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Abstract

The growing number of people carrying out activities in the mountains has led to an
increasing number of accidents that occur in inaccessible places. When an injured, ill,
or lost person requires the intervention of specialized rescue teams, the efficiency of op-
erations is crucial. Search and Rescue missions are time-critical operations that often
occur in complex and challenging environments. Drones equipped with optical or thermal
cameras can accelerate rescue operations by quickly scanning wide areas of the ground,
enabling fast localization of missing people. However, the large amount of acquired data
requires a significant effort from the rescuers to manually inspect each image, searching for
any trace of human presence. Computer Vision tasks, combined with Machine Learning
techniques, can help rescuers by automatically detecting traces of human presence from
the captured image, limiting the effort required for manual screening. This thesis explores
Machine Learning and Deep Learning techniques to identify people from thermal images
captured during Search and Rescue missions. The analyzed models approach the problem
as an anomaly detection task where mostly background samples are available for model
training. These approaches aim to identify anomalies, i.e. those images or areas different
from the learned background features. Detailed analyses prove that Deep Learning ar-
chitectures outperform classical Machine Learning techniques obtaining promising results
on the available data set consisting of simulated missions in forest scenarios. The most
promising Deep Learning method can obtain over 92.6% of F1-Score on the anomaly class
and generate accurate anomaly heatmaps. The developed system can support rescuers
during operations by highlighting the potential locations of missing people on thermal
images captured during a Search and Rescue mission.

Keywords: anomaly detection, drones, search and rescue, aerial imaging, thermal imag-
ing, computer vision, deep learning





Sommario

Il crescente numero di persone che svolgono attività in montagna ha portato ad un au-
mento degli incidenti che spesso si verificano in luoghi inaccessibili. Quando una per-
sona ferita, malata o dispersa richiede l’intervento di squadre di soccorso specializzate,
l’efficienza delle operazioni è fondamentale. Le missioni di ricerca e salvataggio sono oper-
azioni critiche in termini di tempo che spesso si svolgono in ambienti complessi e difficili.
I droni equipaggiati con telecamere ottiche o termiche possono accelerare le operazioni
di soccorso scansionando rapidamente ampie aree del terreno, consentendo di localizzare
persone disperse velocemente. Tuttavia, la grande quantità di dati acquisiti richiede un
notevole sforzo da parte dei soccorritori per ispezionare manualmente ogni immagine ed
individuare qualsiasi traccia di presenza umana. I metodi di visione computerizzata, com-
binati con tecniche di apprendimento automatico, possono aiutare i soccorritori rilevando
automaticamente tracce di presenza umana sulle immagini catturate, limitando lo sforzo
necessario per la scansione manuale. Questa tesi esplora le tecniche di apprendimento
automatico e apprendimento profondo per identificare persone dalle immagini termiche
catturate durante le missioni di ricerca e salvataggio. I modelli analizzati approcciano
il problema utilizzando tecniche di rilevamento di anomalie in cui immagini di sfondo
sono principalmente disponibili per l’addestramento dei modelli. Questi approcci mirano
a identificare le anomalie, cioè quelle immagini o aree che differiscono dalle caratteristiche
di sfondo apprese. Analisi dettagliate hanno dimostrato che le architetture di apprendi-
mento profondo superano le classiche tecniche di apprendimento automatico, ottenendo
risultati promettenti sulle immagini utilizzate per la valutazione dei modelli che rappre-
sentano simulazioni di missioni in scenari forestali. Il metodo di apprendimento profondo
più promettente è in grado di ottenere oltre il 92.6% di F1-Score sulla classe anomala ed
è in grado di generare accurate mappe di calore per evidenziare le anomalie identificate.
Il sistema sviluppato può supportare i soccorritori durante le operazioni di soccorso, evi-
denziando le potenziali posizioni delle persone disperse sulle immagini termiche catturate
durante una missione di ricerca e salvataggio.

Parole chiave: rilevamento anomalie, droni, ricerca e salvataggio, immagini aeree, im-
magini termiche, visione computerizzata, apprendimento profondo
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1| Introduction

Search and Rescue (SAR) missions are time-critical operations [2] that can be very chal-
lenging and complex. These operations must be carried out as quickly as possible because
time is an extremely important factor when searching for an injured person. As time
passes, a missing person’s survival probability decreases and the search area grows ex-
ponentially because a wider territory must be scanned to localize the lost person [71].
Moreover, the rescue team may be exposed to the same adverse conditions that compro-
mised the victim such as rain, snow, or high winds that can pose high risks to rescuers.

In 2022, the Italian National Alpine and Speleological Rescue Corps (CNSAS, Corpo
Nazionale Soccorso Alpino e Speleologico) reported 10,367 rescue missions for a total of
10,125 people rescued on the Italian territory [28]. From 2018, the annual rescue activity
reports have registered a constant growth in the number of rescue operations which has
increased by 6% in the last 5 years [27, 28]. The rising number of people who get involved
in accidents while carrying out activities in the mountains, such as hiking, mountain
biking, and skiing, requires the intervention of specialized rescue teams. According to the
2022 report published by CNSAS [28], the primary cause of accidents is slipping (45.9%),
followed by inexperience in completing the performed activity (26.3%), illness (13.7%)
and finally, adverse weather conditions.

Most of the rescue operations, specifically 80% of the missions performed by CNSAS in
2022 [28], take place in rough terrains and inaccessible areas such as mountains or forests.
The organization of missions in these challenging areas is a complex task that requires
scanning vast terrains, especially when the location of a missing person is imprecise or
unknown.

Advances in Unmanned Aerial Vehicles (UAVs) [107] have enabled flying drones that can
provide critical support to Search and Rescue operations and nowadays have become a
standard in all rescue services globally [13, 49, 141]. In contrast to helicopters, drones are
more flexible and cheaper in acquisition, maintenance, and operation.

Drones have the potential to shorten search times by quickly scanning a wider area,
accelerating the localization of the victims [66]. UAVs equipped with optical or thermal
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cameras can survey the area of an accident and collect a massive amount of images to
identify the location of a missing person [101]. However, the large quantity of captured
images must be manually scanned to identify objects of interest, such as people, clothing,
or technical equipment. When rescuers are under pressure and strained after hours of
work, they can commit some errors that may potentially lead to missing some victims.
Indeed, maintaining long-term concentration and attention, even for trained people, is
challenging when searching for traces of people from a huge amount of images [126].

Computer Vision tasks, combined with Machine Learning techniques, can speed up this
process by filtering frames and highlighting signals of human presence, reducing the bur-
den of manually screening the entire captured video sequence [116]. Moreover, using an
automated person detection system, only the areas with a higher likelihood of human
presence are selected for manual inspection. Consequently, the human error rate can be
limited because the time and energy required by rescuers to analyze images are signifi-
cantly reduced.

The identification of people can be performed by leveraging supervised Computer Vision
techniques such as image classification [41] or object detection [126, 129] that require
an extensive annotated set of images to specify the location of a person. However, in
SAR operations, images are recorded from a bird’s eye view and this type of viewpoint is
not contained in large available data sets [123] that are typically used to train detection
models [126]. This implies that data collected for the development of detection models
must be manually annotated. The huge amount of data required for training a supervised
deep model should be composed of a balanced distribution of classes of objects that the
model should be able to detect. This implies that in the use case of SAR missions, many
examples of people lying on the ground must be collected to properly train a detection
method. Unfortunately, most of the images captured during a typical SAR scenario depict
background scenes and only a limited number of people images are available. Moreover,
collecting a comprehensive set of images representative of the class of visible people is a
complex task. Indeed, the visual appearance of a person viewed from a drone is highly
variable due to the combination of articulated poses of an injured person, degree of tree
occlusions, and drone altitude that generate a virtually infinite number of possibilities.
Consequently, training a model to recognize every possible human appearance is an ex-
tremely complex task. Researchers tried to approach the localization of people from aerial
thermal images using an object detection model, obtaining poor results and proving the
difficulties of this use case [129].

In this thesis, people detection from drone imagery in SAR missions is approached as an
anomaly detection task. This implies that the implemented models are trained to learn a
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comprehensive representation of background images and detect any anomaly that does not
belong to the learned distribution. Consequently, when a lost person, a backpack, or any
other human trace is captured from a drone image, the model should signal the presence
of an entity that is not recognized as background. The works [7, 54, 116] exploit anomaly
detection concepts to identify people in a SAR scenario from color images. However,
rescuing lost or injured people often involves searching densely forested terrain, where
sunlight is blocked by the trees and other vegetation that strongly occlude the ground. In
these scenarios, thermal sensors are used to visualize the temperature difference between
human bodies and the surrounding environment. For this reason, this thesis focuses on
applying anomaly detection techniques on grayscale thermal images since they may be
more relevant in wider mission scenarios, especially during night operations.

In the literature, few data sets are dedicated to the training of people detection models
in SAR scenarios. The presence of occlusions, typical in wilderness Search and Rescue
missions, is not recreated in popular aerial images data sets [87, 162] which therefore
cannot be used for training models for this use case. The Data: Search and Rescue
with Airborne Optical Sectioning [130] data set is composed of thermal and RGB images
captured over forest scenarios associated with the annotations of people locations. This
data set has been originally created to train an object detection model using the images
derived from the combination of many frames captured during a flight. The images,
which have different viewpoints of the ground, are integrated using the AOS (Airborne
Optical Sectioning) algorithm proposed in the original work [129]. In this thesis, the
single thermal frames are exploited for the people identification task without applying
the post-processing combination. From the thermal images, a set of smaller tiles are
extracted and each generated tile is then classified as background or anomaly based on
whether it contains a person or not. After an extensive survey of the anomaly detection
techniques from image data presented in the literature, several Machine Learning and
Deep Learning models have been selected and implemented. All the fine-tuned models
have been evaluated on the generated data set composed of tiles, obtaining 92.6% F1-score
using the most promising model.

The objective of this thesis is not to try to replace the intervention of the rescuers but,
on the contrary, to assist the responders during search missions. The developed system is
designed to collaborate with the rescue teams by filtering most of the background images
to: 1) reduce the burden of manually screening the entire captured videos and 2) highlight
areas of the images with higher chances of containing an injured or lost person. However,
it is the responsibility of the rescuers to analyze the results generated by the system and
decide if a ground team operation should be commanded to verify if a person is actually
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present in the location indicated by the system.

The contributions of this thesis can be summarized as follows:

• The motivations supporting the choice of approaching the problem as an anomaly
detection task are discussed, highlighting the challenges of the use case and the
limits of other works proposed in the literature.

• A comprehensive review of the works proposed in the literature for the Search and
Rescue scenario is presented.

• An extensive review of the state-of-the-art techniques for anomaly detection in im-
ages is conducted.

• A selection of the most appropriate methods for people identification in UAV im-
agery during a SAR mission is conducted.

• A data set for training and evaluating the implemented models is generated from
the thermal images taken from a publicly available data set [130].

• Several Machine Learning and Deep Learning anomaly detection models are imple-
mented and fine-tuned.

• A comparison of the results obtained by the selected models is provided, along with
a detailed analysis of the strengths and weaknesses of each method.

• Anomaly heatmaps are generated on some example images to showcase the outputs
generated by the proposed models during a realistic Search and Rescue mission.

The rest of the thesis is organized as follows:

• Chapter 2 introduces the concepts of anomaly detection and provides a detailed
literature review of the proposed techniques for identifying anomalies in image data.
Then, publicly available data sets and methods for Search and Rescue missions are
presented and discussed.

• Chapter 3 presents the available data set, the preprocessing steps performed to
obtain the training and evaluation sets, and the implemented methods with their
corresponding hyperparameters.

• Chapter 4 describes the evaluation procedure adopted to identify the best config-
uration of parameters for each method and presents a quantitative and qualitative
analysis of the results.
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• Chapter 5 summarizes the work and discusses possible improvements and future
directions.
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2| Related Work

In this chapter, an overview of the literature about anomaly detection and applications
to assist Search and Rescue missions is presented. Section 2.1 introduces the main char-
acteristics and challenges of anomaly detection with a focus on the Computer Vision and
Artificial Intelligence methods available for detecting anomalies in visual data. Section
2.2 provides an overview of related works for supporting Search and Rescue missions and
discusses the publicly available data sets that can be used for training models to perform
anomaly detection on drone imagery.

2.1. Anomaly Detection

Anomaly detection is the set of techniques used to identify patterns in data that deviate
from expected behavior [24]. Anomalies can provide critical information in a wide variety
of application domains such as detecting credit card fraud [96, 115, 119], intrusion de-
tection for cybersecurity [15, 25, 60], highlighting of malignant tumors in medical X-Ray
images [3, 38], monitoring of machine failures [65, 140] or defect detection in industrial
images [120, 149].

Some key assumptions used by anomaly detection techniques to discriminate between
normal and anomaly samples are that normal instances are generated from a known
distribution and can be clustered together in some feature space. Conversely, anomalies
are rare, with a low likelihood of occurrence, and are substantially different from normal
data.

An anomaly is defined as a pattern that does not conform to expected normal behavior.
Therefore, a common approach is to model the representation of the normal data, i.e. a
region in a feature space containing all the normal samples, and any observation that does
not belong to the normal region is considered an anomaly. The main challenge of this
approach is the definition of a normal region because often the boundary between normal
and anomalous samples is nebulous due to noisy data that cannot be accurately classified
as normal or anomaly. The definition of anomaly is relative to each application domain
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and can strongly depend on the use case. For example, a small variation of a monitored
value in the medical domain might be an anomaly, while deviations in the stock market
domain are the normality. Due to these challenges, anomaly detection problems cannot be
solved with a general technique. Therefore, anomaly detection models should be flexible
enough to leverage the specific characteristics of each application domain to learn a strong
representation of normality [24].

An example scenario that motivates the essential difference of anomaly detection tasks
with respect to traditional classification tasks is the use case of industrial machine moni-
toring where a system should detect any abnormal behavior which may indicate a possible
failure. Measurements of normal operation are easy to obtain but samples of faults are
difficult to collect, therefore only a few anomaly instances are available in the training
data. In this case, it is not viable to wait until faults occur because they could damage the
machines and put operators at risk. Moreover, due to the intrinsic nature of anomalies, it
could be theoretically impossible to generate every possible anomalous instance because
the underlying behavior is often dynamic in nature, thus new types of outliers for which
there is no labeled training data available might arise [24]. For this reason, it is essential
to develop a model capable of identifying any outlier only by leveraging the information
collected during normal operation [68].

Based on the extent of labels availability, detection techniques can be classified into three
categories: (1) Fully Supervised Anomaly Detection, (2) Semi-Supervised Anomaly Detec-
tion, (3) Unsupervised Anomaly Detection.

Fully Supervised Anomaly Detection
Models trained in a fully supervised manner assume that a comprehensive set of both
normal and anomaly instances is available in the training set. Any new unseen data
point is compared against the model to determine which class it belongs to. However, the
scarcity of abnormal samples and their high intra-class variability are two major challenges
that prevent obtaining an accurate representation of anomalous behavior.

Semi-Supervised Anomaly Detection
Techniques that approach the problem in a semi-supervised manner assume that the
training data has labeled instances only for the normal class. This approach is more
widely applicable than supervised techniques due to the high availability of normal data
and the scarcity of anomaly instances. However, this class of models must be robust to
a possible small fraction of outliers that could be wrongly introduced in the training set
which are assumed to be normal.

In some cases, semi-supervised data sets may also include some samples of labeled anomaly
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data that could be used to accurately define the boundary that encloses the normal
instances [122].

Unsupervised Anomaly Detection
In an unsupervised learning setting no labeled data is available, therefore the outliers
are detected based on the intrinsic properties of the data instances. The training set is
assumed to be composed only of normal samples, however, some anomaly samples could
be wrongly introduced in the data set. For this reason, models must be robust to the
presence of a small subset of outliers. This category of models assumes that in the test
set, normal instances are far more frequent than anomalies.

Image Anomaly Detection

Anomaly detection on image data is an active field of research and the high level of
interest in this subject can be demonstrated by the large number of models presented
in the literature [37, 63, 100, 144, 155, 156]. The problem of detecting outliers from
visual data has been approached in many different ways by computing statistical image
characteristics or exploiting advanced Machine Learning techniques. In recent years,
the evolution of complex Deep Learning models enabled more accurate detection and
localization even of small irregularities.

When the target of anomaly detection is the image data, it is referred to as visual anomaly
detection or image anomaly detection.

Applications of visual anomaly detection are widespread in various sectors such as moni-
toring of road traffic [128], detection of irregular tissues in medical images [3] and surveil-
lance tasks [51]. Another important field of application for anomaly detection techniques is
the industrial inspection of manufacturing lines [149]. In this scenario, automatic systems
assure product quality by continuously monitoring production processes and signaling any
detected defect.

Thanks to the advancements in UAVs technology [117, 137], the use of drones is rapidly
growing across a wide range of applications such as traffic monitoring [67], post-disaster in-
vestigations [13, 41, 70], agricultural operations [33, 69], and crowd surveillance [102, 145].
Nowadays, techniques of anomaly detection from UAV imagery can be applied to a wide
selection of practical use cases. These approaches often have applications in the surveil-
lance of critical infrastructures [17], crowd monitoring scenarios [6], or abnormal events
identification [26]. These systems constantly monitor a predefined area and signal any
unexpected behavior detected in the scene to the security personnel who could intervene
to mitigate possibly dangerous situations.
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Anomaly detection on images is implemented with a different approach with respect to
other types of data, such as time series or text. In fact, the high dimensionality of
image data and the locality property of pixels information requires extracting some useful
features that could be later processed by classical anomaly detection methods. Thus,
an anomaly detection pipeline can be logically subdivided into two steps: the feature
extraction part that generates a compact representation of the input image in the form
of a feature vector and the anomaly detection step that identifies abnormalities from
the extracted information. The anomaly detection techniques proposed in the literature
can be broadly categorized into three classes [156]: (1) Density Estimation, (2) One-Class
Classification, (3) Image Reconstruction.

Density Estimation
Density Estimation methods estimate the probability distribution of normal images and
identify whether a newly observed sample is anomalous by computing the distance from
the normal distribution. The intrinsic assumption is that the features extracted from
anomaly images do not belong to the representation derived from normal images. The
main limitation of this approach is the need of having a large number of training samples
for estimating a reasonable probability density. Moreover, when dealing with images, this
problem becomes more challenging due to the high dimensionality of visual data.

One-Class Classification
One-Class Classification models aim to build classification models when the anomalous
class is either absent, poorly sampled, or not well defined [68]. This situation imposes
training models exploiting only one class, by attempting to define a decision boundary
in the feature space to enclose normal images. These methods require a reduced number
of training samples because they do not need to estimate a probability distribution of
the normal data. However, they still suffer from the problems of scalability and high
dimensionality when dealing with feature vectors extracted from images that may have a
large number of components.

Image Reconstruction
Image Reconstruction techniques map the image to a low-dimensional vector representa-
tion and then try to reconstruct the original image by finding the inverse mapping from
the latent representation to the image space. The concept behind this approach is the
compression of redundant information in normal data. Since the models are trained only
with normal samples, the learned compact representation should not be able to properly
model anomalous features. As a consequence, anomalous areas of the image should not
be accurately reconstructed and thus the reconstruction error should be larger than in
normal images. Based on the value of the reconstruction error, which is an indication
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of the difference between the original image and the reconstructed one, these models are
able to detect anomalous images by thresholding the resulting scores.

Initial anomaly detection methods were based on modeling the background of an im-
age and detecting anomalous pixels by computing statistical properties. Later, thanks
to the advances in Artificial Intelligence, more advanced and complex approaches based
on Machine Learning and Deep Learning techniques were proposed. These models build
compact representations of normal images and identify the abnormal samples as outliers
of the learned distribution. The approaches of image anomaly detection models can be
categorized in: 1) Spectral Techniques that are based on the probability distribution
of pixel intensities, 2) Machine Learning Models that use variants of traditional Ma-
chine Learning methods to learn a boundary only from normal samples [68] and 3) Deep
Learning Models that learn a complex representation of the normality [100].

2.1.1. Spectral Techniques

One of the most simple yet popular anomaly detectors is the Reed-Xiaoli (RX) algorithm
[118]. This method models the background of an image as a multidimensional Gaussian
distribution of pixel intensities and computes for each pixel an anomaly score that is
proportional to the distance from the background distribution. Assuming that anomalies
and background pixels have different intensity distributions, abnormal pixels have a higher
distance from the normal distribution. Therefore, anomalous pixels can be detected by
thresholding the anomaly scores. The original variant of the RX detector (Global RX)
assumes the image background to be homogeneous, but this hypothesis may not always
be adequate. Therefore many variants of the base algorithm such as Local RX and Ker-
nel RX [81] were developed to address this problem. The baseline version (Global RX)
computes the background color distribution over the entire image, thus the computation
is influenced by the presence of anomalous areas. Local RX, differently from Global RX,
computes the local background distribution of a smaller area by using a sliding window
that is moved over the image. This window contains another inner window which is used
to exclude the possibly anomalous pixels at the center from influencing the computed
background model. Therefore, the background distribution in an area of the image is
estimated only by considering the pixels between the outer and the inner window. Kernel
RX [80] is another variant that extends the original Global RX by introducing a non-
linear kernel function that maps the original image space into a high-dimensional feature
space. This approach enables the estimation of a complex non-linear distribution that
better models the background pixels improving the detection of outliers. The RX detec-
tor and its variants are often used to identify anomalies in hyperspectral or multispectral
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images with a high number of channels. In these images, each pixel is characterized by
a large amount of information that is used to build a representative high-dimensional
distribution of the background where anomalous pixels can be easily identified as outliers
of the background model. Some applications on RGB images were presented in the liter-
ature [7, 54, 116, 136], despite color images being composed only of three channels which
provide less information. However, color anomaly detection techniques were successfully
implemented to identify pixels with a significant spectral difference from the neighbors
distribution [7]. The background representation computed by spectral models is very
simple since it is based only on the intensity value of each individual pixel without con-
sidering the relations with the neighboring pixels. For this reason, this technique applied
on grayscale images is not effective because a single channel does not provide enough in-
formation to correctly discriminate an anomalous pixel from the approximate distribution
of pixel intensities.

2.1.2. Machine Learning Techniques

In a conventional multi-class classification problem, the learning of the optimal decision
function is supported by the availability of samples from all the classes involved. However,
anomaly detection tasks are characterized by the scarce availability of anomalous data,
therefore only normal instances can be exploited to define the classification margin. As
a consequence, the boundary should be defined to enclose the majority of the training
data but should be tightened around the normal samples to minimize the likelihood of
including anomaly samples.

Machine Learning methods are implemented in a wide range of application scenarios and
many models have been introduced in recent years [161]. However, many algorithms
are designed to be trained with a supervised data set that is representative of all the
classes. In an anomaly detection setting, since abnormal samples are rare, there is no
supervision information. Moreover, anomaly samples have high variability in shape, color
and size that would prevent supervised learning techniques to capture salient features
of the anomalous patterns [156]. The choice of the Machine Learning model strongly
depends on the specific application and characteristics of the data, therefore there is
no one-size-fits-all solution. The literature proposed many hybrid models that combine
multiple Machine Learning methods to address specific challenges of anomaly detection
such as the scarcity of abnormal samples [103].
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Features Extractors

Extracting relevant features to represent the intrinsic content of images is a challenging
problem in Computer Vision [58]. In pattern recognition and image processing, the feature
extraction step is a special form of dimensionality reduction [74] that builds a compact
representation in the form of a feature vector. Accurately selecting the appropriate feature
extraction method is essential because it has a relevant impact on the performance of
the Computer Vision task [74]. In the case of anomaly detection tasks, a good feature
extraction technique should be able to extract similar feature vectors for patterns within
the normal data but it should effectively discriminate them from the representations of
anomaly samples.

Color is one of the most important features of images [112] and a number of color spaces
have been studied in the literature, such as RGB, LUV, and HSV [54]. In the literature,
many important color features have been proposed, including color histogram [62], color
moments (CM) [39], color coherence vector (CCV) [110], and color correlogram [57].
Texture is a very useful characterization for a wide range of images and is a key element
of human visual perception for recognition and interpretation [58, 112]. Usually color is
a pixel property while textures are associated with a group of pixels. Texture analysis
is used in a very broad range of applications such as the biomedical field, industrial
automation, document analysis, remote sensing, and face recognition. A large number of
texture feature extraction methods are proposed in the literature [44, 58] but selecting
the correct method for each particular application is not an easy choice because there are
many factors that must be taken into account. For instance, approaches that are based
on the structure may be appropriate only for regular texture. Moreover, if the application
requires invariance to some image transformation (e.g. rotation, translation, scaling), the
set of possible techniques is reduced.

Textural feature extraction methods can be broadly classified in: 1) statistical methods, 2)
structural methods, 3) transform-based methods, 4) model-based methods, and 5) graph-
based methods [58].

Statistical methods compute statistics-based metrics on the spatial distribution of gray-
level values in the neighborhood of a pixel. GLCM considers the relationship between two
neighbor pixels and counts the occurrences of gray-level combinations in a predefined set
of directions and distances. The information on texture captured by the GLCM is used to
compute a set of statistical metrics such as the Haralick features [52]. A similar approach
is the GLRLM [42] method which evaluates sets of consecutive pixels with the same gray-
level value in a given direction. For each direction, a run-length histogram is computed
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and then a set of features that characterize the image texture can be derived. Basic Image
Features (BIF) [30] is another statistical method that extracts features by applying simple
filters on the image and then represents texture as histograms over a visual vocabulary
of features constructed by clustering. Local Energy Pattern [160] is another statistical
histogram-based representation. Local feature vectors describe local-oriented energies
that are then used to build the frequency histogram of the global texture representation.
Local Binary Pattern (LBP) [104] focuses on the patterns of intensity variations within
a subregion of interest by combining the analysis of local structures with the analysis of
occurrences. The main drawback of the original variant is the sensitivity to rotations that
have been solved in some evolutions such as Dominant Rotated LBP (DRLBP) [99] that
normalizes each local descriptor with respect to a reference in the local neighborhood.
Histogram of Oriented Gradients [31], mainly used for object recognition, is based on the
idea that object shapes can be characterized by distributions of intensity gradients and
builds a local descriptor that is a histogram of the occurrences of gradient orientations.
Similarly, Histogram of Gradient Magnitudes (HGM) [138] computes a histogram of the
local gradient magnitudes but can obtain rotation invariance by ignoring the gradient
directions. Another statistical approach is Deterministic Walk (DW) [10] which uses a
"tourist" to explore the texture as a walk following a deterministic rule. From the study
of the trajectories distribution, a histogram-based signature is computed to discriminate
the image texture.

Structural approaches decompose the image into primitives and use their spatial ar-
rangements to characterize textures. An example of this technique is Scale-Invariant
Feature Transform (SIFT) [94] which builds a descriptor of gradient location and orien-
tation of interesting points that are detected with the Difference of Gaussians computed
from the original image. SIFT descriptors are often used as local texture descriptors for
vocabulary-learned methods [43].

Transform methods represent an image in a space that better describes the characteris-
tics of a texture. In the Fourier transform-based approaches [95], an image is decomposed
into its frequency components and represented as a weighted combination of vertical and
horizontal sinusoids of various frequencies. The features are robust to rotation and transla-
tion but do not accurately describe local variations of textures. Gabor Decomposition [97]
filters an image with a bank of Gabor filters at different scales and orientations allowing
the computation of frequency and orientation information at multiple resolutions. This
method is robust against illumination changes or noise. Additionally, some evolutions are
also invariant to rotations. Wavelet Transform [86] performs the texture analysis in both
the spatial and frequency domains by approximating the image texture using transforma-
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tions of a basis function called the mother wavelet. The derived wavelet coefficients are
used as texture representation. This method is not robust to changes in texture direction
but some evolutions have rotation-invariant property [61]. LETRIST [143] extracts fea-
tures that are robust to rotation, illumination, and scale. The image is convolved with
directional Gaussian derivative filters at multiple scales. On the extremum responses of
the computed image derivatives, a set of linear and non-linear transformations are applied
to derive a set of features. The derived discriminant features are combined in a histogram
that is used as the image descriptor.

Model-based methods represent texture using mathematical models. The Complex
Network [23] method represents the pixels as nodes of a graph and then maps similarities
between pixels as links between the network nodes. The weights of the links are computed
from the gray-level values. This approach presents a higher success rate of classification
when compared to traditional texture analysis methods but it is sensitive to noise. Wold
Decomposition [89] models texture by decomposing it into three components that measure
periodicity, randomness, and direction of the texture. The estimated parameters are used
as the texture descriptor.

Graph-based approaches represent the image pixels as a graph of points on which
texture features are extracted. Local Graph Structures [1] method computes features in
a local neighborhood of the computed graph by measuring the distribution of local mi-
cropatterns. Graph of Tourist Walk [11] generates graphs from the trajectories produced
by the tourist walks of the Deterministic Walk method. The texture descriptor is built
from the statistical position and dispersion calculated from the graphs. This method is
robust in the recognition of microtextures.

In Table 2.1, some of the most commonly used textural feature extractors used in Com-
puter Vision tasks along with their invariances are summarized.

Features Classifiers

The main challenges of using Machine Learning algorithms for anomaly detection tasks are
the need for large amounts of labeled data and the risk of overfitting the prevalent class of
normal samples. Some of the traditional Machine Learning models have been adapted to
learn from normal data in an unsupervised or semi-supervised setting that better fits the
requirements of anomaly detection tasks [103]. Machine Learning classifiers for anomaly
detection tasks can be categorized in: 1) One-Class Classification methods and 2) Density
Estimation methods.

One-Class Classification techniques define a boundary to enclose areas in the fea-
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Name Year Type Invariances
Grey Level Co-occurrence Matrix
(GLCM)/Haralick [52]

1973 statistical rotation

Grey Level Run-Length Matrix
(GLRLM) [42]

1975 statistical rotation

Local Binary Pattern (LBP) [104] 1996 statistical illumination
Gabor Decomposition [97] 1996 transform noise, rotation, illumi-

nation
Wold Decomposition [89] 1996 model rotation, scaling
Scale-Invariant Feature Transform
(SIFT) [94]

2004 structural rotation, scale, affine
transformations

Histogram of Oriented Gradients (HOG)
[31]

2005 statistical geometric, photomet-
ric transformations

Complex Network [23] 2008 model rotation
Wavelet Transform [86] 2010 transform scale, illumination
Basic Image Features (BIF) [30] 2010 statistical rotation
Deterministic Walk (DW) [10] 2010 statistical scale
Graph of Tourist Walk [11] 2011 graph rotation, noise
Local Graph Structures (LGS) [1] 2011 graph illumination, scale,

shift
Fourier Transform [95] 2013 transform rotations, translation,

noise
Local Energy Pattern (LEP) [160] 2013 statistical rotation, brightness,

contrast
Dominant Rotated LBP (DRLBP) [99] 2015 statistical illumination, rotation
Histogram of Gradient Magnitudes
(HGM) [138]

2015 statistical rotation

LETRIST [143] 2018 transform rotation, noise, illumi-
nation, scale

Table 2.1: List of most commonly used textural feature extractors used in Computer
Vision tasks along with their invariances.

ture space that contain the normality class and classify as an anomaly any point that is
mapped outside the learned boundary. One-Class SVM (OC-SVM) [134] learns a hyper-
plane in the feature space that separates the normal class from the origin point which
is selected to represent anomaly samples. This model is very sensitive to outliers in the
training set and cannot perform well with high-dimensional features. The evolution of
this method is Support Vector Data Description (SVDD)[150] which adopts a hypersphere
to enclose normal data in the feature space while excluding anomalies. SVDD has the
main advantage of being able to leverage the knowledge of a few abnormality examples
available during training to improve the definition of the separating boundary. Isolation
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Forest [90] builds a set of binary trees during training that tries to separate each sample
from the rest of the normal data in fewer possible steps. Points that can be easily isolated
are considered anomalies because they are distant from the distribution of normal data.
In a similar approach, k-Nearest Neighbors [29] can be used to identify as an anomaly
any observation isolated from the normal data. An instance is considered isolated if the
nearest neighbor has a distance above a predefined threshold.

Density Estimation methods approximate the distribution of normal class data and
detect anomalies as samples that do not belong to the normal distribution. Kernel Density
Estimation [109] leverages the estimate of the probability density function of normal data
points. Normal instances have high local densities, therefore data points that are located
in sparse regions with low local densities are detected as anomalies. Similarly, Local
Outlier Factor [18] compares the estimated local density of a given instance with the local
densities of its k nearest neighbors. A point that has a significantly lower density with
respect to the mean density of the neighbors is classified as an anomaly, indicating that
it is isolated from other samples.

In Table 2.2, some of the most popular Machine Learning classifiers for anomaly detection
tasks are summarized.

Name Year Type
Kernel Density Estimation (KDE) [109] 1962 density estimation
K Nearest Neighbors (KNN) [29] 1967 one-class classification
Local Outlier Factor (LOF) [18] 2000 density estimation
One-Class SVM (OC-SVM) [134] 2001 one-class classification
Support Vector Data Description (SVDD) [150] 2004 one-class classification
Isolation Forest (IFOR) [90] 2008 one-class classification

Table 2.2: List of most popular Machine Learning classifiers for anomaly detection tasks.

2.1.3. Deep Learning Techniques

The development of Deep Learning [84] and the increasing interest in these powerful
techniques pushed the researchers to adopt deep convolutional models in many anomaly
detection scenarios [20]. Deep convolutional networks are implemented in a wide range of
applications such as image classification, object detection, face recognition, and image seg-
mentation. The capability of extracting compact representations from high-dimensional
data, such as images or videos, is the key aspect that allows deep models to outperform
traditional techniques in challenging tasks such as visual anomaly detection [100]. Deep
Learning techniques provide more effective anomaly detection compared to traditional
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methods because they perform end-to-end optimization of the entire detection pipeline.
This enables the fine-tuning of the learned representation specifically to tailor the anomaly
detection task [108].

Some application fields in which Deep Learning techniques are commonly used are medical
anomaly detection [38] and anomaly localization in industrial images [149] where models
have proved to be very reliable and robust to realistic situations.

Deep Anomaly Detection Models

Deep anomaly detection techniques can be categorized in three conceptual paradigms [108]
that are: (1) Deep Learning for Feature Extraction, (2) Learning Feature Representations
of Normality, (3) End-to-End Anomaly Score Learning.

Deep Learning for Feature Extraction
These methods aim at leveraging Deep Learning methods to extract compact representa-
tions from high-dimensional data that are exploited to perform anomaly detection tasks.
With this approach, the feature extraction and anomaly scoring steps are fully disjointed
and independent from each other, thus the Deep Learning methods are purely employed as
dimensionality reduction. The main advantage of using Deep Learning models instead of
classical dimensionality reduction methods, such as Principal Component Analysis (PCA)
[19, 133], is the better capability in extracting semantic-rich features. In fact, these mod-
els are able to extract more powerful representations with respect to computing statistical
properties of the image [14]. On the opposite side, the fully disjointed nature of feature
extraction and abnormality detection steps leads to suboptimal anomaly scores because
the extracted features are not optimized for the detection task. Therefore, these tech-
niques may not preserve relevant information to discriminate normal data from anomaly
instances.

Learning Feature Representations of Normality
These techniques learn the representations of data instances by optimizing a generic objec-
tive function that is not primarily designed for anomaly detection. However, the learned
representation can still empower the anomaly detection task because the models are forced
to capture the most relevant normal data regularities. These methods learn a representa-
tion of normal data and then any divergence of a new observation indicates the occurrence
of an anomaly. The methods that exploit this approach are data reconstruction, genera-
tive modeling, and One-Class Classification.

Autoencoders (AE) [12] aim to learn a low-dimensional feature representation space from
which the data instances can be accurately reconstructed. In anomaly detection tasks,
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these networks are used for learning a compact representation of normal data that min-
imizes the reconstruction error. To learn such representation, the model has to retain
only the most relevant information of the normal instances. As a result, the anomaly
instances should be poorly reconstructed because they are characterized by features dif-
ferent from the normal data. Therefore, the reconstruction error can be directly used
as an anomaly score. However, this approach is not optimized for detecting irregulari-
ties because the reconstruction objective function is designed for dimensionality reduction
rather than anomaly detection. Some implementations that leverage an Autoencoder for
the classification of anomalous images are DCAE [98] and RCAE [21].

Generative Adversarial Networks (GANs) [48] is another popular technique for visual
anomaly detection. This network is composed of a generator network that outputs syn-
thetic samples similar to the instances in the training set, and a discriminator network
that has the objective of identifying generated samples from the real data. These models
aim at learning a latent feature space that precisely captures the normality underlying
the normal data. The basic assumption is that the generator network should learn to
accurately generate normal data instances but poorly perform at recreating anomalies
samples. Some implementations of this technique are AnoGAN [132], EBGAN [159],
GANomaly [4] and OCGAN [111]. The main advantage of GANs is that they demon-
strated superior capability in generating realistic instances with respect to Autoencoders.
The downside is that these networks are more difficult to train. Furthermore, similarly
to reconstruction methods, the anomaly detection performance is suboptimal because the
objective function is optimized for data synthesis rather than anomaly detection.

One-Class Classification methods, such as OC-CNN [106] and OC-NN [22], learn a descrip-
tion of the normal data in the training set that is used to detect whether new instances
conform to the learned distribution. Deep SVDD [121] learns a boundary in the latent
representation space that encloses the majority of the normal training samples. During
inference, the observations mapped outside the boundary are classified as anomalies. In
this case, the advantage of deep models is the capability of learning an optimized mapping
that separates normal and anomaly samples in the feature space. Deep SAD [122] ex-
tends this model by leveraging a small number of anomaly data during training to better
refine the boundary that encloses the normal data by excluding the available anomaly
instances. This model has been later extended with a Fully Convolutional (FC) archi-
tecture that, using a similar loss, exploits segmentation techniques to accurately localize
anomalous areas [92]. Other models, trained in a one-class learning setting, are capa-
ble of accurately localizing abnormal areas of the image by using semantic segmentation
techniques. PaDiM [32] is an implementation that extracts features with a Convolutional
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Neural Network (CNN) from patches of the input image and builds an anomaly map to
localize defects. Other more advanced models, such as CFlow [50] or FastFlow [157], use
a normalizing flows architecture to accurately localize areas of the images that contain
anomalies. Finally, methods such as MemAE [46], TrustMAE [148], and CAVGA [154]
exploit attention-based memory modules to focus the decoder network on specific regions
of the image to better localize anomalous areas.

End-to-end Anomaly Score Learning
In this approach, the anomaly scoring is not dependent on existing anomaly measures (e.g.
reconstruction error) but a neural network directly learns the anomaly score in an end-to-
end fashion. Different from simply learning the representation of normality, these methods
simultaneously learn the feature representations and anomaly scores. Thanks to the
unified objective, the training is greatly optimized because the implemented loss functions
directly aim at learning the anomaly score in an end-to-end manner. End-to-end One-
Class Classification models aim at optimizing a discriminative model to separate normal
instances from adversarially generated pseudo anomalies. The one-class model is built on
the discriminator network of a GAN model that is directly used to classify anomalies. An
implementation of an adversarially learned One-Class Classification network is ALOCC
[124] that optimizes two networks through the GANs approach with one network trained as
the one-class model, and the other trained to enhance the learning of normal instances by
generating distorted outliers. The advantage of this method is that anomaly classification
models are adversarially optimized in an end-to-end fashion. However, the instability of
GANs training may generate instances with different quality, obtaining unstable anomaly
classification performance.

In Table 2.3, some of the most common Deep Learning anomaly detection models are
presented.

Transfer Learning
Training a Convolutional Neural Network from scratch is a challenging task that requires
a large volume of data for the network to learn useful data representations. However, the
lack of available anomalous instances in anomaly detection scenarios makes the problem
more difficult. For this reason, Transfer Learning techniques [163] can overcome this
issue by improving the learning of a target task by exploiting the knowledge gained while
approaching a different source task. With transfer learning, the knowledge learned to
solve the source task is used as a baseline for the training of the model that tackles the
target task. In this case, the training of the target task aims at improving the accuracy
by fine-tuning the weights of the pre-trained network, which are already able to extract
useful information. Therefore, a smaller data set is required for the fine-tuning of the
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Name Year Architecture Task
DCAE [98] 2011 autoencoder classification
RCAE [21] 2017 autoencoder classification
AnoGAN [132] 2017 GAN segmentation
DeepSVDD [121] 2018 CNN classification
GANomaly [4] 2018 GAN classification
EBGAN [159] 2018 GAN classification
ALOCC [124] 2018 GAN classification
OC-CNN [106] 2019 CNN classification
OC-NN [22] 2019 CNN classification
OCGAN [111] 2019 GAN classification
MemAE [46] 2019 attention based segmentation
DeepSAD [122] 2020 CNN classification
FCDD [92] 2020 fully convolutional segmentation
PaDiM [32] 2021 CNN segmentation
CFlow [50] 2021 normalizing flows segmentation
TrustMAE [148] 2021 attention based segmentation
CAVGA [154] 2021 attention based segmentation
FastFlow [157] 2021 normalizing flows segmentation

Table 2.3: List of most common Deep Learning models used for anomaly detection tasks.

parameters because the initialized weights should converge faster to the optimal solution.

The first step of transfer learning is the selection of a proper pre-trained model architecture
that can obtain good results on the target task. Then, the parameters of the target network
are initialized with the values of the source model and, before starting the training process,
the weights of the first layers are frozen. The layer freezing is performed to prevent the
gradient descent optimization from updating the low-level features learned by the original
network. This prevents losing useful information that would negate the advantages gained
with the transfer learning technique. Only the top layers, which represent high-level
features, are updated since they model task-specific data representations. Therefore, it is
a good practice to fine-tune only the features learned by the top layers to optimize the
results of the target task. On the other hand, lower-level features learned in the first layers
of the network are useful for a much wider variety of tasks since they extract basic image
features that are used to build higher-level abstract representations. These initial network
layers contain the useful knowledge gained on the source task that can be transferred to
the target task. Usually, the most common and well-known CNN architectures used for
transfer learning are DenseNet [56], AlexNet [73], Inception [147], VGG [142] and ResNet
[53]. These models were originally trained to perform image classification on the ImageNet
[123] data set that is composed of more than 14 million images of objects classified in
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20,000 classes. These models, despite obtaining very high performance meaning that
they were able to learn discriminating features, are trained only on natural images (e.g.
cars, airplanes, dogs). Therefore, when these pre-trained networks are used as a source
model for transfer learning, they inevitably have learned features that are characterized by
an intrinsic bias [63] towards these natural images. Therefore, when shifting the domain
problem, such as in an anomaly detection task on a different category of data (e.g. medical
images, industrial defect detection), the encoders of these networks may not be capable
of extracting relevant features that are useful to solve the target task.

Self-Supervised Learning

Self-Supervised Learning (SSL) techniques gained popularity in recent years [5] since they
allow to pre-train a deep model without the need for any type of supervision information.
The task used for pre-training is called pretext task while the task that leverages the
extracted knowledge and fine-tunes the weights to tackle the real problem is called target
task.

The unlabeled data in the training set are exploited to solve the pretext task and the
learned data representation is transferred to the model that will solve the target task.
Self-Supervised Learning approaches are similar to Transfer Learning techniques since
they both transfer knowledge by initializing the network that solves the target task with
the weights of the model trained to solve the source task. The main difference between
the two approaches is that with Transfer Learning the source model is trained on a large
labeled data set, whereas Self-Supervised Learning leverages an unlabeled data set to
learn data representations. In fact, the motivation to apply Transfer Learning is to avoid
training from scratch a model that is impracticable when the available labeled data is
limited. Conversely with Self-Supervised Learning, by training a model with unlabeled
samples which are similar to the data used during the target task training, the pretext
task is capable of extracting features that are useful also to solve the target task.

Self-Supervised Learning methods can be broadly categorized as: 1) techniques that learn
to reconstruct an input image and 2) methods that solve a supervised classification task
by exploiting automatically generated pseudo-labels. Generative approaches use Autoen-
coders based on an encoder-decoder architecture [12] to reconstruct a given input image.
The encoder generates a compact representation of the input in the latent space while
the decoder aims at reconstructing the original input from the latent representation. The
encoder is forced to learn characterizing features of the input data to construct a relevant
representation that is leveraged by the decoder to accurately reconstruct the input. The
features learned by the encoder, which are representative of the input data, can be used
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as a baseline for transferring knowledge to the target task [125]. Other approaches are
based on a Generative Adversarial Network (GAN) architecture [48] that is composed
of a generator network that produces realistic images starting from input noise and a
discriminator that identifies generated images from real samples. To produce realistic
images, the generator is forced to learn an accurate feature representation of the input
noise. However, the network should learn the representation of the input data, not the
distribution of random noise. Consequently, Bidirectional GAN (BiGAN) networks [36]
introduce an encoder to map an input image to the feature representation (noise space)
allowing the network to invert the generation process and obtain a feature representation
of the input samples [91]. A possible pretext task for generative approaches consists in
removing a region of the input image and training a network to generate the missing pixels
[158]. To be effective in the reconstruction, the encoder needs to understand the image
content to allow the model to generate a reasonable prediction of the missing region.

Predictive approaches are based on automatically generated pseudo-label that are derived
from known transformations applied to the input image. The idea is that a model should
learn a useful representation of the data while learning to predict which transformation
has been applied to the input. In order to correctly predict the generated pseudo-label,
the network has to understand the context of the image. Therefore it is able to extract
relevant features that can be used by the target task network. An example of a pretext
task is to rotate the input image and train a model to predict the orientation applied
to the input [45]. To correctly predict the applied rotation, the model has to extract
discriminating features that characterize the semantic content in the image.

The main challenge of Self-Supervised Learning is that pretext tasks must be carefully
selected and the domain of the downstream task must be taken into consideration to
learn useful information. For example in the case of aerial imagery, the rotation is not
a representative feature of the samples because a drone could capture images from any
orientation. Therefore, a pre-train task that randomly rotates an image and tries to
predict the transformation might not be suitable for this domain because it does not
allow the network to learn useful features.

Self-Supervised Learning for Anomaly Detection
Anomaly detection models in an unsupervised setting need to familiarize themselves by
exploiting only the available normal data to distinguish anomaly samples in the learned
features space. Self-Supervised Learning approaches allow a model to learn both low-level
features (e.g. color, texture) and high-level features (e.g. shape, position, direction) of
the normal samples, thus improving the sensitivity to anomalies. After training, a model
should distinguish anomaly instances that do not have the characteristics that have been
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learned only from normal samples.

In recent years, many anomaly detection models have been presented to improve perfor-
mance by leveraging Self-Supervised Learning techniques [55, 135]. Due to the unsuper-
vised setting of anomaly detection tasks, some pretext tasks specifically designed for these
scenarios have been introduced. RotateNet [45] trains a model to predict the geometric
transformations such as rotations, translations, and horizontal flipping that are applied to
the input image [45]. Another method randomly removes partial regions of an image and
learns to reconstruct the original sample by performing in-paintings [158]. By learning to
reconstruct only normal samples, the network implicitly learns the distribution of normal
data. Therefore, it should be unable to accurately reconstruct anomalous regions that
would be identified due to a higher reconstruction error. Another pretext task specifically
designed for increasing the performance of local defect detection models is CutPaste [85]
which simulates an anomaly sample by clipping a patch of a normal image and pasting it
back at a random location. With this approach based only on normal data, the network
is capable of detecting unknown anomalous patterns of an image without the need for
anomaly samples.

2.2. UAV Search and Rescue

The goal of a Search and Rescue mission is to search for injured or lost people in the
shortest amount of time when their locations are imprecise or unknown. The adoption of
drones helps in quickly scanning wide areas of the ground without requiring any expensive
machines such as helicopters or airplanes. The large number of images captured during
a flight must be accurately analyzed by rescuers to identify traces of people or technical
equipment. However, when rescuers are under pressure after hours of work, they might
miss some potential victims. The combination of powerful deep models that can run on
constrained devices and the improvements in UAV technology that enabled longer flights
opened the possibility of applying Deep Learning techniques to aerial imagery for a wide
variety of remote sensing scenarios [105]. Especially in the use case of Search and Rescue
missions, many dedicated Deep Learning models have been developed to automate the
detection of potential targets [13, 126, 129]. In this section, a review of the publicly
available data sets for anomaly detection tasks from drone imagery is presented. Then,
data sets related to Search and Rescue operations are discussed and finally a brief overview
of the related work for detecting people from drone imagery is introduced.
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2.2.1. Data Sets

The quality of the available data set used for training the model is of the utmost im-
portance for the development of an accurate anomaly detection method. Many works
evaluate the performance of novel models on data sets derived from popular classification
data sets such as MNIST [82] or CIFAR [72] where one class acts as normal data and a
subset of the remaining classes simulates the anomaly instances [4, 21, 98, 121, 122]. How-
ever, this approach does not accurately simulate the characteristics of anomalies in a real
scenario. Therefore, results obtained during the model evaluation phase may not reflect
the performance in a real-world application. The unavailability of a standard data set
for assessment is a relevant limitation when developing novel anomaly detection models
because available data sets are very far from realistic situations [100]. Thus, to compre-
hensively validate a novel anomaly detection method, having access to a more realistic
and representative data set is crucial.

In recent years, the evolutions of UAVs enabled the application of drones in a wide range
of complex scenarios [137] where the bird-eye view perspective can be exploited to better
localize the objects of interest in each application. Consequently, it is necessary to im-
prove the semantic understanding of visual data collected from aerial perspectives that
are not represented in other popular visual data sets. Since anomaly detection from drone
imagery has gained interest and proved to have potential in many application scenarios,
some dedicated data sets specifically oriented to support these use cases have been pub-
lished in the literature. Mini-Drone Video Dataset (MDVD) [16] is used for surveillance
tasks and is composed of 38 videos of normal situations (e.g. parked vehicles or people
walking), and suspicious behaviors (e.g. fighting scenes or people stealing cars). For the
development of anomaly detection or change detection methods, the UAV Mosaicking
and Change Detection Dataset (UMCD) [9] provides low-altitude drone videos acquired
at a distance from the ground between 6 and 15 meters. This data set contains 50 aerial
videos collected in different environments such as urban, dirt, and countryside at different
times of the day. The main limitation of these standardized visual anomaly detection
data sets is that they usually differ from reality since they are captured under controlled
conditions [100]. For example, in UCSD Ped1 and Ped2 data sets [87] that depict video
surveillance scenarios, the considered anomalies are very simple (e.g. golf cart traveling
on the sidewalk) and the real-world anomalous events are not properly reflected. Conse-
quently, the performance obtained during operation in a real application could be worse
than the results assessed during model validation. Despite these data sets being composed
of images with varying characteristics specific to each use case, they all depict scenes in
an urban environment where anomalies are constituted by anomalous behaviors of people
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(e.g. crowd monitoring) or objects placed in unusual areas of the image (e.g. change
detection, aerial surveillance). In the use case Search and Rescue scenario in a mountain
environment, the forest foliage often occludes the ground and as a consequence, human
bodies could be partially or totally hidden by the trees inducing the targets to have highly
variable shapes. As a consequence, the common anomaly detection data sets may not be
useful due to the different nature of the images.

A possible data set for training models to detect people in a Search and Rescue mission is
the SARD Database [127]. This data set depicts casualties captured from drone images
in Search and Rescue scenes where actors simulate exhausted and injured persons. The
1,981 images contain 6,532 annotated people that were captured during the daylight from
different camera angles and altitudes (between 5 and 50 meters). However, this data set
has some aspects that are strongly different from the typical frames captured in forest
scenarios because the images mainly depict more generic terrains (e.g. roads, high and
low grass, and rocks) while only a limited subset of images captures forest environments.

The only available data set captured over forest scenarios is Data: Search and Rescue with
Airborne Optical Sectioning [130] that, in the original work, is used to train an object
detection network for identifying lost people during a Search and Rescue mission in forest
scenes. The data set is composed of 12 flights captured over forests of different types
(broadleaf, conifer, mixed) and 6 flights in open field performed at an altitude of 30-35m.
For each flight, both thermal and RGB frames are provided, aligned to cover the same
view of the ground. The ground truth is composed of 9,684 annotated bounding boxes
that enclose the entire body of all the people placed on the ground. This data set was
later expanded with a similar data set Data: Autonomous Drones for Search and Rescue
in Forests [78] that is composed of 17 shorter flights that captured similar images over
other forests with visual appearances similar to samples of the original data set.

Challenging Aspects

The application scenario is very complex because the anomaly detection models should
be able to identify most of the possible targets while keeping the rate of false alarms at
a minimum. However, some challenging characteristics strictly related to the use case of
detecting people in a dense forest must be taken into consideration. Two of the main
challenges which are intrinsic to any wilderness Search and Rescue data set are: (1) Trees
Occlusions, (2) High Variability Of Pixel Intensities.

Trees Occlusions
Rescue missions in forest scenarios are characterized by the presence of tree occlusions that
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induce a disturbance on the ground visibility which cannot be neglected [76]. Depending
on the forest type, which determines the average structure of trees and thus the visibility
of the ground, 20% to 50% of targets can be totally hidden when viewed from an individual
viewpoint (single thermal image). However, this does not imply that up to half of the
targets can be missed during a rescue mission, because a person which is completely hidden
in a frame can be visible from a consecutive frame. The reason is that the visibility of a
person lying on the ground can significantly change when the point of view slightly changes
because the randomness of the tree irregularities allows the targets to be partially visible.
Since most of the people’s heat traces are partially occluded by trees, the appearances of
lost people from the aerial images are highly variable. Therefore, the captured targets can
have very different shapes that are influenced by the posture of the person lying on the
ground and the structure of the branches that disrupt the ground visibility. Figure 2.1
shows some examples of targets that have very different visual appearances when viewed
from a drone thermal camera. Due to the high variability between samples, training an
object detection model to localize shapes of human bodies from raw thermal images has
been demonstrated to obtain very weak performance [129].

Figure 2.1: Examples of targets captured from aerial images that are characterized by
very different visual appearances caused by tree occlusions.

High Variability Of Pixel Intensities Most of the commercially available thermal
cameras are equipped with a non-radiometric sensor which measures only the relative
differences between temperatures in a scene, without providing any information about
the absolute values. Then, all the measures are normalized between the maximum and
minimum temperature to obtain an intensity value in the range [0,255] for each pixel
of the resulting image. The consequence of the normalization is that the same absolute
temperature may be associated with different pixel intensities in various images. This is
caused by the fact that the normalization is dependent on the context of each captured
scene. For this reason, consecutive frames in a flight may have very different intensity
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distributions because the temperature range is influenced by the presence or absence of
a visible target. For example, if no human heat trace is captured by the thermal camera
(Figure 2.2.a), the background scene has a smaller range of temperatures and, after the
normalization, all the image pixels take values in the entire intensity range [0,255]. Ground
areas that are slightly warmer than the rest of the background are associated with brighter
pixel intensities. On the other hand, if a person with a heat trace significantly warmer
than the background is visible in the scene (Figure 2.2.b), the temperature range is wider.
Thus, most of the background areas that have colder temperatures than the human body
are associated with darker pixel intensities. As a consequence, the frames in the data set
have a highly variable distribution of pixel intensities, implying that even images of the
same flight can be visually very different, as shown in Figure 2.2.

Figure 2.2: Examples of two consecutive frames captured during a flight. In frame (a)
no target is visible and the background temperatures are represented by the full range
of pixel intensities. In frame (b) the visible person has warmer temperatures associated
with brighter intensities whereas the colder background areas are represented by darker
pixels. Red boxes are empty annotations in the ground truth while green boxes indicate
the presence of a visible person.

2.2.2. Artificial Intelligence-based Applications

In the literature, many applications for detecting people in Search and Rescue missions
have been proposed that exploit RGB cameras [126] or thermal sensors [129] mounted
on a drone. In particular scenarios, such as in maritime rescue operations, multi-spectral
cameras are adopted [41]. The most popular Computer Vision tasks implemented to
localize people are object detection [41, 126, 129] and anomaly detection [7, 54, 116]. The
object detection approach learns human body features and exploits that knowledge to
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recognize similar characteristics in new images. Anomaly detection techniques, as already
discussed in Section 2.1, model the distribution of background samples and identify people
as the outliers of the learned background representation.

UAVs have been used for many years in catastrophic scenarios such as earthquakes and
tsunamis [93] and, at the same time, detection techniques have improved to deal with com-
plex situations such as the presence of occlusions or articulated poses of injured people.
Before the adoption of powerful neural network models, the effort was focused on imple-
menting traditional Computer Vision techniques to identify people from drone imagery.
For instance, in [35] people detection in urban locations is performed by identifying can-
didate person silhouettes on thermal images characterized by temperatures in the range
of human body heat. The extracted regions are then projected on the color images where
an object detector uses Haar-like features to classify potential targets. This method was
developed to operate in post-disaster scenarios with good visibility of the ground, thus
it is not robust to occlusions that could partially hide bodies. The work presented in
[8] trains an ensemble of models capable of detecting the full-body or upper-body of a
person to increase robustness to partial occlusions. To improve the detection capability,
the images are augmented with information on the height and pitch angle of the drone
to better estimate the scale that a person should have in the frame. However, this model
is trained to localize people only in an indoor scenario under controlled light conditions.
Therefore, performance could be worse in different situations, such as outdoor Search and
Rescue missions.

Other techniques rely on the spectral information of the image pixels to identify any color
anomaly which, in a rescue scenario, may indicate the presence of an injured person (e.g.
clothes with different colors from the background). Spectral anomaly detection methods
from drone images have been successfully implemented in works such as [54, 116] where
Reed-Xiaoli algorithm [118] models the background color distribution and identifies any
unusually-colored object in the image by generating an anomaly map that is shown to
responders to indicate potential locations of injured people. Other methods based on
colors exploit custom algorithms to identify pixels with a higher contrast with respect to
the background [146] and filter the identified regions based on a minimum area to improve
robustness to image noise. These methods are well-suited for wilderness Search and Rescue
imagery because objects of interest (e.g. clothes, backpacks, technical equipment) do not
have a specific pattern but are often characterized by colors significantly different from
the background. Moreover, since only the color spectrum is analyzed, these methods are
less influenced by occlusions or variations in lighting conditions. On the other side, the
main downside of these approaches is that they detect any possible object not belonging
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to the background (e.g. cars, bicycles, roofs) that could generate a high number of False
Positives.

More recently, Convolutional Neural Network models have been trained to detect people
in Search and Rescue missions from color images captured in daylight conditions. For
instance, [126] trained an object detection model to identify injured people in non-urban
areas (e.g. roads, high and low grass, rocks) and introduced a methodology to simulate
different weather conditions to increase the robustness of the method in a wider range of
scenarios. Another object detection network presented in [13] aims at detecting people in-
volved in incidents caused by avalanches in a winter environment. In the case of wilderness
Search and Rescue scenarios, where vegetation strongly occludes the ground, reducing the
visibility of people, a promising technique has been presented in [75, 77, 79, 129] that in-
troduces a preprocessing step named Airborne Optical Sectioning (AOS). AOS combines
thermal images captured from different perspectives aiming at reducing the influence of
occlusions and emphasizing the targets placed on the ground. This technique starts by
aligning images captured from different poses, then averages the pixels of different images
that refer to the same point of the ground. Since each image has a different perspec-
tive of the occlusions, their influence on the ground visibility changes. Therefore, the
combination of many frames significantly reduces the impact of the occluding vegetation,
improving the visibility of the ground. However, to align the images, the accurate pose
estimation of the thermal frames is based on a Computer Vision technique that computes
the relative pose of RGB images captured by a dedicated camera installed in parallel to
the thermal camera. The main limitation of this pose estimation technique is the com-
putationally intensive task to align the RGB frames. Moreover, this technique cannot be
applied in low-light conditions preventing the application of this detection model in night
operations. Further research presented in a later work demonstrated that similar perfor-
mance can be obtained by aligning the images using the imprecise GPS poses measured
with an onboard sensor mounted on the UAV [131]. The people identification task is per-
formed with an object detection network trained on the thermal frames captured during
a flight combined with the AOS preprocessing. An alternative implementation exploits
the AOS preprocessing to combine the RGB images captured during a flight and identifies
injured people as anomalies in the pixel spectral information using the RX algorithm [7].

Use-Case Limits

Despite the active research for assisting responders during rescue operations, there are
still many limits in the presented work that could hinder the performance that can be
obtained when applying the proposed techniques to realistic Search and Rescue scenarios.
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Specifically, three main problems can be identified which are not completely addressed by
methods available in the literature: (1) Sensor Type, (2) Detection Method, (3) Data Set
Peculiarities.

Sensor Type
Most of the applications detect people on images captured with RGB cameras and address
the problem only during good daylight conditions. Methods proposed in these works
do not provide any support for night missions where RGB images contain little or no
information and thus cannot be used for detecting people. However, night operations are
not rare and therefore a detection system capable of supporting rescuers in a wide range
of conditions would be more useful.

Detection Method
Many works train object detection models to specifically identify features associated with
people samples. Therefore, other signals of human presence (e.g. backpacks or clothes)
are not taken into consideration by these systems even if they could provide relevant
information to indicate the presence of an injured or lost person. Moreover, a person
partially occluded by trees, or with an articulated and unnatural pose, could potentially
be missed because these models could not recognize a human body if it has shapes that
are significantly different from the examples seen during training.

Data Set Peculiarities
Data sets used for training often do not reflect the intrinsic characteristics of a real rescue
mission scenario. Some works exploit a set of images characterized by the absence of
occlusions where people are completely visible from the drone camera [146]. In other
data sets, there is a relatively high number of people placed near each other (because a
large number of samples is required to train supervised models such as image classifiers,
and object detectors) and, in these cases, the samples used for training can be very
different from the images captured during a real mission [131]. In both cases, a model
that obtains excellent results during the performance assessment phase could significantly
underperform during a more complex realistic scenario. This would make the implemented
system unusable for a search operation where time is critical and any malfunction of the
detection model can negatively impact the mission effectiveness.
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In this chapter, the publicly available data set used for evaluating the anomaly detec-
tion techniques is presented along with the preprocessing steps applied to clean the
ground truth and generate a proper training/validation/test split of images. Then, a
brief overview of the data set main issues is discussed. Finally, the anomaly detection
methods and techniques studied in this thesis are introduced.

3.1. Data Set

UAVs are widely used in many application domains and much effort is dedicated to im-
proving Computer Vision tasks from drone imagery. Despite the growing interest in the
use of drones, few works in the literature are focused on rescue missions. Consequently,
there is a lack of available data sets oriented at Search and Rescue missions in forest sce-
narios, a task that presents particular issues to be addressed (Section 2.2.1). For example,
data sets such as those available for crowd surveillance [87] cannot be applied because
they contain people from different perspectives, e.g., standing or walking in urban envi-
ronments. Other data sets for generic SAR missions [126] mostly contain totally visible
people without any occlusion thus representing simpler scenarios in comparison to the
task of finding lost people in dense forests.

The only available data set dedicated to rescue missions in forest scenarios is Data: Search
and Rescue with Airborne Optical Sectioning [130]. As shown in Table 3.1, the data set
comprises 12 flights performed at an altitude of 30-35m over different types of forest
(broadleaf, conifer, mixed) and 6 flights in open field. Figure 3.1 shows some images of
the various forest types.

Two pieces of information are provided for each flight: thermal and RGB frames, aligned
so that they cover the same ground view, and the associated drone pose at the capturing
instant. Among all flights, there are 6,095 RGB images with a size of 6,000x4,000 px
and a Ground Sample Distance (GSD) of 0.23-0.27 cm/px. Each RGB image is coupled
with a smaller thermal image with a size of 640x512 px and a GSD of 5.6-6.6 cm/px. In
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Figure 3.1: Frames from flights over different forest types (broadleaf, conifer, mixed) and
in open field. Images taken from the available data set [130]. Green boxes enclose the
people annotated in the ground truth.

the original work, high-resolution RGB images are used for precise pose estimation, while
thermal images, cropped to 512x512 px, are used for the people detection task. Each flight
covers an area of the ground of 30x30 meters and simulates a mission scenario where a
variable number of subjects (between 2 and 10) are placed on the ground with articulated
poses to imitate ill or injured people. Each person is annotated in the ground truth with
a bounding box that encloses the entire body shape. In the original work [129] the full
set of thermal images captured during a flight are combined with the Airborne Optical
Sectioning (AOS) algorithm to highlight the view of the ground by reducing the effect of
the occlusions. This technique consists of averaging the pixel intensities of many frames
that have different perspectives of the same point on the ground to make the targets more
visible in the resulting image. Examples of application of this algorithm are shown in
Figure 3.2.

The AOS-integrated frames were used by the authors to manually annotate the ground
truth bounding boxes of the targets placed on the ground. Since the transformation from
each thermal image pose and the resulting AOS-integrated image is known, the inverse
transformation was used to automatically annotate all the thermal images starting from
the manually annotated ground truth.

The original data set has been designed to perform fully supervised object detection but,
in this thesis, it will be exploited for the anomaly detection task which requires less
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Flight Forest People Images Annotations Date
F0 Conifer 3 402 1,040 4 Oct 19
F1 Broadleaf 10 153 1,107 24 Oct 19
F2 Broadleaf 10 260 2,203 24 Oct 19
F3 Mixed 6 380 1,682 25 Oct 19
F4 Mixed 6 366 960 25 Oct 19
F5 Conifer 10 327 1,895 8 Nov 19
F6 Conifer 10 321 1,816 8 Nov 19
F7 Broadleaf 2 31 62 20 Nov 19
F8 Broadleaf 0 358 0 17 Jan 20
F9 Broadleaf 0 358 0 17 Jan 20
F10 Mixed 0 399 0 10 Apr 20
F11 Conifer 0 418 0 10 Apr 20
O1 Open field 10 370 2,880 8 Jan 20
O2 Open field 10 364 2,610 8 Jan 20
O3 Open field 6 414 1,465 22 Jan 20
O4 Open field 6 382 1,599 22 Jan 20
O5 Open field 5 406 1,119 7 Feb 20
O6 Open field 5 386 1,043 7 Feb 20

Table 3.1: Flights of the original data set [130]. For each flight, information about the
forest type, people lying on the ground, number of images, and total number of annotations
are reported. Many annotations may refer to the same person because they can be seen
in multiple frames.

supervision. Firstly, RGB images are discarded because this work focuses only on the
people detection problem from thermal images that are less influenced by the presence of
tree occlusions. Moreover, some images are not relevant to this work (e.g. open field),
thus only a subset of flights is kept for training anomaly detection models. Finally,
the automatic annotation of thermal images, starting from the AOS-integrated frames,
introduced noise in the ground truth because the annotated people may be completely
hidden in some thermal images. The empty annotations should be removed from the
ground truth. Finally, the remaining images are split into training/validation/test sets
to define a proper data set for training and evaluation of the analyzed anomaly detection
models.

3.1.1. Data Set Preprocessing

A series of steps have been applied to the original data set to: 1) remove unused images, 2)
clean the noise in the annotations and 3) organize the various flights to train and validate
the implemented anomaly detection models.
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Figure 3.2: Examples of thermal frames captured over mixed and conifer forests. The
arrows indicate partial heat signals of occluded people. The insets show AOS results
obtained by the combination of multiple thermal frames. Images taken from [129].

Sensor selection
Forest occlusions have a more substantial impact on the RGB images, causing the majority
of the targets to be entirely hidden. Instead, in thermal frames, targets are usually at least
partially visible because some heat traces are detected through the foliage. For this reason,
RGB frames were discarded and the presented work is oriented to applying anomaly
detection models only on thermal frames which are less influenced by the occlusions.
Moreover, infrared images can be helpful also during night missions when RGB frames
would provide no relevant information to the rescuers because they would be totally dark.
Figure 3.3 shows a pair of RGB and thermal images captured over a broadleaf forest.
From the RGB image (Figure 3.3.a) no target is visible, whereas on the thermal frame
(Figure 3.3.b) many people are partially visible.

Ground truth cleaning
Due to the automatic annotation process of thermal images, there is no certainty that
the targets are effectively visible. The main issue of this approach is that in many raw
thermal frames, some people are completely occluded by the trees and as a consequence,
some bounding boxes do not contain any visible target. This can lead to apparently worse
results due to an increase in False Negatives since the models cannot detect some hidden
targets that are still annotated in the ground truth.

To remove such noise from the ground truth, every bounding box has been manually
annotated to determine if it effectively contains at least a partially visible target or if
the trees completely occlude the ground. This cleaning step was performed using the
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Figure 3.3: Pair of RGB frame (a) and thermal frame (b) extracted from a flight over
broadleaf forest. Green boxes enclose the people annotated in the ground truth. No target
is visible from the RGB image whereas, with the thermal image, most of the people can
be detected. The red point on the right (c) indicates the current pose of the drone in the
flight trajectory.

AnnotatorLocalization tool provided by the ODIN framework [152]. This framework
allows defining ad-hoc meta-annotations for the ground truth data. Each bounding box
has been annotated with a visible property that indicates whether the contained target is
at least partially visible or not. Figure 3.4 shows an example of bounding boxes containing
visible and occluded targets. After the manual annotation, all the empty bounding boxes
(target completely hidden) were removed from the ground truth and only the visible
targets were used for the evaluation of the tested models.

Figure 3.4: Pair of RGB frame (a) and thermal frame (b) extracted from a flight over
broadleaf forest. Green boxes indicate visible targets while red boxes are empty anno-
tations that have been removed from the ground truth. The red point on the right (c)
indicates the current pose of the drone in the flight trajectory.
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Flights selection
The original data set contains various flight scenarios: different forests, open-field flights,
and flights with no targets. Flights performed in open field (O1-O6 in Table 3.1) are
not representative of a typical Search and Rescue scenario because the targets are always
visible due to the absence of occlusions. For this reason, these flights were discarded and
not used for training and evaluation of the detection models. Moreover, in the original
data set, there are four flights (F8, F9, F10, F11 in Table 3.1) that do not contain any
targets. These flights were also discarded to avoid having too many empty frames in the
data set used for the experiments.

3.1.2. Anomaly Detection Data Set

After the flights selection step, the original 6,095 thermal images were reduced to 2,240
frames and, with the manual cleaning of non-visible targets, more than 30% of ground
truth annotations of the selected flights have been removed. The remaining images cap-
tured over the various forest types are visually different and have distinctive characteristics
such as the shape of the trees and the degree of occlusion of the ground.

Data collection flights cover a small area of the ground. Therefore, all the frames were
captured very close to each other resulting in many similar images due to the large overlap
between consecutive frames. For this reason, all the frames from a flight were assigned
to the same set to avoid having similar images in different sets and prevent data leakage.
Since an anomaly detection model should work on most Search and Rescue scenarios, the
training data must comprise frames from all the available forest types to avoid overfitting
a specific scenario. Defining a balanced separation of flights to build a standard data
set with train and test splits is not straightforward because the distribution of images
and targets by forest type is not balanced, as shown in Figure 3.5. Conifer samples are
prevalent both in image samples and in the number of targets because two of the three
flights on conifer forests have many images. On the other hand, flights on mixed forests
are shorter with fewer frames and have a small number of targets because the visibility
through this type of forest is limited. Moreover, despite broadleaf forest flights having
fewer frames, they have a higher number of visible targets because the trees are less dense
and induce a lower degree of ground occlusion.

Thermal frames of the selected flights have been grouped in three subsets to obtain the
training, validation, and test sets. The main objectives of the split were to obtain a
balanced proportion of bounding boxes (visible targets) in each set and to distribute
forest types on different sets with the constraint of having at least one flight for each
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Figure 3.5: Images and targets distributions by forest type in the original data set [130].

forest type on the training set. At the same time also the number of images in each set
should be balanced to avoid having many annotations on a reduced number of frames.
The split was performed to distribute 70% of the annotations in the training set with
images from broadleaf/conifer/mixed forests, 10% of bounding boxes from a mixed forest
flight in the validation set, and 20% of the annotations in the test set captured from flights
over broadleaf and conifer forests. Table 3.2 presents the final split.

Set Flights Forest types Images Targets
Training F2, F4, F5, F6, F7 broadleaf, conifer, mixed 1,305 4,972 (70%)
Validation F3 mixed 380 791 (11%)
Test F0, F1 broadleaf, conifer 555 1,349 (19%)

Table 3.2: Data set used for the training and evaluation of anomaly detection techniques.

3.1.3. Data Set Issues

The resulting data set is a fair enough representation of realistic search missions. Still,
it presents characteristics that can be very different from a real case scenario and can
introduce a strong bias in the learning process, thus preventing the trained models from
properly operating during a real mission. It should be noted that the original problem
is very complex and difficult to approach due to some intrinsic aspects that cannot be
removed, such as the presence of a high degree of occlusions caused by the tree foliage,
the high flight altitudes that must be used to avoid any obstacle (e.g. high trees or power
lines) that make the targets appear very small in the captured frames, and the need to
support nighttime operations.

Before presenting the implemented anomaly detection methods, a list of the most impor-
tant issues of the data set and the main deviations from a real mission are described.
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Flights performed in daytime
All the images selected from the original data set were captured during the daytime
between October and November. During this period, solar radiation is still sufficiently
intense to heat the ground inducing warmer temperatures on tree crowns and on the
exposed branches due to the reflection of sunlight [129]. The effect is that some upper
forest foliage and branches exposed to direct sunlight can have heat footprints similar to
the heat traces emitted by people. This can induce confusion in the model, which can
struggle to discriminate a possible lost person from a warmer branch because the pixel
intensities are similar. In some cases, the shape of a partially exposed branch can resemble
the outlines of a human body.

Limited number of possible mission scenarios
The available images were captured only in the daytime during a limited period of the year
with similar light and weather conditions and over a restricted selection of terrain types.
Only three different types of forest (broadleaf, conifer, mixed) are shown in the frames,
therefore other typical SAR scenarios such as rocky terrains or open field mountains
are not available for testing the anomaly detection models. Moreover, more challenging
weather conditions such as fog, rain, or snow are not represented in this data set or any
other data set in the literature. Finally, realistic samples of post-disaster scenarios such
as heartquakes, avalanches, or landslides are not publicly accessible and thus, models can
not be assessed in these critical missions that have strongly different features with respect
to the case of searching for an injured person in a forest.

Placement of people on the ground
The data set authors performed drone flights to obtain many targets for training an object
detection model. For this reason, many people (up to 10) were placed in a constrained
area of the ground to obtain many samples. Although this scenario allows obtaining
many diversified examples, it does not represent a realistic scene because usually only a
few people can be seen inside an image during a search mission. Therefore the presence
of many people introduces a bias in the data set that is a significant deviation from real
data that can be observed during a search operation. This is because, with many targets
located nearby, the chances of detecting at least one person are much higher and thus the
performance of a model might degrade during a real use case. The performance assessment
should consider this aspect to try to estimate the behavior of a model on a different set
of images. Moreover, only a small percentage of background images do not contain any
visible target, conversely to a realistic scenario where the majority of the flight would be
over an empty forest and only a limited number of images would contain some traces of
human presence.
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Flight altitude
The data collection flights were performed 30m to 35m above the ground to keep a safety
margin from the maximal tree height. However, this altitude is still relatively low because
in some cases it is necessary to fly at a more elevated distance from the ground to avoid
other obstacles present in the scene (e,g. electrical power lines). In this case, the targets
would appear much smaller and more difficult to detect. The drone altitude may generally
change during operation for other reasons, such as corrections due to high winds. This
implies that a tolerance on the mean target size should be considered when developing an
anomaly detection model.

Frames similarity
Images from a drone flight are captured near to each other and the predefined flight path
covers only a small area on the ground (approximately 30x30m). This induces a high
percentage of overlap, and similarity, in consecutive frames. The consequence is that
there is some redundancy in the frames of the data set that can introduce a bias in the
model evaluation step. If a model is confused by a particular shape or texture of an area
of the ground, the confusion could be repeated for all the frames that have a similar view
of the ground, degrading the performance.

Ground truth noise
The visual appearance of tree occlusions has high intra-class variability and very often
background areas can be very similar to a target which may confuse the anomaly detection
model. Additionally, some bounding boxes may appear bigger than the body silhouette
because some parts of a person could not be visible or the entire body could be hidden
by the occlusions.

3.2. Target Detection

Anomaly detection on drone imagery has some challenging aspects which need to be
considered when developing a model. First of all, robustness to image rotations is essential
because the orientation of a person in the scene is not fixed. Then, a method should have
some degree of robustness to scale variations because the flight altitude could vary between
different flights or missions (trees may be higher or the presence of obstacles such as power
lines may impose a higher flight altitude).
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3.2.1. Anomaly Detection Pipeline

This work aims to develop an anomaly detection system that can be deployed to assist
rescuers during real missions to quickly locate potential targets in a video stream, reduc-
ing the burden of manually analyzing a large amount of captured images. Consequently,
accurate localization at pixel-level precision is not essential. A coarse indication to high-
light potential areas of the images where a target might be located is sufficient to guide
the attention of the responders. For this reason, the anomaly detection problem was
approached as a classification task of tiles extracted from the images captured during a
mission flight. Each generated tile is classified as background or anomaly depending on
whether or not a target is detected. The predictions of tiles extracted from an image
can then be combined to generate an anomaly heatmap that allows the localization of
targets by highlighting detected anomalies in the original image, helping rescuers focus
their attention on areas that have a higher chance of containing an injured person.

To test various combinations of feature extractors and classification models, the pipeline
shown in Figure 3.6 has been implemented to generate tiles from the images and extract
features that are classified by an anomaly detection model. A final evaluation step assesses
the model performance.

Figure 3.6: General pipeline for training and evaluating anomaly detection models.

Tiling

From each image in the data set, a set of square tiles is extracted and for each tile a
label (background, anomaly) is assigned based on the presence or absence of targets. The
tile dimension defines the amount of context that is used to extract textural features.
Since the descriptive capability of the features can be strongly influenced by the amount
of information given to the feature extractor, the tile size is a parameter that has been
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explored during the experimental phase.

Since the anomaly detection task is approached as a classification problem, it is essential
to generate a precise set of annotated images that can be used to train the classification
models. The only ground truth available in the anomaly detection data set (discussed in
Section 3.1) is the set of bounding boxes enclosing the visible targets on the ground. To
reduce the confusion in the tiles data set and prevent the generation of outliers due to
incorrect annotation of some uncertain tiles, two distinct strategies have been adopted to
generate background and anomaly tiles.

To extract anomaly samples, one tile of the required size is centered on each bounding
box defined in the ground truth. If a target is too close to the image border, the tile
is shifted to the minimum amount of space required to keep the entire tile area inside
the image boundaries. In general, an anomaly tile could contain more than one target if
there is a group of nearby people in an image. The influence of the number of targets
in a tile has been studied in Chapter 4. This generation method allows obtaining the
same number of tiles independently from the selected tile size, enabling a reasonable
performance comparison for different tile sizes. Figure 3.7.a shows an example of anomaly
tiles on the original image while Figure 3.7.b shows the extracted anomaly tiles.

Figure 3.7: Example of anomaly tiles on the original image (a) and the set of extracted
anomaly tiles centered on each target in the image (b).

On the other side, background tiles are extracted using a sliding window approach with
a stride that is a percentage (25%, 50%, 75%) of the tile size. Overlapping tiles prevent
the loss of information that could happen when using a static grid and offer more data
to train anomaly detection models. All the tiles that intersect any bounding box in the
ground truth, even if partially, are discarded to avoid having outliers (i.e. tiles with a
visible target) in the background class of the training set.
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These generation strategies reduce any possible noise and ensure that anomaly tiles ef-
fectively contain at least one visible target, while normal tiles are empty and depict only
background areas.

The major issue of this approach for generating background tiles is that the number of
extracted tiles from an image can vary greatly based on the selected tile size, e.g. 9 tiles are
generated with a size of 240 pixels and a stride of 50% whereas 81 tiles are extracted with a
size of 96 pixels and the same stride. With smaller sizes the method generates many more
background tiles so the ratio with anomaly tiles changes considerably (same number of
anomaly tiles is generated for all the sizes). Therefore, the results of different experiments
would be incomparable and with a largely imbalanced data set the classification model
could underperform. The solution adopted to solve this problem and generate the same
number of background tiles for every selected size is to define a maximum tile size and
apply the sliding window with that size. Each extracted tile is cropped at the center to
the required size. Figure 3.8 shows an example of tiles extracted from an image. Figure
3.8.a is a representation of the sliding window used to generate the candidate background
tiles, while Figure 3.8.b highlights the final cropped tiles generated from the image.

Figure 3.8: Candidate normal tiles (a) generated using a sliding window of 240x240 px.
Actual normal tiles extracted (b) with a size of 96x96 px.

This way, all the models are trained and tested on the same number of samples. The only
difference between various experimental configurations is the amount of context given to
the feature extractor. Figure 3.9 shows the different contexts around each target due to the
variation of tile size. It is possible to notice that a tile size of 96x96 pixels (corresponding
to 6x6 meters) covers mostly one target while 240x240 pixels (14x14 meters) depicts a
very large area with multiple targets.

Traditional feature extraction techniques require additional steps to post-process and
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Figure 3.9: Variation of context around a target depending on the selected tile size.

select the extracted features before feeding them to the Machine Learning classifier. Figure
3.10 shows in detail the image encoding phase, composed of multiple procedures to extract
features from an input image, normalize their values range, and select the most distinctive
features fed to the downstream classifier.

Figure 3.10: Pipeline for Machine Learning models with a multi-step encoding phase.

Feature Normalization

Most feature extraction methods generate features with a wide range of values and dif-
ferent magnitudes of scale. If a feature has a range of values that is orders of magnitude
larger than others, it might dominate the objective function of the classifier, making it
unable to learn correctly from other features. Therefore, in these cases, it is necessary to
apply some normalization on the extracted features to prevent the classifier from relying
only on the most dominant features. All extracted features should have the same order of
magnitude to contribute equally to learning the decision boundary of the classifier. For
this reason, a min-max normalization is applied channel-wise to project all the features
in the range of values [0,1].
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Typically, in Machine Learning tasks, features are normalized over the entire set that
should represent the distribution of the data and, thus, the values of the features. In the
data set under analysis, though, due to the high variability of the pixel intensities caused
by the thermal camera, feature value ranges can vary greatly from one image to another.
The solution to this problem is to perform feature normalization on the features extracted
from the tiles of each image. This approach can be seen as a batch normalization where
each batch comprises tiles from the same image. This method can reduce the influence
of the high variability of the images in the data set while allowing to obtain normalized
features that have the same range of values for all the channels and thus contribute equally
to the learning process of the classifier.

Feature Selection

Most Machine Learning anomaly detection models (e.g., OC-SVM or Isolation Forest)
could underperform with very high-dimensional data due to poor computational scalabil-
ity and curse of dimensionality [22, 121, 122]. Moreover, training simple Machine Learning
classifiers with too many features can introduce noise that might induce a model to over-
fit even with optimal parameter selection [151]. For this reason, it is good practice to
reduce dimensionality by selecting only the most important features before training a
classification model.

The strategy adopted in this work is to maintain the best discriminative features based on
univariate statistical tests. The features extracted from the training samples are evaluated
with the ANOVA (Analysis of Variance) statistical method to check the similarity with
each other and assign them a score. Then, the k highest scoring features are kept, i.e.,
the set of features that have high variances and are not similar to each other.

3.3. Machine Learning Techniques

Machine Learning methods are composed mainly of two phases: feature extraction and
feature classification. During the feature extraction phase, a general method extracts
a compact representation of the image, which can be used to perform many Computer
Vision tasks such as pattern recognition or image classification. Instead, in this work, the
feature classifier is an anomaly detection algorithm that classifies features as normal or
anomalous. Section 3.3.1 presents the implemented feature extractors, while Section 3.3.2
discusses the anomaly detection algorithms exploited in this work.
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3.3.1. Feature Extraction

Computer Vision researchers have proposed many feature extraction techniques [58] but
from all the methods presented in Section 2.1.2, only a subset has been implemented and
analyzed in this work. After researching the state-of-the-art feature extraction techniques,
some methods have been initially discarded because they do not have the invariance prop-
erties required for anomaly detection from drone imagery. As an example, HOG [31] was
specifically designed for object recognition tasks where targets have features character-
ized by specific orientations. Consequently, in a rescue operation scenario, occlusions or
people with articulated poses could prevent the detector from identifying a person [8]. In
their original variants, other methods, such as LBP [104] or Wavelet Transform [86], are
inappropriate since they are not rotation-invariant, which is important in drone-captured
images.

The feature extraction techniques that have been implemented and tested are: Haralick
features [52], SIFT [94], HGM [138] and LETRIST [143]. Moreover, a method based on
the Histogram of Pixel Intensities has been implemented as a baseline.

Baseline: Histogram of Pixel Intensities

The baseline for anomaly detection is a statistical method based on analyzing the dis-
tribution of gray-level values. Given an input image, the intensities of all the pixels
are quantized into a small number of ranges, and the frequencies of the occurrences are
counted using a histogram. An example is shown in Figure 3.11. This simple method
considers only the values of individual pixels and not their relations to neighboring pixels;
therefore, the histogram-based descriptor can only represent global information while no
spatial or textural information is captured. The generated image descriptor is invariant to
translation and rotation but is affected by noise and illumination changes. The histogram
is normalized using the min-max normalization before being fed to the classifier.

Haralick

Haralick features [52] is a global texture descriptor that is composed of a set of several
statistics computed from a Gray Level Co-occurrence Matrix (GLCM).

The GLCM is a square matrix with a size corresponding to the number of gray levels
values in the image and, as the name suggests, it counts the co-occurrences of gray levels
in the image. It is computed by considering the relation of each pixel with a neighbor pixel
defined by a displacement vector. For each pixel in the image, the gray-level is compared
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Figure 3.11: Examples of background tile (a) and anomaly tile (b) with their respective
histograms of pixel intensities (values are in log scale).

with the value of the pixel at a certain parametric distance d on a specific orientation θ.
The co-occurrence is computed in 4 directions θ = {0◦, 45◦, 90◦, 135◦}, thus one GLCM
is generated for each orientation (horizontal, right diagonal, vertical, left diagonal axis).
Using a displacement vector δ = (dx, dy) with module d and orientation θ, a GLCM G is
formally computed with Equation 3.1 where I(x, y) indicates the pixel value of image I in
position (x, y) and i, j are the gray levels that occur as neighbors. An example of GLCM
construction is shown in Figure 3.12.

G(i, j) =
w∑

x=1

h∑
y=1

1, if I(x, y) = i and I(x+ dx, y + dy) = j

0, otherwise
(3.1)

From the 4 generated matrices, a set of statistics are computed to characterize the dis-
tribution of gray-level co-occurrence in each of the four directions. To obtain rotation-
invariance, the derived features are averaged over all four directions. The extracted Har-
alick features correspond to 14 statistics that are computed from the GLCM: Angular
Second Moment, Contrast, Correlation, Sum of Squares (Variance), Inverse Difference
Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Differ-
ence Entropy, Information Measure of Correlation 1, Information Measure of Correlation
2, Maximal Correlation Coefficient. The complete mathematical formulations for all the
features are fully described in the original paper [52]. Usually, in most implementations,
the last feature (Maximal Correlation Coefficient) is discarded because it is considered
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Figure 3.12: Example of GLCM calculation. Grayscale image (a) with the corresponding
gray-level pixel intensities (b). GLCM (c) is computed by counting the number of occur-
rences of a pixel with value i having a neighbor with value j. Figure taken from [34].

unstable, thus obtaining a feature vector of 13 dimensions.

SIFT

Scale-Invariant Feature Transform (SIFT) [94] is an algorithm to detect and describe local
features in images. The features are invariant to image scale and rotation. Moreover,
they are robust to affine distortion, viewpoint change, addition of noise, and illumination
change.

Figure 3.13: Steps of the SIFT algorithm. Figure taken from [114].

The SIFT algorithm can detect keypoints at multiple scales by using scale-space filtering
that is produced from the convolution of Gaussian kernels at various scales σ. The steps
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of the algorithm, shown in Figure 3.13, are the following:

1. The scale-space is divided into octaves and the image size is halved in each octave;

2. Within each octave, the images are blurred by the convolution with Gaussian kernels
with increasing σ scales;

3. Then, the Difference of Gaussians (DoG) is generated by computing the difference
of Gaussian blurring of an image with two different scales;

4. The candidate keypoints are identified as the local extrema of the DoG. The identi-
fied keypoints are then filtered based on some conditions and only the most relevant
ones are kept;

5. From the image region around each keypoint, the gradient magnitude and direction
are computed and an orientation histogram, weighted by the gradient magnitude, is
created. To achieve invariance to image rotation, the highest peak in the histogram,
along with any peak above 80% of its value, is considered to calculate the orientation.
This approach creates keypoints with the same location and scale but with different
directions to increase the robustness to rotations.

For each keypoint with a known location, scale, and orientation, a descriptor of the
local image region is computed. The 128-dimensional descriptor is composed of gradient
histograms computed from the sub-blocks of the local region around the keypoint.

The information represented by a single descriptor is not enough to discriminate a keypoint
associated with a background area from another located on a target. For this reason, the
implemented method uses the keypoints extracted from an image to build a descriptor that
is then classified to detect anomaly samples. The training process consists of extracting
SIFT keypoints from all the normal images in the training set (that contain background
only) and the keypoints that represent the same visual feature are grouped together with
a clustering algorithm to identify the most relevant normal keypoint descriptors that
characterize the class of normal images. The vocabulary is learned by using the K-means
clustering algorithm which determines the centroids for all the identified clusters which
are used as visual words of the dictionary. During inference, SIFT keypoints are detected
from each image but, since in some cases a large number of descriptors can be generated,
they are randomly downsampled to a maximum number. The subsampling is required
to avoid generating a histogram of word counts with unusual distribution when many
keypoints are detected. The Visual Bag-of-Words (BoW) is generated by associating
each keypoint to the nearest visual word in the vocabulary and building a histogram by
counting the occurrences of each word. The resulting histogram is used as a feature vector
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of the image and has a dimension equal to the number of visual words. Examples of tiles
with the associated Bag of Words descriptors are shown in Figure 3.14.

Figure 3.14: Examples of background tile (a) and anomaly tile (b) along with the detected
SIFT keypoints and the respective Bag of Words descriptors.

Usually, this approach is implemented in supervised classification tasks where keypoints
from all the classes are available during training and, therefore, the clustering step can
build clusters that are representative of all the classes. In the case of anomaly detec-
tion, only normal keypoints are available, thus the expectation is that anomaly images
should have different histogram distributions with respect to the histograms generated
from normal images.

LETRIST

LETRIST (Locally Encoded TRansform feature hISTogram) [143] is an image descriptor
for texture classification which characterizes local texture structures and their correlation.
The extracted features are robust to rotation, illumination, scale, viewpoint changes, and
also to Gaussian noise. LETRIST is a histogram representation that explicitly encodes
the joint information within an image across feature and scale spaces. Figure 3.15 shows
an example of an anomaly tile with the associated LETRIST descriptor.

Before extracting features, LETRIST applies standard normalization to the input image
to have zero mean and standard deviation. This normalization is useful to remove global
affine illumination changes.
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Figure 3.15: Example of anomaly tile (a) and associated LETRIST descriptor (b), (values
are in log scale).

The image is convolved with a set of first and second directional Gaussian derivative
filters to compute the extremum (maximum and minimum) responses in scale space.
The extremum filtering step is introduced to capture the information contained in the
first-order and second-order differential structures and to extract local features that are
rotation-invariant. According to the theory of steerable filters [40], any orientation of the
first or second derivative of a Gaussian can be synthesized by taking a linear combination
of several basis filters. The five basis filters used to define the image derivatives are Gx, Gxx

which are respectively the scale-normalized first and second derivatives of G along the x-
axis and similarly for Gy, Gxy, Gyy.

Given an image I, the responses of the first and second Gaussian derivative filters at
orientation θ are: Iθ1 = Gθ

1 ∗ I and Iθ2 = Gθ
2 ∗ I. Then, the extremum response of the

first derivative Iθ1,max is the maximum value of Iθ1 over all θ and similarly, the extremum
responses of the second derivative Iθ2,max, Iθ2,min are the maximum and minimum values
of Iθ2 over all θ. To capture multi-scale feature properties, the extremum responses are
computed at different scales which in the original formulation are σ = {1, 2, 4}.

On the obtained extremum responses, a set of linear and non-linear operators are applied
to construct a set of transform features:

• gradient magnitude g (3.2): maximum response of the first directional Gaussian
derivative filter;

• extrema difference d (3.3): the difference between maximum and minimum responses
of the second directional Gaussian derivative filter;

• shape index s (3.4): provides a quantitative measure of local second-order curvature
(e.g. caps, ridges, saddles, ruts, and cups);

• mixed extrema ratio r (3.5): captures the correlation of the first-order and second-
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order differential structures where c is a scale factor to adjust the ratio.

g = Iθ1,max

d = Iθ2,max − Iθ2,min

s =
1

2
− 1

π
arctan

(
Iθ2,max + Iθ2,min

Iθ2,max − Iθ2,min

)

r =
2

π
arctan

(
c · d

g

)
=

2

π
arctan

(
c ·

Iθ2,max − Iθ2,min

Iθ1,max

)

(3.2)

(3.3)

(3.4)

(3.5)

The constructed transform features, denoted as F = {g, d, s, r} are rotationally invariant
because are derived from extremum responses generated by the convolution with steerable
filters that are invariant to rotation. The computed transform features are quantized
into discrete texture codes via scalar quantization. Transform features {g, d} with non-
negative values, are quantized with a binary threshold based on the mean value of the
respective transform feature map which is robust to image rotation. Transform features
{s, r} with values in the range [0, 1], are quantized using a uniform quantizer with multi-
level thresholding.

Finally, the texture codes are jointly encoded across scales to build multiple histograms
which are concatenated to form the image feature representation. Transform features
{g, d, s} are jointly encoded across two adjacent scales (e.g. (σ1, σ2), (σ2, σ3)) while the
transform feature {r} is encoded across all the scales. The final feature representation is
a 413-dimensional image descriptor.

HGM

Histogram of Gradient Magnitudes (HGM) [138] is a low-dimensional, rotation-invariant
local texture descriptor. The feature descriptor is based on the gradient magnitude of
pixel intensities that give the amount of the difference between pixels in the neighborhood,
indicating the edge strength.

The gradient of an image measures how the image content is changing and provides
two pieces of information: the magnitude of the gradient measuring how quickly the
image changes and the gradient orientation indicating the direction in which the image
is changing most rapidly. HGM is rotation-invariant because it computes the histogram
using only the gradient magnitudes of pixels, ignoring the gradient orientations.

Firstly, a Gaussian blur of kernel size 3 is applied to an image for noise removal and then
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the image is converted to grayscale. The derivatives of the image I are calculated in x

and y directions by convolution with Sobel operators as shown in Equations 3.6.

Gx =

−1 0 1

−2 0 2

−1 0 1

 ∗ I Gy =

−1 −2 −1

0 0 0

1 2 1

 ∗ I (3.6)

The gradient magnitude is computed from the derivatives with Equation 3.7.

Gmag =
√
G2

x +G2
y (3.7)

The last step is to calculate the normalized histogram over 16 bins of all pixels magnitude
values.

The image descriptor is a 16-dimensional histogram of gradient magnitudes. Since the
computed histogram is already normalized with values in a small range, the normalization
of extracted features is not required.

Figure 3.16 shows two examples of tiles with a visualization of their gradient magnitudes.
Figure 3.16.a shows a background tile that has high variability of the gradient magnitudes
but is restricted in a limited range (the upper bound is 77.8). Therefore the gradients
are distributed on many bins of the associated HGM descriptor. Figure 3.16.b shows an
anomaly tile with a weakly visible target. Despite the target being almost completely
hidden, the magnitudes on its borders are much higher with respect to the gradients of
background areas. The magnitude range is wider (the upper bound is 135.8) and therefore
most of the gradients computed on background areas are concentrated in the lower bins
of the associated histogram.

3.3.2. Feature Classification

Two popular anomaly detection classifiers have been analyzed: OC-SVM [134] and Isola-
tion Forest [90].

One-Class SVM (OC-SVM)

OC-SVM [134] is an effective classifier often used for anomaly detection tasks where rare
occurrences of outliers need to be identified. OC-SVM adapts the well-known supervised
classification Support Vector Machine (SVM) model [113] for the unsupervised anomaly
detection task. The SVM method aims to find a hyperplane that maximizes the margin
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Figure 3.16: Examples of normal tile (a) and anomaly tile (b) along with their respective
plots of the gradient magnitudes and the associated HGM descriptors.

separation between different classes. However, in one-class problems, the information
regarding the anomaly class instances is not available. To deal with this issue, OC-
SVM separates inliers (normal instances) from the outliers by finding a hyperplane that
maximizes the boundary from the origin, i.e. all the observations with low similarity
with respect to the training data, as shown in Figure 3.17. Similarly to SVM, OC-
SVM can generate a non-linear boundary by using specific kernels: Radial Basis Function
(RBF), Polynomial, or Sigmoid. The hyperplane in the kernel space induces a non-linear
surface in the feature space that allows the model to learn complex non-linear normal
data distributions.

Figure 3.17: OC-SVM defines a hyperplane to separate the anomalies (red crosses) from
the normal distribution (green circles). Figure taken from [106].

Another important aspect of OC-SVM is the ν hyper-parameter with values inside the



56 3| Data Set and Methods

interval ν ∈ (0, 1] which defines an upper bound on the fraction of training samples that
are allowed to be wrongly classified (considered as outliers by the decision boundary) and
a lower bound for the number of samples that are support vectors. This is known as the
ν-property that allows incorporating a prior belief into the model about the fraction of
outliers in the training set. Higher values allow for a greater number of wrongly classified
training samples, reducing the risk of overfitting while providing better generalization.
This parameter is a regularization term that can be used to fine-tune the trade-off between
overfitting and generalization.

After training the OC-SVM on normal data, the model can be used to classify new unseen
instances and detect anomalies through a decision function that outputs a discrete value:
+1 if the input is a normal data point, −1 for an anomaly sample. A possible limitation of
the OC-SVM that must be addressed during training is that, even with optimal parameter
selection, it can be sensitive to overfitting in the presence of noise [139]. Moreover, when
the training data is noisy and contains many outliers near or in the normal class, the
OC-SVM will estimate a large boundary that encloses areas of the feature space where
the normal class has low density, resulting in many False Negatives.

Isolation Forest (IFOR)

Isolation Forest [90] is a popular unsupervised Machine Learning algorithm for detecting
anomalies within a data set. It is a model-based unsupervised outlier detection method
that isolates observations by randomly selecting a feature and then splitting the data be-
tween the maximum and minimum values of the selected feature. The process is repeated
until all possible splits have been made or a limit on the number of splits is reached.
Recursive partitioning can be represented by a tree structure and an ensemble of similar
decision trees (on different subsets of features) is used to isolate anomalies from the rest
of the data, as shown in Figure 3.18.

The path length from the root node to the final node reached by a sample is equivalent
to the number of splittings required to isolate it from the rest of the data. Assuming
that anomalies have attribute values that differ from normal data, random partitioning
produces noticeably shorter paths for anomalies that are more likely to be separated in
early partitioning. Hence, when a forest of random trees collectively produces shorter
path lengths for particular samples, they are highly likely to be anomalies. The average
path length over a forest of random trees is a measure of normality and can be used to
separate normal and anomaly samples. Isolation Forest is not based on distance or density
measures to detect anomalies, thus eliminating the major computational cost of distance
calculation in all distance-based and density-based methods. Moreover, this technique
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Figure 3.18: Examples of Isolation Forest splittings. Isolating a normal point xi from
the normality distribution requires many splittings (a). On the other hand, isolating an
anomaly point xo can be performed with a few splits (b). Figure taken from [90].

can handle high-dimensional problems containing many irrelevant attributes.

3.4. Deep Learning Techniques

Many Deep Learning anomaly detection architectures have been proposed in the literature
[100]. Some networks can obtain state-of-the-art results on challenging tasks but are
characterized by complex architectures, thus becoming computationally expensive.

Thanks to the recent advance of anomaly detection in Computer Vision applications, many
methods have been introduced, such as GANomaly [4], AnoGAN [132] and ALOCC [124].
Although these methods are specifically designed for anomaly detection, they have some
major limitations in the anomalies that they can identify. For example, the ALOCC
and GANomaly methods assume a substantial difference exists between the concept of
normal data and anomaly samples. This assumption is reasonable for anomaly detection
in natural images. However, when searching for a target from UAV imagery, the difference
between background images and frames containing targets is minor because only a small
area of the image is influenced by the presence of a target [3].

Moreover, the application scenario requires performing anomaly detection as fast as pos-
sible on a large number of images to quickly identify victims. Therefore, developing
a lightweight model with few parameters is preferable to ensure real-time performance.
Consequently, an architecture based on the original LeNet-5 network [83] has been im-
plemented.
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3.4.1. Architecture

Deep Learning models trained for binary classification tasks output a score in the range
[0,1] that indicates the probability that the input belongs to one of the two classes. In
an anomaly detection setting, approached with a classification task, a network predicts
an anomaly score that measures the degree of abnormality of the input and indicates the
likelihood of being an anomaly. The computed anomaly score is unbounded, therefore
this value must be thresholded to determine the class of the input tile, as shown in Figure
3.19. The definition of the anomaly threshold for the tile classification step may change
for the various models. Some models have a built-in mechanism to determine if an input
is anomalous, whereas for others a proper anomaly threshold should be defined.

Figure 3.19: Pipeline for Deep Learning models with a multi-step classification phase.

LeNet-5 is one of the earliest convolutional neural networks trained to recognize hand-
written numbers from small images of 32x32 pixels [82]. The original network comprises
seven layers with three initial Convolutional layers to extract spatial features with tanh
activation function, separated by Average Pooling layers to subsample and reduce the
spatial dimensions. After the feature extractor, a Fully Connected network is used as a
classifier with an output layer of 10 units to classify the number recognized from the input
image. Despite the simple architecture with few layers, LeNet-5 has been used in many
works in recent years [59, 88]. Adaptations of this network are implemented in many
object recognition or image classification tasks, meaning that despite its simplicity and
reduced parameters, it can learn useful and discriminating features.

In this thesis, major modifications have been applied to the original LeNet-5 model: the
Average Pooling layers have been replaced by Max Pooling layers that introduce stronger
non-linearity to the model, the tanh activation function have been substituted by the more
efficient Leaky ReLU activation function and, finally, an additional Convolutional layer
has been included to deal with bigger input images and reduce the number of trainable
parameters. Figure 3.20 shows the final architecture.
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Figure 3.20: LeNet-type convolutional neural network architecture composed of a feature
extractor and a classifier. The output layer has a variable number of neurons that depends
on the number of classes defined by each task.

The implemented LeNet-type architecture mainly comprises a feature extractor composed
of 4 similar convolutional stages which build a compact representation of the input image
and a classifier which classifies the latent representation based on the specified task. The
network input layer has a shape of 96x96x1 because it processes square tiles extracted
from a grayscale thermal image.

Each stage of the feature extraction part is composed of the concatenation of three layers
which are a Convolutional layer, a Batch Normalization layer, and a Max Pooling layer.
The Convolutional layer has a kernel size of 5x5 and padding to maintain the input
spatial dimension. The output of the Convolutional layer is normalized with the Batch
Normalization layer to obtain a set of features with zero mean and standard deviation,
followed by Leaky ReLU activation function. Leaky ReLU is a variation of the ReLU
function with a small slope for negative values, instead of fixing them to 0, which allows
back-propagation also for negative values of the activation function. The final Max Pooling
layer has a kernel size of 2x2 and a stride of 2 pixels, halving the resolution of the feature
maps. The number of filters in each Convolutional layer is doubled in each stage, starting
from 16 filters in the first layer and 128 filters in the last. The output of the feature
extractor subnetwork is flattened and connected to a Fully Connected layer of 144 units
which is the latent representation of the input image. The final Fully Connected layer size
depends on each specific task.

Each input tile is individually preprocessed with Global Contrast Normalization (GCN)
[47] to normalize the contrast across the entire data set. By normalizing the amount of
contrast in each tile, this preprocessing step removes a source of variation across the data
samples. In the context of Deep Learning, the contrast of an image refers to the standard
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deviation of the pixels in the image. GCN aims to prevent images from having varying
amounts of contrast by subtracting the mean from each image, then rescaling it so that
the standard deviation across its pixels equals the unitary value. Given an input image
X ∈ Rr×c, GCN produces a normalized output image X ′ as defined by Equation 3.8.

X ′
i,j =

Xi,j −X√
1
rc

∑r
i=1

∑c
j=1

(
Xi,j −X

)2 (3.8)

The resulting pixel values are rescaled to the range [0,1] using min-max normalization by
computing the maximum and minimum values across the entire training set.

3.4.2. Self-Supervised Learning

The encoder network described in Section 3.4.1 will be used as part of larger deep anomaly
detection architectures. Since the encoder network will be used to extract relevant feature
representations, there are three possibilities for initializing its weights: random initializa-
tion, transfer learning from another domain, and transfer learning from a pretext task.
Due to the nature of the data set and the abundance of background images, the pretext
task approach has been adopted.

Due to the intrinsic characteristics of the scenario of forest imagery captured by drones,
some of the most popular Self-Supervised Learning techniques [5] cannot be adopted be-
cause they would not allow the model to learn good representative features. For example,
predicting the rotation applied to an input sample is not a viable solution because the
images captured from a drone do not have a specific orientation. Moreover, background
images have a very high intra-class variability because the possible forest scenarios are
very diversified and lack a specific structure. For this reason, reconstruction-based net-
works [85] or generative approaches [153] do not obtain good results and do not allow a
model to learn features that properly characterize the normal data.

The implemented pretext task leverages the characteristics of the available data set, specif-
ically the forest types (broadleaf, conifer, mixed) of the various flights on which the images
were captured. The network architecture described in Section 3.4.1 has been adapted to
solve the image classification problem by using an output classification layer with 3 units,
one for each forest, and applying a Softmax activation function on the output. These
normalized values indicate the probabilities of the input belonging to each class. The
highest probability is then used to determine the predicted class of each input.

The data set used for the pretext task is composed only of background tiles without any
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visible target. However, to prevent the encoder from learning the same data used to train
the anomaly detection task, every tile that overlaps for more than 30% with any tile in
the training set of the anomaly detection data set is discarded. Figure 3.21 highlights
two subsets of tiles extracted from the same image. Figure 3.21.a shows tiles used for
the anomaly detection task, and Figure 3.21.b shows tiles used for the pretext forest
classification task.

Figure 3.21: Background tiles used for the anomaly detection task (a) and background
tiles used for the pretext forest classification task (b). The two sets of tiles are extracted
from the same image, but the overlap between any pair of tiles selected respectively from
the two sets is less than 30%.

Each extracted tile is annotated with a label that defines the forest type of the flight
(broadleaf, conifer, mixed). All the labeled tiles are downsampled to obtain a balanced
distribution of samples in each class. Since a fully-supervised forest classification task is
performed on these images, the network learns relevant features of the forest textures that
represent the normal class (or background) of the anomaly detection task.

After the Self-Supervised Learning pre-training, the final classification layer is dropped
and the convolutional encoder network is used to initialize the weights of other anomaly
detection models.

3.4.3. Unsupervised Anomaly Detection

The majority of Deep Learning approaches for anomaly detection involve networks trained
to perform a different task such as image compression or generative models [4, 21, 132],
which are then adapted for use in anomaly detection. The main limitation of these
methods is that they are not trained on an anomaly detection-based objective [100].

A novel general approach to deep anomaly detection, Deep SVDD, presented in [121]
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is based on kernel-based one-class classification and minimum volume estimation. This
model is inspired by the key concept of the Support Vector Data Descriptor (SVDD)
[150] Machine Learning method which is an evolution of the OC-SVM. Although both
methods define a boundary in the feature space to separate normal data from anomalies,
the difference is that OC-SVM uses a hyperplane while SVDD exploits a hypersphere to
enclose normal instances. Similarly to SVDD, the Deep SVDD technique trains a neural
network to minimize the volume of a hypersphere that encloses the latent representations
of the data to exclude anomalies, as shown in Figure 3.22. Minimizing the volume of
the hypersphere, which encloses the features extracted from all the background samples,
forces the network to learn the common factors of variation to map all the data points
towards the center of the hypersphere.

Figure 3.22: Deep SVDD learns a neural network transformation to map most of the data
representations into a hypersphere of center c and radius R. Normal samples are mapped
within the sphere, whereas anomalies are mapped outside. Figure taken from [121].

The objective of Deep SVDD is to jointly learn the network parameters W together with
minimizing the volume of a hypersphere in the latent space that encloses the training
data characterized by radius R > 0 and center c. The bias terms bl of the network
layers are not used to prevent the network from learning a constant function that maps
every input x ∈ X to the center, leading to hypersphere collapse. This could happen
because, when using the bias terms, the network might learn to set the weights of a layer
to zero (Wl = 0), to obtain a constant output for every input x ∈ X , and choose the bias
term bl (and the weights of subsequent layers) such that ϕ(x;W∗) = c for every x ∈ X .
Consequently, the optimal solution becomes R∗ = 0 and the hypersphere collapses.

The main advantage of Deep SVDD is that by jointly training the feature extraction
network with the one-class classification objective, it can learn useful feature representa-
tions of the data and fine-tune the encoder to extract the most relevant characteristics to
improve the anomaly detection performance.

The model can be trained using two objective functions: Soft-Boundary or One-Class.
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Soft-Boundary
With this objective function, only the points outside the hypersphere are penalized, i.e.,
the samples with a distance to the center greater than the radius R. In this case, the
volume of the hypersphere is minimized by minimizing R2. The hyperparameter ν ∈ (0, 1]

controls the trade-off between the sphere volume and the boundary violations, allowing
some points to be mapped outside the sphere. Similarly to OC-SVM, it allows having
outliers in the training set and the value of ν approximates the fraction of anomalous
samples. Optimizing the objective function in Equation 3.9, the network learns parameters
W such that data points are closely mapped to the center c of the hypersphere.

min
R,W

R2 +
1

νn

n∑
i=1

max{0, ∥ϕ (xi;W)− c∥2 −R2} (3.9)

Consequently, normal samples are mapped inside the sphere, whereas anomaly instances
are mapped further away from the center and outside the hypersphere.

One-Class
The One-Class objective function, defined by Equation 3.10, is a simplified version of
Soft-Boundary that can be used when most of the training data is assumed to be normal.

min
W

1

n

n∑
i=1

∥ϕ (xi;W)− c∥2 (3.10)

Differently from Soft-Boundary, the radius of a hypersphere is not explicitly defined with
One-Class objective. In fact, the distance of all the sample representations to a central
point in the latent space is penalized by employing a quadratic loss. Even in this case,
the network must extract the common factors of variation to map data representations
close to the center of the sphere.

After training, for a given test point x ∈ X , the anomaly score s(x) for both variants
of Deep SVDD can be defined as the distance ϕ(x;W) of the point to the center of the
hypersphere c (Equation 3.11):

s(x) = ∥ϕ(x;W∗ − c∥2 (3.11)

where W∗ are the network parameters of the trained model.

When the soft-boundary objective is used, the score can be adjusted by subtracting the
radius R∗ of the trained model such that anomalies mapped outside the boundary have
positive scores, whereas normal data inside the hypersphere have negative scores.
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For the one-class objective, all the predicted scores are positive numbers and there is no
built-in function to differentiate between normal and anomaly samples. Consequently,
a threshold should be defined from the predicted anomaly scores. The implemented
solution is to compute the Precision-Recall Curve (PRC) that shows the trade-off between
precision and recall at the variation of the anomaly threshold. The PRC is used instead
of the Receiver Operating Characteristic Curve (ROC) because it is a better metric to
assess prediction performance when the classes are imbalanced. After the computation of
the PRC, a pre-established recall is selected which, in the use case of Search and Rescue
missions, should be high (above 90%) to reduce the probability of missing people. The
corresponding point on the curve is selected and the associated anomaly threshold is used
for the final tile classification step.

3.4.4. Semi-Supervised Anomaly Detection

Typically, anomaly detection is approached as an unsupervised learning task because it
is based on the assumption that only normal samples are available during training. In
practice, however, in addition to a large collection of unlabeled samples that are assumed
to be normal, a small subset of labeled samples may be available where each instance is
annotated by some domain experts as being normal or anomalous [122]. Semi-supervised
approaches aim to exploit such labeled samples. However, most methods are limited to
including labeled normal samples, and only a few can take advantage of labeled anomalies.

A general end-to-end deep methodology for anomaly detection is Deep SAD [122], which
can be considered a generalization of the unsupervised Deep SVDD model to the semi-
supervised setting. This model exploits the anomaly samples directly in the objective
function to better define a boundary that separates normal data and anomaly samples in
the latent space.

The semi-supervised anomaly detection training set is composed of n unlabeled samples
x1, . . . ,xn ∈ X with X ⊆ RD that are assumed to be normal and m labeled samples
(x̃1, ỹ1), . . . , (x̃m, ỹm) ∈ X × Y with Y = {−1,+1} where ỹ = +1 denotes known normal
samples and ỹ = −1 known anomalies. If the number of labeled samples m is zero, the
method is equivalent to the Deep SVDD model trained with an unsupervised data set.
Similarly to Deep SVDD, also with Deep SAD removing the bias terms from the layers
forces the network to learn a non-trivial solution that prevents the hypersphere collapse.
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The Deep SAD objective is defined as:

min
W

1

n+m

n∑
i=1

∥ϕ (xi;W)− c∥2 + η

n+m

m∑
j=1

(
∥ϕ (x̃j;W)− c∥2

)ỹj (3.12)

The same loss term as Deep SVDD (first part of Equation 3.12) is used for the unlabeled
data, which implies that assuming most of the unlabeled data to be normal is still valid.
The loss term for the labeled data (second part of Equation 3.12) is similar to the unlabeled
term and minimizes the mean distance of all data representations to the center of the
hypersphere. For the labeled normal samples (ỹ = +1) the quadratic loss on the distances
of the mapped points to the center is penalized to learn a latent representation that
concentrates the normal data near the center. For labeled anomalies (ỹ = −1), the inverse
of the distances is penalized so that anomalies are mapped further away from the center.
The loss term of the labeled data is weighted with the hyper-parameter η > 0 which
controls the balance between the labeled and the unlabeled term on the objective loss.
Setting η > 1 places more emphasis on the labeled data, while setting η < 1 emphasizes
the unlabeled samples.

The anomaly score for a point x is computed as the distance ϕ(x;W) of its representation
in the latent space to the center c of the hypersphere (Equation 3.13):

s(x) = ∥ϕ(x;W∗ − c∥2 (3.13)

where W∗ are the network parameters of the trained model.

Similarly to Deep SVDD with One-Class objective, Deep SAD predicts a positive anomaly
score for each input tile. An anomaly threshold is then computed from the predicted
anomaly scores by selecting the point associated with a pre-established recall value on the
Precision-Recall Curve (PRC). The associated threshold is then used to classify a tile as
normal or anomaly based on the predicted anomaly score.

Semi-Supervised Training Set
In the case of semi-supervised learning, the training set is different from the data used
in the unsupervised setting because some anomaly samples can be included. For this
reason, the training data generation has been updated to remove the constraint of having
only background data and to introduce a controlled number of anomaly samples. In
particular, the Deep SAD training set comprises three subsets of data: unlabeled normal,
labeled normal, and labeled anomaly. The ratio between these sets is defined by two
parameters ratio_known_normal and ratio_known_anomaly which respectively control
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the number of labeled normal and labeled anomaly samples while the rest of the data
(1−ratio_known_normal−ratio_known_anomaly) is composed by unlabeled samples
that are assumed normal. Equation 3.14 shows the computation of the amount of labeled
and unlabeled data based on these two parameters and the total number of normal samples
(n_normal). All the normal samples used in the unsupervised training set are also used
within this set and the only difference is that a subset of them is labeled (ỹ = +1) while
the rest is unlabeled (ỹ = 0). Moreover, a specific quantity of anomaly instances (ỹ = −1)
is added to the training set.


xlabeled_anomaly =

ratio_known_anomaly

1−ratio_known_anomaly
∗ nnormal

xlabeled_normal =
ratio_known_normal

1−ratio_known_anomaly
∗ nnormal

xunlabeled_normal = nnormal − xlabeled_normal

(3.14)
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This chapter discusses a quantitative and qualitative analysis of the implemented mod-
els. First, the evaluation procedures for Machine Learning and Deep Learning models are
introduced. Then, all the models are compared to identify the best methods that could
be useful for realistic missions. Finally, some examples of correct detection and model
confusion are presented to identify the strength and weaknesses of the analyzed anomaly
detection techniques. The chapter concludes with examples of anomaly heatmaps gener-
ated on images with targets and background images.

4.1. Evaluation Procedure

Anomaly detection models have been evaluated on the tiles extracted from the images in
the anomaly detection data set (Section 3.1). The training set for unsupervised anomaly
detection models is composed only of normal samples (background tiles) thus, all the
anomaly tiles are discarded. Table 4.1 shows the distribution of anomaly and background
tiles used for training and evaluating the unsupervised models. The validation set com-
prises 26% of anomaly tiles, while the test set has 31% of anomalous samples. The large
number of available anomalies in the validation and test sets enables assessing the per-
formance of models on targets with various degrees of occlusion.

Tile class Training Validation Test
Anomaly 0 791 1,349
Background 6,519 2,252 2,987
Total 6,519 3,043 4,336

Table 4.1: Distribution of anomaly and background tiles among the data set.

The performance of a model trained with a set of hyper-parameter values is evaluated
on the validation set. After the training phase, the model predicts the labels for all the
samples in the validation set, and the performance is assessed by computing the Precision,
Recall, and F1-Score metrics. For anomaly class, the Precision metric measures the
ratio of correctly classified anomaly samples among all the predicted anomaly tiles. High
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Precision indicates that the model predicts only a few background tiles as anomalies. The
Recall metric measures the ratio of classified anomaly tiles among all the actual anomaly
samples. High Recall indicates that only a small number of targets are missed by the
model. The F1-Score metric is the harmonic mean of Precision and Recall and provides
relevant information for an imbalanced data set because it better measures the incorrectly
classified cases.

The selection of the best model configuration is different for Machine Learning and Deep
Learning methods because the former techniques directly classify tiles, whereas deep mod-
els predict an anomaly score for each input tile without explicitly assigning a label.

For each feature extractor and Machine Learning classifier combination, the best configu-
ration of hyper-parameter values is selected by assessing the performance on the validation
set. Specifically, the configuration that reaches the highest F1-Score on the anomaly class
of the validation set is selected as the best model.

For the Deep Learning models, the performance obtained by the tested hyper-parameter
configurations is ranked by the Area Under Precision-Recall Curve (AUPRC) metric com-
puted on the validation set. Then, for the configuration with the highest AUPRC, a point
in the Precision-Recall Curve is selected with a good trade-off between precision and re-
call. Specifically, the point where the model obtains at least 90% recall of anomaly class
is selected. In the Search and Rescue scenario, obtaining a high recall is crucial to reduce
the chances of missing the identification of some people. At the same time, false alarms
are not extremely critical because rescuers can manually inspect the highlighted areas and
discard False Positives. The threshold corresponding to the selected point is used as the
anomaly threshold for identifying anomalies. The anomaly detection performance of the
model is finally assessed by computing the Precision, Recall, and F1-Score on the test set.

4.2. Quantitative Evaluation

Performance on the validation and test sets could be very different because they are
composed of different distributions of forest types that have different characteristics, as
discussed in Section 3.1.2. The distributions of forest types among the training, validation,
and test sets are shown in Figure 4.1. The training set contains tiles from all the forest
types, the validation set is composed only of mixed forest tiles and the test set contains
conifer and broadleaf tiles. Since the validation and test sets are composed of two disjoint
selections of forest types, the performance of a model evaluated on the two sets may be
significantly different. Despite this imbalance of forest types among the data set, it was
impossible to define a better split of images with a more balanced distribution of forest
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type, for the reasons explained in Section 3.1.2.

Figure 4.1: Distribution of forest types among tiles in the data set.

Machine Learning models
The hyper-parameter tuning of Machine Learning models is performed with a grid search
strategy on the parameter space to guide the definition of a set of experiments. When
a model relies on several parameters (high-dimensional parameter space), the adopted
strategy is to run the first series of experiments with a coarse sampling on a wide range
of values and then perform other runs with a more fine-grained sampling targeted on the
most promising range of values.

Deep Learning models
A similar approach for the definition of experiments has also been adopted for the training
of Deep Learning models. A grid search exploration of the hyper-parameter space of Deep
Learning models has been conducted.

Deep Learning models have been trained for 100 epochs using a batch size of 256 to
have a good trade-off between model generalization and GPU usage. It was possible
to use a large batch size thanks to the small dimensions of input tiles (96x96 pixels).
The initial learning rate is set to 10−4 and after 50 epochs it is reduced to 10−5 for the
remaining epochs. Data augmentation techniques have been adopted to reduce the risk
of overfitting, specifically vertical and horizontal random flips with a probability of 50%.
Other augmentations such as random rotations are not effective for this task because the
available data samples are already characterized by changes in target orientations due to
the intrinsic nature of aerial images which do not have a specific direction.
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4.2.1. Parameter Selection

In this section, a review of the influence of the parameters adopted by each method is
presented along with a discussion of the discriminating capabilities of the representation
generated by each feature extractor.

Tile size
Machine Learning models have been tested with different tile sizes to study the influence
of the variation of context given to the classifier. The tested tile sizes range from 96 to
240 pixels. The upper bound on the maximum dimension is defined by the required level
of granularity on the heatmaps that are generated for the target localization task. Using
larger tiles would result in too coarse anomaly heatmaps that would provide imprecise
localization information for identifying injured people.

One-Class SVM
One parameter, ν, has been studied for OC-SVM classifier, with values ranging from 0.05
to 0.75. Increasing the value of the ν parameter of OC-SVM allows for a greater number
of wrongly classified training samples, reducing the risk of overfitting the normal samples
while providing better generalization on new data. As can be seen in Figure 4.2, with low
values of ν the boundary tends to overfit the training set, whereas higher values provide
better generalization by defining a relaxed boundary.

Figure 4.2: Influence of the parameter ν on the OC-SVM boundary with values from 0.1
(top left) to 0.8 (bottom right). Figure taken from [64].

Lower values of ν in the range 0.05-0.1 should provide better performance because the
boundary is better fitted around the normal training data, reducing the risk of including
many anomaly samples. When the training samples have high variability and cannot
be modeled with the same distribution, OC-SVM tends to increase the ν to enclose as
much training data as possible with the drawback of including many anomaly instances.
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Obtaining the best performance using a high value of ν, confirms that the extracted
features do not accurately discriminate between normal and anomaly samples. Moreover,
using a high ν value may suggest that the feature extractor cannot model all the common
factors of variation in normal data.

Isolation Forest
Isolation Forest is mainly characterized by three parameters: the number of trees (es-
timators) in the ensemble, the subset of data used for training each estimator, and the
amount of contamination in the data set (proportion of outliers in the training set). The
tested number of estimators ranges from 100 (default value proposed in the paper [90])
to 1,000 trees but the influence on the performance is negligible. The reason is that even
a few estimators are sufficient because most instances can be easily isolated due to the
high variability in the extracted features. Estimators have been trained with a variable
number of samples from 20% to 80% of the training set but, also in this case, there is no
significant influence on the performance. For all the methods, better results are obtained
when training with 60-80% of normal samples, indicating that fewer instances are insuf-
ficient to model the normal data. This confirms that the data is characterized by high
variability in the extracted features. The contamination value controls the threshold for
the decision function when a scored instance should be classified. This parameter has a
similar effect to the ν of OC-SVM. Contamination values in the range from 1% to 50%
have been tested. Best results have been obtained with a contamination value ranging
from 5% to 20%. Higher contamination values suggest strong variability in the normal
data which induces Isolation Forest to consider many normal samples as anomalies.

Baseline: Histogram of pixel intensities
The only parameter of the baseline approach is the number of bins that compose the
quantized histogram of pixel gray-level values. Several bins between 16 and 40 have been
tested, but the effect on performance is negligible.

The tile dimension is the parameter that mostly influences the features extracted by the
baseline method. Figure 4.3.a shows the feature means (the mean heights of the bins)
of the anomaly and normal classes extracted from tiles of 240 px. The right-most bins
(brighter pixels) have higher frequencies for anomaly instances with respect to normal
samples. Therefore, the extracted features are effectively discriminating between the two
classes. On the other hand, Figure 4.3.b shows that the means of anomaly features are
more similar to the normal features when extracted from smaller tiles. The motivation is
that there is a higher chance of including many targets when using bigger tiles. Therefore,
in large tiles, the occurrences of brighter pixels (right-most bins) are much higher for
anomaly tiles with respect to background ones, mostly composed of darker pixels.
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Figure 4.3: Baseline method features: mean heights of anomaly and normal histogram
bins. Using bigger tiles (a), occurrences of brighter pixels (right-most bins) are more
frequent in anomaly (red) tiles with respect to normal (blue) samples. Using smaller tile
sizes (b), the pixel intensity occurrences are similar for both classes.

The best results with OC-SVM and IFOR are obtained with tiles of 216/240 pixels (the
maximum size tested in the experiments). When histograms are computed from smaller
tiles, OC-SVM confuses the similar pixel distributions of anomaly and normal samples,
obtaining poor results, as shown in Table 4.2. On the other hand, Isolation Forest is
less influenced by the dimension of the tiles and obtains similar results in both cases,
as shown in Table 4.3. However, with smaller tiles, the similarity between normal and
anomaly features induces Isolation Forest to mispredict some anomalies. Conversely,
with the more distinctive features extracted from bigger tiles, Isolation Forest is capable
of identifying more anomalies and increases the recall by 12%.

Tile size Bins ν Prec Rec F1
240 24 0.1 64.4% 69.8% 67.0%
96 24 0.1 56.5% 54.6% 55.6%

Table 4.2: Influence of the tile size on the results for the baseline method with OC-SVM.
Both precision and recall drop when using smaller tiles.

Tile size Bins Num
trees

Max
samp Contam Prec Rec F1

216 32 1,000 60% 5% 63.9% 80.7% 71.3%
96 32 1,000 60% 5% 69.8% 68.5% 69.2%

Table 4.3: Influence of the tile size on the results for the baseline method with Isolation
Forest. When using smaller tiles, the F1-Score is similar because the decrease in the recall
is counterbalanced by an increased precision.

The generalization capability of this baseline method is poor because the generated his-
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tograms are sensitive to changes in the intensity distributions which can vary for different
forest types. This method relies on many nearby targets captured together in larger tiles.
Consequently, performance could be much worse on another more realistic data set where
only a few targets are visible.

The results on the validation set for the best configurations of the baseline method with
OC-SVM and Isolation Forest are presented in Table 4.4.

Model Tile
size Bins ν

Num
trees

Max
samp Contam Prec Rec F1

OC-SVM 240 24 0.1 - - - 64.4% 69.8% 67.0%
IFOR 216 32 - 1,000 60% 5% 63.9% 80.7% 71.3%

Table 4.4: Best configurations of the baseline method with OC-SVM and Isolation Forest
evaluated on the validation set (results of anomaly class).

Haralick features
The Haralick method has only one parameter, the Haralick distance which determines
the neighbor pixel used to compute the co-occurrence of gray-level values. A set of ex-
periments have been performed with distance values in the range from 1 to 21. Better
results are obtained using smaller values but the influence on the performance is marginal.
Another important aspect that has been tested is the selection of the subset of the most
discriminating features. As can be seen from Figure 4.4, some features are similar for
anomaly and normal tiles, meaning that they are not relevant and can introduce noise.
Only a small subset is significantly different for the two classes and can be exploited for
the detection of anomalies.

Figure 4.4: Haralick features: means for a flight of broadleaf forest (a) and a flight of
mixed forest (b). Some features are similar for both normal (blue) and anomaly (red)
tiles. The subset of most distinctive features may change for different flights.

Table 4.5 shows that OC-SVM obtains better results when considering only the subset
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of the three most discriminating features. When adding other features, which are less
discriminating, OC-SVM gets confused by the introduced noise. On the other hand,
Isolation Forest obtains weak results when classifying the subset of the three most dis-
criminating features. The reason is that with little information about the data points,
Isolation Forest is not capable of accurately discriminating anomalies from the normal
data. Consequently, it tends to predict most of the samples as normal. However, select-
ing more features does not linearly improve the performance. Table 4.6 shows that the
best performance is obtained when using the top five features.

Tile size Dist Num
feats ν Prec Rec F1

240 1 3 0.1 51.2% 77.2% 61.6%
240 1 5 0.1 48.1% 71.3% 57.4%
240 1 13 0.1 39.5% 55.9% 46.3%

Table 4.5: Influence of the number of selected features on results for Haralick with OC-
SVM. Best results obtained with a small subset of features.

Tile size Dist Num
feats

Num
trees

Max
samp Contam Prec Rec F1

192 1 3 100 80% 5% 45.1% 20.2% 27.9%
192 1 5 100 80% 5% 72.1% 61.8% 66.6%
192 1 13 100 80% 5% 71.0% 59.4% 64.7%

Table 4.6: Influence of the number of selected features on the results for Haralick with
Isolation Forest. Best results obtained by selecting the 5 most distinctive features. With
a smaller set, the performance drastically decreases.

The main issue related to the feature selection step is that the subset of the most dis-
criminating features may change based on the flight types. As an example, Figure 4.4
shows that Haralick features computed on broadleaf and mixed forests are considerably
different. The subset of most distinctive features for a broadleaf forest is (2,3,10) whereas
for a mixed forest is (5,9,11).

The tile size parameter significantly influences the results of Haralick features. Using
larger tiles improves the performance because the global statistics are computed on a
wider area of the image containing more contextual information.

The results on the validation set for the best configurations of Haralick features with
OC-SVM and Isolation Forest are presented in Table 4.7.

Haralick features are ineffective for discriminating background tiles from anomalies be-
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Model Tile
size Dist Num

feats ν
Num
trees

Max
samp Contam Prec Rec F1

OC-SVM 240 1 3 0.3 - - - 51.2% 77.2% 61.6%
IFOR 192 1 5 - 100 80% 5% 72.1% 61.8% 66.6%

Table 4.7: Best configurations of Haralick features with OC-SVM and Isolation Forest
evaluated on the validation set (results of anomaly class).

cause the global information extracted is too generic to identify a small target in a large
tile. This is confirmed by the best configuration of OC-SVM, which requires a very high
value of ν = 0.3 to obtain the best performance, as shown in Table 4.7. The motivation
is that the high variability of normal features in the training set forces the definition of
a loose boundary that includes many anomaly samples. Isolation Forest cannot detect a
large percentage of anomalies because they have features similar to normal samples seen
in the training set. The model confusion is confirmed by the low recall of 61.8% on the
anomaly class.

SIFT BoW
The only parameters that can be tuned with the SIFT BoW technique are the maximum
number of keypoints extracted from a tile and the number of words in the vocabulary. For
the maximum number of keypoints, a range of values between 20 and 300 keypoints per
tile have been tested. This parameter does not influence the results because, on average,
a limited number of keypoints are extracted from each tile, especially on smaller ones.
Examples of detected keypoints are shown in Figure 4.5. Results with a variable number
of keypoints per tile are shown in Table 4.8.

The vocabulary size has been tested with 10 to 300 words and the best vocabulary size
is 25. Using a bigger vocabulary could lead to generating a very sparse Bag-of-Words. In
this case, due to the excessive sparsity, the classification models struggle to identify the
normality distribution, as shown in Table 4.9. On the other hand, a smaller vocabulary
does not generate discriminating features because a wide variety of keypoints with diverse
characteristics would be grouped into a small set of clusters with low intra-class similarity.
Examples of different vocabulary sizes are shown in Figure 4.6.

The results on the validation set for the best configurations of SIFT with OC-SVM and
Isolation Forest are presented in Table 4.10.

Similarly to Haralick features, OC-SVM with SIFT BoW requires a high value of ν = 0.3 to
improve the results. This indicates that the classification model cannot easily distinguish
normal and anomaly features due to the high variance of normal samples. This behavior is
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Figure 4.5: Examples of SIFT keypoints detected on background (a,b) and anomaly tiles
(c,d). Usually, a few keypoints are extracted from small tiles (a,c,d). In some cases, a
larger number of keypoints may be detected when the background is articulate (b).

confirmed by Isolation Forest which has a contamination ratio of 20%. Both models fail to
learn an accurate representation of the normality distribution which results in predicting
many normal tiles as anomalies. The result is a high recall of anomalies with a very low
precision indicating that a high ratio of False Positives is generated. Almost 50% of the
anomaly predictions are False Positives, as shown in Table 4.10.

The Bag-of-Words technique is usually adopted for supervised classification tasks where
a model learns a vocabulary composed of words representing all the available classes.
In an unsupervised setting, there is no word associated with the anomaly class but all
the clusters are computed from normal samples. Consequently, the performance is poor
because all the keypoints detected on anomaly tiles are associated with the nearest word
which, by construction, represents a cluster of normal keypoints.

LETRIST
The implemented version of LETRIST adopts the default parameter values proposed in
the original paper [143]. LETRIST introduces a step to transform the extracted features
into a scalar texture code to finally produce a histogram representation. The proposed
quantization levels were already fine-tuned by the authors and were not further investi-
gated in this work.

Differently from Haralick features, applying the feature selection step to the extracted
LETRIST features does not significantly influence the performance, as shown in Table
4.11. This is an indication that even if only a small subset of features are effectively
relevant for discriminating between normal and anomaly samples, the other features do
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Figure 4.6: Example of anomaly tile with different sizes of SIFT keypoints vocabulary.
The best results are obtained with 25 words. Fewer words generate too generic clusters
of keypoints while a bigger vocabulary leads to the generation of a sparse Bag of Words.

not introduce much noise.

The results on the validation set for the best configurations of LETRIST with OC-SVM
and Isolation Forest are presented in Table 4.12.

LETRIST features are not effective for this anomaly detection task because, similarly to
SIFT, the high recall of the anomaly class is associated with a low value of precision. This
has the effect of generating a high number of False Positives when using both OC-SVM
and Isolation Forest. With OC-SVM, there is a lot of confusion when testing on new data,
meaning that features extracted from other images are different from the ones generated
from the training set. Consequently, many normal samples are mispredicted as anomalies,
as can be seen in Table 4.12 where OC-SVM has only 56.9% of precision on the anomaly
class. In contrast, Isolation Forest considers many training samples as outliers since the
contamination is 20% and, as a result, most of the samples are predicted as anomalies.
However, also in this case, the rate of false alarms is very high, as demonstrated by a low
precision of 53.8% on the anomaly class.

HGM
The HGM feature extractor does not have any parameters to be tuned. The original
paper [138] defines the histogram descriptor with 16 bins, therefore the same value has
been adopted in this work. The key aspect of HGM is that the range of values used
to build the histogram is not defined beforehand but is derived from the maximum and
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Tile size Kps
tile

Num
words ν Prec Rec F1

96 80 25 0.3 54.3% 90.4% 67.8%
96 100 25 0.3 54.3% 90.5% 67.9%
96 200 25 0.3 54.1% 90.5% 67.7%

Table 4.8: Influence of the number of keypoints per tile on the results for SIFT with OC-
SVM. This parameter is not influential because, on average, a few keypoints are detected.

Kps
tile

Num
words ν Prec Rec F1

100 25 0.3 54.3% 90.5% 67.9%
100 50 0.3 25.9% 99.8% 41.2%

Table 4.9: Influence of the vocabulary size on the results for SIFT with OC-SVM. The
best performance is obtained with a small vocabulary.

Model Tile
size

Kps
tile

Num
words ν

Num
trees

Max
samp Contam Prec Rec F1

OC-SVM 96 100 25 0.3 - - - 54.3% 90.5% 67.9%
IFOR 96 80 25 - 100 60% 20% 54.1% 90.8% 67.8%

Table 4.10: Best configurations of SIFT with OC-SVM and Isolation Forest evaluated on
the validation set (results of anomaly class).

minimum gradient magnitudes computed from each image. This approach for building
the histogram always generates a few occurrences of the largest gradient magnitudes
because, in a grayscale image, there are statistically fewer pixels with the highest intensity.
Consequently, since a small number of pixels has the highest intensity in both normal and
anomaly tiles, few occurrences are counted by the histogram bins associated with brighter
pixels, as shown in Figure 4.7.

Therefore, the main difference between the features of normal and anomaly tiles resides in
the distribution of bins associated with darker pixels. In background tiles without targets,
the pixel intensities are typically homogeneous and the computed gradients have a smaller
range of magnitudes. Thus, the histograms generated from these tiles are characterized
by a homogeneous distribution of magnitude values among a wider set of bins, as shown
in Figure 4.7. Differently in anomaly tiles, large gradient magnitudes on the border of
the targets generate a larger range of values. Therefore background gradients, which
have lower magnitudes with respect to target gradients, are grouped in a reduced set of
histogram bins that have a higher count of occurrences, as shown in Figure 4.7.
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Tile size Num
feats

Num
trees

Max
samp Contam Prec Rec F1

96 25 1,000 60% 20% 53.8% 87.1% 66.5%
96 100 1,000 60% 20% 50.6% 84.2% 63.2%
96 200 1,000 60% 20% 49.1% 84.9% 62.3%
96 413 1,000 60% 20% 53.8% 87.1% 66.5%

Table 4.11: Influence of the number of selected features on the results for LETRIST with
Isolation Forest. Similar results are obtained independently from the subset of selected
features.

Model Tile
size ν

Num
trees

Max
samp Contam Prec Rec F1

OC-SVM 144 0.05 - - - 56.9% 71.0% 63.2%
IFOR 96 - 1,000 60% 20% 53.8% 87.1% 66.5%

Table 4.12: Best configurations of LETRIST with OC-SVM and Isolation Forest evaluated
on the validation set (results of anomaly class).

The results on the validation set for the best configurations of HGM with OC-SVM and
Isolation Forest are presented in Table 4.13.

Model Tile
size ν

Num
trees

Max
samp Contam Prec Rec F1

OC-SVM 96 0.1 - - - 74.4% 79.4% 76.8%
IFOR 96 - 400 80% 20% 70.8% 67.0% 68.8%

Table 4.13: Best configurations of HGM with OC-SVM and Isolation Forest evaluated on
the validation set (results of anomaly class).

The best OC-SVM configuration has a low value of ν = 0.1, indicating that the normal
samples can be accurately enclosed inside the boundary. On the other hand, Isolation
Forest uses high contamination of 20%, indicating that many normal features are isolated
from the main distribution.

Deep SVDD
Deep SVDD with soft-boundary objective has been tested with different values of ν in
the range [0.05, 0.3]. The best performance is obtained with ν = 0.2, while with lower or
higher values the AUPRC metric decreases, as shown in Table 4.14.

The ν parameter controls the trade-off between the volume of the sphere and the number of
points mapped outside the boundary. Similarly to OC-SVM, obtaining high performance
with a lower ν means that the model is able to tighten the boundary (a hypersphere,
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Figure 4.7: HGM features: mean occurrences of gradient magnitudes for anomaly (red)
and normal (blue) tiles. The main difference between the two classes resides in the bins
that count the smaller values of magnitudes (left-most bins).

Tile size ν AUPRC
96 0.1 83.47%
96 0.15 83.63%
96 0.2 83.85%
96 0.25 83.75%
96 0.3 83.66%

Table 4.14: Influence of the parameter ν of Deep SVDD with soft-boundary objective on
the AUPRC metric. Best results obtained with a value of ν = 0.2.

in the case of Deep SVDD) around the normal distribution. The optimal configuration
identified from the experiments has a relatively high value indicating that many instances
of the training set are considered anomalies and thus are mapped outside the boundary.
The reason for this behavior is that the encoder cannot learn an accurate representation of
normal samples and tends to map many instances in the latent space far from the center
of the sphere. By learning a hypersphere that excludes a portion of the normal samples,
the recall on the anomaly class is very high, 85.2%, because there is a high probability for
an anomaly to be mapped outside of the sphere. Table 4.15 shows that the precision on
anomaly class obtained by Deep SVDD is only 56.4%, indicating that many false alarms
may be triggered since many normal samples are mispredicted as anomalies.

Deep SVDD with one-class objective does not have any parameter to be tuned, such as
soft-boundary, because it minimizes the distance of every training sample to a central
point in the representation space. Therefore, since a hypersphere is not defined such as
with soft-boundary, an anomaly score based on the distance from the center is computed
without effectively predicting a label. The anomaly threshold is defined by choosing a



4| Evaluation 81

Objective Tile
size ν Prec Rec F1

soft-boundary 96 0.2 56.4% 85.2% 67.8%
one-class 96 - 69.2% 80.0% 74.2%

Table 4.15: Best configurations of Deep SVDD evaluated on the validation set (results of
anomaly class).

point on the Precision-Recall Curve computed on the validation set.

Given the Precision-Recall Curve for the one-class objective in Figure 4.8, it is clear that
choosing a recall above 90% (which should the target recall for the use case of this work)
is not feasible. Selecting this target recall (red point in Figure 4.8), the corresponding
precision would be below 50% obtaining a False Positives Rate that would be excessively
high. Consequently, choosing a lower recall but obtaining a higher precision is preferable
and it is an effective solution to limit the False Positives Rate.

Figure 4.8: Precision-Recall Curve of the best Deep SVDD configuration with one-class
objective. Selecting 90% recall would lead to very low precision (red point). Reducing the
recall to 80% allows obtaining a precision of 70% (green point).

The trade-off is chosen by decreasing the recall value down to 80% (green point in Figure
4.8) and gaining 20% of precision which goes up to 70%. The chosen lower recall corre-
sponds to an increment in the False Negatives Rate. For this reason, this is the minimum
acceptable recall value in the use case of Search and Rescue missions because otherwise
too many targets would be potentially missed.

The best results obtained with one-class objective are shown in Table 4.15.
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Deep SAD
Deep SAD has three parameters to be fine-tuned which are the ratio of labeled normal sam-
ples (ratio_known_normal), the ratio of labeled anomaly samples (ratio_known_anomaly),
and the parameter η which defines the weight between the labeled and the unlabeled terms
in the loss function.

By increasing the η parameter, more weight is given to the subset of labeled samples
composed of both anomaly samples and a number of normal samples defined by ra-
tio_known_normal. If η is greater than 1, the set of labeled normal samples has a
larger weight than the rest of the unlabeled normal instances. Consequently, Deep SAD
tends to define a boundary that better fits the subset of labeled normal instances. A
set of experiments with a value of ratio_known_normal in the range [0%, 100%] has
been performed. In Figure 4.9.a, fixing η = 25 and training without anomalies, the best
results are obtained when all the normal samples have the same weight which are the
edge cases of all normal unlabeled (ratio_known_normal = 0%) and all normal labeled
(ratio_known_normal = 100%). By labeling only 25% of the samples, performance
decreases because the model is overfitting the subset of labeled samples while the rest of
the training set, having a lower weight, has less influence on the loss.

Figure 4.9: Effect of the number of labeled normal samples on Deep SAD training.
AUPRC with η = 25 and 0% anomalies (a): best results obtained with all normal unla-
beled (ratio_known_normal = 0%) and all normal labeled (ratio_known_normal =

100%) because all normal samples have equal weight. AUPRC with η = 25

and 10% anomalies (b): best results obtained with all normal data unlabeled
(ratio_known_normal = 0%) because anomaly samples have a higher weight with re-
spect to normal samples.

The difference between having every normal sample labeled or all training set unlabeled
is relevant when a set of anomaly instances is introduced in the training set as depicted in



4| Evaluation 83

Figure 4.9.b with η = 25 and 10% of anomalies. When the training set is composed of 90%
labeled normal data and 10% labeled anomaly samples (ratio_known_normal = 90%,
ratio_known_anomaly = 10%), the η parameter is not effective because both normal
and anomaly data have the same weight on the loss. In this scenario, it is not possible
to assign a higher weight to anomaly instances with respect to normal data. On the
other hand, when all normal samples are unlabeled (ratio_known_normal = 0%), the
η parameter can be used to assign higher importance to the labeled anomaly samples
suggesting to Deep SAD which areas of the latent space contain anomaly instances and
therefore should be excluded from the hypersphere.

By increasing the value of η, anomaly samples have a greater influence on the loss which
improves performance because normal samples are densely mapped in the latent space
near the center c of the hypersphere. Values of η in the range [0.1, 50] have been tested
but better results are obtained with values greater than 1. As seen in Figure 4.10, in-
creasing the value of η improves the results until η = 25 and, above this value, the gain
in performance is marginal.

Figure 4.10: Effect of the parameter η on Deep SAD training. AUPRC with all unlabeled
normal samples and 5% anomalies: increasing the value of η improves the performance
until η = 25.

The main reason for the strong performance of Deep SAD is the ability to exploit some
anomaly samples during the training phase without relying on supervised techniques.
Indeed this model can learn useful features of anomaly data only from a small number
of instances because the main objective is still to enclose all the normal training sam-
ples inside a sphere of minimum volume. When Deep SAD is trained without anomalies
(ratio_known_anomaly = 0%), the performance is similar to Deep SVDD. This result
is in line with the expectations since the models share the same architecture and, when
only normal samples are used for training, Deep SVDD and Deep SAD have similar loss
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functions. During the training of Deep SAD, anomalies are used to better fit the sphere
around normal data forcing it to exclude the available anomaly examples. Values of ra-
tio_known_anomaly in the range [1%, 20%] have been tested. As can be seen from Figure
4.11, introducing a small number of anomaly instances in the training set, strongly im-
proves the anomaly detection capability with respect to unsupervised techniques. Adding
more than 5% of anomaly data in the training set does not significantly increase the
performance.

Figure 4.11: Effect of the number of anomaly samples on Deep SAD training. AUPRC
with η = 25 and all unlabeled normal samples: introducing anomaly instances in the
training set significantly improves the performance. Adding more than 5% of anomaly
samples does have relevant benefits.

The configuration which obtains the best performance on the validation set is presented
in Table 4.16.

Known
normal

Known
anomaly

Tile
size η Prec Rec F1

0% 5% 96 25 93.7% 90.0% 91.8%

Table 4.16: Best configuration of Deep SAD evaluated on the validation set (results of
anomaly class).

The best configuration is trained only with unlabeled normal data and exploits only 5%
of anomaly samples in the training set which correspond to 343 tiles containing targets.
Obtaining this amount of anomaly samples is feasible by performing a small number of
data collection flights.

However, when lowering the number of anomaly data in the training set from 5% to 1%,
the performance on the test set is worse. Especially the recall of anomaly class becomes
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significantly lower, as shown in Table 4.17. This result indicates that by training on
fewer anomaly samples, the model is still capable of learning a good representation of
normal data but the anomalies are not enough to accurately learn the separation between
normal and anomaly data. The motivation for this result is that the learned hypersphere
includes many anomaly areas of the latent space leading to mispredicting many anomalous
instances as normal.

Known
normal

Known
anomaly

Tile
size η Prec Rec F1

0% 1% 96 25 99.3% 77.9% 87.3%
0% 5% 96 25 95.4% 90.0% 92.6%

Table 4.17: Influence of the parameter ratio_known_anomaly of Deep SAD on the results
of the test set (anomaly class). Worse performance is obtained by reducing the number
of anomalies in the training set from 5% to 1%.

4.2.2. Methods Comparison

Deep SAD outperforms all the other analyzed methods both in terms of precision and
recall metrics, as shown in Figure 4.12, proving that leveraging the information of a few
anomalous samples enables learning high-level features that better separate anomalies
from the normality distribution. On the other hand, Deep SVDD with both objectives
(blue and pink crosses in Figure 4.12) have performance on the test set that is similar
to the results obtained by Machine Learning models. The main advantage of this deep
model, especially with one-class objective (blue cross in Figure 4.12), is the balance
between precision and recall values whereas other Machine Learning techniques usually
obtain high values for a metric but low value on the other. For example, HGM with
Isolation Forest (orange pentagon in Figure 4.12) has higher precision than Deep SVDD
but a lower recall, while SIFT with both classifiers (red and brown triangles in Figure
4.12) obtains a very high recall which is however paired with the lowest precision among
all the methods.

The performance of Machine Learning methods is mainly dependent on the discriminating
power of the extracted textural features. Haralick features (blue and yellow downward
triangles in Figure 4.12), the baseline and LETRIST with OC-SVM (respectively the light
blue plus and green circle in Figure 4.12) have weak performance on the test set due to low
values both in precision and recall on the anomaly class. The poor performance indicates
that these models make a lot of confusion between background and anomaly tiles meaning
that they would generate many false alarms while missing a high percentage of targets.
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Figure 4.12: Precision and Recall values on the anomaly class of the test set for the
best configuration of all the models. Deep SAD (purple diamond) outperforms the other
methods both in precision and recall.

Table 4.18 shows the performance obtained by the various combinations of textural fea-
ture extractors and Machine Learning classifiers along with the Deep Learning models.
The Precision, Recall, and F1-Score are reported separately for the anomaly and nor-
mal (background) classes. For each method, also the tile size of the best configuration
is reported to give an indication of the level of granularity that can be obtained when
generating anomaly heatmaps. Deep Learning models, despite relying on a simple LeNet-
type architecture, have better performance than traditional Machine Learning methods
accordingly to the F1-Score on anomaly class, as shown in Table 4.18. Only HGM with
Isolation Forest obtains a higher F1-Score (73.5%) than Deep SVDD but it is limited by
a lower recall (62.9%) indicating that many targets are missed.

Methods such as SIFT with both classifier and LETRIST with Isolation Forest, have
a high value of recall (85-86% for SIFT and 78% for LETRIST) but a low precision
below 50%. These models are not able to correctly discriminate between background and
anomaly tiles and, despite being able to identify many targets, they would generate a high
number of False Positives. Due to the high number of False Positives that are generated,
these models should be avoided for the use case of rescue missions because the extremely
high number of false alarms would not help rescuers focus their attention only on the
most important areas of the images.

Machine Learning models and Deep SVDD have worse performance on the test set with
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Model Tile
size

Test set, anomaly Test set, background
Precision Recall F1 Precision Recall F1

Baseline, OC-SVM 240 61.3% 53.5% 57.2% 80.2% 84.8% 82.4%
Baseline, IFOR 216 56.8% 76.3% 65.1% 87.3% 73.8% 80.0%
Haralick, OC-SVM 240 47.6% 63.8% 54.5% 80.7% 68.3% 74.0%
Haralick, IFOR 192 69.8% 55.6% 61.9% 81.6% 89.1% 85.2%
SIFT BoW, OC-SVM 96 43.3% 85.0% 57.4% 88.0% 49.7% 63.6%
SIFT BoW, IFOR 96 43.5% 86.4% 57.8% 88.9% 49.2% 63.4%
LETRIST, OC-SVM 144 49.9% 56.5% 53.0% 92.4% 90.3% 91.3%
LETRIST, IFOR 96 43.7% 78.4% 56.1% 84.8% 54.3% 66.2%
HGM, OC-SVM 96 54.6% 73.0% 62.5% 85.6% 72.6% 78.6%
HGM, IFOR 96 88.4% 62.9% 73.5% 85.2% 96.3% 90.4%
DSVDD one-class 96 73.2% 70.6% 71.9% 87.0% 88.3% 87.6%
DSVDD soft-bound 96 64.2% 79.1% 70.9% 89.5% 80.1% 84.5%
Deep SAD 96 95.4% 90.0% 92.6% 95.6% 98.1% 96.8%

Table 4.18: Evaluation results on the test set for all the models. Metrics are computed
separately for the background and anomaly classes. The tile size of the best configuration
is indicated for each model.

respect to the results obtained on the validation set. The only exception is HGM with
Isolation Forest which gains 5% of F1-Score when evaluated on the test set. The reason,
valid for both different behaviors, resides in the different distributions of forest types in
the validation and test sets, as explained in Section 4.2. Machine Learning models are
not powerful enough to extract features that can be generalized on different forest types
characterized by diverse visual appearances. Instead, Deep SVDD despite being capable
of learning a better representation of normal data, may suffer from the existing knowledge
of the pre-trained feature encoder. On the other hand, Deep SAD, which shares the same
architecture as Deep SVDD, obtains similar performance when evaluated on validation
and test sets. This proves the capability of this model to learn high-level features that
can be generalized on other forests with different textural characteristics.

Finally, Deep SAD demonstrates that the semi-supervised setting allows for significant
improvements in anomaly detection performance despite the model being trained with few
examples of targets. When fewer anomaly samples are available for training, the results
are slightly worse because the anomaly instances are insufficient for the model to learn a
good separation between background and anomaly tiles.

A detailed analysis of the anomaly detection performance based on the number of targets
visible in a tile has been performed using the model evaluation framework called ODIN
[152]. For each tile, a meta-annotation is computed to indicate the number of targets that
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are (at least partially) visible. Then, ODIN allows disaggregating the evaluation metrics
individually for each value of the meta-annotation. The following analysis reports the
recall of anomaly class at the variation of the number of visible targets.

Regarding the amount of context captured by a tile, except for the baseline method and
Haralick features, all the other Machine Learning methods obtain better results when
processing smaller tiles. SIFT, LETRIST, and HGM are local feature extractors and,
therefore, these methods can extract a representation that better captures the target
features when the surrounding context is reduced. The reason is that with smaller tiles,
the extracted local features are not dominated by large background areas but the targets
have a higher influence.

Conversely, the baseline method and Haralick features compute global statistics over the
entire input data. These methods have lower recall when few targets are visible in a large
tile because background pixels dominate the distribution of intensities, as seen in Figure
4.13.

Figure 4.13: Recall on anomaly class for baseline method and Haralick features in relation
to the number of targets (bboxes) in a tile of 240 px. On the right, the distribution of
targets per tile in the test set.

Using bigger tiles, there is a higher probability that many targets are included in the
same tile, therefore the influence of target pixels in the global statistics becomes more
relevant. Figure 4.13 shows that a high recall is obtained when there are 5 or more visible
targets which, for tiles of 240 px, represents the 29% of the anomaly tiles in the test set.
Conversely, less than 6% of tiles with a size of 96 px capture more than two targets, as
shown in Figure 4.14. The improved performance when many targets are visible motivates
the best results obtained by these methods on larger tiles.

For Deep SAD, Deep SVDD (soft-boundary objective) and HGM with Isolation Forest, the
influence on the anomaly detection performance caused by the number of visible targets
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has been analyzed. Deep SAD and HGM obtain consistent recall independently from
the number of targets visible on a tile, as shown in Figure 4.14. HGM can detect only
60-70% of anomaly targets in all the cases, confirming that this model could potentially
miss many people, especially when only a person is visible on a tile (60% recall).

Figure 4.14: Recall on anomaly class for the top three methods (Deep SAD, Deep SVDD
soft-boundary, HGM) in relation to the number of targets (bboxes) in a tile of 96 px. On
the right, the distribution of targets per tile in the test set.

Deep SVDD loses 12% recall on tiles with a single target compared to the case when 2-3
targets are visible. Since 72% of the test set is composed of tiles with only one target, this
is the main performance bottleneck of Deep SVDD. The reason is that tiles containing
two or more targets have a higher likelihood of being different from normal samples and
being mapped far from the hypersphere in the latent space. The higher distance from the
sphere center allows Deep SVDD to accurately detect the presence of an anomaly. All the
tiles containing 4 or more targets are correctly detected both by Deep SVDD and Deep
SAD. However, this result is not relevant in the global anomaly detection performance
because it represents only 0.4% of the test set. Moreover, during a real rescue mission, it
is very unlikely that a large number of nearby people are visible from the same image.

When small tiles of 96x96 px are used, 94.2% of tiles in the test set contain only one or
two targets, as shown by the distribution in Figure 4.14. Especially Deep SAD, being
trained with anomaly examples, is able to detect 88% of the tiles that contain a single
target. Therefore, the major influence on anomaly detection performance depends on the
capability of a model to correctly identify the tiles that contain only a single target, since
this case represents 72% of the test set.

Obtaining high recall when a single target is visible on a tile is a promising result because,
in a real mission, the majority of anomaly tiles would contain only a single person. The
motivation is that in most rescue scenarios, only a few people get lost or injured and they
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might not be all visible from a single image when they are not very close to each other. In
these scenarios, Deep SAD which is capable of correctly identifying most of the anomaly
tiles that contain a single target reduces the risk of missing some people.

4.3. Qualitative Evaluation

After the quantitative evaluation, a visual inspection of the performance has been con-
ducted. Firstly, some examples of tile predictions are analyzed to discuss the possible
sources of confusion for the various methods. Then, the anomaly heatmaps on a set of
images with targets and a set of background images are generated to further inspect the
anomaly detection performance of the tested models.

Only the top three methods, ranked by the F1-Score on the test set, are selected for the
prediction analysis. These methods are Deep SAD, Deep SVDD, and HGM with Isolation
Forest which has the highest F1-Score among Machine Learning models. For Deep SVDD,
the variant with soft-boundary objective is chosen because it has a 9% higher recall with
respect to one-class objective despite having the same value of F1-Score.

Firstly, some examples of False Negatives, False Positives, and True Positives predicted
by all three chosen models are presented. Then, a set of targets identified only by Deep
SAD, and missed by the other two models, are shown to prove the advantages that a
semi-supervised setting provides over unsupervised techniques.

Figure 4.15 shows examples of False Negatives, which are targets missed by all the
top three models. The identification of some targets, such as examples in Figure 4.15
(B,D,E,G), is challenging even for a human operator that might confuse them as tree
foliage. Other examples, such as in Figure 4.15 (A,C,F,H,I), are clearly visible to the
human eye but still also the best model (Deep SAD) predicts them as background. Espe-
cially the example in Figure 4.15 (J) contains two large non-occluded targets but all the
models confuse it as background. The reason for these mispredictions could be that the
models confuse these targets with similar shapes of tree branches seen during training.
To overcome this issue, a more discriminative representation should be learned to better
differentiate these anomaly instances from the distribution of background tiles.

Figure 4.16 shows examples of False Positives, which are background tiles confused as
anomalies. Some examples, especially in Figure 4.16 (A,C,D,E), contain textures that may
resemble the shapes of a human body partially occluded. However, these brighter areas
depict tree branches warmed by sunlight that models confuse as targets. An interesting
example of model confusion is Figure 4.16 (B) which is composed of dark homogeneous
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Figure 4.15: Examples of False Negatives by all the top three methods. These anomaly
tiles are wrongly classified as background. During a real mission, these targets would be
missed. The green boxes enclose the targets.

background but still is classified as an anomaly. The motivation for this error is in the
nature of the anomaly detection task. The analyzed models do not learn how to recognize
specific shapes or textures associated with the target class but, instead, learn how to
model the background data and detect any sample that does not belong to the normality
distribution. The empty tile in Figure 4.16 (B) may be characterized by a set of features
that are sufficiently distant from the normal distribution and thus the models mispredict
it as being an anomaly.

Figure 4.16: Examples of False Positives by all the top three methods. These background
tiles are wrongly classified as anomalies. During a real mission, these mispredictions would
trigger false alarms that should be manually filtered by rescuers.

Figure 4.17 shows examples of True Positives. Some cases are easily identifiable also
by the human eye, such as cases in Figure 4.17 (B,G,H,I). Other examples, such as in
Figure 4.17 (E,J), have a higher degree of occlusions that could induce a rescuer to miss
the targets or confuse them with the tree foliage. Finally, examples such as in Figure
4.17 (A,C,D,F), demonstrate the power of an anomaly detection model over supervised
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techniques. These tiles contain targets that are only visible in a few pixels but still, all
the models are able to correctly detect the presence of an entity that does not belong to
the background. In these cases, supervised models trained to recognize specific features
and shapes of a person could miss these instances because they do not resemble the usual
aspect of samples learned during training.

Figure 4.17: Examples of True Positives by all the top three methods. The targets are
correctly identified by all the methods despite some instances being visible only for a small
fraction (A,C,D,F). The green boxes enclose the targets.

Finally, Figure 4.18 shows some anomaly tiles correctly detected by Deep SAD but missed
by the other two models, Deep SVDD and HGM. In some samples, such as Figure 4.18
(A,C,F,H), targets are visible to the human eye but still, some models cannot identify
them. The reason is that the features extracted are not discriminative enough to differ-
entiate those anomalies from background data. Examples in Figure 4.18 (B,D) can be
confused with the tree foliage by a rescuer but Deep SAD can identify some characteriz-
ing features that indicate the presence of a target. Finally, examples such as Figure 4.18
(E,G,I,J), contain weakly visible targets confused with background by HGM and Deep
SVDD. In these cases, Deep SAD can detect the strongly occluded targets thanks to
the accurate representation learned from both normal and anomaly tiles during training.
These results prove that only with a few examples of anomaly data available during the
training process, the model can learn more discriminating features that improve the ability
to detect weakly visible targets which are instead confused as background by unsupervised
methods.

Finally, the anomaly heatmaps for a set of test images are generated for all the imple-
mented models. Each heatmap is generated by combining the predictions of all the tiles
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Figure 4.18: Examples of tiles correctly classified as anomalies by Deep SAD but wrongly
predicted as background by Deep SVDD and HGM. Deep SAD can identify more difficult
targets with respect to the other two methods. The green boxes enclose the targets.

extracted from an image. The tiles are extracted using a sliding window with a size de-
fined by each model. The stride is fixed at 25% of the tile size to obtain a fine-grained
heatmap thanks to the overlapping of neighboring tiles. Each tile predicted as an anomaly
is assigned a weight equal to +1 (to all its pixels), while tiles predicted as background
have a negative weight of -1 (to all the pixels). The weighted sum of the predictions is
computed where tiles are overlapping. Using this approach, also tiles predicted as normal
are considered to limit the influence of False Positives. For example, if a background
tile is misclassified as an anomaly (False Positive), but the nearby tiles are correctly pre-
dicted as normal, the False Positive is canceled out in the weighted sum by the correct
predictions of the neighboring tiles. After the computation, all the negative weights are
discarded and each pixel is characterized by an anomaly score that is higher if many tiles
that contain that pixel are classified as an anomaly.

Figure 4.19 shows examples of heatmaps generated on 5 images with targets. The baseline
method and Haralick use tiles respectively of 216 px and 192 px that generate coarse
heatmaps. The other methods, with tiles of 96 px, enable more accurate localization
of the identified targets thanks to the generation of a fine-grained heatmap. Haralick
and SIFT often confuse the background areas containing brighter tree foliage warmed by
sunlight as being anomalies. In particular, SIFT performs well when the background is
homogeneous, but when warmer trees are present, this model tends to incorrectly classify
many background areas. HGM, which is the best technique among Machine Learning
models, generates anomaly heatmaps that are very similar to the maps generated by



94 4| Evaluation

Deep SAD. However in Figure 4.19 (E), Deep SAD is able to identify all the 5 targets,
while HGM misses the central one. Deep SVDD has similar results to HGM and Deep
SAD but, in general, can confuse a wider range of tiles, as the example in Figure 4.19
(A).

Figure 4.20 shows examples of heatmaps generated on 5 background images. The Haralick
method is the worst model on background images because it mispredicts many background
areas. This method often confuses the presence of warmer trees with anomalies as shown
in Figure 4.20 (H,I). Other models, such as the baseline method, SIFT, LETRIST, and
Deep SVDD, correctly predict many tiles but still can get confused by some branches with
a visual appearance that resembles target shapes, as the examples in Figure 4.20 (F,G,I)
show. HGM and Deep SAD have the best performance even on background tiles since
they are rarely confused and correctly predict most of the background tiles. Particularly
Deep SAD, in the proposed examples, misclassifies only a few tiles in Figure 4.20 (F),
while in all the other background images, it correctly does not detect any anomaly.
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Figure 4.19: Anomaly heatmaps generated on 5 images with targets (green boxes).
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Figure 4.20: Anomaly heatmaps generated on 5 background images.
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This thesis addresses the problem of people detection from drone imagery in a Search and
Rescue scenario as an anomaly detection task. This approach implies that models are
trained mostly with background images.

First, an extensive review of the state-of-the-art techniques for anomaly detection in
images has been conducted to identify the most promising methods that could be applied
to the use case under study. Then, an anomaly detection pipeline has been proposed to
extract smaller overlapping tiles from an image that are individually classified. Each tile
is labeled as an anomaly if the model detects traces of a person that does not belong to
the forest background.

The models have been trained and evaluated using a publicly available data set that
simulates Search and Rescue missions in forest scenarios [130]. The original data set has
been preprocessed, as described in Section 3.1.1, to filter redundant images and clean
noise from the ground truth. However, the data set still presents some inherent issues
that cannot be addressed and therefore must be taken into consideration when evaluating
the anomaly detection models. These issues have been extensively discussed in Section
3.1.3.

The major bias of the data set is the placement of many nearby people on the ground that
are captured from the same image. This scenario is not representative of a realistic mission
because usually only a few people can be seen in an image during a rescue operation.
When many targets are visible in a tile, models have higher chances of identifying at
least one person and correctly predicting the tile as an anomaly. During the performance
assessment, this aspect has been accurately analyzed to study the effectiveness of the
implemented models at the variation of the number of visible people.

Several combinations of feature extractors and Machine Learning classifiers have been
tested. For each technique, the influence of the parameters on the results has been ac-
curately studied to determine the configuration that obtains the best performance. Two
Deep Learning models for anomaly detection have been tested obtaining a higher per-
formance with respect to shallow Machine Learning models. Especially Deep SAD [122],
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which is trained in a semi-supervised setting, leverages a limited number of anomaly sam-
ples during training to accurately define the separation between background tiles and
normal tiles. This strategy allows Deep SAD to outperform all the other implemented
techniques both in terms of precision and recall on anomaly class.

This result proves that Deep Learning models are more powerful than Machine Learning
techniques and, moreover, the end-to-end training of deep models enables the learning
of features that are specifically fine-tuned for the anomaly detection task. Moreover, it
demonstrates that the availability of a few anomaly examples during training can signifi-
cantly improve anomaly detection performance.

A quantitative and qualitative evaluation of the implemented models has been performed
to compare the results of all the techniques. The ODIN evaluation framework [152] has
been exploited to inspect the results based on the number of targets visible in a tile.
The predictions of the models have also been visually analyzed to better understand the
strengths and weaknesses of the implemented techniques.

In conclusion, Deep SAD is able to achieve 92.6% F1-Score on the anomaly class. This
result is characterized by a high recall which indicates that only a few targets might be
missed during a real rescue operation. Furthermore, during a real mission, the model is
not required to correctly identify the targets from every frame but it should be able to
detect the presence of a person in at least one image to alert the rescue team. Therefore,
the likelihood of localizing all the injured people in the scene is higher because targets
may be visible from at least one frame, thanks to the variability of the ground occlusion
that changes from different viewpoints. The results are very promising and prove that
approaching the problem with an anomaly detection task is suitable for the detection of
people from drone imagery in a Search and Rescue mission.

Despite the high performance obtained with the best model, a lot of directions can be
explored to further improve the results. Future work will concentrate on:

• Realistic Data Set: the data set used for training and evaluation of the tested
models has some intrinsic biases, discussed in Section 3.1.3, that prevent accurate
estimation of the model performance during rescue operations. Building a data
set composed of images captured during real missions could improve the results by
allowing proper training of the models on realistic data.

• RGB Images: this thesis has been focused on detecting people from thermal im-
ages since the RGB frames in the available data set rarely contain visible people.
However, color cameras are often used during rescue operations performed in day-
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light conditions. Collecting a larger amount of target samples captured with a color
camera could enable the training of the proposed models on RGB images. Results
could improve since color images may contain more information with respect to
grayscale thermal images.

• Deep SAD Encoder: Deep SAD has been tested using a simple LeNet-style en-
coder [83] that in the literature has been outperformed by other more powerful
models. The current Deep SAD encoder could be replaced with models such as
ResNet [53], VGG [142], AlexNet [73] that are characterized by a deeper architec-
ture. However, these more complex networks are defined by a larger number of
parameters that could negatively impact the real-time performance required for fast
victim localization.

• Deep Learning Architectures: the tested deep models, Deep SVDD and Deep
SAD, share a similar architecture. Therefore, totally different architectures could
be tested to study the results of different approaches. Other deep anomaly models
such as AnoGAN [132], GANomaly [4], and FCDD [92] may be implemented that
are able to perform anomaly localization directly on the entire image. Consequently,
the complexity of generating a set of tiles from each image could be removed.
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