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Abstract

The demand of computational power on every kind of device, from low-cost pro-

cessors to High Performance Computing, is continuously growing. Approximate

computing has seen significant interest as a design philosophy oriented to perfor-

mance and energy efficiency. In precision tuning, accuracy is traded in favor of

performance and energy by employing less precise data types, such as fixed-point

instead of floating-point. Thanks to the advantages that it brings, precision tuning

is increasingly being used in many application areas, exploiting multiple data types

for number representation, each one with its own strengths. However, the current

state-of-the-art does not consider the possibility of optimizing mathematical func-

tions whose computation is usually offloaded to a library. In this work, we extend

a precision-tuning framework to perform tuning of trigonometric functions. We

developed a new kind of mathematical function library, which is parameterizable

at compile-time depending on the data type and works natively in the fixed point

numeric representation. Our approach, which we test on two microcontrollers with

different architectures, achieves a speedup of up to 282%, and energy savings up

to 60%, with a negligible cost in terms of error in the results.

We also extend a precision-tuning framework mixing precision capabilities to

support new data types. This was possible developing a new algorithm to choose

which data type allocate and changing the generation procedures. We tested it

against the Polybench benchmark suite to prove the proposed solution’s effective-

ness.
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Sommario

La richiesta di capacità di elaborazione dei dati sta cresendo su ogni tipo di dispos-

itivo siano processori a basso costo o grandi centri di elaborazione, l’approximate

computing sta suscitando sempre più interesse come paradigma di progettazione

orientato sia al risparmio energetico sia alle prestazioni. Nel precision tuning,

l’accuratezza della computazione è ridotta in favore di maggiori prestazioni e mi-

nor consumi. Tutto questo è possibile grazie alla possibilità di cambiare i tipi

dei dati utilizzati, pre esempio da floating-point a fixed-point. Per queste ragioni

il precision tuning sta venendo sempre più adottato, per poter sfruttare a pieno

tutti i tipi di rappresentazione possibili e tutti i loro punti di forza. Lo stato

dell’arte però non considera la possibilità di ottimizzare le librerie matematiche

che spesso vengono calcolate da librerie esterne. In questo lavoro abbiamo esteso

un framework per il precision tuning affinchè fosse ingrado di calcolare nativa-

mente le funzione trigonometriche. Abbiamo quindi sviluppato un nuovo tipo di

approccio alle librerie matematiche, totalmente parametrizzabile, capace di lavo-

rare a compile-time generando codice pensato appositamente per i fixed point. Il

nostro approccio è stato testato su due micocontrollori differenti aventi differenti

tipi di architetture. Lo speedup massimo ha raggiunto i 282% con un rispormio

energetico del 60% e trascurabili costi in termini di errore generato.

Abbiamo inoltre esteso lo stesso framework di precision tuning per supportare

nuovi tipi di dato. Per raggiungere questo obbiettivo abbiamo modificato gli algo-

rittmi di selezione e di generazione del codice. Infine abbiamo testato l’efficacia di

questi algoritmi sulla suite Polybench.
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Chapter 1

Basic Notions

In this section, we provide basic knowledge required to better understand the

thesis. First, we will describe the primary data types utilized and the advantages

and disadvantages of each one. Afterwards, some background about the algorithms

used will be provided.

1.1 Real number representations

Due to the boundlessness of real numbers, it is impossible to have a bijective

function that maps R to a finite number of bits. In fact, given n bits to represent

a number, and knowing that all the possible combinations of 2 elements in n space

are 2n, there is no way to find such bijective function. For this reason, real numbers

have various different representations, each one with a different purpose.

1.1.1 Integer representation

The integer representation is used to represent numbers without a fractional part.

Integer types can be of any dimension; however, they are typically a multiple of

the specific architecture’s word size as reported in Table 1.1. Every integer data

type has a range determined by its size.

When it is necessary to represent negative (signed) numbers as well, two’s

complement representation is used. This representation has the advantage that

all the basic mathematical operations (addition, subtraction, multiplication) can

be performed in exactly the same way both for positive and negative numbers.

Therefore, the same hardware can be used handle signed and unsigned numbers.

In the two’s complement representation, the leading bit is the sign bit.

13



More formally, given an integer number with n bits (bn−1bn−2bn−3...b1b0 | b∗ ∈
{0, 1}) represented in two complement, the representation shall be interpreted as

described in Eq. (1.1).

−1 ∗ 2n−1 ∗ bn−1 + 2n−2 ∗ bn−2 + 2n−3 ∗ bn−3...21 ∗ b1 + 20 ∗ b0 (1.1)

Finally, when using two’s complement representation for signed numbers, and

considering n as the number of bits in the representation, the range of numbers

representable is shown in Eq. (1.2).{
[−2n−1, 2n−1 − 1] Signed

[−2n, 2n − 1] Unsigned
(1.2)

1.1.2 Floating point Representation

A floating-point number is represented by multiple fields, namely a sign, an ex-

ponent, a significand, and a predefined base. The exponent is a signed integer

number, and the base is typically equal to 2.

Given the value of each field, the interpretation of a floating point number is

shown in Eq. (1.3).

−(1)sign ∗ significand ∗ baseexponent (1.3)

There are many floating point standards as reported in Table 1.3, and the most

wildly used is the IEEE-754 [1]. The most relevant are single and double precision

(32 and 64 bit), also called binary32 and binary64.

In the binary32 standard, to gain more range, the significand is normalized, so

the leading bit d0 is always equal to one and can be omitted.

Type Range signed Range unsigned

8 bit [−27, 27 − 1] [0,28]

16 bit [−215, 215 − 1] [0,216]

32 bit [−231, 231 − 1] [0,232]

64 bit [−263, 263 − 1] [0,264]

Table 1.1: List of the most common integer types

14



Sign Exponent Significand Base

12.12122058 =
0 10000010 10000011111000010000101 Binary

0 130 1.5151525735855103... Decimal

Table 1.2: Example of floating point representation

Additionally, the exponent ranges from −126 to +127 because exponents of

−127 and +128 are reserved for limits and special error values. In the actual

representation, the exponent is represented in excess 127. Therefore, starting from

an unsigned exponent of 130, to retrieve the actual exponent 127 will need to be

subtracted. So, referring to Table 1.2, the map between float and real number is

achieved as in Eq. (1.4).

−10 × 2(130−127) × 1.5151525735855103 = 12.12122058 (1.4)

The IEEE-754 standard also specifies all the possible operations and exceptions

that can occur when working with floating point numbers. For this reason, the

floating point data type supports two unique states, NaN and infinity. The former

is used to handle the outcome of operations that result in undefined behavior such

as 0
0

or ∞∞ . The latter is used to support operations that lead to infinity or to

handle overflows.

Other important floating point formats are the x87 extended 80-bit – which is

similar to binary64 but with a longer significand – and bfloat16 (or simply bfloat)

which is like binary32 but with a shorter significand. bfloat16 was intended to be

used with deep learning algorithms, where less precision than binary32 is enough.

Computers have dedicated hardware to work with different floating point types,

the FPU (floating point unit). Typically the FPU only supports a subset of all the

possible floating point formats. However, it is still possible to find architectures

without hardware support to floating point, like some ATMega and STM32 ones

[2] [3]. This is done either to achieve better power consumption, or to reduce the

costs. In these cases, if needed, floating point operations are emulated by the CPU

1.1.3 Fixed Point Representation

A fixed point number is essentially an integer with a fractional part.

If we call x the position of the first bits of the fractional part, a signed fixed

point with n bits (bn−1bn−2bn−3...b1b0 | b∗ ∈ {0, 1}) is interpreted as in Equation 1.5.

15



Type Significand bits Exponent bits

binary16 10 5

binary32 23 8

binary64 52 11

binary128 112 15

binary256 236 19

bfloat16 7 8

x86 80bit 63+1 15

Table 1.3: List of the most common Floating points types

Typically, the fixed point size n is a multiple of the architecture word.

(−1) ∗ bn−1 ∗ 2 ∗n−x−1 +bn−2 ∗ 2n−x−2 + bn−3 ∗ 2n−x−3...b1 ∗ 21−x + b0 ∗ 2−x (1.5)

Fixed point representation has the advantage of being compatible with the

hardware for integer numbers. This lead to the possibility of using fixed point

instead of floating point in low energy devices. The hardware does not enforce the

fractional part’s position, so multiplication and division require a scaling operation

to preserve the decimal place after the operation. The dimension of the fractional

and integer parts determines the precision and the range. An example illustrating

the fixed point representation is reported in Table 1.4.

Writing a program exploiting fixed point data types is an error-prone and time-

consuming procedure.

1.2 Errors in numerical representation

As the number of bits representing a type is finite, it is impossible to map all the

numbers to a data type without introducing errors. In this section we will present

an overview of such errors and the situations in which they occur.

Sign Integer Fractional Base

12.1212205 =
0 1100 000111110000100001001110100 Binary

0 12 0.121220499277115... Decimal

Table 1.4: Example of fixed point representation

16



1.2.1 Arithmetic Overflows

Arithmetic Overflows are errors that occur when an operation generates a number

that exceeds the range of representability. For integer and fixed point, two be-

haviors are possible: wrapping overflow, and saturating overflow. When a number

exceeds the limits in a wrapping overflow, it is truncated, and only the lower part

of the representation is preserved. Wrapping overflow can lead to a counterintu-

itive result, like adding two positive signed integer results in a negative one as

shown in Table 1.5.

22509 + 28605 = -14422

0101011111101101 + 0110111110111101 = 1100011110101010

Table 1.5: Example of wrapping overflow

Saturating overflow instead limit the result to the maximum or minimum value

representable, as exemplified in Table 1.6. In some architectures like x86, a flag is

set when a signed integer overflow occurs. Floating point overflows result in −∞
or +∞.

22509 + 28605 = 32767

0101011111101101 + 0110111110111101 = 0111111111111111

Table 1.6: Example of Saturating overflow

1.2.2 Round-off

While overflow errors are caused by situations where the range of a representation

is not sufficient to represent the result of a computation, round-off errors originate

from situations where the precision of the representation is not sufficient.

Fixed point representations are not affected by round-off when considering ad-

dition and subtraction. This can be demonstrated by considering that fixed point

representations can be mapped exactly to the set of rational numbers with denom-

inator 2n where n is the size of the fractional part. This subset of rational numbers

is closed with respect to addition and subtraction, and therefore no round-off can

occur when performing such operations. Other operators, such as multiplication

and division, can be affected by round-off even in fixed point representations.

17



Floating point representations can be affected by round-off from all operators.

This is due to the fact that the density of the representation is dependent on the

specific exponent utilized.

Let us consider a generic floating point x0, and the smallest representable

number x1 such that x1 > x0. All the numbers between x0 and x1 are approximated

with some policy to one extreme. Specifically, the IEEE 754[1] requires that the

result of an elementary operation rounds to the nearest. The difference between

x0 and x1 is called ULP(unit of least precision), and it is used as a measure of

accuracy in numeric calculations[4]. The ULP of a generic floating point x with

| x |∈ [2e, 2e+1] and precision p is shown in Eq. (1.6)

2max(e,emin)−p+1 (1.6)

1.2.3 Representation Mismatches

Some types like floating point have specials states like∞ or NaN. If a floating point

in such a special state is converted to an integer type, a representation mismatch

occurs because there is no corresponding representation in the integer type.

1.3 The CORDIC Algorithm

The CORDIC algorithm was introduced in 1959 by Volder [[5], [6]]. In Volder’s

version, CORDIC makes it possible to perform rotations (and therefore to compute

sine, cosine, and arctangent functions) and to multiply or divide numbers using

only shift-and-add elementary steps. For this reason, it is perfect for low power

environments in conjunction with fixed point.

This algorithm was developed to substitute the analog navigation computer of

the B-58 bomber aircraft with a digital computer [7]. Since then, CORDIC has

been implemented in many pocket calculators, such as Hewlett Packard’s HP-35

[8], and in arithmetic coprocessors such as the Intel 8087 [9].

CORDIC comes in vectoring and rotation modes, which we will illustrate in

more detail in the following sections.

1.3.1 Rotation mode

The basic idea of the rotation mode of CORDIC is to perform a rotation of angle

θ as a sequence of elementary rotations of angles ± arctan 2−n. The algorithm is

18



based on the decomposition of θ = z0 on the discrete base wn = arctan 2−n. To

obtain the correct decomposition, the nonrestoring decomposition algorithm can

be used.

The nonrestoring decomposition algorithm states that if we let (wn) be a

decreasing sequence of positive real numbers such that
∑inf

i=0wi converges and

∀n : wn ≤
∑inf

k=n+1wk then for any t ∈ [−∑inf
k=0wk,

∑inf
k=0wk] the sequences tn and

dn defined as in Eq. (1.7) satisfy Eq. (1.8).
t0 = 0

tn+1 = tn + dnwn

dn =

{
1 tn ≤ t

−1 otherwise

(1.7)

t =
inf∑
n=0

dnwn = lim
n→inf

tn (1.8)

Considering wn = arctan 2−n the hypothesis of nonrestoring decomposition are

satisfied and ∀θ :| θ |≤∑inf
n=0 arctan 2−n equation Eq. (1.9) will hold.

θ =
inf∑
k=0

dkwk, dk = ±1, wk = arctan 2−k (1.9)

The base iteration of the Cordic algorithm is given by mixing a rotation of angle

dnwn as shown in Eq. (1.11) with the nonrestoring decomposition of θ shown in

Eq. (1.10). 
t0 = 0

tn+1 = tn + dnwn

dn =

{
1 tn ≤ t

−1 otherwise

(1.10)

(
xn+1

yn+1

)
=

(
cos(dnwn)− sin(dnwn)

sin(dnwn)− cos(dnwn)

)(
xn
yn

)
(1.11)

Using the relations in Eq. (1.12) we can rewrite the rotation as in Eq. (1.13),

19



and the non restoring iteration can be rewritten as in Eq. (1.14) if we set zn = θ−tn.

tan(wn) = 2−n

cos(dnwn) = cos(wn) as: dn = ±1

sin(dnwn) = dnsin(wn) as: dn = ±1

(1.12)

(
xn+1

yn+1

)
=

(
1− dn2−n

dn2−n − 1

)(
xn
yn

)
(1.13)


z0 = θ

zn+1 = zn − dnwn

dn =

{
1 zn ≥ 0

−1 otherwise

(1.14)

Settling all the information together, we obtain the Cordic iteration shown in

Eq. (1.15) 
xn+1 = xn − dn ∗ yn ∗ 2−n

yn+1 = yn + dn ∗ xn ∗ 2−n

zn+1 = zn − dn ∗ arctan(2−n)

(1.15)

The arctan(2−n) member, being constant, can be computed ahead of time and

tabulated.

Under the conditions shown in Eq. (1.16) and Eq. (1.17), each iteration asymp-

totically converges as shown in Eq. (1.18).

Therefore, we conclude that choosing the initial conditions {x0 = 1/K, y0 =

0, z0 = θ}, we can compute sin θ and cos θ.

K =
inf∏
n=0

√
1 + 2−2n = 1.646760258121 (1.16)

| z0 |≤
inf∑
n=0

arctan 2−n (1.17)

lim
n→inf

xnyn
zn

 = K ∗

x0 cos z0 − y0 sin z0
x0 sin z0 + y0 cos z0

0

 (1.18)
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1.3.2 Double Rotation mode

This method was suggested independently by Takagi et al. [[10], [11], [12]] and

by Delosme [13] but with a different purpose. The basic idea behind the double

rotation method is to perform the similarities of angle arctan(2−i) twice. The basic

iteration becomes Eq. (1.19).
xn+1 = xn − dn ∗ yn ∗ 2−n + (1− 2d2n)2−2n−2xn

yn+1 = yn + dn ∗ xn ∗ 2−n + (1− 2d2n)2−2n−2yn

zn+1 = zn − 2dn ∗ arctan(2−n−1)

(1.19)

The new scale factor is K =
∏inf

k=0 (1 + 2−2i) = 1.3559096738634793803. With

double rotation mode it’s possible to compute cos−1, see Eq. (1.20), and sin−1, see

Eq. (1.21). 

θ0 = 0

x0 = 1

y0 = 0

t0 = t

dn =

{
sign(yn) ifxn ≥ tn

−sign(yn) otherwise(
xn+1

yn+1

)
=

(
1 −dn2−n

dn2−n 1

)2(
xn

yn

)
θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n

(1.20)
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

θ0 = 0

x0 = 1

y0 = 0

t0 = t

dn =

{
sign(xn) ifyn ≤ tn

−sign(xn) otherwise(
xn+1

yn+1

)
=

(
1 −dn2−n

dn2−n 1

)2(
xn

yn

)
θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n

(1.21)

1.3.3 Vector mode

This mode is used for computing arctangents. Starting from the rotation mode’s

iteration with z0 =θ, we can define a new variable z′0 = θ+zn. Remember that θ is

unknown. z′n measures the opposite of the angle by which (x0, y0) must be rotated

to get (xn, yn). If we have rotated by an angle whose opposite is greater than θ,

then (xn, yn) is below the x-axis; hence yn is negative. Otherwise, yn is positive.

Therefore the test z′n ≥ θ can be replaced by yn ≤ 0. By doing this, we get the

vectoring mode of CORDIC.

The iteration step is shown in Eq. (1.22) and it converges as shown in Eq. (1.23).

xn+1 = xn − dn ∗ yn ∗ 2−n

yn+1 = yn + dn ∗ xn ∗ 2−n

zn+1 = zn − dn ∗ arctan(2−n)

dn =

{
sign(−yn)

−sign(−yn)

(1.22)

lim
n→inf

xnyn
zn

 =

 K
√
x20 + y20
0

z0 + arctan y0
x0

 (1.23)
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1.4 Linear Programming

Linear Programming [14] is a moderately recent discipline of mathematics. The

first rigorous formulations for a specific problem were introduced in 1939 by the

Soviet mathematician and economist Lonid Kantrovich. In 1947 the first general

formulation of a Linear Program was made with the critical work by Dantzig.

The simplex algorithm [15] he invented is still used today in many solver tools.

It was originally intended to solve planning problems in the US Air Force, but it

was soon noted that this method solves many classical optimization problems.

The first machine implementation of the Simplex algorithm was done on the

SEAC computer at the National Bureau of Standards [16]. In the 50s, the first

implementation on a scientific computer was made for IBM 701 [17] and then for

IBM 704 [18]. With these implementations, the first attempts to solve Mixed

Integers programs were made.

During the 70s and 80s, there were many innovations, the most notable was

the introduction of the dual simplex algorithm [19]. With MIP (Mixed Integer

Programming) solvers, new procedures to explore the search tree were introduced.

These optimizations were made possible mainly due to innovations and progression

in computer architectures.

In 1979, Khachiyan proved that LP problems could be solved in linear time

[20], although his approach was never used in actual programs. In general, MIP

algorithms in use today remain pretty similar to the ones used in the 70s. The gains

in terms of speed come predominantly from advantages in computer processors and

parallelization algorithms, and exploiting the power of multi-core processors.

1.4.1 Problem Forumulations

A Linear Program Problem aims to maximize or minimize a linear function (called

objective function) subject to a finite number of linear constraints.

The general form is shown in Eq. (1.24).

[maximize | minimize]
n∑
j−1

cjxj

subject to
n∑
j−1

aijxj[=,≥,≤]bi (i = 1, 2, ...,m)

xj[≥,≤]0 (i = 1, 2, ...,m)

(1.24)
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The general form is translated into an equivalent form called standard form.

This is done because the simplex algorithm used to solve a Linear Program takes

as input the standard form.

To bring a general form into a standard form, all the constraints must be

equality constraints, and all variables must be non-negative. let us consider the

example in Eq. (1.25).

minimize z = 3x1 + 2x2 − x3 + x4 (objective function)

s.t.


x1 + 2x2 + x3 − x4 ≤ 5

−2x1 − 4x2 + x3 + x4 ≤ −1

x1 ≥ 0

x2 ≤ 0

(1.25)

This set of equations can be converted into a standard form by following the

following steps:

• The right-hand side is non-negative:

General Form Standard Form

−2x1 − 4x2 + x3 + x4 ≤ −1 2x1 + 4x2 − x3 − x4 ≥ 1

Just multiply both sides by −1.

• All constraints are expressed as equality constraints:

General Form Standard Form

x1 + 2x2 + x3 − x4 ≤ 5 x1 + 2x2 + x3 − x4 + s1 = 5

+2x1 + 4x2 − x3 − x4 ≥ 1 +2x1 + 4x2 − x3 − x4 − s2 = 1

We added two variables s1, s2. s1 is called slack variable. s2 is called surplus

variable. Slack variables are added in the case of ≤, and they are prefixed

with a +. Surplus variables are added in the case of ≥, and they are prefixed

with a −.

• Non-negativity constraints for all variables:

General Form Standard Form

x1 + 2x2 + x3 − x4 + s1 = 5 x1 − 2y2 + x3 − x4 + s1 = 5

+2x1 + 4x2 − x3 − x4 − s2 = 1 +2x1 − 4y2 − x3 − x4 − s2 = 1

x2 ≤ 0 y2 ≥ 0

24



We substitute the variable x2 with y2 = −x2. So for each variable xi ≤ 0 a

new variable yi = −xi with constraint yi ≥ 0

• Remove Variables that are Unconstrained in Sign:

General Form Standard Form

Min z = 3x1+2x2−x3+x4 Min z = 3x1+2x2−(w3−k3)+(w4−k4)
x1−2y2+x3−x4+s1 = 5 x1−2y2+(w3−k3)−(w4−k4)+s1 = 5

+2x1−4y2−x3−x4−s2 = 1 +2x1−4y2−(w3−k3)−(w4−k4)−s2 = 1

y2 ≥ 0, x1 ≥ 0 y2 ≥ 0, x1 ≥ 0w3 ≥ 0 k3 ≥ 0w4 ≥ 0 k4 ≥ 0

Variable x3, x4 where substitute in order with x3 → [w3 ≥ 0, k3 ≥ 0], x4 →
[w4 ≥ 0, k4 ≥ 0]. So each variable xi unconstrained in sign is substituted

with (wi − ki)

So an LP problem in standard form is formulated as in Eq. (1.26) where aij ,

bi and cj are real constants.

[maximize, minimize]
n∑
j−1

cjxj

subject to
n∑
j−1

aijxj = bi (i = 1, 2, ...,m)

xj ≥ 0 (i = 1, 2, ...,m)

(1.26)

When at least one variable xi is required to be an integer, the problem becomes

a Discrete Linear Programming problem. If all the variables are integers, then the

problem is an Integer Linear programming (ILP problem). Although its formula-

tion is very similar to an LP Problem, an ILP Problem cannot be solved using LP

algorithms; moreover, it was proved that solving ILP Problems is NP-complete

[21].

25



26



Chapter 2

Frameworks

The contribution this thesis introduces lies in the field of precision tuning and

originates from prior work in the state-of-the-art. This chapter provides an intro-

duction to approaches, methodologies, and previously developed frameworks.

2.1 Precision tuning frameworks

In this section, we illustrate the most popular frameworks and their approach

to precision tuning. They are representative of three main classes of precision

tuning approaches: binary-level transformations (CRAFT), compiler-level trans-

formations (HiFPTuner), and source-level transformations (Daisy). For a more

complete discussion, we demand the reader to recent surveys [22, 23].

2.1.1 Binary Transformations

CRAFT [24] is a framework for analyzing a previously compiled binary that uses

double-precision data types and successively modify it to build mixed-precision

versions. It can be run on any programming language, but it is dependent on the

target architecture. Moreover, it implements a search algorithm to find the best

precision mix in the original program. The target binary to be analyzed needs to

be instrumented by using the Intel Pin library [25]. So each function, basic block,

and instruction is analyzed to understand which parts of the code will exploit

reduced precision computation. The Configuration Generator then builds, using

a breadth-first algorithm, multiple mixed-precision configurations for the same

executable. Each configuration is stored as a series of human-readable mappings;

Each instruction is also flagged with one particular type:
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Single when the precision of the instruction needs to be decreased

Double when the precision required is given only by the double type.

Ignored if the computation must be left in the original computation. For each

generated configuration, the binary is modified by exploiting the Dynist library,

a tool for Binary Modification. Each instruction that is not flagged as ignore

is replaced by a routine that performs the necessary casts and then carries out

the computation. The single-precision values are stored in the same place as

the double-precision ones, precisely in the lower 32 bits, while in the upper 32

bits contain a flag (0x7ff4DEAD) that if the value is incorrectly interpreted as a

double value, it transforms into a NaN value, thus preventing the propagation of

wrong values in the program. The final binaries are then tested against some test

input and the a user-specified routine evaluates results. This framework has been

evaluated on many open-source benchmarks.

2.1.2 Compiler Transformations

HiFPTuner [26] follows another type of approach. Instead of instrumenting a

binary, it analyzes both the source code and the program’s runtime behavior. This

way, the algorithm reduces the search cost by reducing the search space for the

sake of scalability. To work, it exploits the dependence analysis and Edge profiling

techniques to build a graph where each variable is represented with a node, and the

arc represents the dependency between them. The weights on the arcs represent

how many times that dependence is found. The weight of each edge is found by

analyzing the run time behavior. After this step, the tools group the variable

using a community detection problem algorithm, so each group will be composed

by the variable that frequently interacts. A hierarchy is established running the

previous passes multiple times and continuously collapsing the variables in the

same set into a single node. Once the hierarchy is built, the tool performs the

actual precision tuning. The algorithm starts from the topmost level of the graph

and searches for the best configuration by treating all the variables in the same

set as having the same data type. The information is propagated to the following

nodes to reduce the search space and avoid looking for more precise alternatives.

When a configuration is found, it is verified against a set of test inputs to check

if the error is in the required bound. HiFPTuner is independent both from the

source language and the destination architecture as it works with the LLVM IR.
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2.1.3 Source Transformations

Daisy [27] is a source to source compiler whose aim is to reduce the precision

of variables in a given code region while still preserving the wanted precision as

specified by the programmer.

The input program is written in a real-valued language, but it is not limited to

it, and it will be processed a single function at the time. For each function, pre-

conditions and postconditions of the computation are specified using the keywords

require and ensuring So the compiler will find a precision mix that will respect

the specified condition. The function’s body comprises all the common operations,

transcendental functions, and local variables but does not support loops. After the

analysis, Daisy will produce a Scala or C source code as output. The data types

currently supported by Daisy are fixed-point (16 or 32 bits) and IEEE754 single,

double, and quad precision. Daisy has the benefit of being highly customizable

and easy to extend also to other representations, possibly custom ones. The tuning

process is so composed:

First step the tool rewrites the expression into equivalent ones with a small

round-off error. The new expression is generated with a genetic algorithm. This

procedure is based on the Xfp tool, which has been extended to perform more

effective transformations at each iteration of the algorithm. The performance and

uniform precision guide the generation, so the resulting expression will never be

slower in computation than the original one.

Second step Daisy rewrites the expressions in a sort of static single assignment

form.

Third step The range analysis is carried out using one of the possible supported

algorithms like interval arithmetic, affine arithmetic, or more expensive alterna-

tives

Fourth step The mixed precision tuning is performed. Daisy does not require to

run the original program as it performs static error analysis. Because of this, the

error bounds computed by Daisy are proven to be valid and will always be correct,

disregarding the specific input values.

Fifth step the result is materialized into a human-readable programming lan-

guage (C or Scala), together with all the necessary casts and declarations. The

tool can have guarantees on the output program in terms of errors and execution

time at the cost of not supporting conditional execution.
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2.1.4 About Our Contribution

We presented three different approaches to precision tuning, each one with its own

benefit and drawback. We have based our works on a tool called TAFFO (Tuning

Assistant for Floating Point to Fixed point Optimization), and HiFPTuner is the

most closely relatable to it. Indeed TAFFO works with general-purpose program-

ming languages starting directly from an annotated source code likes HiFPTuner.

Daisy lacks the first feature and CRAFT the latter. However, they differ on the

knowledge input required: TAFFO does not necessarily rely on the profiling of tar-

get application as, depending on the use case, that may not always be a feasible

solution. Instead, TAFFO uses static analyses, similar to the Daisy framework,

to comes up with the proper precision mixing. This approach is more general.

In fact, nothing prevents the input of the static analyses to be generated from

dynamic application profiling. In the following sections, more information about

compilers and TAFFO will be provided.

2.2 The Structure of a Compiler

Programming languages are used to describe computations to people and ma-

chines. The world depends on programming languages because all the software

was written in some programming language. A compiler is a program that can

read a source language and translate it into an equivalent program in the target

language. One of the compiler’s roles is to report any errors in the source program

that it detects during the translation process. The first compilers were simple

syntax driven translators. They took as input a low-level programming language,

such as assembly code, and translated it directly into machine code in binary for-

mat. With the growth in popularity of higher level languages, compilers became

even more critical in order to let programmers obtain a final program that was

as quick as if it was written directly in assembly. Another possibility is using an

interpreter that directly executes the operations specified in the source program

on inputs supplied by the user. In Figure 2.1 A representation of the different

structure between a compiled program and an interpreted one is given.
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Source program

Compiler

Target programUser Input Program Output

InterpreterUser Input Program Output

Source program

Figure 2.1: High level structure of compiled and interpreted program

In addition to the compiler, several other programs work together to ease the

process of compilation. For example, the preprocessor is typically used to expand

all the macro defined in the source code before passing the code to the compiler.

An example of preprocessing is given in Listing 1

#define NUMBER 12

#define SUM(x,y) x+y

int main(){

int x = NUMBER;

int y = NUMBER*2;

int sum = SUM(x,y);

return sum;

}

int main(){

int x = 12;

int y = 12*2;

int sum = x+y;

return sum;

}

Listing 1: On the left the unprocessed C version. On the right, the same C file after the

Preprocessing phase.

The compiler often does not output machine code but emits assembly code

that is later fed to an assembler. The assembler takes the assembly as input and

produces machine code as its output. The linker is responsible for linking together

different object files and library files into the code that runs on the machine.
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The loader then puts together all of the executable object files into memory for

execution. In the Figure 2.2 an example of a compiler pipeline is given.

Source Preprocessor Compiler Assembler
Linker

Program
Loader

Figure 2.2: Typical compiling pipeline

We have treated a compiler as a black box that maps a source program into

a semantically equivalent target program. Since a compiler is a complex machine

with very different phases, it is often divided into three subcomponents. The

LLVM Compiler Framework is an example of a modern compiler following the

best practices in state of the art. It has gained notoriety in the last years, both

from academic research and the industry, due to its modularity.

2.2.1 Front-end

The front-end is the compiler component, which is in charge of analyzing the

source code, given as input in a high level language, and lowering it into a low level

representation used internally by the compiler, called intermediate representation

(IR). In the LLVM toolchain, Clang is the front-end for the C and the C++

languages, converting them into LLVM’s IR, called ”LLVM-IR”.

Lexical analyzer

The first component of the front-end is the lexical analyzer or scanner. The lexical

analyzer read each character of the source program and generate a series of tokens.

(token-name, attribute-value)

token-name is an abstract symbol that is used during syntax analysis, and the

second component attribute-value points to an entry in the symbol table for this

token.

Syntax Analysis

The tokens are passed to Syntax Analysis or parser, which generates a tree-like

intermediate representation that depicts the token stream’s grammatical structure.

All the tree leaves will contain terminal symbols, which are part of the text that
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cannot be split furthermore using the grammar rules. If no rule can match a

particular statement, an error is produced. In Figure 2.3 the tree intermediate

representation used by Clang is reported.

int main(){

int red = 10;

int number = 2;

int big = red -number/10;

}

Listing 2: Simple C program for AST

Figure 2.3: AST generated from Clang with in input the simple C program 2

Semantic analyzer

The semantic analyzer uses the syntax tree in combination with the symbol table’s

information to check the semantic consistency with the source program’s language

definition. An essential part of semantic analysis is type checking, where the
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compiler checks that each operation matches his operand and his return type.

The front-end is independent of the target architecture. It depends only on the

source language.

Intermediate representation

In the process of translating a source program, the compiler may construct one or

more intermediate representations. Syntax trees are a type of intermediate rep-

resentation; they are commonly used during syntax and semantic analysis. Many

compilers generate other intermediate representation likes an explicit low-level or

machine-like intermediate representation, to decouple the optimization phases from

the source language. The LLVM-IR is as low-level as the assembly language; how-

ever, it is independent of the destination machine. Like in the assembly language,

each statement describes a primitive operation, such as mathematical operations,

function calls, memory accesses, etc. LLVM-IR has an unlimited number of reg-

isters, and the memory is viewed as a set of logical variables. LLVM-IR is in the

Static Single Assignment form (SSA). In the Single Static Assignment form, each

register is assigned exactly once in the program, so each operation generates a new

register. This is done mainly to simplify further code transformations. LLVM-IR

represents the program as a collection of global variables and functions. Each

function is composed of basics blocks, and instructions compose the basic block.

In Listing 4 an example of LLVM-IR generated by Clang is reported.

#include <stdio.h>

int main(){

int red = 10;

int number = 2;

int big = red -number/10;

printf("%i\n", big);

return 0;

}

Listing 3: Simple C program to exhibit clang output

34



@.str = private unnamed_addr constant [4 x i8] c"%i\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable

define dso_local i32 @main() #0 {

%1 = alloca i32, align 4

%2 = alloca i32, align 4

%3 = alloca i32, align 4

%4 = alloca i32, align 4

store i32 0, i32* %1, align 4

store i32 10, i32* %2, align 4

store i32 2, i32* %3, align 4

%5 = load i32, i32* %2, align 4

%6 = load i32, i32* %3, align 4

%7 = sdiv i32 %6, 10

%8 = sub nsw i32 %5, %7

store i32 %8, i32* %4, align 4

%9 = load i32, i32* %4, align 4

%10 = call i32 (i8*, ...) @printf(i8* getelementptr

inbounds ([4 x i8], [4 x i8]* @.str, i64 0, i64 0), i32 %9)

ret i32 0

}

declare dso_local i32 @printf(i8*, ...) #1

Listing 4: LLVM-IR generated with Clang from the simple C program 3

2.2.2 Middle-end

The middle-end is the part of the compiler that performs optimizations that are

independent of the target architecture. It executes units called passes on the IR.

There are two types of passes: analysis and transformation. The analysis passes

are used to collect information about the programs. Transformation passes are

used to change the IR. Each pass can declare dependencies upon others’ passes

and which passes invalidates. In addition, the pass manager schedules each pass

in order to optimize the speed of execution. Examples of analysis passes are the

CallGraphWrapperPass[28], DependenceAnalysisWrapperPass [29] An example of

Transformation passes are the constant propagation SCCPPass[30], or inlining
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createPartialInliningPass[31]. Optimization passes can be costly in terms of exe-

cution time. Therefore only a reduced set of them are enabled by default. The

programmer can control whether to enable a specific optimization or not. LLVM

decouples the middle end from the front-end and the back-end, meaning that the

same pass can be used for different source languages and destination targets. In

addition to the LLVM framework’s passes, developers can write other passes and

use them as a plugin or included in the LLVM build. These plugins are compiled

as external objects that are loaded at runtime. Under an example of loop unrolling

transformation of a for loop is provided. Loop unrolling is used to unroll a loop to

take fewer branches and improve the parallelization of the execution. In Listing 6

is reported the LLVM-IR of a loop without optimization. In Listing 7 is reported

the LLVM-IR of a loop with optimization.

int main(int argc, char ** argv){

int tmp[10];

for (int i = 0; i < 10; ++i){

tmp[i] = argc;

}

return tmp[3];

}

Listing 5: Simple C program used to demonstrate loop unrolling
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; Function Attrs: noinline nounwind uwtable
define dso_local i32 @main(i32 %0, i8** %1) #0 {

%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i8**, align 8
%6 = alloca [10 x i32], align 16
%7 = alloca i32, align 4
store i32 0, i32* %3, align 4
store i32 %0, i32* %4, align 4
store i8** %1, i8*** %5, align 8
store i32 0, i32* %7, align 4
br label %loop_start

loop_start:
%9 = load i32, i32* %7, align 4
%10 = icmp slt i32 %9, 10
br i1 %10, label %loop_body, label %end

loop_body:
%12 = load i32, i32* %4, align 4
%13 = load i32, i32* %7, align 4
%14 = sext i32 %13 to i64
%15 = getelementptr inbounds [10 x i32],
[10 x i32]* %6, i64 0, i64 %14
store i32 %12, i32* %15, align 4
br label %loop_inc

loop_inc:
%17 = load i32, i32* %7, align 4
%18 = add nsw i32 %17, 1
store i32 %18, i32* %7, align 4
br label %8, !llvm.loop !2

end:
%20 = getelementptr inbounds [10 x i32], [10 x i32]* %6, i64 0, i64 3
%21 = load i32, i32* %20, align 4
ret i32 %21

}

Listing 6: LLVM-IR of an unoptimized loop with as source code Simple C program 5. The

loop starts at basic block loop start and ends at basic block end. The basic block

loop start test the conditions and takes the jumps. The basic block loop body compose the

body of the loop. The basic block loop inc compose the epilogue of the loop where the

loop counter is increased.
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; Function Attrs: noinline norecurse nounwind readnone uwtable
define dso_local i32 @main(i32 %0, i8** nocapture readnone %1)
local_unnamed_addr #0 {

%3 = alloca [10 x i32], align 16
%4 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 0
store i32 %0, i32* %4, align 16
%5 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 1
store i32 %0, i32* %5, align 4
%6 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 2
store i32 %0, i32* %6, align 8
%7 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 3
store i32 %0, i32* %7, align 4
%8 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 4
store i32 %0, i32* %8, align 16
%9 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 5
store i32 %0, i32* %9, align 4
%10 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 6
store i32 %0, i32* %10, align 8
%11 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 7
store i32 %0, i32* %11, align 4
%12 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 8
store i32 %0, i32* %12, align 16
%13 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 9
store i32 %0, i32* %13, align 4
%14 = getelementptr inbounds [10 x i32],
[10 x i32]* %3, i64 0, i64 3
%15 = load i32, i32* %14, align 4
ret i32 %15

}

Listing 7: LLVM-IR of the loop unrolling optimization with as source code Simple C

program 5. The loop unrolling removes all the branches as it is capable of unrolling all the

loop
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2.2.3 Back-end

The compiler’s back end is in charge of transforming the intermediate representa-

tion from the middle end into the final machine code. The significant difference

between the IR and the assembly is the managing of register and memory. The

LLVM-IR suppose that there is an unlimited amount of register and memory. As-

sembly instead, being linked to real hardware, has to handle a finite number of

registers. So the back end has to choose which register to keep and what register

to store into the memory. This phase is called register allocation, and it strongly

depends on the liveness interference analysis. The liveness analysis on the IR de-

cided if two registers are live in the same part of the code. If not, they can share

the same register. The problem is related to the graph coloring algorithm, which

is intractable due to the exponential complexity. So Compilers usually implement

a heuristic to speed up the execution of the algorithm. The back end is also re-

sponsible for running all the hardware-dependent optimization like utilizing SIMD

(single instruction multiple data ) instruction or the processor’s atomic capability.

For each new change in the hardware, a separate back end must be developed to

best match the new capability. LLVM supports many target architectures because

the back end development is completely decoupled from the front/middle-end de-

velopment. The main supported targets are ARM, MIPS, PowerPC, x86, AMD

GPU (OpenCL), AVR, and WebASM. For this reason, the compilation can also

be made for a different target machine than the system running the compiler; in

this case, the compiler is performing a cross compilation. In Listing 8 an example

of x86 assembly is reported.
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.text

.file "a.c"

.globl main # -- Begin function main

.p2align 4, 0x90

.type main,@function

main: # @main

.cfi_startproc

# %bb.0:

pushq %rbp

movq %rsp, %rbp

movl %edi, -48(%rbp)

movl %edi, -44(%rbp)

movl %edi, -40(%rbp)

movl %edi, -36(%rbp)

movl %edi, -32(%rbp)

movl %edi, -28(%rbp)

movl %edi, -24(%rbp)

movl %edi, -20(%rbp)

movl %edi, -16(%rbp)

movl %edi, -12(%rbp)

movl -36(%rbp), %eax

popq %rbp

retq

.Lfunc_end0:

.size main, .Lfunc_end0-main

.cfi_endproc

# -- End function

.ident "clang version 10.0.0-4ubuntu1 "

.section ".note.GNU-stack","",@progbits

.addrsig

Listing 8: X86 of the loop unrolling optimization. The loop unrolling removes all the

branches as it is capable of unrolling all the loops.
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2.3 TAFFO

The Tuning Assistant for Floating Point to Fixed point Optimization frame-

work, also known as TAFFO [32, 33, 34], is an optimization tool whose aim is to

help developers automatically change the program precision mix to optimize the

execution time while preserving its correctness. The developers annotate a subset

of variables to be transformed by the tool into fixed points. TAFFO takes care to

handle all the interactions between the transformed variable and the old program.

As this process is entirely automated, it falls in the auto-tuning framework cate-

gory. The tool is based on the LLVM compiler toolchain [35] and is implemented

as a collection of multiple passes as reported in Figure 2.4. TAFFO operates with

the LLVM-IR in the middle-end stage of the compiler. So TAFFO can operate on

all the source language supported and to all the target supported by the LLVM

framework. Moreover, each pass is completely decoupled from the successive one.

Thus, a different version of each pass employing a different algorithm can be used

without modifying other tool parts. The annotations expressed as text strings in

the source code inform TAFFO about the variable’s range and an initial seed value

for the error propagation analysis.

2.3.1 Passes

Initialization

The initialization pass is the first one to be executed by TAFFO. Given the source

program as an LLVM-IR file, it parses the annotations and creates the metadata,

a type of data structure with all the annotation information but easier to handle

in the various passes of LLVM. This pass also creates a copy of each function for

each different call site. This is done to ease the auto-tuning process as each call

site’s arguments could be different fixed point types.
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Figure 2.4: TAFFO pipeline

Value Range Analysis

The Value Range Analysis calculates the range of every value that interacts with

an annotated one. It is an essential and complex operation because the more pre-

cise the data type’s selection will be, the more accurate it is. Final ranges for the

variables are chosen by exploiting range arithmetic and source code information.

Utilizing only the range arithmetic is the fastest method but inaccurate, as the

predicted range is very pessimistic and distant from the actual program behav-

ior. Therefore, a new technique relying on symbolic execution is in development.

This new analysis aims to simulate the program behavior at compile and increase

the amount of valuable data. Unfortunately, this new approach may raise the

compilation time.

Data Type Allocation

The Data Type Allocation pass (DTA) goal is to find an appropriate data type

for each program’s value. The selection process is led primarily by the range of

each value provided by the previous pass. Indeed, the fixed point representation

that fits the whole computed range must be chosen. The DTA, to avoid a very

heterogeneous precision mix that can lead to slower programs due to casting, tries

to merge similar fixed point types when used in the exact computation. As multiple

definitions of each function were generated during the initialization, the DTA pass

will collapse all functions with the same type for the arguments to reduce the final

code size.

42



Conversion

Using information coming from the DTA pass, each variable is converted to the

appropriate integer type, and, if needed, instructions to convert between the fixed

point representation and the original data type are generated. If a particular

instruction cannot be converted, fallback code is generated, converting the values

back to their original types. This can happen when handling external functions

like a dynamically loaded library that TAFFO sees as an external call without a

body to analyze.

Feedback Estimator

Finally, the Feedback Estimator pass analyzes the final code produced by the

conversion pass. It evaluates if a useful speedup has been achieved and if the error

introduced by the data type selection is small enough. If any of these evaluations

has a negative outcome, the conversion starts again from the DTA step, with

different parameters.

2.3.2 TAFFO strengths and limits

Multiple output data type

The use of annotations allows a certain degree of selectivity TAFFO allows three

types as output: fixed point, float, and double. This generates the possibility to

use the best type for each different part of the program. Even if fixed points are

unsuitable for a portion of the program, other floating point types may speed up

the computation while keeping the error into the required bounds.

No guarantees on execution time

Working with the LLVM-IR representation, TAFFO does not consider the target

architecture where the code will run. This is because for some architectures, the

transformation to fixed point may slow down the code with respect to the original

one.

No guarantees on error

The final program is proven to be correct. All the intermediate registers are chosen

with enough integer bits to contain all the possible ranges, and in case of a problem,

a fallback code is generated to use the original type. However, the use of fixed
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point does not guarantee that the error in the computation results will be accurate

enough for the specific application.

Non convertible code

Particular regions of code, such as calls to an external library, must be handled

carefully. In fact, TAFFO does not have access to external function bodies and

cannot transform the types. So TAFFO generates a wrapper for these functions

that converted back to its original data type the arguments, and the return value

into fixed point once again if necessary. This can generate slowdowns because of

unnecessary conversions.
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Chapter 3

The FixM Approach

FixM is our approach to on-demand code generation of mathematical functions

using fixed point arithmetic [36]. FixM has the objective to overcome the problem

of external code call for the mathematical functions in an innovative way. In fact,

the traditional approach to fixed point arithmetic assumes the program uses a

given fixed point data type, and the whole code generation is pivoted around this

rigid assumption. Instead, FixM uses dynamic fixed point [37], a technique that

proved to be effective to reduce the rounding error on the final output.

Dynamic fixed point consists of potentially changing the bit partitioning of

the fixed point with each program’s different instruction. This scaling operation

tunes the number of bits assigned to integral and fractional parts of the fixed

point data type. The scaling operation may not change the total number of bits

of the representation but changes each bit’s meaning. Thus, it creates a different

representation.

In the traditional approach, each mathematical function’s fixed point imple-

mentation must be added manually for each fixed point representation in the pro-

gram. When it comes to dynamic fixed point, redundant implementations are

required for each possible bit partitioning which could be used in the code. Sup-

port to dynamic fixed point with the traditional approach requires each function

to be implemented with each type of fixed point, leading to a huge static library.

Considering F the number of mathematical functions, fi the number of arguments

of the i-th function, k the number of supported fixed points. For a simple imple-

mentation of the mathematical library, we can estimate F ≈ 35, and the average

fi ≈ 2.
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F∑
i=1

kfi (3.1)

Formula that calculate the required number of functions in a simple implementation of the

mathematical library with k supported fixed point formats

For a single bit width, k is equal to the bit width itself. Therefore, if we

consider signed and unsigned 8 bit, 16 bit, and 32-bit types, k grows up. In such

an implementation, the number of functions to be instantiated would be 350000.

This number grows linearly with the number of functions and quadratically with

the number of types. Therefore, even a simple expansion to include 64-bit types

would increase the size of the library to 1.5 million functions. This approach

becomes unfeasible in the case of highly dynamic fixed point implementations and

in the case of automatic tuning of bit partitioning. Our approach automatically

inserts the implementation of each mathematical function only for those fixed

point representations that require its use. FixM acts after every precision tuning

analysis that modifies the fixed point representations. In particular, it is designed

to run during the code generation and optimization stages within the compiler.

3.1 Generality

FixM works at the compiler intermediate representation level (IR), which means

FixM can abstract concepts depending on specific source programming languages

or language extensions. Working at the IR level also abstracts many features of

the underlying hardware architecture – a critical feature when targeting embedded

systems due to the wide variety of platforms. Nonetheless, some assumptions are

needed. In particular, FixM works whenever fixed point data types are mapped

onto integer registers, and there is essential bit arithmetic support (shift, and, and

or). Furthermore, these assumptions are verified in most cases, thus supporting a

good level of generality for FixM.

3.2 Minimality

An application leveraging FixM may require different levels of precision in differ-

ent situations. This information is codified in the fixed point data types selected

by the precision tuning analysis. FixM, being part of TAFFO, knows where the
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mathematical library functions are employed and their expected input and out-

put. Knowing the input and the output, FixM determines which are the required

function to generate. Apart from providing the correct fixed point format, we also

leverage the data type information to adapt the computation itself to the required

precision. In other words, the generated fixed point functions are specialized not

only with respect to the external interface.

3.3 Scalability

While FixM transforms each function call and generates the corresponding function

bodies, it stores the information about which functions it previously inserted and

for which representation. This internal cache allows FixM to implement code

reuse techniques to minimize the code size. Therefore, FixM never generates two

identical fixed point mathematical functions. Furthermore, the code cache can

be used to further factorize the code generation across multiple compilation units

in the same program, generating a library of specialized functions. A baseline

approach has to generate all possible specializations of a function f for all possible

dynamic fixed point types k in each of its n f parameters.
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Chapter 4

FixM Implementation

The FixM approach to generate mathematical functions is based on the TAFFO

framework. The new component of TAFFO is a template-based code generator

called FixMAGE (FIXed point MAthematical function GEnerator). In this sec-

tion, we will illustrate its theory of operation and how it integrates with the rest

of TAFFO.

4.1 FixMAGE

In the current state-of-the-art, mathematical function libraries operate on floating

point data types only. The interface of these libraries is specified by the POSIX

[38] standard. If the CPU provides hardware acceleration of these functions, the

mathematical library will use these resources. Otherwise, a software implementa-

tion of the function will be chosen. This latter situation is the industry standard

Annotation
propagation

Value Range
Analysis

Data Type
Allocation

Code
Conversion

Feedback 
Estimation

FixMAGE

Figure 4.1: FixMAGE Structure and how it interacts with other passes of TAFFO
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for embedded systems. In both cases, the mathematical library is an external

piece of software. In FixM, the mathematical library is implemented as part of

the compiler.

We implement FixM by adding a new component to TAFFO named FixMAGE.

The pipeline of TAFFO with the integration of FixMAGE is shown in Figure 4.1.

FixMAGE runs within the conversion pass of TAFFO, and performs three cru-

cial steps. First, it detects where the program uses one of the supported POSIX

standard mathematical functions. The functions currently supported are sin, cos,

sin−1, cos−1, abs. FixMAGE also determines the fixed point type used in the ar-

guments, the return value types, and the best algorithm to implement the function

by exploiting the TAFFO DTA pass’s analysis results [33]. After this preliminary

step is performed, specialized fixed-point mathematical functions are generated for

each call site. Currently, for each trigonometric function, two possible implementa-

tions can be chosen: one uses Cordic, the other a LUT table. The original function

calls in the program are replaced with a call to the newly generated mathematical

functions. If a suitable function had already been generated, the existing function

is used instead of generating a new one.

4.2 Sin and Cos

Sin and Cos are available with two different algorithms: Cordic and LUT. In the

following we outline how the algorithms are implemented.

4.2.1 Cordic Sin and Cos

The Cordic algorithm for Sin and Cos is composed of three distinct sections: the

Reduction phase, the Computation phase, and the Epilogue phase.

In the Reduction phase, we reduce the input angle to the allowed set of values.

In fact, the Cordic algorithm only converges when the following inequality holds:

| θ |≤
inf∑
k=0

arctan 2−k

The inequality includes the range between [−π
2
, π
2
]. However, to simplify the im-

plementation, we further reduce the angle to the [0, π
2
] interval instead. An ad-hoc

cycle and a set of constants are used to perform this task. The values of the con-

stants depend on the fixed point format used by the input angle. Therefore, the
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code generator has to analyze the difference in representation capability between

the fixed point format used to represent the angle, and the fixed point format

required to represent the biggest constant used by the CORDIC algorithm.

The code generated for this loop can be divided into two main parts. The

first part keeps the fixed point in a normalized form. The second part uses the

information generated from the normalization to choose which representation of 2π

to retrieve. That value is subtracted from the angle until another normalization is

needed or the angle is in the right interval. In Listing 9 we show example LLVM-IR

code implementing this step for a fixed point argument with 32 bit of size and 26

bits of fraction.

At this point, to conclude the reduction, the angle is brought to the first quad-

rant. This step is performed using the appropriate trigonometric identity for the

generated function. A code example as generated by FixMAGE is shown in List-

ing 10.

After the Reduction phase, the Computation phase begins. In the computation

phase, the tool implements the Cordic algorithm as illustrated in Section 1.3.1. In

Listing 11 we show a code example of the computation phases for sin and cos

with 32 bit of size and 26 bits of fraction.

Finally, in the Epilogue phase, the actual return value is computed from the

x and y variables previously produced restoring. An example of code is shown in

Listing 12.

4.2.2 LUT Sin and Cos

In the LUT version of Sin and Cos, only the computation phases are changed, and

the Cordic algorithm is substituted with a lookup table. Due to the symmetry

between cos and sin, it is possible to use only one lookup table for both operations

in order to reduce the code size. To gain more precision at the cost of a slower

lookup table, the argument is reduced in a similar way to what is required for the

Cordic sin and cos implementation. The default options generate a table with

2048 entries of the sin function values in the range [0, π
2
]. This is configurable

with a command-line option.

In Listing 13 we show an example of LUT. The data table is omitted for brevity.
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true_greater_zero: ; preds = %body
%21 = load i32, i32* %arg
%22 = load i32, i32* @zero_arg.26
%23 = sub i32 %22, %21
%24 = load i8, i8* %changeSign
%25 = xor i8 %24, -1
store i8 %25, i8* %changeSign
store i32 %23, i32* %arg
br label %body1

body1: ; preds = %true_greater_zero, %body
%26 = bitcast [1 x i32]* %pi_2_array to i8*
%27 = bitcast [1 x i32]* @pi_2_global.26_26 to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %26, i8* align 4 %27, i64 4, i1 false)
store i32 26, i32* %point_arg
store i32 26, i32* %point_ret
store i32 0, i32* %Iterator_pi_2
br label %cmp_bigger_than_2pi

cmp_bigger_than_2pi: ; preds = %bigger_than_2pi, %body1
%28 = load i32, i32* %Iterator_pi_2
%29 = getelementptr [1 x i32], [1 x i32]* %pi_2_array, i32 0, i32 %28
%30 = load i32, i32* %29
%31 = load i32, i32* %arg
%32 = icmp sle i32 %30, %31
br i1 %32, label %bigger_than_2pi, label %shift

bigger_than_2pi: ; preds = %cmp_bigger_than_2pi
%33 = load i32, i32* %arg
%34 = sub i32 %33, %30
store i32 %34, i32* %arg
br label %cmp_bigger_than_2pi

shift: ; preds = %cmp_bigger_than_2pi
store i32 0, i32* %Iterator_pi_2
%35 = load i32, i32* %point_ret
%36 = load i32, i32* %point_arg
%37 = icmp eq i32 %36, %35
br i1 %37, label %body4, label %body3

body3: ; preds = %shift
%38 = load i32, i32* %point_ret
%39 = load i32, i32* %point_arg
%40 = icmp slt i32 %39, %38
br i1 %40, label %left_shift, label %right_shift

left_shift: ; preds = %body3
%41 = load i32, i32* %point_arg
%42 = load i32, i32* %point_ret
%43 = sub i32 %42, %41
%44 = load i32, i32* %arg
%45 = shl i32 %44, %43
store i32 %45, i32* %arg
br label %body4

right_shift: ; preds = %body3
%46 = load i32, i32* %point_ret
%47 = load i32, i32* %point_arg
%48 = sub i32 %47, %46
%49 = load i32, i32* %arg
%50 = ashr i32 %49, %48
store i32 %50, i32* %arg
br label %body4

declare dso_local i32 @printf(i8*, ...) #1

Listing 9: FixMage reduction phase to bring the argument into the range [0, 2π].

Unoptimized LLVM-IR.
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in_II_quad: ; preds = %body13
%69 = load i8, i8* %changeSign
%70 = xor i8 %69, -1
store i8 %70, i8* %changeSign
%71 = load i8, i8* %changefunc
%72 = xor i8 %71, -1
store i8 %72, i8* %changefunc
%73 = load i32, i32* @pi_half.26
%74 = load i32, i32* %arg
%75 = sub i32 %74, %73
store i32 %75, i32* %arg
br label %body15

body15: ; preds = %in_II_quad, %body13
%76 = load i32, i32* %arg
%pi17 = load i32, i32* @pi.26
%arg_greater_pi = icmp slt i32 %pi17, %76
%pi_32 = load i32, i32* @pi_32.26
%77 = load i32, i32* %arg
%arg_less_pi_32 = icmp slt i32 %77, %pi_32
%78 = and i1 %arg_greater_pi, %arg_less_pi_32
br i1 %78, label %in_III_quad, label %body16

in_III_quad: ; preds = %body15
%79 = load i8, i8* %changeSign
%80 = xor i8 %79, -1
store i8 %80, i8* %changeSign
%81 = load i32, i32* @pi.26
%82 = load i32, i32* %arg
%83 = sub i32 %82, %81
store i32 %83, i32* %arg
br label %body16

body16: ; preds = %in_III_quad, %body15
%84 = load i32, i32* %arg
%pi_3219 = load i32, i32* @pi_32.26
%arg_greater_pi_32 = icmp slt i32 %pi_3219, %84
%pi_2 = load i32, i32* @pi_2.26
%85 = load i32, i32* %arg
%arg_less_2pi = icmp slt i32 %85, %pi_2
%86 = and i1 %arg_greater_pi_32, %arg_less_2pi
br i1 %86, label %in_IV_quad, label %body18

in_IV_quad: ; preds = %body16
%87 = load i8, i8* %changefunc
%88 = xor i8 %87, -1
store i8 %88, i8* %changefunc
%89 = load i32, i32* @pi_32.26
%90 = load i32, i32* %arg
%91 = sub i32 %90, %89
store i32 %91, i32* %arg
br label %body18

Listing 10: FixMage Reduction Phase to reduce the argument to the first quadrant.

Unoptimized LLVM-IR.
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epilog_loop: ; preds = %start_loop, %body18
%97 = load i32, i32* %iterator
%98 = icmp slt i32 %97, 64
%99 = load i32, i32* %iterator
%100 = icmp slt i32 %99, 32
%101 = and i1 %98, %100
br i1 %101, label %start_loop, label %return_point

start_loop: ; preds = %epilog_loop
%102 = load i32, i32* %arg
%103 = icmp sge i32 %102, %94
%104 = select i1 %103, i32 1, i32 -1
%105 = load i32, i32* %iterator
%106 = load i32, i32* %x
%107 = ashr i32 %106, %105
%108 = load i32, i32* %iterator
%109 = load i32, i32* %y
%110 = ashr i32 %109, %108
%111 = load i32, i32* %iterator
%112 = getelementptr [64 x i32], [64 x i32]* %1, i32 %94, i32 %111
%113 = load i32, i32* %112
%114 = icmp sgt i32 %104, %94
%115 = sub i32 %94, %113
%116 = select i1 %114, i32 %115, i32 %113
%117 = load i32, i32* %arg
%118 = add i32 %116, %117
store i32 %118, i32* %arg
%119 = sub i32 %94, %110
%120 = select i1 %114, i32 %119, i32 %110
%121 = load i32, i32* %x
%122 = add i32 %120, %121
store i32 %122, i32* %x
%123 = sub i32 %94, %107
%124 = select i1 %114, i32 %107, i32 %123
%125 = load i32, i32* %y
%126 = add i32 %124, %125
store i32 %126, i32* %y
%127 = load i32, i32* %iterator
%128 = add i32 %127, 1
store i32 %128, i32* %iterator
br label %epilog_loop

Listing 11: Cordic rotation mode generated by FixMage. Unoptimized LLVM-IR.
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return_point: ; preds = %epilog_loop, %Special

%6 = load i32, i32* @zero.26

%7 = load i32, i32* %y

%8 = load i32, i32* %x

%9 = load i8, i8* %changefunc

%10 = icmp eq i8 %9, 0

%11 = select i1 %10, i32 %8, i32 %7

store i32 %11, i32* %arg

%12 = load i32, i32* %arg

%13 = sub i32 %6, %12

%14 = load i32, i32* %arg

%15 = load i8, i8* %changeSign

%16 = icmp eq i8 %15, 0

%17 = select i1 %16, i32 %14, i32 %13

store i32 %17, i32* %arg

%18 = load i32, i32* %arg

%19 = ashr i32 %18, 4

store i32 %19, i32* %arg

%20 = load i32, i32* %arg

br label %end

Listing 12: Epilogue generated by FixMage. Unoptimized LLVM-IR.

body18: ; preds = %in_IV_quad, %body16

%89 = load i32, i32* %arg

%90 = shl i32 %89, 4

store i32 %90, i32* %arg

%91 = load i32, i32* @zero.26

%92 = load i32, i32* %arg

%93 = load i32, i32* @pi_half_internal_30

%94 = lshr i32 %93, 11

%95 = call i32 @llvm.udiv.fix.i32(i32 %92, i32 %94, i32 19)

%96 = lshr i32 %95, 19

%97 = getelementptr [2048 x i32], [2048 x i32]* @sin_global.30_32, i32 %91, i32 %96

%98 = load i32, i32* %97

store i32 %98, i32* %y

%99 = sub i32 2048, %96

%100 = getelementptr [2048 x i32], [2048 x i32]* @sin_global.30_32, i32 %91, i32 %99

%101 = load i32, i32* %100

store i32 %101, i32* %x

Listing 13: LUT of Sin and Cos generated by FixMage. Unoptimized LLVM-IR.
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4.3 ASin and ACos

Just like Sin and Cos, ASin and ACos are also available with two different algo-

rithms: Cordic and LUT.

4.3.1 Cordic ASin and ACos

Cordic ASin and ACos have a structure similar to their Cos and Sin counterparts.

Due to the narrow range of the input domain ([−1, 1]), the reduction phase is

composed just by a shift which brings the argument to the best internal repre-

sentation: giving only two bits to represent the integer part. The Computation

phase implements the double rotation methods as explained in section 1.3.2. In

Listing 14 we show an example of generated code for ACos with as argument a

fixed point of 32 bits of size and 29 bits of fraction.

The epilogue phase takes care to convert the optimal internal representation

– as generated by the reduction phase – to the requested return fixed point type.

Both the reduction and the epilogue phase are rarely generated, as TAFFO often

chooses as argument and return type the same one of the internal representation,

so there is no need for conversion.

4.3.2 LUT ASin and Acos

The LUT implementation for ASin and ACos follows a path similar to its coun-

terpart for LUT sin and cos. The main difference is that the table for asin

is generated in the range [0, 1]. The number of entries for the generated table

defaults at 2048, but it is customizable during the program’s compilation and

through the command-line options. The negative part of the domain is restored

with the equality −asin(−x) = asin(x). ACos is calculated from ASin through

the following identity: acos(x) = pi
2
− asin(x). This is done during the reduction

phase. The computation phase consists of simply a lookup in the table. In the

epilogue, the result is shifted back to the required fixed point used as return type.
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"Loop entry": ; preds = %"cordic body", %Entry
%1 = load i32, i32* %i
%2 = icmp slt i32 %1, 16
br i1 %2, label %"cordic body", label %end

"cordic body": ; preds = %"Loop entry"
%3 = load i32, i32* %y
%4 = icmp sge i32 %3, 0
%5 = select i1 %4, i32 0, i32 536870912
%6 = select i1 %4, i32 536870912, i32 0
%7 = load i32, i32* %t
%8 = load i32, i32* %x
%9 = icmp sge i32 %8, %7
%10 = select i1 %9, i32 %6, i32 %5
store i32 %10, i32* %d
%11 = load i32, i32* %i
%12 = getelementptr [64 x i32], [64 x i32]* @arctan_g.29, i32 0, i32 %11
%13 = load i32, i32* %12
%14 = shl i32 %13, 1
%15 = sub i32 0, %14
%16 = load i32, i32* %d
%17 = icmp eq i32 %16, 0
%18 = select i1 %17, i32 %15, i32 %14
%19 = load i32, i32* %theta
%20 = add i32 %19, %18
store i32 %20, i32* %theta
%21 = load i32, i32* %i
%22 = shl i32 %21, 1
%23 = load i32, i32* %t
%24 = ashr i32 %23, %22
%25 = load i32, i32* %t
%26 = add i32 %25, %24
store i32 %26, i32* %t
%27 = load i32, i32* %i
%28 = load i32, i32* %y
%29 = ashr i32 %28, %27
%30 = load i32, i32* %x
%31 = sub i32 %30, %29
%32 = load i32, i32* %x
%33 = add i32 %32, %29
%34 = load i32, i32* %d
%35 = icmp eq i32 %34, 0
%36 = select i1 %35, i32 %33, i32 %31
store i32 %36, i32* %x1
%37 = load i32, i32* %i
%38 = load i32, i32* %x
%39 = ashr i32 %38, %37
%40 = load i32, i32* %y
%41 = add i32 %40, %39
%42 = load i32, i32* %y
%43 = sub i32 %42, %39
%44 = load i32, i32* %d
%45 = icmp eq i32 %44, 0
%46 = select i1 %45, i32 %43, i32 %41
store i32 %46, i32* %y1
%47 = load i32, i32* %i
%48 = load i32, i32* %y1
%49 = ashr i32 %48, %47
%50 = load i32, i32* %x1
%51 = sub i32 %50, %49
%52 = load i32, i32* %x1

Listing 14: First Part of Acos Cordic generated by FixMage. Unoptimized LLVM-IR.
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%53 = add i32 %52, %49
%54 = load i32, i32* %d
%55 = icmp eq i32 %54, 0
%56 = select i1 %55, i32 %53, i32 %51
store i32 %56, i32* %x
%57 = load i32, i32* %i
%58 = load i32, i32* %x1
%59 = ashr i32 %58, %57
%60 = load i32, i32* %y1
%61 = add i32 %60, %59
%62 = load i32, i32* %y1
%63 = sub i32 %62, %59
%64 = load i32, i32* %d
%65 = icmp eq i32 %64, 0
%66 = select i1 %65, i32 %63, i32 %61
store i32 %66, i32* %y
%67 = load i32, i32* %i
%68 = add i32 %67, 1
store i32 %68, i32* %i
br label %"Loop entry"

Second Part of Acos Cordic generated by FixMage. Unoptimized LLVM-IR.

Entry:
%x = alloca i32
%y = alloca i32
store i32 %0, i32* %x
%1 = load i32, i32* %x
%2 = icmp sge i32 %1, 0
%3 = select i1 %2, i32 0, i32 536870912
store i32 %3, i32* %y
%4 = load i32, i32* %x
%5 = sub i32 0, %4
%6 = load i32, i32* %x
%7 = load i32, i32* %x
%8 = icmp sge i32 %7, 0
%9 = select i1 %8, i32 %6, i32 %5
store i32 %9, i32* %x
%10 = load i32, i32* %x
%11 = lshr i32 %10, 18
%12 = getelementptr [2049 x i32], [2049 x i32]* @asin_global.29_32, i32 0, i32 %11
%13 = load i32, i32* %12
store i32 %13, i32* %x
%14 = load i32, i32* %y
%15 = icmp eq i32 %14, 536870912
br i1 %15, label %restore, label %end

restore: ; preds = %Entry
%16 = load i32, i32* %x
%17 = sub i32 0, %16
store i32 %17, i32* %x
br label %end

end: ; preds = %restore, %Entry
%18 = load i32, i32* %x
%19 = load i32, i32* @pi_half_29
%20 = sub i32 %19, %18
ret i32 %20

Listing 15: Acos LUT generated by FixMage, Unoptimized LLVM-IR.
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4.4 Absolute Value

The absolute value function simply implements the naive algorithm. The first part

of the generated code checks if the number is negative, and if it is true, its negation

is returned.

Due to the small amount of code required to implement this function, instead

of showing an example of the generated LLVM-IR, we show the generation algo-

rithm instead to better demonstrate how it is possible to work within the LLVM

framework.

The most crucial class used in the generation code is IRBuilder, which gener-

ates and links the new instructions into the basic blocks.

The main structure of the abs generator is composed by a single block called entry.

To create the basic block we used the function Create of the class BasicBlock

which takes as input, the context the name and a function in which it will be

added. BasicBlock::Create(context, block name, function)

The core of the function is composed by a ternary operation in which we control

the leading bit to choose if return the argument or his negation. The generation

of Select follows this structure

builder.CreateSelect( condition, value return if true, value return if

false) To check the leading bit we insert a shift to the right by a number of bits

that depends on the size of the generated function argument types.

builder.CreateLShr(Value to shift, Amount to shift) and we compare it

with a constant to check if it is equal.

builder.CreateICmpEQ(first value to compare, second value to compare)

Finally to get the negation we can use

builder.CreateSub(first value, second value).

If we compose all together, we obtain 16
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builder.CreateSelect(

builder.CreateICmpEQ(

builder.CreateLShr(inst, arg_type->getScalarSizeInBits() - 1),

llvm::ConstantInt::get(

llvm::Type::getIntNTy(cont, arg_type->getPrimitiveSizeInBits()),

1)),

builder.CreateSub(llvm::ConstantInt::get(

llvm::Type::getIntNTy(

cont, arg_type->getPrimitiveSizeInBits()),

0),

inst)

inst);

Listing 16: FixMage Core of the abs value
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bool FloatToFixed::createAbs(llvm::Function *newfs, llvm::Function *oldf) {

newfs->deleteBody();

llvm::LLVMContext &cont(oldf->getContext());

// get first basick block of function

auto arg_type = newfs->getArg(0)->getType();

auto ret_type = newfs->getReturnType();

BasicBlock::Create(cont, "Entry", newfs);

BasicBlock *where = &(newfs->getEntryBlock());

IRBuilder<> builder(where, where->getFirstInsertionPt());

//handle unsigned int

if (this->hasInfo(oldf->getArg(0)) &&

!(this->valueInfo(oldf->getArg(0))->fixpType.scalarIsSigned())) {

builder.CreateRet(newfs->getArg(0));

return true;

}

//cast the argument to integer

auto *inst = builder.CreateBitCast(

newfs->getArg(0),

llvm::Type::getIntNTy(cont, arg_type->getPrimitiveSizeInBits()));

inst = builder.CreateSelect(

//check the most significant bit

builder.CreateICmpEQ(

builder.CreateLShr(inst, arg_type->getScalarSizeInBits() - 1),

llvm::ConstantInt::get(

llvm::Type::getIntNTy(cont, arg_type->getPrimitiveSizeInBits()),

1)),

//if equal one return the negation

builder.CreateBitCast(

builder.CreateSub(llvm::ConstantInt::get(

llvm::Type::getIntNTy(

cont, arg_type->getPrimitiveSizeInBits()),

0),

inst),

llvm::Type::getIntNTy(cont, arg_type->getPrimitiveSizeInBits()))),

//if equal zero return the original

inst);

LLVM_DEBUG(dbgs() << "\nType ret" << (ret_type->dump(), " ") << "\n");

LLVM_DEBUG(dbgs() << "\nType arg" << (arg_type->dump(), " ") << "\n");

//handle all the type of return type

if (arg_type->isFloatingPointTy() && ret_type->isFloatingPointTy()) {

inst = builder.CreateFPCast(inst, ret_type);

} else if (arg_type->isFloatingPointTy() && ret_type->isIntegerTy()) {

inst = builder.CreateFPToSI(inst, ret_type);

} else if (arg_type->isIntegerTy() && ret_type->isFloatingPointTy()) {

inst = builder.CreateSIToFP(inst, ret_type);

} else if (arg_type->isIntegerTy() && ret_type->isIntegerTy()) {

inst = builder.CreateIntCast(inst, ret_type, true);

}

builder.CreateRet(inst);

}

Listing 17: FixMage Code that is in charge of generate the abs value
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Chapter 5

Extending TAFFO ILP Mixed

Precision Capabilities

In its current state of development, TAFFO supports changing only single-precision

and double-precision floating-point types to fixed point [39]. We extended the solu-

tion adopted by TAFFO, adding support to all the floating-point types supported

natively by the LLVM framework. The types supported are reported in Table 5.1

Type Description

half 16-bit floating-point value

bfloat 16-bit “brain” floating-point value (7-bit significand)

float 32-bit floating-point value

double 64-bit floating-point value

fp128 128-bit floating-point value (113-bit significand)

x86 fp80 80-bit floating-point value (X87)

ppc fp128 128-bit floating-point value (two 64-bits)

Table 5.1: Types supported by LLVM-IR

For most of the new supported type, it is possible to apply the methods pro-

posed in [39] based on the evaluation of the instructions, and the results were

similar to the one illustrated in that work.

In contrast, a new selection strategy was introduced specifically for bfloat types.

In fact, for bfloat types it is not possible to measure the time that each possible

instruction takes on hardware because only few operations are currently supported

for bfloat. On Armv8.6-A [40] conforming CPUs with Neon SIMD extensions, a

63



new set of instructions is available to accelerate the multiplication of matrices with

bfloat values. With the AVX512 BF16 extension, Intel also introduced three new

instructions to work with bfloat types, which specifically facilitate computing ma-

trix products [41]. The LLVM framework gives access to these special instructions

through the use of intrinsics: special functions whose implementation is provided

by the compiler itself. To implement support for these new types, we use strategies

based on the cost model offered by the LLVM framework [42]. In this way, when

full support to bfloat types will be introduced to LLVM, TAFFO will be also able

to generate code supporting bfloat. Finally, The ILP algorithm was modified to

enable the possibility to specify which operations are possible for each type. This

was done because for some low-power architecture, not all the possible arithmetic

operations are supported for each type.

5.1 Overview of Previous work

The Data Type Allocation implemented in TAFFO generates an Integer Linear

Programming problem and use or-tools [43] to solve the optimization problem. The

cost of each mathematical and cast instruction was collected with a benchmark

for each different architecture. This profiling phase is external to the TAFFO

toolchain, and its output result can be reused.

The Data Type Allocation is generated through optimization of the final ob-

jective function:

min [W1
Cc
Nc

+W3
Exc
NEx

+W2
Ec
Ne

]

Cc is the cost of each cast operation introduced in the model. So the model can

take into consideration the overhead of the casting operations. The case of zero

cost casts, like passing from unsigned integer to integer, is taken into consideration

during the profiling phase.

Exc represents the error introduced in the program. This is computed with a

metric that is called IEBW. Informally, the IEBW of a number x represented with

a type t is defined as the minimum number of fractional bits that an unrestricted

fixed-point (a fixed point with infinite bits after the fractional point) should have

to represent the number x with a relative error lesser than or equal to x represented

in t.

Ec is the cost of each arithmetic operation introduced by the model, as specified

by the profiling. W1,W2,W3 are the weights used to choose which parameter to

prioritize. Nc, NEx, Ne are coefficients chosen to bring the fraction in the range
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[0, 1] as the values of Cc, Exc, and Ec are in general uncorrelated and on a different

scale.

5.1.1 New Cost model

As already mentioned, a new cost model was introduced in the DTA pass. This

was done because it was impossible to profile the bfloat instructions, as hardware

manufacturers are still developing support for this type.

Our cost model for bfloat is built around the TCK RecipThroughput metric

given by the LLVM framework. It provides a basic cost estimation to approximate

the cost of any IR instruction when lowered to machine instructions. The cost

results are unit-less and the cost number represents the reciprocal of throughput

of the machine assuming that all loads hit the cache, all branches are correctly

predicted. Like with the previously employed method, it’s possible to collect all

such metrics for all possible arithmetic instructions before the compilation of the

program. This has the advantage of decoupling the profiling phase from the com-

pilation phase but comes with a significant disadvantage as we lost the capability

of a more fine cost analysis. Running the profiling phase within the compilation

allows the LLVM Framework to analyze the cost of instruction inside functions

and give a more accurate prediction of the actual cost. We set up TAFFO to work

directly with all the cost models and they are reported in Table 5.2 offered by

LLVM.

LLVM Cost Model

TCK RecipThroughput Reciprocal throughput

TCK Latency The latency of instruction

TCK CodeSize Instruction code size

TCK SizeAndLatency The weighted sum of size and latency

Table 5.2: LLVM-IR Cost Model

In the current state, the only cost model supported both by ARM and In-

tel architectures is TCK RecipThroughput. The other cost models are currently

under development and follow the same principle of TCK RecipThroughput, so

when they are going to be fully completed, they will return a unit-less number

representing the specific cost of each LLVM-IR targeted instructions. As their

interface is already defined, it was possible to integrate them into TAFFO before
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their release. As we were interested in a metric that can consider the size of the

instructions and it’s performance, and knowing that we can not utilize TCK Size,

we choose to utilize TCK RecipThroughput but to adjust the metric for the size

of the type utilized. So if we consider a generic instruction like the following:

%mul = fmul float %i, 2.000000e+00

We define t ∈ {supported type} and Bt ∈ {0, 1}
and calling Sz(t) a function that return the size of the type t

calling Tk(t) a function that return the TCK RecipThroughput of the type t

∀i ∈ {supported types} an instruction will be added of the form:

mathCostObj + = Sz(i) ∗ Tk(i) ∗Bi

Example of instruction added in the model for the new cost

Only one B t can be true for each converted instruction. Thus
∑

(Bt) = 1

5.1.2 IEBW for new data Type

The IEBW for the newly supported data types follows the same schema as other

floating-point types. Here we report a quick recap. The absolute error while

representing a number in a floating-point data type varies with the value itself.

Calling p the precision of the decimal part and e the number of exponent bits of

a given floating point number T the fractional part is allocated to exactly p − 1

bits due to the normalization process. The number of fractional bits needed for

an unrestricted fixed-point to represent T with the same precision is given by:

pfix = pfloat − efloat − 1

efloat is the only parameter that depends on the specific number that is being

represented. If the number is in normalized form, it can be calculated as

efloat = min(log2(x), emax)

5.1.3 Constraints for operations

Lastly, we shall add the possibility to select which arithmetic operations are sup-

ported for each type. This information is passed to TAFFO as a file that obeys to

the following grammar:
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〈start〉→[〈exp〉, ]*〈exp〉| ε
〈exp〉→N〈item〉
〈exp〉→-〈stype〉 〈item〉
〈exp〉→-〈mtype〉 〈item〉 〈item〉
〈stype〉→ADD|SUB|MUL|DIV|REM

〈mtype〉→CAST

〈item〉→HALF|FIX|FLOAT|DOUBLE|QUAD|FP80|PPC128|BF16

Listing 18: Grammar for constraint on types

N<item> allows to disable all the operations for a particular type. -<stype> <item>

allows to disable specific types of operations for a particular type. -<mtype> <item> <item>

allows to disable specific types of casts.

In the generation of the model, if N<item> is specified for a specific type T , T

is not considered in the set of possible types to use. This implies that there will be

no trace of type T in the final model, which is enough to exclude it from the code

generation. Instead, if only some operations are disabled when such operations

are encountered, TAFFO adds a constraint in the following form:

BT = 0

This has the result of disabling the possibility for the boolean variable BT to select

the given type T .
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Chapter 6

Experimental evaluation

To validate the results of FixM in a precision tuning context, we partition the

embedded systems hardware architectures into two different classes.

The first class of embedded systems microcontrollers is characterized by the

absence of the floating point unit (FPU). On this kind of hardware, floating point

computation can be handled through an emulation library provided by the com-

piler.

The second class of hardware consists of embedded systems microcontrollers

with an FPU. These microcontrollers are nowadays more common than in the past,

but they are more costly and less energy-efficient [44]. In such microcontrollers,

the software emulation layer is not required.

Our approach based on the fixed point numeric representation is available in all

the cases where basic operations (addition, subtraction, multiplication and divi-

sion) on integers is supported by hardware. Therefore, we avoid the computational

overhead inherent in floating point emulation libraries.

Additionally, the FPU of microcontrollers often does not support hardware-

based computation of transcendental functions. A software implementation is used

instead. Consequently, our solution’s performance improvement can be attributed

to FixMAGE and our implementation of such functions.

6.1 Hardware Setup

Each of the two hardware classes is represented by one embedded systems devel-

opment board. Such boards are described in Table 6.1:
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Identifier Board Name HW FP CPU core CPU fck RAM size

M3 STM3220G-EVAL No ARM Cortex-M3 25 MHz 2 MB

M4 STM32F4-Discovery Yes ARM Cortex-M4 8 MHz 192 KB

Table 6.1: The list of development boards used for the experimental evaluation of our

precision tuning solution.

• Identifier: Name used when referring to the development board

• Board Name: Full board name

• HW FP: whether the board has hardware supports for floating point

• CPU core: Name of the CPU architecture

• CPU fck: Clock frequency of the microcontroller CPU during the experiments.

• RAM size: Amount of RAM available on the board

All the boards we used in our experimental campaign do not feature any level

of data cache between the processing unit and the RAM. Instruction cache is not

implemented as well.

6.2 Benchmarks

To test FixM and its capability, we used applications from a well-known state-of-

the-art benchmark suite, AxBench [45]. AxBench consists of a set of applications

that mimics real-world computational needs. These applications are available both

in CPU-based and GPU-based implementations. For the sake of our tests, only the

CPU version is considered. The applications within AxBench are very good targets

of approximate computing, as they focus on algorithms where it is commonly

applied.

It is crucial in the approximate computing field to rely on a solid quality metric

to measure the technique’s functional side effects. For this reason, AxBench pro-

vides an error metric for each of the applications it contains. From the multitude

of available benchmarks within AxBench, we choose the only two that contain only

trigonometric functions: InverseK2J and FFT. Additionally, we evaluated FixM

on FBench [46], a synthetic benchmark for floating-point performance. Lastly,

we test FixM within a real code scenario. We tested it on an implementation of
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Field Oriented Control (FOC)[47]. FOC is an industry-standard for controlling

induction motors and other AC-based motors.

In the following we describe these benchmarks in more detail.

InverseK2J

This algorithm finds application in the workload performed by industrial robots.

In such robots, the most common kind of implement is a two-joint arm. In this

case, two stepper motors control the movement of a joint each, and the instructions

sent to the motors take the form of angle differences. The actual computations of

the position of the arm are performed in Cartesian coordinates. This benchmark

implements the conversion from the cartesian to polar coordinates and vice-versa.

FBench

FBench is a synthetic benchmark meant for measuring the floating point per-

formance of hardware architectures. The benchmark implements the ray-tracing

algorithms to simulate the behavior of 100 light rays passing through a telescope

lens. The retracing algorithms rely heavily on trigonometric functions, thus it is

a good performance test.

FFT

FFT is often used in the signal-processing domain, and it is used to transform a

signal from the time domain to the frequency domain. FFT applications range from

audio engineering to communication networks. The AxBench FFT benchmark

implements an algorithm known as the in-place radix-2 Cooley-Tukey Fast Fourier

Transform. The benchmark computes a single transform of a rectangular wave of

period K and duty cycle 1%, over a window of size K

FOC

FOC targets induction motors or permanent magnet synchronous motors. In these

motors, the drive coils are mounted on the stator, and the rotor is free to rotate

around the coils. Motion is achieved by the attraction or repulsion of a permanent

magnet. The current passing through the coils in the stator produces a magnetic

field. The output of the FOC control equations is the voltage to be applied to

these coils in the function of time.
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6.2.1 Software Setup

All the benchmarks tested on the boards were linked with the runtime libraries

provided by the board manufacturer to initialize the hardware. The benchmarks

were run on bare-metal, no supporting operating system was used. The time sam-

pling method was based on a hardware counter which provides a resolution of 1

millisecond. To allow comparing FixM to existing approaches, we compiled the

applications using three different configurations each. For all configurations, un-

less where we specify otherwise, the compiler used was GCC, version 6 and the

C standard library employed is newlib [48] version 2.5.0. The first configuration

compiles without performing any precision tuning task. The second configura-

tion is compiled via TAFFO without FixM. This configuration exploits the 32-bit

fixed point representations with dynamic bit partitioning and the mathematical

functions’ wrapping. Alongside TAFFO, we used the LLVM compiler infrastruc-

ture, with clang version 8.0.1 as compiler. The C standard library employed is

the same version of newlib. The third configuration is compiled with FixM. Thus,

benchmarks use precision-tuned fixed point numeric representation thorough the

entire computation, and trigonometric functions are provided by FixMAGE. We

used the same versions of LLVM, clang and newlib as in the second configuration.

Each benchmark was compiled with two different optimization levels. One run

employs the -O3 option, while the other is set to -Os. These flags’ meaning is an

industry-standard that does not significantly vary across the compilers we used in

our experimental campaign. -O3 exploits aggressive optimization aimed to reduce

execution times. -Os instead performs slightly less aggressive optimizations preset,

aimed at a smaller code size.

6.2.2 Time and Accuracy analysis

First, we load the software, produced as described in the previous section, onto

the boards. The software on the boards is executed 100 times consecutively. For

each execution, we collect the execution time of the computational kernel and

the results. A reference version of the benchmark was also run on a computer

equipped with a CPU Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz and used as

the baseline. The results of the computations are represented as a single vector of

real numbers. This vector does not change across different runs. The execution

time is averaged over the 100 separate runs of the experiment. To compare the

execution times between the experiments, we use the Speedup metric (S). Given
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two execution times ta and tb , the Speedup of ta with respect to tb is

100 ∗ (
ta
tb
− 1)

When referring to the speedup of one software configuration to another, we mean

the speedup between their execution times. The Average Absolute Error (AE)

and Average Relative Error (RE) metrics are used to compare the computation

results. Calling A and B two vectors with the same number of elements, the two

error metrics are computed as such:

AE = avgi(|ai − bi|)

RE =
AE

avgi(| bi |)
Image 6.1 shows the speedups obtained via FixM, compared with the speedups

due to the precision tuning performed by TAFFO alone. Both speedups are re-

ferred to as the floating point version.

Benchmark Opt
M3 M4

tfloat tTAFFO tFixM tfloat tTAFFO tFixM

InverseK2J
-O3 0.168 0.166 0.044 0.115 0.116 0.034

-Os 0.169 0.166 0.048 0.115 0.117 0.037

FFT
-O3 0.416 0.409 0.161 0.238 0.276 0.112

-Os 0.422 0.408 0.150 0.243 0.275 0.108

FBench
-O3 0.217 0.200 0.069 0.139 0.138 0.054

-Os 0.218 0.200 0.075 0.139 0.138 0.057

Table 6.2: FixM Execution time measurements obtained during the experiments.

Independently from the hardware class, FixM brings a substantial benefit in

terms of execution time and size for all three benchmarks. In fact, we see high

speedups for both boards, m3 and m4. All the speedup achieved is attributable to

the FixM approach. In fact, the execution times for the floating-point versions and

the TAFFO-optimized fixed point version without FixM are very similar. Hence,

the speedup achieved by applying precision tuning without FixM is at most 9%

and, in the worst case, we obtain a slow down of at most 13.8% on the m4 board

as reported in Figure 6.1. The slowdown for the m4 board is attributable to
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the low benefits provided by the fixed point numeric representation for microcon-

troller CPUs with floating-point support. From the large difference in execution

time between the TAFFO and the FixM configurations, we also conclude that

the trigonometric computations constitutes a large portion of the execution time.

FFT receives the least benefit from FixM as it relies only on sine and cosine. The

implementation of sine and cosine with CORDIC is slower than the implementa-

tion of arcsin and arccos, as it needs a higher number of iteration to converge.

From the code size graph of Figure 6.2, we notice that FixM produces a smaller

program than the others. On microcontroller CPUs we employed, instruction-level

parallelism is limited. Therefore, the code size tends to have a direct correlation

with the execution time.

To confirm that the speedup is not caused only by code size reductions, we can

observe the graph 6.3 where the generation of arcsin and arccos are suppressed.

As we can see, we achieve good speedup, even without a code size decrease. Thus,

we confirm that the speedup is caused by code size reductions and the increased
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Figure 6.3: Speed up and size of the benchmark with arcsin and arccos generation disabled.

efficiency of the functions generated by FixMAGE. Another observation we make

on FFT is that the -Os compilation option allows the fixed point based approach to

achieve greater speedup. By examining the compiled code, we determine that this

code size reduction is caused by inlining the code generated by FixMAGE. The last

observation we make is that FixM achieves lesser speedups on the m4 board. This

is expected, since standard floating-point trigonometric function implementations

are faster on the Cortex-M4 architecture, as it supports floating point data types

in hardware.

Benchmark AE TAFFO AE FixM RE TAFFO RE FixM

InverseK2J 2.56× 10−7 1.31× 10−7 3.74× 10−7 1.91× 10−7

FFT 5.29× 10−5 5.28× 10−5 9.96× 10−6 9.95× 10−6

FBench 2.89× 10−2 4.21× 10−3 3.06× 10−3 4.47× 10−4

Table 6.3: Absolute and relative error of the fixed point versions w.r.t. the reference

baseline.

Now, let us consider the absolute error and the relative error of the FixM

configuration with respect to the floating-point configuration, shown in 6.3. We

show a single data set since for both m4 and m3 boards, the errors were the same

independently from the compilation options (-O3 as opposed to -Os). The errors

do not change significantly with respect to the figures we obtain with TAFFO
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alone, without FixM. Therefore FixM does not introduce additional errors on its

own. The more complex algorithm explains the higher errors of FFT and FBench

with respect to InverseK2J.

6.2.3 Energy consumption

Benchmark Opt
M3 M4

Efloat ETAFFO EFixM Efloat ETAFFO EFixM

InverseK2J
-O3 62.82 62.99 25.60 48.20 55.89 22.57

-Os 62.88 62.83 24.00 49.09 54.73 21.92

FFT
-O3 26.21 23.90 13.76 17.37 17.86 11.45

-Os 26.28 24.24 14.11 17.14 18.02 11.52

FBench
-O3 26.80 26.06 16.09 22.60 22.79 14.00

-Os 26.87 26.31 15.68 22.66 23.17 14.29

Table 6.4: Total energy draw for the execution of each experiment. All figures are in mJ.

We also measured the average supply voltage and current draw of the micro-

controller during the duration of the experiment and reported them in the Ta-

ble 6.4. These measurements were performed using an RS PRO IDM-8351 digital

multimeter [49] with a current measurement resolution of 100nA and a voltage

measurement resolution of 1µV . The multimeter was connected in series with the

microcontroller by exploiting specifically provided test points on the evaluation

boards to exclude the current draw of all supporting hardware. The samples were

then filtered to remove those that were not taken during the 100 runs of the exper-

iments and averaged using the arithmetic mean. The energy draw was computed

using the formula E = V It, where V is the supply voltage of the microcontroller

(5 Volt), I is the average current, and t is the execution time of the benchmark.

We observe that the benchmarks compiled with FixM require significantly less en-

ergy than the others. This is primarily due to the reduced execution time. This

improvement also extends to embedded platforms with floating point hardware

support.
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6.2.4 Different Algorithms analysis

We evaluate the impact of different generated algorithms by FixMAGE on the

FOC application. The FOC was compiled with several different FixM settings

to evaluate the trade-off of using the implementation based on look-up-tables as

opposed to the implementation based on CORDIC:

C2 This configuration always uses CORDIC for both trigonometric calls

L1C1 This configuration uses a LUT for the first trigonometric call, but a

CORDIC implementation for the second call

C1L1 This configuration uses a LUT for the second trigonometric call, but a

CORDIC implementation for the first

L2 This configuration always uses LUTs for both trigonometric calls

taffo FixM
(C2)

FixM
(C1L1)

FixM
(L1C1)

FixM
(L2)

Method
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Figure 6.4: Comparison of execution times by

platform and approximation method.
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Figure 6.5: Comparison of average

percentage relative errors by approximation

method.

From Figure 6.4 Figure 6.5 and Table 6.5 we can observe that FixM using

CORDIC provides good performance and small code size at minimum accuracy

loss, the use of LUTs provides further performance at the expense of both precision
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Method
F2 F4

Size Size of Benchmark Size of Constant Size Size of Benchmark Size of Constant

Float 7424 1892 672 6840 1892 696

TAFFO 8912 832 688 8216 900 704

FixM (C2) 6000 2538 476 5132 2548 496

FixM (L1C1) 6404 2204 8668 5608 2252 8688

FixM (C1L1) 6452 2158 8668 5620 2240 8688

FixM (L2) 6048 1804 8412 520 1832 8432

Table 6.5: Size of the generated code in bytes split across code and constants. The code

figures are further split into the full code, considering the platform specific support libraries

size and the FOC bench.

and memory footprint. Instead, Mixed solutions (using CORDIC for one operation

and LUT for the other) provide an intermediate point that is not Pareto-dominated

by either FixM with CORDIC or FixM with both LUTs. So the addition of other

supported algorithms gives FixM a valuable addition that expands the design

space, providing the designer with much-needed choices, which can be exerted to

cope with specific application constraints.

6.2.5 Comparison with the State of the Art

Several solutions in state-of-the-art have made use of CORDIC algorithms to im-

plement trigonometric functions. However, most implementations share the same

approach. We distinguish two main categories: hardware and software imple-

mentations. The hardware implementation comes from the generation of circuit

descriptions for programmable devices, for example, FPGAs. High-Level Synthesis

(HLS) is the task that aims at automatically generating these hardware descrip-

tions starting from a high-level programming language such as C or C++. Com-

plex mathematical functions are traditionally performed in floating-point. This is

also true for HLS tools where most arithmetic functions already implemented do

not support fixed point versions. However, floating point requires plenty of addi-

tional space and energy when synthesized on an FPGA, making their exploitation

impractical in a certain application. It has been proven [50] that a fixed point

of trigonometric function using the CORDIC algorithm significantly lowers the

resource utilization on FPGAs at the cost of a minor error. In the software imple-

mentations, we find embedded systems applications [51] and hardware simulation

tools [52]. However, the work scope is often narrowed to a specific use case, im-

pairing the solution’s generality. Thus, we consider precision tuning frameworks
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where the problem is tackled in a general way. Those that support fixed point

data types do not present significant differences from the arithmetic point of view

[53]. We compare the functional behavior of FixMAGE with a well-known hard-

ware simulation environment (Matlab Simulink), and with an industrial library

for hardware simulation and development (Xilinx Vivado).

Errors are reported in figure 6.6 as a difference to a reference version we com-

puted using the arbitrary precision arithmetic mpmath library [54] of the Python

[55] programming language. We compute the sin/cos value for each value in the

range [−π
2

; π
2
] with steps of 64, passing each argument as a signed fixed point

datatype.

In the evaluation, we choose to use a range of popular bit widths (32, 16,

8 bits, respectively with 29, 13, and 5 fractional bits). We set the number of

iterations of the CORDIC algorithm to the total number of bits, which guarantees

the maximum precision. Using the same fixed point representations, we evaluated

the sine and cosine CORDIC implementation provided by the System Generator

for DSP by Xilinx. This tool is a Simulink plugin that provides premade blocks

to accelerate FPGA development. It implements a fixed bit-width arithmetic

module as it is designed to simulate hardware implementations. MATLAB data

series rely on the CORDIC implementation of Simulink embedded in Matlab. This

version uses the default simulation parameters of the environment that uses a round

to nearest policy, which yields more accurate results. However, this implicitly

exploits an intermediate representation that is not restricted to the given bit width.

FixMAGE implements the truncate rounding mode, thus emulating the behavior

of the most common hardware.
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Chapter 7

Evaluation of the new DTA

algorithms

In this section, we present a preliminary implementation of the new DTA algo-

rithm, and its experimental evaluation. As the solution is based on TAFFO, each

test has been edited to insert the required annotations. The toolchain used is

based on LLVM 11 to have access to the new bfloat type. This section will present

the results obtained by the analysis of the LLVM-IR generated by the optimization

of the benchmarks used for the evaluation process.

7.1 Benchmarks

The benchmark suite used is the Polybench [56] test suite version 4.2.1. This

benchmark is composed of different programs written in C, each implementing a

different algorithm. The algorithms chosen for each file belong to a wide spectrum

of possible applications. This makes Polybench the benchmark of choice for eval-

uating experimental compilation optimizations in sufficiently realistic scenarios.

As an example, some benchmarks are related to linear algebra, like 2mm, which

implements 2 matrix multiplications, or atax for matrix transposition and vector

multiplication. Other benchmarks are related to multimedia, like fdtd-2d which

implements the Fourier transform. Polybench offers the possibility to tune the

amount of memory to allocate for every single test in order to be able to adapt

to multiple targets, even the most memory-constrained ones, such as embedded

systems. It also performs extra operations such as cache flushing before the kernel

execution, and features syntactic constructs to prevent any dead code elimination
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on the kernel to ensure a fair comparison between different compilers and source

code analyses.

7.2 Software setup

The host machine used to compile the benchmarks is a desktop PC running Ubuntu

20.04.2 LTS [57] with an Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz. We

employed version 11 of the LLVM toolchain, on which the new bfloat type was

introduced. We used a debug LLVM build to ease the coding process, but for

general use we advise to use a release version because of the compilation speed

improvements it enables. TAFFO was also changed to support LLVM 11 and

compiled against it.

Another required dependency is the python library ortools [43], which is used

to solve the linear optimization problem generated by the DTA.

Finally, we used an auxiliary tool, written in C++ with the regex BOOST

library [58], to extract, collect and organize the information from LLVM-IR and

python3[55]. Since a TAFFO compilation is composed of several steps which are

performed in a particular order, a helper script has been written to automatically

execute each LLVM pass in the correct order and with the correct parameters.

Finally, to support the other modifications performed to the DTA pass, we in-

troduced a new command-line argument, named -instructionsetfile, for spec-

ifying which operations are supported by the target hardware.

All the benchmarks were compiled with IEBW weight set to 50. For each

benchmark, we considered eight different compilation configurations:

bfloat bfloat, single, double and fixed point types enabled

bfloatnoSub like bfloat, with sub instructions disabled

bfloatnoAdd like bfloat, with add instructions disabled

bfloatnoRem like bfloat, with rem instructions disabled

bfloatnoDiv like bfloat, with div instructions disabled

bfloatnoMul like bfloat, with mul instructions disabled

float only floating point types enabled

fix only fixed point types enabled
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7.3 Result analysis

In this section, we present the results obtained processing the data generated from

the execution of the benchmarks. All the tables report the number of occurrences

of each operation for all the different compilation methods. In the tables, only

the alloca and global generated by TAFFO are reported. Also, for this special

operations the number reported represents the number of operations needed to

allocate the the same amount of memory if it was not possible to allocate more

than one variable in a single operation. So if in the LLVM-IR an instruction

of the type global [220 x [210 x double]] is encountered and it’s the only

one global that allocate double the generated table will have an entry for global

Float of 46200

As we can see from benchmark covariance 7.1, TAFFO could transform the

global float to global bfloat and adjust the operation when required. In some cases,

like in bicg 7.2, TAFFO chose not to convert from float to bfloat to preserve the

precision. Choosing a different value for the IEBW weight would lead to a different

result. In most cases, TAFFO chooses to use only one type for storage, and it is

usually bfloat due to its small size. This is not always true in fact, in benchmark

syr2k 7.3 we have both the allocation of bfloat and float. In this case, the

cost of the conversion from bfloat to float to do multiplication exceeds the benefit

brought by using the smaller type during the allocation.

We can observe that in 14 benchmarks of 22, the floating point data memory

allocations were substituted with bfloat typed ones, leading to a size reduction of

roughly 50%. Also, in the four benchmarks where the storage allocation was not

changed, but some bfloat instructions were used, we could nonetheless obtain a

benefit. In fact, knowing that the bfloat instructions can lead to a speed-up ranging

from 5% to 32% [59] 16,5% (due to the increased chance for parallelization), this

can be enough to overcome the cost of the cast from float introduced to use them.

All the data collected from the benchmarks are reported in Appendix A.

85



co
v
a
ria

n
ce

fi
x

fl
oat

b
fl
oat

fl
oat

b
fl
oat

n
oA

d
d

fl
oat

b
fl
oat

n
oD

iv
fl

oat
b
fl
oat

n
oM

u
l

fl
oat

b
fl
oat

n
oR

em
fl
oat

b
fl

oat
n

oS
u

b
fl

oat
d

ou
b

le

ad
d

In
teger

17
17

17
17

17
17

17
17

b
itcast

B
fl
oat

B
fl

oat
0

6
6

6
6

6
6

0

b
itcast

D
ou

b
le

D
ou

b
le

2
2

2
2

2
2

2
2

b
itcast

F
loat

F
loat

6
0

0
0

0
0

0
6

fad
d

B
fl

oat
0

2
0

2
2

2
2

0

fad
d

F
loat

2
0

2
0

0
0

0
2

fd
iv

B
fl
oat

0
3

3
0

3
3

3
0

fd
iv

F
loat

3
0

0
3

0
0

0
3

fm
u

l
B

fl
oat

0
10

10
10

0
10

10
0

fm
u

l
D

ou
b

le
8

8
8

8
18

8
8

8

fm
u

l
F

loat
10

0
0

0
0

0
0

10

fp
ex

t
B

fl
oat

D
ou

b
le

0
1

1
1

1
1

1
0

fp
ex

t
B

fl
oat

F
loat

0
0

0
3

0
0

0
0

fp
ex

t
F

loat
D

ou
b
le

1
0

0
0

0
0

0
1

fp
tosi

B
fl
oat

In
teger

0
4

4
4

4
4

4
0

fp
tosi

D
ou

b
le

In
teger

5
5

5
5

5
5

5
5

fp
tosi

F
loat

In
teger

4
0

0
0

0
0

0
4

fp
tru

n
c

F
loat

B
fl
oat

0
0

0
3

0
0

0
0

glob
al

B
fl

oat
0

124800
124800

124800
124800

124800
124800

0

glob
al

F
loat

124800
0

0
0

0
0

0
124800

glob
al

In
teger

1
1

1
1

1
1

1
1

m
u
l

In
teger

2
2

2
2

2
2

2
2

or
In

teger
3

4
4

4
4

4
4

3

sd
iv

In
teger

2
2

2
2

2
2

2
2

sitofp
In

teger
B

fl
oat

0
5

5
5

5
5

5
0

sitofp
In

teger
D

ou
b
le

3
3

3
3

3
3

3
3

sitofp
In

teger
F

loat
5

0
0

0
0

0
0

5

su
b

In
teger

3
3

3
3

3
3

3
3

tru
n

c
In

teger
In

teger
2

2
2

2
2

2
2

2

u
rem

In
teger

1
1

1
1

1
1

1
1

T
ab

le
7.1:

covarian
ce

b
en

ch
m

ark.
T

h
is

tab
le

rep
orts

th
e

cou
n

t
of

all
th

e
in

stru
ction

s
created

by
T

A
F

F
O

as
d

escrib
ed

in

section
7.2.

T
h

e
in

stru
ction

s
are

rep
orted

on
th

e
b

egin
n

in
g

of
th

e
row

s
an

d
in

th
e

b
egin

n
in

g
of

th
e

colu
m

n
s

are
rep

orted
th

e

d
iff

eren
t

typ
es

of
com

p
ilation

.
T

h
e

m
atrix

gen
erated

rep
orts

all
th

e
o

ccu
rren

ce
of

a
sp

ecifi
c

op
eration

for
a

p
articu

lar
com

p
ilation

m
o

d
e.

86



b
ic

g

fi
x

fl
oa

t
b

fl
oa

t
fl

oa
t

b
fl

oa
t

n
oA

d
d

fl
oa

t
b

fl
oa

t
n

oD
iv

fl
oa

t
b

fl
oa

t
n

oM
u

l
fl

oa
t

b
fl

oa
t

n
oR

em
fl

oa
t

b
fl

oa
t

n
oS

u
b

fl
oa

t
d

ou
b

le

ad
d

In
te

ge
r

14
14

14
14

14
14

14
14

fm
u

l
D

ou
b

le
11

11
11

11
11

11
11

11

fp
to

si
D

ou
b

le
In

te
ge

r
4

4
4

4
4

4
4

4

gl
ob

al
D

ou
b

le
80

0
80

0
80

0
80

0
80

0
80

0
80

0
80

0

gl
ob

al
In

te
ge

r
1

1
1

1
1

1
1

1

m
u

l
In

te
ge

r
2

2
2

2
2

2
2

2

sd
iv

In
te

ge
r

1
1

1
1

1
1

1
1

sh
l

In
te

ge
r

3
3

3
3

3
3

3
3

si
to

fp
In

te
ge

r
D

ou
b

le
2

2
2

2
2

2
2

2

su
b

In
te

ge
r

1
1

1
1

1
1

1
1

tr
u

n
c

In
te

ge
r

In
te

ge
r

5
5

5
5

5
5

5
5

u
d

iv
In

te
ge

r
3

3
3

3
3

3
3

3

u
it

of
p

In
te

ge
r

D
ou

b
le

3
3

3
3

3
3

3
3

u
re

m
In

te
ge

r
5

5
5

5
5

5
5

5

ze
x
t

In
te

ge
r

In
te

ge
r

2
2

2
2

2
2

2
2

T
ab

le
7.

2:
b

ic
g

b
en

ch
m

ar
k.

T
h

is
ta

b
le

re
p

or
ts

th
e

co
u

n
t

of
al

l
th

e
in

st
ru

ct
io

n
s

cr
ea

te
d

by
T

A
F

F
O

as
d

es
cr

ib
ed

in
se

ct
io

n
7.

2.

T
h

e
in

st
ru

ct
io

n
s

ar
e

re
p

or
te

d
on

th
e

b
eg

in
n

in
g

of
th

e
ro

w
s

an
d

in
th

e
b

eg
in

n
in

g
of

th
e

co
lu

m
n

s
ar

e
re

p
or

te
d

th
e

d
iff

er
en

t
ty

p
es

of

co
m

p
ila

ti
on

.
T

h
e

m
at

ri
x

ge
n

er
at

ed
re

p
or

ts
al

l
th

e
o

cc
u

rr
en

ce
of

a
sp

ec
ifi

c
op

er
at

io
n

fo
r

a
p

ar
ti

cu
la

r
co

m
p

ila
ti

on
m

o
d

e.

87



sy
r2

k

fi
x

fl
oat

b
fl

oat
fl

oat
b

fl
oat

n
oA

d
d

fl
oat

b
fl

oat
n

oD
iv

fl
oat

b
fl

oat
n

oM
u

l
fl

oat
b

fl
oat

n
oR

em
fl

oat
b

fl
oat

n
oS

u
b

fl
oat

d
ou

b
le

ad
d

In
teger

22
19

19
19

22
19

19
22

an
d

In
teger

4
2

2
2

4
2

2
4

b
itcast

B
fl

oat
B

fl
oat

0
0

0
0

8
0

0
0

b
itcast

F
loat

F
loat

14
0

0
0

0
0

0
14

fad
d

B
fl

oat
0

2
0

2
2

2
2

0

fad
d

F
loat

4
0

2
0

2
0

0
4

fm
u

l
B

fl
oat

0
12

12
12

0
12

12
0

fm
u

l
F

loat
18

0
0

0
15

0
0

18

fp
ex

t
B

fl
oat

D
ou

b
le

0
1

1
1

1
1

1
0

fp
ex

t
B

fl
oat

F
loat

0
0

3
0

7
0

0
0

fp
ex

t
F

loat
D

ou
b

le
1

0
0

0
0

0
0

1

fp
tru

n
c

F
loat

B
fl
oat

0
0

1
0

6
0

0
0

glob
al

B
fl

oat
0

153600
153600

153600
105600

153600
153600

0

glob
al

F
loat

153600
0

0
0

48000
0

0
153600

lsh
r

In
teger

1
0

0
0

1
0

0
1

m
u

l
In

teger
3

3
3

3
3

3
3

3

or
In

teger
4

3
3

3
4

3
3

4

sh
l

In
teger

3
3

3
3

3
3

3
3

tru
n

c
In

teger
In

teger
4

4
4

4
4

4
4

4

u
d

iv
In

teger
3

3
3

3
3

3
3

3

u
itofp

In
teger

B
fl

oat
0

3
3

3
2

3
3

0

u
itofp

In
teger

F
loat

3
0

0
0

1
0

0
3

u
rem

In
teger

4
4

4
4

4
4

4
4

T
ab

le
7.3:

syr2k
b

en
ch

m
ark.

T
h

is
tab

le
rep

orts
th

e
cou

n
t

of
all

th
e

in
stru

ction
s

created
by

T
A

F
F

O
as

d
escrib

ed
in

section
7.2.

T
h

e
in

stru
ction

s
are

rep
orted

on
th

e
b

egin
n

in
g

of
th

e
row

s
an

d
in

th
e

b
egin

n
in

g
of

th
e

colu
m

n
s

are
rep

orted
th

e
d

iff
eren

t
typ

es
of

com
p

ilation
.

T
h

e
m

atrix
gen

erated
rep

orts
all

th
e

o
ccu

rren
ce

of
a

sp
ecifi

c
op

eration
for

a
p

articu
lar

com
p

ilation
m

o
d

e.

88



Chapter 8

Conclusion

In this thesis, we presented a novel technique to approach mathematical function

optimization in a precision tuning framework, minimizing the amount of addi-

tional code generated with respect to current approaches. We were able to achieve

speedups up to approximately 282% on a microcontroller based embedded system,

with a negligible cost in terms of error. As a result, we saved as much as 60% of

the energy required to perform the benchmarks. We demonstrated our approach

on a subset of commonly used functions, namely sin, cos, acos, asin, but it is easily

extended to the whole range of trigonometric and hyperbolic functions. Future de-

velopments include the implementation of the rest of the Libm and an exploration

of different architectural platforms. We also extend the set of supported types for

precision tuning within TAFFO. We made it capable of using the cost model of

LLVM and added the ability to exclude certain operations during the code gener-

ation. This work has been evaluated on a set of standard benchmarks, proving its

effectiveness and readiness for when full support of the bfloat type will be released.

Afterward, the approach can be expanded to support more exotic data types. Fi-

nally, this solution can also be combined with some other techniques like dynamic

recompilation to build different versions of the same kernel, which automatically

adapt it to different input properties.
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Appendix A

Polybench Benchmark Data

In this appendix we show the complete instruction count data for the PolyBench

benchmarks.
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