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Nomenclature
Variable Description SI unit

a Semi-major axis km
aGEO Perfect synchronous orbit radius km
Ac Collision cross-section km2

E Specific energy in (λ, λ̇) phase space (rad/s)2

Ep Maximum potential energy of a pendulum (rad/s)2

Ê0 Specific total energy of a pendulum (rad/s)2

Jn Zonal harmonic coefficient of n degree -
Jn,m Tesseral harmonic coefficient of n degree and m order -
k Square root of ratio Ê0/Ep -
k20 Ratio between initial potential energy and Ep -
n Fragment density #s/rad2

n0 Initial fragment density #s/rad2

Nfrag Number of fragments #

Pc Collision probability -
R⊕ Earth mean radius km
r Geocentric distance km
T̂ Time at risk s
Tb Band formation period s
t Time s
t0 Fragmentation instant s
vrel Relative collision velocity km/s
∆λ Grid spacing in λ rad
∆λ̇ Grid spacing in λ̇ rad/s
ϑ Modified longitude: 2(λ− λ2,2 ± π

2 ) rad
κ Inverse of k -
λ Longitude rad
λ0 Longitude of fragmentation event rad
λ1,2 Longitude of closest gravitational well rad
λn,m Gravitational coefficient of n degree and m order rad
λ̇ Drift longitude rad/s
µf Mean value of fragments’ drift longitudes rad/s
ρ Spatial fragment density #/km3

σf Variance of fragments’ drift longitudes rad/s
ϕ Latitude rad
Ω Pendulum constant rad/s
Ω⊕ Earth rotational speed rad/s

1. Introduction
From the beginning of the space age on 4 Oc-
tober 1957 to the beginning of 2020, more than
5500 rocket bodies have been launched to insert
into orbits over 9300 payloads [3]. Nowadays,
payloads have a fundamental role for our society:
they guarantee weather forecasting, broadcast-
ing, navigation, telecommunications, and many
other services. However, the rising demand of
on-orbit services together with the advent of
large constellations is causing the overcrowd-
ing of Earth space region. As shown by ESA’s
annual space environment report [9], the U.S.
Space Surveillance Network (SSN) has already
tracked more than 16000 uncontrolled objects
orbiting around Earth. Therefore, obtaining
a reliable picture of the space debris environ-
ment and understanding its evolution is becom-
ing a key element to analyse possible mitigation
strategies and to suggest future policies to in-
crease the sustainability of the space activities.
In particular, this work studies the evolution of
the debris environment inside the geostationary
ring. The absence of atmospheric drag effects at
GEO altitudes does not permit a natural decay
of GEO objects and renders lifetimes of debris
infinitely long.
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2. Techniques for Debris Prop-
agation

Current studies on space debris evolution in
geosynchronous region adopt a deterministic ap-
proach and focus mainly on objects larger than
0.8-1.0 m [1]. This choice is essentially driven
by a twofold reason. On the one hand, the lack
of knowledge on fragmentation events causes a
lack of situational awareness below 1 m. On the
other hand, current computing capabilities limit
number of objects that can be included inside
the simulations. However, also debris smaller
than 1 m represent a potential threat for op-
erational satellites [5]. Thus, the inclusion of
small fragments in debris modelling is funda-
mental to obtain a more complete picture of
the debris environment and to avoid underes-
timating the collisional risk. To solve this prob-
lem, several authors have investigated analyti-
cal methods based on simplified dynamical mod-
els. For example, Letizia and Colombo [6] devel-
oped an analytical density-based model to de-
scribe debris evolution in LEO after fragmenta-
tion events.
In this work, an efficient method based on the
continuum equation is developed to describe the
evolution of fragment clouds generated by an ex-
plosion or a collision in space. The proposed ap-
proach consists in considering fragments popu-
lation in the longitude and drift longitude phase
space as a fluid with continuous properties,
whose density changes under the effects of J2,2
perturbation.

3. Dynamical Model
Geostationary region is a quite complex environ-
ment mainly affected by solar radiation pressure,
luni-solar attraction and gravitational perturba-
tions. However, to derive a long-term prediction
of the longitudinal motion of large space debris
clouds, a simplified dynamical model including
only J2 and J2,2 effects is adopted. Hence, intro-
ducing the assumption of quasi-equatorial orbits
and recalling that time evolution of λ is a low-
frequency solution with negligible damping, the
longitudinal motion of a GEO object can be de-
scribed by the following equation [4]:

λ̈ = 18Ω2
⊕J2,2

R2
⊕

r2
sin 2 (λ− λ2,2) (1)

Moreover, assuming that objects of interest
lie on quasi perfect geostationary orbits (r ≈
aGEO), the equation of motion becomes a sim-
ple non-linear pendulum like equation [4]

λ̈ = 18Ω2
⊕J2,2

R2
⊕

a2GEO

sin 2 (λ− λ2,2) (2)

and allows the identification of the following
equilibrium points:

Eq. points Longitude Stability

L1 75.071◦ E⋆ Stable

L2 104.929◦ W Stable

L3 14.929◦ W Unstable
L4 165.071◦ E Unstable

⋆ E = East, W = West

Table 1: Equilibrium points.

By simply manipulating equation (2), the inte-
gral of motion can be derived to study GEO ob-
jects behaviour in (λ,λ̇) phase space.

E = λ̇2 − 36Ω2
⊕J2,2

(
R⊕
aGEO

)2

sin2 (λ− λ2,2)

As shown in Figure 1, longitude evolution can
be distinguished into circulating and librating
regimes depending on the initial energy level
of the object. If E > 0, GEO objects ex-
hibit a drifting behaviour, moving between L3
and L4 equilibrium points. Conversely, objects
with E < 0 are captured by one of gravita-
tional wells, showing a circulating motion in
(λ,λ̇) phase space.

Figure 1: (λ,λ̇) Phase space.

After analysing the dynamical behaviour in
(λ,λ̇) domain, an analytical solution for Equa-
tion (2) is researched by exploiting the analogy
with a nonlinear swinging pendulum problem.
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Substituting ϑ = 2(λ − λ2,2 ± π
2 ) and adopting

Ochs’ solution for a simple non linear pendulum
[8], the analytical solution for the propagation
of an object in GEO results to be:

θ(t) = sgn
(
ϑ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) ,

λ(t) = arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ))
+ λ1,2,

λ̇(t) =
1

2
sgn

(
ϑ̇0

)√
Ê0dn(θ(t) | κ).

with 

Ω = 6Ω⊕
√

J2,2
R⊕
aGEO

,

Ê0 = ϑ̇2
0 + Ep sin

2 (ϑ0/2) ,

Ep = 4Ω2,

k =

√
Ê0/Ep,

κ = 1/k.

Analytical solution includes an arcsin function,
which is able only to return values between −π

2
and π

2 . Hence, a corrective algorithm has been
developed to refer ϑ to the proper period and
to correctly compute the time evolution of λ in
case of drifting object.
Performing several tests, it is possible to high-
light that analytical solution’s accuracy tends
to shrink by increasing the distance from the
perfect synchronous orbit and by rising the ec-
centricity. Therefore, analytical method shall
be used to provide, at most, a 2-year predic-
tion of longitudinal evolution for objects or-
biting in quasi-circular and quasi-equatorial or-
bits falling inside the GEO protected region
(|a − aGEO| <200 km) or a 1-year prediction
for objects with |a− aGEO| <500 km.

4. Cloud propagation
Once an analytical model for propagation of a
single GEO object is derived, it is necessary to
develop a strategy to obtain a reliable picture of
GEO space debris environment evolution after
a fragmentation event. In particular, the devel-
oped algorithm is essentially made by the fol-
lowing building blocks:
• a break up model that simulate collisions

and explosions, given the energy of the frag-
mentation event;

• an analytical model to propagate fragments
piece-wise until the cloud propagation be-
comes applicable;

• a method to convert orbital parameters of
each single fragment into a continuous den-
sity function;

• a fully analytical cloud propagator to anal-
yse time evolution of space debris cloud.

4.1. Break-up model
The breakup model allows to simulate fragmen-
tation events (collisions or explosions) and to
describe the distribution of the fragments in
terms of characteristic length, area-to-mass ra-
tio and velocity. The dispersion of these pa-
rameters depends on the nature of the event
(collision or explosion), the energy involved in
the fragmentation event and type of objects
(rocket body or spacecraft). In this work, frag-
mentation particles are generated by adopting
the NASA SBM [5]. Fragment features are
derived from distribution functions and, there-
fore, vary at each run of the model even if ini-
tial conditions are unaltered. Different distribu-
tions are used to describe explosions and colli-
sions. Indeed, collisions usually generate a large
number of fragments with high relative veloci-
ties, while explosions produce larger fragments
with lower speed. Moreover, in NASA breakup
model, impactor kinetic energy per target mass
is used to distinguish between catastrophic and
non-catastrophic collisions. In particular, if the
threshold value of Ẽ∗

p = 40J/g is exceeded, the
model simulate the complete destruction of the
target body [5].

4.2. Analytical piece-wise propaga-
tion

Analytical piece-wise propagation can be used to
propagate individually the fragments until the
cloud propagation becomes applicable and, also,
to investigate the behaviour of a general frag-
ment cloud in (λ, λ̇) phase space. Indeed, once
the fragments are generated with the NASA
breakup model and their characteristics are de-
fined, information on position and velocity of
each fragment can be used to derive their or-
bital parameters. Then, the fragments can be
mapped in (λ, λ̇) phase space and evolution of
the cloud can be investigated by using the an-
alytical solution of a nonlinear pendulum. Fol-
lowing this procedure, three main phases can be
distinguished during the evolution of a debris
cloud. The first phase consists in the generation
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of debris: fragments share the same longitudi-
nal position but differ in velocity depending on
the fragmentation energy distribution. In the
second part, the initial dense ellipsoidal cloud is
stretched due to the different orbital energy of
the fragments; while, during the last phase, a
fragment band is formed. In this analysis, the
starting point for the band formation phase co-
incides with the time instant at which the hy-
pothesis of uniform distribution in λ becomes
acceptable. Therefore, band formation period
is computed evaluating the time required to the
faster fragment, in terms of longitudinal drift
rate, to encounter the slowest one and introduc-
ing a a multiplication factor kb = 2 [2]:

Tb =
2πkb

max
(
λ̇f

)
−min

(
λ̇f

) (3)

where λ̇f are the longitudinal drifts of GEO ob-
ject generated by the fragmentation event.

4.3. Analytical Cloud Propagation
The continuity equation is used to derive ana-
lytically the density evolution with time under
the effect of J2,2 perturbation in (λ, λ̇) phase
space. Neglecting discontinuous events (all sink
and source terms) and expanding the divergence
in rectangular coordinates, continuity equation
can be re-written as:

∂n

∂t
+ vλ

∂n

∂λ
+ vλ̇

∂n

∂λ̇
= −n

[
∂vλ
∂λ

+
∂vλ̇
∂λ̇

]
(4)

with
vλ =

dλ

dt
= λ̇,

vλ̇ =
dλ̇

dt
= 18Ω2

⊕J2,2
R2

⊕
a2GEO

sin 2 (λ− λ2,2) .

Then, the explicit expression of density evolu-
tion in time can be retrieved by applying the
method of characteristics:

n
(
λ, λ̇, t

)
= n0

(
λ̃,

˜̇
λ, t0

)
(5)

where n0 is the initial fragment distribution and
λ̃,

˜̇
λ are obtained by inverting the characteristics

at the initial time.
Following the approach proposed by Letizia [6],
λ̃ and ˜̇

λ can be computed by solving the follow-
ing system of equations:



θ̃(t) = sgn
(
˙̃
λ
)
k̃Ω [t− t0] +

+ sn−1
(
sin(λ̃− λ1,2) | κ̃

)
,

0 =arcsin(sn(θ̃(t) | κ̃)) sgn(cn(θ̃(t) | κ̃))
+ λ1,2 − λ(t),

0 =
1

2
sgn

(
˙̃
λ
)√

ˆ̃Edn(θ̃(t) | κ̃)− λ̇(t).

It is clear that last system cannot be solved an-
alytically and, thus, an alternative approach for
the computation of λ̃ and ˜̇

λ must be found. In
this work, it a backward propagation in time is
performed by using the analytical solution pre-
viously derived. Hence, setting initial condi-
tions λ0 = λ and λ̇0 = λ̇ and propagation time
∆t = t0 − t, λ̃ and ˜̇

λ can be evaluated without
the need of numerical or iterative methods.

θ(t) = sgn
(
ϑ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) ,

λ̃(t) = arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ))
+ λ1,2,

˜̇
λ(t) =

1

2
sgn

(
ϑ̇0

)√
Ê0dn(θ(t) | κ).

Similarly to the procedure adopted before, a cor-
rective algorithm must be implemented to evalu-
ate correctly the output of arcsin function dur-
ing backward propagation.
It is important to highlight that probabilistic
propagation of initial density using method of
characteristics allows to exactly evaluate frag-
ment density only along the characteristic lines,
meaning that density cannot be estimated out-
side the characteristics and that backward prop-
agation should be employed for each point of in-
terest. Thus, if density estimation is required
over the entire domain, the phase space shall
be discretised with a regular grid and density
shall be evaluated at each grid corner. There-
fore, this approach, as all discretisation meth-
ods, leads to an exponential grow of the number
of samples with the rising of the domain dimen-
sions. Moreover, reader shall notice that per-
formance of cloud propagator is limited by the
analytical solution used to invert the character-
istic lines. To grant an accurate evaluation of λ̃
and ˜̇

λ, only fragments with |a−aGEO| < 500km
are included inside the simulation. Furthermore,
orbits of debris are considered quasi-circular and
quasi-equatorial.
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4.4. Position fitting
After the derivation of the analytical cloud prop-
agator, information about the position of each
single fragment in (λ, λ̇) phase space must be
translated into a continuous density function to
derive initial conditions n0 for the cloud propa-
gation. Specifically, in this study, three different
approaches are investigated: a binning method,
an approach based on mono-dimensional proba-
bility distribution function and a bi-dimensional
probability distribution function.
Both binning and 1-D PDF methods depend
strongly on the sampling grid used to study the
cloud evolution. Therefore, a third approach is
implemented. This method consists in propagat-
ing individually fragments with the analytical
propagator and, then, approximating fragment
density at about a quarter of the band formation
period (t0 + Tb/4) with a bi-dimensional stan-
dard probability distribution function. There-
fore, a Kolmorov-Smirnov test is performed to
identify the PDF that best reconstruct density
distribution in λ and λ̇.
After several simulations, Kolmogorov-Smirnov
test suggests us that the multivariate normal dis-
tribution function is able to approximate quite
precisely fragments distribution at t0+Tb/4 both
in terms of longitude and longitudinal drift. De-
spite the need of an initial piece-wise propaga-
tion, this approach results to be the most reliable
and is used for the following simulations.

5. Validation process
To validate the backward propagation and, thus,
the analytical cloud propagator, a procedure
based on the forward piece-wise propagation of
the debris is implemented. After simulating a
fragmentation and fitting the debris dispersion
with a bi-variate normal distribution, a ran-
dom sampling of the initial fragment density
is performed by exploiting the build-in MAT-
LAB function mvnrnd. This process generates
initial conditions of thousands of fictitious de-
bris, which are propagated individually forward
in time to compute the density distribution. In
the end, cloud propagation is validated by simu-
lating several fragmentation events and perform-
ing a comparison between results provided by
the cloud propagator and ones derived with the
sampling process. As example, a catastrophic
collision of a rocket body at λ0 = 60◦ with

Ẽp = 77.2J/g is simulated and results obtained
with the two aforementioned methods are plot-
ted in Figure 2. Note that centre part of each
plot illustrates density distribution retrieved ap-
plying the cloud propagator, while side parts
present the results of the sampling approach.

(a) Fragments distribution at Tb/4.

(b) Fragments distribution after 6 months.

(c) Fragments distribution after 1 year.

Figure 2: Comparison between cloud propaga-
tion and sampling strategy.

On the one hand, it is possible to observe that
both approaches predict the same behaviour of
the cloud and forecast peaks of density in corre-
spondence of the same region of the phase space.
On the other hand, absolute value of debris den-
sity differ significantly between methods. This
fact is attributable to the number of sampled fic-
titious fragments and to the selection of the grid
used for the binning method. Therefore, cloud
propagation method results to be a fast and re-
liable tool for the prediction of debris density in
geosynchronous region.
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6. Collision probability
The main advantage of the analytical cloud
propagation consists in providing a more di-
rect connection with the statistical nature of
the problem, in particular for what concerns the
computation of the collision probability for a
spacecraft crossing a debris cloud. Following
McKnight’s approach, the collision probability
Pc for a target crossing a debris cloud can be
computed applying the kinetic gas theory [7]:

Pc = 1− e−ρ·vrel·Ac·T̂ (6)

where ρ is the spatial density, vrel the relative
collision velocity, Ac the collision cross-section
and T̂ the time at risk.

6.1. Spatial density
Spatial density can be retrieved by simulating
a fragmentation event and applying the analyt-
ical cloud propagation. Adopting this strategy,
debris density can be computed only at discrete
instants of time and, thus, selection of the time
span used for the propagation will be crucial for
the evaluation of the collision probability. Con-
sidering that fragments close to GEO protected
region exhibit periods between 80 and 2000 days,
it is recommended to adopt a time step of about
5 days to avoid undersampling debris density,
misunderstanding fragment cloud evolution and
underestimating collision probability.
To apply the kinetic theory of gases, the phase
space density should be converted into a spatial
one. Therefore, recalling that uncontrolled GEO
objects tend naturally to arrange on orbits with
inclination between −15◦ and 15◦ [1], latitudinal
dispersion of the debris can be approximated as
a uniform distribution:

p(ϕ) =

{
6
π for |ϕ| ≤ 15◦

0 for |ϕ| > 15◦
(7)

and spatial density can be computed as:

ρ =
9Ω⊕
πa3c

n(λ, λ̇, t) (8)

6.2. Relative collision velocity
The average relative velocity is considered as
function of orbital velocity of the operating GEO
satellite and the mutual inclination between the
debris and target mass. In this study, opera-
tional satellite at risk is assumed on a perfect

geostationary orbit and, thus, mutual inclina-
tion is replaced by the average inclination of the
derelict population. As suggested by McKnight
[7], an average inclination of 10◦ is assumed to
avoid underestimating the collision probability,
resulting in a relative velocity of about 536 m/s.

6.3. Collision cross-section and time
at risk

In this work, collision cross-section is consid-
ered as function of impacting and target physical
cross-sections and is set equal to 100m2 [7].
Moreover, to assess the annual probability of col-
lision, the time at risk for a station-kept satellite
is set equal to one year.

6.4. Collision probability calculation
Several tests are performed to check the consis-
tency between the obtained collision risk and the
dynamics governing the geosynchronous region.
Figure 3a and Figure 3b show that a fragmenta-
tion close to one of the gravitational wells pro-
duces a peak in collision probability in proximity
of the closest stable equilibrium point. This be-
haviour can be justified by the fact that a large
part of the debris is characterized by E < 0 and
exhibits a librating motion around the closest
gravitational well. Conversely, Figure 3c, illus-
trates that a fragmentation at L3 generates only
drifting objects and, thus, that librating region
of the phase space has a null collision risk.

(a) Fragmentation at λ0 = −110◦.

(b) Fragmentation at λ0 = 60◦.
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(c) Fragmentation at λ0 = −15◦.

Figure 3: Collision probability in (λ, λ̇) phase
space.

7. Conclusions
This work proposes a probabilistic approach
based on the continuity equation, enabling the
inclusion of small fragments in the debris mod-
eling for the GEO region. In particular, the de-
veloped method considers debris population as a
fluid with continuous properties, whose density
changes under the effect of J2,2 gravitational per-
turbation. Once the information on the position
of the fragments is converted into a continuous
density function, time evolution of debris density
close to the GEO protected region is obtained by
solving analytically the continuity equation with
the assumption of quasi-equatorial and quasi-
circular orbits. The explicit expression for the
density allows the method to provide a very fast
estimation of longitude slots most susceptible to
rising debris fluxes and to evaluate the result-
ing collision probability for an operative space-
craft in that region. The proposed method has
been extensively validated through a comparison
with a numerical/analytical piece-wise propaga-
tor. The current version of the method includes
only the J2,2 effect limiting its applicability to
objects orbiting on quasi-circular and quasi-
equatorial orbits with |a − aGEO| < 500km.
Future works will further develop the proposed
method. The present results suggest that the
proposed method can be applied to efficiently
analyse the impact of different breakups on var-
ious target spacecrafts and, thus, to create in-
fluence matrices. Moreover, the developed ap-
proach results to be a fast and precise tool for
the generation of collision probability maps that
could be exploited for the definition of a space
debris index for the geostationary region.
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Abstract

Geostationary ring is an important resource for terrestrial satellite industry that is threat-
ened by a rising number of space debris. As absence of atmospheric drag effects at Geosyn-
chronous Earth Orbits (GEO) altitudes does not allow a natural decay of Geostationary
objects and makes lifetimes of debris infinitely long, upper launch vehicle stages together
with decommissioned satellites and fragmentation particles represent a growing hazard
for operating satellites. Therefore, on the one hand, continuous conjunction assessments
and collision avoidance manoeuvres are performed to safeguard functional GEO satellites.
But, on the other hand, obtaining a reliable picture of the evolution of space debris envi-
ronment is a key element to identify the longitude slots most susceptible to rising debris
fluxes, to analyse possible mitigation strategies and to suggest future policies to increase
the sustainability of the space sector.

Therefore, in this work, an analytical approach is developed to describe the evolution
of space debris clouds generated by fragmentations in GEO. In contrast to traditional
approaches, which imply the propagation of individual fragments, the proposed method
allows considering debris population as a fluid with continuous properties and to study
globally the cloud evolution, significantly reducing the computational effort. A standard
breakup model is adopted to simulate fragmentation events and to describe the dispersion
of the fragments in terms of characteristic length, area-to-mass ratio and velocity. Velocity
distribution is used to derive the initial conditions of the cloud density and fragment cloud
evolution is derived solving the continuity equation, which describes the variation of debris
density under J2,2 effect. The proposed approach is completely analytical and enables to
study the collision risk simulating several breakup events and to evaluate the vulnerability
of different operational satellites with a very limited computational cost. This approach
lays the foundations for the definition of a space debris index for the geostationary region.

This thesis is part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086). This project is European Re-
search Council (ERC) funded project under the European Union’s Horizon 2020 research
(www.compass.polimi.it).
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Sommario in lingua italiana

Le orbite geostazionarie sono un’importante risorsa per l’industria spaziale, tuttavia,
questa regione orbitale è minacciata da un crescente numero di detriti. L’assenza di
atmosfera in questa regione, infatti, non permette il decadimento naturale di questi e
rende la loro vita infinitamente lunga. Per questo motivo, gli stadi alti dei lanciatori, i
satelliti inattivi e i frammenti generati da collisioni o esplosioni rappresentano un poten-
ziale pericolo per i satelliti operativi. Dunque, da una parte, continue manovre devono
essere effettuate per salvaguardare i satelliti operativi; dall’altra, analisi sull’evoluzione
dei detriti sono richieste per identificare le longitudini con rischio di collisioni più elevato,
per selezionare potenziali candidati per missioni dedicate alla rimozione attiva di detriti
e, infine, per definire l’affidabilità richiesta per le manovre di disposal.

In questa tesi, dunque, viene sviluppato un approccio analitico per descrivere l’evoluzione
di intere nuvole di detriti generate da frammentazioni (esplosioni o collisioni). Al con-
trario degli approcci tradizionali, che propagano i frammenti individualmente, il metodo
proposto permette di studiare l’evoluzione globale della nuvola riducendo in modo signi-
ficativo il costo computazionale e rimuovendo la dipendenza tra il tempo richiesto dalla
simulazione e il numero di frammenti generati. Il NASA Breakup Model viene utilizzato
per simulare la frammentazione e descrivere la distribuzione dei detriti in termini di di-
mensione caratteristica, area, massa e velocità. Le velocità vengono quindi utilizzate per
derivare le condizioni iniziali della nuvola e la sua evoluzione viene investigata risolvendo
l’equazione del continuo, la quale permette di descrivere la variazione della densità sotto
l’influenza di J2,2. L’approccio proposto è completamente analitico, permette di studiare
la probabilità di collisione e di valutare la vulnerabilità di differenti satelliti con un limi-
tato costo computazionale. Questo metodo getta dunque le fondamenta per la definizione
di un indice (space debris index) per la regione geostazionaria.

Keywords: detriti spaziali, frammentazione, J2,2, propagazione analitica, probabilità
di collisione.
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1| Introduction

1.1. Background

From the beginning of the space age on 4 October 1957 (with the launch of Sputnik
1) to the beginning of 2020, more than 5500 rocket bodies have been launched to in-
sert into orbits over 9300 payloads [12]. Nowadays, payloads have a fundamental role
for our society: they guarantee weather forecasting, broadcasting, navigation, telecom-
munications, and many other services. However, the rising demand of on-orbit services
together with the advent of large constellations and the technological advance is causing
the overcrowding of Earth space region. Specifically, ESA’s annual space environment
report [34] shows that the number of geosynchronous satellites has been doubled in the
last 20 years and that number of satellites orbiting in Low Earth Orbits (LEO) is three
time larger than the one in 2000. As postulated by Donald Kessler in 1978 [17], the
rising number of activities in space will result in the generation of growing clouds of space
debris, leading to a potential threat for future space sustainability. With the term space
debris, the scientific community indicates the collection of all man-made non-operative
objects orbiting around Earth, including decommissioned satellites, spent rocket bodies,
objects generated by fragmentation events (such as collisions and explosions) and, also,
mission-related objects.

Space debris are regularly tracked with optical and radar observations and their orbital
parameters are collected in space catalogues. Actually, as shown by ESA’s annual space
environment report [34], the U.S. Strategic Command’s (STRATCOM) Space Surveillance
Network (SSN) has tracked more than 16000 uncontrolled objects orbiting around Earth.
Catalogued debris includes approximately 6676 payload fragmentation debris, 1957 rocket
bodies, 6197 rocket body fragmentation debris and 881 mission-related debris. The rela-
tively small number of catalogued fragmentation and mission-related debris is associated
to cataloguing capabilities, which are limited to objects of approximately 10 cm in diam-
eter in Low Earth Orbit (LEO) and only about 1 meter in Geosynchronous Earth Orbit
(GEO) [31]. It is important to highlight that dominant source of debris population since
the 1960s is represented by disruptive disintegration of satellites. In 2011, IADC assessed
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that fragmentation debris constitute more than 60 % of the total number of catalogued
debris population. For the sake of clarity, it could be useful to highlight that two of
the most dramatic breakup events registered in last years, the intentional destruction of
Fengyun 1C in 2007 and the collision between Cosmos 2251 and Iridium 33 spacecrafts,
were able to generate more than 5000 debris fragments in the near-Earth region [15].

Actually, LEO results to be the most highly congested region in near-Earth space: it is
estimated that several hundred thousand debris between 1 and 10 cm are orbiting around
Earth and that the number of fragments between 1 mm and 1 cm exceeds the 100 million.
While GEO region is characterised by a lower debris density. It is assessed that about
3000 fragments as small as 10 cm are orbiting close to the Geosynchronous region [15].

Even if millimetre and centimetre sized fragments are not trackable and catalogued, they
represent a huge hazard for operational satellites. Objects larger than 1 cm could destroy
a satellite in case of collision, while millimetre sized objects are supposed to cause relevant
anomalies on spacecraft operations, leading potentially to the failure of the mission [18].
Any collision with a single debris generates new fragments that may collide with other
objects, leading to a chain effect. This mechanism may produce an uncontrolled growth
of the space debris density, defined as Kessler syndrome [17], that may interfere with the
future exploitation and sustainability of the near-Earth space. To mitigate this effect,
several standards have been defined to minimise the possibility of potential or accidental
breakups [15]. For example, these guidelines imply the adoption of passivation measures
devoted to the reduction of explosions likelihood, the use of active avoidance manoeuvres
to limit the probability of collisions during the operational lifetime of the satellite and
the adoption of disposal manoeuvres to reduce the collision risk between uncooperative
satellite and operative spacecrafts and to allow the natural decay of satellite within 25
years from the end of the mission. Despite the introduction of the aforementioned guide-
lines, a risk of accidental breakups remains. Therefore, obtaining a reliable picture of the
evolution of space debris environment is becoming a key element to reduce collision prob-
ability, to identify possible mitigation strategies, to plan active debris removal missions
and to suggest future policies to increase the sustainability of the space activities.

1.2. Literature review

Many methods and algorithms have been developed to propagate the space debris and to
estimate the collision probability and the resulting vulnerability of different operational
satellites. This section introduces a brief overview of these methods together with their
advantages and disadvantages. The debris evolutionary models can be subdivided into
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two main categories: probabilistic and deterministic methods. Deterministic methods
imply the piece-wise propagation of all the fragments and are discussed in Section 1.2.1.
While probabilistic models allow to propagate globally the debris cloud and are reviewed
in Section 1.2.2. Moreover, Section 1.2.3 introduces a brief review of the main techniques
used to estimate the impact hazard.

In addition to these methods, more literature review was needed to derive the method
proposed in this thesis. Section 1.2.4 is devoted to briefly review the main techniques
suitable for solving a general Partial Differential Equation (PDE).

1.2.1. Deterministic evolutionary models

Deterministic approaches allow to propagate fragments individually and, in general, are
characterized by high-fidelity dynamical models and a very accurate prediction of the
motion of each fragment. For example, Anderson and Schaub [3] developed a deterministic
method based on the numerical integration of two-body equations of motion including
4x4 gravitational model, luni-solar perturbations and solar radiation pressure (SRP) to
analyse the effects of on-orbit fragmentation events in the geosynchronous orbit regime.
However, these techniques exhibit a huge drawback: the required computational time is
strongly dependent on the number of fragments included inside the simulations and, thus,
number of fragments must be limited to guarantee that computational effort is compliant
with current computing capabilities. To overcome this issue, several authors decided
to focus mainly only on objects larger than 0.8-1.0 m [3]. But, the inclusion of small
fragments in debris modelling could be useful to obtain a more complete picture of the
debris environment and to avoid underestimating the collision risk or misinterpreting the
effect of mitigation and remediation measures.

Another strategy adopted to reduce the number of samples for each run consists in defining
some representative objects, grouping together several fragments. However, this technique
could potentially lead to the underestimation of the likelihood of a close encounter and
to the overestimation of the collision probability. Therefore, to include centimetre sized
objects in the model and to avoid the adoption of representative objects, fully analytical
approaches have been developed for the propagation of uncontrolled objects in GEO.

Valk et al. [37] provided a Hamiltonian formulation of the equations of motion of a single
space debris orbiting the geostationary ring. This theory was formulated using canoni-
cal and non-singular elements for eccentricity and inclination and included the luni-solar
perturbation together with the influence of the Earth gravity field expanded in spherical
harmonics, paying a particular attention to the resonance occurring for geosynchronous
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objects. Lately, Casanova et al. [9] proposed an improvement of Valk’s approach by devel-
oping an analytical model able to propagate space debris in the geostationary ring under
the effects of Earth oblateness, solar radiation pressure, and the luni-solar perturbation.

Anderson and Schaub [3] derived a harmonic oscillator model to study the longitudinal
evolution of the space debris captured by one of the stable gravitational wells. The
adopted dynamical model was simplified by assuming the J2,2 term only. Thus, solar
radiation pressure, luni-solar perturbation and higher-order harmonics appearing in a full
expansion of the Earth gravitational potential were neglected and the longitudinal motion
of a librating object could be expressed as [3]:

λ(t) = ψm cos

(
2πt

Tl
− ϕ sgn

(
ψ̇0

))
+ λ1,2 (1.1)

where the libration amplitude ψm, the phase shift ϕ, the period of libration Tl, and
angular-velocity-like parameter were computed as [3]:

sinψm =

√
sin2 ψ0 +

ψ̇2
0

k2
,

ϕ = arccos

(
ψ0

ψm

)
,

Tl =
4

k
K (sinψm) ,

k =
6nGEOR⊕

√
J2,2

rGEO

.

(1.2)

Here, K (sinψm) is the complete elliptic integral of the first kind, λ1,2 denotes the closest
gravitational well, ψ = λ−λ1,2 and the initial longitudinal drift rate is equal to ψ̇0 = n0−
nGEO. Another weak point associated to deterministic methods is related to the procedure
needed for the computation of the debris density and, thus, the collision probability.
Spatial density distribution n must be calculated by applying a binning strategy and
discretizing the entire domain; however, these methods show a high sensitivity to the
selected grid spacing.

n = Nfrag/Vcell (1.3)

1.2.2. Probabilistic evolutionary models

Instead of propagating fragments individually, probabilistic methods allow to estimate
fragments density evolution by considering the entire debris clouds as a continuum. These
models have been historically used to describe the evolution of various systems in different
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physical spaces and phase spaces. For example, Nikolai N. Gorïkavyi adopted a proba-
bilistic approach to study the dynamical evolution of interplanetary dust, while McInnes
[29] exploited the continuity equation to model the evolution of a swarm of self-propelled
‘smart dust’ devices in heliocentric orbit driven by solar radiation pressure. Nazarenko
[32] was one of the first authors that decided to adopt a statistical method to describe
space debris density evolution. In particular, he developed a probabilistic approach based
on the continuity equation to analyse space debris evolution in the region of low orbits
under the effect of atmospheric disturbances.

In last years, several authors improved Nazarenko’s method. Kebschull et al. [16] imple-
mented a model based on source and sink mechanisms to study the collision probability
and the environmental criticality in the Low Earth Orbit region. The proposed approach
predicted the evolution of intact bodies and fragments taking into account natural decay,
post mission disposal measures and yearly launches. The modification of the environment
was expressed through a simple differential equation and was integrated by applying a
Euler method.

Letizia and Colombo [20] further developed the method by proposing an analytical density-
based model to describe debris evolution in LEO after fragmentation events. Latter ap-
proach consisted simply in considering fragments population as a fluid with continuous
properties, whose density changed under the aerodynamic drag effects, and, thus, deriving
the evolution of the density through the continuity equation. The algorithm developed
by Letizia [20] was essentially made by a breakup model to generate fragments and their
characteristics, a model to convert debris positions into a continuous density function for
the derivation of the initial conditions for the continuity equation, a numerical model to
propagate fragments individually until analytical method becomes applicable and an an-
alytical formulation to describe the time evolution of cloud density. This method resulted
to be particularly convenient for the space debris propagation due to its limited compu-
tational effort, its capability of including objects of any size and its flexibility. Letizia
et al. [22] applied the aforementioned method to compute the collision probability in LEO
regime. Thanks to its limited computational time and its good accuracy, the method has
been applied to study the impact of different breakups on various target spacecrafts (influ-
ence matrix) and to build a map of collision probability by varying the inclination and the
altitude of the simulated breakup. Lately, Letizia et al. [23] developed a bi-dimensional
extension of the continuity equation method for the space debris collision analysis. In
particular, Letizia et al. [23] proposed an analytical method to propagate fragment clouds
on the phase space defined by the semi-major axis and the eccentricity under the effect of
aerodynamic drag. The 2D propagation provided a more accurate description of the frag-
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ment distribution with respect to the mono-dimensional approach, allowed to precisely
capture the density peak location and to halve the error on its height if compared to
the 1D propagation. In the end, in 2016, Letizia et al. [25] proposed a multidimensional
extension of the continuity equation method for debris clouds evolution. This approach
allowed to include also the effect of the Earth’s oblateness inside the dynamical model
and to improve the description of the drag effect considering the distribution of area-
to-mass ratio and eccentricity among the fragments. The ability of this density-based
model consists in analysing large debris clouds with limited computational effort (both
in terms of simulation time and RAM), making this strategy suitable to simulate many
breakup scenarios and to build an environmental index based on the assessment of their
consequences. Indeed, Letizia et al. [26] adopted the this model to assess breakup effects
on operational aspects of space debris activities, analysing variations in close conjunction
alerts and collision avoidance manoeuvres. Therefore, Letizia et al. [26] defined the ECOB
environmental index as function of properties (area, mass) of several active satellites and
their probability of collision.

1.2.3. Collision probability estimation

Once the time evolution of the space debris is available, the local density of the fragments
should be converted into a collision probability. Despite collision risk is a probabilistic
measure, it can be computed applying both probabilistic and deterministic evolution-
ary methods. Many different techniques can be applied to provide an estimation of the
collision hazard.

Kessler et al. [17] developed a statistical approach to compute the collision probability for
orbiting objects. Exploiting the analogy to the kinetic gas theory, Kessler estimated the
number of impacts per unit cross-sectional area F as:

F = S∆v (1.4)

where S is the debris spatial density and ∆v is the velocity of the fragments relative to
the target. The average number of collisions N was considered as function of number of
impacts F , collisional cross-sectional area Ac and time t [17]:

N = FAct (1.5)
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To finally compute the collision probability between two orbiting objects, Kessler et al.
[17] calculated the spatial density of a single object as:

Si =
ti
Ti

1

∆V
(1.6)

where T denotes the orbital period and ∆V is the selected control volume. Therefore,
Kessler computes the collision rate between two objects as:

ηi,j(∆V ) = SiSj∆vAc∆V (1.7)

In the end, the collision probability was estimated by applying the Poisson function:

Pc = 1− exp−η (1.8)

Liou [28] developed the “Cube” algorithm to extend Kessler method to large set of objects.
This approach is based on the uniform sampling of the system in time and collision risk is
evaluated trough Equation (1.7). The main advantage of this method consists in the fact
that computational time increases linearly with the number of objects, not quadratically.

In the end, a statistical approach, analogous to Kessler’s one, has been proposed by
McKnight and Di Pentino [31] to compute the collision probability in GEO between an
operative satellite and a debris cloud. McKnight highlighted that the dynamics of the
derelict objects relative to the station-kept operational satellites is distinctly different
than in LEO and, thus, proposed an alternative collision hazard methodology applying
a satellite-centered and longitude-dependent reference frame. The developed collision
probability calculation is based on the kinetic theory of gases and is driven by the following
expression [31]:

Pc = 1− exp−S∆vAct (1.9)

The evaluation of local spatial debris density S is performed counting the debris falling
inside a rectangular volume centred on the GEO arc with a length along the GEO arc of
736 km (equivalent to 1◦ in longitude), depth of 400 km in the altitude dimension (i.e.
±200 km ), and a height of 736 km (equivalent to 1◦ in latitude). McKnight concluded
that the probability of collision at in the geostationary regime is not uniform by longitude:
collision hazard is seven time higher I correspondence of gravitational wells (L1) and (L2).
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1.2.4. Resolution methods for Partial Differential Equations

This subsection is devoted to the discussion of methods suitable for solving the continuity
equation. The solution will be exploited to recover the analytical formulation of the cloud
propagation.

Method of characteristics

The method consists in reducing a Partial Differential Equation (PDE) to a set of Ordinary
Differential Equations (ODE). For a first order PDE, this technique allows to recover the
characteristic curves, along which the PDE becomes a simple ODE. The latter can be
solved along the characteristic curves and transformed into a solution of the original
PDE. Given a general quasi-linear partial differential equation [12]:

a(x, t, n)
∂n

∂t
+ b(x, t, n)

∂n

∂x
= c(x, t, n). (1.10)

where t represents time, x a generic time dependent variable, n the density and a(x, t, n),
a(x, t, n), a(x, t, n) are generic functions of t, x and n. Suppose that a solution n(x, t)

is known, and consider the surface graph S ≡ {(x, t, n(x, t))}, the normal vector to this
surface is given by [12]:

N(x, t) =

(
∂n

∂t
,
∂n

∂x
,−1

)
(1.11)

Inserting Equation (1.11) intoEquation (1.10), the following relation is found [12]:

(a(x, t, n), b(x, t, n), (x, t, n)) ·N(x, t) = 0 (1.12)

This implies that the vector field (a, b, c) is tangent to the surface S at every point. In
other words, characteristics curves result to be tangent at each point to the characteristic
direction, defined by (a, b, c) and, thus, can be defined by the following ordinary differential
equations: 

dt

dτ
= a(x, t, n)

dx

dτ
= b(x, t, n)

dn

dτ
= c(x, t, n)

(1.13)

where τ expresses a parametrisation of the characteristic lines.
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Density Mapping

Density mapping relies on the assumption that no source or sink terms are present inside
the domain and, thus, that density is conserved locally. Given the solution of the dynamics
in Equation (3.2), as:

x = φ (x0) (1.14)

the mapping of the density can be obtained as in [36]:

n(x, t) =
n (φ−1(x), t0)

| detJ |
(1.15)

with the Jacobian, J ∈ RD×D, defined as:

Jij =
∂φi

∂x0,j
i, j = 1, 2, . . . , D (1.16)

It is important to highlight that, in the absence of sources and sinks, method of charac-
teristics and density mapping provide equal solutions.

1.3. Scope of the Thesis

This thesis aims to answer several fundamental questions of interest to the GEO operator
community. Firstly, this work presents a density-based model for the propagation of
single debris clouds inside the geosynchronous region. In particular, this study fills a void
in the literature by developing a fully analytical model to study the evolution of debris
clouds generated by fragmentation events under the J2,2 effect. The proposed approach is,
therefore, based on the continuity equation and cloud evolution is analysed in longitude
and drift longitude (λ, λ̇) phase space to identify the longitude slots most susceptible
to rising debris fluxes and to evaluate the correspondent longitude-dependent collision
probability. Secondly, this work provides a fast and reliable tool to evaluate the effects of
critical debris growth mechanisms, such as fragmentation events, on longitude-dependent
congestion at GEO. In the end, it illustrates the effects of fragmentation events on long-
term GEO sustainability providing a map of the collision probability in longitude and
drift longitude phase space.



10 1| Introduction

1.4. Structure of the Thesis

This thesis is organized into four main chapters. The first one discusses the derivation
of an analytical expression able to propagate a single object in GEO regime (Chapter 2).
Chapter 2 presents the adopted simplified dynamical model, derives the equations of
motion and exploits the analogy of the problem with the non-linear pendulum dynamics
to obtain an analytical solution for the prediction of the longitudinal motion of a GEO
object. The second one focuses on the derivation of the density-based model starting from
the continuity equation (Chapter 3). Chapter 3 presents the derivation of the analytical
cloud propagator by applying the method of characteristics to the continuity equation
and introducing the analytical solution derived in Chapter 2. Third chapter shows the
validation process of the cloud propagator and provides the expression for the computation
of the collision probability (Chapter 4). In this chapter, the validation technique consists
in a numerical and graphical comparison with results provided by a piece-wise propagator;
while collision probability is computed by exploiting the kinetic gas theory and using
results obtained with the analytical cloud propagator. In the end, Chapter 5 illustrates
limitations of the developed algorithm together with future possible developments.

This thesis is part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086). This project is European Re-
search Council (ERC) funded project under the European Union’s Horizon 2020 research
(www.compass.polimi.it).



11

2| Dynamics in GEO

The geostationary ring is an important resource for terrestrial satellite industry that is
threatened by a rising number of space debris. As absence of atmospheric drag effects
at Geosynchronous Earth Orbits (GEO) altitudes does not allow a natural decay of Geo-
stationary objects and makes lifetimes of debris infinitely long, continuous conjunction
assessments and collision avoidance manoeuvres must be performed to safeguard func-
tional GEO satellites [1]. GEO satellites, however, must maintain a specific longitude slot
during their whole operational lifetime and, thus, cannot simply phase shift to avoid the
debris. Therefore, the analysis of the geostationary debris evolution is required to identify
the longitude slots most susceptible to rising debris fluxes and forecast how frequently the
operative satellites in these regions must potentially perform manoeuvres to mitigate con-
junction scenarios. To predict the space debris longitudinal motion, numerical methods
are avoided due to the large number of space objects to be propagated; therefore, in this
chapter, an analytical model will be derived by using a simplified dynamical model includ-
ing only the gravitational perturbations caused by both J2 effect due to Earth oblateness
and the tesseral J2,2 effect. This chapter is divided into five main parts. Section 2.1
will introduce a brief overview on adopted reference frames and coordinate systems. Sec-
tion 2.2 will review main perturbations acting on geostationary ring. Section 2.3 will
focus on the derivation of the equation of motion starting from the simplified dynamical
problem. In Section 2.4, the analogy between the derived equation of motion and the
nonlinear pendulum dynamics will be exploited to develop an analytical model for space
debris propagation and to compute period of libration. In the end, Section 2.5 investigates
performances of the developed analytical model.

2.1. Reference frames and coordinate systems

Before deriving the equations of motion describing the longitudinal evolution of GEO
objects, it could be useful to introduce a brief overview on reference frames and coordinate
systems adopted for this study.
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2.1.1. Reference frames

The Earth centered inertial frame (ECI) and Earth-centered Earth-Fixed Frame (ECEF)
are a suitable choice to study the geostationary environment. The ECI is an inertial
reference frame, whose origin is the Earth’s centre of mass and its fundamental plane
coincides with the mean Equator plane at epoch J2000. The X-axis is oriented as vernal
equinox at J2000, Z-axis is aligned with Earth axis of rotation (direction of north) at
J2000 (01/01/2000 at noon GMT), while Y-axis completes the right-handed orthonormal
reference frame. ECEF is a non-inertial reference frame whose origin is located at Earth’s
centre of mass. The X-axis passes through the Equator and Prime Meridian intersection,
Z-axis is aligned with the North Pole, while Y-axis completes the right-handed orthonor-
mal reference frame. This reference frame rotates around Z-axis with angular velocity
equal to Earth rotational speed.

2.1.2. Cartesian and spherical coordinates

Regarding the coordinate systems, both spherical coordinates and Cartesian ones seems to
be a suitable choice to study geostationary ring dynamics. Cartesian coordinates describe
a position with three orthogonal basis vectors, aligned with the three orthogonal axes
of the coordinate frame. Position and its rates of change are then specified by a linear
combination of these unit vectors. While, spherical coordinates are curvilinear coordinates
commonly used to describe positions on a sphere or spheroid. In this coordinate system,
a position is specified by the radial distance from a fixed origin, a polar angle measured
from a fixed zenith direction and an azimuthal angle. To achieve a simpler expression of
the gravitational field, in this work, spherical coordinates are preferred to Cartesian ones.

2.1.3. Coordinates transformation

Given a position vector r = (r, λ, ϕ) in a spherical coordinate system, the corresponding
position vector in Cartesian coordinates p = (x, y, z), can be obtained as:


x = r cosλ cosϕ,

y = r sinλ cosϕ,

z = r sinϕ.

Furthermore, representing both Cartesian and spherical coordinate systems (Figure 2.1),
it is possible to notice that unit vectors associated to the spherical coordinate system (r̂,
λ̂, ϕ̂) can be retrieved applying a simple rotation matrix to Cartesian coordinates versors
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(Î, Ĵ , K̂) [10]:

Figure 2.1: Geometry of Cartesian and spherical coordinate systems.The unit vectors for
Cartesian frame (Î, Ĵ , K̂ ) can be seen with their spherical counterparts (r̂, λ̂, ϕ̂).

R =

 cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ


 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 =

 cosϕ cos θ cosϕ sin θ sinϕ

− sin θ cos θ 0

− sinϕ cos θ − sinϕ sin θ cosϕ


In this study, an ECI reference frame is adopted and both ϕ and θ are considered as
time dependent variables. ϕ coincides with GEO object latitude, while θ represents GEO
object’s longitude relative to the vernal equinox and is defined as sum between right
ascension of Greenwich meridian, local longitude and Earth rotation contribution:

θ = αG + Ω⊕ · t+ λ(t)

Thus, the expressions of rotating frame unit vectors can be obtained by substituting last
expression inside the rotation matrix:

r̂ = cosϕ cos θÎ + cosϕ sin θĴ + sinϕK̂,

λ̂ = − sin θÎ + cos θK̂,

ϕ̂ = − sinϕ cos θÎ − sinϕ sin θĴ + cosϕK̂
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Moreover, time derivatives of rotating frame unit vectors can be computed in few passages
[10]:

dr̂

dt
= θ̇ cosϕ λ̂+ ϕ̇ ϕ̂,

dλ̂

dt
= −θ̇ cosϕ r̂ + θ̇ sinϕ ϕ̂,

dϕ̂

dt
= −ϕ̇ r̂ − θ̇ sinϕ λ̂,

d2r̂

dt2
=
(
−θ̇ cos2 ϕ− ϕ̇2

)
r̂ +

(
1

cosϕ

d

dt

(
θ̇2 cos2 ϕ

))
λ̂+

(
θ̇2 cosϕ sinϕ+ ϕ̈

)
ϕ̂.

and, finally, the generic expression of acceleration in spherical coordinates can be derived
recalling that a position vector can be defined as r = r r̂:

r̈ = r̈ r̂ + r
d2r̂

dt2
=


r̈ − rθ̇2 cos2 ϕ− rϕ̇2

1

r cosϕ

d

dt

(
r2θ̇ cos2 ϕ

)
1

r

d

dt

(
r2ϕ̇
)
+ rθ̇2 cosϕ sinϕ


(2.1)

2.2. GEO region main perturbations

After introducing reference frames and coordinate systems, a brief review of major per-
turbations acting in the geostationary ring should be performed. First, the third body
forces that are resulting disturbances caused by the presence of gravitating objects in
addition to the primary attractor. Sun and Moon are the main perturbative sources for
satellites orbiting around Earth. Particularly, in GEO, luni-solar perturbation will induce
a 53-year cyclical precession of the orbit plane [6]. The solar radiation pressure is
caused by direct electromagnetic radiation coming from Sun. Magnitude and direction of
the resultant acceleration depends on illumination area-to-mass ratio, surface reflectivity
and orientation of the orbiting object. In GEO, this produces a significant drift in the ec-
centricity vector of the orbit [39]. The Earth’s non-spherical perturbation is caused
by the non-spherical mass distribution of Earth. Earth’s non-spherical gravitational field
is modelled using the spherical harmonics approach, which consists in superimposing suc-
cessive orders of non-spherical contributions to a main spherical gravitational field. The
disturbing potential, therefore, can be expressed as a function of radius r, longitude λ
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and latitude ϕ [10]:

U(r, ϕ, λ) =
(µ
r

)( ∞∑
n=2

(
R⊕

r

)n
{
JnPn,0[sin(ϕ)] +

n∑
m=0

Jn,mPn,m[sin(ϕ)] cosm (λ− λn,m)

})

(2.2)

where n andm are respectively degree and order of the harmonics, R⊕ is Earth’s equatorial
mean radius, Pn,m [sin(ϕ)] is the Associated Legendre Function of degree n,m, Jn is a n
degree zonal harmonic potential and Jn,m is a general tesseral harmonic potential. The
terms Jn,m and λn,m are derived from coefficients of the Earth’s gravity model as [27]:

Jn,m =
√
C2

n,m + S2
n,m, λn,m =

1

m
arctan

Sn,m

Cn,m

(2.3)

It could be useful to highlight that n = m = 0 corresponds to the spherical contribution,
while n = 2 and m = 0 is associated to J2 effect caused by Earth oblateness, which is the
dominant term among zonal harmonics and is able to induce secular nodal regression and
perigee precession. The n = m = 2 case corresponds to the resonant tesseral harmonics
J2,2, which is responsible of east-west perturbations on geostationary objects [27].

2.3. Simplified dynamical model in GEO

Once reviewed the main effects of GEO perturbing sources, a comparison on disturbing
accelerations at geostationary altitude should be introduced. Figure 2.2 shows that the

Figure 2.2: Order of magnitude of main perturbations in GEO. Credit to Valk et al. [38]
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order of magnitude of luni-solar perturbation and SRP (in case of large area-to-mass ra-
tios) are comparable in size to the one associated to Earth oblateness and that resonant
tesseral harmonics will induce a slightly lower acceleration. However, the average varia-
tion of the semi-major axis caused by the lunisolar attraction and average value of the
perturbation of mean longitude drift rate due to the solar radiation pressure equal zero
in a day, meaning that both luni-solar perturbation and SRP have no long periodical ef-
fects on the semi-major axis of geostationary orbit [27]. Therefore, to achieve a long-term
prediction of the longitudinal motion of large space debris clouds, a dynamical model in-
cluding only the gravitational perturbation is adopted. In particular, as contributions of
non-aspheric perturbation terms on the geostationary orbit tend to shrink by increasing
the order of the model, a simplified dynamical model including only J2 and J2,2 effects
is selected allowing the derivation of a fully analytical propagation. It is important to
highlight that Anderson and Schaub [3] had already tested the accuracy of this simplified
dynamical model against a high-fidelity propagator. As illustrated by Figure 2.3, Ander-
son concluded that this model is able to precisely predict the longitudinal motion of GEO
objects within 2 years reducing significantly the computational effort.

(a) Anderson’s harmonic oscillator
model (J2 and J2,2).

(b) Longitude histories(4x4 gravi-
tation, luni-solar perturbations and
SRP).

Figure 2.3: Accuracy of Anderson’s harmonic oscillator model for predicting longitudes
of librating fragments. Credit to Anderson and Schaub [3].
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Therefore, under the assumptions previously introduced, the potential function describing
GEO dynamics can be written as:

U(r, ϕ, λ) =
(µ
r

)[
1 + J2

(
R⊕

r

)2(
3 sin2 ϕ− 1

2

)
+ 3 J2,2

(
R⊕

r

)2

cos2 ϕ cos 2 (λ− λ2,2)

]

(2.4)

where J2 and J2,2 are retrieved applying equation (2.3) to JGM-3 gravitational model [27],
resulting in J2 = −1082.627 · 10−6 and J2,2 = 1.815528 · 10−6.

Accordingly, acceleration components can be retrieved by differentiating gravitational
potential in spherical coordinates (r, ϕ, λ):

ar =
∂U

∂r
= − µ

r2
−

3J2µR
2
⊕

2r4
(
3 sin2 ϕ− 1

)
−

9J2,2µR
2
⊕

r4
cos2 ϕ cos 2 (λ− λ2,2),

aλ =
1

r cosϕ

∂U

∂λ
= −

6J2,2µR
2
⊕

r4
cosϕ sin 2 (λ− λ2,2),

aϕ =
1

r

∂U

∂ϕ
=

3J2µR
2
⊕

r4
sinϕ cosϕ−

6J2,2µR
2
⊕

r4
cosϕ sinϕ cos 2 (λ− λ2,2).

(2.5)

Finally, the general form of the equations of motion is obtained by using equations (2.5)
and (2.1). 

r̈ − rθ̇2 cos2 ϕ− rϕ̇2 = ar,

1

r cosϕ

d

dt

(
r2θ̇ cos2 ϕ

)
= aλ,

1

r

d

dt

(
r2ϕ̇
)
+ rθ̇2 cosϕ sinϕ = aϕ.

(2.6)

Equation of motion can be further simplified to describe the longitudinal evolution of
GEO space debris. Indeed, since uncontrolled GEO objects tend naturally to arrange on
orbits with inclination between −15◦ and 15◦ [6], space debris can be considered on quasi-
equatorial orbits. Therefore, recalling that θ̇ = Ω⊕ + λ̇ and introducing the assumption
that ϕ is a small angle (ϕ ≈ 0), previous system becomes:

r̈ = r(Ω⊕ + λ̇)2 − µ

r2
+

3J2µR
2
⊕

2r4
−

9J2,2µR
2
⊕

r4
cos 2 (λ− λ2,2),

λ̈ =
1

r

(
−
6J2,2µR

2
⊕

r4
sin 2 (λ− λ2,2)− 2ṙ(Ω⊕ + λ̇)

)
.

(2.7)

Then, by differentiating twice these two equations, a fourth-order equation in λ can be
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retrieved:
....
λ + Ω2

⊕λ̈− 24Ω3
⊕J2,2

R2
⊕

r2
sin 2 (λ− λ2,2)λ̇− 18Ω4

⊕J2,2
R2

⊕

r2
sin 2 (λ− λ2,2) = 0 (2.8)

Since it has already been proven that time evolution of λ is a low-frequency solution with
negligible damping [13], first and fourth derivative terms of equation (2.8) can be dropped
obtaining the following non-linear differential equation:

λ̈ = 18Ω2
⊕J2,2

R2
⊕

r2
sin 2 (λ− λ2,2) (2.9)

It is important to highlight that only J2,2 coefficient appears in last equation and, thus,
that J2 effect is completely dropped in this simplified dynamical model. Moreover, the
assumption of quasi perfect geostationary orbit can be introduced to drop the dependence
on time of the term 18Ω2

⊕J2,2
R2

⊕
r2

and to obtain a non-linear pendulum like equation:

λ̈ = 18Ω2
⊕J2,2

R2
⊕

a2GEO

sin 2 (λ− λ2,2) (2.10)

Once derived the equation of motion, an analysis on equilibrium points, stability and inte-
grals of motion is performed. Equilibrium points are found by re-writing equation (2.10)
into a set of first-order differential equations and setting equal to zero time derivatives of
λ and λ̇. 

dλ

dt
= λ̇,

dλ̇

dt
= 18Ω2

⊕J2,2
R2

⊕

a2GEO

sin 2 (λ− λ2,2) .
(2.11)

Then, stability of equilibrium points is investigated by linearizing the equation of motion
around those points and computing the roots of the corresponding characteristic equa-
tions. This analysis results in the identification of two stable gravitational wells (L1 and
L2) among the four equilibrium points:

Equilibrium point Longitude Stability

L1 75.071◦ E⋆ Stable

L2 104.929◦ W Stable

L3 14.929◦ W Unstable
L4 165.071◦ E Unstable

⋆ E = East, W = West

Table 2.1: Equilibrium points.

In the end, the integral of motion is derived by manipulating equation (2.10). Firstly,
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equation of motion is multiplied by 2λ̇ and sin 2(λ− λ2,2) is substituted with 2 sin(λ −
λ2,2) cos(λ− λ2,2):

2λ̇λ̈− 36 · 2Ω2
⊕J2,2

(
R⊕

aGEO

)2

sin(λ− λ2,2) · cos(λ− λ2,2)λ̇ = 0

Secondly, noticing that 2λ̇λ̈ =
d(2λ̇2)

dt
and 2 sin(λ − λ2,2) cos(λ − λ2,2)λ̇ =

d(sin2(λ−λ2,2))
dt

,
previous expression is re-written as:

d

(
λ̇2 − 36Ω2

⊕J2,2

(
R⊕

aGEO

)2
sin2(λ− λ2,2)

)
dt

= 0

Finally, integral of motion is derived by integrating previous expression:

E = λ̇2 − 36Ω2
⊕J2,2

(
R⊕

aGEO

)2

sin2 (λ− λ2,2) (2.12)

Equation (2.12) is therefore used to investigate GEO objects behaviour in (λ,λ̇) phase
space. After recalling that this study focus on a lossless system since no dissipative forces
are considered inside the dynamical model, it is important to highlight that a GEO object
will preserve its initial energy E0 and, thus, that its motion in the phase space will be
energetically constrained. Indeed, given an initial energy E0, future states must satisfy
the following relation:

E0 = λ̇2 − 36Ω2
⊕J2,2

(
R⊕

aGEO

)2

sin2 (λ− λ2,2) (2.13)

Figure 2.4 provides a graphical representation of energy distribution in longitude and drift
longitude phase space. This figure shows that longitude evolution can be distinguished
into circulating and librating regimes depending on the initial energy level of the object. If
E > 0, GEO objects exhibit a drifting behaviour, moving between L3 and L4 equilibrium
points. Conversely, objects with E < 0 are captured by one of gravitational wells, show-
ing a circulating motion in (λ,λ̇) phase space. Aforementioned regimes are energetically
divided by a separatrix (E = 0), which is defined by the following expression:

λ̇spx = ±Ω sin(λ− λ2,2) (2.14)

where Ω = 6Ω⊕
√
J2,2

R⊕
aGEO

.
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Figure 2.4: (λ,λ̇) Phase space.

The same analysis can be performed in (λ,∆a) phase space (Figure 2.5) exploiting equation
Equation (2.12) and the following relation between longitudinal drift and semi-major axis:

λ̇ = − 3Ω⊕

2aGEO

∆a = − 3Ω⊕

2aGEO

(a− aGEO) (2.15)

As depicted in Figure 2.5, GEO objects with semi-major axis lower than ideal geosyn-
chronous orbit radius are characterised by an eastward longitudinal drift, while objects
with higher orbital energy reveal a westward longitudinal drift. As for the (λ,λ̇) phase
space, the (λ,∆a) phase space presents circulating and drifting regimes, separated by the
separatrix:

∆aspx = ± 2aGEO Ω

3Ω⊕
sin(λ− λ2,2) (2.16)

It is fundamental to notice that the circulating motion occurs in proximity to the gravita-
tional well closest to the initial longitude λ0. For example, despite the circulating regions
close to L1 and L2 share the same energy levels, an L1 object would be energetically
bounded around the correspondent gravitational well and would not not be able to reach
L2 librating region.
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Figure 2.5: (λ,∆a) Phase space.

2.4. Analytical solution

This section is dedicated to the study carried out to identify the analytical solution of
Equation (2.10). The first step consists in performing a change of variable, substituting
λ with the modified longitude ϑ:

ϑ = 2(λ− λ2,2 ±
π

2
) (2.17)

where ϑ represents twice the distance from a stable equilibrium point. Its introduction
allows to re-write the equation of motion as a simple nonlinear pendulum equation:

ϑ̈+ Ω2 sinϑ = 0 (2.18)

Before deriving the analytical solution of Equation (2.18), some energy considerations
must be introduced. As the considered pendulum is a lossless system, the total energy
of the system will be preserved for all instances. The latter can be obtained as the sum
between kinetic and potential energy evaluated at time zero:

Ê0 = ϑ̇2
0 + Ep sin

2 (ϑ0/2) with Ep = 4Ω2

Figure 2.6 shows that pendulum is able to swing over if its initial energy Ê0 is greater
than the maximum potential energy Ep, while if Ê0 < Ep pendulum swings only back and
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forth. It is important to notice that, due to the similarity between the pendulum and the
Equation (2.10) formulations, the swinging case corresponds to a drifting object in (λ,λ̇)
phase space, while the circulating motion is represented by a nonlinear pendulum with
insufficient energy for swinging over.

Figure 2.6: Nonlinear pendulum energy in (ϑ, ϑ̇) phase space. Plot is generated with
Ω = 1.

Starting from the analysis of the swinging case, the conservation of energy is exploited to
calculate the angular velocity of the pendulum ϑ̇:

ϑ̇2 = Ê0 − Ep sin
2 ϑ/2 ≥ Ê0 − Ep ≥ 0 (2.19)

Hence, noticing that the angular velocity of a swinging pendulum maintains unaltered its
sign, the square root of previous expression is obtained by substituting the absolute value
with initial sign of the angular velocity:

ϑ̇ = sgn(ϑ̇0)

√
Ê0 − Ep sin

2 ϑ/2 (2.20)

Defining k as the square root of the ratio Ê0/Ep, κ as the inverse of k and substituting
ϑ = 2 θ, Equation (2.20) can be rewritten as follows:

dθ

dt
= sgn(θ̇0)kΩ

√
1− κ2 sin2 θ (2.21)
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Then, separation of variable is performed to obtain a more suitable form:

dθ√
1− κ2 sin2 θ

= sgn(θ̇0)kΩdt (2.22)

For the sake of clarity, before integrating Equation (2.22), the definitions of incomplete
and complete integrals of the first kind are recalled.

F (Φ | k) =
∫ Φ

0

dθ√
1− k2 sin2(θ)

F (π/2 | k) = K(k) =

∫ π/2

0

dθ√
1− k2 sin2(θ)

Observing carefully elliptic integral expressions, it is possible to notice that integration
from t0 to t of Equation (2.22) will lead to the following solution:

F (ϑ/2 | κ)− F (ϑ0/2 | κ) = sgn
(
ϑ̇0

)
kΩ [t− t0] (2.23)

Moreover, highlighting that the absolute value of the initial angle is bounded by π, the
formulation of F (ϑ0/2 | κ) can be rewritten as:

F (ϑ0/2 | κ) = F (arcsin (k0) | κ) = sn−1 (k0 | κ) (2.24)

where sn is a JACOBI elliptic function and k20 is the ratio between the initial potential
energy and Ep [33]. Therefore, following Ochs’ approach [33], Equation (2.23) takes the
form

F (ϑ/2 | κ) = θ(t) (2.25)

in which the linear function θ(t) is expressed as:

θ(t) = sgn
(
ϑ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) (2.26)

To retrieve an analytical solution, sn Jacobi elliptic function must be applied to Equa-
tion (2.25). Special diligence is required for this mathematical passage because sn(θ(t) | κ)
function is capable of delivering sin(ϑ/2) only if the sign on the right-hand side is cor-
rected. Thus, the solution becomes:

sin(ϑ/2) = sn(θ(t) | κ) sgn(cn(θ(t) | κ)). (2.27)

In the end, angular velocity can be found by inserting Equation (2.27) in Equation (2.20)
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and final solution becomes:
θ(t) = sgn

(
ϑ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) ,

ϑ(t) = 2 arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ)),

ϑ̇(t) = sgn
(
ϑ̇0

)√
Ê0dn(θ(t) | κ).

(2.28)

where cn, sn, dn are JACOBI elliptic functions. Theoretically, analytical solution should
be derived also for Ê0 < Ep case because Equation (2.19) is no longer valid and, also,
sign of angular velocity of the pendulum can change during the motion. However, Ochs
[33] demonstrated the research of a new analytical solution is not necessary, because
Equation (2.28) holds also for a pendulum with insufficient energy for swinging over.
Moreover, a simpler solution can be derived in case of null initial angular velocity. Indeed,
for this peculiar initial condition, k result to be equal to k0 and the analytical solution
becomes:


θ(t) = Ω [t− t0] + K(k),

ϑ(t) = 2 arcsin(k sn(θ(t) | k)),

ϑ̇(t) =

√
Ê0cn(θ(t) | k).

(2.29)

Finally, the analytical expressions for longitude and drift longitude propagation can be
directly obtained exploiting the analytical solution for a swinging pendulum and Equa-
tion (2.17):

θ(t) = sgn
(
ϑ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) ,

λ(t) =
1

2
ϑ(t) + λ1,2 = arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ)) + λ1,2,

λ̇(t) =
1

2
ϑ̇(t) =

1

2
sgn

(
ϑ̇0

)√
Ê0dn(θ(t) | κ).

(2.30)

where λ1,2 is the longitude of the closest gravity well and is defined as
(
λ2,2 ± π

2

)
.

Following Ochs’ approach [33], drifting period T can be evaluated as twice of the period
of a swinging pendulum:

T = 4κK(κ)/Ω (2.31)

The amplitude and the period of librating objects can be approximated using the following
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formulas derived by Anderson and Schaub [3]:
sinϑm =

√
sin2

(
ϑ0

2

)
+
ϑ̇0

2

4k2
,

T =
4

k
K(sinϑm).

(2.32)

where K is the complete elliptic integral of the first kind and ϑm denotes the libration
amplitude.

A corrective algorithm is needed to properly retrieve the evolution over time of λ in case
of drifting objects. Indeed, Equation (2.30) includes an arcsin function which returns
values between −π

2
and π

2
. This implies that modified longitude ϑ must be referred the

proper period by comparing time instants with the corresponding drifting period and by
checking consistency between sign of initial drift longitude ϑ̇0 and the variation of the
modified longitude.

Algorithm 1 Analytical solution for swinging pendulum
1: mold = 0 ▷ Initializing ratio between instant of time and period T
2: flag = 0 ▷ Initializing flag variable for period change
3: for i = 1 : Ninstants do
4: m = floor(ti/T )

5: t̂i = mod(ti/T ) ▷ Referring to first period
6: ϑ(ti), ˙ϑ(ti)← Eq. (2.28)
7: if mold ̸= m then
8: flag = 0

9: end if
10: if t̂i == 0 then ▷ ti is a multiple of period T
11: flag = 0

12: ϑ(ti) = ϑ(t0) + 2π sgn(ϑ̇(t0)) ·m
13: else ▷ Checking consistency between sign of initial ϑ̇ and variation of ϑ
14: if flag == 1 or sgn(ϑ̇(t0) ̸= sgn(ϑ(ti)− ϑ(t0)) then
15: flag = 1

16: m = m+ 1

17: end if
18: ϑ(ti) = ϑ(t0) + 2π sgn(ϑ̇(t0)) ·m
19: end if
20: mold = floor(ti/T )

21: end for
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2.5. Performance analytical propagation

To complete the chapter, performances of analytical model are investigated. Comparisons
in terms of CPU time and accuracy are therefore performed between analytic approach,
numerical model affected by only J2,2 harmonic, numerical propagation under J2,2 and J2
effects, and a numerical 3 × 3 gravitational model. Following simulations are performed
with a CPU Intel i7-6700HQ (2.60Ghz) and RAM at 2133 MHz (32Gb).

The solution affected by J2,2 harmonic is derived integrating numerically the pendulum-
like equation, while the longitudinal evolution under J2,2 and J2 effects is evaluated by
applying an integration scheme to Equation (2.7).

Regarding the 3 × 3 model, the gravitational potential function is retrieved through the
spherical harmonics approach introducing the assumption of quasi equatorial orbits [27]:

U(r, ϕ, λ) =
(µ
r

)[
1− 1

2
J2

(
R⊕

r

)2

+ 3J2,2

(
R⊕

r

)2

cos 2 (λ− λ2,2)

−3

2
J3,1

(
R⊕

r

)3

cos (λ− λ3,1) + 15J3,3

(
R⊕

r

)3

cos 3 (λ− λ3,3) +
3

8
J4

(
R⊕

r

)4
]

(2.33)

where µ is Earth gravitational parameter, r is the geocentric distance from Earth, n and
m are respectively degree and order of the harmonics, R⊕ is Earth’s equatorial mean
radius, Jn is a n degree zonal harmonic potential, Jn,m is a general tesseral harmonic
potential and the gravitational coefficients Jn,m and λn,m are retrieved from JGM-3 Earth
gravitational model (Table 2.2)[27]:

n m Jn × 10−6 n m Cnm × 10−6 Snm × 10−6 Jnm × 10−6 λnm (◦)

2 0 −1082.627 2 2 1.574536 −0.903868 1.815528 −14.929
3 0 2.532435 3 1 2.192799 0.2680119 2.2091169 6.968

4 0 1.619331 3 3 0.100559 0.197201 0.2213602 20.994

Table 2.2: JGM-3 Earth gravity model (3× 3).

The equations of motion are obtained differentiating Equation (2.33) using spherical co-
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ordinates and equating acceleration components to Equation (2.1) [10].

r̈ = r
(
Ω⊕ + λ̇

)2
− µ

r2
+

3

2
µJ2

R2
⊕

r4
− 9µJ2,2

R2
⊕

r4
· cos 2 (λ− λ2,2)+

+ 6µJ3,1
R3

⊕

r5
· cos (λ− λ3,1)− 60µJ3,3

R3
⊕

r5
cos 3 (λ− λ3,3)−

15

8
µJ4

R4
⊕

r6
,

λ̈ =
1

r

[
−2ṙ

(
Ω⊕ + λ̇

)
− 6µJ2,2

R2
⊕

r4
sin 2 (λ− λ2,2) +

3

2
µJ3,1

R3
⊕

r5
sin (λ− λ3,1)+

−45µJ3,3
R3

⊕

r5
· sin 3 (λ− λ3,3)

]
.

(2.34)

Hence, 3× 3 solution is computed by integrating numerically Equation (2.34).

Figure 2.7 provides a graphical comparison between the analytical solution and the afore-
mentioned numerical methods by setting different energy levels. Figure 2.7a represents
the longitudinal evolution of a circulating object (L1) with initial ∆a = 20 km. Con-
versely, Figure 2.7b and Figure 2.7c predict the longitudinal motion of a drifting object
imposing respectively ∆a = 200 km and ∆a = 500 km. Figure 2.7 shows that analytical
solution’s accuracy tends to shrink by increasing the distance from the perfect geosyn-
chronous orbit and by rising the orbit eccentricity. As the orbit gets away from perfect
synchronous one, it is possible to appreciate a growing time delay in the reconstruction
of longitudinal behaviour. Therefore, it is possible to conclude that analytical method
shall be used to provide, at most, a 2-year prediction of longitudinal evolution for objects
orbiting in quasi-circular and quasi-equatorial orbits falling inside the GEO protected
region (|a− aGEO| <200 km) or a 1-year prediction for objects with |a− aGEO| <500 km.

In the end, an investigation on computational times is conducted by performing 20 tests
for both drifting and librating conditions. ODE113 is adopted as integration scheme
to numerically integrate equations of motion of J2,2, J2,2 and J2, and 3 × 3 models.
Following results are provided by setting AbsTol = 1e−6 and RelTol = 1e−8 trading-off
between accuracy and the number integration steps. For the sake of completeness, it
should be recalled that AbsTol represents an absolute tolerance below which the value
of the numerical solution becomes unimportant. If the absolute value of the solution is
lower than AbsTol, then the solver does not need to provide any correct digits inside the
solution. While RelTol computes the error relative to the absolute value of each solution
component. Therefore, RelTol allows to modify the number of correct digits inside all
solution components, except those smaller than AbsTol.

Figure 2.8 highlights that analytical solution enables to reduce significantly the compu-
tational time. Indeed, the analytical model is approximately 350 times faster than 3× 3

model and 2 times faster than the J2,2 numerical model.
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(a) |a− aGEO| = 20km.

(b) |a− aGEO| = 200km.

(c) |a− aGEO| = 500km.

Figure 2.7: Longitudinal evolution: comparison between analytical and numerical models.

Figure 2.8: CPU time: comparison between analytical method and numerical models.
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Once an analytical model for propagation of a single GEO object is derived, it is neces-
sary to develop a strategy to obtain a reliable picture of GEO space debris environment
evolution after a fragmentation event.

Current studies on the effects of fragmentations in the geosynchronous regime usually
adopt a deterministic approach, propagating individually fragments. Anderson and Schaub
[4], for example, implements a piece-wise propagation integrating numerically the two-
body equations of motion including 4x4 EGM-96 gravitational model, luni-solar perturba-
tions, and solar radiation pressure (SRP) effects. The adopted 4x4 EGM-96 gravitational
model includes aspherical contributions until the fourth order and brings gravitational co-
efficients form the EGM-96 spherical harmonic model developed by the National Imagery
and Mapping Agency (NIMA), the NASA Goddard Space Flight Center (GSFC), and the
Ohio State University. The main advantage of this approach consists in implementing a
high-fidelity dynamical model and, therefore, obtaining a very accurate prediction of the
motion of each fragment. However, as all deterministic methods, this technique is affected
by a huge drawback. Computational effort, indeed, is strongly influenced by the number
of fragments included inside the simulation. For this reason, Anderson decided to focus
its analysis only on objects larger than 0.8 - 1.0 m.

However, as anticipated before, also debris smaller than 1 m represent a potential threat
for operational satellites. Thus, the inclusion of small fragments in debris modelling is
fundamental to obtain a more complete picture of the debris environment and to avoid
underestimating the collisional risk. Hence, deterministic methods are not suitable for
modelling the motion of large debris clouds. In this chapter, an efficient method based
on the continuum equation is developed to describe the evolution of fragment clouds
generated by an explosion or a collision in space. The proposed approach, analogous to
the one adopted by Letizia and Colombo [21] for the modeling of debris clouds in the LEO
region, consists in considering fragments population as a fluid with continuous properties,
whose density changes under the effects of relevant perturbations. Thus, the evolution of
fragment density n(x, t) in time t and phase space x can be described by the continuity
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equation [21]:
∂n

∂t
+∇ · (nF ) = n+ − n− (3.1)

with the divergence operator ∇·, source terms n+, sink terms n− and the flow defined by
the dynamics F

dx

dt
= F (3.2)

As, in this analysis, all fast and discontinuous events (for example injection of new frag-
ments due to launches and active removal missions,) are neglected, continuity equation
becomes [21]:

∂n

∂t
+∇ · (nF ) = 0 (3.3)

In particular, Figure 3.1 illustrates the main building blocks characterizing the developed
algorithm:

• a break up model that simulate collisions and explosions, given the energy of the
fragmentation event;

• an analytical model to propagate fragments piece-wise until the cloud propagation
becomes applicable;

• a method to convert orbital parameters of each single fragment into a continuous
density function;

• a fully analytical cloud propagator to analyse time evolution of space debris cloud.

Figure 3.1: Analytical propagator building blocks.

Therefore, this chapter is divided into five main parts. Section 3.1 describes the standard
breakup model adopted to simulate fragmentation events. Section 3.2 focuses on the
analytical piece-wise propagator and the identification of the main evolutionary phases
of a debris cloud. Then, Section 3.3 discusses the derivation of the fully analytical cloud
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propagator, while Section 3.4 introduces a method to translate the information about
orbital parameters of each single fragment into a continuous density function. In the end,
Section 3.5 illustrates an example of application of the cloud propagation.

3.1. Break-up modelling

A breakup model allows to simulate fragmentation events (collisions or explosions) and to
describe the distribution of the fragments in terms of characteristic length, area-to-mass
ratio and velocity. The dispersion of these parameters depends on the nature of the event
(i.e., collision or explosion), type of objects (i.e., rocket body or spacecraft) and the energy
involved in the fragmentation event. In this work, fragmentation particles are generated
by adopting the NASA Standard Breakup Model, which is an empirical method that
adopts the characteristic length Lc of the fragment as independent variable to retrieve
main properties of the cloud. Fragment features (i.e., mass, area and velocity) are derived
from distribution functions and, therefore, vary at each run of the model even if initial
conditions are unaltered. Different distribution functions are used to describe explosions
and collisions. Indeed, collisions usually generate a large number of fragments with high
relative velocities, while explosions produce larger fragments with lower speed. Moreover,
in the NASA SBM, impactor kinetic energy per target mass is used to distinguish between
catastrophic and non-catastrophic collisions. In particular, if the threshold value of Ẽ∗

p =

40 J/g is exceeded, the model simulate the complete destruction of the target body [18].
In case of explosions, the cumulative number of fragments Nfrag does not depend on the
mass of the parent body and is computed through the following power law [18]:

Nfrag(d ≥ Lc) = 6s · L−1.6
c (3.4)

where Lc is the characteristic dimension of the fragments and s is an event-specific calibra-
tion constant for historic events and, in this work, is set equal to 1. For collision events,
Nfrag is function of both the fragmentation mass Mc and the relative impact velocity vc
[18]:

Nfrag(d ≥ Lc) = 0.1M0.75
c · L−1.71

c (3.5)

where [18]

Mc =

{
mt +mp [kg] for Ẽp ≥ Ẽ∗

p [ catastrophic ]

(mpvc) /1000 [kg m/s] for Ẽp < Ẽ∗
p [ non-catastrophic ]

(3.6)
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Here, mt and mp are respectively the target and impactor masses, while Ẽp =
1
2

(
mp

mt

)
v2c

denotes the specific impact energy.

Fragments area-to-mass ratio are sampled from a bi-modal probability density function
[18]:

p(χ, β) = ξ(β)p1(χ) + (1− ξ(β))p2(χ), pi(χ) =
1

σi
√
2π

exp

(
−(χ− µi)

2

2σ2
i

)
(3.7)

where means µi, standard deviations σi and weighting functions ξ(β) depends on effective
diameter and type of object. For objects with characteristic dimension d > 11cm the
NASA model discriminates between fragments from spacecraft and rocket stages, with
calibrated quantities ξ(β), µ1,2(β), and σ1,2(β). For spacecraft one gets ξ ∈ [0.5, 1.0], µ1 ∈
[−0.9,−0.45], µ2 = −0.9, σ1 = 0.55, and σ2 ∈ [0.1, 0.28]. For orbital stages one finds
ξ ∈ [0.0, 1.0], µ1 ∈ [−0.95,−0.6], µ2 ∈ [−2.0,−1.2], σ1 ∈ [0.1, 0.3], and σ2 ∈ [0.3, 0.5]. For
smaller fragments of d < 8.0 cm for spacecraft, and of d < 1.7 cm for upper stages, the
second term in Equation (3.7) is dropped (ξ = 1.0) to generate a single-mode, normal
distribution with parameters µ1 ∈ [−1.0,−0.3] and σ1 ∈ [0.2, 0.2+0.1333(β+3.5)]. Then,
the effective cross sectional area A of each fragment is obtained applying an explicit
function of the effective diameter [18]:

A
[
m2
]
=

0.540424(d/[m])2 for d < 1.67mm

0.556945(d/[m])2.0047077 for d ≥ 1.67mm
(3.8)

Fragment mass can be determined from

m =
A

A/m
(3.9)

where A is derived from Equation (3.8), and A/m is statistically sampled via Equa-
tion (3.7). While imparted fragmentation velocities ∆vi can be sampled from a normal
distribution function. More details regarding the implementation and input parameters
of the NASA breakup model can be found in [18].

As proposed by Anderson [3], an upper limit of 1 m and a lower limit of 5 cm are set in
the following analysis for the implementation of the NASA break up model.
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3.2. Analytical piece-wise propagation

Piece-wise propagation can be used to study individually the time evolution of fragments
until the cloud propagation becomes applicable and, also, to investigate the behaviour of
a general fragment cloud in the (λ, λ̇) phase space. Specifically, in this work, an analytical
piece-wise propagation is adopted by using the analytical solution derived for the nonlinear
pendulum like equation. Despite the lower accuracy, the analytical method is preferred
to the numerical ones for its reduced computational effort Figure 2.8 and, therefore, its
capability of including small fragments inside the simulations.

Once the fragments are generated with the NASA breakup model and their characteristics
are defined (i.e., area and mass), position and velocity of each fragment can be derived.
At time of fragmentation, all debris are supposed to share the same position on the parent
orbit, which corresponds to the location of the fragmentation event. While velocities are
computed by summing the corresponding imparted fragmentation velocity ∆vi with the
velocity of the parent object at the fragmentation instant. By performing a conversion
from Cartesian to Keplerian coordinates, orbital parameters of all the fragments can be
determined. In particular, semi-major axis can be evaluated as:

ai =
1

2
ri
− v2i

µ

(3.10)

Then, the fragments can be mapped in (λ, λ̇) phase space and evolution of the cloud can
be investigated by propagating individually the debris with Equation (2.30). As shown by
Figure 3.3, three main phases can be distinguished during the evolution of a debris cloud.
The first phase consists in the generation of debris: fragments share the same longitudinal
position but differ in ejection velocity depending on the fragmentation energy distribution
(Figure 3.3a). In the second part, the initial dense ellipsoidal cloud is stretched due to
the different orbital energy of the fragments (Figure 3.3b). Last phase is characterized by
the formation of the fragments band (Figure 3.3c and Figure 3.3d).

In literature some analytical expressions have been proposed to estimate the time required
for the band formation in Low-Earth Orbits [30]. All these formulations rely on the
hypothesis that apsidal and nodal dispersion is complete when the faster fragment, in
terms of apsidal/nodal rate, encounters the slowest one. Analogously, in this analysis,
the starting point for the band formation phase is considered to coincide with the time
instant at which the faster fragment, in terms of longitudinal drift rate, encounters the
slowest one.
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Actually, when the fastest particle meets the slowest one, fragments are not still uniformly
distributed in λ, meaning that their state cannot be described only as a function of the drift
longitude λ̇ and that this procedure tends to underestimate the required time. Therefore,
ad done by Letizia and Colombo [21], a multiplication factor is introduced by applying
Kolmogorov-Smirnov test and comparing the debris distribution in λ with a uniform
distribution between −π and π (Figure 3.2). The band is considered formed at the time
when the hypothesis of uniform distribution becomes acceptable. Hence, a multiplication
factor kb = 2 is adopted and band formation period can be computed as [8] [20]:

Tb =
2π · kb

max
(
λ̇f

)
−min

(
λ̇f

) (3.11)

where λ̇f are the longitudinal drifts of GEO object generated by the fragmentation event.

Figure 3.2: Results of Kolmogorov-Smirnov test at band formation Tb.

(a) Fragments distribution at instant of fragmentation t0.
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(b) Fragments distribution after Tb/2.

(c) Fragments distribution after Tb.

(d) Fragments distribution after 3Tb.

Figure 3.3: Evolutionary phases of debris clouds. Plots obtained simulating a catastrophic
collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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3.3. Analytical cloud propagation

This section is dedicated to the study carried out to derive the analytical cloud propagator
by solving the continuity equation. In particular, this part describes the derivation of the
analytical solution of the continuity equation by applying the method of characteristics.

3.3.1. Solution of continuity equation

The continuity equation is used to derive analytically the density evolution with time
under the effect of J2,2 perturbation in (λ, λ̇) phase space. Neglecting discontinuous events
(all sink and source terms) and expanding the divergence in rectangular coordinates,
Equation (3.3) becomes:

∂n

∂t
+ vλ

∂n

∂λ
+ vλ̇

∂n

∂λ̇
= −n

[
∂vλ
∂λ

+
∂vλ̇
∂λ̇

]
(3.12)

with 
vλ =

dλ

dt
= λ̇,

vλ̇ =
dλ̇

dt
= 18Ω2

⊕J2,2
R2

⊕

a2GEO

sin 2 (λ− λ2,2) .
(3.13)

Applying the method of characteristics, the partial differential equation in (3.12) can be
transformed in the following system of ordinary differential equations:

dt

dτ
= 1

dλ

dτ
= λ̇

dλ̇

dτ
= 18Ω2

⊕J2,2
R2

⊕

a2GEO

sin 2 (λ− λ2,2)

dn

dτ
= −n

[
∂vλ
∂λ

+
∂vλ̇
∂λ̇

]

(3.14)

(3.15)

(3.16)

(3.17)

The expressions of the characteristic lines are retrieved by integrating equations (3.14),
(3.15) and (3.16). Exploiting the analytical solution found in Chapter 2, the characteristics
equations are described by the following relations:
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θ(t) = sgn

(
λ̇0

)
kΩ [t− t0] + sn−1 (k0 | κ) ,

Gλ(λ, t) = λ(t)− arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ))− λ1,2,

Gλ̇(λ̇, t) = λ̇(t)− 1

2
sgn

(
λ̇0

)√
Ê0dn(θ(t) | κ).

(3.18)

where 

Ω = 6Ω⊕
√
J2,2

R⊕

aGEO

,

Ê0 = ϑ̇2
0 + Ep sin

2 (ϑ0/2) ,

Ep = 4Ω2,

k =

√
Ê0/Ep,

κ = 1/k.

(3.19)

and k20 is the ratio between initial potential energy and Ep.

From Equation (3.13), it is possible to observe that

∂vλ
∂λ

=
∂vλ̇
∂λ̇

= 0 (3.20)

and, thus, that Equation (3.17) describes a simple translation of the domain of the initial
conditions. This means that λ and λ̇ are canonical variables of the problem and that the
explicit expression for the density evolution in time results to be:

n
(
λ, λ̇, t

)
= n0

(
λ̃, ˜̇λ, t0

)
(3.21)

where n0 is the initial fragment distribution and λ̃, ˜̇λ are obtained by inverting the charac-
teristics at the initial time. Methods for determining n0 will be presented in the following
section, while expressions of λ̃, ˜̇λ are computed below.

Following the approach proposed by Letizia [25], characteristic curves can be re-written
as: {

Gλ(λ, t) = fλ(λ) + gλ(t)

Gλ̇(λ̇, t) = fλ̇(λ̇) + gλ̇(t).
(3.22)

with functions fλ(λ) and fλ̇(λ̇) equal to:
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{
fλ(λ) = Gλ(λ, t = 0)− gλ(t = 0) = λ− λ0
fλ̇(λ̇) = Gλ̇(λ̇, t = 0)− gλ̇(t = 0) = λ̇− λ̇0.

(3.23)

Therefore, λ̃, ˜̇λ can be evaluated as:

λ̃ = f−1
λ (Gλ(λ, t)) = Gλ(λ, t) + λ0

˜̇λ = f−1

λ̇

(
Gλ̇(λ̇, t)

)
= Gλ̇ + λ̇0.

(3.24)

Recalling Equation (3.18) and that λ̃ = λ0 and ˜̇λ = λ̇0, the following system of equations
should be solved:


θ̃(t) = sgn

(
˙̃λ
)
k̃Ω [t− t0] + sn−1

(
sin(λ̃− λ1,2) | κ̃

)
,

λ(t)− arcsin(sn(θ̃ | κ̃)) sgn(cn(θ̃ | κ̃))− λ1,2 = 0,

λ̇(t)− 1

2
sgn

(
˙̃λ
)√

ˆ̃Edn(θ̃ | κ̃) = 0.

(3.25)

The system (3.25) cannot be solved analytically and, thus, an alternative approach for
the computation of λ̃ and ˜̇λ must be found. A solution could be provided by an iterative
zero-finding method; however, this solution would result in a huge rise of the computa-
tional effort, strongly affecting one of the main advantages of this analytical procedure.
Therefore, instead solving a zero-finding problem, it is decided to perform a backward
propagation in time in order to retrieve λ̃ and ˜̇λ by using the analytical solution derived
in previous chapter (2.30). Hence, setting the initial conditions λ0 = λ and λ̇0 = λ̇ and
propagation time ∆t = t0− t, λ̃ and ˜̇λ can be evaluated without the need of numerical or
iterative methods.


θ(t) = sgn

(
ϑ̇0

)
kΩ [t0 − t] + sn−1 (k0 | κ) ,

λ̃(t) =
1

2
ϑ(t) + λ1,2 = arcsin(sn(θ(t) | κ)) sgn(cn(θ(t) | κ)) + λ1,2,

˜̇λ(t) =
1

2
ϑ̇(t) =

1

2
sgn

(
ϑ̇0

)√
Ê0dn(θ(t) | κ).

(3.26)

Similarly to the procedure adopted in Section 2.4, a corrective algorithm must be imple-
mented to evaluate correctly the output of arcsin function during backward propagation.
Thus, the following algorithm is developed to solve the pendulum-like equation.
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Algorithm 2 Analytical solution for swinging pendulum for backward propagation
1: mold = 0 ▷ Initializing ratio between instant of time and period T
2: flag = 0 ▷ Initializing flag variable for period change
3: for i = 1 : Ninstants do
4: m = ceil(ti/T )

5: t̂i = −mod(|ti|/T ) ▷ Referring to first period
6: ϑ(ti), ˙ϑ(ti)← Eq. (2.28)
7: if mold ̸= m then
8: flag = 0

9: end if
10: if t̂i == 0 then ▷ ti is a multiple of period T
11: flag = 0

12: ϑ(ti) = ϑ(t0) + 2π sgn(ϑ̇(t0)) ·m
13: else ▷ Checking consistency between sign of initial ϑ̇ and variation of ϑ
14: if flag == 1 or sgn(ϑ̇(t0) == sgn(ϑ(ti)− ϑ(t0)) then
15: flag = 1

16: m = m− 1

17: end if
18: ϑ(ti) = ϑ(t0) + 2π sgn(ϑ̇(t0)) ·m
19: end if
20: mold = ceil(ti/T )

21: end for

It is important to highlight that probabilistic propagation of initial density using the
method of characteristics allows to exactly evaluate fragment density along the character-
istic lines. However, density cannot be estimated outside the characteristic curves, mean-
ing that backward propagation should be employed for each point of interest. Equations
(3.18) shows that the trajectory of the characteristic lines does not depend on density.
Hence, a single backward propagation would suffice to evaluate debris density at a specific
location and a fixed epoch.

However, if the density estimation is needed over the entire domain, many backward
propagations have to be performed. The selected grid should be denser in correspondence
of phase space regions that exhibit the highest density gradients; but these regions cannot
be foreseen easily due to the complexity of the dynamical problem. Hence, in this work,
a quite dense regular grid is adopted.

The limit in the performance of the developed cloud propagator is in the the analytical
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solution used to invert the characteristic lines. To grant an accurate evaluation of λ̃
and ˜̇λ, only fragments with |a − aGEO| < 500km are included inside the simulations.
Moreover, during the derivation of the analytical solution in Chapter 2, both (ϕ ≈ 0)

and (r ≈ aGEO) approximations have been introduced, meaning that orbits of debris are
considered quasi-circular and quasi-equatorial.

3.4. Position fitting

The NASA breakup model gives as output information about each single fragment in the
(λ, λ̇) phase space. That information are used to define the continuous density function
(especially at the initial condition n0), with which to study the evolution over time using
the cloud propagation. This section presents three different approaches for the sampling
of the initial conditions.

3.4.1. Binning method

The first method consists in discretising the domain by applying a regular grid in λ and
λ̇ and estimating initial density by counting fragments falling inside each grid cell at t0:

n
(i,j)
0 =

N
(i,j)
frag

Acell

=
N

(i,j)
frag

∆λ ·∆λ̇
[#s/rad2] (3.27)

A two-dimensional spatial density n̂0 can be evaluated by converting ∆λ and ∆λ̇ into
spatial distances. Recalling Equation (2.15) ∆λ̇ can be transformed into:

∆a =
2aGEO

3Ω⊕
∆λ̇ (3.28)

while, introducing the hypothesis of quasi perfect geosynchronous orbits (a ≈ aGEO and
circular orbits, angular distance ∆λ is converted into:

∆l = aGEO ·∆λ (3.29)

Therefore, the two-dimensional spatial density n̂0 becomes:

n̂0
(i,j) =

N
(i,j)
frag

∆l∆a
=

N
(i,j)
frag

∆λ∆λ̇
· 3Ω⊕

2a2GEO

[#/km2] (3.30)

where indexes (i, j) identify a specific cell and ∆λ̇ and ∆λ are the sizes of each bin.

Inside each cell, the density is considered constant and, thus, function n0 is characterized
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by multiple jump discontinuities. Therefore, a linear interpolation scheme is applied to
the density distribution to obtain a continuous density function.

Several simulations have been carried out by varying the sampling grid and running mul-
tiple times the NASA Breakup Model with fixed initial conditions. These tests demon-
strated that this approach is characterized by two main drawbacks. On the one hand,
n0 estimation depends strongly on dimensions of the bins. Figure 3.4 shows that density
tend to increase by adopting a denser a grid. Particularly, it is possible to highlight that
density can change even of an order of magnitude.

(a) Position fitting with binning method. Grid
made by 4500 cells.

(b) Position fitting with binning method. Grid
made by 18000 cells.

(c) Position fitting with binning method. Grid
made by 72000 cells.

(d) Position fitting with binning method. Grid
made by 216000 cells.

Figure 3.4: Applications of binning method. Grid comparison simulating a catastrophic
collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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On the other hand, results of this method can vary significantly at each run of the NASA
Breakup Model. Characteristics of the fragments are obtained sampling probability dis-
tribution functions; thus, energy distribution among fragments can vary significantly at
each run of the NASA breakup model. As depicted by Figure 3.5, binning method simply
counts the number of fragments falling inside each bin, leading to a high sensitivity to the
single run of NASA SBM. Figure 3.5 illustrates that density distribution can experiment
even variations of 15% in the maximum density value.

(a) Position fitting with binning method. Fist
run of NASA SBM.

(b) Position fitting with binning method. Second
run of NASA SBM.

(c) Position fitting with binning method. Third
run of NASA SBM.

(d) Position fitting with binning method. Fourth
run of NASA SBM.

Figure 3.5: Applications of binning method. Comparison of different runs of NASA SBM
simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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To overcome the first issue, the variation of fragments distribution is analysed as function
of bin dimensions. The fragments are generated with the same run of the NASA breakup
model and then, grids with different bin dimensions are applied to the initial debris
distribution (Figure 3.6). Results of this test illustrate that fragments distribution tends
to converge by rising the number of bins used to discretise the domain.

In this work, a grid of 72000 bins is selected (∆λ̇ = 1.146 ·10−6 ◦/s and ∆λ = 1◦) to grant
a sufficient level of convergence, to limit computational effort and to limit the dependence
on the specific run of the NASA breakup model.

Figure 3.6: Fragments distribution as function of bin dimensions. Analysis performed
simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.

3.4.2. 1-D Probability Distribution Function approach

The second method consists in approximating fragment density at fragmentation eposch
t0 with a standard probability distribution function. The distribution in λ is simply
described by a Dirac delta function, while a Kolmogorov-Smirnov test is performed to
identify the PDF that best reconstruct the density distribution in λ̇. In particular, the
Kolmogorov-Smirnov statistic has been used to measure the maximum distance between
the empirical cumulative distribution function of the simulation data and the cumulative
distribution function used to fit them.

By simulating several fragmentation events, the Kolmogorov-Smirnov test shows that
normal distribution function is able to approximate quite precisely the initial fragments
distribution. To prove this assumption, a catastrophic collision of a rocket body at λ0 =
60◦ with Ẽp = 77.2J/g is simulated. The Kolmogorov-Smirnov statistics are collected in
Table 3.1. For the sake of completeness, a graphical comparison between the empirical
fragments distribution and some standard distribution functions (extreme value, logistic,
normal, Rayleigh and uniform distributions) can be found in Figure 3.11.
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Standard Distribution KSλ̇

Extreme value 0.0741

Logistic 0.2143

Normal 0.0408

Rayleigh 0.5443
Uniform 0.0660

Table 3.1: Value of the Kolmogorov-Smirnov statistic for the tested distribution functions.

Figure 3.7: Comparison between empirical fragments distribution and some standard
distribution functions.

The initial fragment density can be computed as:
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(3.31)

(3.32)

Here, δ is the Dirac delta function, λ0 represents the location of the fragmentation event,
µf is the mean value of fragments longitudinal drift and σf is the standard deviation
of fragments distribution in λ̇. However, we should highlight that Dirac delta function
cannot be implemented as:

δ (λ− λ0) =

{
1 for λ ≡ λ0

0 for λ ̸= λ0
(3.33)

otherwise, during the backward propagation, density will result always equal to zero.
Therefore, in this work, Dirac delta function is replaced by the following expression:

δ (λ− λ0) = double

(
|λ− λ0| <=

∆λ

2

)
(3.34)
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where ∆λ represents the longitudinal spacing of the grid used to estimate debris density
over the entire domain during the cloud propagation.

As for the binning approach, potential advantages or disadvantages of this method are
investigated for the 1-D PDF method. Thus, fitting is performed by considering different
run of the NASA Break-up Model and different grid spacing. On the one hand, Figure 3.9
shows that the implemented 1-D PDF approach is less sensitive to the NASA SBM with
respect to the binning approach. Indeed, density profile seems to be unaltered by varying
the NASA SBM run and density peak has registered a maximum variation of 5%.

(a) Position fitting with 1-D PDF method. Grid
made by 4500 cells.

(b) Position fitting with 1-D PDF method. Grid
made by 18000 cells.

(c) Position fitting with 1-D PDF method. Grid
made by 72000 cells.

(d) Position fitting with 1-D PDF method. Grid
made by 216000 cells.

Figure 3.8: Applications of 1-D Probability Distribution Function method. Grid compar-
ison simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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On the other hand, this method exhibits the same limit of the binning approach: initial
density distribution depends significantly on the grid adopted to discretise the domain.
Figure 3.8 shows that, even in this case, debris density tends to significantly decrease
by using a coarser grid. This fact is provoked by the chosen implementation of Dirac
delta function. Indeed, Equation (3.33) depends directly by the adopted longitudinal grid
spacing.

(a) Position fitting with 1-D PDF method. Fist
run of NASA SBM.

(b) Position fitting with 1-D PDF method. Sec-
ond run of NASA SBM.

(c) Position fitting with 1-D PDF method. Third
run of NASA SBM.

(d) Position fitting with 1-D PDF method.
Fourth run of NASA SBM.

Figure 3.9: Applications of 1-D PDF method. Comparison of different runs of NASA
SBM simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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3.4.3. 2-D Probability Distribution Function approach

The first two methods depend strongly on the sampling grid used to study the cloud evo-
lution. Therefore, a third approach able to avoid this issue is resented here. The method
consists in propagating individually each fragment with the analytical propagator and,
then, approximating the fragment density with a bi-dimensional standard probability dis-
tribution function. Analogously to the procedure presented before, a Kolmorov-Smirnov
test is performed to identify the PDF that best reconstruct density distribution in λ and
λ̇.

As proposed by Letizia and Colombo [20], the piece-wise propagation is performed once
the band is considered formed and, thus, initial debris density is estimated at Tb. As
explained previously in Section 3.2, band is considered formed when the hypothesis of
uniform distribution in λ becomes acceptable and, thus, fragments state can be described
only as a function of the drift longitude λ̇. Hence, λ and λ̇ are assumed to be statistically
independent variables and debris density can be computed as:

n0(λ, λ̇, t0) = pλ · pλ̇ (3.35)

where pλ̇ is the probability distribution function that best reconstruct the density distri-
bution in λ̇ and pλ represents the uniform distribution in λ:

pλ =
1

2π
(3.36)

After several simulations, Kolmogorov-Smirnov test suggests us that the normal distribu-
tion function is the one that better fits the fragments distribution in λ̇. Therefore, the
initial fragment density can be computed as:
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(3.38)

However, this strategy is affected by a huge issue. Comparing the density distribution
derived with a binning method and one retrieved with the 2-D PDF approach at Tb, it
is possible to highlight that the assumption of statistically independent variables does
not hold for this problem. Indeed, simulating a catastrophic collision of a rocket body at
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λ0 = 60◦ with Ẽp = 77.2J/g, 2-D PDF method wrongly estimates the debris distribution
predicting, also, a non-null fragment density close to (L2) gravitational well (Figure 3.10).

(a) Position fitting with binning method at Tb.
Grid made by 72000 cells.

(b) Position fitting with 2-D PDF method at Tb.
Grid made by 72000 cells.

Figure 3.10: Comparison between 2-D PDF and binning methods at Tb. Simulation of a
catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.

Hence, instead of computing the density distribution at Tb, it is decided to evaluate n0

well before the band formation. Particularly, in this work, initial debris distribution is
investigated at about a quarter of the band formation period (t0 + Tb/4). After several
simulations and applications of the Kolmogorov-Smirnov test, the multivariate normal
distribution function resulted to be the bi-dimensional PDF that better fits the fragments
distribution at t0 + Tb/4 both in terms of longitude and longitudinal drift. Hence, initial
fragment density is evaluated as:
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(3.39)

where ρ is the correlation of λ and λ̇, Vλ,λ̇ is the covariance and σλ and σλ̇ are the variance
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of fragments longitudes and longitudinal drifts respectively at about a quarter of the
band formation period. Again, a catastrophic collision of a rocket body at λ0 = 60◦ with
Ẽp = 77.2J/g is used to perform the simulations and the results of the Kolmorov-Smirnov
test are reported in Figure 3.7 and Table 3.2.

Standard Distribution KSλ KSλ̇

Extreme value 0.0713 0.0714

Logistic 0.0471 0.2167

Normal 0.0465 0.0475

Rayleigh 0.1904 0.5225
Uniform 0.0522 0.0518

Table 3.2: Kolmogorov-Smirnov statistic for some standard distribution functions.

(a) Distribution in longitude.

(b) Distribution in drift longitude.

Figure 3.11: Comparison between standard distribution functions and real fragments
distribution.

Again, as for the fitting at Tb, a graphical comparison of initial density distribution is
provided between the binning and 2-D PDF methods. Figure 3.14 shows that the bi-
variate normal distribution is able to precisely approximate the distribution of fragments.
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Unlike previous methods, Figure 3.12 and Figure 3.13 show that this approach is almost
independent to the specific run the NASA Breakup Model and to the selected grid spacing
. Therefore, this approach will be adopted for the following analysis.

(a) Position fitting with 2-D PDF method. Grid
made by 4500 cells.

(b) Position fitting with 2-D PDF method. Grid
made by 18000 cells.

(c) Position fitting with 2-D PDF method. Grid
made by 72000 cells.

(d) Position fitting with 2-D PDF method. Grid
made by 216000 cells.

Figure 3.12: Applications of 2-D Probability Distribution Function method. Grid compar-
ison simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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(a) Position fitting with 2-D PDF method. Fist
run of NASA SBM.

(b) Position fitting with 2-D PDF method. Sec-
ond run of NASA SBM.

(c) Position fitting with 2-D PDF method. Third
run of NASA SBM.

(d) Position fitting with 2-D PDF method.
Fourth run of NASA SBM.

Figure 3.13: Applications of 2-D PDF method. Comparison of different runs of NASA
SBM simulating a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.
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(a) Position fitting with binning method at Tb/4.
Grid made by 72000 cells.

(b) Position fitting with bi-variate normal distri-
bution at Tb/4. Grid made by 72000 cells.

Figure 3.14: Comparison between 2-D PDF and binning methods at Tb/4. Simulation of
a catastrophic collision of a rocket body at λ0 = 60◦ with Ẽp = 77.2J/g.

3.5. Application of cloud propagation

This section describe the application of the developed model to a test case. In the following
simulation, position fitting is performed through a bi-variate normal distribution and a
regular grid in λ and λ̇ with ∆λ = 0.36◦ and ∆λ̇ = 5.7 ·10−7 ◦/s (corresponding to 400000
cells) is adopted to predict debris distribution in the whole phase space. In particular,
a catastrophic collision of a rocket body at λ0 = −120◦ with Ẽp = 77.2J/g is simulated
with the NASA breakup model.

Figure 3.15 shows the evolution of the fragments density over time. The debris distribution
tends to spread over the entire domain and to be attracted by the closest gravity well (L2).
Moreover, it is important to notice that the selected initial condition prevents fragments
from being captured from equilibrium point L1, generating a debris-free orbital region.
This behaviour can be explained by observing Figure 2.4. At fragmentation epoch, debris
share the same longitudinal position (equal to λ0), meaning that librating fragments
will be constrained to move around the gravitational well closest to the fragmentation
location. This implies that derelict objects cannot be captured by the other gravitational
well and, thus, that the phase space region close to this equilibrium point (E < 0) will be
characterised by null fragment density.
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(a) Fragments distribution at Tb/4.

(b) Fragments distribution after 6 months.

(c) Fragments distribution after 1 year.
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(d) Fragments distribution after 18 months.

(e) Fragments distribution after 2 years.

Figure 3.15: Application of analytical cloud propagation.

By analysing the cloud evolution in the entire domain, however, a huge limit of the
backward propagation has also arisen: a very dense regular grid is required to grant an
accurate picture of the debris distribution. Indeed, as demonstrated by Figure 3.16, the
adoption of few sampling points (in this case corresponding to 18000 cells) will lead to an
ambiguous estimation of the fragment density. To overcome this issue, future works will
aim to implement a method able to provide an approximation of the density around the
characteristics [12].
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Figure 3.16: Cloud propagation with a coarse grid. Density distribution 2 years after
fragmentation event.
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4| Validation process and collision

probability

This chapter is devoted to the validation of the model developed in Chapter 3. The model
is applied to study the probability of collision of a fictitious fragmentation in GEO.

This chapter is divided into two main parts. Section 4.1 is devoted to the description of
the validation process. While, in Section 4.2, cloud propagation is exploited to compute
the collision probability simulating a fragmentation in the geosynchronous region and
applying the kinetic gas theory.

4.1. Validation process

In order to validate the backward propagation and, thus, the analytical cloud propagator,
a procedure based on the forward piece-wise propagation of the debris is implemented.
After simulating a fragmentation and fitting the debris dispersion with a bi-variate normal
distribution, a random sampling of the initial fragment density is performed by exploiting
the build-in MATLAB function mvnrnd. This process generates initial conditions of
thousands of fictitious debris, which are propagated individually forward in time. Then,
at each time of interest, a binning method is adopted to compute the density distribution.
In the end, cloud propagation is validated by simulating several fragmentation events and
performing a graphical comparison between results provided by the cloud propagator and
ones derived with the sampling process.

As example, a catastrophic collision of a rocket body on a perfect geosynchronous orbit at
λ0 = 60◦ with Ẽp = 77.2J/g is simulated and results obtained with the two aforementioned
methods are plotted in Figure 4.1. Latter are retrieved by applying a regular grid with
∆λ = 0.36◦ and ∆λ̇ = 5.7 · 10−7 ◦/s (corresponding to 400000 cells) and generating
20000 fictitious fragments. Note that the central part of each plot illustrates density
distribution retrieved applying the cloud propagator, while side parts present the results
of the sampling approach.
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(a) Fragments distribution at Tb/2.

(b) Fragments distribution after 6 months.

(c) Fragments distribution after 1 year.
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(d) Fragments distribution after 18 months.

(e) Fragments distribution after 2 years.

Figure 4.1: Comparison between cloud propagation and sampling strategy.

Observing Figure 3.4 , it is possible to notice that both approaches predict the same
behaviour of the cloud and forecast peaks of density in correspondence of the same region
of the phase space. For example, Figure 4.1b shows that, simulating a breakup close on a
perfect geosynchronous orbit, both methods predicts the shrink of the debris density with
the rise of the distance from aGEO. Moreover Figure 4.1d and Figure 4.1e illustrate that
both methods forecast an accumulation of fragments close to L1 equilibrium point as a
consequence of a breakup close to the gravitational well (L1). However, it is important to
observe that absolute value of debris density differ significantly between methods. But,
this fact is attributable to the number of sampled fictitious fragments and to the selection
of the grid used for the binning method. Indeed, as seen in Section 3.4.1, the reduction
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of bin dimensions can cause a wide increase in the local density estimation (Figure 3.4).

Therefore, the analytical cloud propagator results to be a fast and reliable tool for the
prediction of debris density in geosynchronous region. In contrast to already available
deterministic methods, it allows to include fragments of any size without strongly affecting
the computational time and to provide debris density in any region of the phase space
without requiring a binning method.

4.2. Collision probability

The main advantage of the analytical cloud propagation consists in providing a more direct
connection with the statistical nature of the problem, in particular for what concerns the
computation of the collision probability for a spacecraft crossing a debris cloud. Following
McKnight’s approach [31], the collision probability Pc for a target crossing a debris cloud
can be computed exploiting the analogy with the kinetic gas theory:

Pc = 1− e−ρ·vrel·Ac·T̂ (4.1)

where ρ is the spatial density, vrel the relative collision velocity, Ac the collision cross-
sectional area and T̂ the time at risk.

4.2.1. Spatial density

In this work, spatial density is retrieved by simulating a fragmentation event and ap-
plying the analytical cloud propagation. Adopting this strategy, debris density can be
computed only at discrete instants of time and, thus, selection of the time span used for
the propagation will be crucial for the evaluation of the collision probability. Considering
that fragments close to GEO protected region exhibit periods between 80 days and 2000
days, it is recommended to adopt a time step close to 5 days. On the one hand, higher
time steps could lead to the undersampling of debris density, causing a misunderstanding
of the fragment cloud evolution and, consequentially, a wrong estimation of the collision
probability. On the other hand, lower time steps would require more density evaluations
and, thus, would increase significantly the computational effort needed for the simulation.

To apply the kinetic theory of gases, the phase space density should be converted into a
spatial one. Recalling that uncontrolled GEO objects tend naturally to arrange on orbits
with inclination between −15◦ and 15◦ [6], the latitudinal dispersion of the debris can be
approximated as a uniform distribution:
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p(ϕ) =

{
6
π

for |ϕ| ≤ 15◦

0 for |ϕ| > 15◦
(4.2)

and, therefore, spatial density can be computed as [11]:

ρ =
n(λ, λ̇, t) · p(ϕ)dλ̇ dλ dϕ

∆V
=
n(λ, λ̇, t)p(ϕ)dλ̇ dλ dϕ

da · acdλ · acdϕ
=

9Ω⊕

πa3c
n(λ, λ̇, t) (4.3)

4.2.2. Relative collision velocity

The average relative velocity used for the evaluation of the probability of collision is
computed as function of the orbital velocity vGEO of the operating GEO satellite and the
mutual inclination ∆i between the projectile and target mass[31]:

vrel =
√
2v2GEO(1− cos∆i) (4.4)

The operational satellite at risk is assumed on a perfect geostationary orbit and, thus,
mutual inclination can be replaced by the average inclination of the derelict population.
As suggested by McKnight [31], an average inclination of 10◦ can be assumed to avoid
underestimating the collision probability, resulting in a relative velocity of about 536 m/s.

4.2.3. Collision cross-section and time at risk

The collision cross-section is a function of both impacting and target physical cross-
sections:

Ac =
√
A2

p + A2
t (4.5)

In this thesis, a 100m2 value is used as a nominal value for Ac since the largest few objects
in GEO are around 30− 50m2.

In order to assess the annual probability of collision, the time at risk for a station-kept
satellite is set equal to one year.

4.2.4. Collision probability calculation

After introducing the elements required for the computation of the collision probability,
several simulations are performed to check the consistency between the obtained collision
risk and the dynamics governing the geosynchronous region.
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All simulations have been carried out applying a regular grid with ∆λ = 0.36◦ and
∆λ̇ = 5.7 · 10−7 ◦/s (corresponding to 400000 cells), using a time step of 5 days and
considering a catastrophic collision of a rocket body on a perfect geosynchronous orbit
with Ẽp = 77.2J/g.

First test simulates a fragmentation event at λ0 = −110◦. Figure 4.2 shows that a
fragmentation close to (L2) gravitational well produces a peak in collision probability
in proximity of the closest stable equilibrium point. Moreover, selected initial condition
prevents fragments from being captured from equilibrium point (L1), generating a debris-
free orbital region, corresponding to a null collision probability region. This behaviour
can be justified by the fact that liberating objects are captured by the gravitational well
closest to λ0 and that drifting objects have a too high energy level to access the L1
librating region.

Figure 4.2: Annual collision probability in phase space (λ, λ̇). Fragmentation simulated
at λ0 = −110◦.

Regarding the second simulation, location of fragmentation is set equal to λ0 = 60◦.
Figure 4.3 shows that librating objects are energetically bounded by (L1) gravitational
well and, thus, produce a rise of the collision probability in correspondence of the afore-
mentioned equilibrium point. Analogously to the previous case, the region close to L2
equilibrium point is characterised by a null fragment density, while drifting objects pro-
duce a lower debris density in the rest of the phase space.



4| Validation process and collision probability 63

Figure 4.3: Annual collision probability in phase space (λ, λ̇). Fragmentation simulated
at λ0 = 60◦.

In the end, third simulation is carried out by selecting a fragmentation location in corre-
spondence of the unstable equilibrium point (L3). Observing Figure 4.4, it is possible to
notice that a fragmentation at λ0 = λ2,2 generates only drifting objects and, thus, that
librating regions of the phase space will be characterise by a null collision risk.

Figure 4.4: Annual collision probability in phase space (λ, λ̇). Fragmentation simulated
at λ0 = −15◦.

It is possible to conclude that, thanks to its accuracy and its limited computational
time, the proposed method can be applied to efficiently analyse the impact of different
breakups on various target spacecrafts and, thus, to create influence matrixes. Moreover,
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the developed approach results to be a fast and precise tool for the generation of collision
probability maps that could be exploited for the definition of a space debris index for the
geostationary region.
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5| Conclusions and future

developments

This Chapter provides a short summary of the main findings of the thesis together with
a discussion on its limitations and on possible future improvement of the model.

5.1. Summary of the thesis

Current studies on space debris evolution in the geosynchronous region are based on de-
terministic methods and usually refer only to the population of objects larger than 1
meter. Indeed, large objects are the most dangerous in case of collision: they are able to
destroy completely a satellite and to create large debris clouds. However, also small debris
fragments can represent a relevant hazard to operational satellites, but their contribution
to the collision risk is often discarded due to the limited computational capabilities. In-
deed, the number of small fragments is so large that the traditional propagation of all
objects is not feasible. Therefore, this work proposes a probabilistic approach based on
the continuity equation, enabling the inclusion of small fragments in debris modelling. In
particular, the developed method considers debris population as a fluid with continuous
properties, whose density changes under the effect of J2,2 gravitational perturbation.

Once the information on the position of the fragments is converted into a continuous
density function and, thus, the initial density profile is defined, time evolution of debris
density close to the GEO protected region is obtained by solving analytically the continuity
equation with the assumption of quasi-equatorial and quasi-circular orbits. The explicit
expression for the density allows the method to provide a very fast estimation of longitude
slots most susceptible to rising debris fluxes and of the resulting collision probability for an
operative spacecraft in that region. Indeed, the main advantage of this approach consist in
providing a more direct connection with the statistical nature of the problem, in particular
for what concerns the computation of the collision probability for a spacecraft crossing
the cloud.
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Model formulation: The proposed method is essentially based on the following building
blocks:

• a break up model that simulate collisions and explosions, given the energy of the
fragmentation event;

• an analytical model to propagate fragments piece-wise until the cloud propagation
becomes applicable;

• a fitting method to convert orbital parameters of each single fragment into a con-
tinuous density function;

• a fully analytical cloud propagator to analyse time evolution of space debris cloud.

Model validation: The proposed method has been extensively validated comparing re-
sults provided by cloud propagator with the one obtained applying a numerical/analytical
piece-wise propagator. The results have been compared in terms of the resulting spatial
density as it will be used to evaluate the collision probability within the cloud. The pro-
posed method has been tested under different conditions by changing the breakup energy,
the kind of breakup event, longitude of the fragmentation event and semi-major axis of
the parent orbit.

Method applications: Given the positive outcome of the validation process, the method
has been applied to many different scenarios to compute the collision probability for a
spacecraft crossing a debris cloud. Analogy with the kinetic theory of gases was used to
convert a fragment spatial density into a collision risk. Three possible applications of the
method were identified:

• the study of real breakups and the resulting collision probability for a set of GEO
satellites falling inside the debris population;

• the study of the influence among two different targets, assessing how a fragmentation
of one object is able to affect the collision probability of another one;

• the study of collision maps, evaluating their exposure to fragmentations considering
different values of longitude and semi-major axis.

In all three cases the analytical method offers an important reduction in the computational
time and gives an interesting insight on the contribution of small fragments to the collision
risk.

Main findings: The main results of the work can be summarised in the following list:

• an analytical method for the description of the evolution of space debris clouds
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generated by breakups has been developed; the method is based on the continuity
equation and allows to obtain a fully analytical propagation of a debris cloud under
the J2,2 effect;

• the method has been extended to assess also the collision probability for a spacecraft
crossing the fragment cloud;

• the method has been applied to model many different scenarios of collisions proving
the flexibility of the new approach and its ability of enabling new analyses on the
collision risk due to small fragments.

5.2. Limitations of this work

The research here presented has clearly shown the two main advantages of the proposed
method. Firstly, the analysis in terms of debris spatial density offers not only a reduction
in the computational effort, but especially a strong connection with the statistical nature
of the problem providing a simple tool for the computation of the resulting collision proba-
bility. Secondly, the application of the continuity equation allows to provide an analytical
solution to the problem enhancing the degree of flexibility on the modelling. Nevertheless,
also some limitations of the method have been identified and are here discussed.

Position fitting: The proposed method implies the need of propagating individually
fragments until the cloud propagation becomes applicable. This procedure is performed
through the analytical propagator, however, in case of large debris clouds, this step could
be computationally expensive.

Perturbation modelling: The current version of the method includes only the J2,2

effect to allow the derivation of a fully analytical approach. As shown previously, this
simplified dynamical model limits the applicability of the method to objects orbiting on
quasi-circular and quasi-equatorial orbits with |a− aGEO| < 500km.

Method of characteristics: Actually, performance of the developed approach is lim-
ited by the method of characteristics adopted to solve the continuity equation. Indeed,
fragment density cannot be estimated outside the characteristic curves and, thus, many
backward propagations are required to evaluate density evolution over wide regions of the
(λ, λ̇) phase space.

Single events versus background population: The study of the collision probability
was developed considering only the effect of the new fragments produced by a specific
fragmentation event without considering the background population. This means that all
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the results involving the collision probability should be read in a relative way with respect
to a baseline scenario without the studied breakup.

5.3. Future works

The analysis of the limitations of the model has suggested some possible elements for
the development of the work. Firstly, future works could focus on the removal of the
piece-wise propagation for definition of initial density. Secondly, a huge improvement of
the model could be achieved with the implementation of a method able to provide an
approximation of the density around the characteristics. Thirdly, a careful evaluation of
the possibility of including additional perturbations in the model could be performed.
Fourthly, an analytical estimation of the relative velocity between the spacecraft and the
cloud could be developed. In the end, this method could be used as foundation for the
definition of a geostationary debris index.
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