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1. Introduction
The recent rise in global energy demand and
the decline in new substantial discoveries re-
quire a careful management of existing oil and
gas fields. After a first stage of primary pro-
duction, driven by the pressure of reservoir flu-
ids, the most common method to enhance re-
covery is injecting water from wells (i.e. wa-
terflooding). Waterflooding optimization con-
sists in identifying the optimal injection scheme
for a given field, to maximize its economic
production and reduce wastes. While tradi-
tional surveillance methods can lead to sub-
optimal production strategies, more complex
simulation-based optimization is often compu-
tationally heavy, in terms of the resources re-
quired to construct, tune and run full-physics
simulations. Hence, recent literature [1–3] has
focused on the use of surrogate-based optimiza-
tion (SBO), in which the simulator is replaced
by a data-driven model, requiring only produc-
tion data, without any geological information.
While full-physics models are multi-purpose,
surrogate models are typically developed for the
specific problem.

2. Problem statement
The generic field is made up of Nin injection
wells, with injection rates qin,i and Np produc-
tion wells with water and oil production rates
qw,j and qo,j , located at specific positions, as in
Figure 1. Additionally, the problem is subject to
the set of constraints c, which model the tech-
nical and operational limits of the field, such as
injection rate bounds for each well and field in-
jection rate limit (inequality constraint).

Figure 1: Schematic field and well designation.

The generic problem of waterflooding optimiza-
tion aims at finding the control variables u
which result in the optimal value of the objec-
tive function J , while satisfying constraints c :

1



Executive summary Guido Di Federico


min
u∈U

J(x,u)

c(x,u) ⩽ 0

g(x,u) = 0

where:
– x is the vector of dynamic state variables

of the model (pressure, saturation, etc.);
– u is the vector of well control variables, of

dimension n (i.e. injection rates);
– U = {u ∈ Rn;ulb ⩽ u ⩽ uub} defines the

allowable values for u;
– c is the set of linear and nonlinear con-

straints on all control variables;
– g is the reservoir model (set of reservoir

simulation equations) to be solved to eval-
uate J and c.

The most common objective function for wa-
terflooding optimization problems is the net
present value (NPV) [4]. It gives an economic
evaluation of the field’s performance in terms
of costs and revenues. Since the NPV is to be
maximized, J(u) = -NPV(u). Mathematically,
the NPV can be defined as:

Nt∑
k=1

[
Np∑
j=1

(roq
k∆t
o,j − rwq

k∆t
w,j )−

Nin∑
i=1

rinq
k∆t
in,i

]
∆t

(1 + d)
k∆t
365

where ro is the price of produced oil per unit
volume, rw is the cost of produced water per
unit volume, rin is the cost of injected water per
unit volume and d is the yearly discount factor
(such that if time steps are expressed in days
the ratio k∆t

365 is dimensionless).

3. Methodology
This thesis presents an innovative SBO frame-
work for wateflooding management of mature
brownfields, which integrates machine learning
(ML) models, such as long short-term memory
(LSTMs) or physics informed neural networks
(PINNs), with optimization techniques. The
proposed framework consists of three stages.
The first stage is data collection, i.e. water in-
jection rates and corresponding water and oil
production rates. In case a reservoir model is
available, this stage can be improved by simulat-
ing input-outpupt data for a variety of produc-
tion strategies. In this thesis, since the method-
ology is applied to synthetic reservoir cases, real-
istic data generation through simulation of the

historical period represents the data collection
phase. The second stage includes the develop-
ment of a ML model (PINN or LSTM) which
is able to accurately predict the future oil and
water production rates at each well as a func-
tion of the water injection rates. In the third
stage the developed ML model is coupled to
an optimization algorithm to identify the op-
timal water injection profiles to be applied to
the field over the future time period, with the
NPV as objective function. Three different opti-
mization algorithms, including ensemble-based
(EnOpt, see Chen et al. (2009)[5]), genetic,
and gradient-based (trust-region), are used to
evaluate the flexibility and robustness of the
framework. The obtained optimal solutions are
then compared to standard reservoir practices
(do-nothing and pressure maintenance scenar-
ios, called VR) and software (FloodOpt® by
StreamSim®, which uses a heursitic optimiza-
tion algorithm based on injection efficiency) in
terms of objective function, computational time,
and optimization strategies. These scenarios are
only intended as a baseline for comparison, since
they require a tuned geological model to be eval-
uated. FloodOpt® allows to optimize produc-
tion with a given injection target, but it does
not allow to specify an explicit objective func-
tion. Thus, for a fair comparison, the best-
performing algorithm is adapted by modifying
the objective function with oil produced only
(non-discounted) and by using a target injec-
tion at a field level (equality constraint). This
case, which is referred as “target”, is performed
for validation purposes only: the increased flex-
ibility of the proposed methodology is, in real
life, a benefit to take advantage of.
With respect to the approaches developed in lit-
erature, the novelty of the proposed framework
lies in:

– using PINNs and LSTMs in the context of
injection schedule optimization of mature
fields

– presenting a comparison with a state-of-
the-art commercial software to understand
if time and effort required for a 3D reser-
voir model are justified or if a data-driven
approach is more convenient

– the deep interpretation and verifications of
the obtained optimal solutions

– the use of EnOpt [5] in SBO of oil field pro-
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duction optimization

4. Application
The effectiveness of the proposed framework is
validated through its application to two case
studies, the Streak field and the Olympus field.

4.1. Streak field
The Streak field is a 2D reservoir model with
homogeneous geological properties, including 4
production and 5 injection wells, as in Figure 2.

Figure 2: Streak: geological model.

Maniglio et al. (2021)[6] trained two types of
networks for the Streak field, which are used in
this work. The goal is to apply the optimization
workflow to such surrogates. They both receive
injection rates and times at all injectors as in-
puts: one is a traditional ANN and forecasts
water cut, as shown in Figure 3, while the other
is a PINN (ANN combined with a capacitance-
resistance model) and forecasts liquid produc-
tion rates at all producers, as shown in Figure
4.

Figure 3: Streak: water cut ANN.

Figure 4: Streak: liquid production rate PINN.

Overall, all three algorithms show an increase
in the objective function compared to the do-
nothing case, although with different computa-
tional times. EnOpt reaches the highest increase
and proves to be the fastest, while the GA the
slowest, as reported in Figure 5. In general,
the PINN-based forward model of the Streak
reservoir achieves a significant reduction in the
elapsed time for a single forward evaluation of
the objective function, on the order of about 10
compared to Eclipse® commercial simulator.
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Figure 5: Streak: NPV increase compared to
the do-nothing case for the three algorithms.

The optimization algorithms tend to balance be-
tween high oil production (higher profit) and
low water injection and production (lower cost),
given the high water cuts. In particular, while
the GA and EnOpt achieve a higher cumulative
oil production than the base case, with a signif-
icant decrease in the injected water, the trust-
region algorithm improves the objective func-
tion by slightly reducing oil production, but in-
jecting and producing the least water. The VR
strategy gives a much lower NPV value com-
pared to the do-nothing case because the to-
tal injection rate required to maintain reservoir
pressure stable results in high costs with limited
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return. Cumulatives are shown in Table 1.

Cumulatives [106 stb]

Case Wat. inj. Wat. prod. Oil prod.

Trust-r. 4.02 3.98 0.102

GA 4.49 4.43 0.115

EnOpt 4.41 4.35 0.114

VR 7.57 7.49 0.108

Do-n. 7.06 6.97 0.112

Table 1: Streak: cumulative injection and pro-
duction for each simulated strategy.

For the best algorithm, EnOpt, the comparison
with the state-of-the-art software gave positive
results as well, as reported in Table 2.

Cumulatives [106 stb]

Case Wat. inj. Wat. prod. Oil prod.

EnOpt 7.60 7.44 0.166

(target)

FloodOpt 7.60 7.45 0.143

Table 2: Streak: cumulative injection and pro-
duction for each simulated strategy (FloodOpt
comparison).

In this case, most of the increase in oil produc-
tion, and better management of the waterflood-
ing process as a whole, comes from the area
around injection well I01, as shown in the oil
saturation difference map in Figure 6.

Figure 6: Streak: oil saturation difference with
do-nothing after optimization (EnOpt (target)).

4.2. Olympus field
The Olympus field is a 3D reservoir model with
complex geological properties, including 7 injec-
tion and 11 production wells, as in Figure 7 and,
more in detail, in Figure 8.

(a) Top view (b) Bottom view

(c) Side view (d) Side view

Permeability [mD]

Figure 7: Olympus: geological model.

Figure 8: Olympus: top view highlighting well
positions.

In the case of the Olympus field, the higher
number of wells and the more complex geol-
ogy require the explicit integration of time de-
pendency into the surrogate model, differently
from the Streak case. Two LSTM networks are
trained for each production well, one for water
and one for oil, for a total of 22 networks. They
all receive injection rates at all injectors as in-
puts and forecast oil and water production rates
at each producer, as shown in Figure 9.

Figure 9: Olympus: generic LSTM network.
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The Adam optimizer is used as training algo-
rithm: more details can be found in Géron
(2019)[7]. The hyperparameters for the net-
works are chosen based on a sensitivity analysis
carried out using the values reported in Table 3
(where "past time steps" refers to the number of
previous time steps used for forecasting by the
LSTM).

Hyperparameter Values

Hidden layers 1, 2

Neurons per layer 10, 20

Past time steps 3, 5

Learning rate 10−4, 10−3, 10−2

L1 regularization 0, 10−2, 10−1

L2 regularization 10−3, 10−2, 10−1

Table 3: Olympus: tested LSTM hyperparame-
ters.

Overall, all three algorithms show an increase in
the objective function, although with different
computational times. EnOpt reaches the high-
est increase and proves again to be the fastest,
while the GA the slowest, as reported in Figure
10. In general, the LSTM-based forward model
of the Streak reservoir achieves a significant re-
duction in the elapsed time for a single forward
evaluation of the objective function, on the or-
der of about 100 compared to Eclipse® com-
mercial simulator. In this case, the VR strategy
still yields a better result than the do-nothing
case, but lower compared to the algorithms.
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Figure 10: Olympus: NPV for the three algo-
rithms.

Cumulatives are shown in Table 4.

Cumulatives [106 Sm3]

Case Wat. inj. Wat. prod. Oil prod.

Trust-r. 3.60 2.57 0.802

GA 3.56 2.53 0.798

EnOpt 3.55 2.55 0.802

VR 2.70 1.99 0.657

Do-n. 2.59 1.91 0.630

Table 4: Olympus: cumulative injection and
production for each simulated strategy.

For the best-performing algorithm, EnOpt, the
better management of the waterflooding pro-
cess, which results in an increase in the objec-
tive function, can be better visualized with the
aid of a mobile oil difference map, as in Figure
11. The green areas show regions where, at the
end of the optimization process, there is less oil
than for the do-nothing case (which is hopefully
produced, or moved elsewhere), red areas where
there is more (which is left underground). The
cumulative sum of red and green areas is neg-
ative, confirming how EnOpt reaches a higher
cumulative oil production.

Figure 11: Olympus: mobile oil difference map
(EnOpt-do-nothing)

The comparison of EnOpt (target) with the
state-of-the-art software gave positive results as
well, as reported in Table 5.
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Cumulatives [106 Sm3]

Case Wat. inj. Wat. prod. Oil prod.

EnOpt 3.59 2.55 0.807

(target)

FloodOpt 3.59 2.52 0.799

Table 5: Olympus: cumulative injection and
production for each simulated strategy (Flood-
Opt comparison).

For both case studies, optimized production
scenarios are further analyzed with the aid of
streamline maps, pressure and saturation distri-
butions, to gain additional insights into the al-
gorithms’ optimization strategies and interpret
results both from a mathematical and a reser-
voir engineering perspective.

5. Conclusions
The benefits of the proposed workflow confirm
that it can be applied to the problem of wa-
terflooding optimization of realistic brownfields,
without the support of geological information.
Simplifying assumptions include the timeline,
where all wells share the same start date, the
high quality of the datasets (neglecting noise,
uncertainty or sparsity) and the constant dy-
namics of wells, which are not modified by
workover operations. In particular, it is found
that:

– surrogate models are able to approximate
the behavior of the reservoir with good ac-
curacy compared to the full-physics simu-
lator, but with a significant decrease in the
computational time;

– the optimization process leads to improved
values of the objective function with re-
spect to the "no-action" (do-nothing) and
"pressure maintenance" (VR) scenarios and
equivalent oil production to the simulator-
based optimization software, due to an effi-
cient allocation of the injected water;

– the optimization process provides high-level
operational guidelines for the field;

– the developed workflow provides flexibil-
ity in specifying any objective function and
constraints, differently from the benchmark
software.

Future developments can include integrating
PINNs and LSTMs, exploiting additional input

data during training and/or optimization (e.g.
as bottom-hole pressures), enhancing the paral-
lelization of the workflow, investigating further
model uncertainty quantification, as well as the
application to a real field.
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