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1. Introduction
Mobile robotics provides a large spectrum of op-
portunities for research and applications rang-
ing from classical tasks such as real-time navi-
gation and mapping to more involved ones re-
quiring multidisciplinary expertise, as in the
healthcare and finance fields. However, due to
the complex nature of nonholonomic constraints,
even the most simple robot structure requires
the inclusion of these nonlinearities in the de-
sign of the controllers. In the multi-robot sys-
tem case, challenges such as collective motion
planning, a dynamic environment with obsta-
cles and uncertainties, and a constrained com-
munication topology naturally lead to demand-
ing advanced control strategies. For instance,
in [5], the concept of control barrier function is
exploited to achieve collision-free motion, while
in [1], a behaviour-based approach is exploited
to tackle several tasks. Among all strategies de-
veloped in the literature, model predictive con-
trol (MPC) approaches have shown to be par-
ticularly powerful tools due to their tasks and
constraints assignment flexibility, and the possi-
bility of handling robust frameworks [2, 3].
In this work, some solutions to the trajectory
tracking problem for a multiple mobile robot

system are proposed, with the assumption that
the robot dynamics is constrained to a finite
number of motions. Furthermore, the position
and dimension of the obstacles are assumed to be
available. Different stabilizing switching model
predictive control approaches, able to handle the
presence of uncertainty and disturbances in both
the robust and stochastic frameworks, have been
developed. Based on the design of stabilizing
switching laws, an original switching MPC ap-
proach that relies on the disturbances reachable
set is proposed, highlighting the main advan-
tages with respect to other approaches.

2. Modelling and
problem formulation

This section introduces the robotic platform
model and the problem formulation.

Differential wheeled robot model
This work considers a differential wheeled robot
(DWR) as a robotic platform, constituted by
two main wheels, individually controlled, and a
third passive castor wheel, for the stabilization
of the robot. Figure 1 depicts the real setup
and a planar schematic view of a DWR, its main
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physical parameters, and the global (XG − YG)
and body (X − Y ) frames.
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Figure 1: Differential wheeled mobile robot.

Letting vl and vr be the left and right wheel lin-
ear velocities, respectively, and assuming that
the robot wheels roll without slipping, it is pos-
sible to derive expressions for the linear (v) and
angular (w) velocity of the robot, i.e.,

ω =
1

diw
(vr − vl)

v = ωR =
vr + vl

2
.

(1)

Then, by considering as state variable the robot
posture (position of the robot and orientation) in
the reference global frame p = [px, py, θ]⊤, and
as input action the linear and angular velocity
of the robot u = [v, ω]⊤, the kinematic model
of the mobile robot can be defined as

ṗx = v cos θ

ṗy = v sin θ

θ̇ = ω.

(2)

Switched model and disturbances
In order to introduce a switching property into
the mobile robot, the DWR dynamics are con-
sidered, for the rest of this work, to be con-
strained to a finite motion set. The first motion
is defined by the fixed parameter values v = 0
and ω = ω0, corresponding to a rotation on the

spot of the robot. The second motion describes
the roto-translation of the robot and is defined
by the parameter pair v = v1 and ω = ω1.
These particular motion configurations are re-
trieved from [4, 6], where the self-aggregation
control problem is considered. In [4], an optimal
control law is obtained using a limited amount of
environment information, while in [6], a similar
switched formulation of the system exploiting a
control Lyapunov function is proposed.
Let us introduce the switching signal σ(t) ∈
{0, 1}, which indicates the active vector field of
the system. Then, the switching formulation of
system (2) can be written as follows

ṗ(t) = fσ(t)(p(t)), (3)

where fσ(t) belong to the set of vector fields
{f0, f1} with

f0 =

 0
0
ω0

 , f1 =

v1 cos θv1 cos θ
ω1

 . (4)

Analogously to [4], we obtain the parame-
ters ω0, v1, and w1 by applying the vector
[ vl1 , vr1 , vl0 , vr0 ] = [−0.7,−1, 1,−1]vmax

to (1), where vmax is the maximum linear veloc-
ity of the robot wheels.
On the other hand, a relevant focus point of the
work is the analysis and design of switching laws
in the presence of uncertainties and disturbances
in the mobile robot dynamics. In particular,
multiplicative and additive characterizations of
the uncertainties are considered. The system ex-
pression of (2) with multiplicative disturbances
is formulated as follows

ṗx = ((1 + d1) cos(θ)− d2 sin(θ))vσ

ṗy = ((1 + d1) sin(θ) + d2 cos(θ))vσ

θ̇ = (1 + d3)ωσ.

(5)

Note that, for the remainder of the work, the
term d3 will be considered null or negligible,
compared to d1 and d2, assuming its effect
lumped in the overall contribution. Further-
more, it is possible to consider the multiplicative
uncertainty as a mode-dependent disturbance
acting on the system, i.e.,

ṗx = vσ cos(θ) + dx(σ)

ṗy = vσ sin(θ) + dy(σ)

θ̇ = ωσ.

(6)
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It is worth highlighting that by considering a
multiplicative description of the uncertainty act-
ing on the system, it is implicitly assumed that
the effect of the uncertainty, in the case of σ(t) =
0, is null. This may be a stringent condition on
the disturbances acting on the system, e.g., it
prohibits the presence of external influences on
the system dynamics. In order to account for
this type of disturbance, a model with additive
disturbances is defined as follows

ṗx = vσ cos(θ) + dx

ṗy = vσ sin(θ) + dy

θ̇ = ωσ

(7)

The main difference between models (6) and (7)
resides in the fact that in the multiplicative dis-
turbance case, the uncertainties are independent
of the value of the switching signal σ; indeed,
when σ = 0, disturbances do not affect the sys-
tem. Moreover, if instead of using px and py
as state variables, we consider as state variables
the deviation ex and ey from a time-varying ref-
erence position, the model expression (7) is ob-
tained and the disturbances can be interpreted
as the rate of change of the desired reference po-
sition.

Problem statement
This thesis considers the so-called parking prob-
lem, which consists in the stabilization of each
robot composing the system around a given de-
sired reference position while avoiding collisions
among agents and obstacles, for a network of
robotic agents, with constrained dynamics as in
(3).

3. Proposed control approaches
This section presents several control strategies
based on model predictive control for the nom-
inal system (3) and in the presence of distur-
bances (6) and (7). To this aim, the compo-
nents of the finite horizon optimal control prob-
lem (FHOCP) are presented in the following.

3.1. Nominal design
We start by illustrating the proposed approach
for a nominal scenario with no disturbances act-
ing on the system.

Discrete model

In order to apply the receding horizon strategy,
a discrete system model has to be derived. Fol-
lowing a standard discretization technique, the
discrete model for the ith robot, with sampling
time T , is written as

p[i](k + 1) = fσ(k)(p
[i](k)), (8)

where

f0 =

 p
[i]
x (k)

p
[i]
y (k)

θ[i](k) + Tω0

 ,

f1 =

 p
[i]
x (k) + v1

sin(θ[i](k)+Tω1)−sin(θ[i](k))
ω1

p
[i]
y (k) + v1

− cos(θ[i](k)+Tω1)+cos(θ[i](k))
ω1

θ[i](k) + Tω1

 .

Cost function

Our case study considers a reference tracking
problem of a system of N robots over a pre-
diction horizon of length Np. Therefore, a quite
natural cost function is of the following form

J =

Np∑
k=0

l(p(k), p̄),

l(p(k), p̄) =

Nrob∑
i=1

(p[i]x − p̄[i]x )2 + (p[i]y − p̄[i]y )2,

(9)

where p̄[i] = [p̄
[i]
x , p̄

[i]
y ] is the reference position of

the ith robot.

Constraints

In order to achieve the parking objective in
a challenging environment, two types of con-
straints, obstacle and inter-robot collision avoid-
ance, need to be introduced.
Regarding obstacle avoidance, without loss of
generality, let us consider circular obstacles of
radius Robs, and center pobs.
Therefore, the obstacle avoidance constraint for
the robot i can be formulated as a constraint on
the distance between the robot and the obstacle.
As described in [3], this type of constraint can
be relaxed as a set of n linear inequalities con-
structing an outer polytope approximation. The
collision checking is performed by the evaluation
of n inequalities of the type

Hnp
[i](k) ≥ Sn, (10)
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where Hn and Sn contain the information of the
polytope and the minimum distance between a
robot and an obstacle, respectively. If at least

r
[j]
obs

r
P[j]

obs

p
[i]
k/k

p
[i]
k+N/k

p
[j]
obs

Figure 2: Polytope P [j]
obs (blue dashed lines) associ-

ated to the jth obstacle (red circle). The pink area
represents the linear approximation of the dashed
red circle, while the green line depicts the predicted
trajectory of the ith robot (gray circle)

one of the inequalities is satisfied, it implies that
the ith robot lies in the exterior of the polyhe-
dron, and the collision is avoided. Note that the
described procedure does not offer an advantage
in the nominal case (no disturbances) since the
complexity of the optimization problem to be
solved is not affected by the nonlinear nature
of the constraint, being a pure integer program-
ming problem due to the discrete nature of the
switching signal.
Moreover, for a centralized implementation, it
is possible to consider a robot as an obstacle
with a time-varying position. Therefore, by ex-
ploiting the same procedure for obstacle avoid-
ance (with a slight modification due to the time-
varying nature of the constraint), it is possible
to formulate constraints for inter-robot collision
avoidance with the matrix Hn(k) and Sn(k). In
principle, these procedures must be applied to
all robot-obstacle and robot-robot pairs. How-
ever, it is convenient to consider constraints only
between the robots and obstacles that are suffi-
ciently close to each other in order to reduce the
complexity of the optimization problem.

3.2. Robust design
In this section, a robust formulation of the pre-
vious approach is presented.

Discrete robust model

The robust controller design uses the multiplica-
tive disturbances model defined in (6). Further-
more, a norm-bound constraint on the distur-
bances will be assumed, i.e., d2x+d2y < D2

M , and
the nominal evolution of the trajectories can be
computed as in (8). It is also useful to evaluate
the set containing all possible trajectories. In
particular, the prediction error of the Cartesian
position e(k) =

[
ex(k) ey(k)

]
is contained in

the set

E(k) = E(k − 1)⊕ σ[i](k)B, (0, DM )

E(0) = {0},
(11)

where ⊕ is the Minkowski sum1, and B(0, DM )
is the set that defines a ball centered at the origin
with radius DM . Then, it is easy to derive that
the set E is equal to

E(k) = B(0, Rt(k))

Rt(k + 1) = Rt(k) +DM

Rt(0) = 0

(12)

Cost function

As common in robust MPC formulation, the
worst-case cost function will be considered, i.e.,

Jw =

N∑
i=1

J̄ [i]
w ,

J̄ [i]
w =

Np∑
k=0

l̄w(p
[i](k), p̄[i], R[i]

c (k)),

(13)

where lw is the maximum distance from the de-
sired set to a point located on a ball centered on
p[i](k) with radius R

[i]
t (k).

Constraints

Regarding robust constraint satisfaction, we can
consider a progressive tightening of the nominal
constraints defined in Section 3.1. In particu-
lar, it is possible to ensure the fulfillment of the
robustness property at a generic time instant k̄
of the prediction horizon by enforcing the con-
straint

Hn̄p
[i](k) ≥ Sn̄ +R

[i]
t (k) (14)

1The Minkowski sum of two sets A and B is formed
by adding each vector in A to each vector in B
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This constraint ensures a margin of R[i]
t (k) be-

fore the violation of the constraint, and there-
fore, the original constraint is automatically sat-
isfied for each possible disturbance realization.
In case of an inter-robot constraint, it is neces-
sary to consider the uncertainty related to all
the robots involved, and therefore the consid-
ered tightening for two robots, i and j, will be
Rt(k) = R

[i]
t (k) +R

[j]
t (k).

3.3. Stochastic design
It can be noticed that the robust approach of
the previous section is quite conservative. A
stochastic formulation has been developed and
presented in the following to improve this limi-
tation.

Discrete stochastic model

The controller design will consider the multi-
plicative disturbance model (6) as in the robust
case. In addition, it will be assumed that the
disturbances are zero-mean white noise with co-
variance ΣD. Therefore, being the considered
disturbances white noise signals, the variance
can be computed as

Σ[i]
x (k + 1) = Σ[i]

x (k) + σ[i](k)ΣD,

Σ[i]
y (k + 1) = Σ[i]

y (k) + σ[i](k)ΣD,
(15)

where Σx(0) and Σy(0) depends on the initial
uncertainty of the robot position.

Cost function

As usual in stochastic MPC formulations, the
proposed cost function is the expectation of the
original cost function (9) over the distribution of
the disturbance.

Js = E[J ] = E[
Np∑
k=0

l(p(k), p̄)], (16)

which can be easily expressed in terms of ex-
pected value µ

[i]
x , µ

[i]
y and variance Σ

[i]
x ,Σ

[i]
y of

px, py.

Constraints

The constraints defined in Section 3.1 have been
reformulated in terms of chance constraints, in

other words, constraints that bound the proba-
bility of violation,

Pr(Hnp
[i](k) ≤ Sn) ≤ ϵ, (17)

where ϵ is a design parameter representing the
maximum probability of violation allowed and
tuned to obtain a trade-off between performance
and constraint satisfaction. Constraints of this
type can be reformulated in a deterministic
framework resorting to the Cantelli inequality
as

Hnµ
[i]
p (k) ≥ Sn + f(ϵ)

√
HnΣ

[i]
p (k)HT

n , (18)

where

f(ϵ) =

√
1− ϵ

ϵ
. (19)

The inter-robot collision avoidance constraint
can be considered as the total uncertainty re-
lated to the robots; therefore, the joint variance
expression for two robots, i and j, is Σp(k) =

Σ
[j]
p (k) + Σ

[i]
p .

3.4. Tube based design
Differently from the previous section, the MPC
control law in this section takes advantage of the
knowledge of a stabilizing switching law and con-
siders the model (7). In particular, the switching
signal to be applied is calculated based on the
auxiliary switching law σ̄(p[i](k), p̄(k)), while the
reference p̄(k) is computed in a receding horizon
fashion.

Auxiliary switching law and 0-reachability

To this scope, a brief analysis of the underly-
ing switched system has to be presented. In or-
der to simplify the analysis of the system, let us
perform a change of coordinates such that one
obtains

z1 = px sin(θ)− py cos(θ)

z2 = px cos(θ) + py sin(θ)

z3 = θ.

(20)

With respect to the above change of coordinates,
which corresponds to a rotation of the reference
frame, the equation describing the evolution z1
and z2 is governed by the following switched
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affine system (SAS)

z(k + 1) = Adσz +Bdσ

Adσ = e(AσT )

Bdσ =

∫ T

0
eAστBτdτ,

(21)

where

Adσ =

[
cos(ωσT ) sin(ωσT )
− sin(ωσT ) cos(ωσT )

]
, (22)

Bdσ =

[
−vσ(cos(ωσT )−1)

ωσ
vσ sin(ωσT )

ωσ

]
. (23)

Note that the state variable z3 does not affect
the subsystem dynamics, that is composed by
the state [z1, z2] only. Furthermore, the equi-
librium p̄ = [0, 0, θ]⊤ is mapped to [z̄1, z̄2] =
[ 0, 0]. Thus, the problem of Cartesian regula-
tion is equivalent to the regulation of the sub-
system [z1, z2].
Moreover, it is possible to find a practically
stabilizing switching law. To this scope, con-
sider the candidate control Lyapunov function
V (z) = z21 + z22 and its variation with respect to
the time ∆V = V (z(k + 1)) − V (z(k)). There-
fore, it can be shown that the switching law

σ̄ = argmin
σ

∆Vσ

ensures global practical asymptotically stability.
The next main step consists of analyzing the per-
turbed closed-loop system

z(k + 1) = Aiz(k) +Bi +Dz ∀z(k) ∈ Ωi. (24)

Systems of this form are called piecewise affine
systems (PWA) and are common models used
to describe hybrid and nonlinear systems. The
tube-based control law is based on the compu-
tation of the 0-reachable space from the distur-
bances R, assuming a norm bound on the dis-
turbances d2x + d2y < D2

M . It is important to
define the quantity RM , defined as

RM = max{r | [z1, z2] ∈ R, z21 + z22 ≤ r2} (25)

that represents the maximum deviation from
the origin considering the defined set of distur-
bances.

Cost function

Again a natural cost function to consider is the
deviation of the reference position of the aux-
iliary switching law from the desired reference
position, i.e,

J = min
∆p̄(k)

Nrob∑
i=1

Np+k̄∑
k=k̄

p̄[i]⊤(k)p̄[i](k). (26)

Constraints

Obstacle avoidance constraints and inter-robot
collision avoidance constraints can be included
as done in Section 3.1, considering as the robot
radius the quantity RM + Rrob. Furthermore,
it has to be ensured that the rate of change of
the reference position, ∆p̄(k), of the switching
auxiliary law is compatible with the assumed
quantity RM . In practice, once the maximum
value Dd on the norm of the disturbances is de-
fined, the maximum norm change rate of the ref-
erence position Dp must satisfy D2

p ≤ D2
M −D2

d.
This type of nonlinear constraint can be man-
aged with polytopic approximation.

3.5. Comments
Different from the approaches in the previ-
ous section, the tube-based design leads to a
quadratic programming problem, which is much
easier to solve than the integer programming
problem of the other approaches.

4. Simulation results
In order to assess the performance of the pro-
posed algorithms, several simulations have been
performed. For the sake of brevity, a very
simple scenario is presented. A network com-
posed by Nrob = 3 mobile robot is proposed,
initial state p1 =

[
−1.6 −1.6 0

]
, p2 =[

1.2 1.4 0
]
, p3 =

[
−1.6 −0.4 0

]
, reference

position r1 =
[
1.2 1.3

]
, r2 =

[
−1.6 −0.6

]
,

r3 =
[
1.2 −0.8

]
, sampling time T = 0.1 s,

and as physical parameters for the robot: Robot
radius Rrob = 0.055 m, inter-wheel distance
diw = 0.105 m, wheel radius R = 0.016 m, max-
imum linear velocity vmax = 0.2 m/s. In the
following, red circles represent robot position,
blue circles represent obstacles in the environ-
ment and squares represent the desired reference
position.
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Nominal design
As expected, the nominal algorithms are able to
steer the network to the desired reference posi-
tion while avoiding collision (Figure 3).
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Figure 3: Simulations for the nominal MPC

Robust design
For the robust algorithm have been considered
disturbances acting on each robot characterized
by DM = 0.4Ta1.
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Figure 4: Simulations for the robust MPC

The overall conservativism of the robust formu-
lation makes the network fail to converge to the
desired reference position (Figure 4).

Stochastic design
For the stochastic formulation, a standard de-
viation of the disturbances equal to 0.4Ta1

3 has

been considered to better compare with the ro-
bust formulation. Furthermore, ϵ = 0.1 has been
considered.
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Figure 5: Simulations for the stochastic MPC

The reduced conservativism of the stochastic
formulation allows the network to reach the de-
sired reference position (Figure 5).

Tube based design
For the tube-based approaches, it is considered
a scenario with no disturbances and a maximum
rate of change of reference for the auxiliary law
equal to Dp = 0.4Ta1. Black circles of radius
RM represent the area where the robots can lie
(Figure 6).
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Figure 6: Simulations for the tube MPC
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5. Conclusions
This work aimed to develop control strategies
for the trajectory tracking of a multiple mobile
robot system in situations where disturbances
are present. The approaches developed in this
work rely on robust and stochastic reformulation
of switching model predictive control (SMPC)
strategy and on the computation of disturbances
reachable set. Future developments can be done
in many directions, such as considering more
complex robot models or a greater number of
allowed motions or integrating the design of the
proposed approaches with controllers located in
an inner loop to limit the effect of disturbances.
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