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Abstract

This thesis approaches the problem of blood donations, that is relevant to the health system,

with Bayesian statistical modeling. The work focuses on the prediction of the number of dona-

tions in a blood collection centre. The data we have analyzed were registrered by Associazione

Volontari Italiani Sangue (AVIS), in particular by the section of Lambrate in Milan. Blood

donations are modeled as recurrent events under the Bayesian approach. Starting from the

work previously done on this topic by Gianoli (2016) and Spinelli (2019), the thesis proposes

a Bayesian model, suitably parameterized, of the intensity function of the process of recurrent

events of blood donations (i.e., the instantaneous probability of the donation event occurrence);

it depends on both time-dependent or time-fixed covariates (representing individual donor fea-

tures) and on individual random frailties, that model the mean random heterogeneity among

donors. The analysis highlights a decreasing trend of the baseline intensity function and iden-

tifies the significant covariates that influence the intensity function and hence determine the

donors personal propensity to donate. Bayesian inference is promising, and the model could

help to plan short, medium and long-term blood donations and to profile blood donors.
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Sommario

Questa tesi affronta il problema delle donazioni di sangue, rilevante per il sistema sanitario,

con la modellazione statistica bayesiana. Il lavoro è incentrato sulla previsione del numero

di donazioni in un centro di raccolta del sangue. I dati analizzati sono stati estratti da due

banche dati dell’Associazione Volontari Italiani Sangue (AVIS), in particolare dalla sezione di

Lambrate di Milano. Le donazioni di sangue sono modellizzate come eventi ricorrenti tramite

un approccio bayesiano. Partendo dal lavoro precedentemente svolto su questo tema da Gianoli

(2016) e Spinelli (2019), la tesi propone un modello bayesiano, adeguatamente parametrizzato,

della funzione di intensità del processo degli eventi ricorrenti delle donazioni di sangue (cioè la

probabilità istantanea dell’accadimento della donazione); essa dipende sia da covariate tempo-

dipendenti o fisse nel tempo (che rappresentano caratteristiche individuali del donatore) sia da

effetti aleatori individuali (random frailties) che rappresentano l’eterogeneità non misurabile fra

donatori. L’analisi evidenzia un andamento decrescente della funzione di intensità di base e

identifica le covariate significative che influenzano la funzione di intensità e quindi determinano

la propensione personale dei donatori a donare. I risultati ottenuti sono promettenti sull’utilizzo

del modello allo scopo di pianificare le donazioni di sangue a breve, medio e lungo termine e di

profilare i donatori di sangue.
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Introduction

Human blood is needed to save lives, to improve their quality and to extend their lengths. It

is essential in first aids, in emergency services, in organ transplants and much else. In Italy the

acquisition of blood products relies on voluntary donations. The major organization in Italy

that collects volunteer blood donors is Associazione Volontari Italiani Sangue (AVIS), founded

in Milan in 1927. Today, thanks to its associates, it manages to ensure about 80% of the

national blood needs. Overall, AVIS can count on over one million of members, who each year

contribute to the collection of over two milions units of blood and its derivatives. AVIS is present

throughout the country with over 3400 locations (19 locations of them founded in Switzerland

by Italian emigrants in the Sixties).

The blood donation supply chain can be divided in four phases: collection, transportation,

storage and utilization. In the collection phase, donor’s eligibility to donate is checked and, if

the donation occurred, blood is screened in laboratory to prevent infectious diseases and it is

possibly fractionated in sub-components. Afterwards it is transported and stored to hospitals or

transfusions centers. Finally, it is used for a transfusion. Collection is one of the most important

phases of the blood donation supply chain. Blood has a shelf life and the demand of hospitals

and transfusions centres has to be covered with the maximum precision, to avoid wastage of this

resource. The storage should be planned to keep constant the number of blood units of each

type across days in every centre. Moreover knowing in advance the number of incoming donors

can lead to an optimal planning of the appointment scheduling system and of the amount of staff

needed in a given period (next week, next month and so on). Another key aspect is profiling,

which consists in carrying out effective acquisition campaigns of new donors.

The models studied in this thesis belong to the Bayesian statistics and a recurrent event

approach is adopted. Blood donation event over time are modelled, with both time-dependent

and not only time-fixed covariates as in Spinelli (2019); previously Gianoli (2016) modelled the

waiting times between two successive blood donations.

Thanks to improvements of the performances of computing systems and to the spread of

Markov Chain Monte Carlo (MCMC) methods, the Bayesian approach is spreading in the scien-

ix



tific world: probabilistic estimates are exact, because they do not rely on a large sample theory

and some tools like interval estimates have a clear meaning. Moreover, the Bayesian paradigm

offers a natural way to do forecasting, by means of the predictive distributions. Apart from

Gianoli (2016) and Spinelli (2019), in all the publications frequentist methods have been used,

while the Bayesian approach is largely unexplored.

This work deals with real data provided by the AVIS section of Lambrate, in Milan and its

original contribution is the proposal of a Bayesian model –suitable parameterized– for the blood

donation event intensity function, with random frailties and time-dependent covariates. That

model aims to explain the blood donor behaviour since his/her first donation, using his/her

individual features, included in the model as covariates. It can also be used for purpose of

planning blood donations in short, medium and long terms and of profiling blood donors.

The topics developed in the thesis are organized as follows. Chapter 1 is devoted to the the-

oretical background: it contains a general overview of recurrent event processes, some essential

notes on the Bayesian approach and the Monte Carlo Markov Chains and a brief research on

the state of the art of Bayesian model of recurrent events. Chapter 2 describes the raw data,

downloaded from two databases in the AVIS’ server using SQL queries, and their pre-processing.

Then missing values’ imputation is shown in Chapter 3. As a result a dataset of the times of do-

nations and personal features of 5937 individuals has been created. In Chapter 4 three different

Bayesian models of recurrent events for blood donations are formulated and described in details.

Chapter 5 presents the posterior inference analysis, derived in the form of MCMC sampling via

Stan, a C++ open source software that provides MCMC output; in particular it contains: the

model selection based on the Bayesian criteria discussed in Chapter 1, the posterior estimation

of the selected model’s parameters (along with some comments on them), and the robustness

analysis. In Chapter 6 AVIS’ needs are exploited, with a focus on the key aspects of planning

and profiling. The last chapter concludes with a summary of the main points of the thesis.



Chapter 1

Theoretical background

Event history analysis is a statistical methodology used in many different settings where one is

interested in the occurrence of events. Event histories are not restricted to humans. A sequence

of events could also happen to animals, plants, cells and in general to anything that changes,

develops, or decays. The purpose of this chapter is introducing some basic concepts and ideas in

event history analysis. Most of the material here refers to Cook and Lawless (2007) and Song

and Kuo (2013).

1.1 General overview of recurring events

Let us consider a single recurrent event process starting for simplicity at time T1 = 0 and let

0 = T1 < T2 < T3 < . . . denote the events’ times, where Tk is the time of k-th event. The

associated counting process {N(t), 0 ≤ t} records the cumulative number of events generated

by the process. Specifically

N(t) =
∞∑
k=1

I{Tk ≤ t} (1.1)

is the number of events occurring over the time interval [0, t] andN(s, t) = N(t)−N(s) represents

the number of events occurring over the interval (s, t]. The history of the process at time t

is

H(t) = {N(s) : 0 ≤ s < t} (1.2)

As defined here, counting processes are right continuous; that is, N(t) = N(t+). Models for

recurrent events can be specified very generally by considering the probability distribution for

the number of events ∆N(t) = N(t−, t) = N(t + ∆t−) − N(t−) in short intervals [t, t + ∆t) ,

1



1. Theoretical background

given the history H(t) of event occurrence before time t. The event intensity function

λ(t|H(t)) = lim
∆t→0

P((N(t+ ∆t)−N(t)) = 1|H(t))

∆t
(1.3)

gives the instantaneous probability of an event occurring at t, conditional on the process history,

and defines the process mathematically. Throughout this thesis, intensity functions are used to

model event processes through event counts. The results that follow are essential to accomplish

this purpose; they are borrowed from Cook and Lawless (2007). Let us consider two fixed times

s1 and s2, with s1 < s2, then:

Theorem 1 Conditionally on H(s1), the probability density of the outcome "n > 0 events, at

times T1 < . . . < Tn for a process with an integrable intensity λ(t|H(t)) over an interval [s1, s2]"

is:
n∏
j=1

λ(tj |H(tj)) exp

{
−
∫ s2

s1

λ(u|H(u))Y (u)du

}
(1.4)

where Y (t) = 1 if an individual is “at risk” for experiencing the event at time t, 0 otherwise.

The knowledge of the intensity function allows us to write down both the probability of a

specified event history and the conditional probabilities of the inter-event times (also called gap

or waiting times), as made explicit in the following theorems.

Theorem 2 For an event with integrable intensity λ(t|H(t)):

P(N(s2)−N(s1) = 0|H(s1)) = exp

{
−
∫ s2

s1

λ(u|H(u))Y (u)du

}
(1.5)

Corollary 1 Let Wj = Tj−Tj−1 be the waiting time between the events (j−1) and j, then:

P(Wj > w|Tj−1 = tj−1, H(tj−1)) = exp

{
−
∫ tj−1+w

tj−1

λ(u|H(u))du

}
(1.6)

The mean function and variance function for the counting process {N(t), 0 ≤ t}, given by:

µ(t) = E[N(t)] and V (t) = Var(N(t)) (1.7)

are difficult to determine for general intensity functions. The following sections describe some

important families of recurrent event processes, which serve as a basis for modeling and data

analysis.
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1. Theoretical background

1.2 Poisson and renewal processes

Two types of processes might be considered canonical in this context. One is the Poisson process,

which describes situations where events occur randomly, in such a way that the numbers of events

in non-overlapping time intervals are independent. The other is the renewal process, in which

the waiting times between successive events are independent; that is, an individual is “renewed”

after each event occurrence.

1.2.1 Methods based on event counts

The Poisson processes are the canonical framework for the analysis of event counts. Poisson

models typically use the calendar time or the age of the process as the time scale. The indepen-

dent increments property of a Poisson process states that N(s1, s2) is independent of N(s3, s4),

provided s2 < s3. Hence, in the Poisson case, the history process H(t) does not affect the

instantaneous probability of events at time t, and in the absence of covariates the only factor

determining the intensity is the current time t. Therefore Poisson processes are Markov, with

intensity function of the form:

λ(t|H(t)) = lim
∆t→0

P(∆N(t) = 1|H(t))

∆t
= λ(t) (1.8)

In Poisson case, λ(t) is both the intensity function and the rate function giving the marginal

(i.e. unconditional) instantaneous probability of an event at time t. Specifically, λ(t)∆t =

E[N(t)] = Var(N(t)), and if µ(t) denotes the expected cumulative number of events at t, then:

µ(t) = E[N(t)] = Var(N(t)) =

∫ t

0
λ(s)ds (1.9)

and λ(t) = µ′(t) = dµ(t)/dt.

Extensions can be considered to accommodate the between-subject variability in events’ rates

through fixed or time-varying covariates, and random effects, as explained later.

1.2.2 Methods based on waiting times

LetWj = Tj−Tj−1 be the waiting (or gap) time between the (j−1)-th and j-th event. Analyses

based on waiting times are often useful when the events are relatively rare or when the prediction

of the time to the next event is of interest. Analyses based on waiting times are natural in studies

of system failures, where repairs, made at each failure, return the system to a working state.

Other settings include studies of cyclical phenomena where characterization of cycle length is

3



1. Theoretical background

of interest; for instance, in a case of recurrent infections, an individual return to a similar state

after the infection has been cleared (Cook and Lawless (2007)). Other examples are recurrent

episodes of hospitalization or disability. Renewal processes are the canonical models for waiting

times and are defined by:

λ(t|H(t)) = h(t− TN(t−)) (1.10)

where N(t−) = lim
∆t→0

N(t−∆t) and h(·) is the hazard function of the gap times between events,

which are independent and identically distributed. In general, for an absolutely continuous gap

time W :

h(t) = lim
∆t→0

P(W > t+ ∆t|W ≥ t))
∆t

=
f(t)

S(t)
(1.11)

where f(t) is the common density function of the waiting times and S(t) = P(W ≥ t) is the

corresponding survival function. Also in this case, generalizations that accommodate within-

subject association or trends in gap times are often useful.

1.3 Covariates

In many applications it is important to relate event occurrence to fixed or time-varying covariates.

We typically use x to denote fixed covariates and x(t) time-varying covariates. Time-varying

covariates can be external or internal. An external covariate is one whose values are deter-

mined independently of the recurrent event process (fixed covariates are therefore external). A

covariate that is not external is called internal. Thus, air pollution is an external covariate in a

study on hospital visits due to breathing problems. Instead, the number of lines of code changed

in a software debugging process is an internal covariate, because it depends on prior events (i.e.

faults detected) in the process. To sum up, if observable fixed and/or time-varying covariates

x(t) are related to event occurrence, they may be incorporated in the model by redefining the

process history to include covariate information. The covariates are all assumed to be external

(exogenous) in the development that follows. Internal covariates are more difficult to deal with,

in terms of both modeling and interpretation.

1.4 Periods at-risk

The at-risk indicator is useful for denoting which individuals can provide information about

events occurrence at a given time. It is defined as a time function Y (t) such that Yi(t) = 1 if an

individual i is at risk of being observed at time t ∈ [0, τ ] and Yi(t) = 0 otherwise. The time τ

is sometimes referred to as a censoring or end-of-followup time for the observed event process.

4



1. Theoretical background

More general observational or censoring patterns can arise if subjects temporarily cease to be

under observation. This happens, for example, if individuals are asked to record events on daily

diary cards, but they stop doing it for a period of time. It is also possible that an individual

ceases to be at risk temporarily, because of the nature of the process.

1.5 The choice of time scale

The choice of an appropriate time scale is crucial. The time variable t is often chronological

or calendar time, especially with processes that apply to humans or animals. The time scale

also involves a choice of origin and this requires some care when multiple individuals are under

study. Intensity-based analyses can adapt to the choice of a time origin through specification of

the intensity, but it is nevertheless desirable to use an origin that is consistent across individuals

and facilitates interpretation and analysis. In many contexts this may be clear: possible time

origins include the time of birth of the patient (with age as the time scale), the time of disease

onset, or the time of entry to the clinic. It should also be noted that once an underlying time

scale is chosen, it is necessary to decide whether it is most suitable to develop models based on

the cumulative time or on gap times between events. Although this could be viewed as a model

specification decision, it affects the analysis and interpretation of results.

1.6 Heterogeneity among individuals

The heterogeneity among individuals can be modelled by taking to account both covariates

and random effects. Random effects are related to unobserved heterogeneity and they denote

variation not explained by covariates. A more popular term is frailty, indicating that some

individuals are more frail than others, that is, the event in question is more likely to happen

for them. More precisely, frailty shall mean a part of the unexplained variation (Aalen et al.

(2008)). As the focus of this thesis is on event counts, hence the starting point are Poisson

processes.

1.6.1 Covariates in Poisson processes

A vector of covariates x(t) = (x1(t), . . . , xP (t)) can be incorporated in a Poisson process by

considering intensities of the form:

λ(t|x(t)) = λ0(t)g(x(t);β) (1.12)
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1. Theoretical background

where β = (β1, . . . , βP ) is a vector of regression coefficients, of the same length as x(t). In case

g(x(t);β) = exp{x′(t)β}, we get the so called multiplicative model or log-linear model.

The positive-valued function λ0(t) is called baseline intensity function and it is common to

all individuals. An approach that is simple yet flexible enough considers a piecewise constant

λ0(t):
λ0(t) = λk if ak−1 < t ≤ ak for k = 1, . . . ,K

where K is the number of time-intervals and 0 = a0, a1, . . . , aK−1, aK = τ are the cut-points.

This model requires to partition the time domain in a fixed number of intervals. In analogy to

the homogeneous Poisson process, the parameter λk can be interpreted as the occurrence rate of

the events in the k-th interval. Preliminary choices to be discussed are the type and the numbers

of intervals. It is common to choose the quantiles of the event times as cut-points of the time

domain. However this is a data driven choice and, by definition, it is not independent of the

data that the model aims to fit. Therefore particular attention should be paid to this aspect.

1.6.2 Random effects

Sometimes, even after conditioning on covariates, there is more inter-individual variation in

event occurrence than that accounted by a Poisson process. One sign of that over-variation

is a Var(Ni(t)) that appears substantially larger than E[Ni(t)]; instead mean and variance are

identical under a Poisson model.

If counts are of interest and Poisson processes are still thought to be reasonable models

for individuals, then an unobservable subject-specific random effect ui, also called frailty, for

i = 1, 2, . . . , I can be included, such that, given ui and covariates xi(t), the process {Ni(t), 0 ≤ t}

is Poisson with rate function:

λ(t|xi(t), ui) = λ0(t)ui exp{xi(t)′β} (1.13)

Typically, all the random effects ui are modeled as i.i.d. Gamma-distributed random variables

with mean equal to 1 and variance equal to φ > 0. That model is equivalent to state that,

conditionally to ui, the stochastic process {Ni(t) : 0 ≤ t} is a Poisson process with intensity

λ0(t)ui exp{xi(t)′β}. More details on this approach are provided in Spinelli (2019).

1.7 Bayesian approach

Let us be interested in estimating a parameter θ. From a Bayesian perspective, the unknown

parameter is understood as a random variable with a prior distribution, say π(θ), and the
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1. Theoretical background

statistical problem consists of updating π(θ) by computing a posterior conditional probability,

given data y = (y1, y2, . . . , yn). This is done by using the Bayes’ Theorem:

π(θ|y) =
P(y|θ)π(θ)∫
P(y|θ)π(θ)dθ

(1.14)

where (the likelihood) P(y|θ) is a measure of belief that y would be sampled from the population

if θ is the true parameter. The posterior joint distribution is then summarized in a simple

way, typically with posterior means giving rise to a point estimate of the unknown parameters.

Moreover, the associated posterior standard errors and a γ100 percent credible interval for the

unknown parameters are computed. In Bayesian statistics, a γ100 percent credible interval for

a parameter θ is given by

q 1−γ
2
< θ < q 1+γ

2
(1.15)

where q 1−γ
2
, q 1−γ

2
are posterior quantiles of θ (Epifani and Nicolini (2013)). Usually, the posterior

distributions in Formula (1.14) of all the unknown parameters do not have a closed form. Hence,

we need another approach to deal with it, in particular we may use Markov Chain Monte

Carlo (MCMC) algorithms to simulate and summarize them.

1.8 Monte Carlo Markov Chains

Monte Carlo Markov Chains (MCMC) techniques allow us to simulate samples from the posterior

distribution; they aim to construct cleverly sampled chains, which (after a burn-in period) draw

samples which are progressively more likely realizations of the distribution of interest. The more

steps are included, the more closely the distribution of the sample matches the actual desired

distribution. In particular, MCMC techniques generate an ergodic Markov Chain θ(1), . . . , θ(M),

i.e. θ(j), conditionally on θ(j−1), is independent of θ(1), . . . , θ(j−2) and, for a measurable function

h(θ), if M →∞ then:

1

M

M∑
j=1

h(θ(j))→ Eπ[h(θ)|y] =

∫
Θ
h(θ)π(dθ|y)

In this way, all the summarises of the posterior distribution can be approximated by averaging

over the MCMC sample. The MCMC algorithm used in this thesis is efficiently implemented

in the open source software Stan, written in C++, that can be integrated with the software R

thanks to the package rstan.
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1.9 Bayesian methods for goodness-of-fit and model selection

Bayesian models can be evaluated and compared in several ways. Most simply, all inference

is summarized by the posterior distribution. The idea is to obtain an unbiased and accurate

measure of the out-of-sample predictive error, through cross-validation. However especially in

a Bayesian setting this could be a problem, because exact cross-validation requires re-fitting

the model with different training sets (Vehtari et al. (2016)). Alternative methods aim to

estimate the out-of-sample predictive error with the data, using a correction for the bias that

arises from evaluating the model’s prediction on the data used to fit it; some of these measures

are the Akaike Information Criterion (AIC), the Deviance Information Criterion (DIC), or the

Watanabe–Akaike information criterion (WAIC), which is a fully Bayesian method.

1.9.1 Log-Pseudo-Marginal Likelihood (LPML)

Let us start considering a generic dataset y = (y1, . . . , yn), modeled as observations of Y1, . . . , Yn

which are independent random variables given parameter θ, with prior density π(θ). The initial

idea is to split y in

(y1, . . . , yk︸ ︷︷ ︸
training set

, yk+1, . . . , yn︸ ︷︷ ︸
test set

), for some k < n

and use the training set to compute the posterior density π(θ|y1, . . . , yk), and the test set to

check the quality of the model. In this particular case, we consider n splittings of y in y−i =

(y1, . . . , yi−1, yi+1, . . . , yn) as training set, and yi as test set, as i varies from 1 to n. Thus we

define the conditional predictive ordinate:

CPOi = fi(yi|yi−1) (1.16)

which is the conditional distribution of Yi computed in the observation yi, given all the rest.

The Logarithm of the Pseudo-Marginal Likelihood (LPML) is defined as:

LPML =
n∑
i=1

logCPOi (1.17)
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The larger the value of the CPO’s (and hence the larger the value of the LPML), the better the

fit of the model. In details, we have:

CPOi = fi(yi|yi−1) =
m(y1, . . . , yn)

m(yi−1)
=

∫
Θ

n∏
j=1

fj(yj |θ)π(dθ)∫
Θ

∏
j 6=i

fj(yj |θ)

where m(·) is the marginal density. Now we should compute n different posterior distributions

and this is very time consuming if n is large. In fact Yi|θ ∼ fi(·|θ) are not i.i.d. for all i, because

the distribution can depend on i (this happens in the presence of covariates, for example in the

context of a regression problem with fi(·|θ) = f(·|xi,β, σ2), where f is a Normal distribution

and we can notice that the mean xiβ depends on i, while the variance σ2 does not). Here we

use the trick of working with the posterior distribution π(θ|y1, . . . , yn):

1

CPOi
=

∫
Θ

∏
j 6=i

fj(yj |θ)π(θ)dθ

∫
Θ

n∏
j=1

fj(yj |θ)π(θ)dθ

=

∫
Θ

1

fi(yi|θ)

n∏
j=1

fj(yj |θ)π(θ)dθ

∫
Θ

n∏
j=1

fj(yj |θ)π(θ)dθ

=

∫
Θ

1

fi(yi|θ)
π(θ|y1, . . . , yn)dθ

So it is enough to sample from the posterior density π(θ|y1, . . . , yn); if we perform M MCMC

iterations that get the posterior samples {θ(j), j = 1, . . . ,M}, then an approximation for CPOi

is given by the harmonic mean of fi(yi|θ(j))’s, i.e.

ĈPOi =
M

M∑
j=1

1

fi(yi|θ(j))

(1.18)

1.9.2 Watanabe–Akaike Information Criterion (WAIC)

WAIC (introduced in 2010 by Watanabe, who called it the widely applicable information crite-

rion) is a fully Bayesian predictive goodness-of-fit tool which approximates the expected log

pointwise predictive density (elppd):

elppd =

n∑
i=1

Ef [ln(fi(y
new
i |y)] (1.19)

(Gelman et al. (2013)). We label fi as the true model, y = (y1, . . . , yn) as the observed data

and ynewi as future datum ∀i = 1, . . . , n. In order to compute the WAIC, we evaluate it at
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ynewi = yi ∀i, as

WAIC = computed lppd− pWAIC2

where, for the posterior MCMC sample {θ(j), j = 1, . . . ,M}, we obtain:

computed lppd =
n∑
i=1

ln

 1

M

M∑
j=1

fi(yi|θ(j))


and

pWAIC2
=

n∑
i=1

VM
j=1(fi(yi|θ(j)))

with

VM
j=1aj =

1

M − 1

M∑
j=1

(aj − a)2

thay represents the sample variance (Gelman et al. (2013)).

1.10 Bayesian recurrent events in literature

Song and Kuo (2013) presents a Bayesian analysis for recurrent events data using a non-

homogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a

dynamic baseline intensity function. Implementation of Bayesian inference using a Reversible

Jump Markov Chain Monte Carlo (RJMCMC) algorithm is developed to handle the change

of the dimension in the parameter space for models with a random number of change points. The

intensity function is denoted by λi(t) for the i-th subject at time t, for i = 1, . . . , I, t = 1, . . . , T

and is modeled as:

λi(t) = λ0(t)ui(t) exp{x′(t)β}Yi(t) (1.20)

In Formula (1.20):

• λ0(t) denotes the baseline intensity function at time t common to all subjects;

• ui(t) denotes the frailty of subject i at time t;

• xi(t) is a P -dimensional vector of covariates evaluated for subject i at time t;

• β is the P -dimensional vector of regression coefficients;

• Yi(t) is an indicator function with value 1 when the subject i is at risk of experiencing an

event at time t and 0 otherwise.
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Therefore three components, λ0(t), β and ui(t) need to be estimated. To make the estimation

of λ0(t) and ui(t) more computationally tractable and without sacrificing too much generality,

we assume piecewise constant models as an intermediate between parametric and nonparametric

models. The details are given in the following Subsection 1.10.1 for λ0, ui, number of cut-off K,

Subsection 1.10.2 for likelihood and Subsection 1.10.3 for prior.

1.10.1 Models

In Song and Kuo (2013) several models are compared: including constant or piecewise constant

subject-specific frailty and a fixed number or a random number of change points in the baseline.

• Model I: dynamic baseline model with a fixed number of change points K in the baseline

and constant subject-specific frailty. In this case

ui(t) = ui i = 1, . . . , I (1.21)

and the the baseline intensity function is piecewise constant:

λ0(t) =

K∑
k=1

λkI(ak−1,ak](t) k = 1, . . . ,K (1.22)

where 0 = a0 < a1 < . . . < ak−1 < ak < . . . < aK = τ and [0, τ ] is the whole observation

period. The modelling of the baseline intensity λk at the k-th segment is extended as:

λk = λk−1δk so that λk =
k∏
g=1

δg (1.23)

where δk is the baseline innovation at segment k and δ1, δ2, . . . , δK
iid∼ Gamma(ν1, ν1).

The autocorrelation between λk and λk+d is the following:

ρ(λk, λk+d) =

√√√√√√√√
(

1 +
1

ν1

)k
− 1(

1 +
1

ν1

)k+d

− 1

(1.24)

and it can be noticed that:

– it is a rational function of 1 + 1/ν1, where 1/ν1 measures the temporal heterogeneity

within each subject;

– it is decreasing in the distance d between λk, λk+d and increasing in k;
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– when ν1 → 0, then the autocorrelation approaches 0;

– when ν1 →∞, then the autocorrelation approaches to its maximum value
√
k/(k + d).

• Model II: dynamic baseline model with a fixed number of change points K in the baseline

(Formula (1.22) and Formula (1.23)) and dynamic frailty. Here all subjects share the

same pre-specified cut-points at ak for k = 0, . . . ,K (as in Model I), but with different

unknown frailty magnitudes over the real time-intervals. We have:

ui(t) =
K∑
k=1

uikI(ak−1,ak](t) i = 1, . . . , I (1.25)

The evolution of frailties over the k-th time-interval can be defined by:

uik = ui(k−1)φik so that uik =
k∏
g=1

φig (1.26)

where φik
iid∼ Gamma(ν2, ν2) is themultiplicative frailty innovation for the i-th subject

over segment k. In particular, the autocorrelation between uik and ui,k+d is the following:

ρ(uik, ui,k+d) =

√√√√√√√√
(

1 +
1

ν2

)k
− 1(

1 +
1

ν2

)k+d

− 1

(1.27)

and comments on it are similar to those reported for the autocorrelation of the baseline

intensity function (Formula (1.24)) with respect to the same lag d.

• Model III: constant subject-specific frailty (Formula (1.21)) and dynamic baseline model

with random K in the baseline (Formula (1.22) and Formula (1.23)). Now K is not

fixed anymore and by requiring the number of change points to be data-dependent, more

flexibility and adaptability are obtained for model fitting. Song and Kuo (2013) develops

a Reversible Jump Markov Chain Monte Carlo (RJMCMC) method to handle the change

of the dimension of the parameter space, which is introduced in this chapter as an hint for

future developments, even if it goes beyond the purpose of this thesis.

• Model IV: dynamic frailty (Formula (1.24) and Formula (1.25)) and dynamic baseline

model with random K in the baseline (Formula (1.22) and Formula (1.23)). The baseline

intensity function is modelled as in Model III, meaning that also in this case RJMCMC

methods are used.

As a generalisation, the time-discretization for the baseline and for frailties respectively can be
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different. In this thesis we will assume as simplifying hypothesis the same discretization for both

and this is mainly due to computational reasons when performing the simulations of the models.

1.10.2 Likelihood

The ingredients required for the likelihood’s formulation are the following:

• (0, τ ] study period;

• 0 = a0 < a1 < . . . < ak−1 < ak < . . . < aK = τ pre-specified cut-points;

• λi(t) = λik for t ∈ (ak−1, ak] and k = 1, · · · ,K;

• λ0(t) =
K∑
k=1

λkI(ak−1,ak](t) =
K∑
k=1

 k∏
g=1

δg

 I(ak−1,ak](t);

• ∆ vector of δg for g = 1, . . . ,K;

• ui(t) =
K∑
k=1

uikI(ak−1,ak](t) =
K∑
k=1

 k∏
g=1

φig

 I(ak−1,ak](t);

• Φ vector of φig for i = 1, . . . , I, g = 1, . . . ,K;

• count information N = (n1,n2, . . . ,nI), where ni = {nik}k=1,...,K is the number of

recurrences for the i-th subject in the k-th interval and I the number of subjects.

We describe the likelihood function for Model II first, under the assumption of non-informative

censoring:

L (β,Φ,∆;N) =

I∏
i=1

K∏
k=1

f(Nik|β,Φ,∆) (1.28)

=
I∏
i=1

K∏
k=1

e−λikλnikik
nik!

= (1.29)

=

I∏
i=1

K∏
k=1

e−λ0(t)ui(t) exp{x′(t)β}Yi(t)
(
λ0(t)ui(t)e

x′(t)βYi(t)
)nik

nik!
(1.30)

The likelihood for Model I is a special case of Model II’s likelihood, with ui(t) = ui. Finally, the

likelihood for Model III and Model IV, conditioning on the given number K of change points in

the baseline, is that of Model I and Model II respectively.

1.10.3 Priors

Song and Kuo (2013) for their Models I-IV proposed the following prior scheme: all parameters

δk’s, φik’s, βp’s are independent each other and on (a1, . . . , aK ,K) with:
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• baseline innovation:

δk
iid∼ Gamma(ν1, ν1) k = 1, . . . ,K

• multiplicative frailty innovation:

φik
iid∼ Gamma(ν2, ν2) i = 1, . . . , I, k = 1, . . . ,K

• regression coefficients:

βp
iid∼ N (0, σ2) p = 1, . . . , P

• change points:

a1, a2, . . . , aK ∼ U{K; (0, τ ]}

• number of change points:

– Model I/II: K pre-specified

– Model III/IV: K ∼ P(ξ)

and ν1, ν2, σ
2, ξ are preassigned hyperparameters. As regards the updating algorithm for Model

III and Model IV. It works as follows: if at current iteration we have K change points, then the

possible moves are

• S = stay, with no changes of K in the baseline’s time-dimension;

• D = death, reducing K by 1;

• B = birth, increasing K by 1.

The updating of the parameter is done by randomly selecting one of the three moves (S,D,B)

with probabilities, respectively:

• bK = γ ·min

{
1,
Pξ(K + 1)

Pξ(K)

}

• dK = γ ·min

{
1,
Pξ(K − 1)

Pξ(K)

}
• cK = 1− bK − dK

γ is chosen as large as possible, such that bK + dK ≤ 0.9 ∀K.
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Chapter 2

Data sources description

In this section, the data analysed are described; they come from two databases provided by the

AVIS section of Lambrate in Milan. A preliminary data exploration is reported, performed with

both summary statistics and visualization techniques. Finally, the chapter covers the data pre-

processing needed to get a more suitable representation of some covariates.

2.1 Selection criteria

The data of AVIS section of Lambrate in Milan are collected from multiple tables of two

databases:

• EMONET database: it contains information about donations and donors’ personal data;

• AVIS database: it contains information about blood donors’ habits and suspensions.

In particular, data are selected according to the following criteria:

• donations come from Lambrate collection centre;

• the observation period goes from 1st January 2010 to 30th June 2018;

• only "new" donors are considered, namely people who became donors in that period;

• only donations of whole blood are included in the study.

According to this selection criteria, some data preprocessing has been necessary. First of all,

3238 volunteers are not considered, because they donate only once. Each donor’s observation

time has a length that is generally different from the others and the number of donations is

different, from a minimum of 2 to a maximum of 30 donations. Since the focus is on recurrences,

first donations (corresponding to time t = 0) are removed. The final dataset consists of 25689
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observations and 5937 unique donors, divided in 4005 men and 1932 women. All the covariates

taken into account are reported below. The starting point is the dataset from Spinelli (2019)

containing the time-fixed covariates listed in Tables 2.1 and 2.2:

Variable name type Description

CAI cat Donor unique ID

DTPRES date Data and time of the event

SESSO cat 1 Man; 0 Woman

ETA_PRIMA num Age at first donation

ETA_DONAZ num Age at current donation

AB0 cat Blood type: A, B, AB, 0

TIPO_RH cat Reshus factor: POS or NEG

Table 2.1: EMONET database, time-fixed covariates

Variable name type Description

CAI cat Donor unique ID

FUMO cat Smoking habits

ALCOOL cat Drinking habits

THE cat Tea consumption

CAFFE cat Coffee consumption

DIETA cat Diet type

STRESS cat Stress level

ATTIVITAFISICA cat Physical activity habits

ALTEZZA num Donor’s height (m)

PESO num Donor’s weight (kg)

Table 2.2: AVIS database, time-fixed covariates

By querying again the AVIS’ database and then merging the new dataset with the previous one,

the time-dependent covariates listed in Table 2.3 are added:

Variable name type Description

PMIN num Minimum pressure

PMAX num Maximum pressure

POLSO num Heart rate

EMOG num Hemoglobin

Table 2.3: AVIS database, time-dependent covariates
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2.2 Italian donation rules

There are some rules that regulate blood donations’ mechanism, meant to protect both the

health of the patient who will receive the blood and the health of the donor himself:

• any candidate donor must be between 18 and 60 years, however the responsible physician

can allow a candidate donor older than 60 years old to donate for the first time. The

chronological age limit is increased to 65 years old for periodic donors. Even in this case

the physician can allow a person to donate until 70 years old, after a clinical evaluation of

the risks correlated to the age;

• every donor must weight more than 50 kg;

• the blood pressure, the heart rate and the level of hemoglobin must lie between certain

ranges. As an example, for the hemoglobin they are:

– male donors: 13-18 g/dl;

– female donors: 12-16 g/dl;

• the yearly maximum number of donations for men and for women who are in menopause

is 4, while for the other women is 2. This means that the minimum gap time between two

consecutive donations is 90 days for men and 180 days for women, but a certain tolerance

is considered: the gap time for people belonging to first category is reduced to 85, while

for the second one to 150 (indeed there are donations that happen before, since a physician

is allowed to move up donations).

Similar rules govern the blood donation process in other countries, for example in Spain (see

Aldamiz-Echevarria and Aguirre-Garcia (2014))

2.3 Exploratory data analysis

Data visualization is one of the most powerful and appealing techniques for data exploration.

Humans have a well-developed ability to analyze large amounts of information that is presented

visually. This gives the possibility, on one side, to fastly detect general patterns and trends and,

on the other, to discover the presence of outliers and unusual patterns.

2.3.1 Rate of donation and gap times

The total numbers of donations for each donor are reported in Figure 2.1.
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Figure 2.1: Boxplot of total donations for men and women

This number is not enough to understand how many donations are done in a certain time period.

It should be related to the time in which each individual is observed, for example dividing it for

the years of observation. The empirical rates of donation (number of donations divided for the

years of observation) are computed and their histogram is shown in Figure 2.2. Notice that the

empirical distribution of the yearly rate of donation is right-skewed: most of the donors did less

than two donations per year. An interesting fact is the bimodality of the gap times’ distribution,

that reflects the difference of the donation rules between the two genders: men are allowed to

donate twice than women. The red lines in Figure 2.3 correspond to the logarithms of 90 and

180, namely the minimum waiting times for men and women.
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Figure 2.2: Histogram of the empirical yearly rates of donation

Figure 2.3: Histogram of the gap times on logaritmic scale. Red vertical lines correspond to the
logarithms of 90 and 180, namely the minimum waiting times for men and women
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2.3.2 Recurrences

As each donor’s first donation is discarded in order to focus only on recurrences, the recurrences

reach the maximum of 29 for men and 14 for women. A detailed analysis separates the donors’

count into men and women respectively, as reported in Table 2.4 and the barplots in Figure 2.4

offer a graphical insights into this table. In particular, for women each bar represents:

number of women who perform i recurrences
(total number of women) ∗ 14

and for men:
number of men who perform i recurrences

(total number of men) ∗ 29

Normalizing frequencies with 14 and 29 is important, because it gives a fairer view of individuals’

constancy in donating, regardless of their gender. It can be noticed that women outnumber men

up to 8 total recurrences. After that threshold, men start to overcome women and this increase

becomes gradually more marked. The strong peak in favor of men in the range (13, 29) is justified

simply by the fact that men can donate twice as much as women, therefore it cannot be seen as

a greater propensity of men to donate. Overall, women seem to have more consistent behavior

in the donation process and this fact will be confirmed by posterior analysis in Chapter 5.
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Tot donations Donors’ count Tot percentage Sex Donors’ count Percentage

2 1608 27.08%
F

M

708

900

36.65%

22.47%

3 1101 18.54%
F

M

428

673

22.15%

16.8%

4 723 12.18%
F

M

263

460

13.61%

11.49%

5 555 9.35%
F

M

189

366

9.78%

9.14%

6 417 7.02%
F

M

103

314

5.33%

7.84%

7 292 4.92%
F

M

68

224

3.52%

5.59%

8 262 4.41%
F

M

60

202

3.11%

5.04%

9 178 3%
F

M

42

136

2.17%

3.4%

10 160 2.64%
F

M

30

130

1.55%

3.25%

11 119 2%
F

M

19

100

0.98%

2.5%

12 101 1.7%
F

M

13

88

0.67%

2.2%

13 753 12.68%
F

M

3

72

0.15%

1.8%

14-30 346 7.09%
F

M

6

340

0.31%

10.29%

Table 2.4: Distribution of total donations per individual
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Figure 2.4: Barplot of total recurrences among male and female donors

2.3.3 Time-fixed covariates

In Table 2.5 all the categorical covariates are summarised with their sample frequencies. Some

of them are objective (like sex, blood type or Rhesus factor), while the others are declared by

the person her/him-self (smoke and alcohol habits and level of physical activity).
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Variable Value Percentage

SESSO
F

M

32.52%

67.48%

FUMO
Non-smoker

Smoker

67.49%

32.51%

ALCOOL
Non-consumer

Consumer

69.82%

30.18%

ATTIVITAFISICA
Active Life

Sedentary Life

76.03%

23.97%

AB0

0

A

AB

B

46.4%

39.67%

1.36%

12.57%

TIPO_RH
Positive

Negative

86.19%

13.81%

DIETA

Balanced

Highly caloric

Lowly caloric

Vegetarian/Vegan

97.17%

1.27%

0.46%

1.1%

STRESS

Absent

Negative 1

Negative 2

Negative 3

Positive

6.34%

85.49%

6.42%

1.25%

0.49%

Table 2.5: Sample frequencies of categorical variables

There are more men than women donors in the dataset, the majority of the population has blood

type 0 and the positive Rhesus factor is more frequent than the negative one. Concerning living

habits variables, it seems that donors have an healthy life. In fact there are more non-smokers

than smokers, alcohol non-consumers than consumers and an active life is declared by most

of the individuals. Covariates DIETA and STRESS do not seem to be useful for the analysis

and they are immediately discarded, in fact almost all the donors declare to have a balanced

diet (97.17%) and an absent level of stress (99.51%). Some descriptive statistics for continuous

covariates are provided in Table 2.6.
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Variable Sample mean Standard deviation Min Max

PESO (kg) 72.3502 13.3874 46 130

ALTEZZA (m) 1.74 0.0912 0.89 2.02

ETA_PRIMA (y) 32.20 9.9444 18 62

ETA_DONAZ (y) 35.79 10.4281 18 65.9

Table 2.6: Summary statistics of continuous variables

In Spinelli (2019) useful boxplots are done, in order to discover some correlation pattern between

the continuous and categorical variables. However it is not clear from those graphs if a significant

correlation exists. On the other hand, it can be clearly noticed that the rates’ distribution reaches

higher values in males than in female donors. This was expected since, according to law, men

have the double of the possibilities to donate with respect to women. No other correlations are

evident.

2.4 Data transformation

Most of the features are categorical variables with many levels. To be suitable to a statistical

model, they are transformed into binary dummy variables:

• covariate FUMO takes the value 1 if the donor is a smoker, 0 if he/she is not;

• covariate ALCOOL takes value 1 if the donor declares to consume alcoholic beverages, 0

otherwise;

• covariate STRESS takes value 1 if the donor claims to be stressed, 0 otherwise;

• covariate ATTIVITAFISICA takes value 0 if the donor declares to have a sedentary

lifestyle, or if his/her level of physical activity is low or irregular, 1 otherwise;

• blood type is represented by three dummy variables (TIPO 0, TIPO B, TIPO AB). For

instance (1,0,0) is blood type 0 and so on. Blood type A is considered as baseline.

As regards the numerical features PESO (weight in kilograms) and ALTEZZA (height in meters),

the Body Mass Index (BMI) is computed as BMI = PESO/ALTEZZA2. For adults, BMI is

interpreted using standard categories shown in Table 2.7, along with the corresponding donors’

percentages in the dataset, stratified by the donors’ gender. It can be noticed that women are

the majority in the category "Underweight" and that men have highest percentages in all the

others. This leads to believe that the addition in the model of the interaction between donor’s

gender and BMI could be significant.
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BMI Weight status Tot percentage Sex Percentage

Below 18.5 Underweight 1.44%
F

M

64.71%

35.29%

18.5 – 24.9 Healthy Weight 69%
F

M

32.29%

67.70%

25.0 – 29.9 Overweight 24.84%
F

M

18.49%

81.51%

30.0 and above Obese 4.72%
F

M

27.70%

72.30%

Table 2.7: Summary of donors’ BMI

2.4.1 Time-dependent covariates and absurd values

Time-dependent covariates introduced in this thesis are: hemoglobin, heart rate, minimum pres-

sure, maximum pressure. After a preliminary analysis, some absurd values have been discovered

and replaced with "NA". The imputation of these values, along with the already existing missing

values, will be discussed in Chapter 3. Absurd values do not comply with the general behavior

of the data, so they appear as anomalous. They have been detected through manual inspection

and knowledge of reasonable values. Table 2.8 summarizes the number of absurd values for each

covariate and the summary statistics updated after absurd values’ removal.

Variable Number of absurd values Sex Mean Standard deviation Min Max

EMOG 12
F

M

13.5528

15.2765

0.7659

0.8717

12.1

13.1

17.2

18.9

POLSO 9
F

M

68.6634

66.7589

7.3966

7.7300

45

40

120

125

PMIN 2
F

M

72.2098

75.8305

7.0280

7.2481

55

50

120

120

PMAX 11
F

M

115.088

119.043

6.7889

8.3295

100

100

165

186

BMI 16
F

M

22.4645

24.5583

3.3140

3.1507

13.3

15.5

44.6

46.3

Table 2.8: Summary statistics after absurd values’ removal
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Figure 2.5: Boxplot of time-dependent covariates, divided in male and female donors

Finally, it is essential to understand whether a clear across-time variability in time-dependent

covariates is present or not. Indeed if this is not true, it cannot be said that these covariates are

really time-dependent and they should be considered time-fixed. Figure 2.6 and 2.7 show that

women have a lower value of hemoglobin than men. Apart from this information, by overlapping

the trends of all donors, they become indistinguishable and so difficult to interpret. Hence, less

donors have been randomly selected several times, by repeating the drawing of the matplots each

time; here just one of the resulting plots is reported, as a representative of the general discovered

trends. By analyzing Figure 2.7, it is clear that the two covariates on the left, hemoglobin and

minimum pressure, change more over time with respect to the other two. This fact has important

implications on the modelling choices explained in Chapter 4.
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Figure 2.6: Matplot of time-dependent covariates considering all donors
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Figure 2.7: Matplot of time-dependent covariates for randomly selected donors
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Chapter 3

Missing values

In this chapter, the missing values’ imputation is performed. As a result, we obtain a complete

dataset ready to be used.

3.1 Overview

When missing values are present in a dataset, it is important to understand why they are

missing and their impact on the analysis. Sometimes ignoring missing data biases answers and

potentially misleads to incorrect conclusions. Rubin (1976) differentiates between three types of

missigness mechanisms:

1. missing completely at random (MCAR): the distribution of missing values does not

depend on observed attributes or missing value (e.g., survey questions randomly sampled

from larger set of possible questions);

2. missing at random (MAR): the distribution of missing values depends on observed

attributes, but not on the missing value (e.g., men less likely than women to respond to

question about mental health);

3. missing not at random (MNAR): the distribution of missing values depends on the

missing value (e.g., respondents with high income less likely to report it). This is difficult

to handle, because it requires strong assumptions about the patterns of missingness.

The most common techniques to deal with missing values are the following:

• deletion methods: listwise deletion, pairwise deletion;

• single imputation methods: mean/mode substitution, dummy variable method, single

regression;
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• model-based methods: maximum likelihood, multiple imputation.

Typically people delete all cases for which a value is missing. This method is called complete

case analysis (CC). However, CC is valid only if data is MCAR and this case occurs rarely in

practice. Another method is multiple imputation (MI), which is a Monte Carlo method that

simulates multiple values to impute (fill-in) each missing value, then it analyses each imputed

dataset separately and finally it pools the results together. Missing data are imputed multiple

times to account for the uncertainty about the true (and unknown) values of the missing data. In

theory, MI can handle all the three types of missingness. On the other hand, software packages

that do MI are usually not designed for MNAR case. Missing data analysis of MNAR data is

more complicated and often requires domain knowledge.

3.2 Missing values analysis on data

Figure 3.1 and Figure 3.2, obtained with VIM package in R, represent on the left the amount of

missing values and on the right the way in which they are coupled together along the different

observations. Missing values are represented in red and the non missing in blue.

Figure 3.1: Missing values, part 1

29



3. Missing values

Figure 3.2: Missing values, part 2

Variables sorted by decreasing number of missing values are shown in Table 3.1:

Variable Sample percentage Tot Unique donors Sex Count Mean age

THE

CAFFE
40.43% 25689 1832

F

M

573

1259

33.4

34.5

EMOG 14.72% 3794 2370
F

M

606

1764

33.8

34.9

POLSO 9.53% 2459 1617
F

M

427

1190

32.8

34.6

PMIN 8.76% 2253 1480
F

M

399

1081

32.7

34.5

PMAX 8.75% 2262 1487
F

M

402

1085

32.7

34.6

BMI 0.25% 65 42
F

M

17

25

33.3

29.8

FUMO

ALCOOL

ATTIVITAFISICA

0.19% 49 37
F

M

15

22

34.5

29.6

Table 3.1: Missing values

30



3. Missing values

The covariates SESSO, RH, ETA_PRIMA, ETA_DONAZ, TIPO_A, TIPO_0, TIPO_B,

TIPO_AB have no missing values. Instead the covariates THE and CAFFE have too many

missing values, so they are immediately discarded.

3.3 Assumptions’ check for multiple imputation

It is important to understand why data are missing and the category they belong to among

MCAR, MAR, MNAR. The focus is on hemoglobin, pressures and pulse, which contain a non-

negligible number of missing values. As preliminary analysis, daily counts are performed. As

shown in Figure 3.3, it can be noticed that all covarites have a peak of NA’s in 2013 and

hemoglobin has a lower peak even in 2018. Since measurements of these four values are manda-

tory at each donation, their lack may be due to data collection issues.

Figure 3.3: Daily counting of missing values

At first glance, this can be seen as a limiting aspect of a multiple imputation, since the presence

of these NA’s is closely linked to the year of observation. However, referring to recurrent events’

framework, their randomness during time is restored. Indeed new donors are always allowed to

arrive and time t = 0 refers to their first donation (that is the start of the counting process).

Figure 3.4 shows the daily count of new donors. The 95.3% of the daily counts is below the
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threshold (count = 6), represented by the dashed line.

Figure 3.4: Daily counting of new arrivals

3.4 MICE package in R

R language has robust packages for missing value imputations. MICE (Multivariate Imputa-

tion via Chained Equations) is one of the most used and it assumes that the missing data are

MAR. It imputes data by specifying an imputation model per variable and imputation is drawn

from the conditional distribution by MCMC techniques (the details are explained in Appendix

B). For example, let X1, X2, . . . Xk be random variables and suppose X1 has missing values.

Hence X1 will be regressed on other variables X2 to Xk and the missing values in X1 will be

replaced by the estimated predictive values. Similarly, if X2 has missing values, then X1, X3

to Xk variables will be used in prediction model as independent variables; later, missing values

will be replaced with predicted values and so on. The mice() function executes m streams in

parallel, each of which generates one imputed dataset and these datasets are equal, except for

imputed values. In particular, each imputed value is the last one of simulated chains. The final

complete dataset is obtained by merging together the m imputed datasets. In order to address

the issues posed by the real-life complexities of the data, it is convenient to specify the imputa-
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tion model separately for each column in the data. Some of the imputation methods provided

by MICE are reported in Table 3.2:

Method Type of variable Description

pmm any predictive mean matching

cart any classification and regression trees

rf any random forests imputation

norm num Bayesian linear regression

norm.boot num linear regression using bootstrap

logreg num logistic regression

lda cat linear discriminant analysis

Table 3.2: Imputation methods by MICE

To sum up, MICE package contains functions to:

1. inspect the missing data pattern;

2. impute the missing data m times, resulting in m completed datasets;

3. diagnose the quality of the imputed values;

4. analyze each completed dataset;

5. pool the results of the repeated analyses;

6. store and export the imputed data in various formats;

7. generate simulated incomplete data;

8. incorporate custom imputation methods.

3.5 Missing values imputation

In this thesis, m = 5 imputed datasets and a maximum number of 100 iterations are fixed.

The covariates with missing values are imputed with the methods listed below, which have

been selected after several trials. The remaining variables RH, TIPO_0, TIPO_B, TIPO_AB,

SESSO, ETA_PRIMA and ETA_DONAZ have no missing values and they are used only to

impute the others.

• BMI: random forest;

• FUMO: logistic regression;
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• ALCOOL: logistic regression;

• ATTIVITAFISICA: logistic regression;

• EMOG: CART;

• POLSO: random forest;

• PMIN: random forest;

• PMAX: random forest.

Logistic regression is the go-to method for binary classification problems. CART is a

useful nonparametric technique that can be used to explain a continuous or categorical depen-

dent variable in terms of multiple independent variables. The independent variables can be

continuous or categorical. CART employs a partitioning approach generally known as “divide

and conquer”. It is easy to use and can quickly provide valuable insights into massive amounts of

data. Random forest creates multiple CART trees based on "bootstrapped" samples of data

and then combines the predictions, where a bootstrap sample is a random sample conducted

with replacement. Usually, the combination is an average of all the predictions from all CART

models. Random Forest has better predictive power and accuracy than a single CART model

(because random forest exhibit a lower variance), but it is more complex in terms of compu-

tations. Unlike the other continuous covariates, CART method works well for the hemoglobin,

so it is enough for the goal set. This may be related to the fact that hemoglobin’s values have

a more regular density than the other continuous covariates, in particular maximum and mini-

mum pressure, whose density is more complex and therefore its reproduction on missing values

requires a more computationally expensive method.

3.6 Inspecting the distribution of original and imputed data

Let us now compare the distributions of original and imputed data using some useful plots.

Three plots are considered: densityplot(), stripplot() and xyplot(). In particular:

• densityplot(): the density of the imputed data for each imputed dataset is showed in

red, while the density of the observed data is showed in blue. Under previous assumptions,

the distributions are expected to be similar;

• stripplot(): the function shows the distributions of the variables as individual points

among the five imputed datasets. Notice that, in the plots that follow, the red points

follow the blue points reasonably well;
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• xyplot(): the function produces conditional scatterplots. It extends the usual features of

LATTICE package and automatically separates observed (blue) from imputed (red) data.

The densityplots and stripplots in Figures 3.5-3.17 and the xyplots in Figures 3.18, 3.19 conclude

the section.

Figure 3.5: Densityplot hemoglobin Figure 3.6: Stripplot hemoglobin

Figure 3.7: Densityplot pulse Figure 3.8: Stripplot pulse
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Figure 3.9: Densityplot max pressure Figure 3.10: Stripplot max pressure

Figure 3.11: Densityplot min pressure Figure 3.12: Stripplot min pressure

Figure 3.13: Densityplot BMI Figure 3.14: Stripplot BMI36
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Figure 3.15: Stripplot alcool

Figure 3.16: Stripplot fumo

Figure 3.17: Stripplot attività fisica
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Figure 3.18: xyplot BMI

Figure 3.19: xyplot hemoglobin
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3.7 Convergence monitoring

MICE runned m = 5 parallel chains, each with a certain number of iterations, and imputes values

from the final iteration. To monitor convergence we use traceplot(), which plots estimates

against the number of iteration. Figure 3.20 shows mean and standard deviation of the covariates

through the 100 iterations for the 5 imputed datasets. An indicator of convergence is how well

the 5 parallel chains mix.

Figure 3.20: Traceplots for imputed covariates
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Chapter 4

Bayesian models of recurrent events for

blood donations

In this chapter we exploit how blood donations can modeled as recurrent events. Three different

models are considered, starting from an initial "Model 0", two natural but different extensions

of it, "Model 1" and "Model 2", are proposed.

4.1 Model 0

Model 0 is a base case, which prepares the ground for subsequent modeling extensions. It

generalizes a model studied by Spinelli (2019), including time-dependent covariates in addition

to time-fixed covariates.

4.1.1 Likelihood

Now we exploit the likelihood of Model 0. All the steps shown here are also a guideline for

obtaining next models’ likelihood, which may differ from Model 0 for some secondary aspects.

The theoretical background is here summarized.

• The time scale is:

– t = 0: first whole blood donation;

– t: number of days passed since the first donation.

• For any donor i = 1, . . . , I:

– ni is his/her total number of donations;

– ti,1, . . . , ti,ni are the times at which the donations take place;
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– Yi(t) is the at-risk indicator function;

– Ni(t) =
∞∑
k=1

I{tik ≤ t} is the number of donations up to t (counting process);

– ∆Ni(t) = N(t+ ∆t−)−N(t−) is the number of donations in [t, t+ ∆t);

– Hi(t) = {Ni(s) : 0 ≤ s < t} is the history up to time t;

– the time-varying covariates are simple/step functions:

xi(t) = xi(tij) tij ≤ t < ti,j+1 j = 1, . . . , ni (4.1)

where ti,ni+1 = ci and ci is the censoring time for donor i;

– the intensity function of the recurrent process of donor i is:

λi(t|Hi(t)) = λ0(t)ui exp{xi(t)′β} (4.2)

• By Theorem 1 of Chapter 1, which plays here an essential role, the likelihood of the single

donor i is:

Li =

 ni∏
j=1

λi(tij |Hi(tij))

 exp

{
−
∫ ∞

0
Yi(s)λi(s|H(s))ds

}

=

 ni∏
j=1

λ0(tij)uie
x′i(tij)β

 exp

{
−
∫ ∞

0
Yi(s)λ0(s)uie

x′i(s)βds

}

=

 ni∏
j=1

λ0(tij)

unii exp

{
ni∑
j=1

x′i(tij)β − ui
∫ ∞

0
Yi(s)λ0(s)ex

′
i(s)βds

}

The total likelihood is obtained by product:

L =

I∏
i=1

Li =

 I∏
i=1

ni∏
j=1

λ0(tij)

( I∏
i=1

unii

)
exp

{
I∑
i=1

ni∑
j=1

x′i(tij)β−
I∑
i=1

ui

∫ ∞
0

Yi(s)λ0(s)ex
′
i(s)βds

}

Let us now define wk(t) := I(ak−1,ak](t) to simplify the notation and substitute

λ0(t) =
K∑
k=1

λkwk(t) in L . Hence:

• the first factor of L becomes:

I∏
i=1

ni∏
j=1

λ0(tij) =
I∏
i=1

ni∏
j=1

K∑
k=1

λkwk(tij) =
K∏
k=1

λ
∑I
i=1

∑ni
j=1 wk(tij)

k =
K∏
k=1

λn·kk
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where n·k =

M∑
i=1

ni∑
j=1

wk(tij) is the total number of donations in the interval (ak−1, ak];

• the last factor (integral) in L becomes:

I∑
i=1

ui

∫ ∞
0

Yi(s)λ0(s)ex
′
i(s)βds =

I∑
i=1

ui

∫ ∞
0

Yi(s)

K∑
k=1

λkwk(s)e
x′i(s)βds =

I∑
i=1

K∑
k=1

uiλk

∫ ak

ak−1

Yi(s)e
x′i(s)βds

In conclusion we obtain:

L =

(
K∏
k=1

λn.kk

)(
I∏
i=1

unii

)
exp

{
I∑
i=1

ni∑
j=1

x′i(tij)β −
I∑
i=1

K∑
k=1

uiλk

∫ ak

ak−1

Yi(s)e
x′i(s)βds

}

4.1.2 Covariates

The covariates are included in the intensity function through a multiplicative model, defined as:

g(x(t);β) = exp{x′(t)β} (4.3)

where β = (β1, . . . , βP ) is a vector of regression parameters, with P equal to the number of

covariates. In this analysis, both fixed-time and time-dependent donor-specific covariates are

taken into account. The maximum number of covariates is 18 (including interactions), then

any nested models (with less covariates) are compared thanks to goodness-of-fit indicators,

eliminating those that are not relevant as a result of posterior analysis. The complete set of

covariates is reported in Table 4.1 which includes also some possibly relevant interactions.

The most important steps performed at this stage are the following:

• as a consequence of observations in Section 2.4.1, only hemoglobin and minimum pressure

are kept time-dependent, while all the other covariates are maintained time-fixed;

• all values of the maximum pressure and heart rate are replaced with the values measured

at first donation;

• the numerical variables are standardized, in order to deal with tractable values and to

avoid the unit of measure to play an ambiguous role in the obtained results;

• the categorical variable blood type with four levels (0, A, B, AB) is transformed in four
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binary variables through one-hot encoding. Type 0 is chosen as a baseline, so its column

is not included in the dataset for running the model;

• interactions:

– between the donors’ gender and the hemoglobin,

– between the donors’ gender and the Rhesus factor,

– between the donors’ gender and Body Mass Index,

are added, in order to exploit their possible relevance in explaining the phenomenon in a

different way for men and women.

Name Type Description

SESSO binary gender: 1 male, 0 female

ETA_PRIMA num age at the time of first donation

FUMO binary smoker: 1 yes, 0 no

ALCOOL binary alcohol consumption: 1 yes, 0 no

ATTIVITAFISICA binary active life: 1 yes, 0 no

RH binary rhesus factor: 1 positive, 0 negative

TIPO_0 binary blood type 0

TIPO_A binary blood type A

TIPO_B binary blood type B

TIPO_AB binary blood type AB

BMI num body mass index

POLSO num heart rate

PMAX num maximum pressure

EMOG num hemogoblim

PMIN num minimum pressure

SESSO_EMOG num interaction gender-hemoglobin

SESSO_RH binary interaction gender-RH

SESSO_BMI num interaction gender-BMI

Table 4.1: Complete set of covariates

4.1.3 Baseline intensity function

The baseline intensity function λ0(t) is piecewise constant:

λ0(t) = λk if ak−1 < t ≤ ak k = 1, . . . ,K (4.4)

where K = 10 equi-spaced intervals have been chosen.
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4.1.4 Random effects

In order to analyze data that occur repeatedly, it is necessary to account for subject-dependency

in the multiple event times and this can be done by considering random effects ui, also called

frailties. They have a multiplicative effect on each donor’s intensity function, in particular:

• ui > 1 indicates more propensity to experience a donation;

• ui < 1 indicates less propensity to experience a donation.

4.1.5 Priors

A priori the parameters λk’s, βp’s and ui’s in Model 0 are all independent with:

• λk
iid∼ Gamma(αλ, αλ) k = 1, . . . ,K

• βp
iid∼ N (0, σ2

β) p = 1, . . . , P

• ui|β0
iid∼ Gamma

(
αu,

αu
β0

)
, β0 ∼ Gamma(δ, δ) i = 1, . . . , I

where αλ = δ = 2, αu = 0.01 and σ2
β = 100.

4.1.6 Prior moments as a function of the hyperparameters

First of all, we can notice that E[ui|β0] = β0 and Var[ui|β0] = β2
0/αu, so that the frailties are

centered a priori in β0 and αu regulates the prior variance. For a better interpretation of the

hyperparameters δ, αu, marginal mean, variance and covariances of ui’s are computed:

E[ui] = E[E[ui|β0]] = E[β0] = 1

Var[ui] = Var[E[ui|β0]] + E[Var[ui|β0]] = Var[β0] + E

[
β2

0

αu

]
=

1

δ
+

1

αu

(
1

δ
+ 1

)
=

1

αu
+

1

δ
+

1

αuδ

In particular, substituting αu = 0.01 and δ = 2, we get: Var[ui] = 150.5, by leading to a prior

which seems explorative enough. Moreover, under the prior choice of Section 4.1.5, the frailties
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of two donors i and j have covariance:

Cov(ui, uj) = E[uiuj ]− E[ui] E[uj ] = E[E[uiuj |β0]]− 1

= E[E[ui|β0] E[uj |β0]]− 1 = E[β2
0 ]− 1

=

(
δ

δ2
+ 1

)
− 1 =

1

δ

and correlation

ρ(ui, uj) =
αu

αu + δ + 1

so that αu governs also the pairwise correlation between frailties.

4.1.7 At-risk indicator

The at-risk indicator function models the "risk" of experiencing an event. The general definition

is the following:

Yi(t) =


1 individual i can donate at time t

0 otherwise

whereas in our specific problem, it assumes the following form:

1{
(t−TNi(t−))≥Φi, t≤ci

}(t) (4.5)

We notice that it depends on the history of the process and it repeats itself equal after each

event. In particular, it models the fact that a person cannot donate after his/her censoring

time ci and that for a certain period of time Φi he/she must wait after last donation, depending

on the gender. The intensity is set equal to 0 for the next Φi days after every donation. In

particular, according to AVIS rules, Φi is equal to 90 days for men and 180 days for women.

However AVIS physicians might anticipate donations. Accordingly to AVIS rules, to represent

the phenomenon in a more realistic way, we set:

Φi =


150 if i is female donor

85 if i is male donor

The thresholds are fixed heuristically and the goal is to allow reasonable early donations, dis-

carding as least as possible individuals from the study.

45



4. Bayesian models of recurrent events for blood donations

4.2 Model 1

Model 1 extends Model 0 by considering time-autoregressive frailties. The reference paper for

current section is Song and Kuo (2013). As a preliminary step, frailties are discretized becoming

piecewise linear functions. Frailties and baseline intensity function have the same time step.

4.2.1 Likelihood

We take up the same general framework of Section 4.1.1, by replacing piecewise constant frailties

for each donor i = 1, . . . , I:

ui(t) = uik if ak−1 < t ≤ ak

or equivalently:

ui(t) =

K∑
k=1

uikwk(t) [with wk(t) = I(ak−1,ak](t)]

where K is both the number of time intervals for frailties and the number of time step for the

baseline intensity function. Through mathematical steps similar to those previously performed

to obtain the likelihood of Model 0 (Formula (4.1)), the likelihood of Model 1 is:

L =

(
K∏
k=1

λn.kk

) K∏
k=1

ni∏
j=1

unikik

×
× exp

{
M∑
i=1

ni∑
j=1

x′i(tij)β −
M∑
i=1

K∑
k=1

λkuik

∫ ak

ak−1

Yi(s)e
x′i(s)βds

}

where nik is the number of events experienced by individual i in the interval (ak−1, ak].

4.2.2 Priors

In Model 0, a vector of frailties is considered and each cell represents the constant donor-specific

value. Here instead we have a matrix [M ×K], where each row represents the evolution of the

donor’s frailty along time. The evolution of frailties over segment k for donor i is defined by:

uik = ui(k−1)φik =⇒ uik =

k∏
g=1

φig i = 1, . . . , I

where {φi1, φi2, . . . , φiK} constitute the multiplicative frailty innovation for donor i. Except for

the frailties’ modification, priors are kept equal to the previous Model 0 and the whole picture

is reported below:

• φik
iid∼ Gamma(ψ,ψ) ψ ∼ Gamma(aψ, aψ) i = 1, . . . , I, k = 1, . . . ,K
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• λk
iid∼ Gamma(aλ, bλ) k = 1, . . . ,K

• βp
iid∼ N (0, σ2

β) p = 1, . . . , P

with αψ = αλ = 2 and σ2
β = 100.

4.2.3 Prior moments as a function of the hyperparameters

Figure 4.1 shows how u(t) is distributed along time. We suppose that donor i’s process is

independent of donor j, ∀i 6= j. For donor i, we get:

ui1 = φi1

ui2 = ui1φi2

...

uiK = uk−1φiK

where φi1, φi2, . . . , φiK are independent conditionally on ψ and s.t. E[φik] = 1, ∀k = 1, . . . ,K.

Figure 4.1: Representation of u(t) during time

In the computations that follow we suppose ψ fixed and time interval h < j. We have:

E[uik|ui1, . . . , ui,k−1] = E[uik|ui,k−1] = E[ui,k−1φik|ui,k−1]

= ui,k−1 E[φik|ui,k−1] = ui,k−1 E[φik] = ui,k−1
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Var[uik|ui1, . . . , ui,k−1] = Var[uik|ui,k−1] = E[u2
ik|ui,k−1]− (E[uik|ui,k−1])2

= E[u2
i,k−1φ

2
ik|ui,k−1]− u2

i,k−1 = u2
i,k−1 E[φ2

ik]− u2
i,k−1

= u2
i,k−1(Var[φik] + (E[φik])

2)− u2
i,k−1

= u2
i,k−1

(
1

ψ
+ 1

)
− u2

i,k−1 =
u2
i,k−1

ψ

Cov(uih, uij) = Cov(uih, uihφi,h+1 . . . φi,j)

= E[u2
ihφi,h+1 . . . φij ]− E[uih] E[uihφi,h+1 . . . φij ]

= E[u2
ih] E[φi,h+1] . . .E[φij ]− E[uih] E[uih] E[φi,h+1] . . .E[φij ]

= E[u2
ih]− (E[uih])2 = Var[uih]

Now, it is important to notice that:

• E[ui1] = E[φi1] = 1, E[ui2] = 1, . . ., E[uiK ] = 1

• E[u2
i,h−1] = E[φ2

i1φ
2
i2 . . . φ

2
i,h−1] = E[φ2

i1] E[φ2
i2] . . .E[φ2

i,h−1] =

(
1

ψ
+ 1

)h−1

so that we can compute:

Var[uih] = E[Var[uih|ui,h−1]] + Var[E[uih|ui,h−1]]

= E

[
u2
i,h−1

ψ

]
+ Var[ui,h−1] =

1

ψ

(
1

ψ
+ 1

)h−1

+

(
1

ψ
+ 1

)h−1

− 1

=

(
1

ψ
+ 1

)h−1( 1

ψ
+ 1

)
− 1 =

(
1

ψ
+ 1

)h
− 1 =

(1 + ψ)h − ψh

ψh

In the end, we are able to obtain:

ρ(uih, uij) =
Var[uih]√

Var[uih]
√

Var[uij ]
=

√
Var[uih)

Var[uij ]
=

√√√√√√√√
(

1

ψ
+ 1

)h
− 1(

1

ψ
+ 1

)j
− 1

=

√
(1 + ψ)h − ψh

(1 + ψ)j − ψj
· ψj−h

First, we noticed that the correlation is always strictly greater than zero and varies with ψ. In

particular, we start considering the two extreme cases:

• CASE 1: ψ →∞
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In this case, as (1 + f(ψ))h − 1
f(ψ)→0
≈ hf(ψ), we obtain:

lim
ψ→∞

ρ(uih, uij) = lim
ψ→∞

√√√√√√√√
(

1

ψ
+ 1

)h
− 1(

1

ψ
+ 1

)j
− 1

−→

√
h

j

Hence, for large value of φ, the correlation decreases with increasing distance between h

and j, moreover it is always less than
√

0.9, as K = 10.

• CASE 2: ψ → 0

Here it is enough to remember that (1 + ψ)h
ψ→0
≈ 1 + hψ to obtain:

lim
ψ→0

ρ(uih, uij) = lim
ψ→0

√
(1 + ψ)h − ψh

(1 + ψ)j − ψj
· ψj−h = lim

ψ→0

√
1 + hψ − ψh

1 + jψ − ψj︸ ︷︷ ︸
>0

×
√
ψj−h︸ ︷︷ ︸
→0

−→ 0

As a priori E[ψ] = 1, but Var[ψ] = 1/αψ, it follows that a small value of αψ allows ψ to range

from small to large values and so a priori we have a correlation between 0 and 0.9, for K = 10.

4.3 Model 2

The formulation of Model 2 allows us to overcome the identifiability problem that may arise in

Model 0 for the parameters λk, k = 1, . . . ,K, in the baseline intensity function and the frailties

ui, i = 1, . . . , I. In particular, we introduce an unique step function ∼ui(t) for each donor i defined

as:
∼
ui(t) =

K∑
i=1

∼
uikI(ak−1,ak](t) (4.6)

The function ∼ui(t) simultaneously model both the mean random heterogeneity among donors,

i.e. their individual frailties and the baseline intensity function, that is common to all of them.

We choosed the following prior structure for ∼ui(t), that takes account for the length of the

time-interval (ak−1, ak] (Christensen et al. (2011)):

∼
uik|αk, c

iid∼ Gamma(lαk, l) αk ∼ Gamma(δ, δ) (4.7)
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where δ = 2 and l ∝ (ak − ak−1) = 310 for each k. Then l = 310c, where c quantifies the

uncertainty on ∼uik, i.e. c is a measure of how widespread the prior of ∼uik is. Indeed:

E[
∼
ui(t)|α1, . . . , αK , c] =

K∑
k=1

E[
∼
uik|αk, c]I(ak−1,ak](t) =

K∑
k=1

αkI(ak−1,ak](t) (4.8)

and

Var[
∼
ui(t)|α1, . . . , αK , c] =

1

c

K∑
k=1

αkI(ak−1,ak](t) (4.9)

We choosed c = 0.01 and the robustness analysis for this model is to be made only with respect

to c. It follows from Formula (4.6) that the mean step function

α(t) =
K∑
k=1

αkI(ak−1,ak](t) (4.10)

has an immediate interpretation in terms of baseline intensity function. Hence the hyperpa-

rameters {α1, α2, . . . , αk} provide - in a Bayesian way - a piecewise constant baseline intensity

function. In that it lies the substantial difference between Model 0 (where the baseline intensity

function is included in the likelihood) and Model 2 (where the baseline intensity function is a

prior hyperparameter). As a consequence, the posterior mean of α(t) in Model 2, given by

α̂(t) :=

K∑
k=1

E[αk|Data]I(ak−1,ak](t) (4.11)

is a Bayesian estimate of the baseline intensity function. In this parameterization, in accordance

with the scale properties of the Gamma model, the parameter

vik :=

∼
uik
αk

(4.12)

represents the specific random effect of Model 2. Basically Model 2 has the same likelihood of

Model 0, but with a different parametrization of λk and ui:

L =

 K∏
k=1

ni∏
j=1

(
∼
uik)

nik

 exp

{
M∑
i=1

ni∑
j=1

x′i(tij)β −
M∑
i=1

K∑
k=1

∼
uik

∫ ak

ak−1

Yi(s)e
x′i(s)βds

}
(4.13)
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Chapter 5

Posterior analysis

In this chapter the posterior inference for the models described in Chapter 4 is presented. They

are applied to the AVIS data presented in Chapter 2. The focus is on "Model 2" that, as a result

of the simulations carried out, turns out to be the most performing model in terms of both indices

WAIC and LPML.

5.1 Stan Software

Sampling from the posterior distribution is achieved via the software platform called Stan,

which is a probabilistic programming language for statistical inference written in C++. Stan is

a software for MCMC sampling more efficient than the ones written in the BUGS (Bayesian

inference using Gibbs Sampling) language, like JAGS. For simple models there is little practical

difference between the two platforms in the efficiency of the chains, but Stan outperforms BUGS

as model size and complexity grow. In particular, Stan uses Hamiltonian Monte Carlo (HMC),

a family of MCMC algorithms which promise improved efficiency and faster inference (Stan

Development Team (2020)).

5.2 Sampling

Different sampling processes are considered, all with two chains having 5000 iterations, the

first 3000 of warmup and the last 2000 of sampling. Hence all the results are MCMC samples

of 2000 observations for each chain. As an example, the output for Model 0 ’s simulation is

reported:

I n f e r en c e f o r Stan model : time−dependent−MODEL0.

2 chains , each with i t e r =5000; warmup=3000; th in =1;
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5. Posterior analysis

post−warmup draws per chain =2000 , t o t a l post−warmup draws=4000

5.3 Model comparison

The convergence diagnostics of the different simulations have been checked, showing that all the

MCMC chains reach stationarity, but in Model 0 a problem of identifiability arises, due to the

product between the baseline intensity function λ0(t) and the frailties ui for i = 1, . . . , I in the

intensity function in the likelihood in Formula (4.2). Therefore the choice of the best model

reduces between Model 1 and Model 2. Table 5.1 shows that Model 2 outperforms Model 1 both

in terms of WAIC and LPML. As explained in Section 4.3, Model 2 overcomes the problem of

identifiability, because the baseline intensity function is a prior hyperparameter and it doesn’t

directly appear in the likelihood.

WAIC LPML

Model 1 396574.9 -202183.4

Model 2 298826.8 -150630.6

Table 5.1: Goodeness of fit evaluation

5.4 Posterior inference for Model 2

Model 2 is summarised below.

• The likelihood is:

L =

 K∏
k=1

ni∏
j=1

(
∼
uik)

nik

 exp

{
M∑
i=1

ni∑
j=1

x′i(tij)β −
M∑
i=1

K∑
k=1

∼
uik

∫ ak

ak−1

Yi(s)e
x′i(s)βds

}

where

– ni is the total number of donations of individual i;

– nik is the number of events experienced by individual i in the interval (ak−1, ak];

– n·k =

M∑
i=1

ni∑
j=1

wk(tij) is the total number of donations in the interval (ak−1, ak].

• The prior choice is:

– βp
iid∼ N (0, σ2

β) p = 1, . . . , P

–
∼
uik|αk, c

iid∼ Gamma(lαk, l) i = 1, . . . ,M

– αk ∼ Gamma(δ, δ) k = 1, . . . ,K
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5. Posterior analysis

where σ2
β = 100, δ = 2, l = 310c and c = 0.01 and βp’s are independent on (

∼
uik, αk)’s.

5.4.1 Beta regression coefficients

By analyzing βp’s posterior densities, it is clear that the model can be simplified. As reported in

Table 5.2, the parameters in grey color are not significant, because their 95% credibility intervals

(q0.025, q0.095) contain 0.

Parameter Mean Standard deviation q0.025 q0.5 q0.095

βSESSO -4.37 0.03 -4.44 -4.37 -4.31

βFUMO -0.23 0.02 -0.26 -0.23 -0.19

βALCOOL -0.10 0.02 -0.13 -0.10 -0.07

βATTIVITAFISICA -0.17 0.02 -0.20 -0.17 -0.14

βRH -2.98 0.03 -3.04 -2.98 -2.91

βPMIN 0.03 0.01 0.02 0.03 0.05

βTIPO_0 -0.26 0.02 -0.29 -0.26 -0.22

βTIPO_B -0.25 0.03 -0.30 -0.25 -0.20

βTIPO_AB -0.44 0.06 -0.56 -0.45 -0.33

βEMOG 1.12 0.02 1.07 1.11 1.16

βETA_PRIMA 0.23 0.01 0.21 0.23 0.25

βBMI 0.17 0.02 0.14 0.17 0.21

βPMAX 0.00 0.01 -0.01 0.00 0.02

βPOLSO -0.02 0.01 -0.03 -0.02 0.00

βSESSO_EMOG -1.16 0.02 -1.21 -1.16 -1.11

βSESSO_BMI -0.17 0.02 -0.21 -0.17 -0.14

βSESSO_RH 2.92 0.04 2.85 2.92 3.00

Table 5.2: Complete Model 2, summary of βp’s posterior densities (non significant βp’s in grey
colour)

Figure 5.1 shows βp’s posterior densities. In particular, the covariates:

• in blue have a negative effect, i.e. reducing the risk to donate blood;

• in red have a positive effect, i.e. increasing the risk to donate blood;

• in white are not significant.

It is evident that the interactions βSESSO-RH, βSESSO-EMOG and βSESSO-BMI are all significant,

hence we have definitely found a way to distinguish the behavior of male and female donors.
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5. Posterior analysis

Figure 5.1: Complete Model 2, βp’s posterior densities. The covariates in blue have a negative
effect, the covariates in red have a positive effect and the covariates in white are not significant

On the other hand, βPMAX and βPOLSO are not significant, hence these covariates have been

removed from the model and then the new model has been re-fitted. The results obtained for

the reduced model are reported in Table 5.3 and the analysis of Figure 5.2 leads to the following

comments:

• In Figure 2.4 (Chapter 2) we noticed that women outnumber men up to 8 total recurrences

and that the strong peak in favor of men in the range (13, 29) is justified simply by the

fact that men can donate twice as much as women. Now intuition that overall women

have more consistent behavior in the donation process is confirmed by the negative value

of βSESSO (recalling that the gender is codified as 0 for women and as 1 for men);

• βTIPO_0, βTIPO_B and βTIPO_AB are significant with respect to the base case βTIPO_A;
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5. Posterior analysis

Parameter Mean Standard deviation q0.025 q0.5 q0.095

βSESSO -4.37 0.03 -4.43 -4.37 -4.31

βFUMO -0.23 0.02 -0.26 -0.23 -0.20

βALCOOL -0.10 0.02 -0.13 -0.10 -0.07

βATTIVITAFISICA -0.17 0.02 -0.20 -0.17 -0.13

βRH -2.98 0.03 -3.04 -2.98 -2.91

βPMIN 0.03 0.01 0.02 0.03 0.05

βTIPO_0 -0.26 0.02 -0.29 -0.26 -0.22

βTIPO_B -0.25 0.02 -0.30 -0.25 -0.20

βTIPO_AB -0.44 0.06 -0.56 -0.44 -0.33

βEMOG 1.11 0.02 1.07 1.11 1.16

βETA_PRIMA 0.23 0.01 0.22 0.23 0.25

βBMI 0.17 0.02 0.14 0.17 0.21

βSESSO_EMOG -1.16 0.02 -1.21 -1.16 -1.11

βSESSO_BMI -0.17 0.02 -0.21 -0.17 -0.14

βSESSO_RH 2.93 0.04 2.85 2.93 3.01

Table 5.3: Reduced Model 2, summary of βp’s posterior densities

• βFUMO and βALCOOL have a negative effect, hence smokers and drinkers tend to donate

less than non-smokers and non-drinkers; this is consistent with our intuition. On the

other hand, βATTIVITAFISICA has a negative effect, hence it seems that volunteers with a

non-active life are slightly more likely to donate than people with an active life;

• βETA_PRIMA is positive, meaning that the older people are, the more likely they donate

(it can be noticed that ETA_PRIMA is below 25 age for 25.4% of the donors);

• βRH is negative. This was expected, because RH− is much rarer than RH+. It follows

that volunteers with RH− behave in a more responsible way than the others, by regularly

donating.
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5. Posterior analysis

Figure 5.2: Reduced Model 2, βp’s posterior densities. The covariates in blue have a negative
effect and the covariates in red have a positive effect

The MCMC convergence diagnostics such as those available in the R package CODA were computed

for all parameters, indicating that convergence may have been achieved. All details concerning

them are reported in Appendix E.

5.4.2 Alpha baseline intensity function

From now on, all analyses refer to reduced Model 2. The posterior summary for αk, k = 1, . . . ,K

is reported in Table 5.4 and the posterior densities are shown in Figure 5.3. These parameters

are centered around a value that decreases over time, except for the last time-intervals. The

highest value corresponds to α1, that refers to the first 310 days of the donation process; this

means that volunteers are more likely to donate at the beginning and this propensity tends to

decrease over time. As for βp’s parameters, convergence diagnostics are reported in Appendix E.
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5. Posterior analysis

Parameter Mean Standard deviation q0.025 q0.5 q0.095

α1 5.50 0.12 5.26 5.50 5.74

α2 0.87 0.02 0.84 0.87 0.90

α3 0.60 0.01 0.57 0.60 0.63

α4 0.50 0.01 0.47 0.50 0.52

α5 0.41 0.01 0.39 0.41 0.43

α6 0.42 0.01 0.40 0.42 0.45

α7 0.39 0.01 0.36 0.39 0.42

α8 0.47 0.02 0.44 0.47 0.50

α9 0.56 0.02 0.51 0.55 0.60

α10 1.01 0.05 0.92 1.01 1.13

Table 5.4: Reduced Model 2, αk’s posterior summary

Figure 5.3: Reduced Model 2, αk’s posterior densities
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5.4.3 Frailties

The number of frailties is very large: 59370 different parameters are simulated (ten for each

donor, of which one for each time-interval); all the convergence criteria are met and there is

nothing relevant to report concerning convergence diagnostics. Figure 5.4 and Figure 5.5 show

frailties’ trend over time for 100 randomly selected male donors (in blue) and 100 randomly

selected female donors (in red). The fact that each {vik}k=1,...,K shows a trend varying with

i = 1, . . . , I, i.e. from one donor to another, confirms the presence of a specific component in

donors’ behaviour, that the other parameters of the model are not able to capture.

Figure 5.4: Reduced Model 2, vik’s trend over time for 100 randomly selected male donors
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5. Posterior analysis

Figure 5.5: Reduced Model 2, vik’s trend over time for 100 randomly selected female donors

5.5 Robustness analysis

In this section, the robustness analysis for Model 2 is presented. The analysis is to be made with

respect the hyperparameter c, that regulates the variance of ũi(t), as reported in Formula (4.9).

The values considered are c = 0.01, c = 1, c = 2. Table 5.5 reports the goodness of fit evaluations

in terms of both LPML and WAIC for the three simulations, along with the posterior means of

the main parameters.
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5. Posterior analysis

Parameter c = 0.01 c = 1 c = 2

βSESSO -4.37 -3.15 -3.16

βFUMO -0.23 -0.40 -0.42

βALCOOL -0.10 -0.23 -0.25

βATTIVITAFISICA -0.17 -0.42 -0.45

βRH -2.98 -2.17 -2.19

βPMIN 0.03 0.05 0.06

βTIPO_0 -0.26 -0.47 -0.50

βTIPO_B -0.25 -0.49 -0.53

βTIPO_AB -0.44 -0.77 -0.81

βEMOG 1.11 1.08 1.09

βETA_PRIMA 0.23 0.22 0.22

βBMI 0.17 0.14 0.14

βSESSO_EMOG -1.16 -1.13 -1.14

βSESSO_BMI -0.17 -0.15 -0.15

βSESSO_RH 2.93 2.10 2.13

α1 5.50 2.15 2.30

α2 0.87 0.33 0.35

α3 0.60 0.22 0.23

α4 0.50 0.18 0.18

α5 0.41 0.14 0.15

α6 0.42 0.15 0.15

α7 0.39 0.13 0.14

α8 0.47 0.15 0.16

α9 0.56 0.18 0.20

α10 1.01 0.38 0.50

WAIC 298843.9 330724.3 332461.6

LPML -150621.2 -165206 -165935.9

Table 5.5: Reduced Model 2, robustness analysis. The posterior mean for each parameter is
reported

As c increases, a negligible change of performance can be observed both in terms of WAIC

and LPML. The estimations of regression coefficients and baseline intensity function maintain

unchanged sign and significance. Given these results, the model appears to be robust.
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Chapter 6

Planning and profiling

The goal of this chapter is to consider AVIS’ questions and needs and to answer to them thanks

to the dataset that has been supplied through the selected "Model 2".

6.1 General overview

AVIS deals with planning and profiling. Planning is managerial, from the point of view of

the internal organization and it answers to the question: "How much staff is needed at a certain

moment?". In particular, knowing donors’ characteristics and history: "How much blood is

expected to be received in a certain amount of time?". AVIS collection center of Lambrate

provides blood units to Niguarda hospital, that was opened on October 3, 1939 and today is one

of the most important hospitals in Milan. Niguarda hospital’s needs are described in terms of

monthly blood units. Each donation corresponds to a unit, whose nominal weight is 430g. One

might ask: "Why people who weigh less than a certain threshold cannot donate?". The answer

lies in the sustainability of the process: getting a unit has a fixed cost and it is not convenient

to get half a unit from a person who weighs below the threshold, at the same cost as a full unit;

moreover counting "half units" would become complicated. More is details, planning could be

divided into:

• monthly : on average the AVIS center of Lambrate meets the demands of Niguarda, which

are not fixed, but they can vary depending on the needs of that particular moment. Ap-

proximately 1500 donations are made per month. In this case, it is relevant to calculate

the nominal level distinguishing among the different blood types;

• weekly : the planning level per week is considered for the sizing of the center, quantified

in terms of staff needed for the blood drive. In this case, the distinction among different

blood types is not necessary.
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On the other hand, AVIS needs to carry out effective acquisition campaigns of new donors, which

is the key aspect of profiling. The proposed approach is to define some typical profiles and to

make predictions about their future donation history, in order to understand their propensity

to donate. Through the discovery of the most effective profiles, AVIS will be able to decide

where it is more likely to attract new donors, whether in high schools and/or universities and/or

companies.

6.2 Profiling

Given a generic profile i, it is possible to forecast its propensity to donate thanks to Corollary

1 of Chapter 1. Assuming that the the first donation is made at time T0 = 0 and by letting

W1 = T1−T0 be the waiting time of the first recurrence (corresponding to the second donation),

we compute the probability P(W1 > t|T0 = 0). We let t varying in the first three months in

which profile i is allowed to donate: t ∈ (Φi + 1,Φi + 90) where Φi is equal to 85 days for men

and 150 for women. In this way, only ∼ui1 is needed, because it covers the first 310 days of the

donation process. We obtain:

P(W1 > t|T0 = 0) = exp

{
−
∫ t

0
λi(s)ds

}
= exp

{
−
∫ t

0

∼
ui1e

xiβYi(s)ds

}
=

= exp

{
−∼ui1exiβ

∫ t

0
Yi(s)ds

}
=


1 if t ≤ Φi

exp
{
−∼ui1exiβ(t− φi)

}
if t > Φi

(6.1)

In order to provide a concrete example, some profiles have been randomly selected and they are

reported in Table 6.1.

Profile 1 Profile 2 Profile 3 Profile 4

Sex woman man woman man

Age at first donation 19 25 40 60

Weight 55kg 75kg 60kg 80kg

Heigth 1.65m 1.80m 1.70m 1.75m

Range BMI healthy weight healthy weight healthy weight overweight

Smoker no yes no no

Active Life yes yes no no

Rh negative negative positive positive

Blood type 0 A B AB

Table 6.1: Selected profiles
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The hemoglobin and the minimum pressure of each profile are sampled from a Normal distribu-

tion with mean and standard deviation obtained by the data of similar donors in the dataset,

with the same sex and the same age at first donation. After having sampled these values, they

are kept constant during the 90 days analyzed; in fact, in Model 2 - as in the other models

presented - the time-dependent covariates vary in correspondence of each donation, but not in

the time between two donations. Then the standardization of all covariates follows, referring

to the means and standard deviations reported in Table 2.6 and Table 2.8. At this point, the

four vectors of covariates xi are complete and ready to be inserted in Formula (6.1). Moreover,

recalling that
∼
ui1|α1, c

iid∼ Gamma(lα1, l) α1 ∼ Gamma(δ, δ)

where δ = 2, l = 310c and c = 0.01, then M values of ∼ui1 have to be simulated from the sample

(α
(m)
1 )m=1,...,M of reduced Model 2. Figure 6.1 shows the posterior densities of ∼ui1, i = 1, . . . , 4

for the profiles reported in Table 6.1.

Figure 6.1: ∼ui1’s posterior densities simulated for the profiles reported in Table 6.1

Hence, for each time t ∈ (Φi + 1,Φi + 90), M different probabilities are computed. Figure 6.2
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shows the posterior mean of the trends of P(W1 > t|T0 = 0) for four selected profiles, based on

Formula (6.1).

Figure 6.2: Representation of P(W1 > t|T0 = 0) in the first 90 days in which each selected profile
is allowed to donate, after first donation. Credible intervals (q0.25, q0.75) are added as dashed
lines

The faster these graphs decrease, the better it is, because it means that they are more likely

to donate as soon as they can do it. It can be noticed that the best profiles are Profile 1 and

Profile 3, that represent both female donors; this reflects the analysis carried out, in which we

noticed that women show a more consistent behaviour in the donation process. Even if Profile

3 ’s probability is high at the beginning, it decreases very rapidly in the first three weeks, after
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which it closely approaches to zero. On the other hand, Profile 2 and Profile 4 show a lower

propensity to donate and their probabilities decrease more slowly. At the end of the three

months, all profiles, with the exception of Profile 2, have a probability that approaches to zero,

meaning that they are very likely to have made the second donation within the time window

analysed.

To conclude, even if this approach provides only a qualitative information, it can be con-

sidered a valid tool to make a first categorization of individuals who are more likely to donate,

supporting the management of AVIS’ donation campaigns.

6.3 Planning

Given a generic

N(t) =

∼
I∑
i=1

1(Ni(t) = 1) (6.2)

where
∼
I is the total number of donors (to avoid possible misunderstandings of the reader, it is

specified that
∼
I is greater than I = 5937, which is the number of new donors entered in the

study in the period considered in this thesis), the goal is to obtain an estimate of

µ(t) = E[N(t)] (6.3)

for a future period of time t. For example, if we consider next month, then µ(t) represents the

forecast of the average number of donations that will take place in next t = 30 days and it should

be at least equal to the number of blood units requested by Niguarda hospital, otherwise it will

be necessary to take appropriate actions. A number of donations grater than the one strictly

needed is not a problem, because extra blood units can be stored for future needs or distributed

to smaller neighboring centers. Niguarda hospital’s demand varies from month to month and

it may increase considerably in some particular periods. On average, the number of monthly

donations performed by AVIS section of Lambrate is around 1500. More in details, considering

µ(t) = E


∼
I∑
i=1

1(Ni(t) = 1)

 =

∼
I∑
i=1

P(Ni(t) = 1) (6.4)

the goal is to estimate the posterior mean

E[µ(t)|Data] =

∼
I∑
i=1

P(Ni(t) = 1|Data) (6.5)
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that can be approximated using the posterior MCMC sample. In fact, it follows from Theorem 2

in Chapter 1 that

pi(t) = P(Ni(t) = 1|Data) = 1− exp

{
−
∫ t

0

∼
ui(t)e

xi
′βYi(s)ds

}
(6.6)

From now on we restrict the complete group of donors
∼
I to the I donors analyzed in this

thesis, so that we can compute µ(t) by using the MCMC sample (u
(m)
i ,β

(m)
i )m=1,...,M , focusing

on the following future periods:

• t = 1 week, for planning the amount of staff needed;

• t = 1 month, for understanding whether the demands of Niguarda hospital are supposed

to be met or not, with the distinction among blood types.

In order to simplify the problem further, we suppose that the future time-interval (0, t] is imme-

diately after the period in which data are collected, meaning that t = 0 corresponds to 30th June

2018. Moreover for a donor i = 1, . . . , I, we have that Yi(s), s ∈ (0, t], can be easily computed

as

Yi(s) =


1 if s− τi ≥ φi

0 otherwise
(6.7)

where τi is the time of last donation for donor i and φi is equal to 85 for men and 150 for women.

Figure 6.3 provides a general idea of the time representation of this analysis.

Figure 6.3: General time representation of the process, starting from donor i’s last donation
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In Formula (6.6) the lower bound of the integral, equal to "0" (30th June 2018), is the same ∀i,

but the distance from the initial time of each recurrent process, defined as τ0i, is different for

each donor. A more detailed representation of the whole process for each donor i is reported in

Figure 6.4; in particular, si is the number of days between τ0i and the 30th June 2018.

Figure 6.4: Detailed time representation of the process for donor i

At this point, it is clear that Ni(t) has to be correctly specified as

∼
N i(t) = Ni(ti)−Ni(si) (6.8)

and Formulae (6.4), (6.5) and (6.6) are adapted accordingly. As an intermediate step, we

compute

P(
∼
N i(t) = 1|Data) = P(Ni(ti)−Ni(si) = 1) = 1− P(Ni(ti)−Ni(si) = 0)

= 1− exp

{
−
∫ ti

si

∼
ui(t)e

x′iβYi(s)ds

} (6.9)

and we define

piti = P(
∼
N i(ti) = 1|Data) (6.10)

Now, first of all we deal with the computation of Yi(s):

• case 1: si ≥ tki + φi −→


Yi(s) = 1 ∀s ∈ [si, ti]

piti = 1− exp

{
−
∫ ti

si

∼
ui(t)e

x′iβds

}
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• case 2: ti ≤ tki + φi −→


Yi(s) = 0 ∀s ∈ [si, ti]

piti = 0

• case 3: si ≤ tki + φi ≤ ti −→


Yi(s) = 1 ∀s ∈ [tki + φi, ti]

piti = 1− exp

{
−
∫ ti

tki+φi

∼
ui(t)e

x′iβds

}

Second, we deal with the computation of the remaining part

∫ ti

bi

∼
ui(t)e

x′iβds (6.11)

where the lower bound of the integral bi varies accordingly to case 1, case 2 and case 3. As

reported in Figure 6.5, we organize the cut-points 0 = a0 < a1 < a2 < . . . < aK in sequence

starting from τ0i, so that

a0i = τ0i

a1i = τ0i + a1

a2i = τ0i + a

...

aKi = τ0i + aK

(6.12)

Figure 6.5: Time representation of the cut-points for donor i
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If bi ∈ (akb−1,i, akb,i] and ti ∈ (akt−1,i, akt,i], then∫ ti

bi

∼
ui(t)e

x′iβds = ex
′
iβ[(akb,i − bi)

∼
ukb,i+

+ (akb+1,i − akb,i)
∼
ukb+1,i + . . .+ (akt,i − akt−1,i)

∼
ukt,i]

(6.13)

where for the value of the hemoglobin and the minimum pressure for each donor has been

computed as the average value among his/her donations.

Figure 6.6 shows the forecast of the average number of donors for next week and next

month, where the present day is supposed to be the 30th June 2018 (defined as day "0"). The

number of forecasted montlhy donors is below the average threshold of 1500 individuals who

are generally expected to donate each month at AVIS section of Lambrate. This gap can be

explained by the fact that in this analysis we are not counting all donors, but only who has

started his/her donation process not earlier than 1st January 2010 (the reason for this choice

is that for the previous period the information is not present on the two provided databases),

with the additional assumption of having at least one recurrence (in fact all individuals who

donated only once have been discarded, because their behavior was not significant to study the

recurrences of the donation process). More in details, Figure 6.7 shows the distinction among

blood types.
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Figure 6.6: Forecast of the average number of individuals who are supposed to donate next week
and next month, where the present is intended to be the last day of recorded data (30th June
2018)
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Figure 6.7: Forecast of the average number of individuals who are supposed to donate next
month, divided by blood type, where the present is intended to be the last day of recorded data
(30th June 2018)

To conclude, it is interesting to notice that blood types are not all equally common. Some are

very frequent, others very rare. In Italy group 0 is the most represented, followed by groups

A, B and finally AB; it can be noticed that Figure 6.7 reflects this trend. If these proportions

are on the whole true in Italy and in Europe, by examining the values of Asian and Indian

populations, we would notice a clear prevalence of group B, sometimes even greater than group

0; these differences are related to our evolutionary history (Fondazione Gimema (2015)).
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Starting from the works by Gianoli (2016) and Spinelli (2019), the thesis models the blood

donation process as recurrent events in a Bayesian framework. Forecasting the number of donors’

arrivals is essential to plan efficiently the storage of this important resource and to understand

how much staff is needed in a future time window. Moreover, the model could be used to forecast

the behaviour of donors with some specific profiles, in order to understand which categories of

individuals are more likely to donate and to effectively carry out promotion campaigns to attract

them.

The data are downloaded from two databases of the AVIS section of Lambrate, which is a very

important blood collection centre in Milan and provides the blood bags to Niguarda hospital. In

general, the data are obtained through questionnaires filled in by donors and through measure-

ments of their vital parameters before each donation. There are several requirements to become

a donor, such as age (between 18 and 65, or older with a medical permit), weight (exceeding 50

kilograms) and being in good medical condition. In addition to the safety of blood extracted,

also the donors’ health is important, so each time a person attempts to make a donation, the

staff test his/her temperature, hemoglobin, blood pressure and pulse (Aldamiz-Echevarria and

Aguirre-Garcia (2014)). Since the obtained dataset was not complete, a preliminary work for

missing values imputation has been performed by means of the package MICE of the R statistical

software.

Three different models are tested. Model 0 is a natural extension of a model in Spinelli

(2019), obtained with the inclusion of time-dependent covariates in addition to fixed ones and

random frailties; all the formulas have been adapted accordingly. The time-dependent individual

features measured at each donation are hemoglobin, pulse, minimum pressure and maximum

pressure. Model 1 and Model 2 extend Model 0 in two different ways: following Song and Kuo

(2013), Model 1 introduces an autoregressive behaviour for the random frailties, still keeping

them separate from the baseline intensity function as in Model 0. Instead, Model 2 thinks of the

piecewise constant baseline intensity function as the common mean of the individual random

frailties, i.e. as a prior hyperparameter; Model 1 presented some identifiability problems that
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have been overcome by the parameterization ofModel 2. Sampling from the posterior distribution

is achieved via the software platform Stan, that provides MCMC algorithms. After an accurate

analysis, Model 2 turns out to be the best one and its posterior analysis is presented in details

in Chapter 5. The analysis highlights a decreasing trend of the baseline intensity function

and identifies the individual features (donors gender, smoking habits, alcohol consumption,

physical activity, BMI (Body Mass Index), Rh (Rhesus factor), blood type, age at first donation,

hemoglobin and minimum pressure) as significant covariates that influence the intensity function

and hence determine the donors personal propensity to donate. The addition of interactions

between donors gender and hemoglobin, Rh and BMI respectively was found to be significant in

differentiating male and female donors behaviour.

The focus of Chapter 6 is on planning and profiling. Planning is a key aspect for AVIS’

internal organization. Knowing in advance the number of incoming donors can lead to an

optimal planning of the appointment scheduling system and to an efficient sizing of the centre

in a future time-window, in terms of staff required. On the other hand, profiling concerns

the acquisition campaigns of new donors. Blood collection centres need to know both the

internal and external factors that affect potential donors. The internal factors include personal

characteristics, experiences, motivations, attitudes and perceived risks, while external factors

include information channels as webpages, posters, ads and verbal communication. Groundless

fears among non-donors - based on their misperceptions about what can happen to them if they

donate (whether they can get a disease or any other fear) - has to be overcome by educational

communication, convincing prospective donors of the safety of both collection practices and

supply (Aldamiz-Echevarria and Aguirre-Garcia (2014)). The use of the model proposed in this

thesis can facilitate this process of education, as it provides to the blood collection centres a

priori knowledge of the profiles that are more likely to donate and it allows them to organize

their acquisition campaigns accordingly.

In order to have a complete picture in the forecast of the number of donors’ arrivals, also

new incoming donors should be considered. The model developed in this thesis focuses only on

donors already present (insample prediction). This choice was made because new donors are

very few compared to the recurrent ones. A possible enrichment may consist in the addition of

a predictive on new donors’ arrivals (outsample prediction).

Another possible extension of the proposed model goes in the direction of including left-

censoring times, in addition to the right-censure already present. In this way, the model can

also be included information on "old" donors, which can not be traced at the beginning of their

process of donation, because their first donation was done before recording regular entries in the
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database.

In order to improve flexibility, parametric assumptions on the random frailties’ distribution

can be avoided by modelling them a priori with a Dirichlet Process. We mentioned this non-

parametric Dirichlet choice in Section 1.10 and Song and Kuo (2013) was taken as a reference

point. Also Pennell and Dunson (2006) deepens this approach. The structure proposed in the

article is centered on a dynamic Gamma frailty model, but the true frailty distribution is allowed

to deviate from the parametric form; the amount of uncertainty in the Gamma assumption is

controlled by some hyperparameters. More in details, this method identifies clusters of sub-

jects whose genetic traits convey a similar level of susceptibility at the outset of the study as

well as clusters of subjects who experience similar increases in their susceptibility over each

time-interval.
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Appendix A

MICE notation and algorithm

A.1 Notation

Let Yj with j = 1, . . . , p one of the p incomplete covariates, where Y = (Y1, . . . , Yp). The

observed and missing parts of Yj are denoted by Y obs
j and Y mis

j , respectively, so Y obs =

(Y obs
1 , Y obs

2 , . . . , Y obs
p ) and Y mis = (Y mis

1 , Y mis
2 , . . . , Y mis

p ) stand for the observed and missing

data in Y. The number of imputation is equal tom ≥ 1. Finally let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)

denote the collection of the p− 1 variables in Y except Yj .

A.2 Algorithm

Let the hypothetically complete data Y be a partially observed random sample from the p-

variate multivariate distribution P(Y|θ). We assume that the multivariate distribution of Y

is completely specified by θ, a vector of unknown parameters. The problem is how to get the

multivariate distribution of θ, either explicitly or implicitly. The MICE algorithm obtains the

posterior distribution of θ by sampling iteratively from conditional distributions of the form

P(Y1|Y−1, θ1)

P(Y2|Y−2, θ2)

...

P(Yp|Y−p, θp)

The parameters θ1, . . . , θp are specific to the respective conditional densities and are not nec-

essarily the product of a factorization of the ‘true’ joint distribution P(Y|θ). Starting from a
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simple draw from observed marginal distributions, the t-th iteration of chained equations is a

Gibbs sampler that successively draws

θ
∗(t)
1 ∼ P(θ1|Y obs

1 , Y
(t−1)

2 , . . . , Y (t−1)
p )

Y
∗(t)

1 ∼ (Y obs
1 , Y

(t−1)
2 , . . . , Y (t−1)

p , θ
∗(t)
1 )

...

θ∗(t)p ∼ P(θp|Y obs
p , Y

(t)
1 , . . . , Y

(t)
p−1)

Y ∗(t)p ∼ (Yp|Y obs
p , Y

(t)
1 , . . . , Y (t)

p , θ∗(t)p )

where Y (t)
j = (Y obs

j ;Y
∗(t)
j ) the j-th imputed variable at iteration t. Observe that previous

imputations Y ∗(t−1)
j only enter Yj∗(t) through its relation with other variables, and not directly.

Convergence can therefore be quite fast, unlike many other MCMC methods.
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Computations

All details reported in this section are referred to Model 0. The extensions for Model 1 and

Model 2 can be easily derived. The first important step is to effectively represent the likelihood’s

integral in C++:

τik = ui

∫ ak

ak−1

Yi(s)e
x′i(s)βds

for each donor i = 1, . . . ,M and time-interval k = 1, . . . ,K, where a0, a1, . . . , aK are the cut-

points. We assume the covariates to be step functions:

xi(t) = xi(tij) tij ≤ t < ti,j+1 j = 1, . . . , ni

where ti,ni+1 = ci and ci is the censoring time for donor i. Moreover ni is his/her total number

of donations. The result written in pseudo-code is

τik =

ni∑
j=1

uie
xi(tij)

′β((ti,j+1 ∧ ak)− ((tij + Φi) ∨ ak−1) ∨ 0) (B.1)

Φi =


150 if i is female donor

85 if i is male donor

The resulting log-likelihood is

log(L ) =

K∑
k=1

n.k log λk +

M∑
i=1

ni log ui +

M∑
i=i

ni∑
j=1

xi(tij)
′β −

M∑
i=1

K∑
k=1

uiλkτik (B.2)

where n·k is the total number of donations in k-th interval.
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Appendix C

The model written in C++ and functions

for goodness of fit

The package rstan is the R interface to Stan and its source code is hosted on GitHub. The stan

function does all of the work of fitting a Stan model and returning the results as an instance of

stanfit. The main steps are the following:

• translate the Stan model to C++ code;

• compile the C++ code into a binary shared object, which is loaded into the current R session

(an object stanmodel is created);

• draw samples and wrap them in a stanfit object.

The returned object can be used with methods such as print, summary, and plot to inspect and

retrieve the results of the fitted model. The script written in Stan for Model 0 is reported below

(the details on transformed data’s initialization are reported in Appendix D).

data{

int<lower=1> M; // number o f donors

int<lower=1> Nmax; // max number o f r e cu r r en c e s

int<lower=2> K; // number o f nodes (K−1 i n t e r v a l s )

int<lower=0> P; // number o f c ova r i a t e s

int<lower=0> delay [ 2 ] ; // r e s t time a f t e r l a s t donation

int<lower=1, upper=2> sex [M] ; // donor ’ s gender

matrix [M,Nmax+1] t imes ; // events ’ t imes + censo r ing time

// negat ive time i f event doesn ’ t happen

vec to r [K] nodi ; // nodes

int<lower=1> l a s t [M] ; // index o f l a s t obse rvat i on

matrix [Nmax, P] X[M] ; // des ign array o f matr i ce s
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C. The model written in C++ and functions for goodness of fit

r ea l <lower=0> alpha ; // u_i ’ s shape parameter

r ea l <lower=0> a_lambda ; // lambda_k ’ s shape parameter

r ea l <lower=0> b_lambda ; // lambda_k ’ s s c a l e parameter

r ea l <lower=0> sigma2_b ; // beta_p ’ s var iance

r ea l <lower=0> de l t a ; // beta_0 ’ s shape and s c a l e parameter

}

transformed data{

matrix [K−1,M] n ; // number o f events in each i n t e r v a l f o r each donor

vec to r [K−1] npunto ; // number o f events in each i n t e r v a l

i n t nind [M] ; // number o f events f o r each donor

vec to r [M] n_donor ; // numer o f donat ions f o r each donor

matrix [Nmax, K−1] tau [M] ; // K nodes and K−1 i n t e r v a l s

i n t kappa [M, Nmax ] ; // i nd i c a t e in which i n t e r v a l donat ions take p lace

f o r ( i in 1 :M){

nind [ i ]=0;

f o r ( t in 1 : (Nmax) ){

i f ( t imes [ i , t ]>=0) nind [ i ] +=1;

}

}

f o r ( i in 1 :M){

f o r ( k in 1 : (K−1)){

n [ k , i ] = 0 ;

f o r ( j in 1 : nind [ i ] ) {

i f ( ( t imes [ i , j ]>nodi [ k ] ) && ( times [ i , j ]<=nodi [ k+1])){

n [ k , i ] += 1 ;

}

}

}

}

f o r ( k in 1 : (K−1)) {

npunto [ k ] = sum(n [ k , ] ) ;

}

f o r ( i in 1 :M){

n_donor [ i ] = sum(n [ , i ] ) ;

}
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C. The model written in C++ and functions for goodness of fit

f o r ( i in 1 :M){

f o r ( j in 1 :Nmax){

f o r ( k in 1 : (K−1)){

i f ( j<=l a s t [ i ] )

tau [ i , j , k ] = fmax ( fmin ( t imes [ i , j +1] , nodi [ k+1]) −

− fmax ( t imes [ i , j ]+ delay [ sex [ i ] ] , nodi [ k ] ) , 0 ) ;

e l s e

tau [ i , j , k ] = 0 ;

}

}

}

f o r ( i in 1 :M){

f o r ( j in 1 : l a s t [ i ] ) {

f o r ( k in 1 : (K−1)){

i f ( nodi [ k]< times [ i , j ] && times [ i , j ]<=nodi [ k+1])

kappa [ i , j ] = k ;

}

}

}

}

parameters {

vector<lower=0>[K−1] lambda ;

vec to r [P ] beta ;

vector<lower=0>[M] u ;

r ea l <lower=0> beta_0 ;

}

model{

// log−l i k e l i h o o d 1 s t part

t a r g e t += sum( npunto .∗ l og ( lambda))+sum(n∗ l og (u ) ) ;

// log−l i k e l i h o o d 2nd part

f o r ( i in 1 :M){

ta r g e t += sum(X[ i ]∗ beta )−(u [ i ]∗

∗ ( ( exp (X[ i ]∗ beta ) ) ’∗ tau [ i ]∗ lambda ) ) ;

}

// log−p r i o r s

t a r g e t += gamma_lpdf ( lambda | a_lambda , b_lambda ) ;

t a r g e t += normal_lpdf ( beta | 0 , sigma2_b ) ;

t a r g e t += gamma_lpdf ( beta_0 | de l ta , d e l t a ) ;
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t a r g e t += gamma_lpdf (u | alpha , alpha /beta_0 ) ;

}

generated quan t i t i e s {

vec to r [M] l og_l ik ;

f o r ( i in 1 :M){

log_l ik [ i ] = 0 ;

f o r ( j in 1 : l a s t [ i ] ) {

l og_l ik [ i ] += log ( lambda [ kappa [ i , j ] ] ) ;

}

l og_l ik [ i ] += n_donor [ i ]∗ l og (u [ i ])+sum(X[ i ]∗ beta )−(u [ i ]∗

∗ ( ( exp (X[ i ]∗ beta ) ) ’∗ tau [ i ]∗ lambda ) ) ;

}

}

It can be noticed that generated quantities are useful to compute the operators of goodness

of fit, WAIC and LPML, thanks to the following R functions:

WAIC = func t i on ( f i t , param){

l l i k = rs tan : : e x t r a c t ( f i t , param ) [ [ 1 ] ]

p_WAIC = sum( apply ( l l i k , 2 , var ) )

lppd = sum( apply ( l l i k , 2 , f unc t i on (x ) l og (mean( exp (x ) ) ) ) )

WAIC_score = − 2 ∗ lppd + 2 ∗ p_WAIC

return (WAIC_score)

}

LPML = func t i on ( f i t ) {

l l i k = rs tan : : e x t r a c t ( f i t , ’ log_l ik ’ ) [ [ 1 ] ]

CPO. inv = apply ( l l i k , 2 , f unc t i on (x ) mean(1/ exp (x ) ) )

LPML_score = sum( log ( 1/CPO. inv ) )

re turn (LPML_score)

}

where fit is the final stanfit object that constains all the simulation’s results.
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Appendix D

Data preparation in R

After the missing values’ imputation, the dataset avisComplete.R is obtained (called avis in

the script). This dataset is the starting point for data’s preparation which are then transferred

to Stan. The following code uses the R package tidyverse.

# CREATION STANDARDIZED DATASET

# 1) Time−f i x e d c ova r i a t e s

donors=av i s %>% group_by (CAI) %>%

summarise (ETA_PRIMA=f i r s t (ETA_PRIMA) , BMI=f i r s t (BMI) ,

PMAX=f i r s t (PMAX) , POLSO=f i r s t (POLSO) )

donors=donors %>% mutate (ETA_PRIMA = (ETA_PRIMA − mean(ETA_PRIMA))/ sd (ETA_PRIMA) ,

BMI = (BMI − mean(BMI) )/ sd (BMI) ,

PMAX = (PMAX − mean(PMAX))/ sd (PMAX) ,

POLSO = (POLSO − mean(POLSO))/ sd (POLSO) )

# 2) Time−dependent c ova r i a t e s

avis$PMIN=(avis$PMIN−mean( avis$PMIN ))/ sd ( avis$PMIN)

avis$EMOG=(avis$EMOG−mean(avis$EMOG))/ sd (avis$EMOG)

avis$ETA_PRIMA=NULL

avis$BMI=NULL

avis$POLSO=NULL

avis$PMAX=NULL

av i s=l e f t_ j o i n ( av is , donors )

# 3) I n t e r a c t i o n SEX−HEMOGLOBIN

temp=rep (1 , dim( av i s ) [ 1 ] )

idx=which ( avis$SESSO == 0)

temp [ idx ]=0

avis$SESSO_EMOG=temp∗( as . numeric (avis$EMOG))
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# 4) In t e r a c t i o n SEX−BMI

avis$SESSO_BMI=temp∗( as . numeric ( avis$BMI ) )

# 5) I n t e r a c t i o n SEX−RH

avis$SESSO_RH=temp∗( as . numeric ( avis$RH ) )

save ( av is , f i l e ="avisStandard .R")

The dataset avisStandard.R is the final one that allows us to create all the needed data which are

then transferred to Stan, in order to perform the MCMC simulations. It contains standardized

numerical variables and their interactions.

It is now particularly important to understand how the matrix times and the array of matrixes

X are obtained. Their creation requires the use of two temporary datasets: donors, created in

previous script, which stores only time-fixed information and num_repetition, which stores the

number of recurrences. Everything is grouped by CAI.

M = length ( donors$CAI )

num_repetition = av i s %>% group_by (CAI) %>% summarise ( rep=n ( ) ,

c en so r ing=f i r s t ( c en so r ing ) )

Nmax = max( num_repetit ion$rep )

tempi = av i s [ c ( ’CAI ’ , ’ time ’ ) ]

t imes = matrix (−1 , nrow=M, nco l=Nmax+1)

f o r ( i in 1 :M){

tempi_singolo = tempi %>% f i l t e r (CAI == num_repetition$CAI [ i ] )

f o r ( j in 1 : num_repetit ion$rep [ i ] ) {

t imes [ i , j ] = as . numeric ( tempi_singolo [ j , 2 ] )

}

t imes [ i , num_repetit ion$rep [ i ]+1] = num_repet i t ion$censor ing [ i ]

}

save ( times , f i l e =’ t imes . RData ’ )

X = array (0 , dim=c (M, Nmax, P) )

f o r ( i in 1 :M){

df_donor = av i s %>% f i l t e r (CAI == num_repetition$CAI [ i ] )

n = num_repetit ion$rep [ i ]

X[ i , 1 : n , 1 :P ] = array ( as . matrix ( df_donor [ , c ( co l1 , co l2 , . . . ) ] ) )

}

save (X, f i l e = "des ignArray . RData")
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Convergence diagnostics

Focusing on reduced Model 2, the analysis of the following diagnostic tools is performed:

• trace plots;

• potential scale reduction statistic, R̂;

• effective sample size metric, neff;

• autocorrelation plots.

E.1 Beta regression coefficients

Trace plots, which are shown in Figure E.1, are time series plots of the Markov chains and

they show the evolution of the parameters over the 2000 sampling iterations for each chain

(warm-up iterations are not reported). It can be noticed that all chains seem to explore the

same region of their parameter values, which is a good sign. Another way to monitor whether a

chain has converged to the equilibrium distribution is to compare its behavior to other randomly

initialized chains. This is the motivation for the potential scale reduction statistic, R̂. The

R̂ statistic measures the ratio of the average variance of draws within each chain to the variance

of the pooled draws across chains; if all chains are at equilibrium, these will be the same and R̂

will be one. If the chains have not converged to a common distribution, the R̂ statistic will be

greater than one. The effective sample size, denoted as neff, is an estimate of the number of

independent draws from the posterior distribution. The neff metric used in Stan is based on the

ability of the draws to estimate the true mean value of the parameter.
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Figure E.1: Reduces Model 2, βp’s trace plots

In particular

neff =
N

1 + 2

∞∑
k=1

ρ(k)

(E.1)

where N is the total sample size and ρ(k) is the autocorrelation of the chain at lag k. Since the

draws from Markov chain are not independent, neff is usually smaller than N if autocorrelation

is present. The larger the ratio of neff to N , the better the model is. These values are reported

in Table E.1. Since neff/N decreases as autocorrelation becomes more extreme, it is useful to

visualize also the autocorrelation (Figure E.2).
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Parameter neff R̂

βSESSO 292 1.01

βFUMO 3987 1.00

βALCOOL 5123 1.00

βATTIVITAFISICA 2527 1.00

βRH 946 1.00

βPMIN 4423 1.00

βTIPO_0 3254 1.00

βTIPO_B 4068 1.00

βTIPO_AB 4977 1.00

βEMOG 577 1.00

βETA_PRIMA 4441 1.00

βBMI 2081 1.00

βSESSO_EMOG 692 1.00

βSESSO_BMI 2188 1.00

βSESSO_RH 1433 1.00

Table E.1: Reduced Model 2, diagnostic parameter for βps

In general, positive autocorrelation is bad, because it means the chain tends to stay in the

same area between iterations, while the goal is it quickly drops to zero with increasing lags.

Negative autocorrelation is possible and it is useful, as it indicates fast convergence of sample

mean towards true mean.

86



E. Convergence diagnostics

Figure E.2: Reduces Model 2, βp’s autocorrelation plots
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E.2 Alpha baseline intensity function

Diagnostic parameters for αk, k = 1, . . . ,K are reported in Table E.2. Trace plots (Figure E.3)

and autocorrelation plots (Figure E.4) follow, showing an overall good performance.

Parameter neff R̂

α1 79 1.02

α2 115 1.02

α3 140 1.01

α4 155 1.02

α5 205 1.02

α6 250 1.01

α7 210 1.01

α8 233 1.00

α9 125 1.00

α10 113 1.00

Table E.2: Reduced Model 2, diagnostic parameters for αk’s
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Figure E.3: Reduced Model 2, αk’s trace plots
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Figure E.4: Reduced Model 2, αk’s autocorrelation plots
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