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Abstract

Viscoelatic properties of biological tissue are of great interest for diagnostic purpose. Elas-
tography aims not only at quantifying the routine palpation examinations performed by
the clinicians but at retrieving elasticity and viscosity of any type of tissues in the body.
To do so the propagation of mechanical waves in the body is imaged and processed to
extract local viscoelastic properties. From mechanical point of view biological tissue are
often highly anisotropic and can be described as transversely anisotropic.
Since 2000’s, a new method based on correlation of a diffuse field and called noise cor-
relation allows to retrieve elasticity with slow imaging techniques even though Shannon
criteria of sampling isn’t fullfill. Until now noise correlation as be proven to succesfully
retrieve local elasticity only in isotropic media. The topic of this work is to provide a
measurement technique of elasticity in transversely isotropic tissues using noise correla-
tion technique.
Simulation of mechanical waves field are realised in isotropic and anisotropic media. Dif-
ferent shapes of waves sources are implemented. Coupling between anisotropy of the media
and the shape of the autocorrelation of waves sources is highlighted. An uncoupling so-
lution is proposed based on the simulations. An experimental verification is realised on
isotropic and anisotropic agarose phantoms. Mechanical waves sources are controlled by
piezoelectric actuators. Laser speckle imaging is used to detect mechanical waves propa-
gation in the phantoms.
Uncoupling solution is proven to work using Laser speckle imaging on agarose samples.
Tensor of elasticity of anisotropic agarose samples are retrieve with good comparison with
litteracy values.

Keywords: Optical elastography, Shear waves, Transverse anisotropy, Laser speckle
imaging, Noise correlation





Abstract in lingua italiana

Le proprietà viscoelastiche dei tessuti biologici sono di grande interesse a scopo diagnos-
tico. L’elastografia non mira solamente a quantificare gli esami di palpazione di routine
eseguiti dai medici, ma anche a recuperare l’elasticità e la viscosità di qualsiasi tipo di
tessuto nel corpo. A tal fine, la propagazione delle onde meccaniche nel corpo viene fo-
tografata ed elaborata per estrarre le proprietà viscoelastiche locali. Dal punto di vista
meccanico, i tessuti biologici sono spesso altamente anisotropi e possono essere descritti
come isotropi trasversali.
A partire dagli anni 2000, un nuovo metodo basato sulla correlazione di un campo dif-
fuso e chiamato correlazione del rumore permette di recuperare l’elasticità con tecniche
di imaging lente, anche se i criteri di campionamento di Shannon non sono soddisfatti.
Fino ad ora la correlazione del rumore si è dimostrata in grado di recuperare con successo
l’elasticità locale solo in mezzi isotropi. Il tema di questo lavoro è fornire una tecnica di
misurazione del tensore dell’elasticità nei tessuti trasversalmente anisotropi utilizzando la
tecnica della correlazione del rumore. La simulazione del campo di onde meccaniche è
realizzata in mezzi isotropi e anisotropi. Sono state implementate diverse forme di sor-
genti d’onda. Viene evidenziato l’accoppiamento tra l’anisotropia del mezzo e la forma
dell’autocorrelazione delle sorgenti d’onda. Sulla base delle simulazioni viene proposta
una soluzione di disaccoppiamento. Viene realizzata una verifica sperimentale su fantocci
di agarosio isotropi e anisotropi. Le sorgenti di onde meccaniche sono controllate da at-
tuatori piezoelettrici. L’imaging speckle laser viene utilizzato per rilevare la propagazione
delle onde meccaniche nei fantocci.
La soluzione di disaccoppiamento è stata dimostrata utilizzando l’imaging laser speckle
su campioni di agarosio. Il tensore di elasticità dei campioni di agarosio anisotropo viene
recuperato con un buon confronto con i valori in letteratura.

Parole chiave: Elastografia ottica, onde di taglio, isotropia trasversale, laser speckle
imaging, correlazione del rumore
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Introduction

In soft tissue, mainly two types of elastic waves are propagating. First the compression
waves, called P in seismology, that propagates by longitudinal strain and that are used in
ultrasound system. Second, the shear waves, called S in seismology, that propagates by
transverse strain and that are used in elastography [51]. Elastography is the cartography
of viscoelastic properties of matter.

During any palpation examination, for instance an breast screening for detection of tu-
mors, the elasticity of palpation to which the practitioner is sensible is the shear elasticity
of the tissue [24]. Retrieving shear waves speed in a biological tissue is a measure of
its stiffness. Since 1980, researshers have been able to propagate shear waves in the bi-
ological tissue and follow them to retrieve elasticity properties [33]. It gaves two main
applications today in clinical use: the fibroscan in 2003, gives a value of the elasticity
of the liver and helps to diagnose cirhosis, the Aixplorer in 2008, is the first echograph
to embedded an elasticity measure that is superimposed to the sonogram to help diagnosis.

Most of biological tissues (muscles, skin, brain...) are layered tissues, anisotropically
structured. This anisotropy of structure induces a mechanical anisotropy leading to dif-
ferent elastic and viscous modulus according to the direction of the stimuli. Muscles were
demonstrated to exhibit high mecanical anisotropy both by ultrasound [27, 37] and by
MRI [44, 47] . Mechanical anisotropy properties were found on the kidney [26, 38], with
ultrasound system elastography. Brain tissue mechanical anisotropy was demonstrated
through MRI [9, 29] . Breast lesion anisotropy is also under study in stage of tumor de-
tection [16, 36]. Skeletal muscle was proven to be a good indiator of muscles necrosis [46].
Brain’s anisotropy properties link with neuropathology like edema, ischemia or aging are
under study [9, 29]. Kidney anisotropy was detected as a confounding factor for linking
kidney’s elasticity with kidney’s fibrosis [38] .

Muscles presents an axial symmetry in any plane of the fibers [49]. For this specific case,
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elastic theory predicts two types of shear waves, propagating anisotropically in the tissues
with different polarisations [57]. The anisotropic propagation of two types of shear waves,
called slow and fast has been demonstrated in muscle [25]. One is polarised inside the
fiber’s plane, one is polarised in the plane perpendicular to fiber’s plane. Each of this
shear waves will present different velocities in the parralel or in the perpendicular direc-
tion of the fibers.

Most of study on the mechanical anisotropy of biological tissue were realised using ultra-
sound based system [16, 36, 37] or MRI [9, 29, 45]. In particular, very low number of study
uses optical elastography [56]. Optical elastography refers to the use of optical system to
image shear waves propagation in tissue and retrieve elasticity. Digital holography, Opti-
cal coherence tomography, Laser speckle imaging are sensible to displacements in tissues
normally to the surface. Those techniques can be used for intrinsecally filtering out one
type of shear waves, the shear waves polarised in the plane perpendicular to fiber’s plane.

In particular LASER speckle imaging offers several advantages: resolution, real time mea-
sure, low post processing treatment and it’s especially low cost and easy of use [16, 48].
Laser speckle imaging elastography has been demonstrated to successfully retrieve both
elasticity and viscosity of biological tissues [16]. Laser speckle imaging elastography is
easely integrated in multimodal systems [12, 20].

In 2D imaging, to probe the elasticity according to the sample position, straightfoward
idea is to rotate the sample while sending an excitation in a fixe direction, or inversely
fixe the sample and rotate the excitation [56]. Passive elastography [13], also called noise
correlation [40] allows to retrieve shear waves velocity in all the direction in one acquisi-
tion. It’s derived from seismology correlation’s techniques to retrieve waves velocity from
ambient seismic noise [55]. This method uses a diffuse field of waves obtain by multiple
scattering of an impulsion. This method offers two main advantages: it’s compatible with
slow imaging technique [15], like Laser Speckle Imaging, and it’s usable in vivo without
any external wave sources [23].

Measuring the mechanical anisotropy of biological tissues using noise correlation tech-
nique by Laser Speckle Imaging elastography offers numerous advantages. To summerize
it’s usable in vivo to retrieve anisotropy factor and elasticity of the matter with good
resolution and in real time with an impressively cheap and simple set-up. Implemented in
an endoscope or used during open surgery this technique could provide a very accessible,
low risk, real time elasticity measurement tool.
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In this work, finite difference simulations of elastic waves are performed. A bias in the
noise correlation method for anisotropy retrieval is highlited. A classification algorithm
is proposed to detect the cases where the anisotropic elasticities can be retrieved or not.
Experimental phantoms of mechanically anisotrope samples are studied by Laser Speckle
Imaging. First results are presented. Anisotropy in samples is retrieve with good corre-
spondance. Bias in the noise correlation method is highlited experimentally. Comparison
with the proposed classifier is performed.
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1| Elastography and elastic waves,

state of the art

1.1. Elastography

During a medical examination, it’s common for the physician to touch the patient to
feel the elasticity of the skin and detect abnormalities. One classic example of palpation
examination is routine breast screening. This palpation examination is limited by its
qualitative, physician dependent output. Elastography aims at providing a quantitative
measurement of the elasticity of any types of biological tissue. It provides a tool to
the physicist to quantify and map the elasticity of upper layers skin, organs, biopsies.
It’s important to stress out the quantitative aspect of elastography, making it a much
stronger tool than soft tissue imaging like CT, echograph or MRI than can detect masses
or abnormalities but not characterized them.
Furthermore, biological tissues have a wide range of elasticity (see figure 1.1), promising
for elastography a future not only as additional information but also as imaging technique
by itself.

This section describes the underlying physics, the current axes of development and main
challenges of elastography.

1.1.1. Introduction to elastography

Even though records of palpation exam are found in ancient Egypt (3100 BC) [10], elas-
tography was developped in the late 1980. It followed the rise of echography as a gold
standard imaging technique. The groundmaking work of [32] in 1980 provide a first ultra-
sound based in-vivo tracking tissue movements method. With this method stiff lesion of
the prostate were imaged. Following this work, strain elastography was develloped in the
1990. It’s based on strain measurement after a compression of the tissue by ultrasound.
It’s now a mature technology offered by most of echograph compagnies[24]. Infact, with
very little change to classical echograph, one can add an elasticity measurement to provide
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Figure 1.1: Imaging modality contrast mechanism [39]

on-line mapping of elasticity, as an usefull tool for image interpretation. One can see in
figure 1.2 the use of an echograph on the diagnosis of breast lesion.

In the 2000s, the idea of following shear waves propagating in the tissue came up. In
2003, the first non-imaging device (Fibroscan, see figure 1.3) was introduced to diagnose
fibrosis by providing a value of liver elasticity. Shear waves elastography only require to
image the wave propagation. Therefore, it can by aplied with various types of imaging
mainly MRI elastography and optical elastography.

1.1.2. The physics of elastography

Elastography is based on this general scheme:

• Create a mechanical perturbation in the tissue

• Measure the displacements in the tissue due to the perturbation

• Use a mechanical model to infer viscoelastic properties of the tissue from the mea-
sured displacements
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Figure 1.2: The left picture showing a B-mode ultrasonography locating the region of
interest (ROI). The right picture showing the elastography of the breast lesion, with a
blue colour indicating a harder tissue and a red colour indicated a softer tissue. [1]

Figure 1.3: Fibroscan [1]
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The perturbation can first be static, for instance, a constant compression stress, and
the measure displacement will be the resulting strain in the tissue. Or the perturbation
can be transient, for instance a shear wave propagating in the tissue, and the measured
displacement will be the deformation of the tissue due to waves propagation. Those two
cases are refered to:

• static or quasistatic elasography also known as strain elastography

• transient or dynamic elastography

,

Quasistatic elastography

Quasistatic elastography is base on strain (ϵ) measurement after a static compression, a
constant stress (σ) applied on the tissue (see figure 1.4).
Strain is defined as the deformation on distance to the compressor: ϵ = δL

L
[19]. Stress and

strain are linearly related by Hooke’s law σ = Eϵ, with E young modulus of the tissue.
With a constant stress, strain in soft material is larger than in stiff one. To convince
itself, the reader is invited to press his forearm muscle with or without contracting it.
Recording the displacements on a line perpendiculary to the compressor, one can draw
strain elastogram (strain map). Figure 1.5 shows an elastogram of a breast carcinoma
with comparison with a echograph’s sonogram. The dark area show high stiffness, facili-
tating the diagnosis of a carcinoma.
Nevertheless, even if the strain elastogram are undoubtably link to stiffness, due to scat-
terer in the tissues, the stress is often unknown. With unknown stress it’s difficult to be
quantitative on elasticity modulus.
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Figure 1.4: Quasistatic elastography principle [27]

Figure 1.5: Sonogram (Left) and Strain elastogram (Right) of a breast carcinoma [24]

Transient elastography

Transient elastography recovers any techniques involving a dynamic stress. Most used
and investigated dynamic stress is the one caused by the propagation of elastic waves.
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Shear waves are elastic waves that propagate transversally in tissue. Elastic waves speed
is an intrinsic characteristic of a media. In figure 1.6 the sound of the train propagates
much faster in the rail than in the air.

Figure 1.6: Daltons listening to the train [5]

Mechanical waves propagate by local deformation of the media, the more the media is
stiff, the highest will be his elastic modulus, the faster will be its deformation. Therefore,
elastic waves travel faster in stiff media than in in soft one. Equation 1.1 is showing the
straightfoward link between Young’s modulus and shear waves speed, that holds in the
case of incompressible, isotropic, homogeneous media (see section 1.2 for proper deriva-
tion).

E = 3ρc2shearwaves (1.1)

Under the assumption of an isotropic purely elastic solid, two main types of mechanical
waves can propagate (see section 1.2 for proper derivation). The two types of waves prop-
agated in tissue are compression waves, longitudinal waves traveling around 1500 m/s in
soft tissues and shear waves, transverse waves traveling around 1-10 m/s in soft tissues.
Shear waves are probing elastic properties of the matter and are used in elastography.
Compression waves are linked to bulk properties and are used in echographs.

Numerous methods exist to induce shear waves in tissue. Main ones are acoustic radi-
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ation force impulse excitation (ARFI) and controlled external vibration. ARFI induces
shear waves but pushing locally on the tissue using acoustic pressure with an ultrasound
probe. Controlled external vibration can induce shear waves by mechanical impulses with
vibrators like piezoelectrics materials for instance.

Once shear waves are propagating in the tissue, numerous methods exists to image their
propagation. Main imaging technique under research are:

• Ultrafast ultrasound elastography. Main benefits of the technique are to be online,
2D or 3D, easely coupled to ultrasound system.

• MRI elastography, that have the benefits to be 3D, high resolution but slow and
expensive.

• Optical elastography from microscopes to digital holography or Optical Coherence
Tomography,that have very high resolution but are mostly surfacics.

Once the propagation of shear waves is imaged several methods exist to recover their
local speeds. Straightfoward idea is to follow the wave front and measure the propaga-
tion time. This method is called time of flight and is used with fast imaging techniques
such as ultrafast ultrasound, it can also be used with stromboscopic approach with slow
imaging techniques like MRI or optical set-ups. An other emerging method is called noise
correlation and is presented in details in section 1.3.

Comparison between quasistatic and dynamic approachs

Quasistatic approach (strain elastography) is widely available on ultrasound system, ro-
bust and provide high quality elastograms in real time. It has the unconvience to be
qualitative, relatively low depth and often operator dependant [24].
On the other hand, dynamic approachs (mainly shear waves elastography) have limited
availabilities and are hardly real time. However, they already provide high quality images,
are less operator dependent and have the undeniable quality to be quantitative [24].

1.1.3. Challenges of elastography

This section’s aim is not to be exhaustive on the challenges ahead, but to give the reader
a glance on the future of elastography.
All elastographs available and most of ongoing clinical trials are making three major heavy
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hypothesis:

• 1) Displacements are small enough for the problem to stay linear

• 2) Biological tissues are purely elastic

• 3) Biological tissues are isotropic

Research is focusing on going beyond thoses hypothesis.

1)By working in the non linear domain of strain one can distinguish with good contrast
between benign and malignant tumor [18].

2)Furthermore, biological tissues can be highly absorbant, specially for frequencies above
20 kHz [34]. Voigt model for viscoelastic properties has been proven to fit absorption
properties of soft tissues in low frequency range [13]. Experimental values of viscosity
modulus in biological tissue have been measured in vivo for instance in liver [42].

3)Finally, biological tissue are often stratified tissues, far from isotropic. Figure 1.7 is
showing the fibered structure of muscular tissue at any scale, making its viscoelastic
properties highly dependant of fiber orientation. Shear waves speed highly depends of
their propagation direction with respect to the fibers, and tends to travel 2 to 3 times
faster in the fiber direction compared to normal fiber direction [60].
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Figure 1.7: 3D structure of skeletal muscle tissue [7]

All those axes of researsh aim’s at refining the modele by taking into account the vis-
coelastic behaviour’s complexity of biological tissues.
Viscoelastic properties are determining for biological process at any scale, from macro-
scopic elasticity (whole liver harden by fibrosis) to subcellular elasticity. Diseases like
malaria or cancer are for instance modifying cell’s viscoelasticity [30]. With optical elas-
trography techniques like Brillouin’s microscopy or simply transmission microscopes it’s
possible to map the elasticity of a single cell [54], [6] with promising application in cell’s
mechanic study.
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Figure 1.8: Optical elastography of a cell under vibration by transmission microscope
taken from [6]

1.2. Continuum mechanics

From an acoustical point of view, biological tissues are inhomogeneous, scattering, highly
absorbant solids often described as incompressible. They will be refered to as soft solids.
In the section the propagation of elastic waves in tissue is described following the same
structure than the highly recommended book from Royer and Dieulesaint [51].

1.2.1. First derivations

We assume a homogenous, unbound, purely elastic solid. For small strains ϵ, the stress
σ is linked to strain by Hooke’s law (1.2).The 81 components ci,j,k,l are called elastic
constants.

σi,j = ci,j,k,lϵk,l = ci,j,k,l
∂uk

∂xl

(1.2)

The mechanical displacement u, follows the equation of motion, that stand as 1.3 for an
homogenous solid of volumic mass ρ with no volumic forces aplied.
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ρ
∂2u(t)

∂t2
= div(σ) (1.3)

Combining equation 1.3 and 1.2, we obtain the propagation equation 1.4 where the three
components of displacement are highly coupled.

ρ
∂2u(t)

∂t2
= ci,j,k,l

∂2uk

∂xj∂xl

(1.4)

1.2.2. Isotropic purely elastic solid

The 81 components ci,j,k,l of Hooke’s law are called elastic constants . Taking in account
the symmetry of strain and stress tensors, the number of independant elastic constants is
reduced to 21 [51] . In the case of an isotropic solid, the elastic tensor must be invariant by
any plane or point symmetries or rotations. This reduces the number of elastic constants
from 21 to 2 [51]. Those are called Lamé’s constants, λ, µ. Considering this, equation 1.4
becomes 1.5

ρ
∂2u(t)

∂t2
= (λ+ µ)grad(div(u)) + µ∆u (1.5)

To decoupled displacement components, let’s use Helmholtz’s decomposition, u = uL+uT

where uL is irrotational and uT has no divergence. Rewriting 1.5 with ∆u = grad(div(u))−
rot(rot(u)) and applying the rotational 1.6 is obtained. Equation 1.7 is obtained applying
the divergence.

∂2uL

∂t2
− λ+ 2µ

ρ
∆uL = 0 (1.6)

ρ
∂2uT

∂t2
− µ

ρ
∆uT = 0 (1.7)

The two equations 1.6, 1.7 are describing two uncoupled waves propagation. The first one
(1.6) is longitudinal (see figure 1.9 type A). It’s propagating with velocity VL =

√
λ+2µ

ρ
,

it’s a compression wave, propagating irrotationaly. The second one (1.7) is transverse (see
figure 1.9 type B). It’s propagating with velocity VT =

√
µ
ρ
, it’s a shear wave with zero

divergence. The two waves are propagating independently.
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Figure 1.9: Shear and compression waves propagation [17]

1.2.3. Anisotropic purely elastic solid

For the general anisotropic case one must consider the 21 elastic constants and all the
corresponding coupling described by the propagation equation 1.5. However, providing
specific symmetries of the solid considered it exists a lot of case ( orthotropic, monoclinic,
cubic...), where the number of independent elastic constants disminish [51]. Due to their
high stratification, biological tissues often present an axial symmetry. Muscle for exemple
present an axial symmetry in the any planes of their fibers, and a rotation symmetry
around the axis of the fibers. As the aim of elastography is to map biological tissues, let’s
focus our developpements on this type of symmetry called transverse isotropic.
Using the Voigt’s notation, Hooke’s law (equation 1.2) can be rewrited as a matrix product
σ = Cϵ where C is the 6x6 stiffness matrix. Matrix C coefficients are simply a rewritting
of the tensor’s coefficient of elasticity ci,j,k,l. For the transverse isotropic case, C takes the
following expression [49]: 

C1,1 C1,2 C1,3

C1,2 C2,2 C1,3

C1,3 C1,3 C3,3

C5,5

C5,5

C6,6


Where C6,6 = C1,1−C1,2

2
. Considering the fact that C is symmetric, the number of inde-

pendant elastic constants is 5.
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As for the isotropic case, the displacement obeys Newton’s law, and the equation of
propagation 1.5. When searching for solutions in the form of plane harmonic waves, it can
be demonstrated that the equation of propagation allows 3 solutions with distinct phases
velocities and polarization[49]. Explicite solutions can be found in[49]. The first root is a
wave polarized purely transversely with displacements in the plane xOz (Figure 1.10 (b))
and propagate independantly from the other roots. The two other roots correspond to a
"quasi" longitudinal compression wave and a "quasi" transverse wave with displacements
in the nOy plane(Figure 1.10 (a)). The term "quasi" comes from the fact that those two
waves are coupled in the general case and that their polarizations are not fully transverse
or longitudinal[52].

Figure 1.10: Two different types of transverses waves propagating in the tissues [57]. (a)
purely tranversal waves, (b) "quasi" transversal waves

In the case of digital holography measurement, or laser speckle imaging the displacements
measured are only displacements through the z directions. Therefore, the technique acts
as a filter for the pure transverse waves. Only the pure tranverse waves will be detected
and measured. Considering a plane harmonic wave propagating with purely transverse
polarization, the following phases velocities (equation 1.8) can be retrieved. Phase veloc-
ities describe an ellipse in the plane of the fibers with a maxima in the direction of the
fibers and a minima in the direction normal of the fibers. C5,5 and C6,6 are respectively
called parallel shear modulus (µ∥) and perpendicular shear modulus (µ⊥).
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ρv2ϕ = C6,6sin(θ)
2 + C5,5cos(θ)

2 (1.8)

The propagation is ruled by the following equation:

ρ
∂2uT

∂t2
−

µ∥

ρ

∂2uT

∂x2
− µ⊥

ρ

∂2uT

∂z2
= 0 (1.9)

1.2.4. Rayleigh waves

Optical set up focus on the surface of the sample or on its top layers. All previous deriva-
tions were made for the bulk of the sample, under the hypothesis of a sample infinite in
all directions. In surface of the sample, considering that the long and large directions
remains infinite, the propagation is still independant of frequencies. Wave velocity at the
surface of the sample is not dispersive and still is an intrinsic parameter of the media.
Lord Rayleigh in 1985 [11] set first the derivations of a surface wave in solid, with appli-
cations on sea surface and earthquakes. He left the waves his name.
Rayleigh waves propagating in surface dont resent the same stiffness than those in the
bulk because of the presence of the free surface. Qualitatively, one can expect a reduced
"effective" stiffness on surface waves with respect of the stiffness of the media driving
waves in the bulk. Indeed, qualitatively waves in the surface (figure 1.11, cube A) resents
5/6 of the elasticity in the bulk (figure 1.11, cube B). Assuming that the velocity of trans-
verse Rayleigh wave is of the form,

√
E
ρ
, we can in first approximation link transverse

Rayleigh waves velocity (VR) and bulk shear waves by equation 1.10 (VS)

Figure 1.11: Cube A on the surface have 5/6 faces in contact with the stiffness of the
media although cube B is embedded in it [51]
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VR =

√
5

6
VS ≈ 0.91VS (1.10)

In very first approximation Rayleigh waves can simply be considered as bulk waves prop-
agating in an reduced "effective" stiffness media. For proper description on effect on
polarisations, phase velocities the reader can refer itself to the book [50] . In the rest of
this work we will assume transverse Rayleigh waves to behave like bulk shear waves and
often mingle them under the name of shear waves.

1.3. Noise correlation or passive elastography

1.3.1. Introduction to noise correlation or passive elastography

Mechanical waves are propagating in the inside the human body due to internal move-
ments created by heart beat, respiration, gastro-intestinal track... All this waves are
scattered and reflected in the human body. It creates a noise-like field of low frequencies
waves propagating in tissues. The so called noise correlation elastography or passive elas-
tography aims at exploiting this natural field already present in vivo to measure elasticity
in living organism. Figure 1.12 gives a example of this technique. An in vivo measure
of the elasticity of the liver is realised without external excitation, only using noise field
created by the patient homeostasis. Muscle and liver shear waves velocities are retrieved
using an ultrasound system. Muscle is found to be stiffer than liver, as expected. We
want to stress out that this measurement is obtain without any system of generation of
waves in the tissue.



20 1| Elastography and elastic waves, state of the art

Figure 1.12: In vivo elastography in liver, (A) sonogram of the region of interest, the
frontier between muscle and liver is visible, (B) corresponding elasticity retrieved by
passive elastography, taken from [23]

We have seen that the velocity of the shear waves in the tissue can be linked with the
elasticity of the tissue. In passive elastography, one use the naturally present wave field,
and try to retrieve the local shear waves velocity in the tissues. But how from a diffuse
wave field can we recover the velocity of waves? The answer was given by the field of
seismology. Indeed, in the 2000’s seismologist were able to extract residual wave speed
and provide surface waves tomography from the ambient seismic noise [55]. It relies on
correlation methods explained in details in this section.

1.3.2. Green’s functions

Let’s consider a differential linear operator L. A green function G is defined as a solution
of the equation 1.11, where δs is the dirac function in the s position.

LG(x, s) = δ(x− s) (1.11)

Let’s apply this to shear waves equation . Let’s consider the following differential operator:
L = ∂2

∂t2
− 1

c2
∆. G(x,s), the green function is appearing as a solution of the wave equation

for a point source placed in s. Let’s assume that the green’s functions are known for
each point source s, one can now solve the general problem Lu(x) = f(x) with u the
displacement field and f the source field. Infact, f, the source field can be viewed as a sum
of point sources placed in different positions. (equation 1.12).
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f(x) =

∫
f(s)δ(x− s)ds (1.12)

That can be rewritten using equation 1.11, and the linearity properties of L to extract it
from the integral.

f(x) = L

∫
f(s)G(x, s)ds (1.13)

From equation 1.13, u(x) =
∫
f(s)G(x, s)ds or more simply u = G ∗ f . The solution

of the general problem Lu=f is the convolution of the Green function with the source
function. Solving the problem LG = δ gives access by superposition properties of the
linear operator L to the solutions of Lu = f .
In the case of linear time-invariant system, a Green function of the system can be view
as its transfer function in automatic.

1.3.3. Correlation of a field

Let’s consider two source points A and B. Ga,b(t) is the transfer function between a and
b in the time domain. Let’s consider a source, s(t) in point S. The field Φb(t) received
in point B is Φs

b(t) = Gs,b(t)∗s(t) where * represents convolution defined in equation 1.14.

(f ∗ g)(t) =
∫

f(τ)g(t− τ)dτ (1.14)

The correlation between point A and B is defined in equation 1.15.

Cs
a,b(τ) =

∫
Φs

a(t)Φ
s
b(t+ τ)dt (1.15)

Let’s consider the following change of variable: t′ = t+ τ . We obtain:

Cs
a,b(τ) =

∫
Φs

a(t
′ − τ)Φs

b(t
′)dt′ (1.16)

Which can be rewritten considering the definition of convolution given in equation 1.14:

Cs
a,b(τ) = Φs

a(−τ) ∗ Φs
b(τ) (1.17)
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In the case of a broader source, composed by multiple point source, by linearity the
resulting correlation between point a and b will be Ca,b(τ) =

∑
sC

s
a,b(τ).

Introducing the Green’s fonction Φs
b(t) = Gs,b(t) ∗ s(t) in equation 1.17 one can obtain

equation 1.18.

Cs
a,b(τ) = Gs,a(−τ) ∗ s(−τ)) ∗Gs,b(τ) ∗ s(τ)) (1.18)

The dirac δ being the neutral element of the convolution product, if the source sends an
impulsion, s(t) = δ then Cs

a,b(τ) = Gs,a(−τ) ∗ Gs,b(τ) = Ga,b. In the case of an impulse
source the correlation between two point of a field is their Green’s function.
However, if we demonstrated that Cs

a,b(τ) = Ga,b for an impulse source, it’s has no reason
to be true in the general case.
Let’s now consider a diffuse field.
By diffuse field, one intends a field of waves with random direction of propagation, random
phases and random polarizations. This kind of field is obtain in multiple scattering media
[35]. The autocorrelation of this kind of field tends to a dirac δ.
Equation 1.18 can be rewritten considering the commutativity of the convolution and the
associativity of the Green’s function in equation 1.19 where S is the autocorrelation of
the source [41].

Cs
a,b(τ) = S(τ) ∗Ga,b(τ) (1.19)

In the case of a diffuse field, recovering Cs
a,b(τ) the cross correlation between two points

a,b is equivalent to measuring Green function Ga,b(τ) linking them. From the correlation
point of view, having a diffuse field around or impulse sources is equivalent.

Figure 1.13 illustrate the concept of correlation of point A with point B on numerical
simulations [35]. A is chosen in the center of a cercle of 2900 impulse sources. In (a),
(b), (c), the point A is fixed and the correlation Ca,b(τ) is computed and displayed for
each position of point B. The axial unit is the wavelength λ0. In (b), the correlation is
computed for τ = 0s, we retrieve in point A the autocorrelation of the field in A. In
(a), the correlation is computed for τ = −3T0s, the field in point A is highly correlated
with the field of points in the gray circle shifted back of 3T0s. In (c), the correlation is
computed for τ = +10T0s. Let’s now focus only on the point B represented by a triangle,
in figure (d), one can notice that B have high correlation with point A for −6T0 and +6T0.
Negative shift corresponds to the propagation from B to A, positive shift corresponds to
the propagation from A to B. To go from A to B it takes the impulsion 6T0. Thanks
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to this information the speed of the impulsion can be recovered if A and B positions are
known.

Figure 1.13: Simulation of temporal correlation between two points A and B in the center
of a circle of gaussian sources of period T0 emiting spheric waves. (a) correlation Ca,b(τ)

for τ = −3T0, (b) correlation Ca,b(τ) for τ = 0, (c) correlation Ca,b(τ) for τ = +10T0, (d)
correlation Ca,b(τ) in point B. [35]

This example consider impulse sources but as demonstrasted earlier, from a correlation
point of view it’s equivalent to the same sources emitting a diffuse field.
To summerize previous statements

1. Correlation of a field and its Green function are closely linked by equation 1.19.

2. In the case of impulses sources or a diffuse field: correlation between two points is
exactly their Green’s function.

3. Knowing that, it’s possible to follow the propagation on their correlation and to
retrieve the wave velocity.

The gold standard for retrieving wave velocity in a medium is to use time of flight meth-
ods. By time of flight method one intends the tracking of a wave front in time. It’s
usually applied to raw film of wave propagation but it can also be applied on the corre-
lation as demonstrated above. Following the propagation using correlation of the field is
more accurate in the case of diffuse field. However, due to high waves velocities in tissue,
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it requires high sampling frequency and large field of view to be accurate.
The strengh of the noise correlation technique is that it can overcome the sampling limita-
tion and be applied to slow techniques like MRI, X rays, OCT scan... [13]. To understand
it we have to interprete the correlation process as a time reversal experiment.

1.3.4. Time Reversal interpretation of correlation process

Time Reversal Mirrors

As derived previously acoustic waves are following Alembert’s equation form (equation
3.1). It worths noticing two things. First space and time are playing similar roles in this
equation, second it admits time symmetry (same solution for t and -t).

With a given set of initial condition the wave propagation follow a unique solution, time
reversal mirror aims at refocusing this solution switching the arrow of time. In in a perfect
time reversal mirror a set of antennas are embedded in the medium and are able to refocus
acoustic waves as time was inverse. Time reversal (TR) experiments can be divided in
two steps. In the foward step, the antennas are recording the incoming signal from the
cavity. In the second step the field is retransmitted back to refocus in the same location
it came from, following the exact same path [22].

Figure 1.14: Instantaneaous time mirror (ITM) experiments with water waves, (a) for a
point source, (b) for a complex source in smiley shape [22]
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In figure 1.14, taken from [22], water waves experiments with instantaneous time mirror
(ITM) are performed. In (a), at time t0 a point source emits. It’s recorded for δt, it’s the
foward step of the experiment. In tm, the second step begins and the time mirror reemit
back the recorded waves that refocus after t0+ δt. The same experiment is repeated with
a complex smiley source (b).

Link between time reversal of a field and correlation of a field

Looking at the correlations displayed in figure 1.13 the reader can qualitatively convince
itself than Ca,b(τ) = ϕTR

a (b, τ) for impulse sources (or equivalently a diffuse field).Here
ϕTR
a (b, τ) is the time reverse field of the field Φa(b, τ). Indeed the part of the correlation

with τ > 0 corresponds to the foward step of the TR process (a point source is emitting
in point A and propagate in the media) and the part of the correlation with τ < 0 corre-
sponds to the second step of the TR process, the waves refocus on point A.

Indeed it can be demonstrated [14] that the time reverse field ϕTR of any field ϕ following
the wave equation verify equation 1.20.

ϕTR(b, τ) = Φs
a(−τ) ∗ Φs

b(τ) (1.20)

In particular the displacements field E and the velocity field V of mechanical shear waves
are following a wave equation of Alembert’s form [14].

Their TR field verify equation 1.20. One can write equations 1.21 and 1.22

ϵTR(b, τ) = Es
a(−τ) ∗ Es

b (τ) (1.21)

vTR(b, τ) = V s
a (−τ) ∗ V s

b (τ) (1.22)

In other words, the correlation of a field is also its time reverse field for any field following
Alembert’s wave equation.
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Link between time reversal of the displacement field and shear

waves velocity

In one hand equation 1.23 can be demonstrated for a diffuse field [14]. It’s valid only for
t=0s.

cshear =

√
ϵTR(b, t = 0s)

vTR(b, t = 0s)
(1.23)

In the other hand equation 1.24 and 1.25 can be derivated at first order [14].

ϵTR(b, t = 0s) =
∂2C(t = 0s)

∂r2
(1.24)

vTR(b, t = 0s) =
∂2C(t = 0s)

∂t2
(1.25)

Combining those two sets of equation one can derived equation 1.26 and equation where
b is the receiver point.

cshear =

√√√√ ∂2Cb(t=0s)
∂t2

∂2Cb(t=0s)
∂r2

(1.26)

To summerize, providing a diffuse field of shear waves, computing the correlation of this
field in a given point gives access to the local spead of waves in this point.

1.3.5. Noise correlation applications in elastography

In elastography, the goal is to map the elasticity of the biological tissue. Shear velocity
and elasticity modulus beeing linked by E = 3ρc2shear, to measure elasticity one can mea-
sure shear waves velocity.

The noise correlation technique described above retrieves the shear waves velocity us-
ing the correlation at t = 0s between a given receiver point and any other points. The
strength of this technique is that it doesnt require a proper sample in time. Indeed, ac-
cordng to Shannon criteria, to image a 1kHz field of shear waves, the imaging technique
should sample at least at 2kHz, that’s incompatible with MRI, CT scans, most optical
imaging techniques. The noise correlation technique doesnt require Shannon criteria to
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be fulfill in order to retrieve shear waves velocity.

Not only noise correlation techniques is compatible with slow imaging it also allow for
"passive" elastography. As explained earlier, in multiple scattering media, providing
enough propagation time, the resulting obtained field is a difuse field. Noise correlation
provides a robust and elegant method for elasticity retrieval.
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2.1. The speckle phenomenon

2.1.1. Introduction to speckle

On the order of the optical wavelength most of material are rough (λ ≈ 600nm«R ≈
1000nm). When the beam hits the granular surface, it’s reflected with a shift in phase
and amplitude. LASER are highly coherent light with coherence length in the typical
order of the meter. Scattered beams interfere with one another to produce a resultant
intensity, that can be construtive or destructive. From an observator point of view the
laser spot is "speckled", it presents a granular aspect due to dark and bright patterns (see
figure 2.1)

Figure 2.1: Illumination with incoherent light(a), illumination with coherent light (b),
magnification of b (c) taken from [28]

Speckle is the phenomenon of diffuse reflection of coherent light through a rough object.
Reciprocally, it’s observed in transmission when a laser beam pass through a fine rough
translucent object, acting as a diffuser.
Speckle is also observed outside of optic, for instance, in mechanical waves and radar
waves. Waves are diffused by reflection and interfere creating a speckle pattern on image.
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For imaging, speckle is thow consider as a noise and researcher aims at his complete
removal. Figure 2.2 shows ultrasound image and figure 2.3 radar image presenting speckle
noise.

Figure 2.2: Speckled Ultrasound Image [3]

Figure 2.3: Speckled Radar Image on californian field [28]

However, speckle can also be view as a usefull tool to carry and extract information. It’s
used in metrology for vibrations, displacements, roughness measurements [4] or image
processing([48]).

2.1.2. Statistical properties of the speckle

If the reader own a LASER pointer, by pointing it to a rough surface (anything else
than a mirror) and observing the speckle pattern, one can observe than dark spots are
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more numerous than bright ones. In this section we will describe first order statistic for
amplitude and phase of the diffused speckle. We will then pass from this amplitude,phase
statistics to a resulting intensity statistic more usefull in an optic application.

Phase and amplitude statistics
Let’s consider diffuse reflection of coherent light on a rough surface as in figure 2.4. Each
wavelets are reflected with a shift in amplitude and phase. Considering the variation of
height of the surface random, the problem is a random sum of phasors (figure 2.5). The
sum can result in an constructive (case (a)) or destructive (case (b)) phasor.

Figure 2.4: Speckle observation set-up
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Figure 2.5: Random sum of phasors representated in the imaginary plane. (a) constructive
addition, (b) destructive addition [28]

The resultant phasor A, sum of N phasors of amplitude an and phase ϕn is expressed
equation 2.1.

A = a exp jϕ =
1√
N

N∑
n

an exp jϕn (2.1)

The following hypotesis are made: each phasors in the sum are independant from each
others, in a single phasor amplitude and phase are independant to each other. Finally we
assume a random distribution of the phase in [-π: π].
In the imaginary plane, this problem is similar to a random walk problem where phasor
amplitudes and phases are equivalent to step length and direction angle.
Using this analogy, it can be demonstrated [28] than the real and imaginary part of the
resultant phasor A are tending when N ⇒ ∞ to a gaussian statistic. One can then demon-
strate that the resultant phasor’s amplitude has a Rayleigh density distribution (equation
2.2).
The phase is following an uniform density distribution in [-π: π] (equation 2.3)

pA(A) =
A

σ2
exp−A2

2σ
(2.2)

p(ϕ) =
1

2π
(2.3)
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Intensity statistic

Intensity is defined as a fonction of amplitude I = f(A) = A2. From probability joint
theory one can write: pI(I) = pI(A

2) = pA(
√
I)dA

dI
. Finally equation 2.4 is linking ampli-

tude density probability to statistics of intensity.

pI(I) = pI(A
2) = pA(

√
I)

1

2
√
I

(2.4)

Using equation 2.2 in 2.4 we obtain the probability of density of intensity of the resul-
tant phasor. It’s a negative exponential law (equation2.5) characterized by a standard
deviation equal to the mean value.

pI(I) =
1

⟨I⟩
exp− 1

⟨I⟩
(2.5)

In our specific speckle case it implies that degree of fluctuation around the mean value is
in the same range that the mean value itself.

Let’s define contrast as in equation 2.6.Under our hypothesis it’s equal to one, this type of
speckle will be refered as fully developped. A lot of reason can decrease contrast, main one
being the uniform phase distribution. A speckle with C<1 will be refered to as partially
develloped.

C =
σI

⟨I⟩
(2.6)

We assume that having several random walkers doesnt change much to their final points
compare to the case where they are walking alone ie random walkers do not have any
interaction force and they can step on each other. Indeed, it can be demonstrated[28]
that the sum of resulting phasors behave statistically the same than a single resultant
phasor. All the precedent derivations were made only for a single resultant phasor in one
space point. Results found in the section for a single point speckle will hold true for a
complete pattern.
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2.1.3. Spatial structure of speckle

Figure 2.6: Optic scheme of the plane extension of a speckle dot [48]

We want to derive the spatial extension of a single dot in a speckle pattern. Let’s consider
a speckle pattern observed through a lens in the image plane (see figure 2.6). P ′

0 is the
image of a single point P0 of the surface. D is the distance between the image plane
and the lens, α is the numerical aperture of the lens. The point P of the image plane is
situated at a lateral distance of y from P ′

0.
Waves arriving in P present a phase shift with respect with the ones arriving in P ′

0. Γ

is the emerging wavefront just after the lens. The path difference in the image plane is
∆ = dsin(θ) ≈ dy/D

Let’s P ′
0 be the center of a speckle dot and P the border so that δ the lateral extention

of the dot is δ = 2y. P and P ′
0 are part of the same diffraction figure: ∆ << λ. For the

border point P we obtain δ = 2λD/d Lateral extension simply depend of the numerical
aperture of the system and the wavelength of the laser (equation 2.7)

δ =
λ

α
(2.7)

Similarly, let’s derive the axial extension of a single speckle. P ′
0 is the image of a point

on the surface in the optic axis, P ′′
0 is a point on the optic axis situated at δz before (see

figure 2.7. Let’s call I the intersection of the emerging wavefront (Γ and the lens border
ray.
Following [48] the path difference between in the image plan π′ including point P ′′

0 is
∆ = δz α2

2
. To be part of the same diffraction pattern ∆ << λ. Defining δz the border of
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the diffraction spot, the axial extention of the speckle pattern follows equation 2.8.
The axial and lateral extention of a single speckle dot only depend of the wavelength
of the light and the numerical aperture of the system. There is no dependance of the
illuminated rough surface.

δz = 4
λ

α2
(2.8)

Figure 2.7: Random sum of phasors representated in the imaginary plane. (a) constructive
addition, (b) destructive addition [28]

2.1.4. Speckle as a carrier of information

Speckle pattern results of a random summation of phasors, it’s intrisically a statistical
process. The statistic of intensity drawing a speckle pattern depends of two factors: the
characteristic of the surface and the coherence of the light beam. For a given Laser and
a fixed surface, it’s independent of time, this case is refered to as static speckle. On the
contrary, any change in the diffusive surface (translations, vibrations, change of refractive
index, change of absorption index...) or in the illumination (drop of coherence length,
addition or removal of incoherent / coherent lights sources, change of the angle of illumi-
nation...) will modify the speckle statistic. This space-time dependance of the speckle is
refered to as dynamic speckle. Here follows a list of some applications.
With a fixed illumination, and an unactive surface change of speckle statistics is directely
related to mouvements of the surface. It’s possible to detect and distingush translation,
rotation in the samples. The following article gives an overview of this kind of speckle
sensor used for instance in computer mouse [61].
Providing a static and unactive surface, illumination of the sample with a moving angle
gives access to roughness measurement and to the surface topography. The speckle statis-
tic of intensity can be modeled as a function only dependent of the incident angle and the
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roughness of the surface. This technique being rapid, noninvasive and nondestructive it
founds many industrial applications main one being the detection of damage and failure
in mechanical part [31].
With a fixed illumination and unmoving sample, time dependance of speckle statistic
properties can be linked to the activity of sample. Activity refers to any change in light-
matter interaction in the sample. Reflexion, scattering, absorbtion, reradiation properties
of the sample if they change will modify speckle statistic. For instance, drying of paint on
a sample will modify its reflective index, flow circulation in the sample causes scatterers
to move... Living sample in particular shows high activity, and are giving a boiling, bub-
bling speckle aspect. Therefore, speckle patterns with high variability are refered to as
"biospeckle" or "boiling" speckle. One of many example of application of this biospeckle
in non destructive approach for food quality and safety detection [43].

2.1.5. Method for dynamic speckle analysis

As described in the previous section, dynamic speckle properties can carry various infor-
mations. This section’s aim is to present how to link the dynamic speckle properties to
the information to be retrieve.

2.1.6. Spatial contrast

As derived in the previous section the intensity’s density of probability of the speckle
follow a decreasing exponential trend (Equation 2.5). One consequence is that the mean
intensity equals its standard deviation. The speckle is then refered to as fully develloped
and has a contrast of one (equation 2.6).
Changes in the illumination or in the sample will causes the speckle contrast to decrease.
Let’s take for instance the addition of a constant phasor (uncoherent light) to a fully
develloped speckle, A = A0 +An. The amplitude of the constant phasor (A0) will be add
to the random addition of diffused phasors (An = an exp(θn)). An is following a gaussian
density of probability (equation 2.2) [28].The intensity of the resulting phasor will contain
an interference term (equation 2.9). It will no longer have a decreasing exponential density
the contrast will drop under 1. The speckle is partially develloped.

I = A2
0 + A2

n + 2A0Ancos(θ) (2.9)

Change in the speckle contrast is dependent not only on the illumination but also on the
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surface characteristics such as roughness or activity. If we add frame of static speckle,
the correlation between them will be high and the summed contrast will be high. On the
contrary if the speckle is dynamic, for instance presents areas of activity, the images will
be less correlated and activity areas will presents drop of contrast. Contrast is a measure
of sample activity.

2.2. Transient elastography by Laser speckle imaging

Speckle contrast is a measure of the sample activity. Local speckle contrast drops with
movements of the scatterers. In particular, when waves propagates at the surface of the
sample, they cause the scatteres to move in their polarization direction. This creates a
drop in speckle contrast allowing the imaging of the wave propagation. X. Chen and team,
in [16] are using laser Speckle contrast to retrieve not only elasticity but also viscosity
of Oil-in-Gelatin Phantoms. They use transient elastography i.e. they send an impulse
wave and follow its propagation in the sample. In the set-up used in figure 2.8, (a). Laser
propagates through a lens to focus on a CMOS camera. Impulse wave is transmitted to
a speaker drived by a function generator. Stromboscopic approach is used to increase
the sampling frequency. The maximal sampling frequency of the camera is 1kHz, using a
simultaneous trigger for the camera and for the piezo impulse (b), they reach an effective
sampling frequency of 20 kHz.

Figure 2.8: (a) Schematic of the experimental set-up. (b) Trigger sequences of the camera
and speaker, taken from [16]

The speed of the wave carries elasticity information (µ1), in other hand, the amplitude loss,
or distance of propagation carries the absorption information (µ2). Results are displayed
in figure 2.9, reference values are provided by a rheometer. A good compliance is found
with the rheometer values. The more oil is in samples the more viscous and absorbant it
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becomes.

Figure 2.9: Elasticity Modulus µ1 and Viscosity Modulus µ2 of Oil-in-Gelatin Phantoms,
taken from [16]

This point we want to stress out from this study is the possibility to retrieve viscoelasticity
properties from laser speckle imaging.
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propagation by finite
differences method

3.1. Setting up the simulation

This section’s aim is to construct a Finite Difference Method (FDM) simulation of 2D
elastic wave propagation. For an isotropic homogenous medium, displacements follow 3.1.

∂2u

∂t2
− c2∆u = s(t) (3.1)

Let’s look for an approximate 2D solution on the following domain: [0, Lx]x[0,Ly] and
[0, T]. The domain is meshed with spatial steps δx and δy and time period sampling δt.
According to Taylor’s formula 3.2, for small displacements variation, we can discretize the
wave equation 3.1 to obtain 3.3. i,j are indexing x,y directions and k is indexing time,
γx = c2δt2/δx2 , γy = c2δt2/δy2.

f(x+ δx) = f(x, t) + δx
∂f(x)

∂x
+ δx2∂

2f(x)

∂x2
+ o(δx2) (3.2)

uk+1
i,j = 2uk

i,j − uk−1
i,j + γx[u

k
i−1,j + uk

i+1,j − 2uk
i,j] + γy[u

k
i,j−1 + ui+ 1, jk − 2uk

i,j] (3.3)

At t = 0− s the medium is at rest, initial speed is null, u2
i,j = u1

i,j.

At each iteration, wave sources are imposed uk+1
sx,sy = s(sx, sy, k + 1). The goal is to

simulate a diffuse field of displacement, broadband in frequency. To do it, sources are
chosen with a white spectrum on a given frequency interval as in figure 3.1. Sources are
placed all around the mesh every 10 spatial steps.
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Figure 3.1: Spectrum of a source placed on the border of the mesh

Global scheme of the mesh is given in figure 3.2

Figure 3.2: Mesh scheme, red line are absorbant boundaries, blue cross are sources of
waves

To avoid parasite reflexion, boundaries conditions (3.4) are chosen absorbant The border
at time k+1 take the value at time k of the line of pixels just before the border. nx =
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Lx/δx, ny = Ly/δy

u(1, :, k + 1) = u(2, :, k)

u(:, 1, k + 1) = u(:, 2, k)

u(nx, :, k + 1) = u(nx−1, :, k)

u(:, ny, k + 1) = u(:, ny−1, k)

(3.4)

This aborbing boundaries aren’t completely absorbant, but in our case, are sufficient to
prevent resonance in our cavity.

3.2. Simulation of shear waves propagation in an isotropic

soft media

Let’s consider an isotropic, homogenous, purely elastic solid of volumic mass ρ. Elastic
constants are reduced to only two, the Lamé constants λ, µ. Two waves are propagating
in the solid, one is longitudinal (bulk wave), one is transversal (shear wave). As demon-
strated in section 1.2, those two waves propagate independently following wave equation
of Alembert’s form (equation 3.1). Their velocities are defined as:

VL =

√
λ+ 2µ

ρ

VT =

√
µ

ρ

In soft medium, λ >> µ, velocity of bulk wave is far above velocity of shear wave
VL ≈ 1500m/s, VT ≈ 10m/s. At the same frequency the wavelength of longitudinal
wave is approximately 150 times the wavelength of shear wave. On the scale of shear
wavelength only shear waves are propagating in the tissue. Therefore, the FDM simula-
tion described in the former section can be applied for shear waves simulation.

The following parameters are chosen:

cs = 3m/s

Lx = 50mm,Ly = 50mm

δx = 100µm, δy = 100µm, δt = 20µs

The waves simulated are displayed in figure 1.1 in the following link: https://polimi365-my.

https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
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sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?

e=CD9cXl. The correlation between central point and all the other points for τ ∈ [−4ms :

4ms] of the simulated field is computed in figure 1.2 of the previous link. In particular
the correlation for τ = 0s is displayed in figure 3.3.

Summary of results of section 1.3.

1. A diffuse field is equivalent from the correlation point of view to an impulse source.

2. There is an equivalence between the temporal correlation of a field and the time
reverse version of the field.

3. If the field is diffuse, the correlation for τ = 0s is the focal spot in acoustic, the
equivalent of the point spread function (PSF) in optic of the point where the corre-
lation is computed.

4. In the general case, the correlation for τ = 0s is the impulse response of the field
convoluted with a term dependent on the source’s form (see equation 1.19).

The correlation of the field for τ = 0s is the point spread funtion (PSF), the focal spot
of the wave fields in this point. With analogy to the diffraction process, there is a link
between the radius of the focal spot (r0), the wavelength of waves in the media 3.5, and
the numerical aperture of the wave field. Then, by knowing the central frequency of the
field (f0), the velocity of shear waves can be retrieved c = λf0. Equivalently, the velocity
can be derived from the equation 1.23.

a ≈ λ

α
(3.5)

https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
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Figure 3.3: Point spread function in the center of the simulated isotropic medium with
c=2m/s. One pixel is 20 µ m. Amplitude is in arbitrary unit

3.3. Simulation of shear waves propagation in an anisotropic

soft media

Now, considering an anisotropic tissue following incompressible transversely isotrope hy-
pothesis described in chapter 1.2 with c∥, c⊥ velocities of the shear wave in the axe of the
fiber and perpendicularly to them. As derived in chapter 1.2 , the shear waves propa-
gation follows a wave equation in the form of equation 1.9 . That can be discretized as
equation 3.3, but unlike in the isotropic case, in the anisotropic case, γx = c2∥δt

2/δx2 is
different from γy = c2⊥δt

2/δy2.

The following parameters are chosen:

c∥ = 2.5m/s, c⊥ = 2m/s

Lx = 50mm,Ly = 50mm

δx = 100µm, δy = 100µm, δt = 20µs

The waves simulated are displayed in video 2.1 in the following link: https://polimi365-my.
sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?

e=CD9cXl.
The correlation between central point and all the other points for τ ∈ [−4ms : 4ms] of

https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
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the simulated field is computed in video 2.2 of the previous link. In particular the corre-
lation for τ = 0s is displayed in figure 3.4. The PSF exhibits two different wavelength 3.5
according to the direction corresponding to two different velocities c⊥, c∥.

Figure 3.4: Point spread function in the center of the simulated anisotropic medium with
c⊥ = 2m/s and c∥ = 2.5m/s. Amplitude is in arbitrary unit

Using equation 1.23 on simulated data, we recover c⊥ = 2m/s, c∥ = 2.5m/s.

3.4. Simulation of shear waves propagation in an isotropic

soft media with anisotropic distribution of exci-

tation sources

Now, considering the same situation described on section 2.2, an isotropic media with a
shear velocity of 2m/s. In section 2.2 the sources of shear waves were distributed ho-
mogenously around the mesh (see figure 3.2). Providing the fact that the sources s(t) are
emitting a diffuse field S(t) = δ, with S the autocorrelation s(t) ∗ s(t).
In this section the sources are only on the lower part of the mesh. The simulated field
is displayed in video 3.1. The correlation between central point and all the other points
for τ ∈ [−4ms : 4ms] of the simulated field is computed in video 3.2. In particular the
correlation for τ = 0s is displayed in figure 3.5. S(t) the autocorrelation of the sources
is no more a δ for every point of the field. The effect on the correlation of the field for
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τ = 0s is an elongation perpendicular to the excitation.

The correlation for τ = 0s cannot be considered anymore as straightfowardly as the point
spread function (i.e. impulse response) of the field. Indeed as derived in section 1.3,
Cs

a,b(τ) = S(τ) ∗Ga,b(τ).
Nevertheless in the direction of the propagation S(t) ≈ δ, and a measure of velocity is still
possible. Indeed, we retrieve c=2 m/s using equation 3.5 in the direction of propagation.

Figure 3.5: Correlation of the field for τ = 0s in the center of the simulated isotropic
medium with c=2m/s, with an unbalanced repartition of the field. Amplitude is in arbi-
trary unit

3.5. Problematic exposition

To recover local waves speed, noise correlation algorithm compute local correlation of the
wave field. Trough an interpretation of the correlation as the point spread fonction (PSF)
of the media in this point, and a analogy with time reversal field, it’s possible to retrieve
the shear waves velocity in the point of interest (see section 1.3). Under the assumption of
an isotropic excitation, the correlation’s shape is a circle in isotropic media (case (a)), an
elongated ellipse for an anisotropic media(case (b)). It’s then possible to recover speeds
and elasticities in differents directions of propagation. The large axes direction of the
ellipse will correspond to the high speed direction. Velocity measurement is based on the
shape of the point spread function. A straightfoward idea to distinguish between isotropic
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and anisotropic media is to draw their PSF, a circular PSF correspond to isotropic media
and elliptic one to an anisotropic media.
However, the correlation of an isotropic media with anisotropic distribution of the ex-
citation sources will be an ellipse as well (case (c)), even tough the media is perfectly
isotropic. The shape criteria isn’t robust enough.
Furthermore, in this specific case the correlation at τ = 0s is not exactly the point spread
function, but is biaised by the source distribution.

As in experimental condition the repartition of the excitation sources is not always
isotropic, the shape of the PSF criteria is not robust enough to drive conclusions on
the anisotropy properties of a tissue. The aim of this section is to find a classification
algorithm able to distinguish between an isotropic tissue, an anisotropic tissue and an
anisotropic distribution of the excitation sources.

(a) Isotropic tissue (b) anisotropic tissue

(c) anisotropic distribution of the
sources

Figure 3.6: Point spread function simulations in the three cases of interest

3.6. Classification solver
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(a) Isotropic distribution of
sources, correlation field for

τ = 150ms

(b) Anisotropic media,
correlation field for τ = 150ms

(c) Anisotropic distribution of
sources, no sources on the right

border, correlation field for
τ = 150ms

Figure 3.7: Point spread function simulations during propagation in the three cases of
interest

3.6.1. Energy distribution criteria

Correlation of the field in the differents cases of interest for τ = 150ms are displayed in
the next page.

If the excitation sources are not isotropically distributed, the energy distribution during
the propagation will be anisotropic. In case (b), as there are no sources on the right part
of the mesh, no energy is coming from there.

By dividing the correlation in 8 zones with an equal quantity of pixels, each one corre-
sponds to an angle of π

4
around the point where the correlation is computed. Energy is

all different, 8 zones are computed by adding the zone’s pixels values. Let’s call S the
symmetry index of a correlation pattern, defined as the variance of the 8 zones energy
(equation 3.6).
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S = var(Ei) (3.6)

(a) Isotropic distribution of sources,
S = 0.0034

(b) Anisotropic distribution of sources, no
sources on the bottom border, S = 0.012

Figure 3.8: Energy distribution for different positions of the sources

Having a large S index means that we are facing an inhomogenous energy distribution
during propagation. Therefore, a large S index points on an anisotropic sources distribu-
tion.

To compute the S index, the algorithm takes the correlation during the propagation and
projects it in polar coordinates(r,θ) by interpolation. Then it computes the sum for each
θ intervals of the integral on the radius.

3.6.2. Ellipse criteria

Figure 3.6 displays the correlation for τ = 0s for the 3 classes to distinguish. If the media
is anisotropic, the correlation will be an ellipse whereas in the isotropic case it will be a
circle. To quantify how far an ellise is from a circle, a straightfoward idea is to look at the
large and small diameter of the ellipse and to compute their ratios (see figure 3.9). Let’s
call this ratio C, the ellipse criteria defined in equation 3.7.

Figure 3.9: Ellipse with a,b respectively the large and small diameter.
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C =
b

a
(3.7)

C equals to 1 means that we are facing a circle, therefore, is the case of an isotropic
tissue. On the other hand, C < 1 means that we have an ellipse and points to any kind
of anisotropy.

To compute C, the algorithm takes as input the correlation for τ = 0s, and projects it in
polar coordinates (r,θ) by interpolation. Then it computes for each θ the first value of ’r’
to fit a threshold condition (Pixel value < 0.2Max). The minimum value of ’r’ will be the
small diameter, the maximum value of ’r’ will be the large diameter.

3.6.3. Decision tree

The following decision tree (see figure 3.10) is proposed and implemented. As input, it
takes two parameters: the correlation computed in τ = 0s and the correlation computed
in τ different than 0s, (i.e. in the propagation part of the correlation). As output,
the decision tree provides one class between isotropic medium, anisotropic medium and
anisotropic distribution of the sources. To do so, it computes two index, S the symmetry
index, and C the ellipse index. S and C are compared to arbitrary thresholds T1,T2.

Figure 3.10: Decision tree, S (symmetry index) is defined in equation 3.6, C (ellipse index)
is defined in equation 3.7, T1,T2 are arbitrary thresholds
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3.6.4. Results

Figure 3.11: Results

The proposed classification algorithm is tested on simulations for different shear waves
velocities, ratio of c⊥/c∥, source distributions (N is the digital aperture of the distribution).
Results are accurate except in the case of highly anisotropic medium with c∥/c⊥ >> 1.
Indeed, it can be seen in figure 3.12, that the energy repartition is not similar in the
slow and fast axes. This unbalanced repartition gives a high S and a high variance of the
energy repartition, having an effect on the algorithm to fall into an anisotropy of sources
(see decision tree 3.10.

Figure 3.12: PSF during propagation for an highly anosotropic medium, S=0,012

Let’s introduce a new index, ’AS’, standing for axial symmetry index. It’s defined as the
upper part on the bottom paret times the left part on the right part of the point spread
function.
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AS =

π∑
θ=0

Eθ

2π∑
θ=π

Eθ

π/2∑
θ=−π/2

Eθ

3π/2∑
θ=π/2

Eθ

(3.8)

This index indicates if the energy distribution during propagation exhibits an axial sym-
metry. Indeed, this symmetry criteria separates the large ellipse with inhomogenous
energy repartition between fast and slow axes (see figure 3.12) from inhomogenous energy
repartition due to anisotropic distribution of the excitation sources (see figure 3.8, case
(c)).

Corrected decision tree including this new index is proposed in figure 3.13. Results on
simulations with new algorithm are displayed in figure 3.14. The algorithm shows excellent
results with 100% of accuracy.

Figure 3.13: Decision tree for classification, S (symmetry index) is defined in equation
3.6, C (ellipse index) is defined in equation 3.7, AS (axial symmetry index) is defined
equation 3.8. T1, T2, T3 are arbitrary thresholds
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Figure 3.14: Results with corrected algorithm

3.6.5. Choice of thresholds

Results in the above section are obtained with the following thresholds: T1 = 0.01,
T2 = 1.6, T3 = 0.08. At a first attempt the thresholds were arbitrarily fixed in order
to optimize the results of the algorithm. To put threholds on trial, a gaussian noise with
a signal to noise ratio (SNR) of 2 was applied to the simulated data, and the diferent cor-
relations in input of the algorithm were computed. The thresholds were then optimized
to provide accurate results even in the noisy data.
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(a) Isotropic tissue, correlation during
propagation, no noise

(b) Isotropic tissue, correlation during
propagation, gaussian noise SNR=2

(c) Isotropic tissue, correlation for
τ = 0s, no noise

(d) Isotropic tissue, correlation for
τ = 0s, gaussian noise SNR=2

The PSF computed on noisy data are displayed in the above figure. The correlation during
propagation is almost unchanged in the noisy case (b) with respect to the reference one
(a). In the other hand, the correlation for τ = 0s is noticeably impacted with reduction
in intensity of the correlation between points close to the center (case (c) and (d)).
Temporal correlation of two gaussian noise signals is theoretically a dirac. The only point
where the noise is surviving the correlation process is the point where τ = 0s.

3.7. Simulation’s conclusion

Finite difference simulations of elastic waves have been implemented. Noise correlation
methods has been illustrated on isotropic and anisotropic samples. Different distribution
of the excitation sources have been tested. A bias in the anisotropy measure of stiffness
has been highlighted: the anisotropy in the distribution of the excitation sources around
the receiver point prevents the measure by noise correlation method. A classification al-
gorithm has been proposed and implemented, able to detect this situation and distinguish
it from real tissue anisotropy.
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4| Elastography by laser speckle

imaging

4.1. Introduction

Through simulation of elastic waves propagation the following statements have been
demonstrated.
First, correlation of a diffuse field of waves allows to retrieve waves velocity in the media
and its elasticity.
Second, in mechanically anisotrope media, the mechanical anisotropy ratio can be re-
trieved, but only if the diffuse field is isotropically distributed around the point of inter-
est.
The case of an anisotrope diffuse field can be detected provided the computation of 3
different indexes and being discarded from other cases.
Waves have been simulated in a 2D plane, displacements are filtrated on the normal axis
to the plane, in plane, the displacements are set to 0. The experimental configuration
is mirroring the simulation. Indeed, Laser speckle imaging performs a 2D measure of
waves propagating with normal polarization with respect to the surface plane. The most
important difference is the sample rate. The camera used during the experiment is not
fast enough to allow a proper sampling of waves frequency of propagation. To overcome
this issue, two concurrent approaches will be used: stromboscopic sampling of impulses
and noises correlation.

The experiment aims to show that one can perform mechanical anisotropic properties
measurements by noise correlation method. To provide experimental proof the workflow
is described as the following steps:

1. Verify the ability of Laser Speckle Imaging to retrieve with good result the elasticity
of Agarose samples using the gold standard method of time of flight. Mechanically
isotropic and anisotropic agarose samples will be characterized.
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2. Retrieve elasticity of agarose samples using correlation of a diffuse field method,
taking as comparison the gold standard method.

3. Underline experimentally the bias in the measured velocities of waves with anisotropic
distribution of the diffuse field sources.

4. Show that the previous situation can be detected and then avoid to follow the former
proposed decision tree.

4.2. Material

4.2.1. Set-up description

The laser used is a semiconductor laser uncollimated of power 82mW. A CMOS camera
(Basler aceA2040) of 2048px *1536 px and pixels of 120µm is used with its maximal sam-
pling frequency 112Hz and an exposure time of 200µs. The objective used (Navitar) has a
25mm focal and an aperture of 1.4. To generate shear waves in samples an amplified piezo
actuator (Cedrat technologie APA100M-19-008) is driven by a function generator (Teck-
tromic AFG1062). To generate diffuse wave field piezoelectric patches are used (REF)
driven by pulse width modulation and an arduino board.

Figure 4.1: Picture of the set up used in the lab
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Picture 4.1 shows the experimental set-up. A schematic of it is drawn in figure 4.2. Laser
is powered by a laser driver and pass through an optic fiber. The laser beam hits the
biological sample with a tilt angle. The speckle pattern is imaged by an objective and
registered on a CMOS camera sending data to the computer. An exemple of the acquired
image is given in figure 4.3. Pixels are 28 µm large and the entire field of view is 5.7cm
* 4.3cm. The numerical aperture of the objective is set to 1.4, its maximum.

Figure 4.2: Scheme of the set up used in the lab
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Figure 4.3: Raw acquired image, the field of view is 5.7*4.3 cm, one pixel is 28*28 µ m

4.2.2. Preparation of samples

Samples are made out of Agarose(A9539, Sigma-Aldrich, St. Louis, Missouri) with mass
concentration between 0.5% and 1%, and TiO2 nanoparticles (277370010, Acros Organics,
Morris Plains, New Jersey) with mass concentration of 1%. Agarose and water mix were
heated under constant agitation then poured into a recipient. The samples were cooled at
4 C° for 1 hour to obtained a solid circular sample of 10cm diameter. Obtained elasticity
are between 1 and 100 kPa [40] providing good comparison with biological soft tissues
[53].
Anisotropy in the sample was created using sewing wire. The wire was streched on the
recipient before the agarose mix was poured. It was streched in only one direction. Once
the sample is cooled, a final layer of agarose is poored and cooled on the surface to make
sure the wire is recovered and embedded in the agarose matrix.

4.3. Methods

4.3.1. Processing of raw speckle images

To obtain waves propagation from collected speckle images, two processing steps are
applied. First differences of succesive images is performed to obtain a differential stack D
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(equation 4.1 with I(n) the nth image acquired ).

D(n) = I(n+ 1)− I(n) (4.1)

Second the spatial contrast of each image of the D stack is computed to obtain a differential
contrast stack DC. To do so, the local contrast on subregion A of 2x2 px is computed using
equation 4.2 where σ is the variance of the pixels in region A. The resulting convoluted
image of spatial contrast is the differential contrast on which the propagation of waves is
visible.

C[A] =
σ(D[A])

mean(I[A])
(4.2)

4.3.2. Shear waves velocities retrieval

The waves imaged have frequencies reaching 1kHz. To fulfill Shannon Nyquist theorem
the imaging system needs to have a sampling frequency of at least 2kHz. But the CMOS
camera can only reach 112Hz of sampling frequency. To overcome this issue, methods
compatible with undersampled data are used: time of flight measurement on strombo-
scopic data and noise correlations. Time of flight is the gold standard to measure wave
velocities. It will be used to provide comparisons values with noise correlation.

Time of flight method on stromboscopic data

The CMOS camera is set at its maximum sampling frequency fs = 112Hz. Exposure time
is set to 200 µs. The piezo actuator is set to send plane waves at frequency fp = nfs+ δf ,
where n is an integer and δf << fs. Between two successive frames, the wave brows
D = nλ+ δd. This propagation of δd in time Ts gives an apparent velocity capp defined in
equation 4.3. The real velocity of the waves is creal defined in equation 4.4. Defining x as
x = fs

fp
from equation 4.4, can be obtained: creal =

nλ+δ
xfp

. Noticing that creal = λ ∗ fp the
final equation can be obtained 4.5, allowing to retrieve true celerity from the apparent
one.

capp = δd ∗ fs (4.3)

creal = D ∗ fs (4.4)
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creal = (1− n

x
)capp (4.5)

Noise correlation method

Process:
First the temporal correlation for τ = 0s is computed on every point of the field of view,
then the mean is taken. From mean temporal correlation, velocities in the sample are
retrieved using equation 1.23.

4.4. Experimental results

4.4.1. Time of flight

In this section time of flight method on stromboscopic data is used to retrieve shear waves
velocity. Only one piezoelectric buzzer is placed outside the field of view and is driven to
send continuously a sinusoidal wave at a given frequency.

Sample with different elasticities

4 samples are performed with different concentrations of agarose. The more agarose
in the sample, the stiffer it gets. The 4 samples are put aside in the field of view.
The speckle contrast C defined in equation 3.7 is computed for all the acquisition stack
(2000 images). Video of the computed contrast are displayed in the video 4.1 of the
link https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/

EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl. Waves are propagat-
ing in the samples and this propagation is visible on the speckle contrast. In particular
three consecutives frames are displayed on image 4.6. The time of flight measurement is
made by following a wave front (white arrows) on consecutive frames.

Figure 4.4 displays the location of the different elasticities samples in the field of view.
The different wavelength according to the stiffness are clearly different. The stiffer the
sample, the larger the wavelength gets. Indeed, the stiffer the tissue , the higher is the
velocity of shear waves (E = 3ρc2). For a given frequency, the higher the velocity of shear
waves, the larger the wavelength (c = λµ).

https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
https://polimi365-my.sharepoint.com/:p:/g/personal/10783888_polimi_it/EQ-mnaP0YCFBgCwLRT5-Wr8BEGwXd9uc9wZnKMAtIxKlxA?e=CD9cXl
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Figure 4.4: Processed image of the contrast of speckle pattern superposed to mass per-
centage of agarose in the different region of the field of view

Figure 4.5: Shear waves propagation in sample with 1% agarose, illustration of the time
of flight method, arrows indicate the wave front apparent propagation

Figure 4.6: Shear waves propagation in 4 different sample with 0.5,1,1.5,2 % agarose
mass concentration, illustration of the time of flight method, arrow indicate the wave
front apparent propagation, the 4 samples are image simultaneously

Results are displayed in the following table. Velocities and stiffness are found with good
agreement with litteracy [40]. The velocities will be used as comparators with the noise
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correlation method.

Percentage of agarose (%) 0.5 1 1.5 2

Velocity of shear waves (m/s) 3 6 8 11
Stiffness (kPa) 9 18 24 33

4.4.2. Noise correlation

In this section noise correlation method is used to retrieve shear waves velocity. Shear
waves are send through 8 piezoelectric buzzers placed in fixed position all around the field
of view and driven by an arduino board to send a sinusoidal wave at a given frequency.
When plotting correlation of the field for τ = 0s, the noise signals are filtered out by
the correlation process except for the autocorrelation point (central point). This point is
therefore set to 0.

Isotropic samples

In this section, homogenous, isotropic sample of given percentage of agarose are studied
with an isotropic distribution of the diffuse field. The obtained field is retrieved by com-
putation of the differential spatial contrast in time. The video 5.1 of the previous link
displays the acquired field, on which one can qualitatively follow the isotropic propagation
of waves front.

The correlation of the field for τ = 0s is computed and displayed in figure 4.7. Qualita-
tively the shape of the focal spot is circular, as expected. From this correlation, velocities
of 1 m/s for 1% agarose are retrieved by noise correlation .
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Figure 4.7: Correlation of the diffuse field for τ = 0s in an isotropic agarose sample (1%
agarose, 1% TiO2) with isotropic distribution of the diffuse field around the field of view.

Anisotropic samples

In this section the samples are anisotropic and are studied with an isotropic distribution
of the diffuse field. The samples exhibit different velocities according to their propagation
direction with respect to the sewing wire embbeded in the agarose matrix.

To test the different directions, two experiments are conducted for each sample. A first
experiment is done with an isotropic distribution, if the excitation sources, then the sam-
ple is turned of 90° degrees and the same acquisition is obtained with the same locations
sources.
The obtain fields, these are retrieved by computation of the differential spatial contrast in
time. The video 6.1 and 6.2 of the previous link display the obtained fields. Qualitatively
the waves front seems to travel up and down in video 6.1 and side to side in video 6.2.
Those observations are in good agreement with an anisotropic sample rotated between
the two videos.

Correlation of the obtained fields are computed and displayed in figures 4.8 and 4.9.
Looking at the two correlations, one expect to obtain the same spot with a circular ro-
tation of 90°. Qualitatively, focal spot in figure 4.9 is much larger than in figure 4.8.
Nevertheless one can notice that the larger dimension happens when the focal spot is
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rotated 90°. Waves velocities retrieval are around 1 m/s with an anisotropic ratio around
1/2.

Figure 4.8: Correlation of the diffuse field for τ = 0s in an anisotropic agarose sample (1%
agarose, 1% TiO2, sewing wire), with isotropic distribution of the diffuse field around the
field of view.

Figure 4.9: Correlation of the diffuse field for τ = 0s in an anisotropic agarose sample (1%
agarose, 1% TiO2, sewing wire), with isotropic distribution of the diffuse field around the
field of view, the sample has been rotated of 90° with respect to figure 4.8
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Anisotropic distribution of the piezo buzzers

In this section samples with constant stiffness are studied with anisotropic distributions of
piezoelectric buzzers. The buzzers are only placed on the low half of the sample, outside
the field of view. The obtained field is retrieved by computation of the differential spatial
contrast in time. The video 5.2 of the previous link displays the obtained field, on which
one can qualitatively follow the anisotropic propagation of wave fronts travelling from the
bottom to the top of the field of view.

Correlation of the retrieved wave field is computed for τ = 0s and displayed in figure 4.10.
The shape of the focal spot is elliptic, there is a biais in velocity retrieval.

Figure 4.10: Correlation of the diffuse field for τ = 0s in an isotropic agarose sample (1%
agarose, 1% TiO2) with anisotropic distribution of the diffuse field around the field of
view.

4.5. Discussions

The results presented above are preliminary.
Summary of workflow of the experiments presented in introduction:

1. Verify the ability of Laser Speckle Imaging to retrieve with good result elasticity
of Agarose samples using the gold standard method of time of flight. Mechanically
isotropic and anisotropic agarose samples will be characterized.
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2. Retrieve elasticity of agarose samples using correlation of a diffuse field method,
taking as comparison the gold standard method.

3. Underline experimentally the bias in the measured velocities of waves with anisotropic
distribution of the diffuse field sources.

4. Show that the previous situation can be detected and then avoid to follow the former
proposed decision tree.

Step 1) was successfully implemented and has proven the ability of Laser Speckle imaging
to perform elastography on soft tissues. A further development could be to apply this
method to anisotropic samples to provide comparison value with noise correlation method.

Step 2) was successfully implemented and noise correlation method was proven to work
on isotropic sample. Further developments will be first to conduct a repeatability study
on the retrieve values, second, to perform a proper comparison with the gold standard
method on isotropic and anisotropic samples of different elasticities.

Step 3) was successfully implemented, the bias in measured velocities was highlited in
case of anisotropic distribution of excitation sources around the field of view.

Step 4) is still under work. To apply the proposed algorithm, one need to compute the
diffuses field correlation during propagation, for τ different to 0.
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developments

5.1. Main conclusions

Mechanical anisotropy of biological tissues is a way to characterized matter and can be
linked to several pathologies [9, 25, 29].
Noise correlation method combined with optical elastography allows for uncontact re-
trieval of viscoelastic properties of matter [30, 40].
In this work, a bias in mechanical anisotropy of matter retrieval by noise correlation is
highlighted. Simulation of elastic waves propagation in 2D medium were implemented.
A classifier algorithm able to target the situations leading to errors is proposed based
on the simulations. Experimental verifications on agarose samples presenting isotropic
and anisotropic mechanical properties are performed. Laser speckle imaging is used and
prooved to provide good results for elastography with the gold standard method of time
of flight on stromboscopic data. Laser speckle imaging elastography is then performed on
agarose samples with noise correlation method. Preliminary results show good agreement
with the gold standard method. Using noise correlation method, a bias in the retrieval of
anisotropy of tissue is highlited experimentally.

5.2. Main axes of research

5.2.1. Improvement of the method

Anisotropy retrieval in any cases

The proposed decision tree is a detection tool of a situation leading to errors in the mea-
surement of mechanical anisotropy. One development of this thesis is not only to detect
the error’s situation but to quantify the error and to provide a correction factor.
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Let’s do an analogy with optic. Let’s take a monochromatic point source emitting a beam
passing through a objective (see figure 5.1).

Figure 5.1: Diffraction and Airy spot [2]

The image of the source observed on the screen is no longer a point due to the diffraction
phenomenon. The obtained spot is called the focal spot, point spread function or Airy
spot.
Its dimensions were derived by Ernst Abbe in its groundmaking work [59]. The lateral
dimensions rx,y follow equation 5.1 with λ the wavelength of light and NA the numerical
aperture of the objective. The highest the numerical aperture, the shorter is the spot size,
the more resolute is the optical set-up.

rx,y =
λ

2NA
(5.1)

The spot is actually a bean with an axial extension rz that follows equation 5.2. Again,
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parameters are λ the wavelength of light and NA the numerical aperture of the objective.

rz =
2λ

NA2
(5.2)

In our case, waves are not electromagnetic but acoustic waves, and the field is diffuse.
We have seen that the causal part of correlation of a diffuse field is equivalent to the
propagation of an impulse in the media. The correlation at τ = 0s can be seen as the
impulse response of the field. As for the Airy spot in optics, one could correlate the
dimension of the impulse response of the field with the parameters of the diffraction
process. In particular one could define the aperture of the refocusing process. By defining
an aperture of the diffuse field, one could quantify the anisotropy of the diffuse field
distribution using the shape of the correlation at τ = 0s. Once the numerical aperture of
the field is known, one can retrieve the velocity of shear waves with a correcting factor
due to the numerical aperture of the field.

Study on viscous anisotropic properties in samples

Until now we considered the samples as fully elastic. Viscous properties of matter were
discarded in simulations and in experimental samples. One axis of research will be not only
to characterized anisotropy of matter by its shear elastic modulus in different directions
but also with its shear viscosity modulus in different directions.

5.2.2. Application to biological tissues

This specific work’s aims at showing that one can retrieve mechanical properties in
anisotropic samples by noise correlation method without any bias in the measurement.
In a broader scope, it aims at biological applications, in particular retrieving anisotropic
properties of biological tissues in vivo.
In this scope, next step will be the characterization of biological sample ex-vivo. Straigh-
foward candidate will be muscle tissue because of its large availabilities. However, liver,
skin, cornea, brain tissues are under scrutiny.
In this scope, one could consider to review former study made on anisotropic samples
under the asumption of isotropic mechanical properties and perform a refinement of the
output properties holding anisotropy into account. One example is the study of pork liver
performed by A. Marmin in the iCube laboratory where this thesis is conducted. Results
presented in figure 5.2 were obtained by digital holography under the hypothesis of an
isotropic distribution of excitation sources and a isotropic tissues.
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Figure 5.2: Pork liver elasticity map (a.u) retrieved using noise correlation. The upper
side was raw and the other side was cooked, taken from [40]

5.2.3. In vivo application to anisotropic tissues

Once the technique is proven to work ex vivo on biological samples, characterization of
in vivo tissues could be considered.

Laser Speckle set-up could be embbeded in a multi modal plateform used in open surgery.
In the iCube laboratory, diffuse optic is under study. It provides real-time, wide-field and
high-quality single snapshot imaging of optical properties of matter [8, 58]. To retrieve
in real time optical absorption and scattering coefficients of matter it uses Lasers. Laser
imaging signals could be used to retrieve mechanical properties of matter.
In particular, a multispectral plateform has been developped to fit for open surgery. It
is displayed in figure 5.3. The coupling of this device with the noise correlation method
could allow to perform in vivo, real time measure of viscoelastic properties of matter in a
surgical theater.

Not only open surgery is at stake. The possibility to embedded Laser Speckle Imaging in
an endoscope for colorectal cancer screening could be major breakthrough in colonoscopy.
As described in figure 5.4, a colonoscope is a flexible tube able to image the wall of the
colon of the patient. In case of cancer, the patient can present polype that can be removed
during colonoscopy. Risk of failure of the operation rises when the removal of polype is
uncomplete. By adding a Laser at the top of the colonoscope, Laser speckle imaging
could help to distinguish healthy from tumerous tissues. Laser speckle imaging is a good
candidate for elastography of the colon.

Coupled with the noise correlation method, Laser speckle imaging is a non contact, real-
time that could be a powerful tool for helping to distinguish healthy from pathologious
tissues.



5| Conclusions and futur developments 71

Figure 5.3: Multispectral optical imaging in real-time for surgery develloped in the iCube
laboratory by S. Segaud

Figure 5.4: Coloscopy procedure, taken from [21]
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A.1. Second approach by time symmetry

This paragraph propose a second approach to detect unbalance partition of source around
the reicever point. It has been proven in seismologic field that the Green’s function
anticausal (t<0) part and causal part (t>0) are symmetric in time with respect to t=0s
[55]. For unbalance repartition of source around the receiver, this time symmetry is lost
and the wave is coming from the sources direction (t<0s) and propagate in the oposite
direction (t>0s).

Figure A.1: Decision tree for classification, S the symmetry index is defined in equation
3.6, C the ellipse index is defined in equation 3.7, T1,T2 are arbitrary thresholds
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Figure A.2: Decision tree for classification, S the symmetry index is defined in equation
3.6, C the ellipse index is defined in equation 3.7, T1,T2 are arbitrary thresholds
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