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Abstract

Landslides are one of the most dangerous and disastrous geological hazard worldwide,
posing threats to human life, infrastructures and to the natural environment. This
dissertation aims to analyse these phenomena both at the basin scale, by producing
landslide susceptibility maps, and at a single landslide scale, by monitoring its
displacements through satellite images.

Landslide susceptibility mapping is a topic of crucial importance in risk mitigation.
In this work, a machine learning approach based on the Random Forests algorithm
is adopted to produce landslide susceptibility maps over two areas in Northern
Lombardy (Val Tartano and Upper Valtellina), Italy. Following a state of the art
analysis on this topic, the Random Forests technique was chosen for its positive
performances, that were further confirmed by this work. An innovative aspect of
this dissertation is the introduction of a No Landslide zone defined by geological
criteria, which aims to determine areas with very low possibility of landslides. By
these means, the model was provided with information about landslide absence in
addition to that of past landslide events. The models obtained were subsequently
validated with state-of-the-art metrics, showing satisfactory results.

Whilst susceptibility studies can be of great aid in preventing threats posed by
future events, active landslides need to be monitored to reduce the risk of damages
and casualties. With this aim, this work proposes a way to compute landslide
displacements through time, by exploiting the great availability of high quality
multispectral satellite images. The developed procedure produces maps of displacement
magnitude and direction by means of local cross-correlation of Sentinel-2 images.
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The Ruinon landslide, an active landslide in Upper Valtellina, was analysed during
two different time windows.

Both the analyses described in this work were designed to be entirely based on
free and open-source GIS software and to rely exclusively on open data. These
characteristics allow the proposed analyses to be easily replicated, customized, and
empowered.



Sommario

Le frane sono uno dei fenomeni naturali più pericolosi e disastrosi a livello globale,
e rappresentano una minaccia per gli uomini, le infrastrutture e per l’ambiente
naturale. Questa tesi ha quindi l’obiettivo di analizzare tali fenomeni sia alla scala
di bacino, producendo mappe di suscettibilità da frana, sia concentrandosi su singole
frane, monitorandone gli spostamenti attraverso immagini satellitari.

La mappatura di suscettibilità da frana è un argomento di fondamentale importanza
nel campo della mitigazione del rischio. In questo lavoro, è stato adottato un
approccio di machine learning basato sull’algoritmo Random Forests per la produzione
di mappe di suscettibilità da frana in due aree nel nord della Lombardia (Val Tartano
e Alta Valtellina), in Italia. Dopo un’analisi dello stato dell’arte in questo campo,
la tecnica Random Forests è stata selezionata per le sue prestazioni positive, che
sono state inoltre confermate in questo lavoro. Un aspetto innovativo di questa tesi
è l’introduzione di una No Landslide zone definita tramite criteri geologici, che ha
lo scopo di identificare zone in cui il rischio di frane è molto ridotto. Così facendo,
al modello sono state fornite informazioni riguardo l’assenza di frane in aggiunta
a quelle di eventi franosi passati. I modelli così ottenuti sono stati validati con
metriche all’avanguardia, producendo risultati soddisfacenti.

Mentre gli studi di suscettibilità possono essere di grande aiuto nel prevenire i pericoli
di eventi futuri, le frane già attive devono essere monitorate con lo scopo di ridurre
il rischio di danni. A tal fine, questo lavoro propone una procedura per calcolare gli
spostamenti di frane nel tempo, facendo leva sull’ampia disponibilità di immagini
satellitari multispettrali di alta qualità. La procedura sviluppata produce come
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risultato mappe della lunghezza e della direzione dello spostamento usando una
cross-correlazione locale di immagini Sentinel-2. La frana del Ruinon, una frana
attiva in Alta Valtellina, è stata analizzata in due finestre temporali distinte.

Entrambe le analisi descritte in questa tesi sono state progettate con l’intento di
essere completamente basate su software GIS free e open-source e di utilizzare
esclusivamente dati open. Tali caratteristiche rendono queste analisi facilmente
replicabili, personalizzabili e migliorabili.



Chapter 1
Introduction

Landslides are one of the most dangerous and disastrous geological hazard worldwide
(Guzzetti et al., 1999; Reichenbach et al., 2018); their occurrence is the cause for
economic losses, casualties and damage to the natural environment and to human
infrastructures (Guzzetti et al., 2012; Aditian et al., 2018). It has also been shown
that the population growth and the consequent expansion of settlements of the
last decades are magnifying the impact of such phenomena (Guzzetti et al., 2012).
Moreover, we are also witnessing a rise in the extreme events that trigger landslides,
as a consequence of climate change (Machichi et al., 2020).

Therefore, landslide susceptibility mapping, i.e. the estimation of the likelihood of
landslide events in a territory based on environmental conditions, is a subject of
primary importance. Its functioning principles and assumptions are, according to
Guzzetti et al. (1999):

• Future landslides are more likely to occur under the conditions which led to
past and present instabilities. Hence, past failures are the starting point for
landslide susceptibility mapping;

• The landsliding process is regulated by mechanical laws, and the factors that
lead to slope failures can be collected and used to build predictive models of
landslide occurrence;

• Slope failures are easily recognizable because they give rise to distinguishable
morphological features;

13
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• The probability of occurrence of landslides can be inferred from heuristic
investigations, computed with the analysis of environmental information, or
even derived from physical models. Therefore, a territory can be divided into
hazard classes, according to different probabilities thresholds.

A wide variety of approaches have been adopted by scholars in the past to produce
susceptibility maps; in general, they belong to two different families (Reichenbach
et al., 2018; Zhou et al., 2018):

• Qualitative methods: subjective, inventory-based and knowledge driven approaches,
that describe the susceptibility status of a given area using descriptive terms;

• Quantitative methods: data-driven and physically-based approaches, that return
probabilistic values in order to characterize the susceptibility level of an area.

In a literature review published in 2018, Reichenbach et al. summarized and classified
the methods for producing landslide susceptibility maps, dividing them in five main
categories:

• Geomorphological mapping: a geological professional directly assesses the
susceptibility level;

• Analysis of landslide inventories: investigation of past landslide density maps
is used in order to predict future events;

• Heuristic or index-based approaches: investigators rank a set of instability
factors based on their relevance in causing landslides;

• Process based methods: a simplified physical scheme modelling landslides is
used to analyse stability/instability conditions;

• Statistically-based modelling methods: approach based on the statistical analysis
and combination of a set of instability factors and the past or present distribution
of landslide events.

On the other hand, monitoring already active landslide is an equally important
subject for mitigating the risk posed by these natural phenomena. Furthermore,
in the last years we have witnessed a huge increase in the availability of free and
open multispectral, multitemporal and global coverage satellite imagery; at the same
time, also new open software tools for exploiting these images have arisen. Therefore
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another part of this study focuses on the analysis of satellite imagery using free and
open source GIS software to identify displacements of single landslides.

The aim of the work outlined in this thesis is to implement a statistical-based method
(Random Forests) to produce Landslide Susceptibility maps at the basin level in two
zones in Northern Lombardy, and to validate the obtained results. Secondly, this
work focuses on creating a semi-automatic landslide movement detection procedure
that can be easily replicated and customized, given the large availability of short-revisiting
time open satellite images and since it employs only open software.

1.1 Thesis outline

The thesis is structured in the following way:

Chapter 1 introduces the work.

Chapter 2 outlines the current state of the art regarding landslide susceptibility
analysis and landslide displacement monitoring, and the choices of the employed
approaches are outlined and explained, taking into consideration previous studies.

Chapter 3 describes the selected areas of interest and their geomorphological
features, in order to better frame the context of the study. On top of that, it
contains the description of the data collected and of the preparation steps applied
to the dataset.

Chapter 4 illustrates the software tools, providing a description and the purpose
of each one of them, and also presents the analysis techniques required by this study,
diving into a theoretical explanation about their functioning.

Chapter 5 contains an in-depth description of the work carried out in this thesis,
illustrating the analysis process and the various modifications introduced during the
work.

Chapter 6 presents the obtained results and the applied validation processes.

Chapter 7 includes the general conclusions derived from the work.



Chapter 2
State of the art

2.1 Landslide susceptibility mapping

Statistically-based landslide susceptibility mapping consists in the construction of
a statistical model, with the purpose of relating geo-environmental factors with a
set of known landslide events; this model can be exploited to forecast susceptibility
levels in a given territory.

The first studies on landslide susceptibility modelling using statistical approaches
were done in the late 70s and early 80s (Neuland, 1976; Carrara, 1983). The interest
in these types of analyses has grown over the years, supported by the growth of
more complex and precise analytical techniques.

Reichenbach et al. in 2018 reviewed researches in the field of landslide susceptibility
from 1983 to 2016. In this review, they grouped the various statistical techniques
used for susceptibility assessment; here are reported the six main groups to which
the identified methods belong:

• Classical statistics (e.g. logistic regression, discriminant analysis, linear regression):
these approaches generally rely on having an explicit underlying probability
model (Fulkerson et al., 1995), and often compute the probability of being in
each of the classification classes. It is common for these methods to require
human intervention when selecting and transforming the variables, and in
structuring the problem;

16
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• Index-based (e.g. weight-of-evidence, heuristic analysis): in this case, the
presence of professional figures is key for evaluating the susceptibility level
based on a set of instability factors or on environmental indexes;

• Machine learning (e.g. fuzzy logic systems, support vector machines, forest
trees): the term Machine Learning usually describes automatic computing
procedures that learn a task from a series of examples. When talking about
classification problems, scholars have focused their attention on decision trees
approaches, in which classification results from a series of logical or binary
operations (Fulkerson et al., 1995). In general, machine learning techniques
are able to represent more complex problems with respect to classical statistics,
and the operational steps do not require human intervention;

• Neural networks: these techniques were first developed with the intent of
emulating the functioning of the human brain. To do so, they usually consists
of layers of interconnected nodes, where each node outputs a non-linear function
of its input. The whole network therefore represents "a very complex set of
interdependencies which may incorporate any degree of nonlinearity, allowing
very general functions to be modelled" (Fulkerson et al., 1995);

• Multi Criteria Decision Analysis: GIS-based MCDA is a process that transforms
and combines geographical data and value judgements to obtain information
for decision making (Malczewski, 1999);

• Other statistics (Data Overlay Analysis, etc.).

The review also shows that in the period 1983-2016 logistic regression has been by
far the most commonly used method for Landslide Susceptibility Mapping (LSM).

2.1.1 Workflow

Literature analysis shows a common workflow for the creation of landslide susceptibility
maps, that can be summarized in five steps:

• data selection, that comprises:

– selection of the landslide inventory to be used in the analysis. The most
common approach is to use a single inventory, but there are also articles
including multiple inventories or multi-temporal ones;
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– selection of the environmental factors necessary to build the model. A
broad categorization of the factors employed in the literature could be:
geological, hydrological, land cover, morphological and other types of
variables (Reichenbach et al., 2018);

• division of the territory in mapping units, i.e. a "portion of the land surface
which contains a set of ground conditions which differ from the adjacent units
across definable boundaries" (Guzzetti et al., 1999). The appropriate mapping
unit should preserve internal unit homogeneity while highlighting between-unity
heterogeneity (Reichenbach et al., 2018). The most common choice by far is
to use grid cells, i.e. pixels, as mapping unit;

• division of the landslide inventory in a training set (the part that will be fed
to the model in order to create the map) and a test set (the part that will be
used for testing the obtained results);

• application of the chosen model, thus obtaining the susceptibility map;

• validation of the model using the chosen methods. There are many indices and
metrics to evaluate the performances of the model (Guzzetti et al., 2006; Rossi
et al., 2010; Reichenbach et al., 2018), but it is crucial to differentiate between
the evaluation of the model fit and of the model performance. The evaluation
of the model fit describes the ability of the model to correctly classify the
data that has been used to build the model, i.e. we can obtain the model fit
by comparing the model outcomes with the training dataset. On the other
hand, the model predictive performance indicates the capability of the model
to correctly predict a high susceptibility level where landslides unknown to the
model already exist and a low susceptibility level where landslides are unlikely
to happen; this can be obtained by comparing the model against the testing
dataset.

2.1.2 Review of machine learning methods for susceptibility

mapping

This thesis work focuses on the application of Machine Learning (ML) methods
to the landslide susceptibility mapping operation. Machine learning analytic tools
aim to build a model able to represent relationships, that beforehand are totally or
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partially unknown, between data and target variables (Ma et al., 2020). Advantages
of ML approaches with respect to classical statistical methods are the reduced
amount of data required by ML techniques for obtaining reliable results, and the
fact that no statistical assumption is necessary to build ML models (Lee et al., 2003;
Pourghasemi and Rahmati, 2018).

In the last years, machine learning has been widely used for Landslide Susceptibility
assessment analyses, and the vast majority of the employed methods fall under
the umbrella of supervised learning, meaning that the aim is to build a connection
between known inputs and unknown outputs. This is because Landslide Susceptibility
studies often make use of the assumption that landslides are more likely to occur
in conditions similar to those that caused landslide events in the past (Prakash
et al., 2020). In general, supervised learning can be divided into two categories:
classification, where the desired output consists of a set of classes or labels, and
regression, where the aim is to predict a continuous variable (Ma et al., 2020). Both
classification and regression can be applied in landslide susceptibility problems: the
purpose of the former is usually to divide the territory into "landslide" and "no
landslide" classes, while the latter computes a probability value associated with the
risk of mass movement events.

In the rest of this chapter, the decisive aspects of a machine learning landslide
susceptibility analysis are described, and different approaches between previous
studies are outlined.

2.1.2.1 Employed model

Some of the most applied ML algorithms in Landslide Susceptibility Mapping are:
Logistic Regression, Support Vector Machines, Random Forests, fuzzy logic systems,
decision trees, Artificial Neural Networks (Goetz et al., 2015; Pham et al., 2016; Tien
Bui et al., 2016; Pourghasemi and Rahmati, 2018).

Logistic Regression (LR) seems to be by far the most common method, and is
followed by Support Vector Machine (SVM) in terms of popularity (Reichenbach
et al., 2018).

Methods like LR and SVM can be considered simple ML algorithms; in fact, they
were often employed in the early days of ML approaches to Landslide Susceptibility
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problems (Lee and Sambath, 2006; Yao et al., 2008). Artificial Neural Networks
(ANN) and decision trees can also be considered simple ML algorithms, and were
applied as well in Landslide Susceptibility analyses (Lee et al., 2003; Saito et al.,
2009).

Over the last years, researchers in this topic seem to be more inclined to consider
more complex algorithms (Yordanov et al., 2021), like Random Forests (RF), complex
neural network structures like Convolutional Neural Networks (CNN) or Recurrent
Neural Network (RNN) and ensemble learning methods (Wang et al., 2019; Thi
Ngo et al., 2021). From the theoretical point of view, these complex methods
usually arise or are built starting from simpler methods. Because of this, these
new, more complex methods usually generate more robust landslide models than
the base classifiers (Fang et al., 2021).

In the particular case of this work, the Random Forests algorithm has been employed,
since it has been already widely used in the field of landslide susceptibility analysis,
and it has been proven to have good overall performances (Catani et al., 2013;
Pourghasemi and Rahmati, 2018; Dou et al., 2019; Emami et al., 2020; Yordanov and
Brovelli, 2020a). Moreover, studies that analysed multiple methods comparing their
performances often found RF to be the best model in terms of predictive capability.
For example, Pourghasemi and Rahmati (2018) compared the performance of ten
different machine learning techniques, including RF, ANN and SVM, in an area of
about 2241 km2 in Iran, using the area under the ROC curve (AUC-ROC) approach
for evaluating the models’ performances; the research found that RF and Boosted
Regression Trees, another advanced ML technique, outperformed the other methods.
Similar results were obtained by other recent studies, like Dou et al. (2019), Emami
et al. (2020) and Yordanov and Brovelli (2020b). Goetz et al. in 2015 studied the
differences between machine learning algorithms, including RF, and conventional
statistical prediction techniques (i.e. weight-of-evidence and generalized additive
models) and proved that RF had the overall best predictive performances.

One of the advantages of the Random Forests technique is being an ensemble learning
method, since it is composed by multiple decision trees working together. When
using only one decision tree the random selection of the training dataset could affect
the results, but RF overcomes this issue by using a set of many trees in order to
ensure the stability of the model (Ma et al., 2020).
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2.1.2.2 Chosen factors

The selection of the environmental variables to consider in the analysis is a fundamental
step for susceptibility mapping with statistical methods, and in the literature we find
a broad variety of factors combinations. The choice of the environmental variables
to include in a landslide susceptibility analysis is highly influenced by the chosen
technique, the study area, the landslide types and the availability of data, and
usually depends on decisions made by experts. Because of these reasons, it is not
easy to standardize what could be the best factors set overall. What could be done
instead is analysing the literature in order to find which are the terrain variables
that are more often factored in the research; the review made for writing this thesis
showed that some of the most common factors taken into consideration are:

• slope;

• aspect;

• lithology;

• altitude;

• curvature:

• distance from faults;

• distance from rivers;

• distance from roads;

• land use or land cover.

2.1.2.3 Validation metrics

A crucial step of any modelling process, and in particular of Landslide Susceptibility
mapping, is the validation of the model. Despite the importance of this task, usually
scholars are more focused on implementing new and more complex models in order
to obtain better results, rather than thoroughly evaluating the produced model. In
a literature review, Reichenbach et al. (2018) highlighted that many studies did
not implement any method to validate the predictive or fitting capability of the
obtained models (38.9% and 32.0% respectively), and that almost half of them were
relatively recent studies (published between 2010 and 2016). On the other hand, the
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review also showed an increase in the number of validation methods available, and
identified the most popular ones in the success/prediction rate curves (Chung and
Fabbri, 1999, 2003) and Receiver Operating Characteristic (ROC) curves (Ayalew
and Yamagishi, 2005). In a more recent article, Yordanov and Brovelli (2020b)
compared the Area Under the Curve ROC method (AUC-ROC) with the Precision
Recall Curve (PRC) in the context of Landslide Susceptibility Mapping. They
showed that, when working with an imbalanced dataset, i.e. a dataset in which
there is a difference between the number of positive and negative cases in a binary
classification (Saito and Rehmsmeier, 2015), the PRC outlines the performances of
the model more precisely, while the two methods have similar behaviours when the
dataset is balanced.

2.2 Landslide displacement monitoring

Satellite images have been employed by scholars for monitoring various phenomena
on the surface of the Earth: glacier movement (Berthier et al., 2005), land cover
changes (Dewan and Yamaguchi, 2009), forest growth or deforestation (Coppin and
Bauer, 1996; Kennedy et al., 2010), landslides (Colesanti and Wasowski, 2006), and
others.

In this work, landslide displacements through time are monitored by means of a
Maximum Cross-Correlation (MCC) method. In the past this technique was mainly
applied to geophysical phenomena involving fluid motion, such as the movement of
clouds (Leese et al., 1971), sea (Crocker et al., 2007) or glaciers (Ninnis et al., 1986).

Concerning terrestrial land-cover changes, techniques based on cross-correlation have
been generally applied by comparing pixels or objects in two different images; these
methods usually produce maps that indicate if a pixel value has changed or not
between the two images, without being able to identify a movement vector. On the
other hand, more recent studies have applied the MCCmethod to identify directional
changes, quantifying the movement detected for every single pixel (You et al., 2017;
Oxoli et al., 2020).

You et al. (2017) were the first to apply MCC for detecting terrestrial land-cover
changes. In their study they applied the MCC method to identify and quantify
the direction of land-cover changes in a river floodplain in Bolivia using Landsat-5
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Thematic Mapper images. The results obtained confirmed the validity of Maximum
Cross-Correlation to quantitatively identify changes between satellite images.

Oxoli et al. (2020) considered Landsat-8 and Sentinel-2 satellite images to detect the
movements of desert dunes using MCC. Their analysis concludes that the displacements
identified by the procedure are slightly overestimated with respect to reference data,
while the direction of the movements generally agrees with environmental factors
such as wind direction and morphology.



Chapter 3
Areas of interest and data

3.1 Areas of interest

Before carrying out the analyses, it was important to define the boundaries of the
areas of interest (AOIs) for this study (Figure 3.1). Lombardy region is heavily
affected by hydro-geological natural hazards, particularly in pre-Alpine and Alpine
areas, where the combination of heavy rainfall and snowmelt often creates hydrogeological
conditions that lead to the occurrence of shallow landslides. Therefore, this study
focuses on two areas in Lombardy with a particularly great abundance and variety
of landslide phenomena.

3.1.1 Val Tartano

The first area analysed by this study is the basin of Val Tartano. Val Tartano is
located in the Lombardy region, Northern Italy; the basin extends for 51 km2 and
is characterized by steep slopes and an elevation ranging from 250 to 2500 m a.s.l.
From the geological point of view, the valley contains numerous faults, mostly with
NE-SW and NW-SE strikes, accompanied by shear zones (Longoni et al., 2016).
Coupling these features with the river network makes the area prone to instabilities
and landslide phenomena of various types. In fact, the landslide inventory of ISPRA
(Istituto Superiore per la Protezione e la Ricerca Ambientale) shows more than 1000
single landslide events in the area considered.

24
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Figure 3.1: The two areas of interest: Tartano basin (on the left) and Upper Valtellina (on
the right)

3.1.2 Upper Valtellina

The other area of interest for this study is the area of Upper Valtellina, also located in
Lombardy, near the border with Trentino - Alto Adige. The study area covers about
295 km2, and is characterized by steep slopes and an elevation ranging from 900 to
3800 m a.s.l. Due to the high altitude of the area, it is common that instabilities arise
because of the decompression phenomena due to deglaciation processes. For this
area, the ISPRA landslide inventory contains 3644 single landslide events, including
11 Deep-seated Gravitational Slope Deformations.

3.1.3 Ruinon landslide

The monitoring part of this thesis focuses on one particular landslide: the Ruinon
landslide (Figure 3.2), situated in Upper Valtellina. This landslide is one of the most
active landslides in the Alps, and it is believed to extend down to a depth of 50–70
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m, for a total estimated volume of approximately 30 million m3. The landslide is
situated at the base of a Deep-seated Gravitational Slope Deformation, that affects
the entire slope up to the summit at 3000 m a.s.l. Two major scarps can be identified:
the upper one is a sub-vertical rock cliff of about 30 m in height, while the lower one
is characterized by a more widespread debris cover. Over the years, a large lobe of
chaotic debris has propagated towards the valley bottom, giving origin to secondary
mass wasting processes in the form of rockfalls, debris flows, and shallow slumps
(Carlà et al., 2021).

Figure 3.2: The lower scarp of the Ruinon landslide

3.2 Data

One of the most important preparation aspects of this work was the choice, research,
download and organization of the data to be used in the analyses.

In the next sections, the preparation steps of the data are described, and an overview
on the final chosen data is provided.
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3.2.1 Landslide susceptibility mapping

3.2.1.1 Data preparation

The first step in order to carry out the landslide susceptibility analysis of this thesis
project has been to prepare the data that will be used in the analysis.

Data preparation consists of:

• Data collection, i.e. the retrieval of the data, mainly in the form of download
from the web;

• Data exploration, i.e. the visualization of the data through a graphical interface;

• Data preprocessing, i.e. the process of modification of the data in order to
better suit the needs of the project.

These operations need to be executed for both the areas of study. In this work,
the last two tasks were accomplished using QGIS Desktop, a free and open-source
geographic information system application that allows users to visualize, modify and
analyse geospatial data, supporting a vast assortment of data formats.

In general terms, spatial data can be represented in the form of either vector or
raster data. The vector option represents the data employing georeferenced points,
lines and polygons; on the other hand rasters are composed of pixels arranged in a
grid-type architecture. Therefore, a vector form of representation is convenient when
working with discrete spatial features (e.g. borders, roads, rivers, municipalities),
while for space-continuous data (e.g. elevation, temperature, but also aerial photographs
and satellite images) the raster format is preferred.

Figure 3.3 and Figure 3.4 show the QGIS maps of the two AOIs, highlighting some
of the vector layers.

Taking advantage of QGIS powerful editing tools, the series of processes listed below
was applied to all the layers, preparing and adjusting them to be later employed in
the analysis.



CHAPTER 3. AREAS OF INTEREST AND DATA 28

Figure 3.3: Some of the vector data in the Upper Valtellina area

Figure 3.4: Some of the vector data in the Val Tartano area
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Reprojection
A Coordinate Reference System (CRS) is a system "for uniquely referencing spatial
information in space as a set of coordinates [...] based on a geodetic horizontal and
vertical datum" (Infrastructure for Spatial Information in Europe, 2019). In order to
maintain consistency amongst the dataset, it is necessary to make sure that all layers
share the same CRS. In particular, the coordinate system selected for the project is
WGS 84 / UTM zone 32N (EPSG:32632), the official reference system for Northern
Italy. Conveniently, QGIS contains a feature called on the fly reprojection, which
allows layers that are added to a project to be automatically projected in the CRS
of choice. Nonetheless, the CRS of each layer was checked in order to make the
whole dataset consistent.

Clipping
Almost every layer downloaded covers either the whole Lombardy region or the
Sondrio province, which is the province containing both areas of interest. The
downloaded layers have therefore a much larger extent than the study territory;
directly using these data would make the computation much slower, while also
increasing the memory space occupation of the features. To overcome these problems,
the clipping operation can be applied to all the layers, both vector and raster ones.
This process isolates all the features of a dataset that fall within the polygons of
a certain overlay layer. Once clipped using the extent of the Tartano basin and of
Upper Valtellina as boundaries, the layers contain only the necessary features for
the project.

Styling
The visual style of layers can be fully customized using QGIS, in order to aid the
understanding of the features described by each layer, and make maps more clear,
understandable and readable. In the case of this study, the styling tools offered by
QGIS were used mainly for:

• categorizing vector data based on one of their attributes (Figure 3.5a);

• styling vector data to be humanly associable with the real life features they
represent (e.g. the river network’s colour was chosen to be blue);

• classifying raster data using a discrete interval of values (Figure 3.5b).
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(a) Example of vector categorization

(b) Example of raster classification

Figure 3.5: Styling examples
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3.2.1.2 Data overview

The data required to carry on the analysis is entirely free and open source, available
on the web and distributed by Geoportale della Regione Lombardia under IODL
2.0 licence1, Istituto Superiore per la Protezione e la Ricerca Ambientale IdroGEO
under CC BY-SA 4.0 license2 and Agenzia Regionale per la Protezione Ambientale
ARPA Lombardia under CC BY 4.0 license3.

Vector data Vector data (Table 3.1) are used to represent discrete spatial features,
using the shapefile format, an Esri data format that allows "[...] storing location,
shape and attributes of geographic features" (ArcGIS documentation, 2021).

Data Type Source

General land use Polygon GeoPortale Lombardia

Area of Interest Polygon Custom made

Fault lines Line GeoPortale Lombardia

Geology Polygon GeoPortale Lombardia

Inventory of landslides Multiple Type IFFI

Streams wet area Polygon GeoPortale Lombardia

Road elements Polygon GeoPortale Lombardia

Table 3.1: Vector data

Area of Interest
This layer contains the boundaries of the area of interest. This is also the layer used
as overlay when clipping the other datasets.

Road elements
This layer shows the road network.

1Italian Open Data License. It allows the user to use, modify and share the data with the
obligation to cite the original source

2Attribution-ShareAlike 4.0 International CC BY-SA. It allows the user to share and adapt the
data with the obligation of attributing and sharing-alike any work

3Attribution-ShareAlike 4.0 International CC BY. It allows the user to share and adapt the
data with the obligation of attributing any work

https://www.geoportale.regione.lombardia.it/home
https://idrogeo.isprambiente.it/app/
https://www.dati.lombardia.it/
https://www.dati.lombardia.it/
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Streams wet area (River network)
This layer includes all areas which contain water and are part of stream beds.

Geology
This layer contains the lithology classification of the terrain.

Fault lines
This layer contains the fault lines.

General land use
This layer contains a classification of the territory with respect to the main categories
of land use.

Inventory of landslides
The landslide inventory provided by IFFI is an inventory at the scale 1:10000 and
updated to the year 2017. It is composed of five different layers, each one depicting
in a particular way the spatial allocation of existing landslide phenomena:

• Identification Point of Landslide Phenomenon: point layer in which
each point is placed in correspondence of the crown of a landslide;

• Polygonal landslides: layer containing landslides that have a large enough
surface in order to be mapped as polygons. This layer also highlights the
type of movement of the landslide: according to the most common landslide
classification proposed by Cruden and Varnes (1996), these types can be
divided in:

– Debris flow (Figure 3.6a): typically characterized by soil or fragmented
rock moving in a spatially continuous way; this movement is mainly due
to water presence in the debris. Debris flow can reach very high velocities
when the material loses cohesion, gains water or when the terrain is steep;

– Rockfall (Figure 3.6b): a very rapid movement where detached material
(rock or soil) falls mainly through air because of Earth’s gravitational
attraction;

– Rotational/translational slide (Figure 3.6c and Figure 3.6d): downslope
movement of rock or soil that is typically occurring along surfaces of
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rupture. The difference between rotational and translational slide lies in
the form of the surface of rupture: for the rotational kind the surface is
curved and concave, for the translational is planar or ondulating;

– Complex: landslides that contain more than one type of movement.

(a) Debris flow
(b) Rockfall

(c) Rotational sliding (d) Translational sliding

Figure 3.6: Different types of landslides (Highland and Bobrowsky, 2008)

• Linear landslides: layer containing landslides that are not large enough to
be mapped as an area and are therefore represented as lines. In the areas of
interest the entirety of this layer is composed by debris flow landslides that
take place in narrow valleys and channels;

• Widespread landslide areas: layer consisting of areas that contain numerous
landslide phenomena;

• Deep-seated Gravitational Slope Deformations: portions of the territory
that are characterized by DGSDs.

Raster data A raster consists in a grid of equally sized pixels, each one containing
a value representing information. Rasters can be digital aerial photographs, imagery
from satellites, digital pictures, or even scanned maps. Raster data utilized in this
thesis are summarized in Table 3.2.
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Data Resolution [m] Source

DTM 5x5 GeoPortale Lombardia

Slope 5x5 Computed

Aspect 5x5 Computed

Eastness 5x5 Computed

Northness 5x5 Computed

Profile curvature 5x5 Computed

Plan curvature 5x5 Computed

NDVI 5x5 Computed

Precipitation 1500x1500 ARPA Lombardia

TWI 5x5 Computed

Table 3.2: Raster data

Digital Terrain Model (DTM)
This is the 2015 Digital Terrain Model for the Lombardy region; each pixel value
therefore represents the elevation of that pixel. Starting from the DTM, other rasters
were calculated:

• Slope: a map that represents the maximum rate of elevation change between
each cell of the DTM;

• Aspect (Figure 3.7): a representation that identifies the down-slope direction
that each of the cell faces;
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Figure 3.7: Aspect diagram

• Eastness: obtained by applying a sin() function to the Aspect, Eastness
ranges from -1 to 1 and describes whether a slope faces the East direction
(Eastness = 1) or the West direction (Eastness = -1);

• Northness: obtained by applying a cos() function to the Aspect, Northness
ranges from -1 to 1 and describes whether a slope faces the North direction
(Northness = 1) or the South direction (Northness = -1);

• Profile curvature (Figure 3.8): a negative value of this parameter indicates
that the surface is upwardly convex at that cell, a positive value indicates that
the surface is upwardly concave at that cell, and a value of zero indicates that
the surface is linear;

Figure 3.8: Profile curvature

• Plan curvature (Figure 3.9): a negative value of this parameter indicates
that the surface is laterally concave at that cell, a positive value indicates that
the surface is laterally convex at that cell, and a value of zero indicates that
the surface is linear;
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Figure 3.9: Plan curvature

• Topographic Wetness Index (TWI): hydrological index that describes the
tendency of an area to accumulate water. It is computed using the formula

TWI = ln(
α

tan(β)
) (3.1)

where α is the Specific Catchment Area and tan(β) is the slope.

Normalized Difference Vegetation Index (NDVI)
The NDVI is an index useful to determine whether an area contains vegetation or
not. It can be calculated from satellite images, using the formula

NDV I =
NIR−Red
NIR +Red

(3.2)

where NIR is the spectral reflectance measured in the Near InfraRed region, and
Red is the spectral reflectance measured in the visible red region. In this study,
the NDVI has been computed using Google Earth Engine©. The code followed this
procedure:

• Satellite images from the Sentinel-2 mission overlapping the area of interest
were accessed for the whole year of 2020. In this process, a cloud filter was
also applied;

• For each month, the NDVI formula was applied with the mean values of the
NIR and Red bands;

• The 12 resulting NDVI maps were merged in order to obtain a yearly mean
NDVI map;

• The final map was exported to Google Drive with the correct resolution.

In B.1.1 you can find the GEE code written for the computation and export of the
NDVI map.
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Precipitation
This raster was obtained starting from data collected from an interpolation of
hourly observations coming from the regional meteorological network of ARPA for
the region of Lombardy. For each hour, a .txt file containing the values from
the observations in the meteorological station interpolated on a 1.5x1.5 km grid
was produced. Using a custom Python script, all the data for the year 2020 were
averaged and then converted to a .csv file, thus obtaining the 2020 average measure
of precipitation for the whole Lombardy region. The .csv file was later imported
as a raster in QGIS.

In B.1.2 you can find the Python code used for the creation of this raster layer.

3.2.2 Landslide displacement monitoring

For monitoring the displacements of the Ruinon landslide through time, the data
required are solely Sentinel-2 satellite images.

3.2.2.1 Data exploration and download

In order to obtain quality results in the displacement analysis, it is important that
the satellite images do not contain clouds over the Ruinon landslide, and that the
terrain is free from snow. The Sentinel Hub EO browser was used to inspect images
over the chosen AOI and select the ones to be downloaded.

The download was made using the official portal of the Copernicus programme, the
Copernicus Open Access Hub. For this analysis, Sentinel-2 Level-1C products were
considered.

The downloaded images were employed for monitoring the displacements of the
considered landslide on a yearly basis (6.2.1, one image per year from 2015 to 2020)
and with a focus on the summer months of 2019 (6.2.2). Some of them were instead
used for validating the proposed technique.

3.2.2.2 Data overview

Table 3.3 summarizes all the different multiband images downloaded for the displacement
monitoring, while Figure 3.10 contains an example of a downloaded Sentinel-2 tile.
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Mission Sensing date Relative Orbit Tile Number

Sentinel-2A 03 August 2015 22 T32TPS

Sentinel-2A 27 August 2016 22 T32TPS

Sentinel-2A 09 July 2017 22 T32TPS

Sentinel-2A 08 July 2018 22 T32TPS

Sentinel-2A 16 July 2019 65 T32TPS

Sentinel-2B 18 July 2019 22 T32TPS

Sentinel-2A 23 July 2019 22 T32TPS

Sentinel-2B 27 August 2019 22 T32TPS

Sentinel-2A 11 September 2019 22 T32TPS

Sentinel-2B 16 September 2019 22 T32TPS

Sentinel-2A 21 September 2019 22 T32TPS

Sentinel-2A 01 October 2019 22 T32TPS

Sentinel-2A 18 May 2020 22 T32TPS

Sentinel-2A 26 August 2020 22 T32TPS

Sentinel-2A 15 September 2020 22 T32TPS

Table 3.3: Downloaded Sentinel-2 images
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Figure 3.10: Example of one of the downloaded Sentinel-2 Level-1C tiles, in True Colours
visualization



Chapter 4
Tools and technologies

Several instruments and techniques were employed for the making of the analyses
performed in this work.

4.1 Landslide susceptibility mapping

4.1.1 Software tools

Access to good quality multispectral images is the first requirement for analyses of
remote sensing images like the one described in this work. Aside from that, another
fundamental aspect is the availability of robust and reliable software tools, capable
of consistently processing the aforementioned images. Nowadays, the majority of
these tools are available as free and open-source software (FOSS), thus contributing
to make the software:

• easy to distribute;

• highly customizable to specific studies’ needs;

• more secure and transparent.

Moreover, free and open-source software for geospatial applications (FOSS4G) provide
tools and functionalities capable of not only competing but also outclassing their
proprietary counterpart (Brovelli et al., 2017).

40
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Table 4.1 illustrates the purposes of each of the software tools subsequently discussed
in this section.

Software Purpose License

Copernicus Hub Data exploration and download FOSS

QGIS Data visualization and preprocessing FOSS

Google Earth Engine© Data preprocessing Free for research (not open-source)

RStudio Data processing Used in its FOSS version

GRASS GIS Data processing and visualization FOSS

R Programming language //

Python Programming language //

JavaScript Programming language //

Table 4.1: Software tools and programming languages used for landslide susceptibility
analysis

4.1.1.1 QGIS

QGIS is a user-friendly free and open-source Geographic Information System (GIS).
It offers numerous functionalities for viewing, editing and analysing geospatial data,
along with many additional plugins and the integration with other open-source GIS
packages (e.g. GRASS GIS, PostGIS etc.) (QGIS, 2021). In this work, QGIS was
used for viewing and exploring data during all the steps of the analysis, due to
its powerful viewing/styling tools and easy to use interface, and to carry out some
preprocessing operation on the initial data.

4.1.1.2 Google Earth Engine© (GEE)

GEE is a web-platform for cloud-based processing of remote sensing data on large
scales (Google, 2021). The combination of its multi-petabyte catalogue of satellite
imagery and geospatial datasets with the computational power of Google’s servers
makes it a very powerful instrument when it comes to processing large images. In
particular, in this study it was used for the computation of the NDVI raster map
(Normalized Difference Vegetation Index (NDVI)).
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4.1.1.3 RStudio

RStudio is an integrated development environment for R and Python, with a console,
an editor that supports direct code execution, and tools for plotting, history, debugging
and workspace management (RStudio, 2021). The Landslide Susceptibility Analysis
with the Random Forests machine learning method was accomplished using RStudio.

4.1.1.4 Programming languages

The analyses described in this project were carried out employing custom scripts;
the programming languages of choice are:

• R: a language for statistical computing and graphics, used for the landslide
susceptibility analysis with the Random Forests machine learning method (R
foundation, 2021);

• Python: the programming language that best interacts with geospatial applications
such as QGIS and GRASS GIS; for LSM it was used with a custom script to
compute the precipitation layer (Python software foundation, 2021);

• JavaScript: language known for being the scripting language of web-applications;
it is also the language used in the Google Earth Engine© environment.

4.1.2 Analysis techniques

4.1.2.1 Random Forests

Random Forests is a machine learning algorithm for prediction and classification; its
principle of working is to create multiple decision trees, each one depending from a
random vector chosen independently from past random vectors but with the same
distribution. After the trees have been created, they all vote for the most popular
classification (Breiman, 2001). This was the algorithm of choice for the landslide
susceptibility analysis of this work; in practice, the ModelMap package (Freeman
et al., 2016), implemented in R, was utilized. The ModelMap package allows to build
predictive models using a Random Forests predictor with the randomForest package
(Liaw and Wiener, 2002). After having built the model, ModelMap also includes the
possibility to validate the model and to create maps over large geographic areas.
Another fundamental feature is the ability of the package to work simultaneously
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with both continuous and discrete variables.

4.2 Landslide displacement monitoring

4.2.1 Software tools

4.2.1.1 Copernicus Open Access Hub

The Copernicus Hub is the official online data portal of the Copernicus programme
of the European Commission. It grants access to all Sentinel missions data through
an interactive Graphical User Interface, including the possibility of:

• searching through the data using a text bar;

• filtering the data according to various parameters (mission, sensing period,
ingestion period, orbit number etc.);

• definition of an AOI in order to filter the results to only those that overlap the
defined area;

• exploring the data and their additional information;

• downloading satellite images. (Copernicus Programme, 2021)

In this work, Copernicus Hub was utilized to find and download Sentinel-2 images
relevant to the case study.

4.2.1.2 Sentinel Hub EO browser

The EO browser functionality of the Sentinel Hub allows to browse, visualize and
compare full resolution images from all the Sentinel satellite collections. It is possible
to specify a window of interest, a time range, a maximum cloud coverage and
inspect the resulting data in the browser. Another feature that was used is the
possibility of setting different band combinations, both pre-made or custom ones,
for the visualization of the images.

4.2.1.3 GRASS GIS

Geographic Resources Analysis Support System, commonly referred to as GRASS
GIS, "[...] is a Geographic Information System (GIS) technology built for vector and
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raster geospatial data management, geoprocessing, spatial modelling and visualization"
(OSGeo, 2021). In this work GRASS GIS was mainly used for the execution of
custom Python scripts that included GRASS functions.

4.2.1.4 Python

The powerful integration between Python and GRASS GIS was exploited for developing
the procedure for the Ruinon landslide displacement analysis.

4.2.2 Analysis techniques

4.2.2.1 Maximum Cross-Correlation

The Maximum Cross-Correlation method is used in this work to detect moving
pixels between two temporal images based on a cross-correlation coefficient. The
process starts by placing a square window, also referred to as template, on the same
position of the two images. Then, the cross-correlation coefficient is computed for all
possible windows obtained by shifting the original template on the slave image in all
directions. This shifting process is limited to the extent of the original window. At
this point, the shifted window which has the highest cross-correlation coefficient with
the template on the master image is selected (Figure 4.1): a displacement vector
between the centres of these two windows can be computed (You et al., 2017).

(a) Master image (b) Slave image

Figure 4.1: Maximum Cross-Correlation procedure example
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The cross-correlation coefficient can be computed using the following formula:

ρ(i, j) =
cov[A(xm, ym), B(xs, ys)]√
var[A(xm, ym)var[B(xs, ys)]])

(4.1)

where the subscript m indicates the master image and the subscript s the slave
image. Therefore, A(xm, ym) is the set of pixels of the master image inside the
window centred in (xm, ym), while B(xs, ys) is the set of pixels of the slave image
inside the window centred in (xs, ys), or in other terms (xm + i, ym + j).



Chapter 5
Methodology

5.1 Landslide Susceptibility Mapping (LSM)

The first aim of this work was to use Machine Learning tools to create maps depicting
the landslide susceptibility for the two AOIs. Landslide susceptibility denotes the
probability level to be prone to mass movements (Yordanov and Brovelli, 2020a).
The underlying concept to landslide susceptibility maps is that areas that have
similar environmental conditions with respect to known landslides are more likely
to be susceptible to similar phenomena. To carry out this analysis, the Random
Forests machine learning algorithm was chosen (Breiman, 2001), since it was proven
to outperform other statistical-based methods in Landslide Susceptibility assessment
(Yordanov and Brovelli, 2020a).

5.1.1 Data preprocessing

A crucial part of any Machine Learning analysis is the creation and preparation of the
dataset that will constitute the foundation for the model. In particular, for Landslide
Susceptibility analyses it is necessary to choose a suitable set of environmental
variables that are considered to be related to the occurring of mass movements,
and it is as well necessary to have a large enough landslide phenomena inventory.

46
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5.1.1.1 Factors selection and preparation

The terrain variables to take into consideration for the analysis were chosen amongst
the ones that are, according to literature (Guzzetti et al., 2006; Reichenbach et al.,
2018; Zhou et al., 2018; Emami et al., 2020; Fang et al., 2020; Yordanov and Brovelli,
2020a), most likely to cause or accelerate landslide phenomena. Namely, the initial
chosen factors were:

• Elevation (Raster data)

• Slope (Raster data)

• Eastness (Raster data)

• Northness (Raster data)

• Distance from roads (Vector data)

• Distance from rivers (Vector data)

• Distance from faults (Vector data)

• Topographic Wetness Index (Raster data)

• NDVI (Raster data)

• Land use (Vector data)

• Lithology (Vector data)

• Plan curvature (Raster data)

• Profile curvature (Raster data)

• Precipitation (Raster data)

These variables need to be in raster format and to have the same pixel size; the first
step to satisfy these constraints is to convert vector data to raster. The data that
needed conversion were:

• Road network: in order to obtain a raster showing the distance from roads,
the road network layer was first buffered at 50 m, 100 m, 200 m, 500 m, and
then the remaining zone was considered to have a distance >500 m from the
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nearest road. The buffered layer was then converted to a raster using QGIS
(Figure 5.1e);

• River network: the same process applied to the road network was used for the
river network (Figure 5.1f);

• Fault lines: similarly to the road and river network, the fault lines were first
buffered and then converted to raster (Figure 5.1g);

• Land use: the different categories of land use were categorized in a numerical
way and the vector layer was then rasterized (Figure 5.1j);

• Lithology: similarly to the land use, the lithology features were first categorized
and then the layer was converted to raster (Figure 5.1k);

It is important to note that this analysis took advantage of the capability of the
Random Forests algorithm to work with both discrete and continuous variables.
Table 5.1 illustrates the categorization employed for discrete factors. Note that the
area of Val Tartano has less lithology classes than Upper Valtellina, due to the
absence of some rock types, namely: limestone, dolostone, gypsum and anhydrite,
filonian rocks, serpentinites and schists, marbles.

Factor Number of classes Classification parameter

Distance from roads 5 Buffered distance

Distance from rivers 5 Buffered distance

Distance from faults 5 Buffered distance

Land use 11 Level 2 classification of land use

Lithology
14 - Upper Valtellina

8 - Val Tartano
Lithology characterization

Table 5.1: Categorical environmental variables

The following pages show the final preprocessed factors, that were used later on in
the analysis:
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(a) Upper Valtellina DTM

(b) Upper Valtellina slope
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(c) Upper Valtellina eastness

(d) Upper Valtellina northness
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(e) Upper Valtellina distance from roads

(f) Upper Valtellina distance from rivers
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(g) Upper Valtellina distance from faults

(h) Upper Valtellina Topographic Wetness Index
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(i) Upper Valtellina NDVI

(j) Upper Valtellina land use
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(k) Upper Valtellina lithology

(l) Upper Valtellina yearly precipitation
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(m) Upper Valtellina plan curvature

(n) Upper Valtellina profile curvature

Figure 5.1: Upper Valtellina terrain variables
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Please refer to Appendix A for the images of the terrain variables of Val Tartano.

After a few initial trials, the list of factors to be considered in the analysis was
revised taking into consideration the first outputs. In particular, it was seen that
the precipitation map, since it has a coarse grid (the original image has a grid size
of 1.5x1.5 km), had a negative effect on the results, yielding a map with abrupt
susceptibility changes along the grid of the precipitation data (Figure 5.2). Because
of this, precipitation was excluded from the considered factors.

Figure 5.2: The abrupt susceptibility changes produced by the precipitation factor

Mapping unit
The choice of an appropriate mapping unit is a fundamental aspect of landslide
susceptibility mapping (Guzzetti et al., 1999; Reichenbach et al., 2018). In fact,
once the conversion to raster was completed, the factors rasters were evened in
terms of dimensions and pixel size. Then, for all the analyses, the DTM raster
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was taken as reference, and the mapping unit was chosen to be the DTM native
resolution, i.e. 5x5 m. This approach was adopted in the first place because some
terrain variables were already calculated starting from the DTM, but also because
this resolution was coherent for the representation of the other variables (such as
roads, rivers, faults). Lastly, it was also acceptable for representing the landslide
features, both the polygonal and the linear ones.

5.1.1.2 Landslide inventory

The importance of having an exhaustive inventory of the mass movement phenomena
occurred in the study areas in the past has already been outlined. For this work, the
Italian Inventory of Landslide Phenomena (Inventario dei Fenomeni Franosi in Italia,
or IFFI) of Istituto Superiore per la Protezione e la Ricerca Ambientale IdroGEO
was used (32).

The layers taken into consideration from the inventory were the one containing
polygonal landslides and the one containing linear landslides.

One of the issues to overcome in this phase was that, while for the polygonal
landslides the layer already included the area onto which the mass movement occurs,
this is not the case for linear landslides. In the meantime, it is essential to this
analysis that the landslide features have a non-zero extension, so that they can be
overlapped with the selected terrain factors. The solution to this problem was to
approximate the width of the linear landslides to a fixed value: this was the chosen
approach because all of the linear landslide features actually belong to the "Debris
flow" category, and this type of movement usually takes place in narrow valleys and
channels. The value of the width was chosen to be 10 m, based on previous similar
studies (Yordanov and Brovelli, 2020a).

These layers, as will be discussed in a following section, were considered when
defining the zone containing past landslide phenomena.

5.1.1.3 Factor sampling

The strategy adopted to sample the terrain variables obtained after the preprocessing
phase was to create two sets of random points, one distributed in a zone where the
probability of having a landslide could be approximated to 0, and one distributed

https://idrogeo.isprambiente.it/app/
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in the zone where past landslides occurred, so that the landslide probability could
be taken as 1. The next paragraphs illustrate the design choices that led to the
creation of the two zones and the point sampling process.

Landslide zone
The Landslide zone (called LS zone in the rest of this thesis) represents the portion
of the territory onto which past landslides have occurred. This study focuses on
two types of movements: debris flow and rotational/translational slides; therefore,
rockfalls and complex landslides were excluded from the polygonal landslides inventory.
This filter operation was not necessary for the linear landslides, which all fall under
the debris flow category. The remaining features, i.e. polygonal debris flows,
polygonal translational/rotational slides and all the linear landslides buffered, were
merged, therefore creating the LS zone. Table 5.2 contains some statistics about
the number of both polygonal and linear landslides included in the LS zone for both
areas.

Zone Landslide type Number of features

Upper Valtellina
Polygonal landslides 637

Linear landslides 1363

Val Tartano
Polygonal landslides 213

Linear landslides 441

Table 5.2: Statistics on number and type of landslide features in the LS zone

For analytical purposes, this dataset was separated into two sections: the first one,
containing 80% of the features, is the LS training dataset, while the second one (20%
of the features) is the LS testing dataset. This separation was made in QGIS using
its random selection functionality (Figure 5.3 and Figure 5.4).
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Figure 5.3: Upper Valtellina LS zone

Figure 5.4: Val Tartano LS zone
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Val Tartano modification As observed in a previous study (Yordanov and
Brovelli, 2020a) it is better to further filter the landslide features of the Val Tartano
basin. In particular, upon investigation of the landslides, it was discovered that one
landslide (in blue in Figure 5.5), classified as debris flow, actually corresponds more
to a debris accumulation. This hypothesis is backed by the fact that the source
for the material could be the Pruna landslide (in yellow in Figure 5.5), the biggest
landslide in the whole area. Because of this, the feature now identified as a debris
accumulation was excluded from the dataset. Moreover, also the aforementioned
Pruna landslide was examined, because it is different from all other landslides in
the area in terms of extension and of range of elevation (from 550 to 1200 m a.s.l.).
Therefore, it could be considered an outlier of our landslide dataset, and it has been
seen that it greatly affected the results; the solution found by Yordanov and Brovelli,
and adopted in this work, was to exclude the Pruna landslide from the LS zone.

Figure 5.5: Pruna landslide (yellow) and consequent debris accumulation (blue)
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No Landslide zone
In this work, along information about the presence of past landslides, the model was
also given some information about where landslides are unlikely to occur. To this
purpose, a No Landslide zone (or NoLS zone) had to be defined; also in this case,
a previous study (Yordanov and Brovelli, 2020a) was taken into consideration. The
study showed that in high landslide density areas such as Val Tartano and Upper
Valtellina, the sole hypothesis that the NoLS zone was outside of the landslide
polygons was not sufficient. This is because the high landslide density makes it so
that the landslide training samples end up covering the same range of values of the
terrain variables and with the same frequency distribution, leaving us little way to
distinguish areas that are prone to mass movements from areas that are not. For this
reason, it was decided to use a geological criterion in order to define the NoLS zone;
in particular, it was hypothesized that in order to be considered NoLS zone an area
should have a slope angle smaller than 20° or larger than 70°, therefore accounting
very smooth or very steep slope. In addition, the terrain lithology was also classified
based on the Intact Uniaxial Compressive Strength (IUCS) of the material, a value
obtained by tests that describes the maximum stress that a material can take before
failing (Table 5.3). With this classification in mind, the NoLS zone was created
with pixels that both complied with the condition on the slope (slope angle <20°
or slope angle >70°) and where the lithology had an IUCS of 50 MPa or more.
To verify the validity of this hypothesis, the pixels of NoLS zone overlapping with
existing landslides polygons were counted: for both areas, less than 2% of the NoLS
zone fell onto existing landslides. This overlapping area was later removed, but the
hypothesis was considered valid.
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Field estimate of
Strength

Examples Strength [MPa]

Specimen can only be
chipped with a geological
hammer

Fresh basalt, chert,
diabase, gneiss, granite,
quarzite

> 250

Specimen requires many
blows of a geological
hammer to fracture it

Amphibiolite, sandstone,
basalt, gabbro, gneiss,
granodiorite, limestone,
marble, rhyolite, tuff

100 - 250

Specimen requires more
than one blow of a
geological hammer to
fracture it

Limestone, marble,
phyllite, sandstone,
schist, shale

50 - 100

Cannot be scraped or
peeled with a pocket
knife, specimen can be
fractured with a single
blow from a geological
hammer

Claystone, coal,
concrete, schist, shale,
siltstone

25 - 50

Can be peeled with
a pocket knife with
difficulty, shallow
indentation made by
firm blow with point of a
geological hammer

Chalk, rocksalt, potash 5 - 25

Crumbles under firm
blows with point of a
geological hammer, can
be peeled with a pocket
knife

Highly weathered or
altered rock

1 - 5

Indented by thumbnail Stiff fault gouge 0.25 - 1

Table 5.3: Intact Uniaxial Compressive Strength classification
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A first computation of the Landslide Susceptibility map for Upper Valtellina with the
described definition of the NoLS zone was carried out. The resulting map wrongly
classified the city of Bormio and the village of Santa Caterina di Valfurva as high
risk zones (Figure 5.6). This was because, even though these areas have a very low
slope, the underlying lithology material has a IUCS beneath 50 MPa; therefore, they
were not included in the NoLS zone. In order to correct this anomaly, the hypothesis
on the NoLS zone was revised to always include areas with very low (i.e. less than
5°) slopes (e.g. cities). The new condition was formulated like:

(slope < 5°) ∨ [(5° < slope < 20° ∨ slope > 70°) ∧ (IUCS > 100MPa)] (5.1)

Figure 5.6: LSM for Upper Valtellina with first hypothesis on NoLS zone

The threshold for the IUCS was increased in order to make this new condition valid
in terms of overlap with the existing landslides. With this new formula, 1.7% of
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Figure 5.7: LSM for Val Tartano with first hypothesis on NoLS zone

the NoLS pixels overlap with past landslides for Upper Valtellina, and 0.5% for Val
Tartano. The overlapping pixels were examined, with the purpose of searching for
common patterns. No clear pattern was discovered for Val Tartano. On the other
hand, it was discovered that for Upper Valtellina the vast majority of excluded pixels
(19000 pixels on a total of 32000) belonged to areas with slope smaller than 5°, but
with a lithology of deposits or detritical layer. This datum shows that some of the
debris mass movements with very gentle slope were included in the NoLS zone by
hypothesis.

In any case, these overlap areas are very few, thus confirming the NoLS hypothesis,
and they were removed from the NoLS zone before carrying out the analysis. The
final maps of the NoLS zones can be seen in Figure 5.8 and Figure 5.9.
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Figure 5.8: Upper Valtellina NoLS zone

Figure 5.9: Val Tartano NoLS zone
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It is also important to note that, since the slope and the lithology layers were
exploited for the definition of the NoLS zone, they were excluded from the factors
considered in the analysis. This decision is motivated by the fact that the considered
points, and therefore the results, are already dependent on the two layers. Including
them would produce maps with a high prevalence of these factors with respect to
the other ones, therefore they were omitted.

Point sampling
The last preparation step is to sample the sets of random points with the chosen
terrain variables. It was chosen to sample 100000 points for the Upper Valtellina
AOI, and 20000 points for Val Tartano, since it is a smaller area (about 6 times
smaller than Upper Valtellina). The function Random points inside Polygons1 of
QGIS was used to create the set of points; this function takes as input a polygon
layer, a number of points and optionally a minimum distance between points, and
outputs a layer containing random points inside the input polygon. The points are
chosen with a random distribution using the random.random() Python function. If
a minimum distance was specified, the points are chosen in such a way that the
distance between two points is never less than this parameter. For this analysis, the
minimum distance was set to be 5 m, i.e. the chosen mapping unit, in order to avoid
points to be too close to one another. The first set of random points was taken in
the training portion of the LS zone, and another set was respectively taken in the
testing portion of the LS zone. As for the NoLS zone, the random points were first
generated and then randomly divided into the training and testing partitions (80%
and 20% respectively).

Then, using the Point Sampling Tool2 plugin of QGIS, these point layers were
sampled with the values of the raster factors, thus obtaining the point dataset to use
for the analysis. It is important to specify that the obtained layers also contained
the information about the level of susceptibility in a point, put to 1 in the case of
the LS zone points, and to 0 for the NoLS zone points.

1https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/qgis/
vectorcreation.html#random-points-inside-polygons

2https://plugins.qgis.org/plugins/pointsamplingtool/

https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/qgis/vectorcreation.html#random-points-inside-polygons
https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/qgis/vectorcreation.html#random-points-inside-polygons
https://plugins.qgis.org/plugins/pointsamplingtool/
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5.1.2 Processing

As already stated, the Random Forests algorithm was chosen for the analysis, and
it was implemented in RStudio using the ModelMap package. Using this package it
is possible to include in a single R function the modelling, validation and mapping
functionalities. Besides constructing a predictive model, ModelMap can also validate
the model with a test set, using Out Of Bag (OOB) predictions. In Random Forests,
OOB means that each tree uses the data left out by its random selection to validate
its predictions (Breiman, 2001). The code also creates graphs and tables of the
model validation diagnostics, and finally ModelMap can apply the model to GIS
images in order to create prediction maps (Freeman et al., 2016). For investigating
the code, please refer to B.1.3.

5.2 Detection of landslide displacements

The purpose of this part of the study is to create a landslide movement detection
procedure capable of computing both the direction and the magnitude of pixel
movements using Sentinel-2 images and free and open-source software.

The general strategy employed in this work for obtaining landslide displacements
in terms of direction and magnitude is to apply a local cross-correlation analysis
on a multitemporal images stack. This was achieved using GRASS GIS (OSGeo,
2021) and custom Python scripts. The reasoning behind the preference of GRASS
GIS among other GIS applications was mainly the high synergy between GRASS
and Python programming, that allows to combine in a single Python script the
functionalities and image processing capabilities offered by GRASS functions with
the power and flexibility of the Python programming language. In particular, a set
of scripts was developed in order to carry out each of the processing steps, which
are illustrated in the next sections, in a standalone way.

5.2.1 Data preprocessing

Image preprocessing (B.2.1) Preprocessing steps are applied to the Sentinel-2
Level-1C imagery, collected during the download phase, with the aim to produce a
suitable multi-temporal stack. The preprocessing procedure is composed by:
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• AOI setting: the AOI is imported (v.in.ogr 3) and the GRASS computational
region is set to the extent of the AOI (g.region4). It is important to note that
the AOI selected at this step is larger than the final one, for obtaining better
results in the next phase;

• Image import: the folders containing Sentinel-2 images are imported one by
one in a Python for loop using the i.sentinel.import5 function. Not all bands
are imported: in particular, the 60 m original resolution bands, i.e. aerosol
(band 1), water vapour (band 9), and cirrus (band 10) are excluded;

• Cloud masking: Sentinel-2 images folders also contain a vector shapefile describing
the mask of the clouds covering the image. This vector is imported and
rasterized (v.to.rast6) and then it is used to set any pixel covered by clouds to
no-data (r.mapcalc7);

• Atmospheric correction: the Dark Object Subtraction (DOS) correction is
applied to each band using r.univar 8 and r.mapcalc. This procedure consists
in searching for the darkest pixel value in each band, and then subtracting this
value from every pixel in the band;

• Output image generation: the bands are grouped in a single virtual raster
layer (i.group9). This layer is then exported as a multiband .tiff image
(r.out.gdal10).

Image co-registration (B.2.2) When analysing images in order to detect changes
between them, a fundamental step is spatially co-registering the images. Co-registration
means to ensure that the images become spatially aligned so that any feature in one
image overlaps as well as possible its footprint in all other images in the stack. To
do so, the AROSICS (Automated and Robust Open-Source Image Co-Registration
Software) package was used. In particular, the global co-registration functionality

3https://grass.osgeo.org/grass78/manuals/v.in.ogr.html
4https://grass.osgeo.org/grass78/manuals/g.region.html
5https://grass.osgeo.org/grass78/manuals/addons/i.sentinel.import.

html
6https://grass.osgeo.org/grass78/manuals/v.to.rast.html
7https://grass.osgeo.org/grass78/manuals/r.mapcalc.html
8https://grass.osgeo.org/grass78/manuals/r.univar.html
9https://grass.osgeo.org/grass78/manuals/i.group.html

10https://grass.osgeo.org/grass78/manuals/r.out.gdal.html

https://github.com/GFZ/arosics
https://github.com/GFZ/arosics
https://grass.osgeo.org/grass78/manuals/v.in.ogr.html
https://grass.osgeo.org/grass78/manuals/g.region.html
https://grass.osgeo.org/grass78/manuals/addons/i.sentinel.import.html
https://grass.osgeo.org/grass78/manuals/addons/i.sentinel.import.html
https://grass.osgeo.org/grass78/manuals/v.to.rast.html
https://grass.osgeo.org/grass78/manuals/r.mapcalc.html
https://grass.osgeo.org/grass78/manuals/r.univar.html
https://grass.osgeo.org/grass78/manuals/i.group.html
https://grass.osgeo.org/grass78/manuals/r.out.gdal.html
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was applied taking the first chronological image as master and co-registering all
other images with respect to it. The global co-registration computes sub-pixel shifts
in the X and Y direction between the two images and corrects the slave image, thus
aligning it to the master (Figure 5.10b).

In initial trials, the co-registration process was applied to images with different
Relative Orbit numbers: the results were not particularly accurate, and since shifts
between the images could prejudice the quality of the displacement analysis, it was
decided to consider images with the same Relative Orbit number, in particular Orbit
22.

Clip to the final AOI (B.2.3) A larger AOI was useful for obtaining better
results in the co-registration phase. For a better focus on the Ruinon landslide and
for speeding up the computation the co-registration image outputs are clipped to a
final, smaller AOI (Figure 5.10c).

Histogram matching (B.2.4 and B.2.5) The images’ histograms are then
matched: this means to transform one image so that the cumulative distribution
function (CDF) of values in each band matches the CDF of the corresponding band
in another image. In other words, we want to make the slave image band values
as similar as possible to the ones of the master to enhance the cross-correlation
between them. The histogram matching was developed entirely in Python exploiting
the Scikit image library, and in particular the match_histograms11 function. The
single matched bands were later combined together by importing them in GRASS,
grouping them and then exporting the multiband image (Figure 5.10d).

11https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.
exposure.match_histograms

https://scikit-image.org/
https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.match_histograms
https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.match_histograms
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(a) Original Sentinel-2 image (zone of the Ruinon
landslide in red)

(b) Output of initial preprocessing and co-registration
phase

(c) Output after clipping to final AOI (d) Final preprocessed image after histogram match

Figure 5.10: Preprocessing phases of Sentinel-2 images
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5.2.2 Processing

Maximum Cross-Correlation (B.2.6) Once the images have been prepared
as described, a local cross-correlation procedure implemented in Python is applied
to master-slave couples of images. As a first step, the user can define the size of
the moving window, which is the subset of the input maps that will be compared
iteratively between the master and the slave (You et al., 2017). Different trials were
carried out varying the size of the moving window, and the optimal window size
was found to be 7x7 pixels. Then, a loop iterates placing the window on a pixel
of the master and on the corresponding pixel of the slave (i.e. the pixel at the
same coordinates). At this point, the maximum cross-correlation process is carried
out on the two windows using the phase_cross_correlation12 function of the scikit
registration package. This function outputs the X and Y shifts (in pixels) required
to register the window of the slave with the one of the master. The code later
moves the window on the slave according to the computed shifts and computes the
center pixel of the new window: this is the pixel correlated to the center of the
window in the master. At this point, the distance and the angle between these
two points are computed, and these values are stored into outputs raster maps at
the position of the central pixel on the master image. The normalized root mean
square correlation error (from 0 to 1), which is a metric of the reliability of the
computed cross-correlation, is also stored in an output map. This computation is
carried out for each pixel on the images by moving the windows by 1 pixel in each
iteration of the for loop. Finally, the outputs of the algorithm are three maps for
each master-slave couple, containing the displacement magnitudes (in pixels), the
displacement directions (in degrees from North) and the root mean square error for
each pixel whose movement was detected.

This whole procedure was carried out both considering a fixed master, i.e. themaster
is fixed to the first chronological image and all the other images are coupled with it,
or a moving master, i.e. the master is always the previous chronological image with
respect to the slave.

12https://scikit-image.org/docs/stable/api/skimage.registration.html#
skimage.registration.phase_cross_correlation

https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.phase_cross_correlation
https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.phase_cross_correlation
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5.2.3 Preliminary experiments

For developing the described procedure, inspiration was taken from the work of
Oxoli et al. (2020), that used a similar strategy for the detection of desert dunes
displacements. The approach used by Oxoli et al. included an unsupervised classification
step, in order to divide the territory into two zones: dunes and not dunes. This
approach was considered also in the case of the Ruinon landslide, developing an
unsupervised classification procedure in order to distinguish "landslide" pixels from
"no landslide" pixels; after a few trials, it was seen that this process introduced
too much differences between the images, given the fact that along the landslide
body the trees and the bare soil usually merge and the classification struggles to
consistently classify them (Figure 5.11). This inconsistency was detrimental for the
sake of the cross-correlation, thus the procedure was reworked to be able to handle
directly multiband images.

(a) Classified image of 18/07/2019 (b) Classified image of 23/07/2019

Figure 5.11: Comparison between two similar images (only 5 days apart) highlighting
differences on the border and inside the body of the landslide

Another approach that was explored was to use images with a particular band
combination as input for the procedure. In particular, three indices were calculated
for each preprocessed image:
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Bare Soil Index =
(SWIR +Red)− (NIR +Blue)

(SWIR +Red) + (NIR +Blue)

Normalized Difference V egetation Index =
NIR−Red
NIR +Red

Normalized Difference Water Index =
NIR− SWIR

NIR + SWIR

where SWIR stands for Short-Wave InfraRed wavelength andNIR for Near InfraRed
wavelength. The BSI, NDVI and NDWI were later assigned respectively to the Red,
Green and Blue bands of the input images to be used for cross-correlation. However,
even if this band combination clearly highlights the landslide body with respect
to the rest of the territory, it also introduces a lot of variability in the values of
the pixels, both in the landslide body and outside of it, as seen in Figure 5.12c.
Therefore, also this method was disregarded, and in general it was decided to
apply the procedure directly on RGB images, without any modification that could
introduce errors.
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(a) Image of 27/08/2019 with band combination
applied

(b) Image of 21/09/2019 with band combination
applied

(c) Output of the operation

Figure 5.12: Analysis between August and September 2019 with images modified using
the BSI, NDVI and NDWI indices as bands

After the whole method was refined to work directly on RGB images, disregarding
classification and band combination, an experiment was carried out to verify the
performances of the cross-correlation. Since ground measurements on the Ruinon
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landslide were obtained by concession of ARPA Lombardia, some of them were used
to validate the results obtained by the cross-correlation. In particular, multitemporal
topographic measurements for a set of targets positioned on the body of the landslide
(calledmire ottiche) were considered. All the data available were filtered by considering
only measurements from 2015 onwards (since the Sentinel-2 mission was launched
that year), thus obtaining a set of 22 mire ottiche (Figure 5.13). These data were
analysed with a GIS software, specifically looking for a displacement of at least 10
m between two consecutive epochs: this is because the cross-correlation procedure
is able to identify measurements with a magnitude of minimum 1 pixel, i.e. 10 m
for Sentinel-2 images.

Figure 5.13: All available data from mire ottiche from 2015 to 2020. A target contains one
point for each day an observation has been registered
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Only one target that satisfied said properties was found, in particular mira ottica
number 30 showed a displacement of 11.23 m in the period between 18/05/2020
and 25/08/2020 (Figure 5.14). To verify if this displacement was identified by
the cross-correlation process, the procedure was applied to two Sentinel-2 images
covering the same period: the first one was taken on exactly 18/05/2020 and the
second one was taken on 26/08/2020. The cross-correlation procedure was carried
out between these two images, and the output maps identified a movement in the
pixel containing the starting position of the target. This movement had a magnitude
of 10 m, and a South direction (Figure 5.15). This was considered a satisfactory
result, especially regarding the magnitude of the displacement.

Figure 5.14: Mira ottica number 30
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(a) May 2020 image (master) (b) August 2020 image (slave)

(c) Displacement magnitude output (d) Zoom on the mira ottica

Figure 5.15: Results of the preliminary landslide displacement analysis



Chapter 6
Results

6.1 Landslide susceptibility analysis

6.1.1 Upper Valtellina

6.1.1.1 Output

The output susceptibility map for Upper Valtellina (Figure 6.1) correctly identifies
the urbanized area and the valley bottom in the lower susceptibility bracket. Moreover,
it seems that the areas with a higher risk of landslides are mainly located along the
lower sides of the valley, while the high mountain peaks have a low susceptibility
level. Table 6.1 shows the extension of each susceptibility level.

78
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Figure 6.1: Landslide Susceptibility Map for Upper Valtellina

Susceptibility level Area [km2] Area percentage [%]

Low 92.7 33.58

Medium 53.52 19.39

High 37.77 13.68

Very high 92.06 33.35

Table 6.1: Extension of the different susceptibility levels for Upper Valtellina

6.1.1.2 Validation

The model was firstly validated computing its Overall Accuracy (OA), by building a
confusion matrix using the testing dataset (Table 6.2). For this purpose, the output
map was reclassified and transformed into a binary map, where susceptibility levels
from 0 to 0.5 corresponded to "no landslide", and susceptibility levels from 0.5 to 1
corresponded to "landslide".
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Classified

Reference
No Landslide Landslide

No Landslide 9329 1321

Landslide 475 8642

Table 6.2: Confusion matrix for Upper Valtellina obtained with the testing data

The Overall Accuracy score was 90.9%.

To further validate the obtained model, two methods were considered: the Receiver
Operating Characteristic (ROC) curve and the Precision Recall Curve (PRC). The
area under the curve of the ROC (AUC-ROC) is a widely adopted method to
evaluate the performance of classifiers in Landslide Susceptibility modelling. In
order to obtain the ROC curve, two parameters are needed: the sensitivity of the
model (or true positive rate) and the specificity of the model (or true negative rate).
They can be calculated using these formulas:

sensitivity =
TruePositive

TruePositive+ FalseNegative

specificity =
TrueNegative

TrueNegative+ FalsePositive

If we plot these two parameters against each other, we obtain the ROC curve. In
order to measure the model performances it is possible to compute the AUC-ROC,
i.e. the area of the zone underlying the ROC curve. As a reference, an AUC-ROC
equal to 1 means a perfect classification, while an AUC-ROC equal to 0.5 represents
a random classification.

The PRC on the other hand is a less common method in LSM, but it has been
proven to be as reliable as the AUC-ROC, if not even more reliable in situations of
imbalanced datasets (Saito and Rehmsmeier, 2015). It can be computed by plotting
the precision (Equation 6.1) against the recall, which is equal to the sensitivity.
The advantage of the PRC is that by construction it does not consider the True
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Negative parameter, that usually comprises the most numerous part of the outputs
in classification models. Because of this the PRC is not affected by any imbalance
in the dataset (Yordanov and Brovelli, 2020b).

precision =
TruePositive

TruePositive+ FalsePositive
(6.1)

In the case of Upper Valtellina, the validation results for both the fit and the
predictive performances of the model are summarized in Table 6.3 and plotted in
Figure 6.2 and Figure 6.3.

Figure 6.2: ROC curve for Upper Valtellina predictive performances
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Figure 6.3: Precision Recall Curve for Upper Valtellina predictive performances

Validation Method

Performance type
Model Fit Model Prediction

AUC-ROC 1.0 0.971

AUC-PRC 1.0 0.975

Table 6.3: Upper Valtellina validation results

As expected, the model fit shows perfect performances, since it is computed with
the training data. Furthermore, the computed model shows very good prediction
performances, with high results for both the AUC-ROC and the AUC-PRC metrics.

6.1.2 Val Tartano

6.1.2.1 Output

Figure 6.4 shows the output of the model for the Val Tartano AOI, while Table 6.4
shows the extension of each susceptibility level.
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Figure 6.4: Landslide Susceptibility Map for Val Tartano

Susceptibility level Area [km2] Area percentage [%]

Low 9.55 19.17

Medium 7.67 15.41

High 9.96 20

Very high 22.61 45.42

Table 6.4: Extension of the different susceptibility levels for Val Tartano

The first assessment of the quality of this map comes from the fact that the area of
the Pruna landslide is correctly classified as high and very high risk, despite being
excluded from the LS zone (Figure 6.5).
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Figure 6.5: Pruna landslide (area in the blue circle) correctly classified

6.1.2.2 Validation

Also in the case of Val Tartano, the model was validated by means of Overall
Accuracy, AUC-ROC and AUC-PRC. The Overall Accuracy score in this case was
91.6%. The results of the validation are illustrated in Table 6.5, Table 6.6, Figure 6.6
and Figure 6.7.

Classified

Reference
No Landslide Landslide

No Landslide 1800 223

Landslide 104 1777

Table 6.5: Confusion matrix for Val Tartano obtained with the testing data
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Figure 6.6: ROC curve for Val Tartano predictive performances

Figure 6.7: Precision Recall Curve for Val Tartano predictive performances

The model shows perfect fit performances and great results in the predictive performances
also for Val Tartano.
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Validation Method

Performance type
Model Fit Model Prediction

AUC-ROC 1.0 0.975

AUC-PRC 1.0 0.974

Table 6.6: Val Tartano validation results

Visual validation Moreover, a known landslide (Figure 6.8) shapefile with an
extension of 924 m2, which was not included in the landslide inventory of Val
Tartano, was available. This allowed to visually inspect the results of the output
map in the area covered by this landslide, in order to check if the results depicted
a high risk. As seen in Figure 6.9, the map shows very high susceptibility levels for
almost all the pixels overlapping the landslide area, therefore confirming the validity
of the results.

Figure 6.8: Known landslide 3D reconstruction from UAV survey
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Figure 6.9: Known landslide in Val Tartano correctly classified

6.2 Landslide displacement monitoring

For monitoring the activity of the Ruinon landslide, two different sets of images were
considered. The first one consists of one image per year in the period 2015-2020
(Table 6.7), with the idea to track the evolution of the landslide throughout the last
few years. The other one is composed by three images, one per month, in the period
July 2019-September 2019 (Table 6.8), aiming at highlighting a large movement that
took place in the summer of 2019. Both the sets were analysed with moving and
fixed master approaches, and the results are illustrated in the next sections.

6.2.1 Yearly frequency

Here are reported the outputs of the displacement monitoring process on images
that span from 2015 to 2020. In particular, images in the summer months were
chosen, due to the absence of snow. The selected images are highlighted in green
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in Table 6.7. After an initial exploration of the available images, the year 2017 was
found to have no clear images (i.e. free from clouds and snow); luckily, the landslide
did not show large movements from 2016 to 2018, and therefore 2017 was excluded
from the analysis.

Image code Sensing date Selected

S2A_MSIL1C_20150803T101016_N0204_R022_T32TPS 03 August 2015

S2A_MSIL1C_20160827T101022_N0204_R022_T32TPS 27 August 2016

S2A_MSIL1C_20170921T101021_N0205_R022_T32TPS 09 July 2017

S2A_MSIL1C_20180708T101031_N0206_R022_T32TPS 08 July 2018

S2A_MSIL1C_20190723T101031_N0208_R022_T32TPS 27 July 2019

S2A_MSIL1C_20200826T101031_N0209_R022_T32TPS 26 August 2020

Table 6.7: Yearly Sentinel-2 images

Fixed master The next figures will report the displacement magnitude and direction
outputs for every image couple processed with a fixed master approach.
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(a) 2015 image (master) (b) 2016 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.10: 2015-2016 fixed master outputs
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(a) 2015 image (master) (b) 2018 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.11: 2015-2018 fixed master outputs
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(a) 2015 image (master) (b) 2019 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.12: 2015-2019 fixed master outputs
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(a) 2015 image (master) (b) 2020 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.13: 2015-2020 fixed master outputs

By just inspecting the couples of satellite images, it seems that the outputs are
correctly identifying zones of the landslide that are moving. We can also notice
that, since this is a fixed master procedure, the number of pixels identified as moving
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is increasing from year to year, and the pixels that are depicted as moving in an
image seem to be consistently moving also in the following images. This is a first
confirmation of the validity of the results.

This procedure also highlights changes that are unrelated to the landslide: this is
particularly evident in Figure 6.12, where the appearance of a worksite near the road
results in the identification of displacements, registered in the output. As it is visible
in the figure, the directions of the displacements in the pixels of the worksite have
non homogeneous and chaotic values, since the algorithm detects shifts in various
directions. This is due to the fact that the algorithm is cross-correlating the forest
that was cut down to build the worksite with the forest all around it.
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Moving master The next figures will report the displacement magnitude and
direction outputs for every image couple processed with a moving master approach.

(a) 2015 image (master) (b) 2016 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.14: 2015-2016 moving master outputs
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(a) 2016 image (master) (b) 2018 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.15: 2016-2018 moving master outputs
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(a) 2018 image (master) (b) 2019 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.16: 2018-2019 moving master outputs



CHAPTER 6. RESULTS 97

(a) 2019 image (master) (b) 2020 image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.17: 2019-2020 moving master outputs
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6.2.2 Summer 2019 focus

During the summer of 2019, precisely in August, the Ruinon landslide experienced
a very large mass movement in the Western flank of the lower scarp. In order to
investigate this episode, three images were selected over the months of July, August
and September. In particular, the best image for every month was chosen: Table 6.8
lists all the available images (free from clouds over the landslide and with Relative
Orbit number 22), and highlights the selected ones in green.

Image code Sensing date Selected

S2B_MSIL1C_20190718T101039_N0208_R022_T32TPS 18 July

S2A_MSIL1C_20190723T101031_N0208_R022_T32TPS 23 July

S2B_MSIL1C_20190827T101029_N0208_R022_T32TPS 27 August

S2A_MSIL1C_20190911T101021_N0208_R022_T32TPS 11 September

S2B_MSIL1C_20190916T101029_N0208_R022_T32TPS 16 September

S2A_MSIL1C_20190921T101031_N0208_R022_T32TPS 21 September

Table 6.8: Summer 2019 Sentinel-2 images

Fixed master Here are reported the results of the displacement monitoring procedure
in the summer of 2019 with a fixed master approach.
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(a) July image (master) (b) August image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.18: July-August fixed master outputs
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(a) July image (master) (b) September image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.19: July-September fixed master outputs
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Moving master Lastly, here are reported the results of the displacement monitoring
procedure in the summer of 2019 with a moving master approach.

(a) July image (master) (b) August image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.20: July-August moving master outputs
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(a) August image (master) (b) September image (slave)

(c) Displacement magnitude output (d) Displacement direction output

Figure 6.21: August-September moving master outputs
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6.2.3 General discussion

As the analysis results show, this procedure correctly identifies the pixel movements
occurring between two epochs. On the other hand, it is also important to note the
limitations of this analysis: firstly, the smallest displacement that can be identified
by cross-correlating two Sentinel-2 images is a displacement of 1 pixel, i.e. a
displacement of 10 m. Therefore, smaller movements cannot be sensed by this
procedure because of the native resolution of input satellite data. Secondly, errors
can arise from the images having differences in terms of co-registration and histogram
distribution, since this process highly relies on the images being as aligned and
similar as possible. Lastly, skipping a classification process and directly cross-correlating
multiband images allows to avoid errors produced by classification, but also exposes
the procedure to other problems, such as identifying movements and changes also
outside the landslide body.

To provide an overview of the obtained results, windrose diagrams were produced
(Figure 6.22 and Figure 6.23). A windrose diagram allows to plot the obtained
displacements as oriented histograms, therefore giving information about the direction
of the movement, the quantity of pixels moving in that direction and the magnitude
of those displacements. In addition, the windrose only uses pixels that have a
cross-correlation error smaller than an arbitrary threshold, therefore filtering bad
results. Even though for all the analyses the error values are rarely above 0.5
(Table 6.9), the error threshold was chosen to be 0.5 in order to include a relevant
number of pixels for the diagram computation.

Period Master strategy Total pixels Excluded pixels Excluded pixels [%]

2015 - 2020
Fixed 2132 101 4.74

Moving 1362 68 4.99

Summer 2019
Fixed 621 0 0

Moving 345 0 0

Table 6.9: Excluded pixels due to error value greater than 0.5
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(a) 2015-2020 fixed master windrose diagram

(b) 2015-2020 moving master windrose diagram

Figure 6.22: 2015-2020 windrose diagrams with an error threshold of 0.5
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(a) Summer 2019 fixed master windrose diagram

(b) Summer 2019 moving master windrose diagram

Figure 6.23: Summer 2019 windrose diagrams with an error threshold of 0.5
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From the windrose diagrams, we can see that the majority of moving pixels is sliding
towards South; this is partially consistent with the real movement, even though
in reality the Ruinon landslide is mostly moving along the South-West diagonal.
Moreover, it seems that there is a high accordance between the diagrams from the
two different methods, fixed and moving master, therefore confirming the validity
of the technique.

6.2.4 Validation

Due to its recent activity, the Ruinon landslide has been monitored with UAV
surveys by ARPA Lombardia (the regional agency for environmental protection)
and by the GEOLab of Politecnico di Milano. The data collected in these surveys
were made available and were used for validating the procedure developed in this
work. Table 6.10 shows all the UAV survey dates: in particular the surveys of
27/09/2019 and 10/09/2020 were selected for the validation. The reasons behind
this choice were the quality of the survey data and the availability of good satellite
images near those dates. The downloaded satellite images were sensed in 21/09/2019
and 15/09/2020.

Survey date Survey by

26/07/2019 ARPA Lombardia

04/09/2019 ARPA Lombardia

20/09/2019 ARPA Lombardia

27/09/2019 ARPA Lombardia

25/10/2019 ARPA Lombardia

10/09/2020 ARPA Lombardia

19/10/2020 ARPA Lombardia

14/07/2021 GEOLab - Politecnico di Milano

31/10/2021 GEOLab - Politecnico di Milano

Table 6.10: UAV surveys of the Ruinon landslide

The displacement monitoring procedure was applied to both the Sentinel-2 images
(Figure 6.24) and the RGB images from the surveys resampled to a resolution of 10
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m (Figure 6.25), and the obtained results were compared. Overall the two outputs
depict the same portions of the body of the landslide as moving; moreover, also the
magnitude of the displacement is similar between the two analyses (Figure 6.26). In
particular, the mean value of the differences between the two output rasters is 5 m.

(a) Sentinel-2 image of 21/09/2019 (b) Sentinel-2 image of 15/09/2020

Figure 6.24: Sentinel-2 images used for validation
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(a) RGB image from survey of 27/09/2019 (b) RGB image from survey of 10/09/2020

Figure 6.25: RGB images used for validation

(a) Displacement magnitude output from Sentinel-2
images

(b) Displacement magnitude output from UAV RGB
images

Figure 6.26: Outputs of the two analysis in agreement
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In addition, the displacement along the Z axis, that was obtained from the UAV
surveys, was inspected looking for confirmations of the movements of the landslide.
The Western flank of the body of the landslide was considered, since it corresponds
to the part showing a greater movement from the outputs of Sentinel-2. It was seen
that between the two surveys an accumulation zone appears in correspondence with
the large movement detected by the procedure on the bottom of the Western flank.
In particular, a positive increase of the terrain Z of 4 m, due to accumulation of
material, was detected by comparing the point clouds from the surveys (Figure 6.27
and Figure 6.28). This was considered in accordance to the movement detected by
the developed procedure, thus confirming the validity of the results.

Figure 6.27: Differences along the Z axis between the two UAV surveys
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Figure 6.28: Differences along the Z axis between the two UAV surveys: focus on bottom
part of the landslide



Chapter 7
Conclusions

7.1 Landslide Susceptibility Mapping

Landslides are one of the most widespread and dangerous geological hazard worldwide
(Guzzetti et al., 1999; Reichenbach et al., 2018). Therefore, being able to accurately
predict areas that are prone to such phenomena gives the opportunity to control
those areas and prevent damages. This makes landslide susceptibility mapping a
crucial and fundamental subject.

In particular, the procedure employed in this work was refined with a step by step
process with the aim to obtain good and consistent results. In the end, the final
procedure led to optimal results for both the areas of interest considered. The
reliable performances of the Random Forests technique for landslide susceptibility
analysis were confirmed.

Moreover, the inclusion of information about zones that are by hypothesis not prone
to landslides, obtained by defining the NoLS zone, has proven to strengthen the
model and generate valuable results.

Lastly, all the chosen validation metrics agreed when evaluating both the model
fitness and the model prediction performances.

In general, the availability of more precise and robust Machine Learning techniques
can only benefit landslide susceptibility studies. For the particular case of this
procedure, improvements could be made by considering a multitemporal landslide

111
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inventory and including time as a factor in the analysis. Moreover, since the choice
of the environmental variables considered in this work was based on the variables
that are most used in the literature, exploring the effect of lesser known factors on
the model could produce insightful results. Finally, further improvements on the
definition of the NoLS zone could bring benefits to the analysis.

7.2 Landslide displacement monitoring

The monitoring of active landslides is a matter of primary importance when dealing
with mass movement phenomena. The increased availability of high-resolution
multitemporal satellite imagery promotes the use of these images for monitoring
purposes. While on the field monitoring can produce very accurate results, a
procedure like the one applied in this work has the advantage to be more flexible,
scalable and cheap than an analysis on the field.

In the particular case of this work, an experimental procedure has been developed
with the aim of investigating differences between Sentinel-2 satellite images for
monitoring the displacement of the Ruinon landslide. Despite being a first stage
approach to landslide monitoring, this procedure led to promising results.

Many approaches were considered, varying the main parameters of the procedure
(adding or removing a classification phase, considering different intervals between
satellite images, modifying the size of the moving window and others). The whole
process was progressively improved and refined until it gave satisfactory results.

The core strength of this procedure is that it relies exclusively on FOSS GIS and
free and open data. This feature allows the analysis to be easily replicated and
empowered.

A procedure like the one adopted in this study could be further improved with the
use of higher resolution images. Moreover, mitigating the errors produced by the
preprocessing phases, such as the image co-registration process, could enhance the
precision and the robustness of this technique.
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Val Tartano terrain variables

(a) Val Tartano DTM
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(a) Val Tartano slope

(b) Val Tartano eastness
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(c) Val Tartano northness

(d) Val Tartano distance from roads
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(e) Val Tartano distance from rivers

(f) Val Tartano distance from faults
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(g) Val Tartano Topographic Wetness Index

(h) Val Tartano NDVI
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(i) Val Tartano land use

(j) Val Tartano lithology
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(k) Val Tartano yearly precipitation

(l) Val Tartano plan curvature
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(m) Val Tartano profile curvature

Figure A.2: Val Tartano terrain variables



Appendix B
Code

B.1 Landslide Susceptibility Mapping

B.1.1 NDVI layer computation with Google Earth Engine
1 var ruinon = ee.FeatureCollection(’users/lorenzoamici/ruinon_4326’);

2 ruinon = ruinon.geometry();

3 Map.centerObject(ruinon);

4 Map.addLayer(ruinon, {color: ’green’}, ’ruinon’);

5
6 var AOI = AOI_rectangle2;

7
8 var AOI_rectangle = AOI.geometries(); // Create a new polygon to clip the image to

9 AOI_rectangle = AOI_rectangle.get(1);

10 function maskS2clouds(image) {

11 var qa = image.select(’QA60’);

12
13 // Bits 10 and 11 are clouds and cirrus, respectively.

14 var cloudBitMask = 1 << 10;

15 var cirrusBitMask = 1 << 11;

16
17 // Both flags should be set to zero, indicating clear conditions.

18 var mask = qa.bitwiseAnd(cloudBitMask).eq(0)

19 .and(qa.bitwiseAnd(cirrusBitMask).eq(0));

20
21 return image.updateMask(mask).divide(10000);

22 }

23
24 function addNDVI(image) {

25 var ndvi = image.normalizedDifference([’B8’, ’B4’]).rename(’NDVI’);

26 return image.addBands(ndvi);

27 }

129
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28
29 var months = [

30 [’2020-01-01’, ’2020-01-31’],

31 [’2020-02-01’, ’2020-02-29’],

32 [’2020-03-01’, ’2020-03-31’],

33 [’2020-04-01’, ’2020-04-30’],

34 [’2020-05-01’, ’2020-05-31’],

35 [’2020-06-01’, ’2020-06-30’],

36 [’2020-07-01’, ’2020-07-31’],

37 [’2020-08-01’, ’2020-08-31’],

38 [’2020-09-01’, ’2020-09-30’],

39 [’2020-10-01’, ’2020-10-31’],

40 [’2020-11-01’, ’2020-11-30’],

41 [’2020-12-01’, ’2020-12-31’],

42 ];

43
44 var visualization = {

45 min: 0.0,

46 max: 0.3,

47 bands: [’B4’, ’B3’, ’B2’],

48 };

49
50 for(var i = 0; i<12; i++) {

51 var dataset = ee.ImageCollection(’COPERNICUS/S2_SR’)

52 .filterDate(months[i][0], months[i][1])

53 .filterBounds(ruinon)

54 .filter(ee.Filter.lt(’CLOUDY_PIXEL_PERCENTAGE’,20));

55
56 // Compute the Normalized Difference Vegetation Index (NDVI).

57 var nir = dataset.mean().select(’B8’);

58 var red = dataset.mean().select(’B4’);

59 var ndvi = nir.subtract(red).divide(nir.add(red)).clip(AOI).rename(’NDVI’);

60
61 var ndviParams = {min: -1, max: 1, palette: [’blue’, ’white’, ’green’]};

62
63 if(i===0) {

64 var NDVIs = ee.ImageCollection(ndvi);

65 } else {

66 var temp = ee.ImageCollection(ndvi);

67 NDVIs = NDVIs.merge(temp);

68 }

69 }

70
71 Map.setCenter(10.47, 46.44, 10);

72
73 var NDVImean = ee.Image(NDVIs.mean());

74
75 Map.addLayer(NDVImean, ndviParams, ’NDVI year mean’);

76
77 Export.image.toDrive({

78 image: NDVImean,

79 description: ’imageToDriveExample’,
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80 scale: 5,

81 region: AOI_rectangle

82 });

Listing B.1: NDVI computation code in Google Earth Engine

B.1.2 Precipitation layer computation with Python
1 import os

2 import numpy as np

3
4 sums = np.zeros((174,177))

5 data_num = np.zeros((174,177))

6 avgs = np.zeros((174,177))

7 Initial_directory = "C:\\Users\\lawfr\\Desktop\\Tesi_practice\\PR_2020\\"

8 Files = []

9 for file in os.listdir(Initial_directory):

10 f = open(Initial_directory + file, ’r’)

11 lines = f.readlines()

12 for j in range(0, 174):

13 line = lines[j+6].split()

14 for i in range(0,177):

15 if (float(line[i])>=0):

16 sums[j][i] += float(line[i])

17 data_num[j][i] +=1

18 f.close()

19
20 for j in range(0,174):

21 for i in range(0,177):

22 if (sums[j][i]==0 and data_num[j][i]==0):

23 avgs[j][i] = -9999.0

24 else:

25 avgs[j][i] = sums[j][i] / data_num[j][i]

26
27 avgs = np.asarray(avgs)

28 np.savetxt(Initial_directory + "precipitation.csv", avgs, delimiter=" ")

Listing B.2: Yearly precipitation computation code in Python

B.1.3 ModelMap package implementation for Random Forests

landslide susceptibility analysis with R
1 setwd(’C:/Users/lawfr/Desktop/Tesi_practice/VAL_TARTANO/LSM’)

2
3 library(’ModelMap’)

4
5 model.type=’RF’

6
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7 qdata.trainfn="tartano_training_points.csv"

8 qdata.testfn="tartano_testing_points.csv"

9 folder=getwd()

10
11 MODELfn="Tartano_20kTP"

12
13 predList=c("dtm","rivers","faults","dusaf","roads","profile","plan","north","east",

14 "twi","ndvi")

15 predFactor=c("rivers","faults","dusaf","roads")

16
17 response.name="hazard"

18 response.type="continuous"

19
20 rastLUT=read.csv("modelLUT.csv")

21
22 seed=50

23 unique.rowname="id"

24
25 model.explore(qdata.trainfn = qdata.trainfn, folder = folder, predList = predList,

26 predFactor = predFactor, response.name = "hazard", response.type = response.type,

27 device.type=c("jpeg"), response.colors = response.colors,

28 unique.rowname = unique.rowname, OUTPUTfn = "Tartano_20kTP",units="px",

29 device.width=8000, device.height=4000, MAXCELL=300000,

30 res=300, cex=1.5, rastLUTfn = rastLUT, na.value = -9999, col.ramp = heat.colors(101),

31 col.cat = c("wheat1","springgreen2","darkolivegreen4","darkolivegreen2","yellow",

32 "thistle2","brown2","brown4"))

33
34 model.obj=model.build(model.type=model.type, qdata.trainfn=qdata.trainfn, folder=folder,

35 unique.rowname=unique.rowname, MODELfn=MODELfn, predList=predList,

36 predFactor=predFactor, response.name=response.name,

37 response.type=response.type, seed=seed)

38
39 save(model.obj, file="Tartano_20kTP.obj")

40
41 model.pred=model.diagnostics(model.obj=model.obj, qdata.trainfn=qdata.trainfn,

42 qdata.testfn=qdata.testfn, folder=folder, MODELfn=MODELfn, unique.rowname=unique.rowname,

43 prediction.type="OOB", device.type="pdf", device.width=10, device.height=8,cex=1.2)

44
45 model.mapmake(model.obj=model.obj ,folder=folder, MODELfn=MODELfn,

46 rastLUTfn=rastLUT, na.action="na.omit",map.sd=TRUE)

Listing B.3: Landslide susceptibility analysis with the ModelMap package
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B.2 Landslide displacement monitoring

B.2.1 Preprocessing of Sentinel-2 images with Python and

GRASS GIS
1 import grass.script as grass

2 import os

3 from datetime import datetime

4 import time

5
6 start = time.time()

7
8 # folder containing the sentinel imagery .SAFE

9 foldin = ’C:\\Users\\lawfr\\Desktop\\Sentinel2’

10 # roi Shapefile

11 roi_in = ’C:\\Users\\lawfr\\Desktop\\Tesi_practice\\Ruinon_monitoring\\aoi_big.shp’

12 res_in = 10 # GRASS Region target resolution

13
14 # BAND LIST

15 band_list = ["B02", "B03", "B04", "B05",

16 "B06", "B07", "B08", "B8A", "B11", "B12"]

17
18 folder_out = foldin + ’\\’ + "outDOS"

19 if not os.path.exists(folder_out):

20 os.makedirs(folder_out)

21
22 # SET GRASS REGION

23 grass.run_command("v.in.ogr", input=roi_in, output="roi", overwrite=True)

24 grass.run_command("g.region", vector="roi", res=res_in, flags="a")

25
26 # GET IMAGES DATES

27 data = os.listdir(foldin)

28 dates = []

29 for item in data:

30 if item.endswith(’.SAFE’):

31 date = (item.split("_")[-1]).split(".SAFE")[0]

32 dates.append(datetime.strptime(

33 date.partition(’T’)[0], ’%Y%m%d’).date())

34 ldates = list(set(dates))

35
36 # PROCESSING SCENES BY DATE

37 name_list = []

38 band_name_list = []

39 for d in ldates:

40 for x in data:

41 if x.endswith(’.SAFE’) and x.find(d.strftime("%Y%m%d")) != -1:

42 name_list.append(x.split("_")[5]+"_"+x.split("_")[2])

43
44 # IMPORT BANDS (flag -c to import vector cloud mask).

45 grass.run_command("i.sentinel.import", input=foldin +

46 ’\\’+x, flags="cr", overwrite=True)
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47
48 # CLOUD MASKING

49 cloud_mask_name_original = x.split(

50 ’_’)[4]+’_’+x.split(’_’)[1]+’_MSK_CLOUDS’

51 cloud_mask_name = x.split("_")[5]+"_"+x.split("_")[2]

52 +’_MSK_CLOUDS’

53 cloud_check = grass.read_command("g.list", flags="f", type="vect")

54 if cloud_mask_name_original in cloud_check:

55 grass.run_command("g.rename", vector="%s,%s" %

56 (cloud_mask_name_original, cloud_mask_name))

57 grass.run_command("v.to.rast", input="%s" % cloud_mask_name, output="%s" %

58 cloud_mask_name+’_rast’, use=’val’, overwrite=True)

59 grass.run_command("g.remove", type=’vector’,

60 pattern="%s" % d.strftime("%Y%m%d"), flags=’fr’)

61 for u in band_list:

62 band = x.split("_")[5]+"_"+x.split("_")[2]+’_’+u

63 grass.mapcalc("$new = if (isnull($cloudmask)== 1, $original,

64 null())", new="%s" %

65 band+’_cf’, cloudmask="%s" % cloud_mask_name+’_rast’,

66 original="%s" % band, overwrite=True)

67 else:

68 for u in band_list:

69 band = x.split("_")[5]+"_"+x.split("_")[2]+’_’+u

70 grass.run_command("g.rename", rast="%s,%s" %

71 (band, band+’_cf’))

72
73 # MERGE SAME BANDS OF MULTIPLE TILES AND CORRECT WITH DOS

74 for n in band_list:

75 band_name_list = [s + "_"+n+’_cf’ for s in name_list]

76
77 if len(name_list) > 1:

78 # PATCH BANDS

79 grass.run_command("r.patch", input="%s" % ",".join(

80 band_name_list), output=d.strftime("%Y%m%d")+"_"+n+’_cf’, overwrite=True)

81 else:

82 # SINGLE IMAGERY SCENE, RENAME ONLY WITHOUT PATCHING

83 grass.run_command("g.rename", rast="%s,%s" % (

84 band_name_list[0], d.strftime("%Y%m%d")+"_"+n+’_cf’))

85 # GET MINIMUM VALUE OF PATCHED BANDS

86 vmin = float(grass.parse_command(’r.univar’, map=’%s’ %

87 d.strftime("%Y%m%d")+"_"+n+’_cf’,

88 flags=’g’)[’min’])

89 # COMPUTE DOS

90 grass.mapcalc("$new = $original - $minimum", new=d.strftime("%Y%m%d")+"_dos_"+n,

91 original=d.strftime("%Y%m%d")+"_"+n+’_cf’,

92 minimum=vmin, overwrite=True)

93
94 # CREATE GROUP

95 name = d.strftime("%Y%m%d")+"_dos"

96 myInput = [name + "_"+n for n in band_list]

97 grass.run_command("i.group", group=’s2’, input=",".join(myInput))

98
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99 # EXPORT TIFF WITH COMPRESSION

100 grass.run_command("r.out.gdal", input=’s2’, output=folder_out +

101 "\\" + name+’.tiff’, flags=’tc’, overwrite=True)

102
103 # REMOVE ALL DATA FROM THE GRASS MAPSET TO START PROCESSING ANOTHER SCENE

104 grass.run_command("g.remove", type=’raster,vector’,

105 pattern="%s" % d.strftime("%Y%m%d"), flags=’fr’)

106 grass.run_command("g.remove", type=’group’, name=’s2’, flags=’f’)

107 name_list = []

108 band_name_list = []

109
110 end = time.time()

111 print(end-start)

Listing B.4: Preprocessing steps for Sentinel-2 Level-1C images

B.2.2 Co-registration of Sentinel-2 images with Python AROSICS

package
1 import os

2 from arosics import COREG

3 from arosics import COREG_LOCAL

4 from geoarray import GeoArray

5 import rasterio as rio

6
7 os.chdir(r’C:\Users\lawfr\Desktop\Sentinel2\outDOS’)

8
9 data = (os.listdir(’.’))

10 files = []

11 for item in data:

12 if item.endswith(’.tiff’):

13 files.append(item)

14 files = sorted(list(set(files)))

15 print(’First Image: ’, files[0],’\n’,

16 ’Last Image: ’, files[-1])

17 print(files)

18
19 for i in range(0,len(files)-1):

20 first = f’{files[0]}’ # fixed master

21 # first = f’{files[i]}’ # moving master

22 # get a sample numpy array with corresponding geoinformation as reference image

23
24 geoArr = GeoArray(first)

25 print("first" + first)

26
27 ref_ndarray = geoArr[:]

28
29 ref_gt = geoArr.geotransform

30
31 ref_prj = geoArr.projection
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32
33 second = f’{files[i+1]}’

34 # get a sample numpy array with corresponding geoinformation as target image

35
36 geoArr = GeoArray(second)

37 print("second" + second)

38
39 tgt_ndarray = geoArr[:]

40
41 tgt_gt = geoArr.geotransform

42
43 tgt_prj = geoArr.projection

44
45 # create in-memory instances of GeoArray from the numpy array data,

46 the GDAL geotransform tuple and the WKT projection string

47 geoArr_reference = GeoArray(ref_ndarray, ref_gt, ref_prj)

48
49 geoArr_target = GeoArray(tgt_ndarray, tgt_gt, tgt_prj)

50
51 # GLOBAL COREG

52 CR = COREG(geoArr_reference, geoArr_target, path_out=fr’.\aligned\{second}’,

53 max_iter=10000, max_shift=10, match_gsd=False, ws = (100,100),

54 align_grids=True)

55 CR.calculate_spatial_shifts()

56 CR.correct_shifts()

Listing B.5: Co-registration of Sentinel-2 Level-1C images

B.2.3 Clipping of Sentinel-2 images to AOI with Python and

GRASS GIS
1 import grass.script as grass

2 import os

3 from datetime import datetime

4 import time

5
6 start_tot = time.time()

7
8 # folder containing the sentinel imagery preprocessed

9 foldin = "C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\"

10 # roi Shapefile

11 roi_in = ’C:\\Users\\lawfr\\Desktop\\Tesi_practice\\Ruinon_monitoring\\aoi_small.shp’

12 res_in = 10 # GRASS Region target resolution

13
14 # BAND LIST

15 band_dict = {"B02": "1", "B03": "2", "B04": "3", "B05": "4", "B06": "5",

16 "B07": "6", "B08": "7", "B8A": "8", "B11": "9", "B12": "10"}

17
18 folder_out = foldin + "clipped"

19 if not os.path.exists(folder_out):
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20 os.makedirs(folder_out)

21
22 # SET GRASS REGION

23 grass.run_command("v.in.ogr", input=roi_in, output="roi", overwrite=True)

24 grass.run_command("g.region", vect="roi", res=res_in, flags="a")

25
26 # GET IMAGES DATES

27 data = os.listdir(foldin)

28 dates = []

29 for item in data:

30 if item.endswith(’.tiff’):

31 date = (item.split(".")[0]).split("_")[0]

32 dates.append(datetime.strptime(

33 date.partition(’T’)[0], ’%Y%m%d’).date())

34 ldates = list(sorted(dates))

35 print(ldates)

36
37 # PROCESSING SCENES BY DATE

38 name_list = []

39 band_name_list = []

40 for d in ldates:

41 start = time.time()

42 for x in data:

43 if x.endswith(’.tiff’) and x.find(d.strftime("%Y%m%d")) != -1:

44 imagery_name = (x.split(".")[0]).split("_")[0]

45 name_list.append(imagery_name)

46
47 grass.run_command("r.in.gdal", input="%s" % foldin+x, output="%s" %

48 d.strftime("%Y%m%d"), flags=’ok’, overwrite=True)

49
50 # CREATE GROUP

51 myInput = [imagery_name + "."+band_dict.get(n) for n in band_dict]

52 grass.run_command("i.group", group=’%s’ % imagery_name,

53 subgroup=’%s’ % imagery_name, input=",".join(myInput))

54
55 grass.run_command("r.out.gdal", input=’%s’ % imagery_name, output=’%s’ %

56 folder_out+’\\’+imagery_name+’_clip.tiff’, flags=’tc’,

57 overwrite=True)

58
59 grass.run_command("g.remove", type=’raster’,

60 pattern="%s" % d.strftime("%Y%m%d"), flags=’fr’)

61 grass.run_command("g.remove", type=’group’,

62 name=’%s’ % imagery_name, flags=’f’)

63
64 end = time.time()

65 print(end-start)

66
67 end_tot = time.time()

68 print(end_tot-start_tot)

Listing B.6: Clipping Sentinel-2 Level-1C images to AOI
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B.2.4 Histogram matching of couples of Sentinel-2 images

with Python
1 import os

2 from datetime import datetime

3 import rasterio as rio

4 from skimage.exposure import match_histograms

5 import time

6
7 # define paths:

8 fold_in = "C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped\\"

9
10 fold_out = fold_in + "hist_match\\"

11 if not os.path.exists(fold_out):

12 os.makedirs(fold_out)

13
14 fold_temp = fold_in + "band_temp\\"

15
16 # GET IMAGES DATES

17 data = os.listdir(fold_in)

18 dates = []

19 for item in data:

20 if item.endswith(’.tiff’):

21 date = (item.split(".")[0]).split("_")[0] # S2

22 # date = item.split(".")[0] #L8

23 dates.append(datetime.strptime(

24 date.partition(’T’)[0], ’%Y%m%d’).date())

25 ldates = list(sorted(dates))

26
27 # PROCESS BY DATE AND BAND

28 for t in range(0, len(ldates)):

29 start = time.time()

30 t_master = 0

31 if t <= max(range(0, len(ldates))) - 1:

32 d_t0 = ldates[t_master].strftime("%Y%m%d")

33 d_t1 = ldates[t+1].strftime("%Y%m%d")

34
35 # open master image - time 0

36 with rio.open("%s" % fold_in+d_t0+"_clip.tiff", ’r+’) as r:

37 master = r.read()

38 metadata_master = r.profile

39 metadata_master.update(compress=’deflate’)

40
41 # open slave image - time 1

42 with rio.open("%s" % fold_in+d_t1+"_clip.tiff", ’r+’) as s:

43 slave = s.read()

44 metadata_slave = s.profile

45 metadata_slave.update(compress=’deflate’)

46
47 # store the processed band one by one

48 fold_temp_t = fold_temp+d_t1+’\\’

49 if not os.path.exists(fold_temp_t):
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50 os.makedirs(fold_temp_t)

51
52 # match hist of each band and store results in a new multiband raster

53 for band in range(0, slave.shape[0]):

54
55 slave_rescale = match_histograms(

56 slave[band], master[band], multichannel=False)

57
58 # Read each layer and write it to stack

59 with rio.open("%s" % fold_temp_t+d_t1+"_"+str(band)+"_match.tiff", ’w’,

60 **metadata_slave) as dstBand:

61 metadata_dstBand = dstBand.profile

62 metadata_dstBand.update(count=1)

63 dstBand.write(slave_rescale, 1)

64
65 print("done image "+d_t1)

66 end = time.time()

67 print(end-start)

Listing B.7: Histogram matching couples of Sentinel-2 Level-1C images

B.2.5 Compressing histogrammatched image bands into multiband

image with Python and GRASS GIS
1 import grass.script as grass

2 import os

3
4 # folder containing the sentinel imagery preprocessed

5 foldin_global = ’C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped\\

6 band_temp\\’

7 # roi Shapefile

8 roi_in = ’C:\\Users\\lawfr\\Desktop\\Tesi_practice\\Ruinon_monitoring\\aoi_small.shp’

9 res_in = 10 # GRASS Region target resolution

10
11 folder_out = "C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped\\

12 hist_match\\"

13
14 # SET REGION ACCORDING TO SHAPE AND RES

15 grass.run_command("v.in.ogr", input=roi_in, output="roi", overwrite=True)

16 grass.run_command("g.region", vect="roi", res=res_in, flags="a")

17
18 filenames = os.listdir(foldin_global)

19
20 for date in filenames:

21 foldin = foldin_global+date+’\\’

22 print(foldin)

23 # GET DATES

24 data = os.listdir(foldin)

25
26 # PROCESSING SCENES BY DATE
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27 name_list = []

28 band_name_list = []

29 for x in data:

30 if x.endswith(’match.tiff’) and x.find(date) != -1:

31 imagery_name = (x.split(".")[0]).split("_")[0]

32 bnd_int = int((x.split(".")[0]).split("_")[1])+1

33 bnd = "B" + f"{bnd_int:02d}"

34 name_list.append(str((x.split(".")[0]).split("_")[0]+’_’+bnd))

35 # IMPORT BANDS

36 grass.run_command("r.in.gdal", input="%s" % foldin+x, output="%s" % str((

37 x.split(".")[0]).split("_")[0]+’_’+bnd), band=1, flags=’ok’,

38 overwrite=True)

39
40 # COMPRESS AND CREATE GROUP

41 myInput = name_list

42 grass.run_command("i.group", group=’%s’ % imagery_name,

43 subgroup=’%s’ % imagery_name, input=",".join(myInput))

44
45 # EXPORT TIFF WITH COMPRESSION

46 grass.run_command("r.out.gdal", input=’%s’ % imagery_name, output=folder_out+

47 imagery_name+’_match.tiff’, format=’GTiff’, type="Float64",

48 nodata=-1, flags=’tcf’, overwrite=True)

49
50 # REMOVE ALL DATA FROM THE GRASS MAPSET TO START PROCESSING ANOTHER SCENE

51 grass.run_command("g.remove", type=’raster,vector’,

52 pattern="%s" % date, flags=’fr’)

53 grass.run_command("g.remove", type=’group’, name=’%s’ %

54 imagery_name, flags=’f’)

55 name_list = []

56 band_name_list = []

Listing B.8: Compressing multiple bands output of the histogram matching code into a
multiband image

B.2.6 Local cross-correlation of preprocessed images with Python
1 import time

2 from scipy.spatial import distance

3 from skimage.feature import match_template

4 from skimage.registration import phase_cross_correlation

5 import rasterio as rio

6 import fiona

7 import rasterio.mask

8 import numpy as np

9 from datetime import datetime

10 import os

11 import math

12
13 def angle_between(p1, p2):

14 deg = math.atan2(p2[1]-p1[1], p2[0]-p1[0])/math.pi*180
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15 if deg < 0:

16 deg_compass = 360 + deg

17 else:

18 deg_compass = deg

19 return deg_compass

20
21 # define template size

22 row_offset_up = 3

23 row_offset_down = 4

24 col_offset_left = 3

25 col_offset_right = 4

26
27
28 # define step size for moving template

29 row_step = 1

30 col_step = 1

31
32 # define paths:

33 fold_in_master = ’C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped\\

34 hist_match\\’

35 fold_in_slave = ’C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped\\

36 hist_match\\’

37 fold_out = ’C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped

38 \\hist_match\\final_output_’ + \

39 str(row_offset_down+row_offset_up) + ’x’ + \

40 str(col_offset_left+col_offset_right) + ’\\’

41 if not os.path.exists(fold_out):

42 os.makedirs(fold_out)

43
44 fold_mask = fold_out+"\\masked\\"

45 if not os.path.exists(fold_mask):

46 os.makedirs(fold_mask)

47
48 # GET DATES

49 data = os.listdir(fold_in_master)

50 dates = []

51 for item in data:

52 if item.endswith(’.tiff’):

53 date = (item.split(".")[0]).split("_")[0]

54 print(date)

55 dates.append(datetime.strptime(

56 date.partition(’T’)[0], ’%Y%m%d’).date())

57 ldates = list(sorted(dates))

58
59 t_master = ldates[0]

60
61 for t in range(0, len(ldates)):

62 start = time.time()

63 if t <= max(range(0, len(ldates))) - 1:

64 d_t0 = ldates[t].strftime("%Y%m%d") # moving master

65 # d_t0 = t_master.strftime("%Y%m%d") # fixed master

66 d_t1 = ldates[t+1].strftime("%Y%m%d")
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67
68 # open master image - time 0

69 with rio.open("%s" % fold_in_master+d_t0+"_match.tiff", ’r+’) as r:

70 master = r.read()

71 metadata_master = r.profile

72 metadata_master.update(dtype=rio.float64, count=1)

73
74 # open slave image - time 1

75 with rio.open("%s" % fold_in_slave+d_t1+"_match.tiff", ’r+’) as r:

76 slave = r.read()

77 metadata_slave = r.profile

78 metadata_slave.update(dtype=rio.float64, count=1)

79
80 # define template centres iteratively

81 row_middles_list = list(

82 np.arange(row_offset_up*2, master[0].shape[0]-row_offset_down*2, row_step))

83 col_middles_list = list(

84 np.arange(col_offset_left*2, master[0].shape[1]-col_offset_right*2, col_step))

85
86 # initialize 2darray that contain the new raster bands with matching results

87 distance_array = np.empty((master[0].shape[0], master[0].shape[1]))

88 distance_array[:] = np.nan

89 direction_array = np.empty((master[0].shape[0], master[0].shape[1]))

90 direction_array[:] = np.nan

91 rms_error_array = np.empty((master[0].shape[0], master[0].shape[1]))

92 rms_error_array[:] = np.nan

93 rho_array = np.empty((master[0].shape[0], master[0].shape[1]))

94 rho_array[:] = np.nan

95
96 for row_middle in row_middles_list:

97 for col_middle in col_middles_list:

98
99 if master[0][row_middle, col_middle] != 0:

100 # template on the master image

101 tmpl_row_up = row_middle - row_offset_up

102 tmpl_row_down = row_middle + row_offset_down

103 tmpl_col_left = col_middle - col_offset_left

104 tmpl_col_right = col_middle + col_offset_right

105
106 template = master[0][tmpl_row_up: tmpl_row_down,

107 tmpl_col_left: tmpl_col_right]

108
109 # template on the slave image

110 offset_template = slave[0][tmpl_row_up: tmpl_row_down,

111 tmpl_col_left: tmpl_col_right]

112
113 # cross correlation

114 shift, error, diffphase = phase_cross_correlation(

115 template, offset_template, upsample_factor=1, space=’real’)

116
117 if shift[0] != 0.0 or shift[1] != 0.0:

118
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119 mcorr_offset_template = slave[0][tmpl_row_up+int(shift[0]):

120 tmpl_row_down+int(shift[0]), tmpl_col_left+int(shift[1]):

121 tmpl_col_right+int(shift[1])]

122
123 # compute distance and direction of the template translation

124 centre = np.array((row_middle, col_middle))

125 match = np.array(

126 (row_middle + shift[0], col_middle + shift[1]))

127 dist = round(distance.euclidean(centre, match), 3)

128
129 # store change vectors distances, directions, errors and max

130 # norm xcorr coeff (rho) in 2d array

131 distance_array[row_middle, col_middle] = dist

132 direction = round(angle_between(centre, match), 2)

133 direction_array[row_middle, col_middle] = direction

134 rms_error_array[row_middle, col_middle] = error

135 rho = match_template(mcorr_offset_template, template)

136 rho_array[row_middle, col_middle] = rho[0][0]

137
138 if row_middle in list(np.arange(1000, 11000, 1000)):

139 print(str(row_middle))

140
141 with fiona.open("C:\\Users\\lawfr\\Desktop\\migration_definitive\\mask.shp", "r")

142 as shapefile:

143 shapes = [feature["geometry"] for feature in shapefile]

144
145 with rio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_distance.tiff", ’w’,

146 **metadata_slave) as dst1:

147 dst1.write(distance_array, 1)

148
149 with rio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_direction.tiff", ’w’,

150 **metadata_slave) as dst2:

151 dst2.write(direction_array, 1)

152
153 with rio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_error.tiff", ’w’,

154 **metadata_slave) as dst3:

155 dst3.write(rms_error_array, 1)

156
157 with rio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_rho.tiff", ’w’,

158 **metadata_slave) as dst4:

159 dst4.write(rho_array, 1)

160
161 with rasterio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_distance.tiff") as src1:

162 out_image1, out_transform1 = rasterio.mask.mask(

163 src1, shapes, crop=True)

164 out_meta1 = src1.meta

165
166 out_meta1.update({"driver": "GTiff",

167 "height": out_image1.shape[1],

168 "width": out_image1.shape[2],

169 "transform": out_transform1})

170
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171 with rasterio.open(’%s’ % fold_mask+d_t0+"_"+d_t1+"_distance.tiff", "w",

172 **out_meta1) as dest1:

173 dest1.write(out_image1)

174
175 with rasterio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_direction.tiff") as src2:

176 out_image2, out_transform2 = rasterio.mask.mask(

177 src2, shapes, crop=True)

178 out_meta2 = src2.meta

179
180 out_meta2.update({"driver": "GTiff",

181 "height": out_image2.shape[1],

182 "width": out_image2.shape[2],

183 "transform": out_transform2})

184
185 with rasterio.open(’%s’ % fold_mask+d_t0+"_"+d_t1+"_direction.tiff", "w",

186 **out_meta2) as dest2:

187 dest2.write(out_image2)

188
189 with rasterio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_error.tiff") as src3:

190 out_image3, out_transform3 = rasterio.mask.mask(

191 src3, shapes, crop=True)

192 out_meta3 = src3.meta

193
194 out_meta3.update({"driver": "GTiff",

195 "height": out_image3.shape[1],

196 "width": out_image3.shape[2],

197 "transform": out_transform3})

198
199 with rasterio.open(’%s’ % fold_mask+d_t0+"_"+d_t1+"_error.tiff", "w",

200 **out_meta3) as dest3:

201 dest3.write(out_image3)

202
203 with rasterio.open(’%s’ % fold_out+d_t0+"_"+d_t1+"_distance.tiff") as src4:

204 out_image4, out_transform4 = rasterio.mask.mask(

205 src4, shapes, crop=True)

206 out_meta4 = src4.meta

207
208 out_meta4.update({"driver": "GTiff",

209 "height": out_image4.shape[1],

210 "width": out_image4.shape[2],

211 "transform": out_transform4})

212
213 with rasterio.open(’%s’ % fold_mask+d_t0+"_"+d_t1+"_rho.tiff", "w",

214 **out_meta4) as dest4:

215 dest4.write(out_image4)

216
217 print(’done with ’+d_t0+’-’+d_t1)

218 end = time.time()

219 print(end-start)

Listing B.9: Local cross-correlation of preprocessed images to produce displacement maps
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B.2.7 Creation of windrose diagrams with Python
1 import os

2 import numpy as np

3 import rasterio as rio

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from windrose import WindroseAxes

7
8 fold_in_S2 = ’C:\\Users\\lawfr\\Desktop\\Sentinel2\\outDOS\\aligned\\clipped

9 \\hist_match\\final_output_7x7_fixed_master\\masked\\’

10
11 # set acceptable error

12 error_threshold = 0.5

13 error_threshold_text = ’05’

14
15 period = ’y’

16 master = ’fixed’

17
18 exp_name = ’| Template = 7x7 pixels | Moving master ’

19
20 data_S2 = os.listdir(fold_in_S2)

21 dates = []

22 for maps in data_S2:

23 date = maps.split(’.’)[0].split(’_’)[0]+’_’ + \

24 maps.split(’.’)[0].split(’_’)[1]

25 dates.append(date)

26 ldates_S2 = list(set(dates))

27
28 times = []

29 for t in ldates_S2:

30 timeA = pd.to_datetime((t.split(’_’)[0]))

31 timeB = pd.to_datetime((t.split(’_’)[1]))

32 times.append(timeA)

33 times.append(timeB)

34 times_S2 = list(sorted(times))

35 start_time_S2 = times_S2[0].strftime("%Y%m%d")

36 end_time_S2 = times_S2[-1].strftime("%Y%m%d")

37
38 # compute variables

39 d_dis_S2 = []

40 d_dir_S2 = []

41 image_count_S2 = 0

42
43 for d in ldates_S2:

44 # get mask array

45 with rio.open("%s" % fold_in_S2+d+’_error.tiff’, ’r+’) as r:

46 mask_image = r.read()

47 mask_array_inv = [mask_image[0] > error_threshold]

48 mask_array = np.invert(mask_array_inv)

49 # read distances and directions

50 with rio.open("%s" % fold_in_S2+d+’_distance.tiff’, ’r+’) as p:
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51 dist_image = p.read()

52 # mask distances

53 dist_image[0][mask_array[0] == False] = np.nan

54 dist_image[0][dist_image[0] == -1] = np.nan

55 # read distances and directions

56 with rio.open("%s" % fold_in_S2+d+’_direction.tiff’, ’r+’) as s:

57 dir_image = s.read()

58 # mask directions

59 dir_image[0][mask_array[0] == False] = np.nan

60 dir_image[0][dir_image[0] == -1] = np.nan

61 # Create landslide distance and direction variables and plot them

62 d_dis_S2.append(dist_image[0].flatten()[

63 np.logical_not(np.isnan(dist_image[0].flatten()))]*10)

64 d_dir_S2.append(dir_image[0].flatten()[

65 np.logical_not(np.isnan(dir_image[0].flatten()))])

66
67 image_count_S2 += 1

68
69 dist_array_S2 = np.concatenate(d_dis_S2, axis=0)

70 dir_array_S2 = np.concatenate(d_dir_S2, axis=0)

71
72 n_of_pixels_S2 = int(dir_image[0].shape[0]*dir_image[0].shape[1])

73 n_of_changes_S2 = int(dist_array_S2.shape[0])

74 textstr = ’\n’.join((

75 r’$error-level=%.2f$’ % (error_threshold, ),

76 r’$T_{start}=%s$’ % (start_time_S2, ),

77 r’$T_{end}=%s$’ % (end_time_S2, )))

78
79 # Plot distance and direction variables

80 ax = WindroseAxes.from_ax()

81 ax.set_xticklabels([’E’, ’N-E’, ’N’, ’N-W’, ’W’, ’S-W’, ’S’, ’S-E’])

82 ax.bar(dir_array_S2, dist_array_S2, normed=True,

83 opening=0.8, edgecolor=’white’) # nsector=16

84 ax.set_legend(title="Displacement [m]", bbox_to_anchor=(

85 1, 0), loc="lower right", bbox_transform=plt.gcf().transFigure)

86 props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)

87 ax.text(0.0, 0.95, textstr, transform=ax.transAxes, fontsize=10,

88 verticalalignment=’bottom’, bbox=props)

89 plt.savefig(fold_out+period+’_’+master+’_windrose.png’)

Listing B.10: Creation of windrose diagrams in order to summarize results obtained from
the monitoring analysis
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