
Executive Summary of the Thesis

Pose Estimation and Semantic Meaning Extraction for Robotics Using
Neural Networks

Laurea Magistrale in Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Davide Figundio

Advisor: Prof. Andrea Maria Zanchettin

Co-advisors: Ing. Niccolo’ Lucci, Prof. Paolo Rocco

Academic year: 2022-2023

1. Introduction
Perception is a fundamental task in robotics,
that provides a control algorithm with knowl-
edge and information on its surroundings
through sensors and data processing. While
RGB color cameras are one of the most readily
available sensors, they are rarely used for this
task. This is primarily because their outputs
do not not directly reflect any physical quantity,
requiring a difficult analysis process on a large
amount of data.
Neural networks, and Convolutional Neural Net-
works in particular, are perfectly suited to solve
these issues, due to their ability to parallelize
and model complex and unknown functions
through training. Because of this, the introduc-
tion of CNNs to tasks such as object detection
and pose estimation has led to rapid improve-
ments in accuracy and reliability, subsequently
leading to an interest in applying these methods
to perception tasks in robotics.
However, machine learning approaches bring a
series of challenges, primarily due to their hard
requirement for large amounts of training data,
and the opaqueness of the resulting models to
conventional analysis and understanding. Fur-

thermore, the raw outputs of a pose estimation
network must often be refined into more ab-
stract information in order to be utilisied by the
high-level planning algorithms commonly imple-
mented in robotics applications.
In this thesis, we explore some possible solutions
to these issues, by utilising a state-of-the-art 6D
pose estimation neural network, EfficientPose[1],
and implementing it in a robotics applica-
tion. In particular, we begin by develop-
ing a method for efficiently generating train-
ing datasets starting from photographed back-
grounds, using an "Augmented Reality" ap-
proach (section 2). Then we devise an approach
for abstracting the semantic state of a scene ex-
ploiting the outputs of the trained network (sec-
tion 3). Finally, we test the overall performance
of our methods in real-world conditions, using
our pose and state predictions to plan the move-
ment of a robotic manipulator in performing a
simple assembly task (section 4).

2. Augmented Reality Datasets
The main limitation of using synthetic datasets
for training is the difficulty of reproducing real-
world conditions. Since a simulated sensor and

1

Executive summary Davide Figundio

simulated environment cannot re-create noise
and unmodelled physical effects the same way a
real sensor would, a model trained purely on sy-
thetic data is not guaranteed to behave correctly
in a real-wold scenario. This issue is commonly
called "reality gap". Our approach for solv-
ing this problem is to make the training images
as similar as possible to the real environment,
while introducing a sufficient degree of variabil-
ity in order to make the model adaptable to vari-
ous different conditions, according to the princi-
ples of Domain Randomization[5]. The philoso-
phy behind this approach is that most industrial
and collaborative robotics applications are sta-
tionary, thus we can specialise the dataset, and
therefore the network, on one particular envi-
ronment.

Figure 1: 3D models used for generating one of
our AR datasets, and a sample image from the
resulting dataset, that we called ButtonPose-
near.

We therefore start from a set of photographs,
captured from several different positions that
are similar to those assumed in the testing sce-
nario. In each photograph, the surface where
the objects would be placed is highlighted us-
ing an ArUco[3] marker, making its pose eas-
ily detectable. We then generate the dataset as
a set of images that use these photographs as
backgrounds. For each image, we render the 3D
models of each object on top of the backgrounds,
setting their pose with a sequence of three roto-
translations:

1. An initial roto-translation (ts, Rs) from the
camera reference to the position of the sur-
face, given the ArUco marker.

2. A second, randomised roto-translation

(tr, Rr), dependant on the object’s degrees
of freedom. In our case, for objects placed
on a surface, this is of the form:

tr =

xryr
0

 , Rr =

cos θr − sin θr 0
sin θr cosθr 0
0 0 1

where xr, yr, θr are extracted from uniform
probability distributions.

3. A final correction transformation (tc, Rc)
that aligns the object with the surface, ac-
cording to its geometry.

Figure 2: Example detections and pose esti-
mations performed by an EfficientPose model
trained on the ButtonPose-near dataset.

Object AP AD-S [mm] ADD-S
2-slot 0.9994 2.6850 99.94%
3-slot 1.0 2.8913 99.95%

red button 0.9663 1.3550 95.84%
arrow button 0.9729 1.4384 96.47%
safety button 1.0 1.7229 99.84%

unknown button 0.9948 1.3384 98.74%
Average 0.9889 1.9052 98.46%

Table 1: Performance of EfficientPose trained on
ButtonPose-near, measured using the Average
Precision, Average Symmetric Distance (AD-S),
and ADD-S[6] metrics.

We then use data augmentation methods that
rescale and resize each image during train-
ing, and change its colors and grain. These
methods further randomise the dataset, increas-
ing its adaptability to new poses and light
conditions[1].
Thus we generated several datasets using this
method, allowing us to train and test the
model’s performance in different conditions and
for various objects. In table 1 we show the
performance of one of these, ButtonPose-near,
and a sample real-world inference for the same
dataset is shown in figure 2.

2

Executive summary Davide Figundio

This variability in conditions gave us the oppor-
tunity to make a couple of observations. We no-
ticed that the network’s accuracy and reliability
is vastly dependant on an object’s size and dis-
tance from the camera. Our best results came
from datasets where the objects were placed as
close as possible to the camera while limiting
occlusions.
Secondly, we noticed that our models, being
trained on a small number of objects, are very
susceptible to false positives due to the introduc-
tion of untrained objects into the image. This
behaviour can be reduced to a certain extent by
introducing "decoy" items into the generation
procedure without labelling them in the dataset.
In this manner, eventual false positives result-
ing from their appearance are recognized as such
during training and corrected. While in theory
this behaviour could be generalised by introduc-
ing enough variety of decoys into generation, the
nature of black-box models makes this unpre-
dictable, meriting further research.

3. Semantic Meaning Extrac-
tion

For many tasks it is necessary to abstract low-
level information into high-level descriptions.
The nature of these descriptions is specific to the
task at hand, but a common situation is the as-
sembly of a workpiece from its components. By
tracking the each component’s pose, we would
obtain the state of the overall assembly. For this
thesis, the components we considered are the set
of modular buttons and boards previously de-
picted in figure 1. This procedure is generalis-
able to any set of components, as long as they
remain identifiable throughout the entire task.
A high-level description for our application re-
quires determining which buttons are in which
slots. We handle this using a threshold compari-
son approach, which can be divided three steps:

1. Using the poses inferenced by the neural
network, we compute for each button and
each slot a distance metric that represents
the button’s "distance" from that slot.

2. We compare this metric with a distance
threshold : if it is less than this value, the
button is a viable candidate for the slot.

3. We resolve conflicts between multiple but-
tons assigned to the same slot and vice-
versa.

We considered two possible distance metrics:
Center-to-Center (C2C) and Average Symmet-
ric Distance (AD-S). Both require two poses:
the button’s pose as estimated by the network,
(t̂, R̂), and the pose the button would have if it
was in the slot, (t, R). This second pose is com-
puted using the network’s estimate of the board
pose that the slot belongs to. C2C is then the
distance between the center of the two poses,
||t̂− t||2, while AD-S is expressed as:

AD-S =
1

n

∑
x1∈M

min
x2∈M

||(Rx2 + t)− (R′x1 + t′)||2

where M is a set of 3D points belonging to the
object, and n is the number of points considered.
While C2C is much more computationally sim-
ple, it does not percieve errors in rotation, while
AD-S is much more precise.

Figure 3: Conflicts that may appear when as-
signing buttons to slots for higher values of the
threshold, and resolution using our method. Ar-
rows represent possible assignments, green ar-
rows confirmed assignments, and red arrows ig-
nored assignments.

Our conflict resolution strategy becomes neces-
sary for higher values of the distance threshold,
when we may have multiple buttons assigned to
the same slot, and vice versa. We solve this us-
ing an intuitive double-check approach:

1. For each button, we assign it to the closest
slot within the threshold, if there is one.

2. For each slot, we assign it to the closest but-
ton within the threshold, if there is one.

3. For each assignment, it is confirmed only
if it is reciprocated, and otherwise it is ig-
nored.

3

Executive summary Davide Figundio

Figure 4: Precision, Recall and Precision-
Recall for the C2C and AD-S metrics on the
ButtonPose-near dataset. The red circle indi-
cates the point corresponding to the optimal F1
score.

Metric F1 Threshold
AD-S 0.9763 52 mm
C2C 0.9746 56 mm

Table 2: Optimal F1 scores and thresholds for
the ButtonPose-near dataset.

This method gave us optimal results with mini-
mal added complexity.
To evaluate our method, we considered a set of
possible distance thresholds ranging from 2 mm
to 15 cm and ran our algorithm on the test-
ing datasets, since they already provided reliable
ground truths. By then comparing our method’s
outputs to these ground truths, we obtained a
confusion matrix for each threshold, and used
these to compute a precision-recall graph. An
example graph for the ButtonPose-near dataset
is visible in figure 4.
The selection of the optimal distance thresh-
old was performed by considering the F1 score,
a balanced function of precision and recall de-

scribed by:

F1 = 2× Precision × Recall
Precision + Recall

We considered the optimal value to be the one
with the highest F1 score. Example values for
the ButtonPose-near dataset are visible in table
2. As can be seen, we obtained high values of
the threshold, above 5 cm in all testing condi-
tions. The reason for this behaviour is probably
because our dataset represents an ideal condi-
tion, where a hypothetical manipulator has not
commited any mistakes in picking up buttons
and inserting them into the slots. If failed at-
tempts were considered in the dataset, the op-
timal threshold would probably be lower, and
the AD-S method, being more sensible to errors
in rotation, would obtain a greater advantage in
precision compared to C2C.

4. Real-World Testing
Testing was performed using a Doosan A0509s
robotic manipulator equipped with a pneumatic
gripper and an Azure Kinect camera. To drive
the robot, we implemented a system that builds
behaviour trees[2] based on previous demonstra-
tion of actions and their effect on the scene, as
visualized through the camera.
The perception phase therefore consists of three
tasks:

1. From the RGB image provided by the cam-
era, we use the network to detect objects
and their poses.

2. We apply our semantics extraction method
to understand the interactions between the
detected objects.

3. We use these interactions to build a list of
predicates that describe the scene.

These predicates are first-order logic functions
that can be either true or false, and are up-
dated each time the system recieves new infor-
mation. Those that result as being true describe
the scene’s state.

Predicate is true when..
IsGripperEmpty(gripper) no objects in the gripper

IsGrasped(button, gripper) button is grasped by gripper
IsButtonInSlot(button, slot) button is inserted in slot

IsSlotEmpty(slot) no buttons are in slot

Table 3: List of predicates used to describe the
state for our application.

4

Executive summary Davide Figundio

Figure 5: Evolution of the state and actions for the example task of picking up a button and inserting
it into a slot.

The experiments are then divided into two main
phases: teaching and evaluation. In the teach-
ing phase, we show the robot how to per-
form actions through kinesthetic demonstra-
tions. These demonstrations are referenced with
respect to a manually set objec. Consequently,
the same action can be repeated even if the
object is in a different position: for example,
when picking up a button, we set the reference
landmark to the button itself. To evaluate the
state before and after the demonstration, we use
PDDL[4] to build a set of preconditions and ef-
fects expressed in predicate form, which com-
bined with the low-level robotic actions form a
skill. For the example in figure 5, we would ob-
tain two skills as defined below:
(:action action_0

:parameters(
?Gripper1 - Gripper
?SmallButton1 - SmallButton

);end_of_parameter
:precondition (and

(is_gripper_empty ?Gripper1)
);end_of_precondition
:effect (and

(is_grasped ?SmallButton1 ?Gripper1)
(not (is_gripper_empty ?Gripper1))
(increase (total-cost) 50)

);end_of_effect
);end_of_action

(:action action_1
:parameters(

?SmallButton1 - SmallButton
?Gripper1 - Gripper
?Slot1 - Slot

);end_of_parameter
:precondition (and

(is_grasped ?SmallButton1 ?Gripper1)
(is_slot_empty ?Slot1)

);end_of_precondition
:effect (and

(is_gripper_empty ?Gripper1)
(is_button_in_slot ?SmallButton1 ?Slot1)
(not (is_grasped ?SmallButton1 ?Gripper1))
(not (is_slot_empty ?Slot1))
(increase (total-cost) 50)

);end_of_effect
);end_of_action

The union of all actions, objects and predicates
is called the domain. In the evaluation phase we
instead build the problem, which combines a rep-
resentation of the initial state and the goal state
we would like to achieve. By providing a PDDL
planner with a domain and a problem, we then
have it compute the plan: an ordered sequence
of actions that brings us from the inital state to
the goal state. We then build a behaviour tree
by combining the individual trees for each action
in the order defined by the planner, and drive
the robot by evaluating the tree. We had the

Button Type Small Large
Total Attempts 10 10

Successful Pick-Ups 7 10
Successful Insertions 5 7

Table 4: Experimental results for our test as-
sembly task.

robot perform a simple assembly task, where it
had to pick up a button in various different posi-
tions and insert it into a chosen slot on a board.
The results of this experiment are presented in
table 4. The main issue encountered in test-
ing was the prevalence of small rotation errors
in the neighborhood of ±5◦, which could turn
into awkward pick-ups and consequently failed
insertions. These were much more present with
smaller objects, leading us to believe that the
performance of the overall system is highly de-
pendant on that of the underlying network.

5

Executive summary Davide Figundio

5. Conclusions
Overall we believe that machine learning is
a very powerful tool for robotics application,
and that trained neural networks can achieve
remarkable performance in perception tasks.
However, we do not believe that they are suf-
ficient for tasks that require high precision and
reliability, or tasks that involve small objects,
or objects that are difficult to identify in other
ways.
Furthermore, it is difficult to overcome their
black-box nature, meaning that their perfor-
mance may be compromised when applied in
different working conditions with different ob-
jects. This is particularly noticeable with our
approach, which when faced with new working
conditions would very likely require a time con-
suming re-training process to allow the network
to adapt. This specificity on one environemnt
is therefore the main disadvantage of our ap-
proach, but also what makes its high perfor-
mance possible.
Future improvements on our work could include:

• Comparing the performance of a network
trained on one of our generated datasets
with a network trained on real-world data.

• Verifying the possibility of avoiding false
positives by training a model to ignore a
wider variety of objects.

• Verifying whether including multiple differ-
ent environments in the background images
during dataset generation improves gener-
alisation to new environments.

• If future pose estimation approaches in-
crease performance in a significant manner,
verifying whether they obtain the accuracy
required for high precision robotics applica-
tions.

References
[1] Yannick Bukschat and Marcus Vetter. Effi-

cientpose: An efficient, accurate and scalable
end-to-end 6d multi object pose estimation
approach, 2020.

[2] Michele Colledanchise and Petter Ögren. Be-
havior Trees in Robotics and AI. CRC Press,
jul 2018.

[3] S. Garrido-Jurado, R. Muñoz-Salinas, F.J.
Madrid-Cuevas, and M.J. Marín-Jiménez.

Automatic generation and detection of
highly reliable fiducial markers under occlu-
sion. Pattern Recognition, 47(6):2280–2292,
2014.

[4] M. Ghallab, A. Howe, C. Knoblock, D. Mc-
dermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL—The Planning Domain
Definition Language, 1998.

[5] Josh Tobin, Rachel Fong, Alex Ray, Jonas
Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transfer-
ring deep neural networks from simulation to
the real world, 2017.

[6] Yu Xiang, Tanner Schmidt, Venkatraman
Narayanan, and Dieter Fox. Posecnn: A con-
volutional neural network for 6d object pose
estimation in cluttered scenes, 2017.

6

	Introduction
	Augmented Reality Datasets
	Semantic Meaning Extraction
	Real-World Testing
	Conclusions

