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Abstract: Machine Learning as-a-Service (MLaaS) has gained large popularity
over the last years and it refers to the wide range of Machine Learning (ML) tools
offered as services from cloud computing providers. Basically, it is the use of tech-
nology to automatically train, test, and deploy Machine Learning models for a user,
typically by leveraging an AI platform with offsite server farms (a “cloud”) to run
them on behalf of the customer. The goal of MLaaS is to make it easier and more
affordable for companies to use ML, so they can get better insights from their data
faster than ever before. MLaaS is used for a wide range of use-cases like Natural
Language Processing, Forecasting, Regression, Image recognition etc. However, in
the literature of Machine Learning as-a-Service very little attention has been posed
to the data collected by sensors in industrial environments. From this perspective,
the design and development of a Machine Learning as-a-Service tool for the identifi-
cation of anomalies in the industrial environment is a novel and promising research
area. This thesis aims at build an innovative client-server architecture that allows
to offer Anomaly detection as-a-Service via RESTful APIs, based on supervised
and unsupervised Machine Learning algorithms, with three different types of ser-
vices: the training of a ML model, the update of a ML model and the inference of a
sample data through a ML model. In this perspective, a real case study is treated
in which Eisenmann Italia S.r.l. company wants to build a monitoring system for
the identification of anomalies in the context of predictive maintenance. Predictive
maintenance allows to anticipate the occurrence of certain events on the operation
of industrial machinery, improving productivity, extending the life cycle of assets
and reducing repair costs and complexity. In the industrial scenario of Eisenmann
Italia S.r.l., a series of triaxial sensors mounted on applications for air treatment,
burners etc., carry out a periodic data collection. Subsequently, these data were
manipulated and used to train supervised and unsupervised ML models, allowing
to classify and predict anomalous states of different machines. Moreover, since no
data were available in which the machines are in anomalous conditions, synthetic
data have been introduced, constructed from nominal data. The results obtained
by both approaches are remarkable. In particular, those obtained from the un-
supervised approach, based on the One-class Support Vector Machine (One-class
SVM) algorithm give hope for a practical use of the entire client-server architecture
for the Anomaly detection as-a-Service in the industrial processes.

Key-words: Machine Learning as-a-Service, Machine Learning, Anomaly detection as-a-Service,
Anomaly detection, Client-Server Architecture, Unsupervised Model
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1. Introduction

Cloud Computing has arguably been one of the biggest technology innovation of the past two decades. Cloud
Computing is a model for enabling ubiquitous, convenient, on demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction [1]. A Cloud provider
is an organization responsible for acquiring and managing a computing infrastructure and for making a service
available to the parties concerned.
In particular, in the recent years Machine Learning as-a-Service (MLaaS) is playing a fundamental role in the
Cloud world. The support of Machine Learning as-a-Service approach resides in the ability to provide users and
companies, via web-console or API, with ready-to-use or remotely trainable Machine Learning models leveraging
the high performance computing and memory abilities of Cloud Computing systems.
Likewise, nowadays in the production process of every company, machinery and automation play a fundamental
role. For this reason, the planning of maintenance interventions on machines, the prevention of faults and
breakdowns, based on the technology used each time and the needs of the market, has become increasingly
important.
In the recent years the focus has thus moved from "reactive" maintenance interventions to "preventive" or
"proactive" interventions, which do not repair the fault but prevent it, including the so-called predictive main-
tenance; it aims to prevent a certain machine or component from suddenly reaching the end of its useful life at
the expense of the detriment of productivity and safety. Moreover it is an activity that is based on the analysis
of data collected by machinery, in order to convert this information into a value that can contribute not only
to improving their productivity, but also to reduce risks connected to a potential malfunction and minimize the
impact of maintenance costs.
As anticipated, predictive maintenance falls into the category of scheduled maintenance interventions, which
includes:

• Preventive maintenance: it intervenes just before the failure occurs.
• Cyclical preventive maintenance: it adds to the preventive nature of the technical interventions the

planning over time, based on the wear to which the machinery is subject and the indications provided by
the manufacturers.

• Predictive maintenance: with the help of additional components, such as valves, sensors, or graphic
interfaces, it allows the company to plan interventions based on the exceeding of a certain "alert" value,
the residual life time, the actual wear of a certain component. This allows to maximize the interventions,
which are planned according to real needs and not only on the basis of estimates.

In particular, sensors are among the most suitable preventive maintenance solutions. High-quality static sensors
are installed on the machinery that monitor the system in real time, collect and transmit important information,
and report any anomalies.
Detecting anomalies has been a research topic for a long time and it has broad field of applications including
fraud detection in financial transactions, intrusion detection in a computer network, monitoring sensor readings
in an aircraft, spotting potential risk or medical problems in health data, and predictive maintenance.
Basically anomalies are data points which deviate from the normal distribution of the whole dataset, and
Anomaly detection is the technique to find them. Input data can be broadly classified into sequential (e.g.
voice, text, music, time-series) or non-sequential data (e.g. images, other data) and there are various types
of approaches to identify anomalies such as statistical methods, classical Machine Learning methods, methods
using neural networks (Deep Learning).
The main problem regarding Anomaly detection is the lack of anomaly data. Since the systems work properly
for the most of their time, it is difficult to detect whether and when an anomaly event may happen. And
therefore if this type of data does not exist, it is necessary to rely only on nominal data.

1.1. Goal and Results

This thesis aims at build an innovative client-server architecture that allows to offer Anomaly detection as-
a-Service via RESTful APIs, based on supervised and unsupervised Machine Learning (ML) algorithms, with
three different types of services: the training of a ML model, the update of a ML model and the inference of a
sample data through a ML model.
In the literature of Machine Learning as-a-Service most of the efforts focused on images, video and textual
information, while very little attention has been posed to sensor data sampling in industrial environments.
From this perspective, the design and development of Cloud-based Machine Learning as-a-Service tool for the
identification of anomalies in the industrial environment is a novel and promising research area.
Moreover, a real case study is treated in which Eisenmann Italia S.r.l. company wants to build a monitoring
system for the identification of anomalies in the perspective of predictive maintenance in Industry 4.0. And a
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client-server architecture for Anomaly detection as-a-Service is a solution tailored to the business’s needs.
Specifically, the purpose of the Anomaly detection analysis is to identify anomalous operating states of such
machinery from a predictive maintenance perspective. Where the anomalous state of a machine means a
phenomenon that continues over time and that differs from previous measurements.
The technological scenario includes a series of triaxial accelerometers positioned on applications for air treatment
such as rotary electric motors or burners. The malfunction in these types of devices inside the plant is critical
as it would send down the production.
The lack of data for which the machines first work correctly and then enter an anomalous state, lead to the
choice of one-class classification algorithms; at the same time another solution is to generate synthetic data
based on nominal data making it abnormal and thus applying Machine Learning algorithms, both binary and
multi-class classification. A key point is the use of one model for each sensor, since sensors are not homogeneous
with each other.

1.2. Thesis Structure

Chapter 2 describes the current state of art of Machine Learning as-a-Service and Anomaly detection with a
glance in the perspective of predictive maintenance.
Chapter 3 introduces the fundamental notions about Anomaly detection including the different types of anoma-
lies and the properties of data, along with a basic background on main Statistical, Machine Learning and Deep
Learning methods for Anomaly detection. Moreover, the vibration signal theory is treated.
Chapter 4 is the core of the work and proposes an innovative client-server architecture suitable for the Anomaly
detection as-a-Service via RESTful APIs task.
Chapter 5 goes into detail of the main operational phases of the architecture.
Chapter 6 describes the implementation of the architecture.
Chapter 7 explains the system of Anomaly detection as-a-Service running on AWS machines.
Chapter 8 presents the case study of Eisenmann Italia S.r.l. company.
Chapter 9 includes the experiments conducted on the case study with both supervised and unsupervised ap-
proaches, and the results obtained.
Conclusions are finally drawn in Chapter 10.

2. Related Literature

This Chapter collects studies and works with the goal of presenting Machine Learning as-a-Service solutions
and different methods of Anomaly detection in the literature, in order to give a big picture of the state of the
art.
In the literature of Machine Learning as-a-Service most of the efforts focused on images, video and textual
information and the applications are far from Anomaly detection. Tay [2] applied deep learning algorithms
within the area of wood identification, to create an “Artificial Intelligence as-a-Service” (AIaaS) product. Since
their applied method, deep learning is part of ML, their product is also a MLaaS product. Their tool consists
of individual cloud-based services for data collection, data verification, model training, internal testing, and
inference. The authors trained their model with macroscopic wood anatomy images and information about
type and origin of the wood. Their goal is to fight illegal logging by harming the black market for illegal wood.
Instead, to tackle the cost of bug fixing within software engineering, modern debugging and testing methods
moved from finding to predicting the bugs [3]. The field of bug fixing is another area that leverages ML
predictions. Subbiah et al. [3] apply Microsoft’s MLaaS platform Azure Machine Learning to leverage the easy
model deployment via the cloud web service. By proposing bug prediction via MLaaS the authors provide Bug
Prediction as-a-Service (BPaaS).
MLaaS can be leveraged in other areas as well. Within the field of Urban Modelling, the model can be used
to enable another service model, Urban Modelling as-a-Service (UMaaS). Milton and Roumpani [4] propose
the application of deep learning networks within an “as-a-Service” setting, to enable UMaaS. The system is
providing urban planners with the capabilities to develop applications, and see results immediately, thanks to
the increased speed by leveraging ML. The authors further propose a platform architecture, to enable sharing of
modelling data, such as zone boundaries or trips and cost matrices. Curating the shared data provides another
essential service by ensuring quality standards.
One of the challenges within MLaaS are attacks on network data. Rajagopal et al. [5] propose a solution
within network intrusion detection applying MLaaS and by that increasing time-efficiency. The goal is to
correctly classify an attack as such. The authors further analyzed the performance, training-, and prediction
time of different algorithms on Microsoft’s Azure Machine Learning Studio Platform (MAMLS) by applying
all algorithms to the same dataset. The best accuracy and precision were accomplished by the decision forest
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algorithm. Using Microsoft’s MLaaS platform MAMLS enabled the authors to conduct this otherwise extremely
time-consuming experiment.
Starting with statistical approaches of Anomaly detection, Histogram-based Outlier Score (HBOS) [6] generates
an histogram for each independent feature of the given dataset. The values of the features of all the available data
points are first used to build histograms; at a later stage, for each data point, the anomaly score is calculated as
the multiplication of the inverse heights of the columns in which each of its features falls. In general histogram-
based techniques are relatively simple to implement, but a key shortcoming of such techniques for multivariate
data is that they are not able to capture the interactions between different attributes. An anomaly might have
attribute values that are individually very frequent, but their combination is very rare, but an attribute-wise
histogram based technique would not be able to detect such anomalies.
Sohn et al. [7] have presented time series analysis for fault source in mechanical systems. A two stage model
combined with autoregression and exogenous input technique is used for damage location.
Outlier Detection using Indegree Number (ODIN) stems from Kth-Nearest Neighbor [8] and it examines the
whole dataset to determine their feature distances to the given point. This allows isolating nearest neigh-
bors(NN), creating the kNN graph. Differently from kNN, ODIN defines as anomalies the data points that have
a low number of in-adjacent edges in the kNN graph.
Chen et al. [9] have presented a detection method that integrates one-class SVM with a pre-defined Autoregres-
sive Integrated Moving Average (ARIMA) regression process. Meanwhile, an automatic cyclic-analysis method
is also developed as a preprocessing to suppress temporal non-stationarity in condition signal before feeding it
to the monitoring process. As such, a novel framework of continuous monitoring of condition signal is presented
to inspect whether an unexpected running status change occurs or not during continuous machine operations.
The proposed framework is applied to three representative condition monitoring applications: external loading
condition monitoring, bearing health condition assessment, and rotational speed condition monitoring.
Vibration analysis is a widely used condition monitoring technique for high-speed rotating machinery. Using the
information contained in the vibration signals, an automatic method for bearing fault detection and diagnosis
is presented in the work of Fernández-Francos et al. [10]. Initially, a one-class v-SVM is used to discriminate
between normal and faulty conditions. In order to build a model of normal operation regime, only data extracted
under normal conditions is used.
A methodology was proposed by Sampaio et al. [11] to treat and convert the collected data of vibration mea-
surements from a vibration system that simulated a motor and to build a dataset in order to train and test an
ANN model capable of predicting the future condition of the equipment, predicting when a failure can happen.
The methodology involves the use of frequency and amplitude data by classifying the dataset and defining a
way of calculating the vibrating system’s failure time.
Recorded failure data is often only valid for the specific circumstances and components for which it was collected.
The work of Sobie et al. [12] directly addresses these challenges for roller bearings with race faults by generating
training data using information gained from high resolution simulations of roller bearing dynamics, which is
used to train ML algorithms that are then validated against four experimental dataset.
Zimnickas et al. [13] built a test workbench for collecting vibration signals from several different induction
motors whose conditions can be listed as: bad bearings, loose mounting, rotor eccentricity, lost phase to motor
and short circuit in stator winding, and they applied a hybrid method of Continuous Wavelet Transform (CWT)
and CNN to 2D representations of their collected data.
Generative models aim to learn exact data distribution in order to generate new data points with some variations.
The two most efficient generative approaches is Generative Adversarial Networks (GAN) [14]. A variant of GAN
architecture known as Adversarial Autoencoders (AAE) that use adversarial training to impose an arbitrary
prior on the latent code learned within hidden layers of autoencoder are also shown to learn the input distribution
effectively. Leveraging this ability of learning input distributions, several Generative Adversarial Networks-based
Anomaly detection (GAN-AD) frameworks [15] proposed are shown to be effective in identifying anomalies on
high dimensional and complex dataset.

3. Background

This Chapter collects the main notions required to fully understands various aspects of this work. More
specifically, Section 3.1 presents the concept of anomalies and the objective of Anomaly detection along with
considerations on various approaches depending on the type of data. In Section 3.2 the statistical methods for
Anomaly detection are shown. In Section 3.3 a brief summary on Machine Learning will be presented, along
with various methods of ML for Anomaly detection; while in Section 3.4 a small consideration on Deep Learning
is presented. Section 3.5 gives the basics of theory of signal. Lastly, Section 3.6 gives an overview on the current
acceleration sensors solutions for vibration measurements.
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3.1. Anomaly Detection

The most common definition of anomalies is the following: “Anomalies are patterns in data that do not conform
to a well defined notion of normal behavior.” Chandola et al. [16].
Anomalies can appear in different forms. Commonly, three different types of anomalies exist:

• Point anomalies: The majority of work in literature focuses on point anomalies. If a point deviates
significantly from the rest of the data, it is considered a point anomaly (Figure 1). Hence, a point Xt is
considered a point anomaly, if its value differs significantly from all the points in the interval [Xt−k,Xt+k],
k ∈ R and k is sufficient large.

Figure 1: Point anomaly (circled in red) in random Gaussian noise

• Collective anomalies: If a collection of related data instances is anomalous with respect to the entire
data set, it is termed as a collective anomaly. The individual data instances in a collective anomaly may
not be anomalies by themselves, but their occurrence together as a collection is anomalous (Figure 2).

Figure 2: Collective anomaly in simulated ECG time series (marked in red)

• Contextual anomalies: Contextual anomalies are observations or sequences which deviate from the
expected patterns within the time series, however, if taken in isolation they may be within the range of
values expected for that signal. When taken in the context of the surrounding observations (Figure 3) a
contextual anomaly is a deviation from the norm.
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Figure 3: Contextual anomaly, the anomalous value at 600 is the same as a number of other observations
however in the context this value is anomalous

Anomaly detection has the objective of detecting rare data points that deviate remarkably from the general
distribution of the dataset. The amount of deviation is usually regarded as a measure of strength of the anomaly
or probabilistically the likelihood of being an anomaly [17]. Thus formally, Anomaly detection can be defined
as a function ϕ:

ϕ : Rn → R

ϕ(x) 7→ γ

where γ is the anomaly score, x ∈ X ⊆ Rn, and X is the dataset.
To convert the continuous value γ into a binary label, a threshold δ ∈ R is defined where all points with an
anomaly score greater than δ are marked as an anomaly. Thus, let ϕscore := ϕ, then the binary labeling Anomaly
detection method ϕbinary can be defined as:

ϕbinary : Rn → {normal, anomaly}

ϕbinary(x) 7→

{
anomaly, if ϕscore(x) > δ

normal, otherwise

In order to achieve satisfying results in Anomaly detection, the proper Anomaly detection method has to be
selected which is dependent on the properties of the inspected data. The following properties are important for
selecting the appropriate approach:

1. Temporal vs Non-Temporal data: Non-Temporal data can be medical images, protein sequences etc.
Temporal data include time-series, but also data with timestamps of unequal interval.

2. Univariate vs Multivariate data: Univariate data takes only one dimension, e.g. the stock price, while
multivariate data contains multiple dimensions. Instances of multivariate data are images or time-series
observed by several sensors.

3. Labeled or unlabeled data: A dataset is labeled if an annotation exists for each element in the dataset,
which determines if it is a normal or anomalous data point. A labeled dataset with normal and anomalous
points is the object of supervised Anomaly detection methods. It is possible that the dataset is completely
labeled but only consists of normal points. Then, it can be analysed by semi-supervised methods. Finally,
unlabeled data is the object of unsupervised Anomaly detection methods.

Anomaly detection methods can be divided in three main categories:
• Statistical methods.
• Classical Machine Learning methods.
• Methods using neural networks (Deep Learning).

3.2. Statistical Methods

These methods utilize historical data to model the expected behavior of a system. When a new observation is
received it is compared against the current model for that system and if it does not fit within that model it is
registered as an anomaly [18].
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3.2.1. ARMA Model

Let Xt be the signal X at time t, it is assumed that Xt depends linearly on the previous values Xt−1, . . . , Xt−p

where p is the order of auto-regression. Thus the Auto-Regressive (AR) model of order p, AR(p) is defined as:

Xt = c+

p∑
i=1

ϕiXt−i + ϵt

where ϕ1, ..., ϕp are auto-regression parameters that can be learned based on historical data and used to predict
or find similar time-series, c is a constant and ϵt ∼ N(0, σ2) is a Gaussian noise.
The Moving Average (MA) model of order q regresses on the noise terms ϵt. Thus MA(q) is defined as:

Xt = µ+ ϵt +

q∑
i=1

θiϵt−i

where θ1, . . . , θq are learnable parameters of the model, µ is the expectation of Xt and ϵt−i ∼ N(0, σ2) are
independent and identically distributed (iid) Gaussian noise terms.
It is possible to combine the two complimentary views of modeling Xt into a single equation giving rise to the
Auto-Regressive Moving-Average model, ARMA(p, q):

Xt = c+ ϵt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiϵt−i

Using historical data, it is possible to select p and q in ARMA(p, q) model and learn the model coefficients θ
and ϕ in order to make a future prediction. A substantial deviation, from the prediction result in time-series
anomaly, could be two standard deviation from a moving average of X. The model parameters θ and ϕ are
learned via Maximum Likelihood Estimation (MLE).

3.2.2. ARIMA Model

One of the main problems with dataset is the fact that they can be non-stationary. Stationarity is a precondition
for models like ARMA. The ARIMA model is a generalization of the ARMA model. In addition to the p and q
parameter, it is also defined by a d parameter which defines the number of times the time-series is differenced.
For d = 1, the time-series x0, ..., xT is differenced as follows:

X
′

i = Xi −Xi−1,∀i ∈ 1, ..., T

Differencing removes a trend in the time-series resulting in a constant mean. If the trend is non-linear, dif-
ferencing must be done several times, thus, d > 1. Differencing is also used to remove seasons. The Seasonal
Differencing is as follows:

X
′

t = Xt −Xt−n

where n is the duration of the season.
After fitting the ARIMA model, anomalies are detected by evaluating the deviation of the predicted point to
the observed one.

3.3. Machine Learning methods

Machine Learning (ML) is a subset of Artificial Intelligence (AI). Artificial Intelligence is a generic term and
refers to systems or machines that mimic human intelligence, although Machine Learning creates systems that
learn or improve performance based on the data they use. In particular, ML is the study of computer algorithms
which are able to improve automatically in solving a certain task. Machine Learning tasks are usually described
in terms of how the ML system should process an example. An example is a collection of features that have been
quantitatively measured from some object or event that we want the ML system to process [19]. Many kinds of
tasks can be solved with ML algorithms. Some of the most common ML tasks include: classification, clustering,
transcription, machine translation, Anomaly detection etc. ML algorithms use a mathematical model which
could be optimized using sample data (training data) or not.
A model represents what was learned by a ML algorithm. The model is the “thing” that is saved after running
a ML algorithm on training data and represents the rules, numbers, and any other algorithm-specific data
structures required to make predictions.
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There are at least three different paradigms used to build the model, based on the availability of the labels in
the data. Supervised learning, Semi-Supervised Learning and Unsupervised Learning. Since the work is focused
on the identification of anomalies the paradigms are presented in this perspective (Figure 4), through a clear
categorization [20].

Figure 4: Different Anomaly detection modes depending on the availability of labels in the dataset

Supervised Anomaly detection. Techniques trained in supervised mode assume the availability of a training
data set which has labeled instances for normal as well as anomaly class. Typical approach in such cases is to
build a predictive model for normal vs. anomaly classes. Any unseen data instance is compared against the
model to determine which class it belongs to. There are two major issues that arise in supervised Anomaly
detection. First, the anomalous instances are far fewer compared to the normal instances in the training data
(imbalanced class). Second, obtaining accurate and representative labels, especially for the anomaly class is
usually challenging.
Semi-Supervised Anomaly detection. Techniques that operate in a semi-supervised mode, assume that the
training data has labeled instances for only the normal class. Since they do not require labels for the anomaly
class, they are more widely applicable than supervised techniques. The typical approach used in such techniques
is to build a model for the class corresponding to normal behavior, and use the model to identify anomalies in
the test data.
Unsupervised Anomaly detection. Techniques that operate in unsupervised mode do not require label
training data and thus are most widely applicable. The techniques in this category make the implicit assumption
that normal instances are far more frequent than anomalies in the test data. If this assumption is not true then
such techniques suffer from high false alarm rate.

3.3.1. Clustering-Based

Clustering is an extensively studied data mining technique that groups data into multiple clusters with similar
data instances ending up in the same cluster. Anomaly detection algorithms based on clustering usually take a
two-step procedure: grouping the data with clustering algorithms and analyze the degree of deviation based on
the clustering results. As pointed as by Aggarwal [21], there is a complementary relationship between clusters
and outliers, which can be simplistically put as that a data point not belonging to any clusters is considered
an outlier. Aside from the cluster membership (whether or not in a cluster), there are two other commonly
used cluster-related quantities to construct an outlier score. The first is the distance to the cluster center, the
assumption being that normal data points are close to the cluster centers, whereas the outliers are far from
them. The second is the cardinality of a cluster, the assumption being that the cluster of normal data points
is dense and large, whereas the cluster of outliers is sparse and small. In conclusion, those observations which
present close and within dense clusters are indicated as normal observations while those which present further
away from, or do not belong to, these clusters are reported as anomalous [16].
K-means Clustering (K-Means) is a popular clustering algorithm that groups data points into k clusters by their
feature values [22]. First, the k cluster centroids are randomly initialized. Then, each data record is assigned to
the cluster with the nearest centroid, and the centroids of the modified clusters are re-calculated. This process
stops when the centroids are not changing anymore. Data points are put in the same cluster when they have
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similar feature values according to a given distance function. Finally, scores of each data point inside a cluster
are calculated as the distance to its centroid. Data points which are far from the centroid of their clusters are
labeled as anomalies.
Local Density Cluster-based Outlier Factor (LDCOF) estimates the density of clusters generated by using the
K-means clustering algorithm, which are separated into small and large groups [23]. For each cluster, the average
distance of all its data points to the centroid is calculated, normalized by the average distance of the data points
of this cluster to its centroid, and used as anomaly score. Therefore, expected data points result in smaller
scores i.e., close to 1.0, because their densities are as big as the densities of their cluster neighbors. Instead,
anomalies will result in larger scores, since their densities are smaller than the densities of their neighbors.
The advantages of clustering based techniques are that they can operate in an unsupervised mode. They
can often be adapted to other complex data types by simply plugging in a clustering algorithm that can
handle the particular data type and the testing phase for clustering based techniques is fast since the number
of clusters against which every test instance needs to be compared is a small constant. The disadvantages of
clustering based techniques are that performance is highly dependent on the effectiveness of clustering algorithm
in capturing the cluster structure of normal instances, some algorithms force every instance to be assigned to
some cluster in fact this might result in anomalies getting assigned to a large cluster, thereby being considered
as normal instances by techniques that operate under the assumption that anomalies do not belong to any
cluster. Another disadvantage is that some clustering based techniques are effective only when the anomalies
do not form significant clusters among themselves.

3.3.2. Nearest Neighbor-Based

The concept of nearest neighbor analysis has been used in several anomaly detection techniques. Such techniques
are based on the following key assumption: normal data instances occur in dense neighborhoods, while anomalies
occur far from their closest neighbors.
Nearest neighbor based anomaly detection techniques require a distance or similarity measure defined between
two data instances. Distance (or similarity) between two data instances can be computed in different ways.
Nearest neighbor-based outlier detection approaches measure the degree of abnormality on the basis of a data
point’s relation to its nearest neighbors. There are two main ways to define the neighborhood: k nearest neigh-
bors and a neighborhood within a pre-specified radius, centered by a data point. The underlying assumption is
that normal data instances are closer to their neighbors, thus forming a dense neighborhood, whereas outliers
are far from their neighbors, thus sparsely populated.
Kth-Nearest Neighbor (kNN) was primarily designed to identify outliers. For each data point, the whole set
of data points is examined to extract the k items that have the most similar feature values: these are the k
nearest neighbors (NN). Then, the data point is classified as anomalous if the majority of NN was previously
classified as anomalous. Note that while the nearest neighbours are gathered in an unsupervised manner, the
final classification needs some labels in the training set.
The advantages of nearest neighbor based techniques are that they are unsupervised in nature and do not
make any assumptions regarding the generative distribution for the data; instead, they are purely data driven.
Moreover, adapting these techniques to a different data type is straightforward, and primarily requires defining
an appropriate distance measure for the given data.
The disadvantages of nearest neighbor based techniques are that for unsupervised techniques, if the data has
normal instances that do not have enough close neighbors or if the data has anomalies that have enough close
neighbors, the technique fails to label them correctly, resulting in missed anomalies. Another disadvantage is
that the computational complexity of the testing phase is also a significant challenge since it involves computing
the distance of each test instance with all instances belonging to either the test data itself, or to the training
data, to compute the nearest neighbors.

3.3.3. Classification-Based

Classification is used to learn a model (classifier) from a set of labeled data instances (training) and then,
classify a test instance into one of the classes using the learnt model (testing). Classification based anomaly
detection techniques operate in a similar two-phase fashion. The training phase learns a classifier using the
available labeled training data. The testing phase classifies a test instance as normal or anomalous using the
classifier. Based on the labels available for training phase, classification based anomaly detection techniques
can be grouped into two broad categories: multi-class and one-class anomaly detection techniques (Figure 5).

• Multi-class classification based anomaly detection techniques assume that the training data contains
labeled instances belonging to multiple normal classes.

• One-class classification based anomaly detection techniques assume that all training instances have only
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one class label. Such techniques learn a discriminative boundary around the normal instances using a
one-class classification algorithm.

Figure 5: Multi-class and One-class classification for anomaly detection

One-class Support Vector Machine (one-class SVM) is an algorithm [24] that aims at learning a decision bound-
ary to group the data points. Therefore it can be used for unsupervised anomaly detection, despite at first
supervised support vector machines (SVMs) were used only for semi-supervised anomaly detection. In the
unsupervised anomaly detection scenario, the one-class SVM is trained using the dataset and afterwards, each
instance in the dataset is scored by a normalized distance to the determined decision boundary [24]. The pa-
rameter v needs to be set to a value lager than zero such that the contained anomalies are correctly handled by
a soft-margin.
Isolation Forest (IF) structures data points as nodes of an isolation tree, assuming that anomalies are rare events
with feature values that differ a lot from expected data points. Therefore, anomalies are more susceptible to
isolation than the expected data points, since they are isolated closer to the root of the tree instead of the
leaves. It follows that a data point can be isolated and then classified according to its distance from the root of
the tree.
The computational complexity of classification based techniques depends on the classification algorithm being
used. Generally, training decision trees tends to be faster while techniques that involve quadratic optimization,
such as SVMs, are more expensive. The testing phase of classification techniques is usually very fast since the
testing phase uses a learnt model for classification.

3.4. Deep Learning methods

Deep learning (DL) is part of a broader family of ML methods based on artificial neural networks (ANN).
Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning,
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have been applied to fields in-
cluding computer vision, speech recognition, natural language processing, machine translation etc., where they
have produced results comparable to and in some cases surpassing human expert performance.
Autoencoders are the fundamental unsupervised deep architectures used in anomaly detection [25]. The deep
unsupervised models proposed for anomaly detection rely on the assumption that unsupervised anomaly de-
tection algorithm produces an outlier score of the data instances based on intrinsic properties of the data-set
such as distances or densities. The hidden layers of deep neural network aim to capture these intrinsic prop-
erties within the dataset. The autoencoders are the most common architecture employed in outlier detection
with quadratic cost, the computational complexity of training an autoencoder is much higher than traditional
methods.
The advantage of unsupervised deep anomaly detection techniques is that they learn the inherent data charac-
teristics to separate normal from an anomalous data point. This technique identifies commonalities within the
data and facilitates outlier detection.
The significant disadvantages of unsupervised deep anomaly detection techniques are that often it is challenging
to learn commonalities within data in a complex and high dimensional space and while using autoencoders the
choice of right degree of compression, i.e., dimensionality reduction is often an hyper-parameter that requires
tuning for optimal results.

3.5. Basics of Signals and Fourier Transform

A signal is a function that conveys information about the behavior of a system or attributes of some phe-
nomenon [26].
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Signals can be categorized in various ways. The most common distinction is between discrete and continuous
spaces that the functions are defined over, for example, discrete and continuous-time domains.
Discrete-time signals are often referred to as time series in other fields. Continuous-time signals are often
referred to as continuous signals.
Focusing on discrete time signals, the time-domain representation gives the amplitudes of the signal at the
instants of time during which it was sampled. However, in many cases, it is interesting to know the frequency
content of a signal rather than the amplitudes of the individual samples. In the frequency domain, one can
separate conceptually the sine waves that add to form the complex time-domain signal. Figure 6 shows single-
frequency components, which spread out in the time domain, as distinct impulses in the frequency domain. The
amplitude of each frequency line is the amplitude of the time waveform for that frequency component.
The representation of a signal in terms of its individual frequency components is the frequency-domain repre-
sentation of the signal. The frequency-domain representation might provide more insight into the signal and
the system from which it was generated.
In conclusion, every signal in the real world is a time signal and is made up of many sinusoids of different
frequencies. So, time domain signal can be converted into the frequency domain to view different frequency
components. Fourier transform is a function that transforms a time domain signal into frequency domain. The
function accepts a time signal as input and produces the frequency representation of the signal as an output.
Fourier transform does not change the signal. It just provides a different view to analyze a time signal because
some properties and features of the signal can be fully explored in the frequency domain.

Figure 6: Time domain monitors signal amplitude over time. Frequency domain monitors signal
amplitude over frequency

3.6. Vibration and Triaxial Accelerometer

Every rotating machine has its own vibration signature made up of the combined individual parts. The amplitude
of that signature changes when the machine experiences unusual operation, such as unbalance, bearing wear,
excessive looseness, and more. Vibration analysis is defined as a process for measuring the vibration levels
and frequencies of machinery and then using that information to analyze how healthy the machines and their
components are. Vibration measurements can be performed using a sensor that is placed near the element to be
monitored. The most commonly used sensor for measuring vibrations is an accelerometer, or acceleration sensor.
This name fits well with the sensor, because the sensor measures the forces that occur during acceleration and
deceleration. During a vibration, in fact there is continuous acceleration and deceleration.
An accelerometer can measure vibration in up to three axis, often referred to as the X, Y, and Z axis.
A vibration can be detected as movement from side-to-side, forward/backward, and up/down. To be able to
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see the full movement of the vibrations, triaxial accelerometer is the best choice. It gives the simultaneous
measurement of vibrations in three directions.
Accelerometers can be of the piezoelectric type or of the MEMS (micro electro mechanical system) type. Piezo-
electric accelerometers depend on changes in electric current due to motion. Moreover they are by far the
most popular in industrial testing applications. Capacitive MEMS accelerometers have become very popular in
embedded electronics with their low cost and small size, but piezoelectric still reigns supreme with mechanical
engineers performing shock and vibration tests. Here are some of their benefits:

• Low noise output.
• Wide range, suitable for low amplitude vibration test as well as high amplitude shock.
• Excellent linearity over their dynamic range.
• Wide frequency range.
• Self-generating, no external power required.
• Compact yet highly sensitive.

Both piezoelectric and MEMS accelerometers can be used to monitor low and high frequency vibrations.

4. Architecture

The work aims to build a client-server architecture that allows to offer Anomaly detection as-a-Service via
RESTful APIs. The system is based on REST (REpresentational State Transfer) paradigm, following the
principles of:

• Client-server, the client-server design pattern enforces the principle of separation of concerns: separating
the user interface concerns from the data storage concerns. Portability of the user interface is thus
improved. Separation also simplifies the server components, improving scalability.

• Statelessness, there is no session information that is retained by the receiver, usually a server.
• Cacheability, clients and intermediaries can cache responses. Responses must, implicitly or explicitly,

define themselves as either cacheable or non-cacheable to prevent clients from providing stale or inappro-
priate data in response to further requests.

• Layered system, a client cannot ordinarily tell whether it is connected directly to the end server or to
an intermediary along the way. If a proxy or load balancer is placed between the client and server, it will
not affect their communications, and there will not be a need to update the client or server code.

• Uniform interface, specific resources should be identified in the request. Usually, they are described
by Uniform Resource Identifier (URI). Moreover, internal implementation is separate from resource rep-
resentation.

REST works on top of the HTTP transport. It takes advantage of HTTP’s native capabilities, such as GET,
PUT, POST and DELETE. When a request is sent to a RESTful API, the response (the “representation” of
the information “resource” being sought) returns in either the JSON, XML or HTML format. A RESTful API
is defined by a web address or URI, which typically follows a naming convention.
The Anomaly detection as-a-Service solution allows the client to make requests to a server, in order to train
ML models for the identification of anomalies from the data sent by the client and to make inference on a single
data from the previously trained models. Since the identification of anomalies can refer to a wide range of
applications and consequently data, in this work the focus is on data collected by accelerometers installed on
industrial machines, without any loss of generality. Accelerometers will sample at a certain sampling rate and
the data will be saved within Csv files.

Figure 7: Client-Server architecture for Anomaly detection as-a-Service

The client-server architecture for Anomaly detection as-a-Service is shown in Figure 7 and it is designed to meet
the following client requirements:

1. Training of a model.
2. Inference of a data sample.
3. Update of a model.
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Client side, the Python script has been developed in order to make easy for the client the use of the different
services. The script allows to take a single data or a series of data as input and serialize them in JSON format,
to send the request and the JSON (in its body) at the appropriate server API.
Server side it is necessary to implement the APIs defined by appropriate URLs. They must allow the client to
reach the server and send the above mentioned requests along with the data in JSON format. After defining
the APIs, the server is ready to receive the client requests and execute the appropriate "service" code.
The three services are analyzed in detail for both client and server.

4.1. Training

Figure 8: Operations of the model training

The client-side Python script:
• Takes as input the path of a folder containing the Csv files related to the data samples of a sensor, in

order to carry out the training of the model.
• Transforms the Csv files into a single JSON with the structure displayed in the Figure 8, where id_sensor

is the identification of a sensor.
• Makes a GET request containing the JSON to the appropriate API of the server.

The server listening:
• Receives the GET request from the client with the JSON in the body of the request.
• Saves the JSON in the DB Data with the appropriate nomenclature, that is the id_sensor (id_sensor.json).
• Sends the answer to the client notifying the start of the training of the model and ends the communication

with client.
• Performs the preprocess of the data first and then the selection of the features.
• Performs the training of the ML model using the modified data.
• Finally saves the model in the DB Models with the appropriate nomenclature, that is the id_sensor

(id_sensor.joblib).
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4.2. Inference

Figure 9: Operations of the inference of a sample

The client-side Python script:
• Takes as input the Csv file related to the data sample of a sensor, in order to carry out the inference of

the sample.
• Transforms the Csv file into a JSON with the structure displayed in the Figure 9.
• Makes a GET request containing the JSON to the appropriate API of the server.
• After receiving the reply from the server containing the JSON, it saves the inference result in the folder

"results" (if not present is created) as id_sensor.timestamp.json.
The server listening:

• Receives the GET request from the client with the JSON in the body of the request.
• Extracts the model inside the DB Models (if present) through the id_sensor, otherwise the server returns

the JSON containing the error and it ends the requested service.
• Performs the preprocess of the data first and then the selection of the features.
• Uses the model to inference the modified data.
• Sends the response to the client containing the JSON with the structure shown in the Figure 9. In

particular, the "prediction" key contains the value 1 if the model has evaluated the sample as nominal,
otherwise it contains the value -1. Instead, Confidence expresses the ability of the model to provide a
given prediction and it is a value between 0 and 1; it is an additional semantics to the single 1/-1 of the
prediction, since it makes sense to look at how the measure evolves over time.
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4.3. Update

Figure 10: Operations of the model update

The client-side python script:
• Takes as input the path of a folder containing the Csv files related to the data samples of a sensor, in

order to update the sensor model with new samples.
• Transforms the Csv files into a single JSON with the structure displayed in the Figure 10.
• Makes a GET request containing the JSON to the appropriate API of the server.

The server listening:
• Receives the GET request from the client with the JSON in the body of the request.
• Extracts the JSON containing the previous sensor data from the DB Data through the id_sensor (if

present), otherwise the server returns the error message and it ends the requested service.
• Joins the JSON containing the previous sensor data with the JSON sent by the client, and saves it in the

DB Data overwriting the previous JSON.
• Sends the answer to the client notifying the start of the training of the model with the integration of the

new data and ends the communication with the client.
• Performs the preprocess of the data contained in the new built JSON first and then the selection of the

features.
• Performs model training using the modified data.
• Saves the model in the DB Models overwriting the previous model(Figure 10).
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5. Operational Steps

This chapter goes into detail of the various operational phases of the services: starting from data preproccesing,
continuing towards feature selection and ending with the ML algorithms used for the Anomaly detection.
Data have been managed and manipulated through the use of Pandas and Numpy Python libraries. Pandas
provide high performance, fast, easy to use data structures and data analysis tools for manipulating numeric
data and time series [27]. Numpy provides high-performance multidimensional arrays and tools to deal with
them [28].

5.1. Data Preprocessing

As noted above, the work focuses on data collected by accelerometers installed on machinery. This means that
the data we deal with are signals in time domain. However signals in time domain do not accurately characterize
the vibrations captured by the accelerometers.
Therefore the signal has to be transformed in the signal in frequency domain. Mathematically, the “transform”
used to go from the time domain to the frequency domain and back is called the Fourier Transform. It is defined
as follows:

X(f) =

∫
x(t)e−j2πftdt

For a signal x(t) is it possible to get the frequency domain version, X(f), using this formula. Note the t for
time, and f for frequency. The j is simply the imaginary unit. To return to the time domain from frequency
the procedure is almost the same, aside from a scaling factor and negative sign:

x(t) = 1/2π

∫
X(f)ej2πftdf

The above equation for the Fourier Transform is the continuous form, which can be seen only in math problems.
The discrete form is:

Xk =

N−1∑
n=0

xne
− j2π

N kn

Note that the main difference is that the integral is replaced with a summation. The index k goes from 0 to
N − 1.
Since this work was done using the Python language, instead of the equation for the discrete Fourier Transform
it was used the Fast Fourier Transform function, in particular the fft() function of the SciPy library [29]. The
Fast Fourier Transform (FFT) is simply an algorithm to compute the discrete Fourier Transform and converts
a signal from time to frequency domain. The FFT function has one input: a vector of samples, and one output:
the frequency domain version of that vector of samples (Figure 11).

Figure 11: FFT input and output

Basically, if the signals are sampled at a rate fs, then the FFT will return the frequency spectrum up to a
frequency of fs/2.
In particular, the function returns a vector of complex valued frequencies. Since they are complex valued, they
will contain a real and an imaginary part. The real part of the complex value corresponds with the magnitude,
and the imaginary part with the phase of the signal. In order to take the real part of the frequency spectrum,
that is the interested one, the absolute value is applied.
The FFT of an input signal of N points, will return a vector of N points. The first half of this vector (N/2
points) contain the useful values of the frequency spectrum from 0 Hz up to the Nyquist frequency of fs/2.
The second half contains the complex conjugate and can be disregarded since it does not provide any useful
information (Figure 12).
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Figure 12: FFT output in detail

Applying the FFT on the signals of interest, one can see particular peaks at 0 Hz. Usually a peak at 0 Hz
in the frequency domain indicates the presence of a DC (constant) bias in time series data. Since the data
are extracted from accelerometers, it indicates the presence of a static acceleration field influencing the sensors
(gravity). This kind of bias, especially for an accelerometer, is not desired. One way to fix this is to use a high
pass (or band pass only in specific bands) filter, another way is to subtract the mean of the signal to the signal
itself.
Thus the first operation is to subtract the average value from the signal in the time domain in order to remove
the gravity acceleration. Then apply the FFT to the signal and take from the output of the FFT function the
absolute value of the first N/2 points of the signal in the frequency domain. Finally the signal is multiplied by a
normalization factor since it scales each element separately to the range 0-1, which is the range for floating-point
values where there is the most precision.

5.2. Feature Selection

Feature selection, also called subset selection, aim to select a subset of features that can sufficiently represent
the characteristic of the original features. In view of that, this will reduce the computational cost and may
remove irrelevant and redundant features and consequently improve learning performance.
The individual signal in the frequency domain contains too many features and thus redundant information.
This could cause loss of effectiveness in the predictions of ML algorithms and poor accuracy of the model. To
be considered effective it was decided to divide the signal into bins of size of 50 Hz each (from 0 to 50 Hz, from
50 Hz to 100 Hz, etc.).
For each of these bins the mean and variance were calculated. The average takes into account possible peaks
that distinguish important frequency bands. Variance, on the other hand, takes into account the variability of
the assumed values within the bins and it is an appropriate index in the identification of fluctuations.
As a consequence, there are two vectors, one of the means and the other of the variances of equal size.
The two vectors are concatenated in order to obtain a single vector, which characterizes the spectrum of the
single signal in a precise way.
After having defined and exposed the features to be given in input to the ML algorithms, the next step is
to present the hybrid approach used in this work. Hybrid because the approach depends on the information
contained in the data: if the data are accompanied by labels that allow to add details on the type of input data
(nominal, anomalous, etc.), then it will be more correct to use a supervised approach. Conversely, if the data
are not accompanied by labels, it will be more effective to use an unsupervised approach, in which all input
data are considered nominal. In both cases trained models will be able to learn from these data.

5.3. Unsupervised Approach

It is relatively easy to gather training data of situations that are normal; it is just the standard production
situation. But on the other side, collection example data of a faulty system state can be rather expensive, or
just impossible. If a faulty system state could be simulated, there is no way to guarantee that all the faulty
states are simulated and thus recognized in a traditional binary-class problem.
To cope with this problem, one-class classification solution is introduced. By just providing the normal training
data, an algorithm creates a (representational) model of this data. If newly encountered data is too different,
according to some measurement, from this model, it is labeled as out-of-class and so anomalous.
This thesis presents the application of Support Vector Machines to this one-class problem. Nominal data after
the pre-processing and feature-selection phases are ready to be consumed by the svm.OneClassSVM module of
the Scikit-learn library [30].
A fraction of data ν is decided and set as hyperparameter; it represents the upper bound of the number of
anomalies present in data. The one-class SVM then tries to find a boundary that encloses regions of high data
density excluding at most a fraction ν of data points. It can be seen that boundaries which are linear in the
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problem variable space are too simple for most problems. Since SVM is a linear classifier by nature, it is needed
to resort to kernel methods to build a flexible model with non-linear boundaries.
The one-class SVM tries to find a hyperplane separating the data from the origin. The idea is to map the data
into the kernel feature space and to separate it from the origin with maximum margin using a linear classifier
in the kernel feature space. This corresponds to using a non-linear boundary in the original problem space.
Kernels allow to fit simple models in very high dimensional feature spaces without explicitly calculating the
high dimensional features. One of the most widely used kernels is the RBF kernel and is the one used to trained
the model. SVM always fits a linear model in the kernel feature space even though the decision boundary looks
non-linear in the original problem variable space.
Another parameter to tune for one-class SVM with RBF kernel is Gamma. Gamma is a parameter specific
to the RBF Kernel and it controls the effect of neighboring points on the decision boundary. Large values
of Gamma allow neighboring points to have larger influence on the decision boundary and smaller values of
Gamma allow both neighboring and distant points to have an effect on the decision boundary. One way to
select Gamma is to let sklearn choose Gamma and it is done by selecting gamma equals to "scale".
The inliers will be on one side of the decision boundary and all the outliers will be on the other side of the
decision boundary (Figure 13).

Figure 13: Support Vector Machine with one-class

In the end, the algorithm detects the soft boundary of the set of samples and then return the one-class model
through the fit() function. The model is saved in .joblib format. Through the predict(X) function, instead it is
possible to perform classification on samples in X, returning +1 or −1 according on whether the individual sample
is classified as normal or anomalous. Moreover, score_samples(X) returns the (unshifted) scoring function of
the samples. In order to obtain the confidence of a prediction it is needed to convert the score in terms of
probability though a sigmoidal function (e.g. 1

1+exp−score ).

5.4. Supervised Approach

When both nominal and anomalous data are available, accompanied by labels that defining them, it is possible
to use supervised anomaly detection techniques including Neighbors-based classification. It is a type of instance-
based learning or non-generalizing learning that does not attempt to construct a general internal model, but
simply stores instances of the training data. Classification is computed from a simple majority vote of the
nearest neighbors of each point: a query point is assigned the data class which has the most representatives
within the nearest neighbors of the point.
Several nearest neighbors classifiers have been developed to address multi-class classification problems among
which, this thesis makes use of neighbors.KNeighborsClassifier module of the Scikit-learn library [30]. It is
a classifier implementing the k-nearest neighbors vote and the optimal choice of the value k is highly data-
dependent: in general a larger k suppresses the effects of noise, but makes the classification boundaries less
distinct.
In this work is used k equals to 3 and since data belong to the nominal class (+1), synthetic anomalous data
has been created from normal data in order to have an anomalous class (-1). Synthetic data is information
artificially manufactured rather than generated by real-world events.
So a supervised model can be trained with both nominal and anomalous data that went through the pre-
processing and feature-selection phases, with the appropriate labels.
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6. Implementation

This Chapter goes into detail of the implementation of the client-server architecture for Anomaly detection
as-a-Service.

6.1. Client

The client can run the Python script passing the appropriate parameters via the terminal command line:
• service parameter that can be training or update or inference.
• path parameter that can be a path of a Csv file (inference) or a path of a folder containing a series of

Csv files (training, update).

$ python3 . \ c l i e n t . py −−s e r v i c e SERVICE −−path PATH

This is an example of command line instruction:

$ python3 . \ c l i e n t . py −−s e r v i c e t r a i n i n g −−path f i l e s /data/ senso r

Moreover, a configuration file has been written in JSON format that contains the parameters "ip" and "port"
relative to the server to make requests. When the server parameters changes, simply edit the configuration file.
Python script takes the parameters and after the serialization of the data into JSON format, send the GET
request containing the JSON in the body, to the server with the appropriate APIs:

r = r eque s t s . r eque s t ( ’GET’ , IP :PORT + ’ / t r a i n i n g ’ , j s on = jsonTra in ing )

r = reque s t s . r eque s t ( ’GET’ , IP :PORT + ’ / i n f e r e n c e ’ , j s on = j s on I n f e r e n c e )

r = reque s t s . r eque s t ( ’GET’ , IP :PORT + ’ /update ’ , j s on = jsonUpdate )

Finally the client waits for a response from the server and the communication stops. In the case of training and
update a message will be returned to the client. On the contrary the inference of a sample will return a JSON
that will be saved in the folder results.

6.2. Server

The server is built with Uvicorn, that is an Asynchronous Server Gateway Interface (ASGI) web server imple-
mented in Python. ASGI not only allows multiple incoming events and outgoing events for the application, but
also allows for a background coroutine so the application can do other things. The server starts running via the
terminal using the following command:

$ uvicorn s e r v e r : app −−host SERVER_IP −−port PORT

The RESTful APIs, instead are developed in Python with FastAPI web framework. FastAPI fully supports
asynchronous programming and can run with Uvicorn.
FastAPI is imported first and then an instance of the Python class FastAPI is created:

from f a s t a p i import FastAPI
app = FastAPI ( )

This app is the same one referred by Uvicorn in the command.
After that it is necessary to create the various paths operation decorators:

@app . get ( "/ t r a i n i n g " )

@app . get ( "/ i n f e r e n c e " )

@app . get ( "/update" )

The @app.get(”/”) tells FastAPI that the function right below is in charge of handling requests that go to the
path ”/” using a get operation.
Then it is necessary to define the paths operation functions:

@app . get ( "/ t r a i n i n g " )
async def t r a i n i n g ( r eque s t : Request , background_tasks : BackgroundTasks ) :

background_tasks . add_task ( training_model , await r eques t . j s on ( ) )
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@app . get ( "/ i n f e r e n c e " )
async def i n f e r e n c e ( r eque s t : Request ) :

@app . get ( "/update" )
async def update ( r eque s t : Request , background_tasks : BackgroundTasks ) :

background_tasks . add_task ( update_model , json_update , j s on_tra in ing )

These are Python functions and they will be called by FastAPI whenever they receive respectively a request to
the URL "/training", "/inference", "/update" using a GET operation.
Note that, for the training and update functions it necessary to define background tasks to be run after returning
a response. This is useful for operations that need to happen after a request, but that the client doesn’t really
have to be waiting for the operation to complete before receiving the response. In fact the training and update
services have to return a message to the client and then continue the training/update of a model. The background
tasks for training and update functions are respectively training_model and update_model functions, to which
are passed the useful parameters.

7. Amazon EC2

The server code can be deployed into an Amazon Elastic Compute Cloud (Amazon EC2) in order to provide
scalable computing capacity in the Amazon Web Services (AWS) Cloud. Using Amazon EC2 eliminates the
need to invest in hardware up front and deploy the application faster. One can use Amazon EC2 to launch as
many or as few virtual servers as one need, configure security and networking, and manage storage. Moreover,
Amazon EC2 enables to scale up or down to handle changes in requirements.
Amazon EC2 provides a wide selection of instance (virtual machine) types optimized to fit different use cases.
Instance types comprise varying combinations of CPU, memory, storage, and networking capacity and give the
flexibility to choose the appropriate mix of resources for the applications.
In the case study addressed in Chapter 8 has been created an Amazon EC2 T3a instance. It provides a baseline
level of CPU performance with the ability to burst CPU usage at any time for as long as required. T3a instance
offers a balance of compute, memory, and network resources and is designed for applications with moderate
CPU usage that experience temporary spikes in use. In particular, a T3a.large instance was used in which the
specifications are the following: 2 vCPU (virtual Central Processing Unit) and 8 GiB RAM (Random-Access
Memory).
After having created the virtual computing environment, the server is deployed as systemd service and the
server code runs with the Uvicorn command written above. The client will previously provide its Ip address in
order to add it on the machine instance to the access management policies. All the Ips belonging to the client’s
domain are whitelisted, in order to allow communication with the server from that domain.
In this way we have obtained a system of Anomaly detection as-a-Service that actually works on AWS machines
and able to provide the services.

8. Case Study

The case study addressed in this thesis is that of Eisenmann Italia S.r.l. company. Eisenmann Italia S.r.l.
company provides maintenance, plant optimization and spare parts supply services in the areas of process
technology plant building, energy and the environment.
The aim of the Eisenmann Italia S.r.l. company is to build a monitoring system for the identification of anomalies
in the perspective of predictive maintenance in Industry 4.0.
The applications of these solutions are machines for the treatment of the air inside of painting systems, that is
fans of important dimensions, burners such as boilers that eliminate paint parts etc. The misalignment of these
machines could cause the breakage of the load-bearing structures and the malfunction of these types of devices
inside the plant is critical because it would lead to the suspension of production.
In addition to the painting plants, among the various applications there are the agricultural bio-gas plants,
inside which there are pumping systems such as pumps and load augers. A preventive intervention on these
machines would reduce the losses and the total breakage of the plant.
The sensors used are triaxial accelerometers. Having to deal with rotary organs it is extremely important to
have the radial direction and axial direction data separately. The radial direction makes account of phenomena
such as accumulation of dirt on the blades, problems with the bearings, something that interferes with the
rotation of the system. On the other hand the axial rotation to the rotary motion realizes of possible problems
that can arise when there are rotating organs that cannot be at first approximation assimilated to a rotating
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disk, but that are approximated to two rotating planes. They require an extremely accurate balancing analysis
because there is this kind of phenomenology that moves the load-bearing structure of the plant.
The sensors are directly mounted on the machines mentioned above. Figure 14 shows a practical scenario of a
triaxial accelerometer positioned on a fan.

Figure 14: Sensor mounted on a fan

Sampling periods are carried out alternating with periods of inactivity of the sensors, in fact there is not a
continuous stream of data on which to carry out a continuous analysis over time, because the amount of data
would be high and the relative costs would be exorbitant.
The analysis focuses on all those anomalies that are "constant over time", i.e. failures in the perspective of
predictive maintenance, anticipate a break as soon as possible. The type of phenomena on which the case study
focuses have a constant pattern over time, where the dynamics of the phenomenon can change (more intense,
less intense) but it is not a transient failure, which is therefore limited in time. Therefore it is expected that a
machine will have a slow degradation with a certain continuity and not a transient failure.
The sensors have a sampling frequency of 5000 Hz, a resolution of 16 bits and a full scale of 4g. The duration
of each sampling is equal to 30 seconds and the sampling rate shall be hourly. Each sensor is operated by a
Raspberry Pi via Serial Peripheral Interface (SPI) bus. Communication is via WiFi in a star configuration with
an industrial router in the centre, on which a SIM card is installed for data transmission. Via Virtual Private
Network (VPN), data is sent to the company’s server in Csv text format.
The data are then pre-processed on the server during the data injection into the database (DB). Checks are
carried out on the operation of the machines, the presence of "clamping" is verified, that is, the achievement of
the full scale and the consistency of the data are verified, since sometimes the sensors get stuck.
The data are then stored in a shared DB so that they can be accessed and each data sample is stored inside
a Csv file. The metadata of the sample is contained in the file name, which is composed of the sensor name
followed by the sampling start timestamp (date and time).
The Csv file consists of 4 columns:

• TIME, is a counter that is incremented in each row and is useful to sort the individual sampling.
• X, sensor measurement along the X axis.
• Y, sensor measurement along the Y axis.
• Z, sensor measurement along the Z axis.

The length of the Csv file is proportional to the sampling frequency and the duration of the sampling.
In this case being the sampling frequency equal to 5000 Hz and continuing to sample for 30 seconds, the length
of each Csv file will be 150k rows.
Data collected daily by two triaxial accelerometers mounted on different physical systems are available. These
data are obtained from steady-state measurements, they are therefore related to the nominal/correct operation
of the systems. For simplicity the sensors will be called Sensor1 and Sensor2.
Eisenmann Italia S.r.l. company provided the Sensor1 and Sensor2 data, which are respectively composed of
approximately 640 and 300 signals each. Moreover, the company have performed a data quality assessment in
fact data have the same formats, the same dimensions and no missing values.
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8.1. Data Exploration

In the Data Exploration phase the data sets are analyzed to summarize their main characteristics, using statisti-
cal graphics and other data visualization methods. All the plots have been created through the Plotly Graphing
Library [29].
Figure 15 represents the time series of Sensor1 and Sensor2 sampled signals, separated for each component X,Y
and Z. The signals in the time domain are very dense since the sampling interval is 0.0002 seconds and the
sampling duration is 30 seconds, with a total of 150k points on each axis.

Figure 15: Time series plots of Sensor1 and Sensor2 sampled signals

Figure 16 shows the correlation matrix of Sensor1 and Sensor2 sampled signals. A correlation matrix is a table
that shows the correlation coefficients between a set of variables. It is used to determine which pairs of variables
are most closely related and to identify relationships between variables that may not be readily apparent. In
this case variable Y might be the most correlated with the others, although it is important to take into account
all 3 components X, Y and Z.

Figure 16: Correlation matrix of Sensor1 and Sensor2 sampled signals

Figure 17 shows the box plot of Sensor1 and Sensor2 sampled signals. Box plot is a statistical representation of
the distribution of a variable through its quartiles. The ends of the box represent the lower and upper quartiles,
while the median (second quartile) is marked by a line inside the box. The highlighted outliers would not seem
to be errors in the data since they are within full scale (4g).
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Figure 17: Box plot of Sensor1 and Sensor2 sampled signals

In statistics, a histogram is representation of the distribution of numerical data, where the data are binned and
the count for each bin is represented, Figure 18 shows the histogram plot of Sensor1 and Sensor2 signals data.
Almost all variable distributions appear to be symmetrical except one that is bimodal.

Figure 18: Histogram plot of Sensor1 and Sensor2 sampled signals

8.2. Data Preprocessing

Since the signals given are sampled at a rate fs of 5000 Hz, the FFT will return the frequency spectrum up to
a frequency of fs/2 = 2500 Hz. Moreover, Sensor1 and Sensor2 signals in the frequency domain will have 75k
points for each component (X,Y,Z), rather than 150k points in the time domain for each component.
Thus the first operation is to subtract the average value of each component from the signal in the time domain
in order to remove the gravity acceleration. Then apply the FFT to each component of the signal and take
from the output of the FFT function the absolute value of the first N/2 points of the signal in the frequency
domain. Finally the signal is multiplied by a normalization factor since it scales each variable separately to the
range 0-1, which is the range for floating-point values where there is the most precision.
The plots of Sensor1 and Sensor2 frequency spectrums are shown in Figure 19, for each axis.
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Figure 19: Plots of Sensor1 and Sensor2 sampled signals in the frequency domain

In addition Figure 20 shows the distributions of Sensor1 and Sensor2 signals in the frequency domain, highlighting
the average (± standard deviation) distribution.
Interestingly the distributions of both data sets bring out peaks in the frequency range between 600 Hz and
1200 Hz, with a certain correlation between Y e Z axis. This means that both applications on which the sensors
are mounted have a similar rotational speed (RPM, revolutions per minute) but their spectrum remains different.
It is a first indication that each sensor will have its own model, given their different spectral distribution.

Figure 20: Plots of Sensor1 and Sensor2 sampled signals distribution in the frequency domain

Then the 3 components of the signal in the frequency domain are concatenated in order to compact the data
(from multivariate to univariate) and the result is that a single sample will have 75k points for each axis with
a total of 225k points.

8.3. Feature Selection

Passing through the feature selection, the signal is divided into bins of size of 50 Hz each (from 0 to 50 Hz, from
50 Hz to 100 Hz, etc.). This results in 50 bins for each component (150 in total) describing the signal spectrum
exhaustively. For each of these bins the mean and variance were calculated. As a consequence there are two
vectors, one of the means and the other of the variances of size equal to 150 each:[

X1 X2 . . . X50 Y1 Y2 . . . Y50 Z1 Z2 . . . Z50

]
The two vectors are concatenated in order to obtain a single vector of 300 values, which characterizes the
spectrum of the single signal in a precise way.

[
Xm

1 Xm
2 . . . Xm

50 Y m
1 Y m

2 . . . Y m
50 Zm

1 Zm
2 . . . Zm

50 Xv
1 Xv

2 . . . Xv
50 Y v

1 Y v
2 . . . Y v

50 Zv
1 Zv

2 . . . Zv
50

]
With the superscript of the vector’s element that indicates the mean m or the variance v and the subscript that
indicates the bin.
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9. Experiments and Results

In order to know the anomalous states of the data and the way in which they present themselves, it is necessary
to define their characteristics.
The machine on which a sensor is mounted may tilt. This would lead the sensor to record noise or bias that
can be equivalent to:

• The addition of white noise tuned with feasible mean and standard deviation to nominal data.
Figure 21 depicts a Gaussian white noise X with mean µ = 0 and standard deviation σ = 0.2 in both
time and frequency domain (X ∼ N (µ, σ2)).
White noise in the frequency domain occupies the whole spectrum band and will therefore affect the
signal in all frequencies.

Figure 21: White noise in time and frequency domain

• The addition of sinusoids with appropriate magnitudes to nominal data.
Figure 22 depicts a series of sinusoids in both time and frequency domain, in the context of sampling at
5000 Hz for 30 seconds. They have frequency between 1200 Hz and 1201 Hz, and magnitude of 0.66.
The sinusoids in the frequency domain occupy only a limited band of the spectrum, which corresponds
to their frequency and will therefore affect the signal with unusual peaks.

Figure 22: Sine waves in time and frequency domain

The production of the synthetic failures is based on the types of anomalies written before. These introductions
applied to nominal data in the time domain on each axis (X,Y,Z) lead to undesired effects in the frequency
domain.
With respect to the sensors data available, the unsupervised model was trained with a portion of Sensor1’s
data. The model was then tested with all Sensor2’s data that were classified as anomalous. Thus sensors are
not homogeneous between them and there is a need to have a model for each sensor.

9.1. Unsupervised model

The unsupervised one-class SVM model relative to Sensor1 has been trained with 240 nominal samples of
Sensor1. The model has been tested on the remaining 400 samples (of Sensor1) of which 200 were not modified
and 200 were modified at each different configuration with the addition on each axis (X,Y,Z) of:
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(a) White noise with mean µ = 0 and standard deviation σ = 0.16, Figure 23.

Figure 23: Sample data with white noise X ∼ N (0, 0.0256) in time and frequency domain

(b) White noise with mean µ = 0 and standard deviation σ = 0.3, Figure 24.

Figure 24: Sample data with white noise X ∼ N (0, 0.09) in time and frequency domain

(c) Sinusoids with frequency 1200Hz ≤ f ≤ 1202Hz and magnitude equals to the max of each axis, Figure 25.

Figure 25: Sample data with sinusoids (1200Hz ≤ f ≤ 1202Hz) in time and frequency domain

(d) Sinusoids with frequency 1200Hz ≤ f ≤ 1203Hz and magnitude equals to the max of each axis, Figure 26.

26



Figure 26: Sample data with sinusoids (1200Hz ≤ f ≤ 1203Hz) in time and frequency domain

(e) Sinusoids with frequency 600Hz ≤ f ≤ 601Hz and magnitude equals to the max of each axis, Figure 27.

Figure 27: Sample data with sinusoids (600Hz ≤ f ≤ 601Hz) in time and frequency domain

The training phase and the test phase with all configurations, were repeated 5 times in order to have 5 different
random partitions of the data. The accuracy results obtained by the unsupervised model are shown in the
Table 1, divided by type of synthetic failure injected. Mean and variance refer to mean and variance of accuracies.

Partition1 Partition2 Partition3 Partition4 Partition5 Mean Variance

(a) 0.615 0.6 0.6075 0.975 0.9025 0.74 0.0268825

(b) 1.0 0.995 0.9825 0.9925 0.9925 0.9925 3.2499e-05

(c) 0.6 0.6075 0.575 0.5775 0.685 0.609 0.0016015
(d) 0.9475 0.94 0.975 0.965 0.9575 0.9570 0.000154
(e) 0.4925 0.495 0.505 0.5125 0.5175 0.5045 9.3499e-05

Table 1: Accuracies of unsupervised model

The results of the experiment show that the unsupervised model is able to correctly classify data affected by
a relevant white noise. With less evident white noise (values extracted from a normal distribution with lower
variance), the accuracy of the model is reduced depending on the partition.
As for the data with the addition of sinusoids: the model is able to correctly classify the sinusoids that have
peaks in the frequency domain that occupy more than one frequency. On the other hand the peaks that occupy
a single frequency are not classified as anomalous by the model. The model therefore does not assess the latter
case with a significant weight. In fact the accuracy of the model is higher the more peaks occupy a large
frequency band, denoting a unconventional intensity event.
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9.2. Supervised model

In the context of supervised approach, the Sensor1’s dataset (640 samples) was split in half randomly. One half
(320 samples) left as it was. The other half have been added:

(a) White noise with mean µ = 0 and standard deviation σ = 0.08, Figure 28.

Figure 28: Sample data with white noise X ∼ N (0, 0.0064) in time and frequency domain

(b) Sinusoids with frequency 1200Hz ≤ f ≤ 1202Hz and magnitude equals to the max of each axis, Figure 25.
(c) Mix of sinusoids with frequency 600Hz ≤ f ≤ 601Hz and magnitude equals to the max of each axis

(Figure 27), and white noise with mean µ = 0 and standard deviation σ = 0.06.
(d) Sinusoids with random frequencies and magnitude equals to the max of each axis.

The supervised KNN model relative to Sensor1 has been trained with 240 samples of Sensor1. The model has
been tested on the remaining 400 samples.
The split of the dataset, the training phase and the test phase with all configurations, were repeated 5 times in
order to have 5 different random partitions of the data. The accuracy results obtained by the supervised model
are shown in the Table 2, divided by type of synthetic failure injected. Mean and variance refer to mean and
variance of accuracies.

Partition1 Partition2 Partition3 Partition4 Partition5 Mean Variance

(a) 0.95 0.945 0.945 0.9475 0.9475 0.94699 3.50e-06

(b) 0.99 0.9975 0.995 0.9925 0.9575 0.9865 0.000216

(c) 0.8625 0.925 0.9175 0.9025 0.8775 0.89699 0.000561

(d) 0.4625 0.5125 0.5225 0.52 0.4925 0.502 0.0005009

Table 2: Accuracies of supervised model

The results of the experiment show that the supervised model is able to correctly classify data affected by both
relevant and less evident white noise. And the accuracy of the model remains high.
As for the data with the addition of sinusoids: the model is able to correctly classify the sinusoids that have
consecutive peaks in the frequency domain. On the other hand sinusoids with peaks that occupy random
frequencies are not classified as anomalous by the model. The model therefore does not assess the latter case
with a significant weight.
The supervised model was also trained and tested with three types of input data (configuration (c) with
nominal data, anomalous sinusoids and anomalous white noise) and then a multi-class classification (not binary
classification). The resulting accuracy of the model is still high.
In the scenario in which the case study is carried out, the supervised approach tends to be too limited. This
is because the supervised model would not be able to correctly classify types of malfunctions that are different
from those with which the model has been trained.
If real anomalous data had been available, such that a machine has some degradation over time, then it might
be appropriate to use a supervised model trained on that data.
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On the contrary, the unsupervised approach despite the results obtained during the experiments carried out,
would seem to be a practical solution that adapts very well to the real need of the company.

10. Conclusions

The thesis project carried out aimed at the design and construction of a client-server architecture for the
Anomaly detection as-a-Service via RESTful APIs. This solution is capable of supporting predictive maintenance
activities of Eisenmann Italia S.r.l. in Industry 4.0 context. The developed architecture has proven to be able
to provide the three services mentioned above. Moreover it classifies and detects anomalies, thus enabling
diagnostic functions that reduce losses and total machines failure.
In addition, the solution is scalable across multiple sensors and consequently across multiple machines. In the
event that the machine on which the sensor is mounted undergoes unnatural movements such as involuntary
blows, it will be necessary to collect new data and then re-train the model. This is because otherwise the model
would evaluate the current state of the machine as anomalous.
The results obtained by unsupervised model, based on the one-class SVM algorithm, are confident for use in
industrial processes in the scenario in which Eisenmann Italia S.r.l. is located. On the contrary the use of
supervised model, based on the KNN algorithm, does not guarantee reliability on uncharted anomalous states
where the machines could be found.
In the end, the Anomaly detection as-a-Service is a promising and growing area of research. And the developed
client-server architecture can start future improvements and applications in different areas of work.
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Abstract in lingua italiana

Il Machine Learning as-a-Service (MLaaS) ha guadagnato grande popolarità negli ultimi anni. Si riferisce alla
vasta gamma di strumenti di Machine Learning (ML) offerti come servizi da fornitori di cloud computing.
Fondamentalmente, è l’uso della tecnologia per addestrare, testare e distribuire automaticamente i modelli di
Machine Learning per un utente, in genere sfruttando una piattaforma AI con server farm offsite (il "cloud")
per eseguirli per conto del client. L’obiettivo del MLaaS è quello di rendere più semplice e conveniente per le
aziende l’utilizzo del ML, in modo che possano ottenere informazioni migliori dai loro dati più velocemente che
mai. Il MLaaS viene utilizzato per una vasta gamma di casi d’uso come l’elaborazione del linguaggio naturale,
la previsione, la regressione, il riconoscimento delle immagini ecc. Tuttavia, nella letteratura del Machine
Learning as-a-Service è stata posta pochissima attenzione ai dati raccolti dai sensori in ambienti industriali. Da
questo punto di vista, la progettazione e lo sviluppo di uno strumento di Machine Learning as-a-Service per
l’identificazione delle anomalie nell’ambiente industriale è un’area di ricerca innovativa e promettente. Questa
tesi mira a costruire un’innovativa architettura client-server che permetta di offrire Anomaly detection as-a-
Service, basata su algoritmi di Machine Learning supervisionati e non-supervisionati, con tre diversi tipi di
servizi: l’addestramento di un modello ML, l’aggiornamento di un modello ML e l’inferenza di dati attraverso
un modello ML. In questa prospettiva viene trattato un vero e proprio caso studio in cui l’azienda Eisenmann
Italia S.r.l. intende realizzare un sistema di monitoraggio per l’individuazione delle anomalie nel contesto della
manutenzione predittiva. La manutenzione predittiva consente di anticipare il verificarsi di determinati eventi
sul funzionamento dei macchinari industriali, migliorando la produttività, prolungando il ciclo di vita degli
asset e riducendo i costi di riparazione e la complessità. Nello scenario industriale di Eisenmann Italia S.r.l.,
una serie di sensori triassiali montati su applicazioni per il trattamento dell’aria, bruciatori ecc., effettuano
una raccolta periodica dei dati. Successivamente, questi dati sono stati manipolati e utilizzati per addestrare
modelli ML supervisionati e non-supervisionati, consentendo di classificare e prevedere stati anomali di diverse
macchine. Inoltre, poiché non erano disponibili dati in cui le macchine si trovavano in condizioni anomale,
sono stati introdotti dati sintetici, costruiti a partire da dati nominali. I risultati ottenuti da entrambi gli
approcci sono notevoli. In particolare, quelli ottenuti dall’approccio non supervisionato, basato sull’algoritmo
One-class Support Vector Machine (One-class SVM) danno speranza per un uso pratico dell’intera architettura
client-server per Anomaly detection as-a-Service nei processi industriali.

Parole chiave: Machine Learning as-a-Service, Machine Learning, Anomaly detection as-a-
Service, Anomaly detection, Architettura Client-Server, Modello Non-Supervisionato
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