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Abstract

The parameters of any mechanical or structural system possess a random

variation as a function of space and time. The randomness in fracture pa-

rameters are related to uncertainties involved at the design and manufacturing

stages, as well as the uncertain nature of the operating conditions. At the design

stage, randomness is present in the test data regarding material strength values,

elastic constants, engineering constants, damage parameters and the material

properties pertinent to the service life. The randomness of material properties

significantly affects the functioning of the mechanical component and is un-

avoidable even with the best quality control measurements. In structures like

impact resistant components, where failure initiation is a locally driven event,

the influence of randomness in material properties is no more negligible when

the goal is to obtain the most accurate results possible. In order to account for

this statistical variations in microscale material properties, a new numerical ap-

proach, different from the actual deterministic one, is required. In the first part

of this work is developed a computational framework based on the combination

between Monte Carlo method and the Generalized Method of Cells implemented

in NASA MAC/GMC code to estimate composite properties distributions start-

ing from constituents characteristics variation using carbon-epoxy T800/F3900

unidirectional tissue as example material. Output of this first step of the multi-

scale modeling are then used as input for ballistic impact simulations to estimate

the probability velocity response (PVR) of a multi-layer composite plate and to

analyze, through sensitivity analysis, the correlation between macroscale impact

simulation results and stochastic microscale input.
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Sommario

I parametri di ogni sistema meccanico o strutturale variano casualmente in

fuzione dello spazio e del tempo. La casualità dei valori di rottura è correlata ad

incertezze legate alle fasi di design e produzione come anche ad incertezze legate

alle condizioni operative. Nella fase di design, questa variabilità è presente nei

risultati dei test riguardanti i valori delle proprietà di resistenza del materi-

ale, costanti elastiche, costanti ingegneristiche, parametri di danneggiamento e

parametri del materiale pernitenti alla vita operativa. La casualità delle pro-

prietà del materiale influenza in maniera significativa il funzionamento del com-

ponente meccanico ed è inevitabile anche con il più rigorso sistema di controllo

qualità. In strutture come assorbitori di impatto, dove l’iniziazione della rottura

è un fenomeno strettamente locale, l’influenza della variabilità delle proprietà del

matieriale non è più trascurabile quando è necessario ottenere dei risultati con

elevata accuratezza. Allo scopo di includere questa variabilità statistica delle

caratteristiche microstrutturali del materiale, un nuovo approccio, differente

dall’attuale approccio deterinistico, è richiesto. Nella prima parte di questo stu-

dio, viene sviluppato un framework computazionale basato sulla combinazione

del metodo Monte Carlo ed il ”Generalized Method of Cells” implementato nel

codice NASA MAC/GMC per stimare la distribuzione delle proprietà in mate-

riali compositi partendo dalle variazioni delle caratteristiche dei materiali cos-

tituenti utilizzando come esempio un tessuto unidirezionale carbonio-epossidico

T800/F3900. I risultati di questa prima parte della modellazione multiscala

vengono poi utilizzati come input per le simulazioni di impatto balistico per sti-

mare la curva prbabilistica di risposta di una piastra in composito multistrato e

per analizzare, attraverso un’analisi di sensitività, la correlazione tra i risultati

delle simulationi di impatto a livello macrostrutturale e gli input stocastici di

natura microstrutturale.
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Chapter 1

Introduction

In today’s aerospace industry, both for military and civil use, composite material

are becoming more and more widely used. Their diffusion started to mitigate

weight increases and both aircraft and aeroengine manufactures started replac-

ing metal with composite. Through the 1980s and 1990s the application of

composites in aircraft engines was relatively limited. More than half of the to-

tal composite volume was directly associated with nacelle components such as

thrust reversers acoustic lines, cascades, blocker doors, radial drive fairings and

cowlings. On some models, aramid fibers (often in the form of dry fibers belt)

were used to reinforce aluminum fan cases. Composite nose cones, a variety of air

ducts and engine air-oil seals were fairly common as well. Pushed by weight sav-

ings reasons, very soon, thanks also to their high stiffness, strength and energy

absorption capabilities, these advanced materials started to be used in many

more components. When it entered service in 1995, GE’s GE90 engine applied

many advanced materials and resin transfer molding processing to introduce

a number of new composite components; most notably, large fan blades made

from hundreds of plies of intermediate-modulus carbon fiber prepreg. Since

then, composite blades, fan containment cases, bypass ducts, stator vanes and

a host of less glamorous detail components and brackets have become common

not only in commercial jets but also in business and military aircraft.

Among all these components, it’s possible to find structures such as the engine

containment systems that shows to how composites started to be increasingly

employed also in impact susceptible location where structural reliability is a crit-

ical issue and a damage event could compromise the entire structure and lead to

a catastrophic event. Materials that possess high strength, high modulus and

strength to weight ratio, such composites, represents the ideal candidates for

protective structures and for these reasons the current and next generation fan

casings are being manufactured not from traditional metals but from composite
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materials.

Figure 1.1: engine containment structure

Due to safety reasons and the increasing use of advanced multi-phase ma-

terials it’s easy to understand how also a development of the design techniques

is necessary. this complex multi-phase material requires new approaches for a

more accurate design to guarantee both the structural efficiency and reducing

the cost dedicated to experimental tests. In impact test or even more in engine

fan-blade out tests the set up of the experiment is particularly complex and

expensive. This fact represent an issue since in many tests can be observed that

the impact response of composite structures is characterized by a probabilistic

velocity response (PVR) curve. Obtaining this curve requires a large number of

tests resulting in a huge expense of time and money. Understanding the reasons

for this non deterministic behavior is the first step for the development of more

accurate computational methods that can help having safer, more efficient and

cheaper structures.

Historically since metals and the most part of engineering materials were homo-

geneous, efforts were made in defining precise unique values such as minimum

guaranteed limit load or ultimate load. This kind of approach has then been

applied also to composite materials identifying an average value for all those

parameters used in structural design. In the specific case of impact resistant

composite structures this design process cannot be considered the most efficient

and may be compared to a worst case scenario since the maximum of loading

and the minimum of strength are treated not only as representative of design

situations but also as simultaneous occurrence.

When analyzing fatigue or impact event it must be understood that, as the

failure of the material is a locally driven event, the influence of the stochastic

distribution of parameters such as fiber strength, fiber volume fraction, fiber an-

gle and arrangement and presence of voids should be investigated and eventually
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considered.

The parameters of any mechanical or structural system possess a random

variation as a function of space and time. The randomness in fracture pa-

rameters are related to uncertainties involved at the design and manufacturing

stages, as well as the uncertain nature of the operating conditions. At the design

stage, randomness is present in the test data regarding material strength values,

elastic constants, engineering constants, damage parameters and the material

properties pertinent to the service life. The randomness of material properties

significantly affects the functioning of the mechanical component and is un-

avoidable even with the best quality control measurements.

Test on a single material specimen or structure yield a define value for each

material parameter such as the elastic constant, engineering constant and dam-

age parameters but when a number of specimen are tested, the parameter val-

ues randomly fluctuate from specimen to specimen. Within the same structure

itself the values of any parameter display an uncertain spatial variation and

environmental degradation can increase the uncertain fluctuations. The sample

to sample variation, spatial variation within the structure and variations due to

environmental effects in strength, deterioration, deformation and damage pa-

rameters of most of the present day engineering materials is random. This is

particularly the case with fiber reinforced composite materials. Variations in

fiber size, fiber volume fraction, fiber orientation, void content, matrix proper-

ties, interfaces and thickness of lamina are always present and unavoidable. As

a result, the elastic constants, engineering constant and deformation parameters

of fiber reinforced composite material possess a random variation.

The intrinsic probabilistic nature of composite material characteristics is the

reason why experimental impact tests are characterized, as said previously, by

a PVR and parameters such as the V0 and V50 velocities are used to describe

the probabilistic penetration behavior of composite systems. Here the Vx veloc-

ity is defined as the projectile impact velocity V that has an x% probability of

penetrating through the fabric system. Precisely estimating velocity parameters

such as the V0, V0.1, and V1 velocities is important to prevent overestimating the

type and thickness of the fabric structure which directly relates to the cost and

weight savings, as well as to ensure that the impacting projectile is always de-

feated by the fabric target in order to safeguard human life. The most common

method to estimate the probabilistic fabric impact behavior is through destruc-

tive experimental impact testing namely: shooting multiple fabric targets over

a range of impact velocities. Shot selection techniques are used to guide the
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Figure 1.2: Example of PVR curve

choice of impact velocities while statistical analyses techniques are used to esti-

mate the probabilistic penetration response based on the outcome of each test.

The existence of the zone of multiple response (ZMR in figure 1.2) and the prob-

abilistic fabric penetration response is a consequence of the source of variability,

categorized by intrinsic and extrinsic influences. The sources respectively refer

to those certain material properties or factors that stochastically vary from one

sample to another and from one experimental test to another. Then, depending

on whether the projectile engages a set of stronger or weaker material area at

the impact site, the outcome could alter respectively between a non penetration

or a penetration during successive impact tests.

There are many sources of variability, with each source having a different ex-

tent of effect on the probabilistic impact response depending on the degree of

coupling between the sources of variability as well as the particular impact sce-

nario. It is thus critical to understand both the isolated and coupled effect of

these sources on the PVR curve to ensure that the structure perform at the

required level of protection. In composite materials there are many properties

that shows randomness and to determine the PVR curve for each combination

of design inputs a huge number of tests has to be performed. It quickly be-

comes clear that only relying on destructive experimental testing would result

impractical for the required time, cost, material, labor and infrastructure. Ex-
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perimental impact testing can be considered a good approach in the sense that

it constitutes real data that simultaneously incorporates all potential form of

variability. However this also happen to be a drawback since it’s extremely dif-

ficult to isolate the source of variability and understand which is the effect of

the single source and witch are predominant.

An alternative to destructive experimental impact testing is to use computa-

tional techniques such as the finite element method (FEM). As a result of recent

increases in computational capabilities, numerous models have been developed

to simulate material behavior across multiple length scales [24]. While most

material models are deterministic in character, real materials exhibit statistical

variations in properties and features over a range of different length scales. The

obvious advantage of using numerical simulations to study the impact response

of composite is the complete control over the source of variability incorporated

into the study. Thus the effect of each probabilistic property can be studied and

conceptual composite architectures with parametric varied material properties

can be easily and rapidly simulated. Traditional FE analyses are still based

on deterministic techniques that do not account for the sources of variability

and therefore cannot predict the probabilistic impact response (i.e. PVR curve).

The development of a stochastic computational framework represent an im-

portant opportunity to raise a new level in structure modeling and design, es-

pecially for components that are influenced by probabilistic sources of variabil-

ity. Between the possible approaches that can be used the theory of multiscale

modeling has shown a good grade of success combined with a good computa-

tional efficiency. Multiscale modeling allows the analyst to design the material

including parameters like fiber arrangement and packing, fiber strength and de-

fects, matrix characteristic and void presence. Once the architecture and the

microscale level parameters are defined it’s possible to obtain the usual engi-

neering FEM input values. This bridging between microscale and macroscale

allows to implement probabilistic distributions on material constituents proper-

ties and study their single or combined effect on the engineering constant used

to perform the final FE analysis.
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1.1 Motivation of the study

With the increase of the use of composite material in impact susceptible struc-

tures and the increase attention of the aeronautical industry to efficiency and

cost the creation of a new mathematical procedure could improve the power

and reliability of numerical simulations used in ballistic impacts reducing the

necessity of expensive and often very hard to set up, experimental testing.

For this reasons inside the NASA Advanced Composite Project a collabo-

ration between Livermore Software Technology Corp (LSTC), George Mason

University, Ohio State University, Arizona State University and NASA Glenn

Research Center started to work on the creation of a new LS-Dyna Material

Model, MAT 213, which will incorporate the results of the final sensitivity sim-

ulations of this work to introduce inbuilt stochastic parameters.

This will help to produce more accurate and non-deterministic simulations

without the necessity of extensive experimental campaigns.

1.2 Organization of the work

The primary research object is to develop a computational procedure able to

predict the probabilistic ballistic impact performances of a composite structure.

After introducing the basic theory of composite materials (Chapter 2) to cre-

ate the actual framework using the technique of multiscale modeling the three

principal steps followed are:

• Identification of the main software and their combinations (Chapter 3);

• Development of the stochastic microscale analysis (Chapter 4);

• Sensitivity analysis is implemented to comprehend the influence of the

stochastic microscale parameters in the material rupture (Chapter 5);

• Creation of a set of macroscale impact simulations to obtain the PVR

(Chapter 6) ;

The material chosen to test this analytical procedure is strengthened epoxy

carbon-fiber orthotropic reinforced polymer T800-F3900 which has been used

to calibrate the MAT213 material model in LS-DYNA for the creation of the

numerical model ballistic experiment which will be used for the final PVR curve

generation. [28]
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Chapter 2

Fundamentals of composite

materials

A composite material can be defined as a combination of two or more mate-

rials that results in better properties than those of the individual components

used alone. In contrast to metallic alloys, each material retains its separate

chemical, physical, and mechanical properties. The two constituents are a re-

inforcement and a matrix. The main advantages of composite materials are

their high strength and stiffness, combined with low density, when compared

with bulk materials, allowing for a weight reduction in the finished part. The

reinforcing phase provides the strength and stiffness. In most cases, the rein-

forcement is harder, stronger, and stiffer than the matrix. The reinforcement

is usually a fiber or a particulate. Particulate composites have dimensions that

are approximately equal in all directions. They may be spherical, platelets,

or any other regular or irregular geometry. Particulate composites tend to be

much weaker and less stiff than continuous fiber composites, but they are usu-

ally much less expensive. Particulate reinforced composites usually contain less

reinforcement (up to 40 to 50 volume percent) due to processing difficulties and

brittleness. A fiber has a length that is much greater than its diameter. The

length-to-diameter (l/d) ratio is known as the aspect ratio and can vary greatly.

Continuous fibers have long aspect ratios, while discontinuous fibers have short

aspect ratios. Continuous-fiber composites normally have a preferred orienta-

tion, while discontinuous fibers generally have a random orientation. Examples

of reinforcement arrangements is shown if figure 2.1.

Continuous-fiber composites are often made into laminates by stacking single

sheets of continuous fibers in different orientations to obtain the desired strength

and stiffness properties with fiber volumes as high as 60 to 70 percent. Fibers

produce high-strength composites because of their small diameter; they contain
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Figure 2.1: Reinforcements typology

far fewer defects (normally surface defects) compared to the material produced

in bulk. As a general rule, the smaller the diameter of the fiber, the higher

its strength, but often the cost increases as the diameter becomes smaller. In

addition, smaller-diameter high-strength fibers have greater flexibility and are

more amenable to fabrication processes such as weaving or forming. Typical

fibers include glass, aramid, and carbon, which may be continuous or discontin-

uous. The continuous phase is the matrix, which is a polymer, metal, or ceramic.

Polymers have low strength and stiffness, metals have intermediate strength and

stiffness but high ductility, and ceramics have high strength and stiffness but

are brittle. The matrix (continuous phase) performs several critical functions,

including maintaining the fibers in the proper orientation and spacing and pro-

tecting them from abrasion and the environment. In polymer and metal matrix

composites that form a strong bond between the fiber and the matrix, the ma-

trix transmits loads from the matrix to the fibers through shear loading at the

interface. The type and quantity of the reinforcement determine the final prop-

erties. The highest strength and modulus are obtained with continuous-fiber
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composites. There is a practical limit of about 70 percent of volume reinforce-

ment that can be added to form a composite. At higher percentages, there is

too little matrix to support the fibers effectively. Continuous-fiber composites

are used where high strength and stiffness are required (but at a higher cost),

and discontinuous-fiber composites are used where cost is the main driver and

strength and stiffness are less important.

2.1 Laminates

Continuous-fiber composites are normally laminated materials (Fig. 2.2) in

which the individual layers, plies, or laminae are oriented in directions that will

enhance the strength in the primary load direction. Unidirectional (0°) laminae

are extremely strong and stiff in the 0° direction. However, they are very weak in

the 90° direction because the load must be carried by the much weaker polymeric

matrix. While a high-strength fiber can have a tensile strength of 3500 MPa or

more, a typical polymeric matrix normally has a tensile strength of only 35 to 70

MPa (Fig. 2.3). The longitudinal tension and compression loads are carried by

the fibers, while the matrix distributes the loads between the fibers in tension

and stabilizes the fibers and prevents them from buckling in compression. The

matrix is also the primary load carrier for interlaminar shear (i.e., shear between

the layers) and transverse (90°) tension. Because the fiber orientation directly

impacts mechanical properties, it seems logical to orient as many of the layers as

possible in the main load-carrying direction. While this approach may work for

some structures, it is usually necessary to balance the load-carrying capability

in a number of different directions, such as the 0°, +45°, -45°, and 90° directions.

A balanced laminate having equal numbers of plies in the 0°, +45°, –45°, and 90°
degrees directions is called a quasi-isotropic laminate, because it carries equal

loads in all four directions.
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Figure 2.2: Lamina and Laminate lay-ups
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Figure 2.3: Vf distribution

Fundamental Property Relationship

When a unidirectional continuous-fiber lamina or laminate is loaded in a direc-

tion parallel to its fibers (0o or 11-direction) the longitudinal modulus E11 can

be estimated from its constituents properties by using what is known as the rule

of mixtures:

E11 = EfVf + EmVm (2.1)

where Ef is the fiber modulus, Vf is the fiber volume percentage, Em is the

matrix modulus, and Vm is the matrix volume percentage. The longitudinal

tensile strength σ11 also can be estimated by the rule of mixtures:

σ11 = σfVf + σmVm (2.2)

where σf and σm are the ultimate fiber and matrix strengths, respectively.

Because the properties of the fiber dominate for all practical volume percentages,

the values of the matrix can often be ignored; therefore:
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E11 = EfVf (2.3)

σ11 = σfVf (2.4)

Figure 2.4: Influence of ply angle on strength and modulus

It’s clear the dominant role of the fibers in determining the lamina strength

and stiffness. When loads are parallel to the fibers (0°), the ply is much stronger

and stiffer than when loads are transverse (90°) to the fiber direction. There is

a dramatic decrease in strength and stiffness resulting from only a few degrees

of misalignment off of 0°. When the lamina shown in Fig. 2.4 is loaded in the

transverse (90° or 22-direction), the fibers and the matrix function in series,

with both carrying the same load. The transverse modulus of elasticity E22 is

given as:

1

E22
=
Vf
Ef

+
Vm
Em

(2.5)

Figure 2.5 shows the variation of modulus as a function of fiber volume

percentage. When the fiber percentage is zero, the modulus is essentially the

modulus of the polymer, which increases up to 100 percent (where it is the

modulus of the fiber). At all other fiber volumes, the E22 or 90o modulus is

lower than the E11 or zero degrees modulus, because it is dependent on the
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much weaker matrix. Other rule of mixture expressions for lamina properties

include those for the Poisson’s ratio ν12 and for the shear modulus G12:

ν12 = νfVf + νmVm (2.6)

1

G12
=
Vf
Gf

+
Vm
Gm

(2.7)

These expressions are somewhat less useful than the previous ones, because

the values for Poisson’s ratio νf and the shear modulus Gf of the fibers are

usually not readily available. Physical properties, such as density ρ, can also be

expressed using rule of mixture relations:

ρ12 = ρfVf + ρmVm (2.8)

While these micromechanics equations are useful for a first estimation of

lamina properties when no data are available, they generally do not yield suffi-

ciently accurate values for design purposes. For design purposes, basic lamina

and laminate properties should be determined using actual mechanical property

testing.

Figure 2.5: Variation of composite modulus of a unidirectional 0° lamina as a

function of fiber volume fraction
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Composite Laminate Theory

In a typical structural application of a composite, multiple layers (or laminae)

of unidirectional composite are stacked together at various angles to form a

laminate. The stacking sequence and orientations of the individual layers give

the laminate designer additional degrees of freedom to optimize the design with

respect to the strength, stiffness, buckling load, vibration response, panel flutter

or other desired performance objective. The purpose of lamination theory is to

predict the behavior of a laminate from a knowledge of the material properties

of the individual layers and the laminate geometry.

Classical lamination theory is based upon certain simplified engineering assump-

tions: (1) each layer is thin and constructed of macroscopically homogeneous,

orthotropic, linear-elastic material, (2) the entire laminate and all of the indi-

vidual layers are assumed to be in a state of plane stress, (3) layers are perfectly

bonded together, (4) the Kirchoff hypothesis is invoked, plane, normal cross

sections of the entire laminate before deformations remain plane, normal to the

deflected middle surface, and do not change in thickness. A corollary of this last

hypothesis is that the in-plane displacements vary linearly through the entire

thickness of the laminate, while the normal deflection is uniform through the

thickness.

A thin composite laminate could then be effectively studied as a plate whose

state of deformation is described by equation:

{ε} = {ε0}+ z{k} (2.9)

The laminate is composed by N laminae or plies, each one of them possess a

coordinate system coincident with the axes of symmetry of the material, which

defines the laminae axes. Laminae axes are rotated with respect to the laminate

axes in XY plane. While the all plate is defined according to this XYZ coordinate

system, in an individual ply, the direction 11 usually indicates the fiber direction,

and the 22 direction is normal to the fiber direction.

Defined the first hypothesis and coordinate systems is possible to introduce

the first step of the CLT calculation: the definition of the ABD matrix. This

Matrix is a 6x6 matrix that serves as a connection between the applied loads

and the associated strains in the laminate. It essentially defines the elastic prop-

erties of the entire laminate.

First the reduced stiffness matrix Qij is calculated for each material used in

the laminate (if a laminate uses only one type of composite material, there will

be only one stiffness matrix). The stiffness matrix describes the elastic behavior

of the ply in plane loading:
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Figure 2.6: Laminae and Laminate axes

Qij =

Q11 Q12 0

Q12 Q22 0

0 0 Q66

 (2.10)

where

Q11 =
E11

2

E11 − ν12E22
(2.11)

Q12 =
ν12E11E22

E11 − ν12
2E22

(2.12)

Q12 =
E11E22

E11 − ν12
2E22

(2.13)

Q66 = G12 (2.14)

Now it’s possible to calculate the transformed reduced stiffness matrix Qij

for each ply based on the reduced stiffness matrix and fiber angle.
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Q11 = Q11cos(θ)
4 + 2(Q12 + 2Q66)cos(θ)2sin(θ)2 +Q22sin(θ)4

(2.15)

Q12 = Q21 = Q12(cos(θ)4 + sin(θ)4) + (Q11 +Q22 − 4Q66)cos(θ)2sin(θ)2

(2.16)

Q16 = Q61 = (Q11 −Q12 − 2Q66)cos(θ)3sin(θ)− (Q22 −Q12 − 2Q66)cos(θ)sin(θ)3

(2.17)

Q22 = Q11sin(θ)4 + 2(Q12 + 2Q66)cos(θ)2sin(θ)2 +Q22cos(θ)
4

(2.18)

Q26 = Q62 = (Q11 −Q12 − 2Q66)cos(θ)sin(θ)3 − (Q22 −Q12 − 2Q66)cos(θ)3sin(θ)

(2.19)

Q66 = (Q11 +Q22 − 2Q12 − 2Q66)cos(θ)2sin(θ)2 +Q66(cos(θ)4 + sin(θ)4)

(2.20)

Qij =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 (2.21)

Now calculate the Aij , Bij ,Dij matrices using the following equations where

z represents the position in the ply from the midplane:

Aij =

n∑
k=1

{Qij}n(zk − zk−1) (2.22)

Bij =
1

2

n∑
k=1

{Qij}n(zk
2 − zk−1

2) (2.23)

Dij =
1

3

n∑
k=1

{Qij}n(zk
3 − zk−1

3) (2.24)

and assemble ABD and its inverse

ABD =

[
A B

B D

]
(2.25)

abd = ABD−1 (2.26)

The midplane Strains and Curvatues induced in the laminate which repre-

sents the deflections of the laminate:
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

ε0
xx

ε0
yy

ε0
xy

kxx

kyy

kxy


=



a11 a12 a16 b11 b12 b16

a12 a22 a26 b12 b22 b26

a16 a26 a66 b16 b26 b66

b11 b12 b16 d11 d12 d16

b12 b22 b26 d12 d22 d26

b16 b26 b66 d16 d26 d66





Nxx

Nyy

Nxy

Mxx

Myy

Mxy


(2.27)

X-Y plane strains for each ply:

εxxεyy
γxy

 =

ε0
xx

ε0
yy

γ0
xt

 + z

Kxx

Kyy

Kxy

 (2.28)

(2.29)

and ply stresses in the X-Y coordinate system:

σxxσyy

τxy

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


εxxεyy
εxy

 (2.30)
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Chapter 3

Development of the

multiscale stochastic

computational framework

The core of this research is the creation of an analytic procedure able to intro-

duce into impact simulations the probabilistic nature of certain characteristics

at the microscale level of composite materials in order to understand their influ-

ence on the penetration impact response. This framework should be available

and useful for most of the actual standard composite materials architecture.

Stochastic variations of material constituent properties could be introduced di-

rectly into FEM models using microscale level modeling but this will increase

immensely the computation cost of the simulation that is based on a code not

optimized for this discretization level.

Multiscale modeling can then increment the efficiency of the numerical simu-

lation without neglecting the microscale level of the system. By considering

simultaneously models at different length scale, could be possible to arrive at

an approach that shares the efficiency of the macroscopic models as well as the

the accuracy of the microscopic models. Multiscale modeling is a process based

on the bridging between different scale lengths and could be applied whenever

this connection is relevant to the final results.

In structural analysis, historically, engineers have studied the response to load-

ing conditions focusing on the use of average material properties. This because

the macroscale level stiffness and strength are directly related to the average

values of the constituent properties. Whit the diffusion of fracture mechanics

the importance of material constituents local properties has become much more

influential on simulations results. Fracture initiation is an event driven by the

local properties of the material (in case of homogeneous material) or the ma-
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terial constituents (in the case of a composite material). Penetration response

of structures to ballistic impact is no exception and with the use of composite

materials, comprehending different constituents and thousands of fibers these

aspects are even more relevant.

Multiscale modeling in this study is used to introduce the probabilistic na-

ture of composite material constituents into FEM simulations with differentia-

tion of analysis at the microscale and macroscale level. Splitting the different

length scale onto different software and codes create a more efficient and flexible

way to analyze these problems.

3.1 State of the Art in Multiscale Modeling

Due to the diminishing effect of microscale randomness at higher length scales,

microstructural variability is often ignored when studying structural behaviour,

however in some type of composite structures under particular concentrated

loading conditions such as in impact resistant structures the local properties

are highly dominant for the failure generation. As experimental data of impact

simulations show for a precise impact velocity on a chosen component is possible

to define the probability of penetration. For this reason, especially in composite

materials, due to their complex microscale nature studies about the influence

of stochastic variations of their properties are becoming more and more common.

The numerical investigation of the effects of variability of microscale charac-

teristics has to be supported by an efficient computational framework. A direct

introduction of microscale level modeling into classic FEM analysis most of the

time can be computationally too expensive especially in impact analysis.

Multiscale modeling allow the scaling of information between different length

scales using homogenization and localization techniques without incrementing

sensibly the computational cost of the simulation. Micromechanical methods

such as asymptotic field expansion separate the fields of the large scale model

into small scale ones (Fish, Shek, Pandheeradi,Shephard, 1997 [12]; Fish,Yu,

Shek,1999 [13]; Suquet, 1987 [25]). The bridging of these scales is performed us-

ing the homogenization functions obtainable from a variety of techniques. The

Voronoi cell method (Ghosh, 2011 [7]; Ghosh, Lee, Moorthy, 1995[20]; Ghosh

Liu, 1995[8]; Ghosh Moorthy, 1995 [9], Ghosh Mukhopadhyay, 1991[10]) ana-

lyzes the microscale by explicitly accounting for the composite microstructure

using tessellation of polygons containing a single fiber or particle within a FEA

formulation. This approach has been used by Ghosh, Liu and Raghavan (2001)

[21] to develop a multiscale analysis that uses random microstructures to an-
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alyze composite failure. Xu [27] and Shen and Xu [22] developed the Mul-

tiscale Stochastic Finite element Method (MSFEM) to simulate random het-

erogeneous material from the micro-to-meso-to-macroscales. The Generalized

Method of Cells by Paley and Aboudi [17] has been then implemented by Bed-

narcyk Arnold [4] to create the Micromechanics Analysis Code, MAC/GMC,

that uses GMC and HFGMC (High Fidelity Generalized Method of Cells) tech-

niques as well as classical laminate theory to conduct multiscale analyses of

composites.

Considering impact resistant structures J.P. Johnston [14] developed a stochas-

tic computational framework with scale dependent constitutive laws and an

appropriate failure theory to simulate the behavior and failure of polymer ma-

trix composite structures subjected to complex loading showing the influence

of variations in properties such as fiber volume fraction, fiber dimensions, fiber

waviness, pure resin pockets, and void distributions to the composite impact

performance. G. Nilankantan [15] has also performed a research about the pre-

diction of the impact performance of flexible textile composite using multiscale

and probabilistic methods. Here a yarn model comprised of a filament level

architecture is developed to investigate the feasibility of solid element based ho-

mogenized yarn models as well as the effect of filament strength, spreading and

intern-filament friction on the impact response and the numerical determination

of the probabilistic velocity response curve. Ricks and Lacy have developed a

multiscale modeling methodology that incorporates a statistical distributions of

fiber strength into coupled micromechanics/finite element analysis. Here has

been investigated the effect of a statistical fiber strength distribution and mi-

croscale architecture on the failure behavior of a dogbone specimen of SCS-6 /

TIMETAL 21S material. Goldberg and Bonacuse [18] investigated the effects

of the microstructural variations of woven ceramic matrix composites on the

effective properties and response of the material and Arnold et Al.studied the

microstructural Influence on Deformation and Fatigue Life of Composites.

For this work the code MAC/GMC will be used to introduce the probabilistic

nature of material characteristic and to generate the input for the Material Card

in LS-Dyna helping the bridging from microscale to macroscale.

3.2 Structure

The computational framework used to perform the probabilistic analysis is com-

posed by three main software: NASA MAC/GMC, LS-OPT and LS-DYNA.

Next to this sofwares Matlab has been used to manage, automatize and post-

process data and output of the simulations.

This architecture allows to start from the probabilistic definitions of the
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Figure 3.1: Computational framework structure.

composite constituent properties and obtain as a result the probabilistic velocity

response curve of the structure under the studied ballistic impact and is also

possible to determine through sensitivity analysis which of the lamina properties

are more relevant in fracture initiation.

3.3 Software

3.3.1 MAC/GMC

MAC/GMC is a computer code developed at NASA Glenn Research Center that

analyzes the thermoelastic behavior of composite materials and laminates. The

code is based on the micromechanics theory known as the generalized method of

cells (GMC). GMC models the response of composite materials using a doubly

or triply periodic repeating unit cell (RUC), which is composed of a number of

subcells (see Figure 3.2 and Figure 3.2).

By placing distinct constituent materials within the subcells, an heteroge-

neous (composite) material can be modeled, provided an RUC can be identified

in the material’s micro scale architecture. The main advantages of the gen-

eralized method of cells over other micromechanics theories and approaches

are: 1) its fully multi-axial formulation, 2) the availability of local (constituent

level) stress and strain fields, and 3) its computational efficiency. The avail-

ability of the local fields makes the method attractive in situations where more



32

Figure 3.2: 2D RUC

detailed composite analysis, beyond simple determination of effective thermo-

elastic properties, is necessary. In such situations, when matrix inelasticity,

constituent damage or failure, or fiber-matrix debonding is important, the avail-

ability of the local fields is critical in order to account for these effects appro-

priately. It is the purpose of the MAC/GMC code to provide a convenient

and user-friendly “package” for the GMC theories, in addition to providing

significant added value through a library of inelastic constitutive models, re-

peating unit cells, thermo-mechanical and yield surface loading options, failure

and damage analysis capabilities, and results generation options. The original

method of cells (which allowed only four subcells) was developed by Aboudi [3]

in 1989, the doubly periodic version of GMC by Paley and Aboudi (1992) [17],

and the triply periodic version of GMC by Aboudi (1995) [2]. The actual GMC

theories implemented within MAC/GMC 4.0 were reformulated for maximum

computational efficiency by Pindera and Bednarcyk (1999) and Bednarcyk and

Pindera (2000). A recent advancement in the GMC technology has significantly
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Figure 3.3: 3D RUC

improved the local accuracy of the doubly periodic version of the model. This

new micromechanics theory, called the high-fidelity generalized method of cells

(HFGMC), developed by Aboudi et al. (2001, 2002), has also been implemented

with MAC/GMC. As mentioned, MAC/GMC 4.0 is also capable of analyzing

composite laminates. The composite laminate analysis capabilities also rely on

the GMC composite material model. The doubly and triply periodic versions

of GMC function within the context of classical lamination theory (Jones, 1975;

Herakovich, 1998) to model the ply level composite material. Thus, the code

can analyze the thermo-inelastic behavior of arbitrary laminate configurations.
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Microscale Modeling with Generalized Method of cells

The ability to accurately predict the thermomechanical properties of of advanced

multi-phase composites plays a critical role in the development and practical

implementation of these strategic materials. The analytical models that pre-

dict the effective behavior of composites are used both by engineers to perform

structural analysis and by material scientist to develop new material systems.

To fulfill this two different functions the analytical model must be based on a

micromechanics approach which utilizes physically based deformation and life

constitutive models and generates the average (macro) response of a composite

material given the properties of the individual constituents and their geometric

arrangement. Only then can such a model be used to investigate the effect of

different deformation mechanisms on the overall response of the composite in

order to identify the appropriate constituents for a given application. Alterna-

tively, if a microscale method is to be used in a large scale structural analysis

it must be: computation efficient, able to generate accurate displacement and

stress field at both macro and microscale level and must be compatible with

the finite element method. Also, as advancements in processing and fabrication

of techniques make it possible to more accurately engineer the architectures of

these advanced composite systems the importance of an accurate and compu-

tationally efficient multiscale analysis capable of accurately predict the effect of

microstructural details on the internal and macroscopic behavior of composite

becomes even more relevant.

Aboudis’s method of cells and its continuous/discontinuous reinforcement gener-

alization present the required computational efficiency and a sufficient accuracy

both at the micro and macro scale level and for this reasons represent the base

of the MAC/GMC software. GMC is capable of predicting the response of

both continuous and discontinuous multi-phase composites with arbitrary in-

ternal microstructures and reinforcement shapes. GMC is a continuum-based

micromechanics model that provides closed-form expressions for the macroscopic

composite response in terms of properties, size, shape, distribution and response

of the individual constituents or phases that make up the material. Furthermore,

expressions relating the internal stress and strain fields in the individual con-

stituents in term of the macroscopically applied stresses and strains are available

through strain or stress concentration factors. These expressions make possible

the investigation of failure processes at the microscopic level at each step of an

applied load history.

In the original formulations of the method of cells a continuously or discontinu-

ously reinforced, unidirectional fibrous composite was modeled as a rectangular

double periodic (or triple periodic) array of fibers embedded in a matrix phase.

The periodic character of the assemblage allowed identification of a repeating
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unit cell that can be used as a building block to construct the entire composite.

Figure 3.4: Double periodic RUC. Figure 3.5: Triple periodic RUC.

The properties of the repeating unit cell were thus representative of the prop-

erties of the entire assemblage. The unit cell consisted of a single fiber subcell

surrounded by three matrix subcells for continuous and seven for discontinuous

composites, hence the name method of cells. The rectangular geometry of the

repeating unit cell allowed one to to obtain an approximate solution for the

stresses and strains in the individual subcells given some macroscopically ho-

mogeneous state of strain or stress applied to the composite. The approximate

solution to the posed boundary value problem was, in turn, used to determine

macroscopic (average) properties, traditionally referred to as effective proper-

ties of the composite. The method of cell has then been used the develop the

generalized method of cells for continuous or discontinuous fibrous composites.

The repeating unit cell can consist of an arbitrary number of phases. This

generalization extend the modeling capability of the original method including

modeling various fiber architectures (including both shape and packing arrange-

ments), modeling of porosities and damage and modeling of interfacial regions

around inclusions.

The basic homogenization approach taken in the micromechanical analysis con-

sists essentially of four steps. First, the representative volume element of the

periodic composite is identified. Second, the macroscopic or average stress and

strain states in terms of the individual microscopic (subcell) stress and strain

states is defined. Third, the continuity of tractions and displacements are im-

posed at the boundaries between the constituents. These three steps, in con-

junction with micro-equilibrium, establish the relationship between micro (sub-
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cell) total, thermal and inelastic strains and macro (composite strains) via the

relevant concentration tensors. In the fourth and final step,the overall macro

constitutive equations of the composite are determined. These four steps form

the basis of the micro-to-macromechanics analysis which describes the behavior

of heterogeneous media. The resulting micromechanical analysis establishes the

overall (macro) behavior of the multi-phase composite which is expressed as a

constitutive relation between the average stress, strain, thermal, and inelastic

strains, in conjunction with the effective elastic stiffness matrix.

σ̄∼ = B∼
∗(ε̄∼− ε̄∼

I − ε̄∼
T ) (3.1)

Where for the most general case of discontinuous reinforcements with Nα by

Nβ by Nγ number of subcells, the effective elastic stiffness matrix, B∼
∗ of the

composite is given by:

B∼
∗ =

1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγC∼
(αβγ)A∼

(αβγ) (3.2)

the composite inelastic strain vector is defined as:

ε̄∼
I =
−B∼

∗−1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγC∼
(αβγ)(D∼

(αβγ)ε∼
I
s
− ε̄∼

I(αβγ)) (3.3)

the average thermal strain vector as,

ε̄∼
T =

−B∼
∗−1

dhl

Nα∑
α=1

Nβ∑
β=1

Nγ∑
γ=1

dαhβlγC∼
(αβγ)(D∼

(αβγ)ε∼
T
s
− ε̄∼

T (αβγ)) (3.4)

and ε̄ is the uniform applied macro (composite) strain. In the component

analyzed in this study the reinforcement is not discontinuous but continuous.

In this case the number of subcell is only Nβ by Nγ and the previous equations

reduces to the following:

B∼
∗ =

1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγC∼
βγA∼

βγ (3.5)

ε̄∼
I =
−B∼

∗−1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγC∼
(βγ)(D∼

(βγ)ε∼
I
s
− ε̄∼

I(βγ)) (3.6)
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Figure 3.6: Double periodicicty Figure 3.7: Triple periodicity

ε̄∼
T =

−B∼
∗−1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβlγC∼
(βγ)(D∼

(βγ)ε∼
T
s
− ε̄∼

T (βγ)) (3.7)

In the above equations matrix notation is employed; where, for example,

the average stress, σ̄∼ , average strain, ε̄∼, and inelastic subcell strain, ε∼
I
s
, vectors

represent:

σ̄∼ = {σ̄11, σ̄22, σ̄33, σ̄23, σ̄13, σ̄12} (3.8)

ε̄∼ = {ε̄11, ε̄22, ε̄23, ε̄23, ε̄13, ε̄12} (3.9)

ε∼
I
s

= {ε̄∼
I(111)
s

, ε̄∼
I(222)
s

, ..., ε̄∼
I(NαNβNγ)
s

} (3.10)

where the six components of the vector ε∼
I(αβγ) are arranged as in eq. 3.9.

Similar definitions for ε∼
T
s

, ε∼
T (αβγ) also exist. Note that the key ingredient in the

construction of this macro constitutive law is the derivation of the appropriate

concentration matrices, A∼
(αβγ) and D∼

(αβγ) having the dimensions 6x6 and by

NαNbetaNgamma respectively, at the micro (subcell) level. The matrix C∼
(αβγ)

represents the elastic stiffness tensor of each subcell (αβγ) and dα, hβ , lγ the

respective subcell dimensions wherein,
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d =

Nα∑
α=1

dα (3.11)

h =

Nβ∑
β=1

hβ (3.12)

l =

Nγ∑
γ=1

lγ (3.13)

Similarly, given the concentration matrices A∼
(αβγ) and D∼

(αβγ),expressions

for the average strain in each subcell can be constructed, i.e.,

ε∼
(αβγ) = A∼

(αβγ)ε∼ +D∼
(αβγ)(ε∼

I(αβγ)
s

+ ε∼
T (αβγ)
s

) (3.14)

as well as average stress

σ∼
αβγ = C∼

(αβγ)(A∼
(αβγ)ε∼ +D∼

(αβγ)(ε∼
I(αβγ)
s

+ ε∼
T (αβγ)
s

)− (ε∼
I(αβγ) + ε∼

T (αβγ)))

(3.15)

The analytic constitutive law (equation 3.1), may be readily applied to in-

vestigate the behavior of various types of composites, given knowledge of the

behavior of the individual phases. Within MAC/GMC an incremental tangent

solution scheme is utilized, therefore the appropriate rate forms of these equa-

tion are employed.

Numerous advantages can be stated regarding the current macro/micro con-

stitutive laws as compared to the other numerical micromechanical approaches

in the literature, e.g. the finite element unit cell approach. One advantage is

that any type of simple or combined loading (multiaxial state of stress) can

be applied irrespective of whether symmetry exists or not, as well as with-

out resorting to different boundary condition application strategies as in the

case of the finite element unit cell procedure. Another, advantage concerns the

availability of an analytical expression representing the macro elastic-thermo-

inelastic constitutive law, thus ensuring a reduction in memory requirements



39

when implementing this formulation into a structural finite element analysis

code. Furthermore, this formulation has been shown to predict accurate macro

behavior given only a few subcells, within the repeating cell.

The equations of GMC-3D (and consequently through appropriate special-

ization GMC-2D) have been reformulated to improve the computational ef-

ficiency and are implemented into MAC/GMC becoming the default setting.

By nature of the traction continuity conditions within the original generalized

method, all six stress components are not unique in every subcell. Normal

stress components are constant in certain rows of subcells, while shear stress

components are constant in certain layers of subcells. The unique subcell stress

components are denoted as,

T11
βγ , T22

αγ , T33
αβ , T23

α, T13
β , T12

γ (3.16)

Consequently, a more efficient formulation of GMC can be obtained by ap-

plying traction continuity directly (i.e. recognizing that traction continuity con-

ditions require no more and no less than the aforementioned reduction in subcell

stress components) and using subcell stresses rather than strains as the basic

unknown quantities. Accordingly, the continuity of displacement conditions are

formed in terms of subcell stresses (through the use of the subcell constitutive

and kinematic equations), and the mixed concentration equations for the unit

cell are constructed,

T∼ = G∼
αβγε∼ +G∼

IT (αβγ)(ε∼s
I + ε∼s

T ) (3.17)

Here, T∼ is the vector of all subcell stress components listed in eq 3.16,

G∼
(αβγ) is the subcell mixed concentration matrix, and G∼

IT (αβγ) is the sub-

cell inelastic-thermal mixed concentration matrix. The term mixed is used

here because eq 3.17 relates local subcell stresses to global strains. Clearly

this equation contrasts with its original formulation counterpart, eq 3.14, which

relates local strains to global strains and is this the unit cell strain concentra-

tion equation. The increased efficiency of the reformulation of GMC emerges

mainly due to the increased efficiency of forming eq. 3.17 versus forming eq

3.14. The formation of eq 3.14 requires solution (of linear equations) for the

unknown independent subcell stress components listed in eq 3.16, numbering

NβNγ +NαNγ +NαNβ+Nα+Nβ+Nγ . The formation of eq 3.14 requires solu-

tion for 6 unknown strain components for each subcell, or a total of 6NαNβNγ
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unknowns. Solution of linear equations, in essence, amounts to the inversion of

a matrix which has the rank of the number of unknown quantities. Since the

computational effort associated with matrix inversion increases approximately

as the cube of the matrix rank, reducing the number of unknown quantities has

a major impact on computational efficiency. The reduction in unknowns due

to the reformulation is shown in Figure 3.8 and can be quite significant. For

example, a 10x10xl0 unit cell originally required solution for 6000 unknowns. In

the reformulated version of GMC-3D the number of unknowns is reduced to 330.

Consequently, the corresponding execution times are reduced as well. Clearly,

as the number of subcells in the repeating unit cell increases, the increase in

efficiency attributable to the reformulation becomes astronomical.

Figure 3.8: Number of subcells vs. number of unknown variables for the original

and reformulated versions of GMC-3D for Nα = Nβ = Nγ
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3.3.2 LS-OPT

Ls-OPT is a product of LSTC (Livermore software Technology Corporation)

born to solve optimization and probabilistic problems. LS-OPT can be linked

with any simulation code and used for a different number of tasks like:

• Successive Response Surface method

• Multidisciplinary optimization

• Genetic Algorithm

• Numerical/analytical based sensitivities

• Stochastic/Probabilistic Analysis

• Monte Carlo Analysis using Metamodels

• Analysis of Variance (ANOVA)

This optimization and stochastic software offers a very complete package

but in this research the focus will be mainly on the Stochastic/Monte Carlo

capabilities and the Sensitivity Analysis instruments.

In stochastic simulations the interest in obtaining probabilistic quantities

of the Output (Response) due to variation of Input (Parameter). Input are

not defined as deterministic values but are described from a proper probabilis-

tic distribution function (PDF) characterized from mean value and standard

deviation.

LS-OPT allows the user after linking with the desired software (MAC/GMC

in this specific case) to automatize the Stochastic/Monte Carlo analysis offering

multiple sampling options for the input PDF and automatically runs the solver

applying a random combination of sampled input. Using the same approach it

is also possible to perform variance based sensitivity analysis. This simulations,

based on metamodels can compute the influence of the input variances on the

response variance giving the user a direct feedback on which are the most pre-

dominant probabilistic parameters. The basic theory behind ANOVA analysis

will be discussed in chapter 5.

Monte Carlo Method History and formulation

No system will be manufactured and operated exactly as designed. Diverse com-

binations of design and loading variation may lead to undesirable behavior or

failure; therefore, if significant variation exists, probabilistic evaluation may be
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desirable. This is the main problem at the base of Monte Carlo Method whose

core is to learn about a system by simulating it with random sampling. This

approach is powerful, flexible and very direct. It is often the simplest way to

solve a problem, and sometimes the only feasible way. Monte Carlo method is

used in almost every quantitative subject of study: physical sciences, engineer-

ing, statistics, finance, and computing, including machine learning and graphics.

The Monte Carlo method has a long history. In statistics it was called model

sampling and used to verify the properties of estimates by mimicking the set-

tings for which they were designed. W. S. Gosset, writing as Student (1908)

derived what is now called Student’s t distribution. Before finding his analytic

result, he did some simulations, using height and left middle finger measure-

ments from 3000 criminals as written on pieces of cardboard. Tippett (1927) is

an early source of numbers to use as if they were random in sampling. Sam-

pling was also used by physicists. Hammersley and Handscomb (1964) describe

some computations done by Kelvin (1901) on the Boltzmann equation. There

is more history in Kalos and Whitlock (2008) including computations made by

Fermi in the 1930s. An even earlier idea was the famous Buffon needle method

for estimating π by throwing needles randomly on a wooden floor and counting

the fraction of needles that touch the line between two planks. Monte Carlo

sampling became far more prominent in the 1940s and early 1950s. It was used

to solve problems in physics related to atomic weapons. The name itself is

from this era, taken from the famous casino located in Monte Carlo. Many of

the problems studied had a deterministic origin. By now it is standard to use

random sampling on problems stated deterministically but early on that was

a major innovation, and was even considered to be part of the definition of a

Monte Carlo method. There are numerous landmark papers in which the Monte

Carlo method catches on and becomes widely used for a new class of problems.

Here are some examples. Metropolis et al. (1953) presented the Metropolis

algorithm, the first Markov chain Monte Carlo method, for studying the rela-

tive positions of atoms. Boyle (1977) shows how to use Monte Carlo methods

to value financial options. Gillespie (1977) uses Monte Carlo simulation for

chemical reactions in which the number of molecules is so small that differential

equations are not accurate enough to describe them. Efron’s (1979) bootstrap

uses Monte Carlo sampling to give statistical answers with few distributional as-

sumptions. There are undoubtedly more major milestones that could be added

to the list above and most of those ideas had precursors.

Among the various formulations of the Monte Carlo Methods, Simple Monte

Carlo is used for the purposes of this work. Simple Monte Carlo is often called

crude Monte Carlo to distinguish it from more sophisticated methods and its
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general goal is to estimate a population expectation by the corresponding sam-

ple expectation, in this study this task is related to defining the distribution

of the composite material T800/F3900 starting from it’s estimated constituents

characteristics distributions.

In a simple Monte Carlo problem we express the quantity we want to know

as the expected value of a random variable Y, such as µ = E(Y). Then the val-

ues Y1,...,Yn are generated independently and randomly from the distribution

of Y and their average:

µ̂n =
1

n

n∑
ı=1

Yi (3.18)

is taken as the estimate of µ. In practice, there is usually a bit more to the

story. Commonly Y = f(X) where the random variable X ∈ D ∈ Rd has a

probability density function p(x), and f is a real-valued function defined over

D. Then:

µ =

∫
D

f(x)p(x)d(x) (3.19)

For some problems it is easier to work with expectations while for other

tasks it is simpler to work directly with the integrals. In still other settings

X is a discrete random variable with a probability mass function that we also

call p. The input X need not even to be a point in Euclidean space at all. It

could be the path taken by a wandering particle or it could be an image. But so

long as Y = f(X) is a quantity that can be averaged, such as a real number or

vector,we can apply simple Monte Carlo. The primary justification for simple

Monte Carlo is through the laws of large numbers. Let Y be a random vari-

able for which µ = E(Y ) exists, and suppose that Y1,...,Yn are independent and

identically distributed with the same distribution as Y. Then under the weak

law of large numbers:

lim
n→+∞

P (|µ̂n − µ| ≤ ε) = 1, (3.20)
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holds for any ε > 0. The weak law tells us that our chance of missing by

more than ε goes to zero. The strong law of large numbers tells us a bit more.

The absolute error |µ̂n−µ| will eventually get below ε and then stay there forever:

P ( lim
n→∞

|µ̂n − µ| = 0) = 1 (3.21)

While both laws of large numbers tell that Monte Carlo will eventually pro-

duce an error as small as we like, neither tells how large n has to be for this to

happen. They also don’t say for a given sample Y1,...,Yn whether the error is

likely to be small. The situation improves when Y has a finite variance. Sup-

pose that V ar(Y) = σ2 < ∞. When sampling, m̂un is a random variable and

it has its own mean and variance. The mean of m̂un is

E(µ̂n) =
1

n

n∑
i=1

E(Yi) = µ (3.22)

Because the expected value of µ̂n is equal to µ we say that simple Monte

Carlo is unbiased. The variance of µ̂n is then

E((µ̂n − µ)2) =
σ2

n
(3.23)

While it is intuitively obvious that the answer should get worse with in-

creased variance and better with increased sample size, equation 3.23 gives the

exact rate of exchange. The root mean square error (RMSE) of µ̂n is:

√
E((µ̂n − µ)2) =

σ√
n

(3.24)

To get one more decimal digit of accuracy is like asking for an RMSE one

tenth as large, and that requires a 100-fold increase in computation. To get

three more digits of accuracy requires one million times as much computation.

It is clear that simple Monte Carlo computation is poorly suited for problems

that must be answered with high precision. Equation 3.23 also shows that if we
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can change the problem in some way that reduces σ2 by a factor of two while

leaving µ unchanged, then we gain just as much as we would by doubling n. If

we can recode the function to make it twice as fast, or switch to a computer

that is twice as fast, then we make the same gain as we would get by cutting

σ2 in two. The economics of the σ√
n

error rate also work in reverse. If raising n

from n1 to n2 only makes our accuracy a little better, then reducing n from n2

to n1 must only make our accuracy a little worse. An interesting feature about

the formula σ√
n

is that the dimension d of the argument x does not appear in

it anywhere. In applications d can be 2 or 1000 and the RMSE is still σ√
n

.

One of the great strengths of the Monte Carlo method is that the sample

values themselves can be used to get a rough idea of the error µ̂n − µ. It it

usually more interesting a good estimate of µ itself than of the error. The av-

erage squared error in Monte Carlo sampling is σ2/n. σ2 is seldom known but

it is easy to get an estimate from the sample values. The most commonly used

estimate of σ2 are:

s2 =
1

n− 1

n∑
i=1

(Yi − µ̂n)2 (3.25)

σ̂2 =
1

n

n∑
i=1

(Yi − µ̂n)2 (3.26)

Monte Carlo sampling typically uses such large values of n that this two

equations will be much closer to each other than either of them is to actual

variance σ2.
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3.3.3 LS-DYNA

LS-DYNA is a general purpose finite element analysis software developed by

LSTC capable of simulating complex real world problems. The code’s origins

lie in highly nonlinear, transient dynamic finite element analysis using explicit

time integration and for this reason is one the most diffused software for impact

simulation in the automotive and aerospace industry. In this study after the

determination of the statistical properties of the material, this variations will be

introduced in a series of ballistic impact simulations on a carbon fiber composite

plate.

The result of the LS-Dyna impact analysis will give information about the

PVR curve and will also be used to develop the new material card MAT213,

specifically designed for composite material with the option for the user of mod-

eling with probabilistic input variables.

Ballistic Impact and the PVR curve

The impact and penetration behavior of woven composite structure is proba-

bilistic in nature. This implies that conducting multiple fabric impact tests for

the same impact scenario could yield different outcomes. This outcome may

refer to a penetration or non-penetration, or may refer to the magnitude of

the projectile residual velocity for penetrating tests. This is a serious concern

for penetration resistant applications comprised of these high strength fabrics

which are used to protect critical structural elements and often, human life

against high energy impact projectiles. In these applications, it is vital to know

at what impacting velocity a particular type of projectile will be defeated each

and every time. Since every design is constrained by consideration of costs and

weight, the amount of fabric material used in the protective structure must be

estimated correctly. For example in the application of engine containment sys-

tems the weight of the composite structure is an important design constraint.

An overestimation of the amount of required plies will provide superior protec-

tion; however it will also lead to higher weight which will decrease the efficiency

of the system, increase fuel consumption and overall costs for production on

operation. An underestimation of the amount of required fabric will minimize

the protective capability of the clothing and put the safety of the system. This

leads to an important question: How much fabric material is needed to consis-

tently defeat a particular type of projectile at a particular impact velocity?

Since the penetration behavior of fabric system is probabilistic in nature,

there exists a probability of penetration at each projectile impact velocity. This

behavior can be represented by a continuous probabilistic velocity response

(PVR) curve, known as the V0 − V100 curve as shown in figure.
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Figure 3.9: Probabilistic Velocity Response Curve

The V50 velocity, at which penetration occurs during 50% of impacts, requires

the fewest number of impact tests to determine experimentally. Therefore V50

values are the popular choice to characterize and compare the performance of

protective systems. For the design of practical protective systems, it is more

preferable to determine the V0 velocity which would imply a 0% probability of

projectile penetration. However from a statistically rigorous standpoint the V0

velocity is zero and so probabilities very close to zero are selected leading to

parameters such as the V1 or the V0.1 velocities, representing velocities at which

penetration respectively occurs at 1% and 0.1% of impacts. These two parame-

ters are much better suited to estimate the correct amount of fabric requires in a

protective system. However the precise limiting Vx value used as a design point

is chosen based on desired margins of safety and acceptable risks. Compared to

V50 characterization, considerably more experiments are required to determine

these values with confidence, and so the V50 velocity still remains a popular

indicator of penetration performance even if in order to fully understand the

probabilistic impact performance of a system, the PVR curve or V0−V100 curve

must be generated from which the three most important parameters (V1V50V99)

can be easily obtained. LS-Dyna can use the curves obtained with the prob-

abilistic microscale analyses to create a set of ballistic simulation capable of
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recreate numerically the PVR curve without the necessity of very expensive

test campaigns.

During this process there will exist a few cases wherein the impact velocity of

certain non-penetrating shots (VNP ) will be higher than the impact velocity

of certain penetrating shots (VP ). We refer to the region between the lowest

penetrating shot (VP min) and the highest non penetrating shot (VP max) as the

zone of mixed results or ZMR. While it would seem to be intuitive for a non

penetrating shot to have an impact velocity lower than a penetrating shot, this

counter-intuitive phenomenon (VNP > VP ) that leads to the existence of the

ZMR is because of certain sources of variability, discussed in chapter 4. Fig-

ure 3.9 displays typical experimental impact data during the testing of fabrics.

Data points which represents the PVR curve. Thus the PVR curve describes

the probability of fabric penetration (Y-axis) as a function of impact velocity

(X-axis). The wider the ZMR the greater the degree of variability in the sys-

tem. A wide ZMR results implies widely separated V1 and V99 velocities. From

the performance standpoint of a fabric based protective structure, it is desirable

to have as high a V1 or V50 velocity as possible and as narrow a ZMR as possible.
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Chapter 4

Microscale Analysis

Microscale analysis based on the generalized method of cells allows to compute

composite material properties starting from its constituents characteristics. The

generalized method of cells (GMC) is based on the possibility of representing the

micro-scale structure of a material with a repeating unit cell. This approach has

been implemented in the NASA MAC/GMC code that is used for this purpose.

Within MAC/GMC code there are three separate micro-mechanics models that

can be employed in RUC analyses: 1) Doubly periodic generalized method of

cells (GMC), 2) Triply periodic GMC and 3) Doubly periodic high-fidelity GMC

(HFGMC). The nature of this study and the material structure of the unidi-

rectional T800/F3900 makes the doubly periodic GMC the most suitable and

efficient micro-mechanic model.

By assigning the different constituents materials to the sub-cells within the RUC,

these elements are organized to represent the composite material structure. As

the name indicates, the RUC repeats infinitely in two Cartesian coordinate di-

rections. The Doubly periodic is infinitely long in the third out of plane X1

direction and represent an infinite heterogeneous (composite) medium with a

periodic microstructure. Thus GMC may be thought of as a model for a mate-

rial point that may be part of a larger overall structure. These micromechanics

model not only computes the effective properties of the composite material

located at a particular material point, but also allows the simulation of ap-

plied loading conditions (in the form of global stresses, global strains, a uniform

temperature change) on the composite material to perform failure analysis for

different loading histories and directions.

Two types of simulations are studied in this chapter: Elastic Properties Esti-

mation and Static Failure Analysis. Elastic properties estimation is the simplest

form of analysis available in MAC/GMC 4.0 and requires only the definition

of the Elastic properties of constituents materials while Static failure analy-
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sis within MAC/GMC 4.0 (via the FAILURE SUBCELL and FAILURE CELL

keywords) is less immediate and requires a more dedicated set up. The static

failure analysis monitors the stress and strain components in the composite or

laminate (on the subcell or RUC level) and checks for failures using the speci-

fied failure criteria. Thus, the static failure analysis (like an actual experimental

test) is inherently linked to the loading applied to the RUC or laminate and the

predicted failure stress and strain are not truly material properties.

To do so the failure subcell simulation is used to perform static failure analysis

based on the local stress and strain fields in the subcells without strain rate de-

pendency. Static failure analysis involves checking the specified failure criteria

during application of a simulated thermomechanical loading history. The static

failure predictions are inherently linked to the specifics of the simulated loading

applied to the composite. The maximum stress, maximum strain, and Tsai-Hill

failure criteria are available within the software.

Figure 4.1: RUC Charachteristic Parameters

After assigning material models, and failure criteria the microscale simu-
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lation of MAC/GMC is coupled with LS-OPT to perform the Monte Carlo

Microscale analysis. Here the input properties of the constituents material are

no more defined with their mean values but with a vector of samples computed

to represent the proper probability density function of the observed character-

istic. The outputs of this process will be as well a probability density functions

of the composite properties. The computed output of the composite obtained

from the constituents properties (discussed in the next section) are:

Description

Ea Axial Elastic Modulus

Eb Transverse Elastic Modulus

PRba Axial Poisson Ratio

PRcb Transvese Poisson Ratio

Gab Axial Shear Modulus

Gbc Transverse Shear Modulus

ε11 Axial Ultimate Strain

γ23 Utimate Shear Strain

Table 4.1: Microscale Elastic Properties
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4.1 Composite Constituent Properties Identifi-

cation

To run microscale simulations it’s necessary to have a certain number of input

characteristics of the composite material constituent properties. The studied

material is constituted from two materials: carbon fiber T800 and the epoxy

resin system F3900. MAC/GMC have a number of different available con-

stituents models and the most appropriate had to be identified to describe the

behaviour of the composite constituents. Fibers can be modeled as having a

purely elastic response and which direction is aligned with a specific axis 1

shown in figure 4.1. According to these considerations for fibers a transversely

isotropic elastic model is used.



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C2 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66







ε11

ε22

ε33

γ23

γ13

γ12


−



αL∆T

αT∆T

αT∆T

0

0

0




(4.1)

where components Cij can be expressed in terms of five indipended con-

stants,

Ea, Et, νa, νt, Ga (4.2)

and the longitudinal and transverse thermal expansion coefficient are not

used as the dependence on temperature is neglected.

A similar set of properties is required to describe the behaviour of the matrix,

which is still considered as a brittle material but the more ”general” standard

isotropic elastic material model is used in MAC/GMC, reducing the necessary

input from 5 to three as the difference in the longitudinal and transverse be-

haviour is lost.

4.1.1 T800/F3900 Microscale Elastic Properties

T800/F3900 composite has already been characterized and used for the study

of a specific ballistic impact simulation which is the base for the last part of

this study (Chapter 6). The material model used so far was a classic determin-

istic model whose properties have been estimated through common dogbone

experimental material testing performed at Arizona State University.
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Property Value

E11 161,751 GPa

E22 7,349 GPa

E33 7,349 GPa

PR12 0,0168

PR13 0,439

PR23 0,439

G12 3,9955

G13 2,2476

G23 2,2476

Table 4.2: T800/F3900 Experimental Engineering Moduli

A comparable set of engineering properties of the composite has to be ob-

tained from the constituent properties using MAC/GMC. Most of the fiber and

resin values have been obtained using documents as the Torayca T800/F3900

data-sheet and literature [5] [23] but for some of them, like the transverse Pois-

son ratio and Transverse Elastic Modulus of single fibers, which are normally

very hard to obtain through experimental testing, a process of reverse engineer-

ing has been done to estimate the proper values. Using the most refined single

fiber RUC architecture internally defined in MAC/GMC (Archid 13, Figure 4.5)

it’s possible to make a quick verification of the input used. An error between

the MAC/GMC output and ASU baseline is acceptable as the focus it’s not

on the perfect correlation between MAC/GMG output and ASU experimental

results but the ability to predict the standard variation of the the composite

properties which are not influenced by the mean values just computed. The

microscale simulation input are divided in three categories: Fiber properties,

resin properties, fiber volume fraction:
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ID Description Value

Eaf Axial Elastic Modulus 284.895 GPa

Etf Transverse Elastic Modulus 15.513 GPa

PRaf Axial Poisson Ratio 0.305

PRtf Transverse Poisson Ratio 0.35

Gaf Axial Shear Modulus 103.42 GPa

αa Axial coefficient of thermal expansion 0

αt Transverse coefficient of thermal expansion 0

D(d1, d2, d3) Components of vector normal to the plane of

transverse isotropy

1,0,0

Table 4.3: T800 Fiber Elastic Properties

ID Description Value

Er Elastic Modulus 3.447 GPa

PRr Poisson Ratio 0.35

Gr Shear Modulus 1.275 GPa

αa Axial coefficient of thermal expansion 0

αt Transverse coefficient of thermal expansion 0

Table 4.4: F3900 Resin Elastic Properties

ID Description Value

Vf Fiber Volume Fraction 0,54

Table 4.5: T800/F3900 Composite Fiber Volume Fraction
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Before comparing the two set of results it’s important to pay attention to

the Poisson Ratio: MAC/GMC output it’s for direction 12 when ASU baseline

is for direction 21. The relationship to transform PR12 into PR21 is:

PR21 =
E22

E11
PR12 (4.3)

and finally the results obtained from microscale simulation using a ARCHID13

fiber arrangement compared with experimental testing of T800/F3900 samples:

ID MAC/GMC ASU Test err%

E11 159.203 GPa 161.751 GPa 1.57%

PR21 0.0171 0.0168 1.78%

PR13 0.44298 0.4390 0.88%

E22 8.07132 GPa 7.3498 GPa 9.81%

G13 2.25641 GPa 2.2476 GPa 0.39%

G12 4.0527 GPa 3.9955 GPa 1.43%

Table 4.6: MAC/GMC Output vs Experimental Testing

Now That the deterministic microscale input to compute elastic proper-

ties are defined it’s time to identify their standard deviations and subsequently

their probabilistic distribution functions. Finding information relative to PDF

it’s particularly difficult considering that very few studies have been done on

this subject and for this specific materials. Some approximations and arbitrary

values based on some literature background will then be used to fill the lack

of information. As described before, these approximations will not influence

the effectiveness of the computational framework that has the possibility to be

adapted and utilized with different distributions shapes according to the studied

material.

Let’s begin from the probability distribution function relative to fiber volume

fraction which variation can be easily computed and associated with changes of

the mesoscale behaviour [1]. For this reason a larger set of information is avail-
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able compared to resin and fiber moduli. Jonston et al. [14] using imagine quan-

tification techniques on unidirectional carbon fiber reinforced polymeric matrix

composite using optical microscopy has been able to estimate the variability of

fiber volume fraction for the specimens analysed. For the local area Vf analysis

a normal distribution was found to be the best fit. With this information re-

lated to the possible best fit distribution and the standard deviation computed

using a set of Vf values obtained for different specimen of T800/F3900 material

reported in NASA Technical Paper 3102 [23] has been possible to generate a

valid fiber volume fraction PDF:

ID Mean Value Standard Deviation Standard Deviation%

Vf 0.54 0.0338 3.381%

Table 4.7: Fiber volume fraction distribution

(a) PDF (b) CDF

Figure 4.2: Vf Normal Distribution fit

Engineering moduli distributions for fiber filaments and Epoxy resin matrix

are more difficult to be found in literature. Statistical analysis historically where

performed on single fiber filaments focusing on ultimate strain and stress vari-

ability and not on elastic properties because of their lower influence in failure

initiation. To be able to estimate if and when elastic properties variability will

have an influence on the plate impact response has been decided to apply the
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same standard deviation found for capon fiber axial elastic modulus to all the

other properties of the T800 fiber and F3900 Matrix. As for variation in fiber

volume fraction this probability density functions are normal or Gaussian.

ID Mean Value Standard Deviation

Eaf 284.895GPa 16.72333 GPa

Etf 15.513GPa 0.91061 GPa

PRaf 0.305 0.0179

PRtf 0.35 0.0205

Gaf 103.42GPa 6.0707 GPa

Table 4.8: Fiber Elastic Properties Distribution

ID Mean Value Standard Deviation

Eam 3.477 GPa 0.17235 GPa

Etm 3.477 GPa 0.17235 GPa

PRam 0.35 0.0175

PRtm 0.35 0.0175

Gam 1.275 GPa 0.06375 GPa

Table 4.9: Resin Elastic Properties Distribution
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4.1.2 T800/F3900 Microscale Static Failure Properties

The same identification process for mean values and standard deviations has

to be applied to failure properties. The rupture properties of high performance

filaments are complex parameters hardly described by a single value. Instead

of Gaussian distributions, the Weibull model is used to describe the statistical

nature of the fracture limits. [30] [29] [16]. Here a two parameters (λ, k) Weibull

distribution is applied to model the variability of ultimate strains:

f(x) =
k

λk
xk−1e−( xλ )k (4.4)

T800/F3900 has already been studied and accurately characterized for ballistic

impact response by Ohio State University. During experimental tests has been

observed how the ultimate penetration is driven by the very high ultimate strain

of the epoxy matrix under this particular conditions. In impact events the very

high concentrated energy rises the temperature of the resin above the glass

transition temperature increasing it’s ultimate strain. Due to this particular

behavior for microscale failure analysis will be used a strain based failure criteria

and subsequently the probabilistic failure properties analysed and described are

the ultimate strains of both fibers and matrix.

Fiber Matrix Description

ε11 ε11 Ultimate Axial Strain Dir. 11

ε22 ε22 Ultimate Axial Strain Dir. 22

ε33 ε33 Ultimate Axial Strain Dir. 33

γ23 γ23 Ultimate Shear Strain Dir. 23

γ13 γ13 Ultimate Shear Strain Dir. 13

γ32 γ32 Ultimate Shear Strain Dir. 32

Table 4.10: Microscale Failure Properties
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ID Mean Value

[Strain]

StD [Strain] Shape Factor(k) Scale Factor(λ)

ε11 0.019 0.002958 7.6 0.02023

ε22 0.019 0.002958 7.6 0.02023

ε33 0.019 0.002958 7.6 0.02023

γ23 0.01222 0.001868 7.75 0.013

γ13 0.01222 0.001868 7.75 0.013

γ32 0.01222 0.001868 7.75 0.013

Table 4.11: Fiber ultimate strains distribution

ID Mean Value

[Strain]

StD [Strain] Shape Factor Scale Factor

ε11 0.0215 0.001073 25 0.02197

ε22 0.0215 0.001073 25 0.02197

ε33 0.0215 0.001073 25 0.02197

γ23 0.06609 0.003304 24.95 0.06755

γ13 0.06609 0.003304 24.95 0.06755

γ32 0.06609 0.003304 24.95 0.06755

Table 4.12: Matrix ultimate strains distribution

(a) PDF (b) CDF

Figure 4.3: Fiber ε11 Weibull distribution fit
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(a) PDF (b) CDF

Figure 4.4: Matrix ε11 Weibull distribution fit

4.2 Probabilistic Microscale Simulations Set Up

The distributions of the constituents properties obtained from the stochastic

generalized method of cells is utilized to compute the distributions of axial mod-

ulus, shear modulus, Poisson ratios and ultimate failure strains of the composite.

These curves will be defined for different Repeating Unit Cells architecture types

to investigate how different length scales impact the output distributions. In-

creasing the length scale, the unit cell of material will contain more and more

fibers leading to more homogeneous values which are closer to the deterministic

(i.e. averages) material parameters. This trend explains how the effort to de-

fine stochastic variations of material properties is justified especially when the

length scale of the analyzed event is small to the point where the probabilistic

behavior of a particular portion of structure is not anymore negligible. In the

next paragraphs are presented the result for architectures containing 1, 4, 16

and 25 fiber filaments.

4.2.1 RUC Architectures Definition

Single Fiber RUC discretization

As it happens is classic meshing techniques in FEM models, at the microscale

level it is possible to discretize the repeating unit cell using a different num-

ber of subcells. Starting from the simplest representation, which contains 4

subcells, one modeling the fiber and three modeling the surrounding matrix, 4

level of refinement are analyzed. Both the results and computational time are

observed to pick the proper architecture to use in the more articulated multi

fiber simulations.
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(a) 1 subcell fiber (b) 13 subcells fiber

(c) 84 subcells fiber (d) 312 subcells fiber

Figure 4.5: RUCs discretization

The results obtained by computing these four RUC properties show a small

influence of the refinement level on the fiber on the calculated engineering mod-

uli. The differences are larger between the four subcells and thirteen subcells

architecture but overall negligible for the scope of this study. In static failure

analysis, the rupture values are not changing but a different failure behaviour

can be observed in the curves of figure 4.6.

With the possibility of neglecting the differences resulting by changing the

fiber plus matrix modeling precision the main criteria for selecting the most

efficient RUC is computational time. It is obvious that the simplest architecture

will then require the least computational effort (table 4.15) making it extremely

useful especially in stochastic microscale simulation where a large number of

samples will be required (i.e. 104 as will be shown later). An even larger impact

can be observed when assembling multiple repeating unit cells to simulate larger

length scales.
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ID 1 subcells 13 subcells 84 subcells 312 subcells

E11 0.155430E+06 0.155430E+06 0.155430E+06 0.155430E+06

N12 0.3241939944 0.3240658522 0.3241120199 0.3241635773

N13 0.3241939944 0.3240658522 0.3241120199 0.3241635773

E22 0.792844E+04 0.783739E+04 0.781435E+04 0.779624E+04

N23 0.4044057475 0.4129550660 0.4140672226 0.4147404726

E33 0.792844E+04 0.783739E+04 0.781435E+04 0.779624E+04

G23 0.220119E+04 0.220119E+04 0.220119E+04 0.220119E+04

G13 0.375487E+04 0.399436E+04 0.393976E+04 0.387440E+04

G12 0.375487E+04 0.399436E+04 0.393976E+04 0.387440E+04

Table 4.13: Deterministic engineering moduli for single fiber RUCs

ID 1 Subcells 13 Subcells 84 Subcells

vs vs vs

16 Subcells 84 Subcells 7 312 Subcells

E11 - - -

N12 0.02% 0.008% 0.01%

E33 1.18% 0.295% 0.231%

N23 1.89% 0.235% 0.138%

G23 - - -

G13 7.29% 1.601% 1.98%

Table 4.14: Difference between RUCs elastic properties



63

(a) Tension 11 (b) Tension 33

(c) Shear 13 (d) Shear 23

Figure 4.6: Stress vs Strain curves of single fibers RUC

1 Subcells 13 Sub 84 Subcells 312 Subcells

Time [s] 0.265 0.395 0.399 1.657

Table 4.15: Average Execution time for Single Fiber RUC simulation

1 Subcells 13 Sub 84 Subcells 312 Subcells

Time [s] 5650 6950 6990 19570

Table 4.16: Execution time for Single Fiber RUC Monte Carlo simulation

Multifiber RUC

Selected the modeling architecture for the single RUC, larger length scales will

be analyzed assembling multiple single fiber elements. Models contacting four,
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sixteen and 25 fibers will be simulated and the effect on the output distribu-

tions assessed. In the simulations, each filament is treated as an independent

stochastic variable while fiber volume fraction variation if obtained by changing

the thickness of matrix subcells. Simulating different length scale is important

to better understand the probability of failure initiation with respect to the

number of fibers involved in the first phases of the impact. To a smaller length

scale, excited by small projectile, variability is higher as failure will start from

a small number of fibers. With increasing length scales, the variability will de-

crease. Already with 25 fibers it has been possible to observe a tendency of

the mean value of the simulation results to reach stability. With twenty five

filaments in the material cell the computational cost increases sensibly and the

the limitation of the hardware used made not possible to explore larger length

scales. Anyway, the obtained results can be considered sufficient for the scope

of this thesis.

Figure 4.7: 25 Fibers RUC scheme

4.2.2 Mote Carlo simulation Sampling

In direct Monte Carlo analysis Sampling is based on the distribution of random

variables. The probabilistic input are defined as noise variables. These variables

are completely described by the associated probabilistic distribution and are

not controlled at the design and production level, but only at the analysis level.
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A probabilistic variable can be defined as a noise variable either because the

user chooses to study the effect of uncertainty around a fixed mean value or

because it may not be possible to control the variable. A noise variable will

have the nominal value as specified by the distribution. These Noise variables

are sampled using a the Monte Carlo sampling technique: random samples are

obtained from the input distribution. To complete an accurate simulation it’s

required to define the correct amount of samples for the convergence of the

analysis. The convergence criteria is arbitrarily defined at corresponds to when

the difference between standard deviation of two consecutive sets is close to 1%.

Sets of 100,1000, 5000, 10000, and 15000 samples are simulated to evalu-

ate the convergence both for elastic and failure parameters. Only the single

fiber RUC results are used for this evaluation because multifiber RUCs reach

convergence with fewer samples due it’s intrinsic structure.
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Composite Elastic Properties sampling infleunce

Elastic Properties Mean Values reach convergence very quickly. With only

1000 samples point the mean output values are already showing a stable trend.

On the contrary when analyzing the standard deviations a higher number of

samples is required. As seen, only when increasing the sampling point above

10000 the variations becomes small enough to be considered negligible and there-

fore this is fixed as the convergence threshold. Following, the results of the

stochastic microscale analysis for a single fiber RUC and five different sampling

sets:

ID 100 1000 5000 10000 15000

Ea [GPa] 157.0063 155.4495 155.2254 155.3588 155.3935

Eb [GPa] 7.8422 7.8223 7.8099 7.8071 7.8079

PRba 0.0163 0.0164 0.0164 0.0164 0.0164

PRcb 0.4149 0.4151 0.4162 0.4162 0.4161

Gab [GPa] 3.9557 3.9272 3.9153 3.9118 3.9128

Gbc [GPa] 2.2166 2.2089 2.2037 2.2035 2.2043

Table 4.17: Mean Value - single fiber RUC

ID 100 1000 5000 10000 15000

Ea [GPa] 13.2774 12.8194 13.1277 13.1763 13.2259

Eb [GPa] 0.5125 0.4841 0.4984 0.5011 0.5029

PRba 0.0016 0.0014 0.0015 0.0015 0.0015

PRcb 0.0289 0.0277 0.0281 0.0284 0.0285

Gab [GPa] 0.5029 0.4884 0.4797 0.4799 0.4817

Gbc [GPa] 0.1498 0.1370 0.1369 0.1374 0.1381

Table 4.18: Standard Deviation - Single Fiber RUC
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ID 100 1000 5000 10000 15000

Ea [GPa] 8.4566 % 8.2467 % 8.4572 % 8.4812 % 8.5113 %

Eb [GPa] 6.5348 % 6.1888 % 6.3822 % 6.4190 % 6.4412 %

PRba 9.6238 % 8.5749 % 8.9389 % 9.0259 % 8.9838 %

PRcb 6.9615 % 6.6809 % 6.7573 % 6.8328 % 6.8444 %

Gab [GPa] 12.713 % 12.436 % 12.251 % 12.267 % 12.311 %

Gbc [GPa] 6.7575 % 6.2004 % 6.2108 % 6.2337 % 6.2653 %

Table 4.19: Standard deviation % - Single Fiber RUC

ID 100 1000 5000 10000 15000

Ea [GPa] 131.0428 119.8716 112.4751 105.5929 105.5929

Eb [GPa] 6.7231 6.2584 6.1270 6.1270 6.1270

PRba 0.0130 0.0122 0.0121 0.0119 0.0118

PRcb 0.3448 0.3375 0.3330 0.3271 0.3271

Gab [GPa] 3.1103 2.6600 2.6600 2.5269 2.5230

Gbc [GPa] 1.8972 1.7697 1.7697 1.7653 1.7324

Table 4.20: Minimum Value - Single Fiber RUC

ID 100 1000 5000 10000 15000

Ea [GPa] 205.3254 205.3254 207.5751 211.4342 211.4342

Eb [GPa] 9.0769 9.4879 10.1190 10.1190 10.1190

PRba 0.0209 0.0209 0.0223 0.0228 0.0229

PRcb 0.4936 0.5001 0.5186 0.5293 0.5342

Gab [GPa] 5.8359 6.3826 6.4664 6.6931 6.6931

Gbc [GPa] 2.6058 2.8060 2.8810 2.8810 2.8810

Table 4.21: Maximum Value - Single Fiber RUC
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ID 100vs1000 1000vs5000 5000vs10000 10000vs150000

Ea 2.54 % 2.48 % 0.2 % 0.35 %

Eb 5.59 % 3.03 % 0.57 % 0.34 %

PRba 12.23 % 4.07 % 0.96 % 0.46 %

PRcb 4.20 % 1.13 % 1.10 % 0.16 %

Gab 2.22 % 1.51 % 0.13 % 0.35 %

Gbc 8.98 % 0.16 % 0.36 % 0.50 %

Table 4.22: Difference between StD.%

ID 100vs1000 1000vs5000 5000vs10000 10000vs150000

Ea 9.31 % 6.57 % 6.51 % – %

Eb 7.42 % 2.14 % – % – %

PRba 6.55 % 0.82 % 1.68 % 0.84 %

PRcb 2.12 % 1.35 % 1.80 % – %

Gab 16.92 % – % 5.26 % 0.15 %

Gbc 7.92 % – % 0.24 % 1.84 %

Table 4.23: Difference between Min. Values

ID 100vs1000 1000vs5000 5000vs10000 10000vs150000

Ea – % 1.08 % 1.82 % – %

Eb 4.33 % 6.23 % – % – %

PRba – % 6.27 % 2.19 % 0.43 %

PRcb 1.29 % 3.56 % 2.02 % 0.91 %

Gab 8.56 % 1.29 % 3.38 % – %

Gbc 7.13 % 2.6 % – % – %

Table 4.24: Difference between Max. Values

Composite Static Failure Properties sampling influence

The same trend for PDF properties vs sampling number is not as linear as for

elastic properties, at least up to the the limit of 15000 samples.This is observable

in particular with standard deviation while for mean and extreme values the

behaviour is more stable with the samples increase.
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ID 100 1000 5000 10000

mean 0.0217 0.0219 0.0219 0.0219

StD 1.317E-3 1.112E-3 1.1007E-3 1.122E-3

StD% 6.057 5.077 5.0146 5.111

min 0.0179 0.0179 0.0171 0.0161

max 0.0257 0.0257 0.0263 0.0268

Table 4.25: ε11 Static Failure - Single Fiber RUC

ID 100vs1000 1000vs5000 5000vs10000

StD% 16 1.22 1.92

Table 4.26: ε11 StD difference

ID 100 1000 5000 10000

mean 0.032 0.0318 0.0317 0.0317

StD 6.1120E-3 5.2270E-3 5.110E-3 5.0087E-3

StD% 19.1 16.01 15.80 15.77

min 0.01295 0.0129 0.0120 0.0114

max 0.0444 0.0446 0.0450 0.0452

Table 4.27: γ23 Static Failure - Single Fiber RUC
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ID 100vs1000 1000vs5000 5000vs10000

StD% 16.17 1.311 0.189

Table 4.28: γ23 StD difference

4.3 Microscale analysis results

Following the previous considerations, it is not possible to complete the Mi-

croscale Monte Carlo Simulations, which results are the stochastic composite

properties starting from probabilistic microscale level properties describing the

two constituents, fiber and matrix, and their volume fraction. The following

results are obtained using inputs from table 4.8 and 4.9 for Elastic properties,

and 4.11 and 4.12 for ultimate strain in failure analysis. The ultimate goal is

then to understand which of the composite distributions and consequently which

microscale properties are influencing the most the ballistic penetration response

of a composite plate. For the final part of the study, LS Dyna is used for impact

simulations and regarding the specif failure parameters to be given as input,

only axial and shear strains are required. Because of this, the microscale fail-

ure results are limited to these two characteristics of the material. Simulations

are completed using 10000 sampling points. To show the influence of the length

scale, results for architectures composed by 1, 4,16 and 25 fibers are shown. The

base architecture, used in the smaller length scale is four subcell repeating unit

cell (figure 4.5 (a)) comprehending one subcell simulating the fiber and three

subcells representing the matrix which thickness is changing to emulate the fiber

volume fraction distribution. Larger length scales are obtained by assembling

multiple single fiber repeating unit cells.
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4.3.1 Elastic Properties

Axial Elastic Modulus

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 155.3588 155.8608 155.9152 155.7619

StD 13.1763 10.7253 9.8279 9.5787

StD% 8.4812 6.8813 6.3033 6.1496

Min 105.5929 125.1903 128.4908 130.3614

Max 211.4342 193.1717 188.0893 191.6561

Table 4.29: Ea Distribution [GPa]

Figure 4.8: Ea Distributions
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Transverse Elastic Modulus

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 7.8071 7.9390 7.94191 7.9443

StD 0.5011 0.4980 0.4769 0.4859

StD% 6.4190 6.2728 6.0045 6.1158

Min 6.1270 6.3910 6.6742 6.2461

Max 10.1190 9.8860 9.5399 10.0275

Table 4.30: Eb Distributions [GPa]

Figure 4.9: Eb Distributions
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Axial Poisson Ration (direction ba)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 0.0164 0.0166 0.0165 0.0166

StD 0.0015 0.0011 0.0010 0.0009

StD% 9.0259 6.5140 5.8412 5.4224

Min 0.0119 0.0137 0.0140 0.0141

Max 0.0228 0.0209 0.0202 0.0200

Table 4.31: PRba Distributions

Figure 4.10: PRba Distributions
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Transverse Poisson Ration (Direction cb)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 0.4162 0.4053 0.4039 0.4060

StD 0.0284 0.0268 0.0270 0.0263

StD% 6.8328 6.6160 6.6923 6.4737

Min 0.3271 0.3277 2.8002 2.8557

Max 0.5293 0.5019 5.5244 5.3865

Table 4.32: PRcb Distributions

Figure 4.11: PRcb Distributions
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Axial Shear Modulus (Direction ab)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 3.9118 3.7907 3.8093 3.7941

StD 0.4799 0.4345 0.4291 0.4165

StD% 12.2678 11.4627 11.2658 10.9772

Min 2.5269 2.8278 2.8002 2.8557

Max 6.6931 5.6967 5.5244 5.3865

Table 4.33: Gab Distributions

Figure 4.12: Gab Distributions



76

Transverse Shear Modulus (Direction bc)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 2.2035 2.2022 2.2091 2.2041

StD 0.1374 0.1403 0.1395 0.1394

StD% 6.2337 6.3719 6.3138 6.3252

Min 1.7653 1.7646 1.8222 1.7067

Max 2.8810 2.8916 2.7347 2.7104

Table 4.34: Gbc Distributions

Figure 4.13: Gbc Distributions
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4.3.2 Static Failure

Static failure behaviour shows a greater variability with respect to fiber content.

Figure 4.16 shows a plot of the RUCs failure trends resulting from simulations

using a statistical distribution of individual fiber properties in repeating unit

cells containing one, four, sixteen and twenty five simulated filaments.

For the single fiber RUC, average RUC ultimate failure became highly de-

pendent on the selected fiber properties. As the number of the simulated fiber

was increased, the RUC averaged failure became less depended on the individual

fiber strengths. Essentially, the load carried by one fiber at failure was redis-

tributed among the remaining fibers. Additionally, if the number of fibers is

large, the distributions of fibers ultimate strength and strain withing a given

RUCs become more similar, resulting in less variation in the predicted rupture

limit. Consequently, as the number of fibers increases and exceeds 25 fibers,

the mean value and variation in the RUc averaged response asymptotically ap-

proaches those of the representative volume elements.Simulating larger fiber

contents therefore would results in additional computation costs without giving

particular benefits the the final results.

(a) ε11 (b) γ23

Figure 4.14: Mean Ultimate Strain vs Fiber Content
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Axial ultimate strain (ε11)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 2.1957e-02 2.2645e-02 2.3806e-02 2.4155e-02

StD 1.1223e-03 1.1630e-03 1.0627e-03 9.8031e-04

Min 1.6100e-02 1.8300e-02 2.0400e-02 2.0900e-02

Max 2.6800e-02 2.8600e-02 2.8600e-02 2.8700e-02

Table 4.35: ε11 Distributions

(a) 1 Fiber (b) 4 Fibers

(c) 16 Fibers (d) 25 Fibers

Figure 4.15: 10 random Tension11 Static Failure Simulation
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Figure 4.16: Failure Distributions
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Ultimate shear strain (γ23)

1 Fiber 4 Fibers 16 Fibers 25 Fibers

Mean 3.1759e-02 2.6463e-02 2.2165e-02 2.0898e-02

StD 5.0087e-03 4.4160e-03 3.5911e-03 3.4524e-03

Min 1.1400e-02 9.1000e-03 7.5000e-03 6.5000e-03

Max 4.5200e-02 4.0800e-02 3.3700e-02 3.2800e-02

Table 4.36: γ23 Distributions

(a) 1 Fiber (b) 4 Fibers

(c) 16 Fibers (d) 25 Fibers

Figure 4.17: 10 random Shear23 Static Failure Simulation
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Figure 4.18: Failure Distributions
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Chapter 5

Sensitivity analysis

The quantity of stochastic input are directly related to the computational cost

of the the simulations. Keeping some input deterministic and and focus the

effort of studying variations only on specific parameters is one of the strategies

that can be pursued to increase the efficiency of the framework. To under-

stand the criteria behind this selection, the global sensitivity analysis using the

Sobol’s method, is one of the available methods. Through this variance based

sensitivity study it possible to correlate the variance of the output to specific

input variances, as each input, will have a larger or smaller influence on specific

outputs. For Properties like the axial elastic modulus, it is obvious that the

axial elastic modulus of fibers will have an important role and it is less immedi-

ate comprehending the influence of other parameters like Poisson ratios or fiber

volume fraction. This dependence can becomes even less straightforward when

applied to the final structure.

Using the sensitivity analysis module integrated in LS-OPT it is possible to

directly perform sensitivity analysis during the stochastic microscale simulation.

The method is based on methamodels which have to be chosen and tuned prop-

erly as the accuracy of the result depends on the quality of the methamodel.

The sampling method, sampling point number and integration points are the

parameters to set-up for the methamodel. Here, the Sobol’s indexes are com-

puted through quadratic polynomial methamodel where the sampling point are

the one used for the Monte Carlo simulation and twenty thousand integration

points. Following is presented the mathematical fundamentals of the method

and the results obtained for for elastic and failure properties.
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5.1 Fundamentals of Variance Based Sensitivity

Analysis

The variation of the response can be broken down in contributions from each

design variable and its variance assuming independent variables, can be writ-

ten using the Sobol’s indices approach. This technique will rank the influence

of the input variance on the response variance using the so called Sobol Indexes.

Considering the following model:

Y = f(X1, ..., Xp) (5.1)

where the output Y is a scalar and the input factors X1, ..., Xp are supposed

to be independent random variables described by known probability distribu-

tions. These distributions reflect the uncertain knowledge of the system. The

naun idea of this method is to decompose the output variance into the contri-

butions associated with each input factor.

In order to quantify the importance of an input factor Xi on the variance of

Y , imagine that it’s possible to fix it as its ”true” value, x∗i . How much would

this assumption change the variance of Y ? This is the conditional variance

VX−i(Y |Xi = x∗i ) (5.2)

where the variance is taken over the (p − 1)-dimensional parameter space

X−i, consisting in all factors but Xi. Because the true value of Xi is unknown,

we average over all possible values of Xi.

EXi(VX−i(Y |Xi)) (5.3)

The smaller this quantity, the more important the contribution of Xi to the

variance of Y . Indeed, using the law of total variance, it’s possible to write:

V (Y ) = VXi(EX−i(Y |Xi)) + EXi(VX−i(Y |Xi)) (5.4)

and normalizing,

1 =
VXi(EX−i(Y |Xi))

V (Y )
+
EXi(VX−i(Y |Xi))

V (Y )
(5.5)
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The first-order sensitivity index for factor Xi is given by the first term in

equation 5.5:

Si =
VXi(EX−i(Y |Xi))

V (Y )
(5.6)

From equation 5.5 we get that the first order sensitivity index verifies Si ≤ 1.

As proved in eq 1, if the function in 1 is integrable over [0, 1]p then it can be

decomposed into terms of increasing dimensionality as follows:

f(X1, ..., Xp) = f0 +

p∑
i=1

fi(Xi) +
∑

1≤i<j≤p

fij(X1, ..., Xp) (5.7)

Moreover, if the input factors are mutually independent then there exists a

unique decomposition of 5.5 such that all the summands are mutually orthogo-

nal. Using this result, it can be shown that the variance of the output, VY , can

also be decomposed into:

V (Y ) =

p∑
i=1

Vi +
∑

1≤i<j≤p

Vij + ...+ V1,...,p (5.8)

where Vi, Vij , ..., V1,2,...,p denote the variance of fi, fij , ..., f1,...,p respectively:

Vi = V (E(Y |Xi)) (5.9)

Vij = V (E(Y |Xi, Xj))− Vi − Vj (5.10)

Vijk = V (E(Y |Xi, Xj , Xk))− Vij − Vik − Vjk − Vi − Vj − Vk (5.11)

... (5.12)

V1,...,p = V (Y )−
p∑
i=1

Vi −
∑

1≤i<j≤p

Vij − ...−
∑

1≤i1<...<ip−1≤p

Vi1,...,ip−1 (5.13)

where, for simplicity, the indices for the variance and the mean were omit-

ted. From this decomposition, sensitivity indexes can be deduced from the first

p terms of the decomposition 5.8:

si =
Vi

V (Y )
=
V (E(Y |Xi))

V (Y )
(5.14)
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The other terms of the decomposition 5 can similarly be interpreted in terms

of higher order sensitivity indexes. The second-order sensitivity index, Sij , ex-

presses the amount of variance of Y explained by the interaction of the factorsXi

and Xj

Sij =
Vij
V (Y )

(5.15)

and so on until order p. Therefore, for p input factors, we have defined 2p−1

sensitivity indexes. With these definitions of the indexes, we can get the relation:

1 =

p∑
i=1

Si +
∑

1≤i<j≤p

Sij + ...+ S1,...,p (5.16)
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5.2 Microscale Analysis Global Sensitivity Re-

sults

Starting from a total of seventeen microscale properties, it possible to reduce

sensibly the actual properties which have to be considered as probabilistic de-

spite their nature. This selection becomes even more effective, when coupled

with a study which identifies which of the composite properties are the most in-

fluential in penetration response and behaviour. Anticipating the next chapter

content, in low velocity impacts, when penetration does not occur, the Elastic

modulus has the highest impact on projectile velocity. For the more interesting

cases, when penetration occurs, shear moduli and ultimate tensorial shear strain

are the parameters to consider.

Property ID Event

Axial Elastic Modulus Ea Low Velocity, no pene-

tration

Shear Elastic Moduli Gab/Gbc High velocity, penetra-

tion

Tensorial Shear Strain γ23 High velocity, penetra-

tion

Table 5.1: Ballistic Impact Response Main Stochastic influences
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5.2.1 Elastic Properties

Following the Sobol’s indexes obtained for Elastic The elastic properties. Be-

tween the various inputs, only the shear modulus of the fiber contribution can

be considered negligible (as can be easily understood), and when focusing on

the three main elastic parameters in ballistic impact, only five of the eight total

inputs distributions have a tangible effect on the out variances. As expected,

fiber volume fraction always plays an important role in the overall composite

characteristics.

Summarizing: the main probabilistic microscale input which affects the bal-

listic response of the composite plate that is described in chapter 6 are:

• Fiber Volume fraction (Vf )

• Fiber Axial modulus (Eaf )

• Fiber Transverse modulus (Etf )

• Matrix Elastic modulus (Em)

• Matrix Poisson’s ratio (νm)

In table 5.2 are reported all the indexes resulting for the variance based

sensitivity analysis ranked, red, yellow, blue, green, from the most impacting

parameters to the lowest. White cells in table 5.2 represent the negligible prob-

abilistic properties.

E11 E33 G23 G13 ν12 ν23

Vf 5.273e-1 5.725e-1 5.298e-1 8.435e-1 2.009e-2 7.243e-2

Eaf 4.751e-1 1.290e-5 4.821e-8 1.367e-6 5.335e-9 1.248e-4

Etf 5.95e-12 1.479e-1 4.100e-2 1.036e-6 3.296e-5 6.523e-3

νaf 1.508e-8 4.638e-6 1.401e-7 1.958e-6 6.306e-1 5.891e-5

νtf 2.60e-13 4.174e-4 2.738e-3 1.091e-6 6.435e-6 6.318e-2

Gaf 4.84e-14 1.586e-7 1.521e-7 3.830e-4 2.160e-9 7.126e-8

Em 3.679e-5 2.025e-1 4.014e-1 2.034e-6 2.309e-5 3.608e-3

Gm 2.24e-13 5.474e-7 4.429e-7 1.584e-1 2.694e-9 7.466e-8

νm 1.488e-8 8.113e-2 2.695e-2 1.277e-6 3.552e-1 8.582e-1

Table 5.2: Elastic Properties Sensitivity Indexes
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Figure 5.1: Sensitivity Indexes E11

Figure 5.2: Sensitivity Indexes E33

Figure 5.3: Sensitivity Indexes G13
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Figure 5.4: Sensitivity Indexes G23

Figure 5.5: Sensitivity Indexes ν12

Figure 5.6: Sensitivity Indexes ν23
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5.2.2 Failure Properties

Failure properties are showing a similar behaviour and only a few of the mi-

croscale inputs are really affecting the output distributions. It is interesting

observing how for shear strain in direction 2-3, a partial influence is dictated

also by some of the properties classified as elastic characteristics in the previous

section. Composite failure distributions are then mainly affected by:

• Fiber axial tensorial strain

• Matrix tensorial strain

• Fiber shear strain

• Matrix Shear Strain

• Fiber volume fraction

• Fiber transverse elastic modulus

• Matrix Elastic modulus

ε12 γ23

ε11f 5.489e-1 3.394e-4

ε22f 1.514e-3 3.394e-4

ε33f 1.205e-3 4.772e-4

γ23f 1.509e-3 7.995e-1

γ13f 9.132e-4 4.650e-4

γ12f 1.21e-33.384e-4

εm 5.444e-1 5.871e-4

γm 1.642e-3 1.637e-2

Vf - 9.393e-2

Etf - 5.694e-2

Em - 4.180e-2

Table 5.3: Failure Properties Sensitivity Indexes
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Figure 5.7: Sensitivity Indexes ε11

Figure 5.8: Sensitivity Indexes γ23
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Chapter 6

Macro-Scale Impact

Simulations

In general, Finite Element simulation provide deterministic results. In the case

of ballistic impact simulations, for a specific set of inputs (material model and

parameter, geometry, mesh, impact velocity and others) the result should always

be the same. For a specific simulated impact velocity the result will be either

penetration or containment. In reality, however, due to several effects like fore

example impurities, inclusions, variations in constituent properties and other

source of variation, composite material properties show statistical variations.

Therefore a zone of mixed results exists, in which, for a given impact velocity,

the projectile sometimes penetrate the composite plate and sometimes not. De-

terministic simulations are not able to reproduce or predict this probability of

penetration. To replicate this behavior, the goal was to use stochastic variations

of the material properties of the composites as input to the simulations.

The probability distributions functions obtained through the micromechan-

ics code are applied to an LS-Dyna FEM model simulating a specific ballistic

impact test. The widely used LS-Dyna MAT54 material model is used in com-

bination with the material stochastic properties. After the validation of the

material model, the sensitivity to scaling of individual material properties is an-

alyzed to identify which parameters showed a higher influence in low and high

velocity impact simulations as anticipated in the previous chapter.

Finally, using the validated MAT54 material card as a baseline, a specific

number of material cards have been crated through sampling of the stochastic

input distributions obtained from microscale material properties distributions.

This new set of material cards are then randomly assigned to the plate elements

building the FEM model. By shuffling the assignment of materials to elements,

a variation in the response of the composite is observed and using logistic re-
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gression analysis a probability of penetration for different impact velocities is

defined.

6.1 LS-Dyna FEM Model

For the purpose of studying the variability in structural behaviour as a function

a material properties distributions, an already existing and validated model has

been used. This model, is representative of an experimental ballistic test where

a target (a T800/F3900 Carbon Epoxy Plate) is hit by a 50.8 grams projec-

tile. The composite plate is fabricated using 16 layers resulting in a thickness of

3.098mm and has a 254mm circular clamping patterns. The hollow projectile is

made of AL-2024 and has a radiused face.

Figure 6.1: A figure Figure 6.2: Another figure

In LS-Dyna the plate has been modeled using 16 elements (one per layer)

through the thickness with the addition of cohesive elements between each layer.

A symmetric layup of [0, 90,+45,−45]2s is used (Figure 6.4). A finer mesh is

used to model the central section of the plate using an element aspect ration of

approximately 8:1 while the aspect ration in the outer part is 16:1 when con-

sidering element longest edge. This results in a total of 370.000 plate element

and 350.000 cohesive elements. Boundary conditions (figure 6.3) are achieved by

constraining the round plate in the clamping region in impact direction modeling

the interaction between the clamping plates and the composite plate. Addition-

ally, the nodes in the region where the bolts would be located are constrained

in plane.

The aluminium impactor was modeled with 27200, 8-noded hexaedral el-

ements using a piecewise linear plasticity model (MAT24). The influence of

friction between projectile ad plate and the influence on the angular impact. In

the first case, the coefficient of friction has been varied from 0.1 to 0.3 without

showing any variation in the simulation output.For angular impact, both the

impact axis and the velocity vector were rotted around the y-axis (perpendicu-
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Figure 6.3: Constraint Representation

Figure 6.4: FEM model layup

lar to the fiber direction) about 5deg. In figure is shown the rotated projectile

and the nodal velocity vectors with the short black arrows. The results do not

show a Major impact on the displacement results. Normal impact and angular

result in very similar output for the center of impact point and the maximum

displacement point
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Figure 6.5: A figure

Figure 6.6: Another figure

Figure 6.7: Impactor angular deflection plot
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6.2 MAT54 material card and single element ver-

ification

6.2.1 Single element verification

Single element simulations were used to verify the baseline material card is

working as expected and to highlight some of the current capabilities of MAT54.

Figure 1 shows the used input to the MAT54 material card while Table 1 lists

how these values were obtained and, if applicable, the source. The material

tests to get the elastic properties of the T800/F3900 composite were performed

by Arizona State University and The Ohio State University.

Input Description Source Value

ro Mass Density Material Test 1.4521E-

4

ea Young’s modulus - longitudinal Material Test 161.751GPa

eb Young’s modulus - transverse Material Test 7.3498GPa

prba Poisson’s ratio ba Material Test 0.0168

prcb Poisson’s ration cb Material Test 0.4390

gab Shear modulus ab Material Test 3.9955GPa

gbc Shear modulus bc Material Test 2.2476GPa

ti Flag to turn on transversal isotropic be-

havior

Assumption 1

alph Shear stress paraeter for nonlinear term Wade et al. [26] 0.1

fbrt Softening for fiber tensile strength Wade et al. [26] 0.5

ycfac Reduction factor for compressive fiber

strength after matrix compressive fail-

ure

Wade et al. [26] 1.2

dfailt Maximum strain for fiber tension De Facto Deactivated 300.0

dfailc Maximum strain for fiber compression De Facto Deactivated -300.0

xc Longitudinal compressive strength Material Test 0.727GPa

xt Longitudinal tensile strength Material Test 2.523GPa

yc Transverse compressive strength Material Test 0.175GPa

yt Transverse tensile strength Material Test 0.044GPa

sc Shear strength, ab plane Material Test 0.128GPa

crit Failure criterion Computational 54

beta Weighting factor for shear term in ten-

sile fiber mode

Wade et al. [26] 0.5
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Input Description Source Value

slimt1 Factor to determine the minimum stress

limit after stress maximum (fiber ten-

sion)

Assumption – generally

requires extensive calibra-

tion [19]

0.5

slimt1 Factor to determine the minimum stress

limit after stress maximum (fiber ten-

sion)

Assumption – generally

requires extensive calibra-

tion [19]

0.2834

slimc1 Factor to determine the minimum stress

limit after stress maximum (fiber com-

pression)

Assumption – generally

requires extensive calibra-

tion [19]

1.0

slimt2 Factor to determine the minimum stress

limit after stress maximum

Assumption – generally

requires extensive calibra-

tion [19]

0.6402

slimc2 Factor to determine the minimum stress

limit after stress maximum (matrix

compression)

Assumption – generally

requires extensive calibra-

tion [19]

1.0

slims Factor to determine the minimum stress

limit after stress maximum (shear)

Assumption – generally

requires extensive calibra-

tion [19]

1.0

Table 6.1: FEM Impact Tests Results

Apart from the elastic properties that were obtained using material tests

(shaded blue), several material parameters had to be taken from literature

(shaded red). Obtaining good values for these parameters can be time and

resource intensive and requires extensive calibration efforts to reverse engineer

the correct values for the used material. As many of these parameters were

obtained for a different fiber/matrix combination, they might not be the best

values possible and could be improved. Due to time constraints, an extensive

calibration of these parameters was not performed in this study. To verify the

material is responding as expected, single element simulations were performed.

The material was loaded in 1, 2 and 3-direction in tension and compression

as well as in 12, 23, and 31 shear. Table 2 shows the results of the 9 single

element simulations. In 1-direction tension, the material responds linear elastic

until the longitudinal tensile strength (XT) is reached. The stress then drops to

XT*SLIMT1 and stays perfectly plastic. As the transverse isotropic behavior

flag is turned on (TI=1), the response in the 2 and 3 direction is expected to

be the same, which is the case. In both the 2 and 3 direction tension, the stress

increases linear elastic until the transverse tensile strength (YT) is reached and

then drops to a perfectly plastic level of YT*SLIMT2. In compression, the SLIM

values were chosen to be 1 (assumption) and therefore, after the compressive



98

strengths (XC and YC) are reached, the stress does not drop but stays perfectly

plastic at the level of XC and YC respectively. The response in shear 12 and 31

directions are the same due to transverse isotropy with stresses reaching SC and

then staying perfectly plastic at that level due to SLIMS being chosen as 1. In

shear 23 the material seems to respond similar to tension in transverse direction

with stresses reaching a level of YT and then dropping to YT*SLIMT2.

Figure 6.8: Single Element Tension Verification

Figure 6.9: Single Element Compression verification

6.2.2 Impact Simulations Verification

For validation of the elastic response of the material, a relatively low veloc-

ity impact was chosen (LVG1067/1071 – 47.244m/s). To calibrate the failure

criterion, three high velocity impacts were chosen:
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Figure 6.10: Single element Shear verification

• LVG1075 - 117.34 m/s, in which the projectile caused significant damage

to the plate but was contained.

• LVG1074 - 127.10 m/s, where the projectile penetrated the plate and

exited with a low velocity (∼ 7.62m/s)

• LVG1076 - 138.37 m/s, which was the second highest velocity tested by

NASA where the projectile penetrated the plate and exited with a high

velocity.

Figure 6.11 shows a plot of impact velocity (abscissa) vs. exit velocity (ordi-

nate) in the penetration cases or rebound velocity (ordinate) in the cases where

the projectile was contained.

Figure 6.11: Impact Velocities plot
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Low Velocity Impacts

The elastic response of the material model was validated using the low velocity

impact tests LVG1067 and LVG1071 with projectile velocities of 47.24 m/s and

47.35 m/s respectively. The impact caused no visible damage to the plate in

both tests. Figure 6.12 shows the displacement in impact direction in the center

of the back side of the plate in the test (blue), simulated using MAT22 (purple),

an early version of MAT213 and the material card MAT54 described earlier

in this document. The response of MAT54 was considered “close enough” to

the test results and therefore could be used in the higher velocity impacts to

calibrate a failure model.

Figure 6.12: Low Velocity Impact calibration

High Velocity Impacts

For this study failure was considered using the LS-DYNA Erosion card, which

provides an option to include different failure criteria with existing material

models. The options chosen were minimum and maximum principal strain at

failure and tensorial shear strain at failure. To calibrate this failure model,

three higher velocity impacts were simulated. As a first step, the lowest of

the three velocities was simulated with failure disabled. Plotting the minimum

and maximum principal strain at failure and the shear strain in this simulation

provided a first starting point to identify failure parameters that allow for an

accurate modeling of the failure patterns. By trial and error approximately

10 different combinations of the three failure parameters were simulated at the

three different impact velocities. The total amount of simulations determine
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the final set of values was therefore around 30s. The projectile velocities pre-

and-post-impact are plotted in Figure 6.13 with the horizontal datum lines

representing the exit velocity that was measured in the test. A good fit of the

simulation is therefore obtained if the post-impact velocity of the projectile is

close to the datum line of the specific test. As Figure 6.13 shows, the material

is capable of modeling the projectile rebound in LVG1075 and the penetration

and exit velocities in both LVG1074 and LVG1076.

Figure 6.13: High Velocity Impact calibration

The failure pattern in the test and the simulation are shown in Figure 6.14.

In the top, the top view (impacted side) of the plate in the simulation (left) and

test (right) is shown and in the two pictures below the bottom view. In both,

test and simulation, the plate fails in a cross-like pattern with significant de-

lamination between the layers. The failure patterns in the higher speed impacts

looked similar in the tests and simulations.



102

Figure 6.14: FEM vs Test fracture pattern

6.2.3 Delamination

As described above, delamination was accounted for by the use of cohesive

elements that were calibrated extensively in an earlier study based on Double

Cantilever Beam, End Notched Flexure tests and ballistic impact simulations.

However, this was the first time the calibrated cohesive material was used in high

velocity impacts. As the images in Figure 6.15, 6.16, 6.17 show, the predicted

delaminated areas in the simulations (left) are close to the delaminated areas

that can be seen in scans of the tested specimen (right). The importance to

account for delamination in ballistic impact simulations of composite plates is

demonstrated by the comparison of a simulation without cohesive elements to

the baseline simulation. Figure 6.18 shows the projectile velocity in the LVG1074

case. Just like in the test, the projectile penetrated the panel in the simulation

in which delamination was accounted for by cohesive elements (blue). In the

simulation without cohesive elements (red), the projectile is contained and now

rebounds the plate (negative post-impact velocity). This highlights the need to

account for delamination in impact simulations of composites.
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Figure 6.15: LV1075 Delamination

Figure 6.16: LVG1074 Delamination
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Figure 6.17: LVG076 Delamination

Figure 6.18: LVG1074 Simulation - Cohesive vs Non-cohesive elements
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6.2.4 Assumption and Limitations

Due to the limited scope of this study, some assumptions were made to simplify

the analysis. As mentioned earlier, several material parameters were taken from

literature where these values were optimized for different fiber/matrix pairings.

In addition, the material and failure model were calibrated on a specific use case

with a certain mesh size and orientation. Variations in loading, for example due

to a different projectile shape or a different mesh size and/or orientation, might

need additional or new calibration efforts. This strong mesh dependency can

be shown by rotating the plate of 45° or by using a finer mesh size. Figure 6.19

shows the projectile velocity results for the baseline mesh (solid lines) and for

the rotated mesh (dashed lines). As the material direction was defined in the

global coordinate system, this does not influence the results and the difference

between baseline (called “Failure 2”) and the rotated mesh can only be explained

by the mesh sensitivity. The simulation of LVG1074 (blue), with the baseline

mesh, previously correctly predicted penetration of the projectile with a low

exit velocity now predicts a rebound of the projectile when the rotated mesh

is used. The pattern of failure also shows differences between the baseline and

the rotated mesh (Figure 6.20 and 6.21) with the pattern roughly following the

element lines in both cases.

Figure 6.19: Baseline vs Rotated mesh simulation
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Figure 6.20: Baseline Mesh

Figure 6.21: Rotated Mesh

In addition to the rotated mesh, the results of the baseline were compared

to a finer mesh size of approximately half the element size of the baseline. In

this case the projectile velocities change in a different way, with now all three

simulations resulting in penetration with high exit velocities as Figure 6.22

shows. The failure pattern of the plate changes as well as Figure 6.20 and 6.21

show.
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Figure 6.22: Baseline vs Fine mesh

Figure 6.23: Baseline Mesh Figure 6.24: Fine Mesh
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6.3 Influence of Variation of Elastic and Failure

properties in ballistic impacts

6.3.1 Elastic Parameters

Due to the large amount of input parameters to the MAT213 material model,

the influence of the elastic material properties in the MAT54 model on ballis-

tic impacts were studied to identify the most important variables for a future

stochastic implementation of MAT213. The material properties were scaled up

individually by the standard deviation percentage obtained using MAC/GMC

(section 4.3.1) and their influence on the simulation results compared qualita-

tively by looking at the plate displacement in the low velocity impact (LVG1067

– 47.24m/s). In these low velocity impacts, failure did not have an influence on

the results. In the higher velocity impact tests on the other hand (LVG1075 –

117.34 m/s, LVG1074 – 127.10 m/s and LVG1076 – 138.37 m/s) failure occurred

in the plate, and therefore influenced the obtained results.

Figure 6.25: LVG1067 with elastic properties scaled individually

In the low velocity impact of LVG1067, the Young’s Modulus in fiber direc-

tion (EA) was clearly the dominating material parameter as shown in Figure

17. All other material parameters did not influence the plate displacement re-

sults significantly. In the higher velocity impacts of LVG1075, LVG1074 and

LVG1076, the composite plate was damaged and in the cases of LVG1074 and

LVG1076 fully penetrated. Figure 6.26, 6.27 and 6.28 show the resultant projec-

tile displacements for the different scaled elastic properties in the three impact

tests. In the contained case (LVG1075) the Shear Modulus 12 (GAB) and the

Poisson’s ratio 31 (PRCB) influence the results most significantly. In LVG1074,

the most important variables are the Shear Moduli in 23 (GBC) and 12 direc-

tion (GAB). Similar results are obtained with the highest simulated velocity of

LVG1076 with both Shear Moduli having the biggest impact on the result.
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Figure 6.26: LVG1075 Projectile impact direction displacement

Figure 6.27: LVG1074 Projectile impact direction displacement

Figure 6.28: LVG1076 Projectile impact direction displacement

In conclusion, in the low velocity impact, where failure did not occur, the
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Young’s Modulus was the dominating material parameter and in the higher

velocity impacts the Shear Moduli.

6.3.2 Failure Parameters in high velocity impacts

The influence of the defined failure parameters of the Erosion card was studied

using the three high velocity impacts LVG1075, LVG1074 and LVG1076. The

failure parameters were scaled by the absolute difference between mean and

maximum / minimum that was obtained using MAC/GMC (section 4.3.2).

For all three ballistic impact velocities the clearly dominating factor was the

tensorial shear strain at failure (EPSSH). Figure 6.29, 6.30 ad 6.31 show the

projectile velocity over time in the three ballistic impact tests for the scaled

failure parameters.

Figure 6.29: LVG1076 Projectile impact direction displacement

Figure 6.30: LVG1076 Projectile impact direction displacement
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Figure 6.31: LVG1076 Projectile impact direction displacement

6.4 Determining probability of penetration us-

ing statistical variations of material param-

eters

The overall goal of the stochastic analysis is to provide a computational frame-

work to analyze stochastic variations of material parameters and to incorpo-

rate their effects into ballistic impact simulations. The stochastic variations

of the material parameters that were obtained using the micro mechanics code

MAC/GMC were used to create 100 LS-DYNA material cards. Figure 6.32

shows as an example the Young’s modulus in fiber direction (EA) for the 100

material cards. These material cards were then randomly assigned to elements

of the composite plate with every material card being assigned to the same to-

tal number of elements. A representation of this distribution is shown in figure

6.33.

50 ballistic simulations were then setup with velocities being picked ran-

domly in a range in which the 50% probability of penetration was expected due

to the previous test and simulation results. The assignment of material IDs

to the elements was reshuffled between every simulation. Therefore the impact

region could sometimes contain “weaker” materials and sometimes “stronger”

materials. Each simulation was run with two different material input sets, once

with all material parameters being varied and once with variation of only the

most influential parameters as identified in the earlier studies. Table 6.1 shows

the binary results of the ballistic impact simulations with 0 representing projec-

tile containment and 1 representing penetration of the plate. Containment was

defined as the projectile displacement showing a maximum before the termina-

tion time of the simulation, meaning that the projectile rebounded.
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Figure 6.32: EA Distribution - Impact simulation

Figure 6.33: EA Distribution - Impact simulation
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ID Velocity

[m/s]

All parameters

with variation

EA, GAB, GBC,

EPSSH with varia-

tion

1 117.195 0 0

2 117.398 0 0

3 117.525 0 0

4 117.856 0 0

5 117.881 0 0

6 118.618 0 0

7 119.761 0 0

8 121.539 0 0

9 122.123 0 0

10 122.555 0 0

11 124.612 0 1

12 124.968 0 0

13 125.120 1 1

14 125.145 0 1

15 125.349 0 1

16 126.187 1 0

17 126.238 1 1

18 126.339 1 1

19 126.415 1 0

20 127 1 1

21 127.152 1 1

22 127.152 0 1

23 127.203 1 1

24 127.228 0 1

25 127.279 1 1

26 127.431 1 1

27 127.584 1 1

28 127.838 1 1

29 128.016 1 1

30 128.117 1 1

31 128.117 1 1

32 128.193 1 1

33 128.270 1 1

34 128.346 1 1

35 128.422 1 1

36 128.600 1 1

37 128.701 1 1

38 128.879 1 1
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ID Velocity

[m/s]

All parameters

with variation

EA, GAB, GBC,

EPSSH with varia-

tion

39 129.032 1 1

40 129.082 1 1

41 129.362 1 1

42 130.302 1 1

43 131.013 1 1

44 131.038 1 1

45 131.064 1 1

46 131.927 1 1

47 133.019 1 1

48 133.426 1 1

48 133.451 1 1

50 133.908 1 1

Table 6.2: FEM Impact Tests Results

In Figure 6.34 the logistic regression functions, indicating the probabilities of

penetration that were computed for the two sets of data, are shown with the raw

data points. In green, the two physically tested impact velocities are shown as

well. The blue curve shows the regression function for the material input where

all parameters were stochastically varied and the red curve where only the most

influential material parameters were varied. The “zone of mixed results”, or

in other words the velocity range from lowest velocity causing penetration to

highest velocity in which the projectile was contained for both cases is similar.

The velocity at 50% likelihood of penetration with all parameters varied is

124.86 m/s and with the most influential parameters varied 125.75 m/s which

is a difference of less than 1%. As the difference between the two analysis is

quite low, in future stochastic implementations of MAT213, the focus should lie

on the here determined influential parameters.

For a comparison of the determined probability range to the ballistic impact

tests conducted at NASA, Figure 26 shows the test impact velocity vs. exit /

rebound velocity obtained in the tests in blue. The probability range from 99

probability contained to 99% probability of penetration is shown in yellow. The

red marker highlights the 50% probability of penetration velocity. The simu-

lation results suggest that for the LVG1075 impact velocity of 117.34 m/s in

100% of the time the projectile will be contained as it also was in the test. For

the impact velocity of the LVG1074 test (127.10 m/s) however, the computed

probability of penetration was ∼ 90%. In the physical test the projectile pene-

trated the plate and exited on the back with a relatively low velocity of ∼ 7.62
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Figure 6.34: Logistic regression functions and zone of mixed results for both

sets of simulations

m/s which suggests that in certain circumstances the projectile could have been

contained for that velocity. Overall the probabilities of penetration that were

obtained in the simulations seem to agree reasonably well with the limited bal-

listic impact test data that was available in the critical velocity region.

Figure 6.35: Simulation probabilities in comparison to NASA ballistic impact

tests
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Chapter 7

Conclusions

A computational framework for the determination of probabilities of penetration

in ballistic impact tests that takes into account statistical variation of material

parameters in composites, was introduced. To obtain physically meaningful

stochastic variations of these material parameters, the micro mechanics solver

MAC/GMC was used starting from literature data to test the computational

framework. These variations of material parameters were incorporated into a

ballistic impact simulation utilizing an LS-DYNA MAT54 material card that

was validated as part of this study. Several impact velocities with random dis-

tributions of LS-DYNA material cards that followed the MAC/GMC material

parameter distributions were conducted and logistic regression analysis used to

obtain probabilities of penetration. Reasonable agreement between the obtained

probabilities of penetration and the limited test results in the critical region was

found showing how the variations due to microscale properties distributions.

The results of this study will support the implementation of stochastic capabili-

ties into the newly developed Ls-DYNA MAT213 material model supporting the

trend of non-deterministic i.e stochastic structural simulations through which

more efficient and secure designs can be achieved thanks to the higher level of

behaviour predictability.
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