the endpoints and that are C2. The calculation

proceeds by applying techniques of the calculus of variations:

∂J

∂α
dα =

∫ T

t0

∑
i

(
∂L
∂qi

∂qi
∂α

dα +
∂L
∂q̇i

∂q̇i
∂α

dα

)
dt (2.4)

Then, by applying the integration by parts rule, it is possible to write that:

∫ T

t0

∂L
∂q̇i

∂2qi
∂α∂t

dα =
∂L
∂q̇i

∂qi
∂α

∣∣∣∣T
t0

−
∫ T

t0

∂qi
∂α

d

dt

(
∂L
∂q̇i

dα

)
(2.5)

where the �rst term vanishes because all curves pass through the �xed endpoints. Sub-

stituting in Eq (2.4), δJ becomes

δJ =

∫ T

t0

∑
t

(
∂L
∂qi

− d

dt

∂L
∂q̇i

)
δqidt (2.6)

Since the variables q are independent, the various δqi are independent, hence the condition

that δJ is zero requires that the coe�cients of the δqi separately vanish:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 i = 1, 2, . . . , n (2.7)

The Lagrange equations are obtained from Hamilton's principle for monogenic systems

with holonomic constraints.

The generalized coordinates of non-holonomic systems are not independent of each other,

and thus they have the following constraints equation:

L(q1, q2, . . . , qn, t) = 0 (2.8)

It is possible to extend Hamilton's principle to cover semi-holonomic systems. In a semi-

holonomic system, the equation of the constraints may be expressed in the form:

fα(q1, . . . , qn; q̇1, . . . , q̇n) = 0 α = 1, 2, . . . ,m (2.9)

The Lagrange multipliers are used in the procedure to obtain Lagrange's equations for

semi-holonomic systems.
m∑

α=1

λαfα = 0 (2.10)
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The equation (2.2) becomes:

δ

∫ T

t0

(
L+

m∑
α=1

λαfα

)
dt = 0 (2.11)

The variation can now be performed with the δqi and λα for the m + n independent

variables. Assuming that λα = λα(t), the resulting equation becomes:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qk where Qk =

m∑
α=1

{
λα

[
∂fα
∂qi

− d

dt

(
∂fα
∂q̇i

)]
− dλα

dt

∂fα
∂q̇i

}
(2.12)

where the term Qk represents the generalized force applied to the system.

2.2. Modelica Language

The Modelica Language and the Functional Mock-up Interface (FMI) are open-source

standards developed and supported by the Modelica Association, a non-pro�t organiza-

tion.

The Modelica Language is a programming language for modelling cyber-physical systems,

supporting acausal connection of components governed by mathematical equations to

facilitate modelling from �rst principles. Modelica language de�nes an object-oriented

equation-based programming language.

2.2.1. Co-Simulation

Co-simulation is a technique that extends the classical notion of simulation, splitting a

complex system into many smaller heterogeneous domain-speci�c systems (System-of-

Systems) which interact among themselves with an input/output causal communication

scheme. One of the most signi�cant bene�ts of using co-simulation methodologies is

the ability to deploy each subsystem into separate solvers, which are coordinated by the

platform that maintains time synchronisation and data exchanges. The system may be

broken down into separate subsystems thanks to the decentralized design, enabling plug-

and-play operation and the progressive replacement of simulators and models with actual

physical hardware. For instance, adding a new element or replacing an existing one may

be implemented into the model with little e�ort since it is only necessary to edit a single

component rather than the whole model.

A standard that enables the communication between the model's hardware and software

components and a straightforward and standardized process for swapping out individual
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components is required to create a co-simulation framework. The FMI (Functional Mock-

up Interface) standard will be applied to this speci�c objective.

2.2.2. Acausal modelling

The modelling of a real system is performed with equations, as done in the Euler-Lagrange

approach, that have no real indication of the directionality of the information exchange

between the various components of the real system and thus it is better to avoid the

use of prede�ned relation between the systems. Using an acausal software based on the

Modelica language re�ects the nature of the real system.

Models designed using causal software such as Simulink provide a clear graphic visual-

ization of individual mathematical relationships. Signals �ow in connections between the

individual blocks, in which the processing of input information to output information

takes place. Thus, the way the blocks are connected in such software represents the cal-

culation process rather than the actual structure of the modeled reality. Acausal notation

of models means that individual components of the model describe the equations directly

and not the algorithm of their solution.

The equations in Modelica do not express assignment but rather a relationship between

variables. The numerical solvers are intrinsically causal; because causality is missing from

the model description, it must be determined by the simulator on the aggregate system.

2.2.3. FMI and FMU Standard

An open-source standard called the FMI was created to interchange dynamic simulation

models. The initial iteration of the FMI standard was created as part of the MODELISAR

ITEA2 project with the goal of creating a uniform interface and standard to make it

easier for suppliers to interchange models, regardless of the simulation language and tools

used. Since 2012, the Modelica Association has been responsible for the FMI project

development.

The �le format speci�ed by the FMI standard that holds the simulation model is called a

Functional Mock-up Unit (FMU). There are two types of FMUs that are speci�ed by the

FMI standard:

� FMU for Model Exchange: contains the model of the dynamical systems with a

collection of discrete equations and di�erential algebraic equations with time state

and step events. The solver is provided by the importing tool (OpenModelica,

Dymola or any software found in the FMI-supported software list [9]) rather than
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being incorporated by the model exchange FMU. Because of this, the user has the

ability to select the solution and time step on his own. The FMU for model exchange

is more suited to be used in embedded control systems on microprocessors since it

only provides the model and the di�erential equation regulating it. This allows for

greater freedom in the usage of the model. The importing tool must link the FMU

to a numerical solver in order to simulate the system. The solver establishes the

internal state of the FMU, requests the state derivatives, chooses the step size, and

decides how to compute the state at the following time step.

� FMU for Co-Simulation: the exporting tool includes and supplies the numer-

ical solver. The time step, inputs, and outputs are all set by the importing tool.

Programs adoption of FMU Co-Simulation is greater than that of FMU model ex-

change, and the exporting software may also have a more e�ective solver than the

importing tool.

The FMU consists of a single zip �le extension .fmu, which contains all the necessary

components to utilize the FMU:

� An XML-�le that also contains other model information and the de�nitions of vari-

ables that are available to the outer environment. It is feasible to operate the FMU

for the Model Exchange standard without this knowledge. Instead, for the sake

of the Co-Simulation, the relevant information regarding the slaves is provided in

a slave-speci�c XML-�le together with a number of �ags indicating the model's

capacity to support complex master algorithms.

� For both the Model Exchange and the Co-Simulation FMUs, the necessary functions

are provided as a set of C-functions in the form of source or binary code.

� Additional data such as the model icon, documentation �les, and necessary re-

sources, as well as all the DLLs and object libraries may be included in the FMU

zip-�le.

All information about a model and a co-simulation setup that is not needed during execu-

tion is stored in an XML-�le called modelDescription.xml described by the XML-scheme

called fmiModelDescription, presented in Figure 2.1.
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Figure 2.1: fmiModelDescription element - XML scheme

The modelDescription.xml �le is relevant for the work done in this paper since it con-

tains all the Ids with which the variables are called inside the FMU.

After having fully completed the execution of their operations at the predetermined time,

both forms of FMU communicate with the simulation environment. Thus, there is no

possibility of performing an exchange of information between FMU and the external

environment before the integration is performed.

2.2.4. Simulation Platform

The Co-Simulation framework on which the platform will be based is the �rst choice to

be made when creating the model environment. It is a signi�cant choice that will have

an impact on the performance, software compatibility, and implementation of the model

and �lters. Dymola has been selected as the platform for the model and as the FMU

importing and exporting tool. It was chosen because it has great compatibility with the

MATLAB program and because it has features that will make it simpler to create EKF

and MEKF �lters.

2.2.5. FMU �le structure

After choosing text visualization, the user is presented with a Modelica language code that

contains the instructions needed to execute the FMU properly once it has been loaded

into Dymola. As the primary interface that initializes the model, it reads the �les that

are included with the FMU and instructs it to proceed with the integration. It does
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not, however, contain the mathematical model by itself; that information is found in

the binary code �le. It is pertinent to this thesis' goal to brie�y describe the Modelica

language code's structure.

Algorithm 2.1 FMU Structure
1: model Name_of_FMU

2: protected parameter, protected constant

{De�nition of parameters, constants and variables that will be saved at each time step
of the FMU}

3: package fmi_Functions

{Section in which all the functions that will be called are de�ned, it is possible to add
user-de�ned functions}

4: public

{Section containing the parameters, constants and variables needed and de�ned by
the user to implement the wanted modi�cation inside the FMU}

5: Modelica.inputs, Modelica.outputs

{Section containing inputs and outputs of the FMU}
6: initial algorithm

{Section containing the algorithm and equation that are needed only at the �rst time
step to initialize FMU}

7: algorithm

{Section containing all the algorithm that needs to be performed before the FMU
advances in time}

8: Step Foward with DOSTEP

{Command that informs the FMU to advance in time with one step}
9: algorithm

{Algorithm and equation performed after do step event}
10: equation

{Equation needed to assign the user-de�ned outputs of the FMU}

Inside the algorithm 2.1 the user has the opportunity to modify the base �le generated

automatically during the import process in Dymola. Sections 4 through 10 of the code

received the most changes in the work that followed.

2.3. Denavit-Hartenberg parameters

A systematic, general method must be derived to de�ne the relative position and orienta-

tion of two successive links to compute the direct kinematics equations for an open-chain

manipulator using the recursive expression T0
n(q) = A0

1(q1) . . .A
n−1
n (qn). The task in-

volves identifying the frames attached to each link and determining a recursive formulation

to derive the transformations between them.

As long as the frames are connected to the referenced link, they can generally be picked
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randomly. However, it is practical to establish certain guidelines for de�ning the links

frame as well [21]. The frame attached to each link is de�ned as:

� Select axis z of frame i along the axis of joint i + 1, which is the joint connecting

link i with the link i+ 1.

� Position origin Oi at the intersection of the minimum distance segment between

zi−1 and zi. The minimum distance segment between two lines can be de�ned as

the common normal. Find Oi′ where the common normal meets axis zi−1.

� Choose axis xi along the common normal to axes zi−1 and zi with positive direction

from Joint i to Joint i+ 1.

� The axis yi is then de�ned to obtain a right-hand frame.

In the following scenarios, the Denavit-Hartenberg convention de�nes the link frame that

is not unique:

� Only the direction of axis z0 needs to be speci�ed for Frame 0; the values for O0

and x0 are left up to the user's discretion.

� Regarding the last manipulator frame, since there is no n + 1 link, the axis zn can

be arbitrarily chosen. Since the previous joint is revolute for most manipulator

applications, the z axis of frame n is aligned with the direction of the same axis of

frame n− 1.

� The common normal between two consecutive axes cannot be precisely determined

when the axes are parallel to one another.

� At the point where two successive axes meet, the direction of xi can be picked

randomly.

In any of these circumstances, indeterminacy can be utilized to simplify the approach; for

instance, subsequent frames' axes can be aligned.

After the link frames have been constructed, the following parameters will completely

specify the location and orientation of frame i concerning frame i− 1:

ai represent the distance between the origins Oi and Oi′ ,

di represent the distance between the origins Oi′ and Oi−1,

αi angle between axes zi−1 and zi about axis xi, which must be taken positive when

rotation is made counter-clockwise,
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θi angle between axes xi−1 and xi about axis zi−1, which must be taken positive when

rotation is made counter-clockwise.

Two of the four parameters (ai and αi) are always constant and rely solely on the geo-

metrical connection made by link i between succeeding joints. Only one of the remaining

two characteristics varies based on the kind of joint that links link i − 1 to link i. More

speci�cally:

� if Joint i is revolute the variable is θi,

� if Joint i is prismatic the variable is di.

At this point in the process, it is possible to express the coordinate transformation that

occurs between Frames i and i− 1 following the steps that are listed below:

� Choose a frame that is in perfect alignment with the one called i− 1.

� Move the newly de�ned frame by di along axis zi−1, then rotate it by θi about axis

zi−1; this procedure allows to align the current frame with Frame i′ and is described

by the homogeneous transformation matrix

Ai−1
i′ =


cθi −sθi 0 0

sθi cθi 0 0

0 0 1 di

0 0 0 1

 (2.13)

� Transport the frame aligned with Frame i′ by ai along axis xi′ and rotate it by

αi about axis xi′ ; thus the current frame is being aligned with the frame i, such

operation is described by the following homogeneous transform

Ai′

i =


1 0 0 ai

0 cαi
−sαi

0

0 sαi
cαi

0

0 0 0 1

 (2.14)

� The overall coordinate transformation can be de�ned with just one homogeneous

transform obtained by post-multiplying the two transformation matrices introduced
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above.

Ai−1
i (qi) = Ai−1

i′ Ai′

i =


cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi
0 sαi

cαi
di

0 0 0 1

 (2.15)

Notice that the transformation matrix from frame i to frame i − 1 is a function only of

the joint variable qi, that is, θi for a revolute joint or di for a prismatic joint.

According to the Denavit-Hartenberg convention, the direct kinematics function can be

constructed by combining the distinct coordinate transformations indicated by eq. (2.15)

into a single homogeneous transform matrix. Any open kinematic chain can use the

process, and it is simple to rewrite it in the following operating form:

1. Identify and enumerate each joint orderly, at the same time, identify the direction

of the axes z0, z1, . . . , zn−1.

2. The Frame 0 is de�ned by identifying the origin position along axis z0, and then the

other axes are chosen to obtain a right-handed frame. If possible, choosing frame 0

to coincide with the base Frame allows skipping one transformation matrix product.

Then, the subsequent step needs to be executed for n− 1 times.

3. Locate the origin Oi at the common normal to axes zi−1 and zi. If the two joint

axes are parallel and the joint i is revolute, its origin is positioned in order to have

di = 0. If joint i is prismatic, the origin is placed at the reference point from which

the mechanical limit of the joint is derived, e.g., the maximum range.

4. Choose an axis xi along the common normal to axes zi−1 and zi with direction from

Joint i to Joint i+ 1.

5. Choose axis yi to obtain a right-handed frame.

At the end of this iterative process, the following steps are performed:

6. The frame n can be derived considering if the �nal joint is revolute; if it is true, the

axis zn is aligned with zn−1; otherwise the axis zn can be picked arbitrarily. Axis xn

is de�ned in the same way as for the other frames.

7. The Denavit-Hartenberg parameters ai, di, αi, θi are used to compute the homoge-

neous transformation matrices Ai−1
i (qi) for i = 1, . . . , n.

8. Compute the homogeneous transformation T0
n(q) = A0

1A
n−1
n that yields the position

and orientation of Frame n with respect to Frame 0.
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9. Calculate the direct kinematics function as Tb
e(q) = Tb

0T
0
nT

n
e to determine the

position and orientation of the end-e�ector frame in relation to the base frame

given the values of Tb
0 and Tn

e .

The �nal step in computing the orientation is to evaluate the �rst two unit vectors of

the end-e�ector frame using the simplest expression and then create the third vector by

multiplying the �rst two.

2.4. Kalman �ltering

The Kalman �lter [12] is an implementation of the predictor-corrector type estimator that

is optimal in the sense that it minimizes the estimated error covariance. The aim of a

Kalman �lter implementation is to estimate the state x ∈ ℜn of a discrete-time system,

which can be described by the linear equation:

xk = Axk−1 +Buk + wk−1

zk = Hxk + νk
(2.16)

Where the n× n matrix A relates the state at the time tk−1 to the state at time tk. The

n× l matrix B relates the input u ∈ ℜl to the states x and the matrix H[m×n] derives the

measurement vector zk from the state. The variables wk and νk are the process noise and

the measurement noise, respectively. They are considered to be white Gaussian noises

with zero mean and noise covariance matrices Q and R, respectively.

It is required to introduce some helpful notation in order to explain a Kalman �lter's op-

eration correctly. As a form of a predictor-corrector estimator, the Kalman �lter requires

the de�nition of x̂k|k−1 as the predicted state estimate of the �lter at step k and x̂k as the

corrected state estimate at step k. Now it is possible to proceed with the �lter derivation.

The estimate error and the estimate error covariance can be de�ned as:

ek = xk − x̂k

Pk = E[eke
T
k ]

(2.17)

The formulation of the Kalman �lter is derived from the Bayesian estimation theory, in

particular, it relies on the concept of conditional probability eq. (2.18) and on the Bayes

Theorem eq. (2.2).
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P (A \ C) =
P (A ∩ C)

P (C)
(2.18)

Theorem 2.2. For two events A and B ∈ C with P (A), P (B) ̸= 0 it holds that

P (A \B) =
P (B \ A)P (A)

P (B)

The equation (2.18) states that the conditional probability of A given C is de�ned as the

probability of the intersection of the two events divided by the probability of event C. It

is possible to extend the Bayes theorem to obtain the conditional probability density:

fp(q1 \ q2) =
fp(q2 \ q1)fp(q1)

fp(q2)
(2.19)

Using the Bayes estimation theory introduced above, it is possible to derive the optimal

one-step-ahead predictor, considering the derivation of the state predictor:

x̂k+1|k = E
[
x(k + 1) \ yk

]
= E

[
x(k + 1) \ yk−1

]
+ E [x(k + 1) \ e(k)] (2.20)

Now it is possible to continue the computation of the two elements constituting the RHS1

of the equation (2.20). The �rst term is developed as:

E
[
x(k + 1) \ yk−1

]
= E

[
x(k) \ yk−1

]
+ E

[
w(k) \ yk−1

]
= Ax̂k|k−1 (2.21)

where E
[
w(k) \ yk−1

]
is equal to zero. Then the second element of the RHS can be

computed:

E [x(k + 1) \ e(k)] = E
[
x(k + 1)eT (k)

] (
E
[
e(k)eT (k)

])−1

where

E
[
x(k + 1)eT (k)

]
= APkH

T

E
[
e(k)eT (k)

]
= HPkH

T +R

(2.22)

where the Pk is the covariance matrix of the state error and the innovation e, that di�ers

from the error ek, is de�ned as:
1RHS stands for the right-hand side of the equation
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e = z(k)− ẑ(k \ k − 1) = z(k)−Hx̂k|k−1 (2.23)

In equation (2.22), the vector Bayes rule has been applied to derive the results of

E
[
x(k + 1)eT (k)

]
. Finally, the results from equations (2.21) and (2.22) are substituted

inside eq. (2.20) to obtain :

x̂k+1|k = Ax̂k|k−1 +APkH
T
(
HPkH

T +R
)−1

e(k) (2.24)

Deriving the optimal �ltering equations is the �nal stage, and it is simple to do so be-

cause it just requires estimating the present step rather than forecasting the future one.

Assuming that A is invertible, the optimal �lter state equation is:

x̂k = A−1x̂k+1|k (2.25)

substituting in eq. (2.24):

x̂k = x̂k|k−1 +PkH
T
(
HPkH

T +R
)−1

e(k) (2.26)

The covariance matrix needs to be updated at each step, the update equation is again

derived from Bayes estimation theory and results in:

Pk+1 = APkA
T +Q−APkH

T
(
HPkH

T +R
)−1

HPkA
T (2.27)

Equation (2.27) is also known as the Riccati equation.

To summarize, the a posteriori state estimate x̂k can be calculated as a linear combination

of the a priori state estimate and a weighted di�erence between the true and expected

measurements. The a posteriori state estimate eq. (2.28) is derived from the Bayes esti-

mation theory. The a priori estimate x̂k|k−1 is conditioned on all the prior measurements

zk.

x̂k = x̂k|k−1 + Lk(zk −Hx̂k|k−1) (2.28)

The n×m matrix Lk is the Kalman gain and the aim is to compute it in order to minimize

the error covariance. The minimization is actually accomplished by substituting equation

(2.28) into the covariance error formulation obtained in equation (2.17). The K that
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minimizes error covariance results to be equal to:

Lk = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1

(2.29)

Finally, it is possible to describe the general discrete Kalman �lter algorithm.

Algorithm 2.2 KF Algorithm
Input: real measurements zk
Output: state estimate x̂k

{Time update: predictor section}
1: x̂k|k−1 = Ax̂k−1 +Buk−1

2: Pk|k−1 = APk−1A
T +Q

{Measurements update: corrector section}
3: Lk = Pk|k−1H

T
(
HPk|k−1H

T +R
)−1

4: x̂k = x̂k|k−1 + Lk

(
zk −Hx̂k|k−1

)
5: Pk = (I− LkH)Pk|k−1

The discrete Kalman �lter requires at each time step the measurement of the real process

zk and provides the estimated state x̂k. The time update section performs the projection

of the previously computed state and covariance to the new time step. The �rst task in the

measurement update section of 2.2 is to compute the Kalman gain, Lk, which minimizes

the error covariance matrix. Then a priori estimate is updated by incorporating the new

measurements, as described in eq. (2.28). The �nal stage is to obtain the error covariance

estimate.

The Kalman �lter has a main advantage over other solutions: the recursive procedure

makes its implementation much easier and straightforward since, in contrast with Wiener's

solution, it does not require the use of all previous measurements to perform each estimate

at time k.

It is relevant to brie�y mentioned under which assumption the Kalman �lter converges.

By convergence of the �lter it is intended whether the gain reaches a steady value or not.

Equation (2.29) shows that the convergence of the gain depends on the convergence of the

error covariance matrix. Analyzing the form of the Riccati equation (2.27), it is derived

that the system is stable under two conditions:

� If the system is asymptotically stable then the steady state predictor is asymp-

totically stable.

� If the model is not asymptotically stable then if the pair (F,H) is observable

and the (F,G) pair is reachable, where Q = GGT , then the corresponding steady-
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state predictor is asymptotically stable.

2.4.1. EKF

As described above, the Kalman �lter addresses the general problem of trying to estimate

the state of a discrete-time controlled process that is governed by a linear stochastic

di�erence equation. This severely restricts the use of such a �lter because most processes

are controlled by nonlinear relations. This issue is resolved by the extended Kalman �lter

(EKF), which is a Kalman �lter that linearizes the system around the current mean and

covariance.

The new nonlinear stochastic process that needs to be estimated is:

xk = f(xk−1,uk−1,wk−1
)

zK = h(xk, νk)
(2.30)

From such a system it is possible to compute the required Jacobians with a linearization.

A =
∂f

∂xT

∣∣∣∣
(xk−1,uk−1,0)

W =
∂f

∂wT

∣∣∣∣
(xk−1,uk−1,0)

H =
∂h

∂xT

∣∣∣∣
(xk−1,0)

V =
∂f

∂νT

∣∣∣∣
(xk−1,0)

(2.31)

In equation (2.31), A represents the Jacobian matrix of partial derivatives of f with

respect to x, W is the Jacobian matrix of partial derivatives of f with respect to w, H

and V represent respectively the Jacobian matrix of partial derivatives of h with respect

to x and ν.

The new EKF algorithm has the following structure:
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Algorithm 2.3 EKF Algorithm
Input: real measurements zk
Output: state estimate x̂k

{Time update: predictor section}

1: x̂k|k−1 = f(x̂k−1, uk−1, 0)

2: Pk|k−1 = AkPk−1A
T
k +WkQkW

T
k

{Measurements update: corrector section}

3: Lk = Pk|k−1H
T
k

(
HkPk|k−1H

T +VkRkV
T
k

)−1

4: x̂k = x̂k|k−1 + Lk

(
zk − h(x̂k|k−1, 0)

)
5: Pk = (I− LkHk)Pk|k−1

Di�erently from the KF, there is no guarantee on the convergence of the EKF. 2

2.4.2. Multiplicative Extended Kalman Filter

The MEKF is an important modi�cation of the EKF that makes it preferable in the

implementation for quaternion based orientation estimation. As described in the section

above in equation (2.28), the a priori state correction is performed by adding a non-

zero quantity to the state vector x̂k|k−1. Since the state vector, for the purpose of this

work, is a unit quaternion, the addition of the term Lkyk will make it non-unitary and

thus it will not represent a rotation. This is because, by de�nition, rotations quaternions

are not vectors; rather, they are described more precisely as groups. Kalman Filtering

techniques were initially created for vector applications. Since groups are only closed

under their particular group operations, which do not include vector addition, they are

not recognized as acceptable Kalman �lter states.

In order to recover the unit constraint, one straightforward approach to this issue is to

normalize the a posteriori correction [14]. The error covariance won't have a clear physical

meaning, which is the fundamental drawback of this method.

A simple but yet e�ective solution to this problem was �rst introduced in the 60s by

NASA. The orientation estimation is no longer captured by a single entry in the state

vector. The attitude is represented with two separate parameters, q̂ representing the

accumulated orientation estimate and a separate small angle error vector δq(α). From

the quaternions rules:

δq = [δρT ; δq4] = q̂−1 ⊗ q (2.32)

2With a set of strong assumptions, some researcher was able to establish an analytical solution for the
convergence of the EKF.
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Because the error is expressed in terms of the group operation, the unitary constraints

are maintained without the need for any unnecessary normalization, which is one major

distinction between this error operation and native error correction.

In spacecraft missions, the angular velocity ω is measured by gyroscopes. The observation

model of the gyroscope is modelled by:{
ω̃ = ω + b+ νv

ḃ = νu
(2.33)

where b represents the bias drift and the terms νv and νu are zero-mean white Gaussian

noise. The attitude of the spacecraft is measured by a star tracker that provides directly

a quaternion as measurement q̃STT .

In the gyro-stellar attitude estimation problem the state and measurements are described

by X = [qT ; bT ] and Ỹk = q̃STT
k .

With the MEKF, the error state is rede�ned as δX = [δρT ; ∆bT ] along with ∆b = b− b̂.

The associated state covariance matrix is de�ned as: P = E
{
δXδXT

}
.

MEKF di�ers from the EKF algorithm in the computation of the innovation and in the

corrected state computation. The innovation at each time step is derived by applying eq.

(2.32) as:
δqk = q̂−1

k|k−1 ⊗ ym

Zk = δρ = [δq1, δq2, δq3]
T
k

(2.34)

The measurement update can be computed as:

δqk(δρk) =

[
δρTk ;

√
1− δρTk ρk

]
q̂k = q̂k|k−1 ⊗ δqk(δρk)

q̂k = q̂k/∥q̂k∥

b̂k = b̂k|k−1 +∆bk

(2.35)

By applying all the above modi�cations the EKF algorithm 2.3, the MEKF algorithm is

derived:
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Algorithm 2.4 MEKF Algorithm

Input: real measurements qSTT
k

Output: quaternion estimate q̂k

{Time update: predictor section}

1: X̂k|k−1 = Φ̆k−1X̂k−1

2: Pk|k−1 = ΦkPk−1Φ
T
k +Qk

{Measurements update: corrector section}

3: Hk = [I3,03×3]

4: Sk = HkPk|k−1H
T
k +Rk

5: Lk =

[
La,k

Lb,k

]
=

[
S−1
k Paa,k|k−1

S−1
k Pbb,k|k−1

]
6: q̂−1

k|k−1 ⊗ Ỹk → Zk

7: δXk = LkZk

8: X̂k =

[
q̂k

b̂k

]
=

[
q̂k|k−1 ⊗ δqk(δρk)

b̂k|k−1 +∆bk

]

In algorithm 2.4, the matrices Φ̆ and Φ represent the state transition matrices used

respectively to propagate the state and to correct the error covariance.

2.5. Constrained parameter estimation

This section discusses a general method for parameter estimation. This strategy employs

Kalman �ltering methods similar to those previously discussed. In particular, the EKF

algorithm will be modi�ed to enable the estimation of the relevant parameters. The MEKF

is not appropriate for this application because its goal was to apply �ltering techniques

to quaternions where the unitary constraints are broken by the a posteriori computation.

As a result, the parameter vector can be employed directly with equation (2.28).

By making the assumption that parameters θ are stable over time or change slowly,

equation (2.36) models them as constants with a minor perturbation:

θk = θk−1 + rk−1 (2.36)

The noise rk−1 is �ctitious, in the sense that it does not represent any real system noise

nor measurement noise but its aim is to model the slow drift in the system parameters

plus the inaccuracy of the model structure used. The noise is characterized by zero mean

and an assigned auto-covariance Qθ
k, which can vary with time.
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There are two viable strategies to implement the parameter estimation process using EKF:

� Dual estimation consists of implementing two di�erent Kalman �lters to perform

the state estimation and the parameter estimation respectively. The computational

complexity of each �lter is smaller and usually leads to better-conditioned matri-

ces. The cross-correlation between changes in states and parameters is lost when

parameters and state are separated, though.

� In joint estimation, the state vector and parameter vector are combined and a

single Kalman �lter simultaneously estimates their values. It has the disadvantages

of working with large matrix operations and potentially poor numeric conditioning.

The choice to use two �lters operating simultaneously, as mentioned for the dual esti-

mation technique, was made since in this study the �lters will be implemented inside an

FMU with a preset structure and rules. This is mostly due to the fact that it is advan-

tageous to build a solution with great �exibility so that it may be adjusted and deployed

in a variety of situations. The dual estimate allows for the development of two distinct

�lters, one for the state and one for the parameters. Thus the �lter for the state can be a

di�erent kind of predictor-corrector �lter, an Unscented Kalman Filter 3 or, if required,

it could be a di�erent kind of �lter all together. This method makes it simpler to modify

the �lter's parameter to achieve a steady behavior because it enables the testing of the

�lters separately.

The generic algorithm for the parameter estimation �lter is:

Algorithm 2.5 EKF Parameter Estimation Algorithm
Input: real measurements zk
Output: parameter estimate θ̂k

{Time update: predictor section}

1: θ̂k|k−1 = θ̂k−1 + rk

2: Pθ
k|k−1 = Pθ

k−1 +Qθ
k

{Measurements update: corrector section}

3: Lθ
k = Pθ

k|k−1H
θT
k

(
Hθ

kP
θ
k|k−1H

θT +Rθ
k

)−1

4: θ̂k = θ̂k|k−1 + Lθ
k

(
zθk − hθ(x̂k|k−1, θk|k−1)

)
5: Pk =

(
I− Lθ

kH
θ
k

)
Pθ

k|k−1

Due to the nature of the FMU implementation, a small modi�cation to the dual estimate
3The implementation of a UKF �lter needs a di�erent implementation in the FMU since it is required

to perform multiple integration at time tk with di�erent initial conditions.
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structure presented in �gure 2.2 is required.

 

Time Update 
State KF

Measurement Update
State KF

Time Update 
Parameter KF

Measurement Update
Parameter KF

Figure 2.2: Dual Extended Kalman Filter (DEKF) structure

The blue �lter represents the �lter which aim is to estimate the state, while the �lter

working on the estimation of the parameter is reported in orange. The information's source

is shown by the colored arrows; orange indicates the parameter �lter and blue the state

�lter. As shown in �gure 2.2, the two �lters run in parallel and they exchange information

between the time update and the measurements update steps. As explained in section

2.2.3, the FMU is capable of exchanging information with the simulation environments

only at the end of the integration process performed during the call of the FMU [9].

This is relevant because it blocks the possibility of implementing the parallel �lter for the

estimation of the parameter as reported in Figure 2.2.

The proposed improvement is a straightforward alteration to the way the two �lters

communicate with one another. As shown in Figure 2.3, the predictor-corrector step can

essentially be regarded as a single step, with the �lter exchanging information only at the

conclusion of the measurement update step. The following chapters will provide a more

thorough explanation of how it is implemented within the FMU code.
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Time Update 
State KF

Measurement Update
State KF

Time Update 
Parameter KF

Measurement Update
Parameter KF

Figure 2.3: Modi�ed dual estimate structure

The parameters of interest have a strict physical meaning, the aim is to estimate the En-

visat mass. This parameter is de�ned as strictly positive, and thus the necessity to impose

some constraints on the range in which such parameter is allowed to vary arises. This

problem is simply known as constrained parameter optimization. Thus, it is necessary to

add such constraints in the formulation of the EKF for parameter estimation. The use

of a Sigmoid function [11], equation (2.37), allows for the integration of such constraints

without modifying the Kalman �ltering structure. The Sigmoid function, �rst equation

in (2.37), is used as a mapping between the state variable of the �lter xθ
k to the inertial

parameter θk.

θk = Sig(xθ
k) =

aθk − bθk
1− e−cxθ

k

= bθk

xθ
k = Sig(θk)

−1 =
ln(aθk − θk)− ln(bk − θk)

−c

(2.37)

In equations (2.37), aθk and bθk represent respectively the lower and the upper bounds

that the inertial parameter could assume and c controls the slope of the exponential. To

initialize the Kalman �lter and to update at each step the state of the FMU, the inverse

Sigmoid function is used, eq. (2.37). In sections 2 and 3 of 2.6, involving the transforma-

tion between inertia parameters and state parameters, di�erent Sigmoid functions equal

to the number of the parameters to be estimated are used.

The resulting algorithm is:
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Algorithm 2.6 Constrained parameter estimation EKF
Input: real measurements zk
Output: parameter estimate θ̂k

{Time update: predictor section}

1: θ̂k|k−1 = θ̂k−1 + rk

2: x̂θ
k|k−1 = Sig(θ̂k|k−1)

−1

3: Pθ
k|k−1 = Pθ

k−1 +Qθ
k

{Measurements update: corrector section}

4: Hx
k = Hθ

k
c(aθ−bθ)ecθx

(ecθx+1)2

5: Lθ
k = Pθ

k|k−1H
xT
k

(
Hx

kP
θ
k|k−1H

xT +Rθ
k

)−1

6: x̂θ
k = x̂θ

k|k−1 + Lθ
k

(
zθk − hθ(x̂θ

k|k−1, θk|k−1)
)

7: Pk =
(
I− Lθ

kH
x
k

)
Pθ

k|k−1

8: θ̂k = Sig(x̂θ
k)

The step 4 of 2.6 computes the new H matrix, derived as:

Hx =
∂hθ

∂xθ
=

∂hθ

∂θ

∂Sig(xθ)

∂xθ
= Hθ c(a

θ − bθ)ecθx

(ecθx + 1)2
(2.38)
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validation

3.1. Euler Lagrange Approach

The model implementation is done using the Modelica language to exploit the usage of

acausal connections, as described in sec. 2.2.2. The use of the Euler-Lagrange approach

to implement the model was initially considered and then discarded. The motivations

behind this choice are explained hereafter.

In order to use the Euler-Lagrange method, the kinetic and potential energies must be

derived. Since the hand operation would be laborious and hardly scalable, a symbolic

tool is utilized to compute the desired quantities.

To explain why the Euler approach was not used it is introduced a simpli�ed model that

just includes the main body of the chaser, the solar panel, and the 7 DoFs manipulator,

completely ignoring the presence of Envisat. The kinetic energy has been divided into

three parts, each corresponding to an element of the new system.

The kinetic energy of the rigid body of the chaser is reported in equation 3.1.

Tc =
1

2
mcṙ

oT
c ṙoc +

1

2
ωoT
c Ro

cI
c
cR

oT
c ωo

c (3.1)

Where roc represents the vector connecting the CoG of the chaser to the origin of the

reference frame and Ro
c describes the orientation of the c frame, attached to the satellite

body, as seen from the base frame.

Then, the kinetic energy relative to each element of the solar panel is computed as:
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T (i)
sp =

1

2
miṙ

oT
c ṙoc +miṙ

oT
c S(ωo

c)R
o
cr

c
a +miṙ

oT
c S(ωo

c)R
o
cr

c
cg,i +miṙ

oT
c Ro

c ṙ
c
cg,i+

+
1

2
mir

cT
a RoT

c ST (ωo
c)S(ω

o
c)R

o
cr

c
a +mir

cT
a RoT

c ST (ωo
c)S(ω

o
c)R

o
cr

c
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+mir
cT
a RoT

c ST (ωo
c)R

o
c ṙ

c
cg,i +

1

2
ωoT
c Ro

i I
i
iR

oT
i ωo

c + ωoT
c Ro

cR
c
iI

i
iR

cT
i ωc

i+

+
1

2
ωcT
i Rc

iI
i
iR

cT
i ωc

i +
1

2
mir

cT
cg,iR

oT
c ST (ωo

c)S(ω
o
c)R

o
cr

c
cg,i+

+mir
cT
cg,iR

oT
c ST (ωo

c)R
o
c ṙ

c
cg,i +

1

2
miṙ

cT
cg,iṙ

c
cg,i

(3.2)

where the operator S(−) indicates the skew symmetric matrix, the matrix Ro
i represents

the rotation between the base frame and the i -th link and the vector rccg,i is the position

of the CoG of the i -th one with respect to the CoG of the chaser represented in the

body �xed reference frame. The manipulator can be modelled using the DH convection

similarly to what is done in equation 3.2. Finally, all the parts can be summed to obtain

the total kinetic energy.

Ttot = Tc +
n∑

i=1

T (i)
sp +

7∑
j=1

T (j)
m (3.3)

The kinetic energy is derived laboriously using a large number of rotation matrices, as seen

from the equation above. As a result, a system is created with lengthy, complex equations

that a symbolic manipulator must handle. The issue arises from the fact that the tool

used to derive the Lagrangian and acquire the system equation slows down signi�cantly

until it reaches a point where it stops working. This behaviour was seen with a solar panel

discretized into just three elements.

As a result, even though the Euler equation of motion represents the smallest number of

equations that must be integrated, it is not the best option for modelling complex rigid

body systems because the derivation process is time-consuming and needs the use of a

symbolic manipulator.

3.2. Model implementation with acausal software

Given the fact that the use of Euler's approach to retrieve the dynamic equations governing

the system can be discarded due to the problems highlighted above, a new implementation

method is required. The Dymola program based on the Modelica language has been

chosen for the use of acausal programming language with all the bene�ts listed in section

2.2.2. Another advantage of the Dymola program is its comprehensive suite of tools for

multi-body modelling.
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The model implemented inside Dymola is constituted by the following components:

� Envisat

� 7 Dofs manipulator

� Chaser

� Chaser solar panels

The following section provides a brief description and explanation of each component's

construction process.

3.2.1. Envisat

The Dymola scheme reported in �gure 3.1 represents the blocks and their connection

constituting the Envisat satellite model.

Figure 3.1: Envisat - Dymola scheme

The blocks Adapter, EnviBoom and EnviBoom2 are cylindrical blocks of the Modelica

multi-body standard library and they are inserted as it is with the speci�cation of dimen-

sion and mass of each part. In particular, the Adapter element models the launch adapter

of the satellite which is the predetermined point on which the manipulator of the chaser

satellite will be attached [18]. Inside the Modelica multi-body library, the BodyShape

element has its inertial properties initialized as parameters and thus they cannot change

during the simulation process [9]. Since, for the aim of this work, the Envisat mass and

inertia matrices needed to change in time to apply at each time step the predicted value

coming from the parameter estimation �lter, a new element (modi�ed_BodyShape) is cre-

ated in which the inertial parameters are de�ned as variables. The parameters of the

Envisat main body with the associated uncertainties are reported in Table 3.1 [18].
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Envisat Body Value Uncertainty

Dimensions [m] 4.57× 10, 5× 4.57 \
Mass [kg] 7928 ±30

CoG [mm] [3905,−9, 3] ± [0.01, 0.004, 0.004]

Inertia matrix [kg m2]

17023 397.1 2171

397.1 124826 344.2

2171 344.2 129112

 ±

350 100 250

100 3000 150

250 150 3000


Table 3.1: List of Envisat parameters with uncertainties

Inside the Solar Panel Envisat block, the iterative procedure to model the solar panel

is performed. It has been chosen to write the code in the Modelica language directly

(algorithm 3.1) rather than using the graphical interface because it simpli�es the imple-

mentation and allows for changing of the number of solar panel elements. This approach

allows for higher �exibility and an easier change in element size and sti�ness properties.

Note that since the FMU is pre-compiled in C-code, it is impossible to modify the solar

array's discretisation after the compilation and exporting process. The FMU pre-allocates

the memory for each required variable. The solar panel model implementation is described

inside the algorithm:

Algorithm 3.1 Solar panel implementation in Dymola
Input: N

{Initialization of rigid body elements}

1: Modelica.Mechanics.MultiBody.Parts.BodyBox

{Initialization of Spring-Damper elements}

2: Modelica.Mechanics.Rotational.Components.SpringDamper

{Initialization of rotational joints}

3: Modelica.Mechanics.Joints.Revolute

4: connect base frame with �rst joint.frame_a

5: for i = 1 : N − 1 do

6: connect i -th revolute.frame_b with i -th bodyBox.frame_a

7: connect i -th bodyBox.frame_b with (i+1)-th revolute.frame_a

8: connect i -th springDamper with i -th revolute

9: end for

10: connect N -th revolute.frame_b with N -th bodyBox.frame_a

11: connect N -th springDamper with N -th revolute
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Each reference frame attached to each solar panel rigid elements follows the Denavit-

Hartenberg parameters explained in section 2.3. In table 3.1, the dimensions, the mass and

the inertia matrix of the Envisat with the corresponding uncertainty ranges are reported.

In table 3.2 the mass and size of the main solar panel are reported.

Envisat solar array value

weight [kg] 380

width [m] 4.97

length [m] 15

thickness [mm] 12

Table 3.2: Envisat solar panel properties

3.2.2. Chaser

The chaser is modelled as a single rigid body whose dimensions are derived from the

e.Deorbit mission concept studies [18]. Table 3.3 shows the dimensions and masses. Since

it is not the aim of this work the study of the chaser structure and architecture, a simple

design has been modelled.

Figure 3.2: Chaser - Dymola scheme

Figure 3.2 shows the insides of the chaser body block. It is modelled as a rectangular par-

allelepiped. Since all the other blocks will be attached to the chaser body, it is important

to take care in the positioning of frame_a and frame_b with respect to the chaser center

of gravity (CoG). The chaser solar array is modelled with the exact same procedure as

the one reported in 3.1 with the parameters listed in table 3.3.
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Chaser Body value Chaser SP value

weight [kg] 1594 weight [kg] 30

width [m] 1 width [m] 1

length [m] 1.2 length [m] 3

height [m] 1.2 thickness [mm] 8

Table 3.3: Chaser satellite properties

3.2.3. 7 Dofs Manipulator

The manipulator structure is derived according to previous works that studied the use

of a 7 Dofs manipulator like ROKVISS [2]. The model is constructed through the use of

revolute joint to which the cylindrical elements that constitute the manipulator links are

attached. A spring damper element is assigned to each joint as shown in �gure 3.3 with

spring sti�ness kman = 1000 [Nm/rad] and damping constant cman = 0.1 [Nms/rad] .

Figure 3.3: 7 Dofs Manipulator - Dymola scheme

The DH parameters listed in table 3.4 describes the manipulator structure. The e.Deorbit

studies proposed a clamp system attached at the end of the robotic arm [18]. It is assumed

that the manipulator is attached to the Envisat adapter ring with a rigid connection, and

thus the modelling of the clamp mechanism was not performed.
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Joint n1 n2 n3 n4 n5 n6 n7

a [mm] 0 0 0 0 0 0 0

α [deg] 0 −90 90 −90 90 90 −90

θ [rad] 1.57 0.87 6.01 1.83 1.12 1.67 1.70

d [mm] 256 168 1900 168 1730 168 420

Table 3.4: Manipulator's DH parameters

The robotic arm structure is made of aluminium and the links have an internal diameter

equal to di = 123 [mm] and an external diameter equal to de = 127 [mm].

3.2.4. Complete system model

After explaining each component of the dynamical system, it is possible to build the

complete model inside the Dymola environment. Its scheme is reported in �gure 3.4.

Each component is attached to the main chaser body, to which an external torque is

applied to simulate the use of thrusters for attitude control. The block world is used to

model the Earth's gravitational acceleration; disturbing external torques are not modelled.

Figure 3.4: Complete system model - Dymola scheme

Inside �gure 3.5 a visualization of the two spacecraft assembly is shown. The chaser

satellite, represented in green, is connected with Envisat, shown in blue, through the
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manipulator in orange. Envisat's solar panels and the chaser satellite's solar array are

modelled as described in the section above. From �gure 3.5a it is possible to see that the

manipulator is attached to Envisat in correspondence with the adapter ring. The adapter

ring is used as a grasping point due to its rigidity since it has been sized to withstand the

launch loads.

(a) Frontal view (b) Lateral view

Figure 3.5: 3D Model Visualization

3.3. Spring sti�ness derivation

Since the solar panels are modelled with a lumped parameter approach, a comparison

against the results of a FEM of the solar panel is performed to ensure the validity of the

model. The following sections describe the steps to perform such validation.

3.3.1. Linearization of the Solar Panel model

This section describes the derivation of the equations of motion of the solar panel model

and their linearization. The following discussion uses the DH convection 2.3 to assign at

each link a reference frame with an iterative procedure.

The equations of motion are derived using the Newton-Euler formulation. Considering Jpi
as the Jacobian matrix for translational motion, Joi as the Jacobian matrix for rotational

motion, pi as linear momentum, li as angular momentum, Fi as applied forces, Mi as

applied moments for body i, the principles for linear and angular momentum are applied

to get equation (3.4).

ns∑
i=1

[
JT
Pi
(ṗi − Fi) + JT

Oi
(l̇i −Mi)

]
= 0 (3.4)
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To proceed with the mathematical derivation the following notation is used:

� rs is the position vector from Newtonian frame OI to body �xed frame Si;

� rpi is the position vector from Newtonian frame OI to joint Pi;

� Ri is the rotation matrix representing rotation of frame Si with respect to frame OI

about the Z axis;

� Ii is the inertia tensor of the link i;

� vsi is the linear velocity associated with the center of mass of link i;

� ωi is the angular velocity of link i.

The derivative of the linear momentum pi can be rewritten using the above introduced

notation as:

ṗi = mir̈si (3.5)

Similarly the derivative of the angular momentum is equal to:

l̇i = Iiω̇i + ω̃iIiωi (3.6)

Using the equations (3.5) and (3.6), equation (3.4) can be rewritten in the equation (3.7).

ns∑
i=1

JT
Pi [mir̈si−Fi

] + JT
Oi

[Iiω̇i + ω̃iIiωi −Mi] = 0 (3.7)

The bodies kinematic equations 3.8 are described by the generalized coordinates q =

(δ, ϕ1, ϕ2, ..., ϕn−1)
T . These coordinates represent the absolute rotation of each joint of

the solar panel model from the original reference condition.
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R1 =

1 0 0

0 cos(δ) −sin(δ)

0 sin(δ) cos(δ)



Ri =

1 0 0

0 cos(δ) −sin(δ)

0 sin(δ) cos(δ)


cos(ϕi) −sin(ϕi) 0

sin(ϕi) cos(ϕi) 0

0 0 1

 for i ̸= 1

rpi = rpi−1 +Ri−1 [Ls; 0; 0] , rp1 = [0; 0; 0]

rli = rpi +Ri[Ls/2; 0; 0]

JPi =
∂rli
∂q

vsi = JPiq̇

ω1 = [δ̇; 0; 0] ωi = [0; 0; ϕ̇i] for i ̸= 1

JOi =
∂ωi

∂q̇

r̈si = JPiq̈ +
∂vsi
∂q

q̇

ω̇i = JOiq̈ +
∂ωi

∂q
q̇

(3.8)

Using the kinematic equations, 3.7 can be rearranged to 3.9.

Tli =
1

2
mliq̇

TJT
piJpiq̇ +

1

2
q̇TJT

OiRiIiR
T
i JOiq̇

T =
n∑

i=1

Tli =
1

2
q̇TB(q)q̇

B(q) =
n∑

i=1

(
mliJ

T
piJpi + JT

OiRiIiR
T
i JOi

)
(3.9)

The only component of the potential energy, needed for the derivation of the spring

sti�nesses, is the elastic one.

Uli =
1

2
ki(qi−1 − qi)

2 U =
n∑

i=1

Uli (3.10)

From (3.10) and (3.9) the Lagrangian equation is derived.

L(q, q̇) = T (q, q̇)− U(q) (3.11)



3| Model implementation and validation 41

Applying the Lagrange formalism to (3.11) the dynamic equation is obtained:

g(q̇, q) =
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

g(q̇, q) = B(q)q̈ + Ḃ(q)q̇ − 1

2

(
∂

∂q
(q̇TB(q)q̇)

)T

+

(
∂U(q)

∂q

)T

= 0

(3.12)

Then, through the use of symbolic manipulation, the following equation is derived:

f(q̇, q) = B(q)−1

(
−Ḃ(q)q̇ +

1

2

(
∂

∂q
(q̇TB(q)q̇)

)T

−
(
∂U(q)

∂q

)T
)

(3.13)

The equation is reduced to a di�erential equation of order 1 and then the linearized model

is obtained:

ẋ =

{
f(q̇, q)

q̇

}
= f1(q̇, q) where x =

{
q̇

q

}
(3.14)

A =
∂f1
∂x

∣∣∣∣
x=x0

(3.15)

Matrix A in equation (3.15) represents the overall linearized system dynamics. The lin-

earization is performed at the equilibrium point q̇ = 0n×1 and q = 0n×1. The eigenvalues

and eigenvectors of matrix A represent the modal frequencies and modal shapes, respec-

tively, of the linearized system.

3.3.2. Solar panel FEM model

A �nite element model (FEM) of the solar panel is constructed and used to retrieve a

reference solution for the validation process. As pre and post-processing software Femap

is used, while the solver is Nastran.

The FEM model is constructed using plate elements. Regarding the mesh size, the width

of the solar panel is discretized with 20×60 elements. These values guarantee convergence

of the FEM results. The property of the elements is de�ned using the PCOMP, where the

stacking sequence is de�ned by providing thickness, orientation and material id of each

ply composing the stack. The layup is a sandwich of an aluminium honeycomb core with

uni-directional carbon �ber layers for the upper and lower faces. The honeycomb core is

implemented as a 2D-orthotropic material with properties reported in equation (3.16).
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Em =

[
E1

E2

]
=

[
9900

10700

]
[MPa] Gm =

G12

G1z

G2z

 =

26005500

5000

 [MPa]
νm = 0.92

ρ = 2e−10 [T/mm3]

(3.16)

In eq. (3.16), E indicates the sti�ness value, G the shear, νm the Poisson ratio and ρ is

the mass density of the material. The presence of the solar cell is modelled by increasing

the density of the upper elements of the laminate. The layup of the solar panel is reported

in �gure 3.6.

Figure 3.6: Solar panel layup

The solar panel model is constrained on one short edge by �xing all 6 DoFs of the nodes.

3.3.3. Optimization procedure

The eigenvalues and eigenvectors of matrix A, derived from the dynamic model of the

solar panel, are a function of the spring sti�ness of each joint. A physically correct model

would require all sti�nesses to be equal because the bending properties do not change along

the length direction. This option was considered initially, but it led to poor frequency

derivation and modal shape results. Such a result was probably due to the low number of

elements used in the modelling procedure. The number of elements is limited due to the

high computational cost associated with the symbolic manipulation of equation (3.15).

In particular, the length of each equation composing the matrix A grows rapidly with

the number of elements used. The upper bound for the number of discretized sections
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was established to be 5. This value is a good compromise between the computational

time and the number of frequencies that can be matched. The poor accuracy achieved

by using single value for the spring sti�nesses is a known aspect in the literature. For

example, it is highlighted in numerous works involving the derivation of a pseudo-rigid

body model (PRBM) for beam elements [24]. In particular, the PRBM method is used

extensively to synthesize and analyze the behaviour of compliant mechanisms for non-

linear de�ections. The tuning of the parameters in the PRBM highly depends on the

quantity to be optimized. Most works developed a solution for large de�ection of cantilever

beams to minimize the error between the model and the actual deformed shapes. A similar

approach can be used to minimize the modal frequency errors and obtain modal shapes

similar to the one achieved using NASTRAN.

In the linearized model derived in section 3.3.1, the elastic constant of the springs is the

only parameter allowed to change, di�erently from the most common implementation of

PRBM where both link lengths and sti�nesses are allowed to vary. The system becomes

increasingly complex as the number of discrete elements and variables increases. This

behaviour stems from the mathematical complexity of matrix A that inevitably slows

down the symbolic manipulation.

The derivation and validation of the spring constants are carried out separately for the

torsional spring. This procedure is justi�ed by the uncoupled torsional and bending

behaviour for the structure at hand.

From the FEM model, the �rst �ve �exural bending modes are extracted. An optimiza-

tion procedure is then carried out to recover the sti�nesses of the lumped spring of the

simpli�ed model. The system identi�cation procedure reads:

min
k∈Rn

(
Ȳ − Ŷ

)T
Ww

(
Ȳ − Ŷ

)
(3.17a)

subject to

Ŷ = g(k) (3.17b)

The cost criterion in equation (3.17a) is the weighted sum of squared errors. The weight

is applied with the matrix Ww, where each element is equal to the weight squared. The

vector Ŷ collects the linear frequencies and the shape of the corresponding modes. As

described in equation (3.17b), the vector Ŷ is only a function of the spring sti�ness values.

Instead, the vector Ȳ vector contains the frequency and the nodal displacement obtained

from the FEM analysis.
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Ŷ =
[
f 1
est, . . . , f

N
est, displ

1, . . . , displN
]

(3.18)

In equation (3.18) the element f 1
est is the �rst modal frequency derived from the linearized

model, and the term displ1 represents the nodal displacement of the associated mode.

Considering N as the number of elements in which the solar panel is being discretized,

the term displ1 is a vector of size N − 1 since the �rst node is �xed due to the boundary

conditions of the problem. The nodal displacement is normalized with respect to the

tip displacement and is computed by substitution of the eigenvector in equation (3.8) to

obtain rpi. Then each rpi is used to construct displ1 (3.19), which is repeated for each

modal shape.

displ1 = [rp2, . . . , rpN ] /rpN (3.19)

The optimization is carried out via a Gauss-Newton method. It is possible to use the

Gauss approximation since the cost function has a quadratic form. This allows to provide

to the algorithm only the vector F , which is used in the computation of the line search

direction and in the calculation of the required step size.

F = W1/2
w

(
Ȳ − Ŷ

)
(3.20)

Then, it is possible to compare the results obtained from the optimization procedure with

the FEM ones. The weight matrix is changed to get di�erent results in the optimization

process. The parameter Ww has the form described in equation (3.21). The value of w is

used to modify the relative weights of the frequencies with respect to the modal shapes.

The above mentioned steps are performed three times for every weight change. The �rst

optimization is done by setting all the weights to 1. From the FEM analysis, the modal

shape is extracted from the nodes belonging to the longitudinal median line. The data

acquired by the �nite element method are referred to as target modes or target frequencies

in the following discussion.

Ww = diag([w1×N , 11×(5N−5)]) (3.21)
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Figure 3.7: Modal shapes and Modal frequencies from optimization with w = 1

Run with w = 1 k1 k2 k3 k4 k5

value [Nm/rad] 3080 218023 25123 127773 79382

Table 3.5: Sti�nesses obtained from optimization with w = 1

Figure 3.7 reports the modal shapes and frequencies obtained after the optimization pro-

cedure. The sti�nesses obtained by setting w = 1 are summarized in table 3.5. The results

of this �rst run show that the discretized model match closely the �rst three modal fre-

quencies, while the other eigenvalues di�er with respect to the target one. The mean

square error (MSE) of the distances between the node and the target position is deter-

mined for the modal shape in order to provide a quantitative evaluation of the results.

Each modal shape's mean square error is calculated separately.

For the second optimization, the weight is set to 10. In doing so, the errors due to any

frequency mismatch are overweighted. The results are shown in �gure 3.8. The �rst

three eigenvalues do not vary signi�cantly compared to the target one since they were

already su�ciently close to it. This can be observed by comparing the frequencies with
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the ones derived from the initial optimization procedure. The error on the �fth frequency

is drastically reduced; the percent error decreases from 30% to 1.5%. At the same time,

there are no signi�cant changes to the fourth eigenvalues.
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Figure 3.8: Modal shapes and Modal frequencies from optimization with w = 10

The results obtained from the second optimization run are reported in table 3.6.

Run with w = 10 k1 k2 k3 k4 k5

value [Nm/rad] 2863 165105 27927 114564 170855

Table 3.6: Sti�nesses obtained from optimization with w = 10

The third and �nal run is performed by shifting the weight on the modal shapes. The

results are reported in �gure 3.9. With this optimization, the frequencies values are worse

with respect to the �rst run. The percentage error on the �rst frequency increases from

4% to 57%, and the second di�ers by 38% compared to 0.3% of the initial optimization.

The sti�ness values relative to the third optimization step are reported in table 3.7.
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Figure 3.9: Modal shapes and Modal frequencies from optimization with w = 0.1

Run with w = 0.1 k1 k2 k3 k4 k5

value [Nm/rad] 8051 47568 15648 6884 8565

Table 3.7: Sti�nesses obtained from optimization with w = 0.1

Utilizing the MSE, which serves as the key performance indicator (KPI), it is feasible to

compare the correctness of the modal shape following the introduction of all optimization

runs. For all modal shapes except the fourth, the optimization carried out with weight

w = 10 has the highest KPI value, as shown in table 3.8. The lowest KPI for each

modal shape is achieved using w = 0.1, which closely resembles the modal shapes. As

anticipated, the optimization process with run w = 1 falls in the middle of the other runs,

with frequency values quite near the target values and similar modal shapes, particularly

for the �rst two.
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Modal shape weight w = 1 weight w = 10 weight w = 0.1

n1 2.27e− 02 2.30e− 02 1.14e− 02

n2 8.24e− 02 8.45e− 02 6.47e− 03

n3 1.18e− 01 1.65e− 01 4.00e− 02

n4 1.14e− 01 2.21e− 01 2.61e− 02

n5 1.29e− 01 1.03e− 01 8.74e− 02

Table 3.8: MSE of each modal shape for the three optimization runs

Regarding the torsional spring, this value is determined by matching the �rst torsional

frequency, and it is equal to: ktor = 621.6 [Nm].

3.4. Validation

The validation is performed as a �nal step in deriving the spring sti�nesses. The process

consists of a transient load analysis performed separately on Dymola with the discretized

model and on Nastran. The transient load is applied to the tip of the solar panel while one

end is �xed, as represented in �gure (3.10). The transient load test is run for 100 [s] with

a sample time equal to ∆t = 0.125 [s] resulting in 800 samples. The resulting discrete

Fourier transform has a frequency resolution ∆f = 0.1 [Hz], and the maximum frequency

is fmax = 4 [Hz]. The transient load is a sine sweep function described in equation (3.22).

Fin = sin

(
2πt2

2tspan

)
[N ] (3.22)

Figure 3.10: Transient load application

The solar panel model is the same as the one explained in 3.2.1. The three con�gurations

obtained in the previous section are compared against the �nite element simulation. All

three sets of spring sti�nesses could be used inside the actual model.
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The single-sided amplitude spectrum and the Transfer function are used to compare the

various models. It is possible to evaluate the resulting displacements at �ve distinct

places. The displacement information relative to the solar panel's tip has been chosen in

order to assess the various sti�ness options. Each run provides the nodes' and the input

force's displacement with respect to time as raw data. A frequency analysis, applied to

the normalized tip displacement, was used to get the graphs that are shown below.
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Figure 3.11: Validation results using sti�nesses from 3.5 with w = 1
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Figure 3.12: Validation results using sti�nesses from 3.6 with w = 10

0 0.5 1 1.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
-1

10
0

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Figure 3.13: Validation results using sti�nesses from 3.7 with w = 0.1

As seen from �gures 3.11 - 3.13, the choice of the weight has a profound e�ect on the
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results.

The Dymola model has a lower height of the �rst peak with respect to the Femap model.

All three frequency analyses show the presence of two distinct peaks in correspondence

of the resonance frequencies of the model. The closest match to these peaks with the

ones derived from the FEM data is achieved using w = 0.1. In the table below, the peak

position for each model is given with their corresponding value and is compared with the

original FEM data.

Dymola results

Weight used in analysis Peak position [Hz] Peak height [-]

w = 1 0.0499 0.0779

w = 10 0.0499 0.0635

w = 0.1 0.0798 0.0399

Femap results 0.0799 0.0795

Table 3.9: Resonance frequencies for validation analysis

Table 3.9 reports the results derived from the single-sided amplitude spectrum graphs.

It is essential to make the following consideration. Even though, the optimizations with

weights w = 10 and w = 1 show that the frequencies of the linearized model are close

to the modal frequencies derived from the FEM analysis, the results from the spectral

analysis done in Dymola show that such frequencies are not the same. This is due mainly

to the non-linear nature of the discretized solar panel dynamics. Since the non-linear

dynamical system is optimized on a linearized system, the system's natural frequency will

inevitably di�er from the frequency obtained by the optimization.

It is possible that the concurrent action of the load type could provide an additional

explanation for the results. A model that has exact modal shapes rather than modal

frequencies may be preferred if the load is a force at the tip of the solar panel rather

than a speci�ed displacement at the base, which may have been an alternative for the

validation procedure.

To summarize, the sti�nesses obtained with w = 0.1 should be the ones to be used in the

model in subsequent chapters of this work.
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3.4.1. Validation Results

In this section, the validation is presented by referring to the spring element sti�nesses

obtained through the optimization process with w = 0.1. As presented before, this is

the weight selection leading to the best results of the transient load compared with the

reference model. Figures 3.14 and 3.15 represent the results relative to the inner point of

the solar panel. The inner nodes are equally spaced and are identi�ed by their position

along the longitudinal direction of the solar panel. They are found at x = (3, 6, 9, 12) [m]

respectively.

0 0.5 1 1.5

10
-6

10
-4

10
-2

10
-1

10
0

-120

-100

-80

-60

-40

-20

(a) Inner point 1

0 0.5 1 1.5

10
-6

10
-4

10
-2

10
-1

10
0

-100

-80

-60

-40

-20

0

(b) Inner point 2.

Figure 3.14: Validation results relative to inner points with sti�ness obtained with w = 0.1

at position 3 and 6 [m]
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Figure 3.15: Validation results relative to inner points with sti�ness obtained with w = 0.1

at position 9 and 12 [m]

Figures 3.14 and 3.15 show the results with upper-frequency limitations of 1.5 [Hz], even

though the dataset allows for a frequency analysis up to 4 [Hz]. This makes validation in

the lower frequency range simpler to be appreciated. As seen, the model behaves similarly

to the �nite element model for the inner nodes and not just at the solar panel's tip.

3.4.2. Validation of the chaser's solar panel

Regarding the chaser satellite solar array, the same procedure for the validation is followed.

Indeed the e.Deorbit studies [18] did not include a detailed description of the solar array;

a similar layup structure is used. The thickness of the aluminium honeycomb element was

reduced to th = 2 [mm]. In such a way, the chaser's solar array has modal frequencies in

the same order of magnitude as the Envisat ones. The last di�erence with the validation

procedure above is using a sine sweep with an amplitude of a = 0.01 [N ] rather than

unitary.

In this case, the results relative to the best run obtained with the weight set at w = 0.1
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are reported. The derived spring sti�nesses are reported in table 3.10.

Chaser SP k1 k2 k3 k4 k5 ktor

value [Nm/rad] 53.6 99.7 63.1 36.4 15.2 9.93

Table 3.10: Chaser's solar panel paremeters
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Figure 3.16: Modal shapes and Modal frequencies of the chaser's solar panel w = 0.1
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Figure 3.17: Validation results for the chaser's solar panel with w = 0.1

Figures 3.16 and 3.17 report the results of the modal analysis and of the transient response

analysis of the solar panel. Speci�cally, the tip displacement and the analysis of the modal

frequencies and shapes are presented. These results are worse than the previous ones, even

though the same approach was used. This is primarily due to the non-linear behaviour of

the system, nonetheless they can be considered acceptable for the scope of this work.
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4| Filter implementation

In this chapter, the �lter implementation inside the FMU code will be explained. With

the term FMU code, it is intended the Modelica code that Dymola presents to the user

after the importing of the FMU takes place. As described in more detail in section 2.2.3,

such code gives the user the possibility to write algorithms directly inside the FMU.

4.1. FMU �lter implementation

Implementing the two �lters described in the algorithms 2.4 and 2.3 follows the same

procedure. First, it is necessary to get the identi�ers of the state variables of the system.

These identi�ers are reported inside the model ModelDescription.xml. This �le structure

is described in section 2.2.3. Figure 4.1 shows how the state variable are reported in the

section ModelVariables of the provided model description �le.

Figure 4.1: State variable described inside ModelDescription.xml

These few lines give some vital information for the attitude �lter implementation. As

already mentioned above, the identi�ers are reported, and they can be found mentioned

as valueRefernce. The variable's reference index is then provided. It is highlighted in

green, and it is helpful to look for more details about the variable in the model description
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�le. Using this as an example, one may determine whether there is a correlation between

two quantities. Note that despite representing a quaternion, the state inside the FMU

consists of 3 elements. Only a minimal representation of the state is required for the

FMU to function, and the orientation is represented by three scalar elements. Only three

attitude quaternion elements are chosen by the Dymola exported FMU; the last element

is retrieved by employing the group's unitary constraints feature.

However, there is an issue with the �lter's application. In order to prevent singularities

during the integration process, three of the quaternion elements are dynamically chosen as

states inside the FMU. The user is aware of the names of the three state components but

is unaware of which attitude quaternion element refers to which state. Inside the FMU,

a straightforward algorithm has been implemented that checks for changes in the state's

value and, if any are found, calls a function that compares the estimated quaternion to

the state variable. At the same time, each component of the measured quaternion, coming

from a star tracker, is sorted to match the new state selection.

Now it is possible to go through the �lter implementation procedure. The predictor step

of the Kalman �lter is added inside section 7 in the FMU code, see 2.1. The use of the

FMU allows skipping the computation of the predicted state; its values will be extracted

later after the DoStep section of the FMU.

For the EKF implementation the computation of the linearized Jacobian A is required;

see equation 2.31. It is derived as follows [13]:

Algorithm 4.1 State Jacobian Derivation
for i = 1 : Nx do
dz := fmiF.fmiGetDirectionalDerivative(fmi,{Id_der},{Id_state});

dF[:,i] := dz;

end for
A = exp(dF*stepSize);

In algorithm 4.1 the fmiGetDirectionalDerivative function takes the directional deriva-

tive of the integer labels corresponding to the derivative of the state Id_der with respect

to the state labels Id_state. Both identi�ers are derived, as described above, from the

model description �le. For both EKF and MEKF algorithms, the computation of the

linearized observation operator is required. Its computation is described in algorithm 4.2.
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Algorithm 4.2 Measurements Jacobian Derivation
for i = 1 : Nx do

dh := fmiF.fmiGetDirectionalDerivative(fmi,{Id_in},{Id_state});

H[:,i] := dz;

end for

In algorithm 4.2 the term Id_in indicates the labels of the measured quantities.

Then, before the instruction DoStep is given to the FMU, the state correction computed

in the previous time step is applied to the FMU as follows:

fmiF.fmiSetReal(fmi,{Id_state},XCorr); (4.1)

The FMU integrates the system to the next time step. The use of FMUs allows for the

direct derivation of the expected measurements without using any Jacobian as shown in

equation (4.2). In the same equation, the predicted state is extracted.

yPred:=fmiF.fmiGetReal(fmi,{Id_in});

xPred:=fmiF.fmiGetReal(fmi,{Id_state});
(4.2)

Finally, in the second algorithm section of 2.1 it is possible to implement the predictor

section in the corresponding attitude �lter.

The two FMUs can now be both de�ned separately. The observed quaternion element

provided by a star tracker and the measurements about the angular velocities produced

from a gyroscope are needed as inputs for the EKF implementation. In the EKF algo-

rithm, the angular velocity is estimated individually. According to equation (4.3), a new

state is implemented for each angular velocity component. This has the bene�t of using

fewer matrices during computation.

Ω =

{
ω

δω

}
(4.3)

The state Jacobian used is equal to:

Fω =

[
1 1

0 1

]
(4.4)
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Then, the FMU that implements the EKF is reported in �gure 4.2. On the right-hand

side of the FMU block the needed inputs are present. As explained before, the FMU

is generated directly from Dymola and then modi�ed to include the EKF algorithm.

Thus, it requires the same input torque Tin as the chaser system model 3.2. The �lter

needs the observed quaternion and angular velocity vector to assess the system's attitude

appropriately. The estimated inertial properties are the �nal quantities used before the

integration. These are the output of the parameter estimation FMU. Inside both EKF

and MEKF implementation, the string of code (4.1) is used to change the mass and the

inertia matrix with the most up-to-date values.

FMU EKF

Figure 4.2: EKF implemented inside FMU

The outputs of the FMU are shown on the left-hand side of the block; see �gure 4.2.

The quantities q̂ and ω̂ are, respectively, the estimated quaternion and angular velocity

vectors. The parameter estimation technique uses the third and �nal output, known as

ŷ, as an input. Such quantity will be explained in the next section.

Regarding the MEKF implementation, as explained in section 2.4.2, the angular velocity

is estimated directly with the error quaternion. The output vectors for the FMU block

will be the same and, if necessary, all system variables can be accessed in the Results.mat

�le that is created once each simulation is started.

4.2. Parameter estimation FMU

The parameter estimation is implemented inside the FMU block shown in �gure 4.3. The

main di�erences with respect to the previous functional mock-up units shown above are

the inputs and outputs needed. As explained in section 2.5, the parameter estimation

process utilizes the estimated quantities from the state estimation algorithm. The vari-



4| Filter implementation 61

FMU Par Est

Figure 4.3: EKF for parameter estimation implemented inside FMU

ables required for the mass and inertia estimation operations can be determined from the

ModelDescription.xml �le. It contains the information on which quantities depend on

the inertial properties. They are the angular accelerations of the main chaser body and

the joint variable acceleration of the 7 DOF manipulator. Then, using the labels related

to the accelerations mentioned above, the Jacobian of the measured quantities with re-

spect to the inertial parameter is determined as explained in algorithm 4.2. The �lter

requires the use of the Sigmoid mapping, see section 2.5, so it is not possible to apply the

�lter state directly to the FMU since it does not directly represent the inertial properties.

This is another di�erence between implementing the parameter estimation process in the

FMU and the procedure shown above for the EKF. As a result, the state is transformed

into the inertial parameter after the predictor step so that it can be applied to the FMU

during the subsequent iteration.

The �lter was initially tested independently of the other FMU; as a result, the acceleration

data straight from the entire system model were used as inputs. This testing brought to

light that the related covariance was growing over time as the �lter estimated the value.

This behaviour was the antithesis of what was desired. It was determined that the Hx
k

term drove these observations; for more information, see algorithm 2.6. Equation 7 in

2.6 may be approximated as follows since the directional derivative, in particular, has an

extremely low value, in the order of 1e− 13.

Pθ
k =

(
I− Lθ

kH
x
k

)
Pθ

k|k−1 ≃ Pθ
k|k−1 → Pθ

k ≃ Pθ
k−1 +Qθ

k (4.5)

Since Qθ
k represents the variance of the �ctitious noise used for the dynamic modelling of

the parameter, which is strictly positive, the covariance matrix term tends to grow con-
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tinuously. An additional tuning parameter is used to improve the algorithm's derivation

of the covariance matrix. The tuning parameter is used in equation 7 of algorithm 2.6,

and the modi�ed equation becomes:

Pθ
k =

(
I− uLθ

kH
x
k

)
Pθ

k|k−1 (4.6)

The value assigned to the term u will be given in the following chapter within the initializa-

tion data for the simulation process. One last consideration on the parameter estimation

algorithm can be done on the �ctitious noise rk and its auto-covariance. The noise itself

changes the parameter value at each iteration process. Generally, it is possible to state

that as the noise increases, the �lter will modify the parameter value quickly. As the noise

decreases, the parameter value will be modi�ed gradually. Using such information, the

noise with its auto-covariance will assume a di�erent value as the time of the simulation

progresses. Its value will be large at the start of the simulation since the aim is to obtain

a fast convergence of the parameter we want to estimate. Then as simulation time in-

creases, the noise will decrease in value up to a predetermined lower bound. In this way,

when the �lter is near the true value of the parameter, its estimate will be more stable.

4.3. Overall system structure

Finally, once all aspects have been implemented within the Dymola environment, they

may be combined into the �nal model, which is utilized to obtain the results displayed in

the following chapter.

Figure 4.4 depicts how each block is connected to one another, as the two FMUs re-

sponsible for state and parameter estimation are coupled according to Scheme 2.3. In

addition to the FMUs and the system model, the sensors used for attitude determination

are implemented. The star tracker is set up as follows:

Algorithm 4.3 Star Tracker modelling
Input: true quaternion qtrue

Output: measured quaternion qm

1: Convert quaternion into Euler's angles

2: Apply to each of the three Euler's angles a white noise

3: Convert Euler's angles to quaternion qm

This approach preserves the unitary constraints of the true quaternion.
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Figure 4.4: Overall system with �lters scheme

In terms of angular velocity, the gyroscope model has been realized using equation (2.33).

The thruster block lacks a model, but it is placed to show the existence of a speci�ed

input torque. The prescribed torque in the simulation has the shape shown in picture

4.5. Its goal is to simulate the impulsive behaviour of an attitude control thruster. Also,

since the simulation aims to check if the attitude determination works and if the estimator

can estimate at least part of the system's inertial properties, the integral of the torque in

time is equal to zero. In this manner, the system is probed without interfering with other

functions.
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Figure 4.5: Input torque pro�le applied to chaser body
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In this chapter, the results from the simulations are presented and analyzed.

All the simulations are initialized with the same system parameters. As the initial state,

it is assumed that the system of the two combined satellites has zero absolute angular

velocity. The starting orientation value is unimportant to the goal of this work. As a

result, the following orientation quaternion is assigned to the reference system:

qi =


0.233

0.332

0.084

0.910

 (5.1)

As previously stated, the input torque was modelled to simulate the behaviour of several

impulsive attitude thrusters. The chaser's and Envisat's inertia and mass attributes are

identical to those described in Section 3.2.

The noises associated with each sensor are the �nal elements that must be initialized. In

terms of the star tracker, the noise added to each Euler angle prior to conversion is as

follows:

σi = 0.017[rad] (5.2)

The noise levels are acquired from Hyperion Technologies' star tracker ST400 [4]. The re-

sulting star tracker model is signi�cantly noisier than commercial products for the class of

satellite used as a chaser; this is done to demonstrate the FMU's ability to estimate states

from high noise measurements, making this application possible even for less expensive

hardware or smallsat missions.

Similarly, the noise values for the gyroscope are derived from an actual gyroscope, the

KVH DSP-4000 [4]. Its parameters are reported in table 5.1.
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Gyroscope Bias instability [deg/hr] ARW [deg/
√
hr]

KVH DSP-4000 1 0.067

Table 5.1: Noises for gyroscope model

5.1. EKF results analysis

The following structure is used to analyze the results: the EKF �lter is tested without the

parameter prediction model �rst, assuming that the inertial parameters are known ahead

of time, and then the EKF algorithm is tested with the parameter estimating procedure.

Two simulations are run for each analysis, one with the �exible model parameter derived in

section 3.3.1 and one with the spring sti�nesses set to k = 1e+7 [Nm/rad] to simulate a

model with the solar panels and manipulator assumed to be rigid. The state of the FMUs

is set to:

qi =


0.265

0.329

0.090

0.902

 (5.3)

The tuning parameters used in the EKF FMU, during the analysis, are reported in equa-

tion (5.4) for both quaternion and angular velocity estimation.

R3×3 = 0.012I3×3 Q3×3 = 0.00072I3×3 P0,3×3 = 0.022I3×3

Rω,2×2 = 0.12I2×2 Qω,2×2 = 0.12I2×2 P ω
0,2×2 = 0.1I2×2

(5.4)

The mass of Envisat is the primary inertial parameter that is estimated.

The �rst result refers to the simulation without the parameter estimation component.

The quaternion estimate from the EKF �lter with the true state of the system and with

the noisy observations are reported in Figure 5.2.

The derivation of the fourth quaternion auto-covariance value is particularly noteworthy.

The �lters produce the covariance matrix related to the state, which contains three ele-

ments, as described in 4.1. To represent the 3σ con�dence levels, the diagonal elements of

the covariance matrix are used as σi =
√
Pii. The fourth quaternion element can be com-

puted simply from the other values using the unitary constraints. In contrast, its 3σ value

is derived from the assumption that the uncertainties associated with the three estimated
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quaternion elements are unrelated. This assumption can be con�rmed by inspecting the

covariance matrix extra-diagonal elements, see �gure 5.1 .
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Figure 5.1: Outer-diagonal elements of Covariance matrix for EKF

As can be seen, the outer-diagonal values are more than orders of magnitude lower than

the diagonal ones that assume values above 10−5. As a result, the auto-covariance of the

fourth quaternion component can be calculated as follows:

P4 =

(
∂f(q)

∂q1

)2

P1 +

(
∂f(q)

∂q2

)2

P2 +

(
∂f(q)

∂q3

)2

P3

where

f(q) =
√

1− (q21 + q22 + q23)

(5.5)

As illustrated in Figure 5.2, the EKF �lter is capable of correctly calculating the physical

system's orientation. Figure 5.3 depicts the quaternion error together with the 3σ con-

�dence ranges produced from the FMU estimated covariance matrix. The EKF �lter's

covariance converges during the �rst few seconds of simulation, and it can be noted that

the absolute error of each quaternion is constantly less than the 3σ value. The mean

absolute integrated error is determined to provide a quantitative measure associated with

the error in estimating the quaternion state; the results are displayed in Table 5.2.

e1 e2 e3 e4

2.76e− 03 2.48e− 03 2.968e− 03 9.36e− 04

Table 5.2: Mean integrated absolute error of EKF
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Figure 5.2: Attitude estimate obtained from EKF without parameter estimation.
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Figure 5.3: Attitude estimate error with 3σ con�dence range.
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The simulation results with the FMU representing a rigid system are then illustrated in

Figures 5.4 and 5.5. The two �gures indicate the estimated state and the estimation

process error, respectively. The mean integrated absolute error is computed once more to

provide a measure of the error, and the results are displayed in Table 5.3. It is clear that,

even if the FMU does not accurately represent the underlying system, it can still achieve

a good approximation of the state.

e1 e2 e3 e4

3.37e− 03 1.71e− 03 2.14e− 03 7.91e− 04

Table 5.3: Mean integrated absolute error of EKF with rigid assumption

The outcomes of the two simulations can now be compared. The errors relative to the

rigid simulation are lower than the ones obtained from the simulation with the �exible

model. Such analysis may be deemed insu�cient to truly evaluate the two �lters. In

fact, as shown in Figure 5.5, the error of the rigid simulation exhibits a distinct behaviour

that di�ers from white noise. This assertion is supported by a whiteness test performed

on the error. Various approaches exist for performing such tests; the Anderson test is

employed in this work. It consists of computing the sample covariance from the error

data with a varying number of samples τ and counting the number of covariances that

exceed the con�dence level α = 0.05 referenced to a Gaussian distribution. The �exible

assumption �lter passes the whiteness test, while the other does not. As a result, while

the second �lter implementation has a smaller mean absolute error for some components

of q, it is incapable of accounting for the absence of �exible parts. This is also evident in

Figures 5.6 and 5.7, which depict the sample covariance of the simulations run using the

�exible and rigid assumptions, respectively. The covariance is calculated using Equation

(5.6), where N is the number of samples in the signal. The information is acquired from

the error concerning the �rst quaternion components. As can be seen, the 5.6 resembles

a white noise, that has the same variance as the error, better than the rigid simulation

results.

Cov(τ) =
1

N

N−τ∑
i=1

e(i)e(i− τ) (5.6)
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Figure 5.4: Attitude estimate obtained from EKF with rigid solar panels and manipulator

arm.
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Figure 5.5: EKF attitude estimate error with 3σ con�dence range with rigid solar panels

and manipulator arm.
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Figure 5.6: Covariance Analysis EKF
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Figure 5.7: Covariance Analysis EKF rigid

5.1.1. EKF and parameter estimation

The parameter estimation results conducted with the EKF are provided and explored

further below.

The parameter estimation FMU is set up with:

c = 0.001 a = 9000 [kg] b = 5000 [kg]

Rθ =

[
10−4I3×3 03×7

07×3 10−2I7×7

]
[kg2] Qθ = 0.1 + 20

t+1
[kg2] u = 1014

(5.7)

These parameters are discussed in sections 2.5 and 4.2. The value t represents the current

simulation time in equation (5.7). In contrast, the term Rθ represents the covariance of

the noise added to the inertial parameter inside the �lter. As discussed in section 4.2, the
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Figure 5.8: Mass estimate performed by EKF with �exible bodies assumption.

input noise to the FMU used for parameter estimation varies over time. In particular, for

all simulations performed in this work, the noise covariance is �xed to 20.1 at time t0 and

gradually drops to Rθ = 0.1.

Both simulations for �exible and sti� FMUs are done with an inaccurate Envisat satellite

mass value. The initial guess for the mass is 100 [kg] lower than the true value.

The �ndings for the EKF with �exible bodies assumption are shown in Figure 5.8. The

�gure demonstrates that the �lter can estimate the mass. The estimation quickly ap-

proaches the true value, and after t = 65 [s] it is within the 3σ range. At the end of the

simulation, the estimated mass is equal to mest = 7940.9 [kg] with 3σ = 39.70 [kg].

In Figure 5.9, the absolute error in the attitude estimate procedure may be seen. When

compared to the �ndings obtained without parameter estimation, the mass estimation

procedure produces a greater error. This is to be expected because the �lter needs to

work with an inaccurate number for Envisat's mass at �rst. It is possible to notice that

while the mass error decreases over time, the attitude error remains essentially constant.

This is due to the DEKF implementation, which excludes any correlation between mass

�uctuation and orientation, which, as can be seen, leads to larger errors.
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Figure 5.9: Quaternion error EKF with mass estimation and �exible assumption.

The �nal step for the EKF analysis is to determine if the rigid assumption �lter can still

estimate the mass of Envisat. The parameter estimation �lters utilize only the acceleration

data relative to the chaser body since the manipulator's joints are considered rigid. The

parameter estimation results are shown in �gure 5.10. As it is possible to see, the �lter

cannot estimate the mass, and the outputs of the �lters hover around the initial incorrect

value. Without an accurate measure of the Envisat mass, this �lter cannot estimate the

attitude of the chaser satellite with the tuning parameters given above, as shown in �gure

5.11.
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Figure 5.10: Mass estimation with EKF and rigid bodies.
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Figure 5.11: Attitude estimate EKF with rigid bodies and incorrect Envisat mass.
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5.2. MEKF results analysis

The MEKF performance analysis is carried out similarly to the EKF. The key distinction

is in the tuning parameters of the MEKF, which uses a di�erent state. Equation (5.8)

shows the values of the tuning parameters.

Q = 10−10I6×6 P0 =

[
0.82I3×3 03×3

03×3 0.12I3×3

]
R = 0.82I3×3 (5.8)

The same �lter utilized for the EKF study is employed for parameter estimation. The

collected data can then be analyzed. Figure 5.12 depicts the simulation results without

the parameter estimation �lter. It highlights that while the MEKF �lter may estimate

the true system state, it does so with considerable oscillatory behaviour, particularly for

the third and fourth quaternion components. This behaviour can be better understood

by looking at �gure 5.13. In contrast to the EKF analysis, the auto-covariance values

are not reported here. This is done because the MEKF computed covariance is linked

to the quaternion error vector used as a state rather than the attitude quaternion itself.

Table 5.4 shows the mean integrated errors relative to each component of the attitude

representation. They will be compared afterwards to the modi�ed model with rigid bodies

assumption and with the EKF results.

e1 e2 e3 e4

2.72e− 03 4.65e− 03 4.05e− 03 1.68e− 03

Table 5.4: Mean integrated absolute error of MEKF.
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Figure 5.12: Attitude estimate obtained from MEKF without parameter estimation.
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Figure 5.13: MEKF attitude estimate error.

Then, the simulation with all the spring sti�nesses set to k = 107 Nm/rad, which aims

to model a rigid implementation of the real system inside the FMU, is carried out. Figure

5.14 and �gure 5.15 show respectively the estimation of the attitude and the attitude

error. It can be clearly seen that the two results obtained from the �exible and rigid

FMUs are very similar to one another. This observation is corroborated by the mean

integrated absolute error results shown in table 5.4 and in table 5.5.

The whiteness test is performed over the error data derived from the MEKF simulations.

Both error vectors did not pass the Anderson test.

e1 e2 e3 e4

2.69e− 03 4.63e− 03 4.03e− 03 1.68e− 03

Table 5.5: Mean integrated absolute error of MEKF with rigid assumption
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Figure 5.14: Attitude estimate obtained from MEKF without parameter estimation and

with rigid bodies assumption.
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Figure 5.15: MEKF attitude estimate error with rigid bodies assumption.

Similarly to what is done above for the EKF, the covariance is computed and plotted

against a white Gaussian noise that has the same covariance as the error vector. The

obtained graphs are shown in �gure 5.16 and 5.17. The �rst �gure depicts the covariance

computation relative to the �exible MEKF implementation, and the second one is relative

to the rigid implementation of the �lter. The two graphs are again very similar. The main

explanation for such behaviour is that the MEKF, as it is implemented, does not utilise

the functionalities provided by the FMI standard. In particular, in the Kalman gain com-

putation and the covariance update, it does not take advantage of the provided function

getDirectionalDerivatives but instead uses a computed state transition matrix. It

was not possible to use the build-in function mainly because the multiplicative �lter does

not use a state that is common with the FMU. The MEKF �lter utilises the function-

alities of the FMI standard only in the computation of the predicted state and of the

predicted measurements. This consideration can further explain the similarities between

the absolute error of the attitude of the rigid and �exible implementations. The MEKF,

since it does not utilise major components provided by the FMU, is less dependent on the

model implemented inside the FMU. The slight di�erences between the output provided
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by the two di�erent �lters are not enough to signi�cantly impact the estimation process.
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Figure 5.16: Covariance Analysis MEKF
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Figure 5.17: Covariance Analysis MEKF rigid

5.2.1. MEKF and mass estimation

The �nal step in the analysis of the MEKF performance is to integrate it inside the dual

estimation process used to determine the mass of the true system. The mass estimation

results are shown in �gure 5.18. As it is possible to see, MEKF does not converge to the

correct mass during the simulation process that spans 100 seconds.
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Figure 5.18: Mass estimate performed by MEKF with �exible bodies assumption

It is possible to see the results of the quaternion estimation process from �gure 5.19.

With the same tuning parameter used in the previous section, the �lter cannot provide a

reliable estimate of the satellite attitude. A strong oscillatory behaviour of the estimate

of all the components of the attitude quaternion is highlighted. The MEKF estimator has

di�culties when the estimated mass changes in time. This is most probably due to two

concurrent factors. First, as explained before, the �lter does not utilize the FMU function

as EKF and thus has a poorer comprehension of the true system behaviour. Secondly,

at each time step, the mass varies, modifying the estimated measurements coming from

the FMU. With the inaccurate data coming from the MEKF, the parameter estimation

algorithm struggles to reach convergence in the simulation time.
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Figure 5.19: Attitude estimate obtained from MEKF with parameter estimation.



5| Performance Analysis 85

Lastly, the mass estimation results obtained from the MEKF with the rigid bodies as-

sumption are reported in �gure 5.20. These results are expected, given that the joint's

accelerations are not used. The �lter cannot perform an accurate estimation of the Envisat

mass; on the contrary, the mass hovers around the initial guess.
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Figure 5.20: Mass estimate performed by MEKF with rigid bodies assumption

5.3. Comparision between EKF and MEKF

After all the data for the EKF and MEKF are presented, it is possible to compare the

results obtained from the two di�erent approaches.

Regarding the state estimation process, both the EKF and MEKF FMUs are capable

of determining the attitude of the true system from the measurements with some minor

di�erences in the errors, even if the MEKF implementation shows some oscillatory be-

haviours around the true state. Nonetheless, it is essential to highlight that the EKF with

the �exibility assumption has the advantage of better representing the true system. This

is derived from its error covariance being the most similar to the one of a white noise.
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Regarding the mass estimation process, the EKF with the �exibility implementation per-

form the best and converges quickly to a correct estimate. Both rigid implementations

failed in the estimation procedure; this is due to the di�erences between the true system

and the one implemented inside the FMU, in addition to the exclusive use of the accel-

erations of the chaser satellite body. The MEKF with the �exible body assumption did

not work either and, as explained above, this is because the multiplicative �lter does not

take advantage of the functions provided by the FMU. The MEKF does not need such

functions to work since it is implemented and derived di�erently from the EKF, but in

this way, it performs much worse with the dual �lter implementation.
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Developments

This chapter deals with the conclusion and future developments. In particular, in sec-

tion 6.1 the achieved objectives of this thesis are presented, whereas in section 6.2 some

suggestions for future developments are proposed.

6.1. Conclusion

In chapter 3 the model implementation and validation procedure is presented. In par-

ticular, in section 3.1 an initial modeling approach with the Euler-Lagrange equation is

shown. The derivation of such equations is complex, and it requires the use of symbolic

manipulation. A simpli�ed system consisting of a solar panel with three rigid elements

connected with spring elements, the 7 DOFs manipulator, and the rigid chaser body, is

constructed. The kinetic energy for each rigid element of the solar panel and the rigid

chaser body is derived. The derived equations are complex due to the number of rotation

matrices relating each solar array element to the neighboring one, resulting in a small

set of large equations. The symbolic manipulation process can compute the dynamic

equations by applying the Lagrange formalism. The process is mainly limited by the

conversion of the symbolic equations into a function handle. The process with a further

simpli�ed system, without the manipulator, is time intensive, and it does not work at all

with a more complex system. The Euler-Lagrange approach provides the smallest set of

equations needed to model the dynamic system, but they are di�cult to translate into a

function that can be integrated. The translation procedure slows down mainly due to the

simpli�cation process in which the equation is written in a form that can be integrated. As

a result, the Euler-Lagrange approach is not the most suited option for modeling complex

rigid body systems.

In section 3.2 an alternative model implementation technique is explored. The approach

consists in using the Modelica language inside the Dymola environment. A system is

described by a set of equations that do not indicate the directionality of the exchange
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of information between its various components. Using an acausal programming language

such as Modelica allows for a model implementation that re�ects the nature of the real

system. Using a causal program such as Simulink provides a clear graphic visualization of

the signal �ow between blocks. Each block is connected with an arrow that symbolizes an

assignment; one block's input is dependent on another's output. This procedure represents

the calculation process rather than the modeled reality's structure. The acausal notation

allows for the implementation of a model through the use of relationships between variables

rather than expressing assignment.

The derivation procedure was straightforward: initially, a linearized model of the solar

panel is derived, and then the obtained set of equations is used to match the eigenvalues

and eigenvectors with the one obtained from a �nite element analysis. The matching

process is performed with a Gauss-Newton method, with which di�erent weights are used

to prioritize the minimization of the error on the eigenfrequencies or the minimization of

the error on the modal shapes. Then, in the same chapter 3, in section 3.3, the spring

sti�nesses of the solar panel model are derived.

The resulting set of spring sti�nesses is then validated in section 3.4. The validation

process is carried out using a transient load analysis. The results from the validation

process show that the model with the weights set to w = 0.1 more closely resembles the

fem model. This behavior can mainly be attributed to the non-linearity of the true model

dynamics.

Chapter 4 shows the implementation of the �lters algorithm inside the FMU. The �lter

aims to provide a reliable estimate of the chaser orientation and of the Envisat mass, which

is considered known but highly uncertain. This approach represents a new contribution

to the attitude determination framework. Using the FMI standards allows for a �exible

and easy-to-share implementation of the attitudes �lters. In addition, the testing can be

carried out in di�erent environments than the one used for modeling the system.

In chapter 5, the results of the attitude �lters are presented and divided for the EKF and

MEKF implementations. Regarding the EKF, the �lters can estimate the attitude with

or without the �exibility e�ects. In both cases, the covariance of the �lters converges.

However, it is much faster for the Extended Kalman Filter with �exibility dynamics than

the one with rigid body assumptions. For the mass estimation, only the EKF with the

�exible model can provide a good estimate of the inertia parameter. This is due to two

main reasons: the modeled rigid system does not correctly represent the true one, and

the �lter cannot take advantage of the acceleration measurements from the manipulator's

joints. The inability to estimate the mass parameter correctly leads to a poor estimation
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of the attitude parameter.

The MEKF �lter implementation performed worse compared to the results obtained with

the EKF. First, no major di�erences in attitude estimation are highlighted between rigid

or �exible models. This can be explained by how the �lter has been implemented. The

�lter does not use the provided functionalities of the FMU in the computation of the state

Jacobian. The FMU is utilized mainly as a �lter container and to compute the predicted

state and measurements. The di�erent implementation makes the MEKF less capable

than the EKF in interpreting the proper system behaviour.

Regarding the mass estimation process, the measurements obtained with the MEKF are

used as input to the parameter estimation �lter, which is the same one utilized in the EKF

implementation. Regarding the �exible model implementation, the results of the dual

�ltering implementation show that the MEKF has worse performance when compared

to the EKF. This can be attributed to the di�erent implementations of the MEKF, as

explained above. In addition to the poor performance in the mass estimation, the �lter

does not provide a reasonable estimate even for the attitude parameters. A possible

explanation can be found in the interaction process of the �lters in the dual Kalman

�ltering scheme. Most probably, the ever-changing values for the Envisat mass break

the stability achieved with the MEKF in the previous step, in addition to the wrong

assumption on the Envisat mass. Finally, the MEKF with the rigid bodies assumption

cannot provide an acceptable estimate for the mass or for the orientation quaternion.

To summarize, this work has shown the ability of the dual EKF implementation, paired

with an FMU, to estimate the attitude of the chaser spacecraft and to measure the

mass property of the target satellite. At the same time, the MEKF implementation

shortcomings have been highlighted.

6.2. Future Developments

The conclusion of this work provided a full-picture view of the �exibility modelling and

e�ects for the attitude and parameter estimation problem. This section gives some sug-

gestions on how further developments may be carried out. In particular:

� This work focused on the determination of the mass parameter of the target satel-

lite. Further analysis can be done in the estimation of the overall inertia matrix of

Envisat.

� All simulations carried out in this thesis are done with a 100 second period. It would

be bene�cial to investigate the stability of the EKF �lter for a longer simulation
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time.

� A future research topic could be implementing a di�erent �lter than the EKF or

MEKF within the FMU. An example could be the implementation of an Unscented

Kalman Filter (UKF).

� Further developments can be done in modelling the system's �exible elements. While

modelling the manipulator �exibilities with a lumped parameter approach is �ne,

it could be bene�cial to model the �exible solar panel with a FEM-like code inside

the Dymola environment.

� In future developments, it would be advisable to implement the parameter estima-

tion �lter directly inside the attitude EKF, in order to verify whether the enlarge-

ment of the state could provide any performance improvements.
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