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1. Introduction
The Red Planet has been on top in the priority
list of interplanetary exploration of the solar sys-
tem. The Mars exploration landers and rovers
have laid the foundation of our understanding
of the planet atmosphere and terrain. Although
the rovers have been a great help, they also have
limitations in terms of their speed and explo-
ration capabilities from the ground. Robotic
planetary aerial vehicles increase the range of
terrain that can be examined, compared to tra-
ditional landers and rovers, and have more near-
surface capability than orbiters.
The Ingenuity Mars helicopter has been de-
signed by NASA’s Jet Propulsion Laboratory to
test the technical demonstration of aerial flight
in the thin atmosphere of Mars.
A helicopter designed for Mars faces a host of
challenging requirements not typically seen on
Earth. In this thesis, the most important set of
challenges taken under consideration are those
related to the flight dynamics of the vehicle when
operating in the Martian environment, and how
these affect the mechanical design of the vehicle
and the flight control algorithms.
Two aspects of the environment are primary
drivers for the flight dynamics of a helicopter

on Mars:
1. The Martian atmosphere consists primar-

ily of carbon dioxide (CO2) at only 12%
of Earth’s atmospheric density at sea level,
which is equivalent to altitudes around
100.000 ft on Earth.

2. The Martian gravity is approximately 38%
of Earth’s gravity

Designing a helicopter for Mars also presents se-
rious challenges in terms of testing, verification
and validation. It is not possible to fully repli-
cate the Mars environment on Earth; this forces
a greater reliance on analysis, modeling and sim-
ulation, combined with limited testing in par-
tially replicated environments.
This master thesis focuses on the flight dynam-
ics and control for the Mars Helicopter with the
aim of developing a nonlinear dynamic model
and a nonlinear control system for position and
attitude control relying on data found in the lit-
erature about Ingenuity and adapting existing
mathematical models of terrestrial coaxial heli-
copters. The work begins with an overview of
Ingenuity design, and ends with the results of
numerical simulations carried out in some rep-
resentative operating conditions using the pro-
posed control design.
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2. Vehicle overview
The Mars Helicopter design features a coaxial
rotor with two counter-rotating hingeless two-
bladed rotors measuring 1.21 m in diameter,
which are spaced apart by approximately 8% of
the rotor diameter [1]. The rotors are designed
to operate at speeds up to 2800 rpm. The speed
is fixed for the duration of flight, depending pri-
marily on the atmospheric density, which will be
in the range of 0.0145−0.0185 kg/m3. Control of
the vehicle motion is achieved using upper and
lower swashplates, providing collective control,
with a total range of 22◦ and cyclic control with
a range of ±10◦ for each rotor. Yaw control is
achieved using differential collective while keep-
ing the rotor speeds constant via active control
of the propulsion motors.

Figure 1: Ingenuity 3D model

The gross vehicle weight is 1.8 kg, a substan-
tial portion of which is taken up by the bat-
teries. The batteries provide energy for flights
lasting up to approximately 90 s while also pro-
viding sufficient energy for nonflight operation
and night-time survival heating. The batteries
and other electronics are housed in a cube-like
fuselage attached to the central mast, inside of
which is a warm electronics box .
The low density Martian atmosphere and the
relatively small Mars Helicopter rotors result
in very low chord-based Reynolds number flows
over a range of Rec ≈ 103 to 104. Furthermore,
the low density and low Reynolds number re-
duce the lifting force and lifting efficiency, re-
spectively, which are only marginally compen-
sated by a lower gravitational acceleration.

All these issues represented a great challenge
in the selection of proper airfoil sections for
the rotor blades. The blade profile selected is
the CLF5605 airfoil designed by Aerovironment.
The unusually high first flapping frequency re-
quired for stable flight drove the design to a
minimum section thickness of the blades. The
high first flapping frequency is caused by the
low density atmospheric condition affecting the
dynamics of blade flapping since the predomi-
nant source of damping is aerodynamic. The re-
duced damping affects the helicopter dynamics
in multiple ways, one of which is to introduce
poorly damped, oscillatory regressing and ad-
vancing flap modes that couple with the body of
the helicopter. This is a potential issue for flight
control, because a high-bandwidth attitude con-
troller can potentially interact with flap modes
destabilizing the system. This issue is solved by
making the rotor blades extremely stiff, driving
the flap modes to high enough frequencies.

2.1. Demonstration vehicle
The vehicle used to demonstrate controlled flight
is shown in Fig. 2. It features a full-scale rotor
similar to the final vehicle built for Mars flight,
but with a slightly larger rotor spacing corre-
sponding to 9% of the rotor diameter. However,
because this vehicle was required to lift its own
weight in Earth gravity, anything nonessential to
the demonstration of controlled flight was left off
the vehicle to reduce weight to a total of 765 g.
Unlike the Mars vehicle, the demonstration ve-
hicle was equipped with cyclic control only on
the lower rotor (and collective on both rotors).
This provides sufficient degrees of freedom for
control but results in reduced control authority
and greater cross-axis coupling.

Figure 2: Demonstration vehicle used
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3. Vehicle dynamics
The configuration of the rigid UAVs can be iden-
tified with the motion of a body-fixed frame
FB = (OB, {b1, b2, b3}) with respect to a refer-
ence frame FI = (OI , {i1, i2, i3}), where bj and
ij for j ∈ {1, 2, 3} are unit vectors forming right-
handed orthogonal triads (with third component
pointing down) with OB located at the center of
mass. The dynamic model of the rigid body can
be described in body frame by:{

mV̇b + ωb × (mVb) = Fext

Inω̇b + ωb × (Inωb) = Mext

(1a)
(1b)

where Vb ∈ R3 is the velocity vector in body
frame and ωb ∈ R3 is the body-axis angular rates
vector; m is the mass of helicopter and In ∈
R3×3 is the inertia tensor; Fext ∈ R3 and Mext ∈
R3 are the external forces and moments.

3.1. Rotor dynamics
Following the literature on the modeling of
small-scale helicopters [5], a simplified model is
used to describe rotor dynamics equations
Each rotor of the coaxial helicopter is seen as a
rigid disk which can tilt about its longitudinal
and lateral axes with angles ai and bi, respec-
tively, where i ∈ {up, low}. Their expressions
can be derived using the tip-path-plane rotor
model and discarding the higher-order terms [5]:

τf ḃi = −bi − τfp−Baai +BsB1 +BcA1

τf ȧi = −ai − τfq +Abbi −AsB1 +AcA1

(2a)
(2b)

In Eq. 2, A1 and B1 are, respectively, the lateral
and longitudinal cyclic blade pitch angle defined
as functions of the longitudinal and lateral cyclic
controls δlon and δlat. Ab and Ba are constants
describing the coupling effect between longitudi-
nal and lateral flapping motions. τf is the rotor
time constant. Although simple and not reliable
for high frequencies, the considered dynamical
model is sufficient for the purposes of this work
since it allows capturing accurately the low fre-
quency flapping behavior of Ingenuity rotor and
the stiff mechanical design places the rotor dy-
namics far away from the intended control band-
width.

3.2. External forces and moments
The overall contributions to forces and moments
acting on the helicopter are:{

Fext = FT + Fg + Fa

Mext = MQ +Mβ +Ma

(3a)
(3b)

where FT ∈ R3 and MQ ∈ R3 are the rotors
thrust and torque, respectively; Fg ∈ R3 is the
gravitational force vector in body frame; Mβ ∈
R3 is the hub torsional moment vector and Fa ∈
R3, Ma ∈ R3 are the aerodynamic forces and
moments vectors.

A. Rotors thrust and torque
According to the aerodynamic actuator disk the-
ory, the magnitude of rotor thrust and rotor mo-
ment can be formulated as:

T = ρCTAΩ
2R2

Q = ρCQAΩ
2R3

(4a)

(4b)

where ρ is the air density, A is the rotor disk
area, Ω is the rotor rotational speed, R is the
rotor radius, CT is the rotor thrust coefficient
and CQ is the rotor torque coefficient. All these
parameters are constant except for the last two.
Since an implementation of a detailed inflow
evaluation is not needed for the purposes of this
work, an alternative simplified formulation that
neglects the radial distribution of the inflow has
been taken under consideration. Assuming the
blade pitch angle θi and the inflow λi uniformly
distributed along the blade, CT for both rotors
can be computed by:

λi =
CTi

2
√

µ2+(λi−kλj−µz)2

CTi =
Clα,i

σ

2

(
θi

(
1
3 + µ2

2

)
+

µz+kλj−λi

2

) (5a)

(5b)

where k is the coefficient of interaction between
rotors (equal to zero for upper rotor).
Similarly, CQ can be computed using the ap-
proximated expression:

CQi = λiCTi +
σ

8
Cdi (6)

where Cdi is the sectional profile drag coefficient.

B. Aerodynamic forces and moments
Aerodynamics forces and moments act as pertur-
bations of the system due not only of external
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wind and body motion but also for the inter-
action of the flow generated by rotors with the
helicopter fuselage.
The aerodynamic forces in the three body direc-
tions can be formulated in a quadratic form:

Fa = −ρ

2
SVtot∥Vtot∥ (7)

where S ∈ R3 is the effective drag areas vector
and Vtot = [VuxVvyVwz]

T is the total relative ve-
locity (including wind and propeller induced ve-
locity). Note that the resultant of aerodynamic
forces is applied in correspondence of the center
of pressure.
On the other hand, the vector of aerodynamic
moments vector Maero ∈ R3 can be defined as:

Ma = −ρ

2

 AxClpVuxp
AyCmqVvyq
AzCnrVwzw

+ dcp × Faero (8)

where the constants Clp, Cmq and Cnr are the
aerodynamic damping moment coefficients.

3.3. Nonlinear model
The final model in body frame to be controlled
is then:

Ṙ = Rω̂b

ẋ = RVb

mV̇b + ωb × (mVb) = FT + Fg + Fa

Inω̇b + ωb × (Inωb) = MQ +Mβ +Ma

τf ḃi = −bi − τfp−Baai +BsB1 +BcA1

τf ȧi = −ai − τfq +Abbi −AsB1 +AcA1

(9a)
(9b)

(9c)
(9d)

(9e)
(9f)

3.4. Model tuning
The system in Eq. 9 can be linearized around
hovering condition. This has a double goal:

1. Use the linearized dynamics at low fre-
quency in order to evaluate the unknown
parameters of the nonlinear model, ex-
ploiting the numerical values of Ingenuity’s
demonstration vehicle stability and control
derivatives available [3].

2. Have an adequate model to study the main
dynamic characteristics of the system and
on which to perform the synthesis of linear
control solutions.

The resulting parameterized state-space model
can be described in low frequency domain by:

M ˙̄x = Fx̄+Gū (10)

where the linearized flight dynamics is accu-
rately described only by the state vector x̄ =
[u; v;w; Φ;Θ;Ψ; p; q; r]: this approximation is
acceptable because of the stiff rotor design lead-
ing to a rotor dynamics always far from the de-
sired bandwidth of control system. The input
vector is defined as ū = [θs0; θlc; θls; θa0], with
θs0 and θa0 the symmetric and antisymmetric
collective components, respectively. M ∈ R9×9

is the diagonal inertial matrix, F ∈ R9×9 is the
matrix containing the stability derivatives of the
system and G ∈ R9×4 is the matrix containing
the control derivatives of the system.
In order to estimate the stability and control
derivatives of the system, it is necessary first to
identify the trimming values of the system pa-
rameters. In hovering condition, the position of
the helicopter is constant and all velocities are
set to zero. The flapping motion of blades is null
resulting in trimmed cyclic control inputs equal
to zero. In hovering, the thrust ratio between
rotors can be defined as:

Tup

Tlow
= 1.4375 (11)

which has been derived analytically in [4] for ro-
tors operating in hovering condition at balanced
torque with the lower rotor operating in the vena
contracta of the upper rotor. The trimmed val-
ues of collective control inputs can be identified
from Eq. 5 knowing that in hover condition the
sum of the thrusts must be equal to the gravita-
tional force.
Once the trimming values of the system, the
stability and control derivatives can be evalu-
ated taking the partial derivative of dynamics
equations respect to each state and to each con-
trol input, respectively. A comparison between
Ingenuity identified model reported in [3] and
our model has been carried out using the MAT-
LAB function gapmetric. The obtained result
is a small gap between the two systems imply-
ing that any linear controller that stabilizes the
Ingenuity identified dynamics system also sta-
bilizes the linearized plant obtained using the
proposed modeling technique.
In Fig. 3, the open loop response of roll and
pitch torques to steps in the cyclic channels is
shown. The response is close to the response of
the real system as reported in [3].
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Figure 3: Open loop response of roll and pitch
torques to steps in the cyclic channels

4. Vehicle control system
The development of the control system starts
with the implementation of a linear control sys-
tem obtained by replicating the architecture pro-
posed in the literature [2] for Ingenuity; this
is useful for benchmark purposes and to see
the responses of our model to simple commands
and its behavior near hovering conditions. Af-
ter deriving a suitable nonlinear-control oriented
model for the Mars Helicopter, a nonlinear con-
trol architecture has been designed, which aims
at improving the system performance far from
hovering and to make the UAV capable of fol-
lowing more complex trajectories.

4.1. Baseline controller
Fig. 4 illustrates the overall control architecture
implemented in Ingenuity [2], which exploits a
cascade architecture to handle the underactu-
ated nature of the helicopter dynamics.
Heave and yaw angle are controlled by a sim-
ple PID-type controller. The horizontal position
of the vehicle is controlled via a nested archi-
tecture. An inner loop is formed by indepen-
dently controlling roll and pitch with PD-type
controllers. The reference input to the inner loop
is provided by an outer loop, which is formed
by controlling the horizontal position using PID-
type controllers. The horizontal position is rep-
resented in a local ground frame, whereas the
roll and pitch angles are the angles of the body
frame relative to gravity direction; therefore, the
output of the outer loop is rotated by the yaw
angle before being used as a reference by the in-
ner loop.
The first step for the design of control system is
the selection of collective and cyclic mixing ma-
trices to decouple control inputs.

Figure 4: Baseline controller architecture [2]

Mcol ∈ R2×2 and Mcyc ∈ R2×2 are taken as in-
verse matrices such as:[

θs0
θa0

]
=

(
Zs0 Za0

Ns0 Na0

)−1 [
δh
δy

]
(12)

[
θlc
θls

]
=

(
Llc Lls

Mlc Mls

)−1 [
δr
δp

]
(13)

where δh, δy, δr and δp are the control inputs
aligned with the respectively axis and the terms
inside the matrices are the control derivatives of
the linearized system.
The next step is the tuning of PID- and PD-type
controllers by considering decoupled dynamics
for each axis; they have been tuned taking as
plant the linearized model described by Eq. 10
and considering as starting design parameters
the stability margins and crossover frequencies
reported in [2].
The resulting robustness of the system has been
checked through stability analysis with Nichols
charts for each channel; then, a multiloop disk
margins analysis has been used to quantify the
largest complex perturbations that can be in-
jected at the input point to the plant, simulta-
neously and independently in each channel.
The linear controller has been tested on nonlin-
ear plant through numerical simulations, show-
ing expected results near hovering conditions
(Fig. 5), but deteriorated performance far from
it (Fig. 6).

4.2. Nonlinear controller
The starting point of the nonlinear control de-
sign is the development of a simplified nonlinear
model that accounts for the main nonlinear ef-
fects at small velocities, notably kinematic non-
linearities.
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Figure 5: NED position near hovering
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Figure 6: NED position for greater steps

Recalling Eq. 9d, representing it in inertial
frame and taking some assumptions, such as
steady state rotor dynamics, the resulting math-
ematical model is described by:

ẋ = v

mv̇ = −mge3 + TcRe3 + f̃e

Ṙ = Rω̂b

Jω̇b = −ω̂bJωb + τc + τe

(14a)

(14b)

(14c)
(14d)

where v ∈ R3 is the inertial translational ve-
locity, Tc and τc ∈ R3 are are the overall thrust
and the torque applied by the propellers, respec-
tively, and (f̃e, τe) ∈ R3 collects all disturbance
terms.
The allocation matrix of the system is defined
by: 

θs0
θa0
θlc
θls

 =

(
M−1

col

M−1
cyc

)
Tc

Lc

Mc

Nc

 (15)

A nonlinear cascaded controller for position-
yaw setpoint regulation has been implemented
to tackle the platform underactuation; the con-
trol architecture corresponds to a double cascade
P/PID nonlinear controllers for position and at-
titude control with a planner in the middle (see
Fig. 7)

Figure 7: Nonlinear controller architecture

The control law is described by:

fd
c = sat(PIx(s)(k

0
p,x(x− xd)− v)) +mge3T d

c = ||fd
c ||, bp3 = fd

c

||fd
c ||

Rp =
[

bp3×bd1
||bp3×bd1 ||

× bp3
bp3×bd1

||bp3×bd1 ||
bp3

]
τdc = PIR(s)(ω

d(Kp,R(R
T
p R)− ω)−DR(s)ω

where PI(.)(s) and D(.)(s) are continuos func-
tions defining, respectively, a proportional inte-
gral and derivative actions. The rotation ma-
trix Rp ∈ SO(3) is the reference signal to be
tracked by the attitude controller and ωd is a
nonlinear proportional stabilizer assigning the
reference velocity to the inner-loop attitude PID
controller:

ωd(Kp,RR
T
p R) = 2Kp,Rsgn(qe(Rp))qe(Rp)

where qe(Rp) ∈ R and qe(Rp) ∈ R are the vec-
torial and the scalar part of the quaternion error
qe ∈ S3. A back calculation anti-windup method
has been introduced in order to manage the sat-
uration of the PI and not ruin the performances
of the controller. The proposed position control
law can be interpreted as a conditional integra-
tor [6], a control design that combines the be-
havior of a sliding mode controller, a powerful
solution to handle large exogenous disturbances
that would make the actuator saturate, and of
a PI controller for small errors, which can be
tuned to a achieve desired level of performance
with linear design tools.
Thanks to the structure of the proposed con-
trol law, a linearized version of the closed-loop
system could be used to carry out tuning of
the gains so that the controller achieves the
same performance requirements identified for
the baseline but also global stability results on
the nonlinear control model.
The nonlinear control law has been tested trough
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different numerical simulations: first, near hov-
ering conditions and then far from the design
point. The results obtained show the same per-
formances of the baseline controller near equi-
librium, with a better decoupling between axis,
and a good response of the system to great step
inputs (Fig. 8) and to follow complex trajecto-
ries like the one illustrated in Fig. 9, where the
UAV after reaching an altitude of 3 m performs
lateral and longitudinal translations of 20 m and
10 m, respectively, before returning to the initial
point. Note that a three-second horizontal gust
of magnitude 10 m/s is applied at time t = 42 s;
in Fig. 10, the peak of displacement along the x
axis due to wind is visible, but its magnitude is
low showing the robustness of the designed con-
trol law even in the presence of external distur-
bances. In order to show the differences between
nonlinear controller and baseline controller, the
same maneuver has been carried out using the
linear controller (Figs .11 and 12).
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Figure 8: NED position for great steps
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Figure 9: NED position for complex trajectory
with wind

5. Conclusions
In the presented thesis, a nonlinear dynamic
model of the Mars helicopter has been derived
for simulation purposes and for the preliminary
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Figure 10: Tracking error of NED position for
complex trajectory with wind

Figure 11: NED position for complex trajectory
with wind and using linear controller
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Figure 12: Tracking error of NED position for
complex trajectory with wind and using linear
controller

derivation and validation of nonlinear control
laws.
While simple, the parameters of the nonlinear
model could be tuned to achieve a behavior
very similar to the demonstrator vehicle of the
Mars Helicopter in near hovering conditions, by
exploiting identification experiments reported
in the literature.
In the second part of the thesis, the control
system has been developed starting with the
implementation of a linear controller obtained
by replicating the architecture proposed in
literature for Ingenuity and following with
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the development of the proposed nonlinear
controller. Both controllers have been tuned
properly checking their performances through
linear stability analysis as Nichols charts and
MIMO disk margins.
The numerical simulations carried out have
shown good results of the baseline controller
when the system operates near hovering con-
dition, but deteriorated performance far from
it. The implementation of a nonlinear control
law has improved the system performance far
from hovering and has made the UAV capable
of following more complex trajectories.
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