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Abstract

This thesis presents computational modeling of nitrogen vacancy (NV) centers in dia-
mondoids for applications in quantum information science. Density functional theory
calculations are exploited to investigate the electronic structure of NV centers embedded
in nanodiamonds with varying surface terminations, starting from the standard hydrogen-
terminated diamondoids. A key finding is that the fluorine terminated nanodiamond has
a favorable electronic structure, with the two NV-empty levels su�ciently below the con-
duction band of diamond and the vacuum level, making it well suitable for Quantum
Information Science (QIS) applications.
The e�ect of embedding NV-nanodiamonds within molecular crystals and applying pres-
sure is also analyzed. Pressure is responsible for inducing quantum confinement e�ects
that increase the gap between defect levels and the conduction band, guaranteeing a bet-
ter accommodation for the NV-levels that reside within the gap.
Lastly, the electron-phonon coupling is explored to understand the impact of the tempera-
ture on the system, which is found to be negligible even at room-temperature, confirming
the system promise in the QIS context.
Overall, this work provides insights into engineering NV-nanodiamonds through surface
chemistry and external pressure to optimize their quantum properties, paving the way for
their integration into practical quantum devices.
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Abstract in lingua italiana

Questa tesi si pone come obiettivo primario presentare i risultati della modellazione com-
putazionale di diamantoidi in cui sono stati impiantati dei Nitrogen Vacancy (NV) centers,
con lo scopo di valutare la possibilità di impiegarli come qubit in hardware quantistici.
La Teoria del Funzionale della Densità (DFT) viene utilizzata per esplorare la struttura
elettronica di questi particolari sistemi.
L’analisi inizia dai diamantoidi terminati con atomi di idrogeno e si estende alle nanos-
trutture con diverse terminazioni superficiali. In particolare, le nanoparticelle terminate
con atomi di fluoro si rivelano adatte agli scopi preposti, in quanto la struttura elettron-
ica necessaria per l’impiego degli NV-center come qubit viene completata, con i due stati
vuoti che si collocano al di sotto della banda di conduzione e della soglia di vuoto.
Il lavoro comprende anche un’analisi sull’impatto di pressione e temperatura quando i
diamantoidi cristallizzano in cristalli molecolari.
La pressione gioca un ruolo determinante nell’indurre e�etti di confinamento quantistico,
aumentando il gap tra la banda di conduzione e i livelli del difetto, assicurando un migliore
accomodamento per questi ultimi.
L’e�etto della temperatura viene introdotto tramite lo studio dell’interazione tra elettroni
e fononi, che si rivela essere ininfluente anche a temperatura ambiente.
Questa ricerca fornisce una linea guida per l’ingegnerizzazione di sistemi che utilizzano
gli NV-center come qubit all’interno di diamantoidi, esplorando la possibilità di funzion-
alizzare la superficie di queste nanostrutture e di applicare pressioni elevate alla loro fase
cristallina, con il fine di ottimizzarne le proprietà elettroniche. Tale approccio apre la
strada all’integrazione di questi sistemi in dispositivi quantistici relizzabili.

Keywords: NV-center, Diamantoidi, Cristalli Molecolari, Teoria del Funzionale della
Densità (DFT)





v

Contents

1 Introduction to Quantum Computation and Molecular Qubits 1
1.1 Quantum Computation in a Nutshell . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Qubit Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 DiVincenzo Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Quantum Algorithms: Building the Quantum Supremacy . . . . . . 6
1.1.4 Quantum Computing Platforms . . . . . . . . . . . . . . . . . . . . 6

1.2 Nitrogen Vacancy Center in Diamond . . . . . . . . . . . . . . . . . . . . . 10
1.3 Diamondoids: sp3 Carbon Nanostructures . . . . . . . . . . . . . . . . . . 15

1.3.1 Incorporating NV-Centers into Diamondoids . . . . . . . . . . . . . 16
1.4 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Theoretical Framework: the Density Functional Theory (DFT) 19
2.1 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Foundations of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Electron Density and Hohenberg-Kohn Theorems . . . . . . . . . . 20
2.2.2 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Exchange Correlation Functionals in DFT . . . . . . . . . . . . . . 22

2.3 Basis Sets in DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Plane Wave Basis Set . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Gaussian Basis Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Augmented Plane Wave Basis Set . . . . . . . . . . . . . . . . . . . 25
2.3.4 Pseudopotentials in DFT Calculation . . . . . . . . . . . . . . . . . 26

2.4 Electron-Phonon Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Molecular Dynamics Formulation and Electron-Phonon Coupling . 27
2.4.2 Harmonic Approximation . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Statistical Approaches for Electronic Quantities . . . . . . . . . . . 29



vi

3 Materials and Methods 31
3.1 DFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Computational Architectures and Benchmarking Phase . . . . . . . 33
3.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Localization Approach . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Electronic Structure of NV-nanodiamonds 39
4.1 Structure Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Analyzed Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Electronic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 C33H36NV � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 C52H56NV � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 C67H62NV � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.4 Nanoparticles Comparison . . . . . . . . . . . . . . . . . . . . . . . 45

5 Surface Functionalization 49
5.1 Termination Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Fluorine-terminated Nanodiamonds . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Electronic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Hydroxyl-terminated Nanodiamonds . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Electronic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Thiol-terminated Nanodiamonds . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Electronic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Carbonyl-terminated Nanodiamonds . . . . . . . . . . . . . . . . . . . . . 56
5.5.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.2 Electronic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Termination Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.1 Spin Accumulation Analysis . . . . . . . . . . . . . . . . . . . . . . 59
5.6.2 Electronic Structure Comparison . . . . . . . . . . . . . . . . . . . 60
5.6.3 Double-terminated Nanodiamonds . . . . . . . . . . . . . . . . . . . 61
5.6.4 Radial Potential Calculation . . . . . . . . . . . . . . . . . . . . . . 63

6 Nanodiamonds Molecular Crystals 1 67



6.1 Crystal Structure Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 C67H62NV � Molecular Crystal . . . . . . . . . . . . . . . . . . . . 69
6.2.2 C69H45F17NV � Molecular Crystal . . . . . . . . . . . . . . . . . . . 71
6.2.3 Empty Levels Behaviour . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Electron-Phonon Renormalization . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.1 Dynamical Matrix Calculation . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Electron-Phonon Results . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusions and Further Research 85
7.1 Recommendations and Future Directions . . . . . . . . . . . . . . . . . . . 86

7.1.1 Experimental Measurement . . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Decoherence Time Simulation . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Post-DFT Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 87

1
This chapter has been developed within the context of the Honours Programme “Scientific Research

in Industrial Engineering”.





1

1| Introduction to Quantum
Computation and Molecular
Qubits

In the modern era of scientific and technological advancements, the exploration and un-
derstanding of complex systems have become fundamental to tackle the most challenging
engineering problems. From climate modeling to plasma simulations, from neutronic mod-
eling in fission reactors to interfacial chemical reaction studies, diverse research fields have
the common requirement of obtaining robust solutions to complex problems. Central to
this pursuit is the relentless demand for computational power, which continues to escalate
as the intricacy of the systems under investigation deepens.
In the quest for deeper insights and more accurate predictions, researchers have increas-
ingly turned to computational methods to simulate and model the behavior of complex
systems. However, as the complexity of these systems rises, so too do the computational
resources required to simulate their behavior, ultimately reaching the limits of conven-
tional classical computing architectures.

The domain of quantum computing, an area that holds immense promise for revolution-
izing the landscape of computation-intensive tasks, could be the solution to this need.
For instance, quantum algorithms have been proposed for simulating complex plasma
phenomena like turbulence and transport in fusion reactors [26].
These algorithms can e�ciently represent the behavior of plasma particles and calcu-
late their time evolution through di�erent techniques, granting the possibility to model
plasma dynamics and instabilities with unprecedented accuracy, since the actual Particle-
In-a-Cell (PIC) codes scales exponentially with the number of macro-particles that are
simulated, making impossible to estimate behaviors of a significant number of particles.
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In the realm of nuclear physics, quantum computing methods have demonstrated potential
for precisely calculating properties of atomic nuclei using lattice quantum chromodynam-
ics, underlining the necessity of improved quantum hardware to scale up the complexity
of analyzed nuclei [50].
Moreover, quantum algorithms o�er a unique avenue to address complex challenges in
this domain, with applications that culminate in simulating nuclear fission processes to
optimize reactor design.
For example, random processes involved in nuclear fission simulations are actually based
on classical Monte Carlo methods, which rely on the generation of random numbers, that
are not actually random, since they are generated following any type of logic. On the
other hand, quantum random number generation exploits the intrinsic randomness of
quantum processes, which could be fundamental to improving the simulations of neutron
propagation and their role in inducing fission reactions, thereby improving reactor design.
The synergy between complex system simulations and quantum computing forms the cor-
nerstone of a new era in computational science, where quantum advantages may soon be
realized for tackling computationally demanding problems across scientific domains.

Nonetheless, the current state of quantum computing is not without its challenges. De-
spite remarkable advances in hardware development and algorithmic innovation, quantum
computers still show issues of stability, error correction, and scalability. These limitations
restrain the optimism surrounding quantum computing’s potential.

Quantum computing appears as a ray of hope, providing a fascinating look into a future
in which complicated problems are solved in the world of the quantum. However, the
road to realize this promise is full of stumbling blocks that necessitate a comprehensive
knowledge of both theoretical foundations and practical limits.

1.1. Quantum Computation in a Nutshell

Before delving into the details of this work it is necessary a bit of context, especially on
the general framework in which the aim of this thesis is developed, so all the basic con-
cepts, that push the scientists to direct their e�orts toward the development of quantum
computers, have to be understood.

Quantum computation is a revolutionary paradigm in computer science that harnesses
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the principles of quantum mechanics to perform calculations that would be practically
impossible or extremely time-consuming using classical computers.
At its core, quantum computing uses quantum bits, or qubits, to represent and manipu-
late the information. Unlike classical bits, which can only be in a state of 0 or 1, qubits
can exist in a superposition of both 0 and 1 simultaneously.

A single qubit can be implemented using various physical systems, such as electrons’ spin
or the polarization of photons.
The key feature of a qubit is its ability to exist in a linear combination of its basis
states, denoted as |0i and |1i, so, mathematically, a qubit’s state can be represented as
| i = ↵|0i + �|1i, where ↵ and � are complex numbers satisfying |↵|2 + |�|2 = 1, and it
can be pictured on a Bloch sphere (in figure 1.1).

Figure 1.1: Qubit representation on the Bloch sphere [28]

1.1.1. Qubit Manipulation

In classical computation, to build any algorithm it is necessary to manipulate the infor-
mation stored in the memory, and this is accomplished through the logical gates: AND,
OR, NOT, NOR, XNOR, XOR, and NAND.
In quantum computation, qubits are manipulated using quantum gates, which can be
represented as unitary operators that act on the quantum state of the qubits.
Each quantum gate performs specific operations, such as changing the qubit’s state (e.g.
Pauli-X gate, Pauli-Y gate, Pauli-Z gate, Hadamard gate) or entangling multiple qubits
(e.g. CNOT gate), and it can be visualized as a rotation on the Bloch sphere.
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Pauli Gates
The Pauli-X gate, often referred to as the X gate, is a fundamental quantum gate that
performs a bit-flip operation on a qubit. It maps the state |0i to |1i and |1i to |0i.
Mathematically, the X gate can be represented as follows:

X =

"
0 1

1 0

#
(1.1)

The e�ect of gate application on a qubit can be represented on the Bloch sphere as a
⇡-rotation around the x-axis.
In the same flavor the Y gate and the Z gate can be represented on the Bloch sphere as
a ⇡-rotation respectively around the y-axis and the z-axis.

Y =

"
1 0

0 �1

#
, Z =

"
0 �i

i 0

#
(1.2)

Hadamard Gate
The Hadamard gate, denoted as H, is a fundamental gate used for creating superposition
states. It transforms a qubit’s state as follows:

H|0i =
1
p
2
(|0i+ |1i), H|1i =

1
p
2
(|0i � |1i). (1.3)

The Hadamard gate maps the basis states to an equal superposition, making it a crucial
component of many quantum algorithms.

(a) X-Gate applied to

|0i state.

(b) Y-Gate applied to

|0i state.

(c) Z-Gate applied to

1p
2
|0i+ 1p

2
|1i state.

(d) H-Gate applied to

|0i state.

Figure 1.2: Single qubit gates representations on the Bloch sphere (computed with
QuTiP[24]).
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CNOT Gate
The Controlled-NOT (CNOT) gate is a two-qubit gate that performs a controlled bit-flip
operation.
It has two inputs: a control qubit and a target qubit and if the control qubit is in state
|1i, it applies the Pauli-X gate to the target qubit; otherwise, it doesn’t interact with the
target qubit. Mathematically, the CNOT gate is represented as:

CNOT(|0i ⌦ | i) = |0i ⌦ | i,

CNOT(|1i ⌦ | i) = |1i ⌦X| i.
(1.4)

CNOT =

2

66664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

77775
(1.5)

The CNOT gate plays a crucial role in creating entanglement between qubits.

These are just some examples of the quantum gates used in quantum computation there
are many more gates with specific functions and properties that are essential for con-
structing quantum circuits and implementing quantum algorithms.

1.1.2. DiVincenzo Criteria

Now that the building blocks of quantum computation have been established it is im-
portant to understand when it is possible to build a quantum computer, and this is
accomplished through the DiVincenzo criteria’s fulfillment.
The DiVincenzo Criteria [12], named after the physicist David P. DiVincenzo, serve as a
roadmap for the development and evaluation of quantum hardware and software:

1. A scalable physical system with qubits: To build a useful quantum computer,
one must choose a physical platform that can support a su�cient number of qubits
while maintaining their quality. Scalability is crucial to solve complex problems.

2. The ability to initialize qubits: Quantum algorithms often start from a known
initial state. Therefore, a practical quantum computer must be able to prepare
qubits in the desired initial state with high accuracy.
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3. Long qubit coherence times: Quantum information is fragile and can be easily
disrupted by environmental factors. For practical computation, qubits must main-
tain their coherence (quantum information) for su�ciently long periods to allow for
complex computations.

4. Universal quantum gates: A quantum computer should have a set of universal
quantum gates that can be used to perform any arbitrary quantum operations on
qubits. These gates, operated with specific physical interactions with the system,
enable the implementation of quantum algorithms e�ciently.

5. A reliable qubit-state readout: To obtain the results of quantum computations,
there must be a reliable method for reading the final state of qubits accurately.

1.1.3. Quantum Algorithms: Building the Quantum Supremacy

All the properties that have been cited allow quantum computers to explore multiple so-
lutions to a problem in parallel, potentially making them exponentially faster for certain
tasks.
Although it is necessary to build proper algorithms for each task to exploit all the poten-
tial of these machines.
In this moment, the speed-up has been already tested on simple algorithms that allow to
solve NP-hard problems that, by definition, require an exponential increase of time with
the enlargement of the system: algorithms like Shor’s algorithm for integer factorization
and Grover’s algorithm for unstructured search guarantee exponential speedup over clas-
sical counterparts [18, 47], threatening the security of widely-used encryption schemes
and o�ering new possibilities in optimization.

1.1.4. Quantum Computing Platforms

Once the theory is fixed, it is important to focus on an exploration of the multifaceted
field of quantum computer realization, that provides a comprehensive foundation for the
ensuing discussions and analyses.

Superconducting qubits, minute circuits crafted from superconducting materials, are lead-
ing the race in practical quantum computing. Operating at near absolute zero tempera-
tures, they exploit their quantum behavior. Noteworthy, pioneers like IBM, Google, and
Rigetti have showcased their quantum supremacy, surmounting classical capabilities, and
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actively focusing on upscaling for practical applications. For example in 2019 the Google
Sycamore processor (in figure 1.3) has completed in 200 s a task that would have taken
10000 years on a classical computer. [5]

Figure 1.3: Google Sycamore superconducting processor.

In a trapped ion hardware, individual ions are manipulated via precisely controlled elec-
tromagnetic fields, as can be seen in the schematic figure 1.4, the ions are held in an
electromagnetic trap, in which they are controlled with lasers or microwaves. External
control and internal Coulomb coupling allow the exploitation of a set of universal quantum
gates [9]. Pioneering companies like IonQ and Honeywell have achieved exceptional con-
trol, reducing errors and enhancing quantum gate precision. These systems hold a promise
for error-corrected quantum computing, quantum simulations, and quantum cryptogra-
phy.

Figure 1.4: Trapped ion qubit typical configuration.

Another extremely fascinating approach is being investigated within Microsoft’s Station
Q project, which explores topological qubits, to increase robustness against environmen-
tal noise. These qubits leverage the unique properties of topological quantum systems to
create fault-tolerant quantum states. Though still in the experimental phase, topological
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qubits o�er a potential solution to some of the most challenging obstacles in quantum com-
puting since they exploit the topological protection of information stored in the processor.

Photonic qubits use photons to encode and process quantum information. Companies
like PsiQuantum have embarked on the development of photonic quantum computers,
emphasizing their potential for secure quantum communication and quantum simula-
tions. Although these systems harness the inherent speed and low error rates of photons,
in case of good isolation from the environment, they need incredibly precise detectors and
instrumentation to manipulate the circuits.

While not as scalable as some other technologies, NMR qubits have their place in quan-
tum computing research. They use principles of nuclear magnetic resonance to encode
and manipulate quantum information. NMR-based quantum computers are valuable for
exploring quantum algorithms and basic quantum principles in controlled environments.

A particularly useful quantum architecture for some classes of problems is the quantum
annealer, a specialized quantum processor designed for solving optimization problems.
D-Wave, a pioneer in this field, has developed quantum annealing systems that leverage
quantum tunneling and adiabatic evolution to find optimal solutions to complex problems
in various domains, including finance and logistics. This architecture for these reasons is
completely di�erent with respect to gate-based quantum computation.

Figure 1.5: Quantum annealing process and adiabatic evolution of a system.

Among the previously mentioned companies, Intel is a notable player in the development
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of silicon spin qubits, one of the most promising types of solid-state qubits. These qubits
use the spin of individual electrons in silicon-based devices. Leveraging existing semicon-
ductor fabrication technology, silicon spin qubits have the potential for scalability and
integration with classical computing systems.

Another emerging trend in quantum computing is the development of hybrid quantum
systems, which combine di�erent quantum technologies to harness the strengths of mul-
tiple approaches. This approach aims to overcome some of the limitations of individual
qubit types, potentially paving the way for more robust and versatile quantum computers.

Within all these possibilities, molecular qubits are promising as well, thanks to their
surprising tunability in the design phase of the single molecules. This allows to exploit
the electronic structure of these molecules to encode quantum information. Moreover,
they could be extremely reliable and versatile due to the possibility of integrating them
in di�erent systems. For example, it has been demonstrated that chromium (IV)-based
molecular qubits in a non-isostructural host matrix are non-sensitive to noise, producing
long coherence time [6]. This paves the way for the development of engineered systems
in which molecular qubits coupled with a proper environment could demonstrate huge
reliability and scalability. Additionally, some molecular qubits can operate at or near
room temperature, potentially reducing hardware complexity and costs.
On the other hand, the e�ort to find the perfect molecule design and correct coupling
with the environment could take a lot of time, due to the intrinsically infinite possibility
in system exploration.

The state of the art in quantum computer realization is a dynamic landscape, charac-
terized by intense research and innovation across various experimental platforms. Each
technology has its unique advantages, drawbacks, and challenges, with the field that con-
tinues to advance rapidly.
In this work, it has been decided to explore the domain of molecular qubits investigating
the possibility of embedding an optical-active defect, the NV-center, inside small diamond
nanoparticles. For this reason, it is necessary to understand all the characteristics that
could make this system a reliable platform on which building a quantum computer that
fulfills the DiVincenzo criteria.
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1.2. Nitrogen Vacancy Center in Diamond

The nitrogen-vacancy (NV) center in diamonds has rapidly emerged as one of the most
promising solid-state systems for quantum information processing and nanoscale quan-
tum sensing. This optically active point defect consists of a substitutional nitrogen atom
adjacent to a vacancy in the diamond crystal lattice (in figure 1.6).

Figure 1.6: Atomic structure of the NV-center. [23]

In its negatively charged state (NV-), it possesses a unique combination of spin and op-
tical properties that make it remarkably suited for quantum technologies.
The development of strong theoretical approaches to model the defect’s properties in har-
mony with first-principles calculations has been instrumental in supporting the growth of
NV-center applications. These approaches have yielded crucial insights into the defect’s
optical properties, response to perturbations, electronic structure, and spin dynamics.
The promise of NV- centers for quantum information stems from their optical address-
ability and spin coherence at room temperature.
The combination of long spin coherence and optical spin control has enabled demon-
strations of quantum algorithms at room temperature using one or a few NV- center
qubits [46]. Key milestones include the entanglement of two proximal nuclear/electronic
qubits, quantum teleportation across macroscopic distances, rudimentary quantum error
correction algorithms, and basic quantum simulations using 2 qubit registers [51]. This
defect occurs naturally in most diamond samples, though at low concentrations which
are influenced by growth conditions and impurity levels (< 1 ppm) [44]. The negative
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charge state NV- can be produced via electron donation from nearby nitrogen donors or
photo-excitation, so the NV- has six electrons, five from nitrogen and one donated to the
vacancy.
Ion implantation is a common technique to generate ensembles of NV- centers, where
vacancies are first created by irradiating the diamond sample with high-energy particles.
Subsequent annealing leads to vacancy di�usion and some vacancies pair with existing
nitrogen atoms to form NV centers. Shallow, individual NV- centers, which are crucial for
nanoscale sensing, are produced by implanting nitrogen at low energies (5 � 10 keV ) in
high-quality, low-nitrogen diamond. Additional processing like surface oxidation is needed
for charge state stabilization.
Recently, advances in chemical vapor deposition (CVD) growth have enabled direct, in
situ formation of NV- during synthesis. While challenges remain in controlling location,
this o�ers a path to realizing large-scale quantum technologies using engineered NV- de-
fect arrays. Overall, the dream of practical quantum computing and sensing with NV
centers critically depends on synthesis and fabrication advances guided by understanding
gained from atomic-scale modeling. [54]

Electronic Structure
The ground state of the negatively charged NV center is a spin triplet with 3A2 symmetry.
This, in the single particle model, arises from six electrons in the a1, ex, and ey orbitals
localized on the three carbon dangling bonds and the nitrogen atom surrounding the va-
cancy. The degeneracy of the ms = ±1 and ms = 0 spin states is lifted by 2.87 GHz

due to spin-spin dipolar interactions, giving this characteristic zero-field splitting, crucial
for quantum information science applications. Hyperfine interactions with nearby nuclear
spins can reach several MHz and are critical for entanglement schemes with the electron
spin [54].

The lowest-energy optically excited state is also a spin triplet labeled 3E, predominantly
involving an electron excitation from the a1 to ex,y orbitals of the minority spin channel.
The optical transition preserves spin and exhibits a broad phonon sideband, attributed
to significant electron-phonon coupling e�ects.
Spin-orbit and spin-spin dipolar interactions give fine structure splittings on the order of
gigahertz (5.33 GHz) in the 3E state [54].
Quantitative prediction of the excited state properties requires going beyond the standard
Born-Oppenheimer approximation and diagonalizing the full electron-phonon Hamilto-
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nian. However, spin-orbit couplings are significantly underestimated compared to experi-
ments. More accurate methods like configuration interaction (CI) are needed but require
large supercells and are computationally demanding.

(a) Single particle NV-center

electronic structure in the
3A2

ground state.

(b) Many body NV-center electronic

structure.

Figure 1.7: Electronic structure of the negatively charged NV-center. [54]

The primary competing decay process from the 3E excited state is intersystem crossing
to the 1A1 singlet state, enabled by spin-orbit coupling. This crossing is spin-selective
and gives rise to the possibility of adopting optical spin readout techniques. However, the
singlet states are highly correlated and not well described by density functional theory
calculation. Multireference methods have found the 1A1 state to lie ⇠ 0.4 eV below the
3E state and contains some 1E 0 character.
The subsequent singlet decay back to 3A2 is also spin-selective due to spin-orbit and
phonon couplings in the 1E state.
Strains, electric fields, and temperature shifts can tune the excited state fine structure on
MHz to GHz scales. This enables control over the intersystem crossing rates and optical
readout process. However, quantitative prediction remains challenging, with discrepancies
up to an order of magnitude compared to experimental parameters. Further advances in
excited state electronic structure methods are critical for design and optimization.
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Optical Cycle for Spin Readout
A crucial property of the NV- center is that its electron spin state can be initialized and
read out using visible light, even at room temperature. This capability relies on a complex
interplay of radiative and non-radiative pathways linking the 3A2, 3E, and singlet states,
as can be seen in figure 1.8.

Figure 1.8: Scheme of the prepare, manipulate or interact, readout mode of operation of
the NV- spin qubit [13].

After green (520 nm) excitation from 3A2 to 3E, the ms = ±1 sublevels preferentially de-
cay to the singlet states via spin-selective intersystem crossing (ISC). Spin-orbit coupling
enables transitions between the 3E triplet and singlet states. The ISC leads to around
50% higher fluorescence from the ms = ±1 sublevels compared to ms = 0 sublevel [13].
This optical spin contrast enables optical detection of spin resonance using optically de-
tected magnetic resonance (ODMR).
DFT calculations of spin-orbit and electron-phonon coupling strengths have shed impor-
tant light on this ISC process.

Figure 1.9: Many body NV- electronic structures with radiative and non-radiative tran-
sitions [13].
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The spin-dependent intersystem crossing rates from 3E to 1A1 exhibit a nontrivial tem-
perature dependence, so proper modeling requires vibronic solutions that combine the
electronic and phonon coordinates.
One signature of e�cient ISC is the large phonon sideband in the NV- optical spectrum
since phonons assist triplet to singlet transitions.
While limitations exist in accurately modeled the strongly correlated singlet states, ad-
vanced DFT methods have clearly elucidated the key spin-dependent mechanisms enabling
NV- optical spin readout.

Photoionization for Spin Readout
An alternative technique to read out the NV-spin state optically is photocurrent detec-
tion, which relies on spin-dependent photoionization from the defect. Here, green light
excitation followed by a second photon absorption ionizes the NV- by ejecting an electron
into the diamond conduction band. Since the 3E lifetime depends on the spin state, this
leads to spin-contrasted photocurrents [54].
Remarkably, DFT helped uncover that unlike most color centers, a critical role in e�-
ciently ionizing NV- is played by an Auger recombination process. After photoexcitation
into the conduction band, the high-energy electron relaxes back and uses the energy gain
to ionize another electron rather than emitting a photon. This unusual Auger process
dominates over the generally stronger single optical transition for ionization [54].

Sensing Application
The NV- center is also extremely useful as a nanoscale quantum sensor owing to the high
sensitivity of its spin sublevels to external perturbations. The defect’s atomic size, bio-
logical compatibility, and non-invasive optical readout make it ideal for nanometrology
and bioimaging under ambient conditions. NV- magnetometry using a single qubit has
achieved detecting fields down to 0.9 pTp

Hz
[8], enabling applications from record storage to

neuronal current mapping. Likewise, the dipole moment change between ground and ex-
cited states allows all-optical NV- electrometry down to 1 V

cm·
p
Hz

[10]. Local strain/stress
fields shift the NV- ground state splitting, enabling also nanomechanical sensing. Rates of
spin dephasing and intersystem crossing depend on temperature, allowing nanothermom-
etry using NV-. Much ongoing research focuses on improving the precision and spatial
resolution of NV-based field sensors using advanced diamond nanofabrication, quantum
control protocols, and signal processing algorithms. In parallel, first-principles theory has
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delivered important insights about the defect’s Hamiltonian parameters and noise proper-
ties to guide optimized quantum sensing. Quantifying spin susceptibility to perturbations
like magnetic fields via ab initio techniques supports the design of new quantum sensing
modalities with NV- to broadly impact technology and science. [54]

1.3. Diamondoids: sp3 Carbon Nanostructures

The other crucial component of the system that has been analyzed is the hosts of the
NV-center.
Diamondoids are a class of nanometer-sized hydrocarbon molecules that have a structure
resembling that of diamonds. They are composed of carbon and hydrogen atoms arranged
in a three-dimensional, cage-like structure. The name "diamondoid" is derived from the
fact that their structure is similar to that of a tiny diamond crystal.

(a) C35H36 (b) C54H56 (c) C69H62

Figure 1.10: Di�erent dimension diamondoids used in this work.

Diamondoids occur naturally in small quantities in petroleum deposits and certain types
of minerals, but they can also be synthesized in the laboratory, ranging from adamantane
(C10H16, ⇠ 3 Å carbon cage diameter) to larger nanodiamonds with intricately arranged
carbon atoms (tens of nm diameter). Producing diamondoids involves intricate synthesis
processes, often starting from readily available hydrocarbon precursors. One common
approach is bottom-up synthesis, where smaller diamondoids are built up through con-
trolled chemical reactions. The diamondoid growth process involves precise manipulation
of reaction conditions, such as temperature and pressure, to ensure the correct bonding
patterns [36, 41, 53].
They are of significant interest in various fields, including chemistry, materials science,
and nanotechnology, due to their unique properties, such as extreme hardness and high
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thermal stability, due to their covalent nature.
Diamondoids have been previously studied using first-principles calculations, providing
insights into their atomic and electronic structures: methods like density functional the-
ory (DFT) and quantum Monte Carlo (QMC) have been applied.
Calculations predict that diamondoids show quantum confinement e�ects below 1 nm in
size, with HOMO-LUMO gaps larger than bulk diamond, and negative electronic a�nity
[15].

1.3.1. Incorporating NV-Centers into Diamondoids

The endeavor to integrate NV-centers into diamondoids originates from the desire to
harness their advantageous properties for quantum computing. The NV-center, with its
unique spin properties and coherence time behavior, presents an attractive avenue for
constructing robust qubits, but encapsulating an NV-center within a diamondoid struc-
ture aims to leverage the molecular framework for enhanced tunability while preserving
the NV-center’s quantum properties.

Diamondoids, due to their discrete nature, provide a platform for isolating and manipu-
lating individual qubits. This molecular confinement introduces a level of isolation that
minimizes environmental interactions and could enhance qubit coherence. In addition,
previous works have demonstrated the possibility of implanting and manipulating NV
centers inside nanodiamonds paving the way to the foundation of this work [33].

1.4. Aim of the Thesis

Within this context, the aim of this thesis is to embark on an exploration into the realm
of molecular qubit systems, with a specific focus on the potential of nitrogen-vacancy
centers housed within nanodiamonds.
As said before, molecular qubits represent a promising frontier in quantum computing and
quantum information science, so it is interesting to understand if it is possible to harness
the robust properties of one of the most studied solid-state qubits, within a molecular
environment. In fact, the NV-center embedded in diamond shows a long coherence time,
which is crucial to store the information in a robust spin state, even at room temperature.
For these reasons, it is completely worth to explore as many systems integrating this type
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of molecular qubit as it is possible, also because the systems that will be analyzed in
this work, have not been yet explored intensively with experiments and calculations, in
particular with Density Functional Theory (DFT) plane waves calculations.
In first analysis, this thesis will be focused on the calculations of the isolated nanoparti-
cles’ electronic structure, to gain preliminary knowledge of the system and to understand
whether the NV-center in a pristine diamondoid could be used to store quantum infor-
mation.
Then, the nanoparticle surface will be functionalized, to engineer the electronic properties
of the molecule favorably from the point of view of system stability.
Finally, it will be explored the possibility of integrating the qubits in a molecular crystal,
to exploit the e�ect of pressure, which could be vital in stabilizing even more the NV-
center, and the molecular environment, which allows longer coherence time, due to the
less interference with respect to the solid-state case.
In essence, this thesis aims to illuminate the unexplored territories of molecular qubits
and their potential integration into real hardware, utilizing plane waves DFT calculations
serving as a working tool.
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2| Theoretical Framework: the
Density Functional Theory
(DFT)

This section delves into the foundational principles and core concepts underpinning Den-
sity Functional Theory (DFT).
DFT is the powerful computational framework employed in this work and within the
quantum chemistry and condensed matter physics communities, DFT stands as an indis-
pensable tool, o�ering a robust theoretical foundation for elucidating a wide spectrum of
phenomena, ranging from intricate molecular interactions to the behavior of solid mate-
rials.
In this work, the DFT is used within a framework that uses a fundamental approximation:
the Born-Oppenheimer approximation.

2.1. Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is a fundamental concept in quantum chemistry
and condensed-matter physics since it simplifies the quantum mechanical description of
the analyzed system by separating the motion of electrons and nuclei.

The nuclei, which are much heavier than electrons, move more slowly, so it is possible to
assume that the electronic and nuclear motions are decoupled. This approximation allows
to write the following Schrödinger equation:

Htotal (R, r) = E (R, r) (2.1)
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Here, R represents the nuclear coordinates, r represents the electronic coordinates, Htotal

is the system Hamiltonian,  (R, r) is the system wave function, and E is the total energy.

The total Hamiltonian can be expressed as the sum of nuclear and electronic Hamiltonians:

Htotal = Hnuclear(R) +Helectronic(r|R) (2.2)

Helectronic represents the electronic Hamiltonian expressed as a function of electronic co-
ordinates, r, parametrically dependent on nuclear coordinates, R.

In this context, it is possible to exploit ground-state DFT calculation, treating the nuclear
positions as if they were fixed.
Clearly, more advanced methods, built on top of single-point DFT calculations, are needed
to include the vibrational properties of the system inside the electronic structure.

2.2. Foundations of DFT

Among all the quantum mechanics principles, Density Functional Theory (DFT) is based
on the fundamental concept of electron density, the Hohenberg-Kohn theorems, and the
auxiliary system of equations proposed by W. Kohn and L.J. Sham.

2.2.1. Electron Density and Hohenberg-Kohn Theorems

The central quantity of interest is the electron density, denoted as ⇢(r), where r repre-
sents the spatial coordinates. The electron density describes the probability of finding an
electron at a particular point in space, and it is defined as:

⇢(r) =
NX

i=1

| i(r)|
2, (2.3)

where  i(r) is the wave function of the i-th electron, and N is the total number of elec-
trons.

P. Hohenberg and W.Kohn proposed the other cornerstone of DFT with their theorems
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that can be summarized as follows:

1. First Hohenberg-Kohn Theorem: The external potential V (r) that minimizes
the electronic ground-state energy uniquely determines the ground-state electron
density ⇢(r). In other words, there is a one-to-one correspondence between the
external potential and the electron density.

2. Second Hohenberg-Kohn Theorem: There exists a universal functional, F [⇢],
of the electron density, such that the ground-state energy E0 is minimized when the
true electron density ⇢(r) is used:

E0 = min
⇢(r)


T [⇢] + U [⇢] +

Z
V (r)⇢(r) dr+ Exc[⇢]

�
, (2.4)

U [⇢] =
1

2

Z
⇢(r)⇢(r0)

|r� r0|
d3r d3r0, (2.5)

where T [⇢] is the kinetic energy, V (r) is the external potential, U [⇢] is the electron-
electron repulsion energy in the Hartree approach, and Exc[⇢] is the exchange-
correlation energy, which incorporates the e�ects of electron-electron correlation
beyond the mean-field approximation. These e�ects are crucial to accurately pre-
dict the properties of the system.

2.2.2. Kohn-Sham Equations

Along with the functional expression of the ground-state energy, to make DFT computa-
tionally tractable, Kohn and Sham introduced a set of fictitious non-interacting electrons
that have the same ground-state electron density as the real interacting electrons. The
Kohn-Sham equations are a set of equations for these fictitious electrons:


�
1

2
r

2 + Veff(r)

�
�i(r) = ✏i�i(r), (2.6)

where �i(r) are the Kohn-Sham orbitals, ✏i are their corresponding eigenvalues, and Veff(r)

is the e�ective potential:

Veff(r) = V (r) + VH(r) + Vxc(r), (2.7)

with V (r) being the external potential, VH(r) the Hartree potential arising from electron-
electron repulsion, and Vxc(r) the exchange-correlation potential.
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2.2.3. Exchange Correlation Functionals in DFT

As was said before, correlation is extremely important in DFT calculation and it refers to
the electron-electron interactions that are not accounted for in the mean-field approxima-
tion. This includes both electron-electron correlation e�ects and exchange interactions.
The exchange-correlation energy, Exc[⇢], in the second Hohenberg-Kohn theorem captures
these e�ects and is typically approximated using various functionals, which have been de-
veloped over the years, each with its own strengths and weaknesses.

Local Density Approximation (LDA)
The Local Density Approximation (LDA) is the simplest category of exchange-correlation
functionals. [29] It assumes that the exchange-correlation energy at a given point in space
depends only on the electron density ⇢(r) at that point. The LDA exchange-correlation
energy is given by:

ELDA

XC
[⇢] =

Z
⇢(r)✏hom

XC
(⇢) dr, (2.8)

where ✏hom

XC
(⇢) is the exchange-correlation energy per electron of a uniform electron gas

with density ⇢.

LDA functional is computationally e�cient and gives reasonable results for systems such
as the Homogeneous Electron Gas (HEG) and the H2 molecule, but it overestimates
the binding energies and it in general fails in systems in which correlation contribution is
important with respect to the exchange, since it does not predict accurately the correlation
e�ects [38].

Perdew-Burke-Ernzerhof (PBE) Functional
The Perdew-Burke-Ernzerhof (PBE) [42] functional is a widely used generalized gradient
approximation (GGA) exchange-correlation functional, and it has been used in this work
for all the performed calculations. Unlike LDA, it takes into account the gradient of
the electron density, making it more accurate for a broader range of systems. The PBE
exchange-correlation energy can be written as:

EPBE

XC
[⇢] =

Z
⇢(r)✏PBE

XC
(⇢,r⇢) dr, (2.9)
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where ✏PBE

XC
(⇢,r⇢) is a functional that depends on both the density and its gradient.

PBE is known for its balanced accuracy and e�ciency and is often also used as a baseline
functional for a wide range of DFT calculations.

Strongly Constrained and Appropriately Normed (SCAN) Func-
tional
Another functional that is encountered in this thesis is the SCAN (Strongly Constrained
and Appropriately Normed) functional [49]. It is a recent development in DFT, and it
falls within the broader category of meta-GGA (meta-Generalized Gradient Approxima-
tion) functionals.
These functionals have gained significant attention in the field of computational chem-
istry due to their ability to provide accurate and reliable predictions of various molecular
properties. They are built on the GGA approach by considering additional gradients of
the electron density, so they are more complex than GGA functionals but o�er improved
accuracy for a wide range of systems.
The SCAN functional performs exceptionally well in predicting molecular geometries, co-
hesive energies, and chemical reactions. Moreover, it has also been valuable in describing
challenging systems in which van der Waals interactions and hydrogen bonds play a major
role [48].

Hybrid Functionals
An important class of functional, that has to be cited even if it has not been exploited in
this work, is the hybrid functional class.
These functionals are built as a linear combination of the Hartree-Fock exchange energy
and any number of exchange and correlation explicit density functionals.
Hybrid functionals are known to provide better accuracy for certain types of systems,
such as those involving transition metals or molecules with strongly correlated electrons.
Among the various hybrid functionals that have been developed, it is worth citing the
B3LYP functional [7], PBE0 functional [3], and the HSE functional [21].
The choice of exchange functional in DFT calculations depends on the specific system
being studied and the desired level of accuracy. While GGAs like PBE are often suitable
for many materials, hybrid functionals like B3LYP and HSE provide enhanced accuracy
for systems in which the exchange contributes to the total energy is particularly relevant.
In practice, it is common to benchmark di�erent exchange functionals against experimen-
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tal data or higher-level quantum chemical methods to determine which functional best
describes the properties of interest.
In this work, the hybrid functionals were not used due to their high computational time.
For the opposite reason, the LDA functional is not used as well. Its simplicity does not
allow to obtain an accurate electronic structure that can capture the main features of the
NV-center in nanodiamonds.
In this context, the PBE functional seemed to be the best choice to explore a vast amount
of structures, obtaining insightful results to be compared with reference calculations of
similar structures investigated using the same functional.

2.3. Basis Sets in DFT

Another role of major importance in the practical implementation of Density Functional
Theory (DFT) is played by basis sets. They provide a systematic way to represent the
electronic wavefunctions and the density of the system that has to be analyzed.
In this section, some common types of basis sets used in DFT calculations will be explored
to understand the advantages and drawbacks of each of them.

2.3.1. Plane Wave Basis Set

The plane wave basis set represents the electronic wavefunctions using a set of plane waves
with wave vectors (k), in fact, the electronic wavefunctions  (r) are expanded as follows:

 (r) =
X

k

cke
ik·r

where ck are expansion coe�cients.
Plane waves provide a complete basis set that satisfies the periodic boundary conditions
of crystals so they can accurately describe the electronic structure of periodic systems.
The use of this basis set is not limited just to periodic systems but is also exploited in
molecules and more localized systems calculation since force evaluation is particularly
accurate.
However, it is not e�cient when it deals with localized systems, since large cells are needed
to avoid spurious periodic-images interactions. In fact, the main drawback that sometimes
makes the plane waves choice unfavorable is the computational resources needed.
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2.3.2. Gaussian Basis Set

When it is necessary to deal with localized systems, one of the best choices is relying
on the Gaussian basis set. This method can be understood as a hybrid between a tight
binding approach and the DFT plane waves approach. The electronic wavefunctions are
expanded in terms of Gaussian basis functions centered on atomic nuclei:

 (r) =
X

i

ci exp

✓
�
(r�Ri)2

2�2

i

◆

where ci are coe�cients, �i controls the width of the gaussians, and Ri are atomic posi-
tions.

This method doesn’t imply the use of strict atomic orbitals, in fact, the Gaussian func-
tions are highly flexible and can be tailored to describe a wide range of chemical systems.
However, as in the case of plane waves, the Gaussian basis set may require a large number
of functions to accurately describe extended systems, and its implicit localization makes
it unfavorable to use in highly delocalized systems.
Moreover, this basis set does not allow to establish the periodic boundary conditions
straightforwardly and to evaluate accurately the forces.

2.3.3. Augmented Plane Wave Basis Set

Another interesting approach is the Augmented Plane Waves (APW) basis set, which
combines aspects of plane waves and localized basis functions. In APW, the wavefunctions
are expressed as a linear combination of plane waves and atomic-like functions within
mu�n-tin spheres:

 (r) =
X

k

cke
ik·r +

X

atoms

X

lm

clm
fl(r)

r
Ylm(✓,�)

where fl(r) are radial functions, Ylm(✓,�) are spherical harmonics, and ck and clm are
coe�cients.

APW combines the accuracy of plane waves for extended systems with the locality of
atomic-like functions. For this reason, it provides a balanced description of core and va-
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lence electrons. However, APW calculations can be computationally demanding due to
the need for multiple basis functions, and the choice of parameters, such as the number
of plane waves and the size of mu�n-tin spheres, can a�ect accuracy.

2.3.4. Pseudopotentials in DFT Calculation

It’s important to note that the choice of basis set and its parameters (e.g., cuto� ener-
gies for plane waves) can significantly a�ect the accuracy of DFT calculations, so basis
set optimization can be performed to strike a balance between computational cost and
precision.
Pseudopotentials are an essential tool in Density Functional Theory (DFT) that simplify
electronic structure calculations by e�ectively removing the core electrons from the prob-
lem, allowing for more computationally e�cient and accurate calculations.

The core electrons are relatively unreactive and do not significantly contribute to the
bonding and chemical behavior of atoms or molecules. Their inclusion in calculations is
computationally expensive and can lead to convergence di�culties, especially when deal-
ing with transition metals and heavy elements.

Pseudopotentials are introduced to replace the e�ect of core electrons with an e�ective
potential that reproduces their influence on the valence electrons accurately.

However, it is important to be aware of the limitations of pseudopotentials:

• Choice of pseudopotential can a�ect the accuracy of results, so careful selection is
crucial.

• Pseudopotentials optimized for one type of calculation may not be suitable for an-
other.

• Limited applicability in certain situations, such as when studying core-level spec-
troscopy or very high-precision calculations.

In particular, if a pseudopotential is used in combination with plane waves, it is possible
to exploit the accuracy of this basis set to predict the most important behavior of elec-
trons in the system, without the huge computational time required if the core electrons
are considered during the algorithm iterations, since these electrons are also the most
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localized and, for this reason, the most di�cult to represent in the plane waves basis set.

At this point, it should be clear the importance of the choice of the basis set in DFT
calculations, which depends on the nature of the system being studied and the trade-o�
between accuracy and computational e�ciency.
In this work, it has been used the combined approach of plane waves for the valence
electronic wavefunctions and pseudopotentials to describe the core electrons. This hybrid
approach allows for accurate and e�cient calculations of complex materials, even if in the
first stage of the project it was needed to deal with molecular systems.
It is important to underline that the secondary aim of this thesis is to obtain accurate
insight into the system, using this completely novel approach in the context of NV-center
embedded in nanodiamonds.
However, the substantial advantage of using plane waves has been exploited with the
molecular crystal’s calculations since the convergence in these periodic systems is much
faster.

2.4. Electron-Phonon Interaction

As was previously mentioned in this chapter, the Born-Oppenheimer approximation pre-
vents the electron-phonon interaction from being included in a single-point DFT calcu-
lation; however, several types of statistical algorithms can be established to retrieve the
phonon e�ect using DFT single-point calculations.
This avoids the need for computationally costly quantum molecular dynamics simulations
while still enabling the computation of the electron-phonon renormalization with a certain
level of statistical accuracy.

2.4.1. Molecular Dynamics Formulation and Electron-Phonon
Coupling

The Born-Oppenheimer approximation states that the Hamiltonian of a system composed
of electrons and nuclei can be described by the equation 2.2, and the nuclear Hamiltonian
is:
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Ĥnuc = �
~2
2

NnucX

I=1

1

MI

r
2

I
+ V (R) (2.10)

where MI is the mass of nucleus I. V (R) represents the 3N-dimensional adiabatic poten-
tial energy surface, that couples the nuclear and electronic degrees of freedom.
Solving the nuclear Schrödinger equation yields quantized vibrational modes called phonons.
Every electronic property at a given generic temperature T can be calculated as the en-
semble average over all the adiabatic nuclear states, taking into account the influence of
electrons and phonons. [30][31]

hOiT =
1

Q(T )

1X

k=0

D
�k(R)|Ô(R)|�k(R)

E
exp

✓
�

"k
kBT

◆
=

Z
dRW (R, T )O(R) (2.11)

where |�k(R)i is one of the eigenstates of the nuclear Hamiltonian and Q(T ) is the
partition function.
In a quantum molecular dynamics simulation, the vibrational states of the systems can
be evaluated following a quantum thermostat approach or the path integral formulation,
and the thermal average of the electronic property analyzed is retrieved from the equation
2.11.
Due to the high computational cost of these calculations, the harmonic approximation is
a popular method for recovering the electron-phonon renormalization. [30][31]

2.4.2. Harmonic Approximation

The harmonic approximation assumes that the potential energy surface V (R) near equi-
librium is quadratic:

V H(R) =
1

2

X
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MI
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����
R=0

(2.13)

The normal modes are decoupled simple harmonic oscillators. This enables the analytical
solving of the nuclear problem to obtain [30]:
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(2.16)

Clearly, the harmonic approximation neglects the anharmonicity e�ect of the potential
energy surface, and strong electron-phonon coupling and phonon-phonon scattering ef-
fects can lead to significant deviations.

2.4.3. Statistical Approaches for Electronic Quantities

The key idea of statistical approaches is to sample the quantum nuclear distribution
WH(R, T ) to compute the thermally averaged electronic properties.
In a Monte Carlo approach at each step, a set Xi of displaced normal mode coordinates
is gathered.
Then, the normal mode displacements are transformed to Cartesian displacements and
the electronic property is computed in that nuclei configuration. [30][31]
In this way the thermal averaged electronic property is calculated as follows:

hOiT ⇡
1

M

MX

i=1

O(Ri) (2.17)

where M is the sample size and Ri are the displaced Cartesian coordinates.
To extract the set of displaced normal modes it is possible to follow di�erent approaches.
One possible approach is to consider Xi = si�T , where �T is the matrix that contains
the broadening for each mode and si is a matrix with the first 3 + dr (dr depends on the
system that has to be analyzed) elements set to zero, because they refer to the movement
of the system as whole, and the remaining elements are either +1 or -1.
The signs of the displacement can be chosen according to di�erent algorithms such as a
Monte Carlo algorithm or a one-shot method. [30][31]
Moreover, an additional first-principles calculation on the antithetic pair of the chosen
atomic configuration can improve the result.
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3| Materials and Methods

3.1. DFT Algorithm

In this section, the key steps of the DFT algorithm will be discussed, in order to under-
stand the importance of parameter choice to obtain e�cient and accurate calculations.

Figure 3.1: DFT algorithms representation for ground state calculations (left) and struc-
ture relaxation (right).

The DFT calculation begins with an initial guess for the electron density, ⇢(0)(r), eval-
uated starting from the initial electronic wavefunctions  (0)

i
(r). It is important to note

that when the symmetry of the atomic coordinate is high, the iterative algorithms may
not lead to the right ground state. For this reason, slight symmetry breaking is used
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by introducing random fluctuations in the wave functions, which is su�cient to ensure
convergence to the right ground state.

The central step in the DFT algorithm is the solution of the Kohn-Sham equations, which
are the set of single-particle Schrödinger-like equations for the Kohn-Sham orbitals �i(r)

and their corresponding eigenvalues ✏i:


�
1

2
r

2 + V (n)

eff
(r)

�
�i(r) = ✏i�i(r), (3.1)

where V (n)

eff
(r) is the e�ective potential at the n-th iteration, including the external po-

tential, the Hartree potential, and the exchange-correlation potential. The Kohn-Sham
orbitals and eigenvalues are updated at each iteration until self-consistency is achieved.
The e�ective potential depends on the electron density, which evolves as the Kohn-Sham
orbitals are updated.

Once the Kohn-Sham orbitals are determined, the total energy of the system is calculated.
The total energy is the sum of several components:

E(n)

total
= T (n) + U (n) + Vext + E(n)

xc
+ Enuclear, (3.2)

T (n) is the kinetic energy of the electrons. U (n) is the electron-electron interaction energy,
including the Hartree energy. Vext is the external potential energy, typically arising from
atomic nuclei. E(n)

xc is the exchange-correlation energy, the key component describing
electron-electron correlations. Enuclear is the nuclear repulsion energy.

After calculating the total energy the electron density ⇢(n+1)(r) is updated. The loop
continues until the electron density converges to a self-consistent solution, where ⇢(n+1)(r)

and ⇢(n)(r) are nearly identical.

To determine when convergence is achieved, a convergence criterion is established, typ-
ically based on the change in the electron density or total energy between iterations.
Common convergence criteria include a specified threshold for the change in electron den-
sity or total energy.
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It is worth noticing that when it is needed to deal with structure relaxation, it is impor-
tant to focus on the maximum force between the ions as the convergence criteria. In fact,
the whole procedure is demonstrated in figure 3.1 where it is evident that between the
ionic movement step are nested classic ground state self-consistent iterations.

3.2. Computational Details

In this section, the computational details and the critical choices made regarding simula-
tion parameters required to accurately characterize the electronic properties of the system
will be discussed. All calculations in this work were performed using Qbox [19], an open-
source code dedicated to electronic structure simulations. This choice was motivated by
the desire to leverage the advantages of plane waves in conducting calculations on molec-
ular crystals composed of nanoparticles.

3.2.1. Computational Architectures and Benchmarking Phase

All the major computations shown in this work were carried out through the use of the
Midway2 cluster provided by the University of Chicago RCC (Research Computing Cen-
ter).
This cluster allows to perform both CPUs and GPUs calculations, although the codes
that have been run during the development of this project are CPUs codes.

A preliminary step, before delving into the proper simulation of the systems analyzed,
was the benchmarking phase.
It was crucial since a wrong resource allocation would have meant an unfeasible amount
of computational hours or a computational power waste.
For this reason, it has been decided to perform a ground state DFT calculation on one of
the structures used in this work, C69H62, in cells with dimensions ranging from 20 Bohr

to 100 Bohr, with increasing number of CPUs.
Figure 3.2 briefly summarizes the most important results of the benchmarking phase,
which make clear the amount of time needed for each simulation (each node has a 184 Gb

usable memory and is composed of 40 cores).
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Figure 3.2: Run time analysis increasing the number of CPUs used.

3.2.2. Parameter Selection

To ensure reliable results, careful consideration was given to the selection of simulation
parameters. These parameters play a pivotal role in the accuracy and e�ciency of elec-
tronic structure calculations.

• Energy Cutoff: The energy cuto� determines the range of included plane waves in
the calculation and was selected to balance accuracy and computational e�ciency.
Initially, we used an energy cuto� of 85.0 Ry as a reference. Later, we reduced it to
65.0 Ry to speed up calculations, since we obtained identical results with the latter
cut-o�.

• Convergence Criteria: Parameters related to self-consistency iterations and total
energy convergence were finely tuned to ensure reliable results. We applied a toler-
ance of 10�8 eV for ground state calculations and 10�3 Ha/Bohr for optimization
calculations. For the most critical structure, optimization was further enhanced
with a 10�4 Ha/Bohr tolerance. On the other side, single optimization cycles with
10�2 Ha/Bohr tolerance were carried out for systems needed to explore roughly
some general electronic structure behaviors.

• Cell Size: As we are using periodic boundary condition (PBC) calculations, de-
termining the cell size is crucial to minimize interactions between periodic images
and accurately represent the system. In this study, the order of magnitude of the
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Markov-Payne correction [37] was used as a reference to assess the di�erence between
the nanodiamond’s vacuum levels before and after NV implantation. It quickly be-
came evident, given the flat potential at the cell boundaries, that a cell parameter
of 40 Bohr was su�cient to avoid inter-cell interactions for neutral systems, and it
is enough to converge at the right value for the HOMO-LUMO gap of the diamon-
doid, as it can be seen in figure 3.3. However, for charged systems, it was necessary
to increase the cell parameter to 60 Bohr, resulting in a significant computational
slowdown for these systems.

Figure 3.3: HOMO, LUMO, and HOMO-LUMO gap increasing the cell parameter for the
C69C62 cluster.

• Smearing Technique: Smearing methods, which are used to treat electronic oc-
cupancies at finite temperatures, could be useful to speed up the calculations, so, we
tried to use the Fermi smearing technique with the temperature fixed at 500 K. The
main drawback is that for insulating systems, the smearing can give unreliable and
un-physical results: it has caused a mixing of the levels that has reduced drastically
the dimension of the gap. For this reason, no smearing technique was used in any
of the calculations.

• Optimization Algorithm: The selection of an appropriate optimization algorithm
can have di�erent e�ects. First of all, it can impact the reliability of the results,
so it has to be chosen properly. Then, obviously, it could help to speed up the
calculations.
In this work, the PSDA (Preconditioned Steepest Descent with Anderson accelera-
tion) [4] algorithm and the JD (Jacobi-Davidson) [22] algorithm have been used to-
gether to combine quickness and reliability, since the PSDA algorithm alone is much
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faster, but, when calculations with empty states are performed, it doesn’t reach the
accuracy of the JD algorithm. For this reason, a first PSDA self-consistence cycle
has always been performed, followed by a JD cycle, whose starting point was the
set of wavefunctions obtained during the PSDA iterations.

Lastly, a spin-polarized DFT calculation is needed when a system contains unpaired elec-
trons because standard DFT calculations assume that electrons are spin-paired. For this
reason, it was necessary to perform spin-polarized DFT calculation in the case of all the
NV-nanodiamonds, starting from the assumption of having a triplet ground state.

3.2.3. Localization Approach

In this work, we are looking for localized single-particle defect levels near the vacancy, so
it is necessary to define some measurement for this figure of merit.
We explored two di�erent approaches: one is based on the inverse participation ratio
(IPR) while the other is based on a selective integral of the wavefunction squared.
The IPR is a measure of the localization of a wavefunction [32] that is defined as:

IPRi =

Z
| i(r)|

4dV, (3.3)

Previously IPR has been used to characterize localized defect levels within disordered ma-
terials, for example, amorphous carbon [32]. The first approach relies on the comparison
between the most localized orbital in the pristine nanostructure and each orbital in the
NV-nanostructure: if the IPR of the wavefunction of the NV-nanostructure is higher than
double the IPR of the pristine’s most localized wavefunction, the NV one’s is considered
localized.

The second approach is local and relies on the calculation of the integral over the sphere
or radius 1.5Å (C-C bond length) centered in the vacancy: if the orbital is more than
50% localized inside the sphere, it is considered localized.

loci =

Z

V✓Vsphere

| i(r)|
2dV, (3.4)

A similar approach has been used in previous works, to determine the localization of the
NV-center orbitals. [45]
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Figure 3.4: IPR analysis on the C54H56 cluster and its NV-embedded counterpart.

(a) C33H36NV �
localization analysis. (b) C52H54NV �

localization analysis.

(c) C67H62NV �
localization analysis.

Figure 3.5: Localization analysis results based on the local approach.

The reason why both of these methods were considered is that is di�cult to define a
measure for the localization in a molecular system, that is itself localized.
However, except where it is clearly mentioned, in this work the second method was chosen
as the reference one since it allows to discriminate the position of the localization, so it is
possible to understand where the orbital is localized, not just if it is localized.
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4| Electronic Structure of
NV-nanodiamonds

In this chapter, we explore the selection of the nanoparticles to be analyzed, considering
both their size and morphology. Additionally, we outline the methodology employed
for the design and subsequently present the result of the analysis of the nanoparticles’
electronic structure.

4.1. Structure Design

The nanoparticles under investigation in this study are small-size nanodiamonds.
There are several reasons for choosing such small structures, even if it has been demon-
strated also the feasibility of bigger nanodiamonds production [53]:

1. Computational Cost: Computational resources are a critical aspect of this re-
search. Smaller nanoparticles result in lower computational costs, that enable to
explore a wider range of designs and configurations.

2. Surface Effect in NV Diamond: The NV-center in small-sized nanoparticles is
a�ected by the surface e�ect that characterizes the NV-center when is embedded
in diamond [54]. Although the proximity to the surface should be avoided, due
to the negative electronic a�nity (EA), it can be exploited by functionalizing the
termination of the nanoparticles to improve the stability of the NV-center.

3. Symmetric Behaviour: The nanoparticles were designed to be not symmetrical.
In this way, it would be possible to underline the e�ects of the broken symmetry on
the electronic structures, which is an important point, since it is di�cult in principle
to control the symmetry of the nanoparticle during the synthesis. Moreover, non-
symmetrical e�ects can be easily produced in small-sized nanoparticles.

4. Qubits Entanglement: Smaller nanostructures enable smaller spacing between
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NV-centers in an eventual hardware design. The narrow gap can be exploited to
ensure easier qubit entanglement operations, which are crucial also in basic quantum
algorithms.

4.1.1. Analyzed Nanoparticles

The nanoparticles analyzed in this study were built using Avogadro [20], a molecule editor
and visualizer designed for cross-platform used in computational chemistry, materials
science, and related areas. Then the atomic structure was refined using Qbox [19], an
open-source software package for atomic-scale simulations of molecules, liquids, and solids,
to exploit a precise structures’ relaxation that goes beyond the force field approach. This
optimization cycle is crucial to obtain reliable electronic structures.
The following step-by-step process is repeated for each nanoparticle size:

1. Supercell Selection: The process begins by choosing a 216-atom supercell of
diamond optimized with SCAN functional.

2. Cluster Extraction: From this supercell, we extracted the clusters of interest
that were to be used in this analysis. The extracted clusters were terminated with
hydrogen atoms to complete the structure of the diamondoids.
In particular, three structures were created: C35H36, with a cage dimension of ⇠ 7

Å; C54H56, with a cage dimension of ⇠ 8 Å; C69H62, with a cage dimension of ⇠ 8

Å. All of them are represented in figure 1.10 (see chapter 1 at page 15).
As it can be seen the second and the third structures do not di�er much in terms
of dimension, but the C54H56 was cut in a way to have a relevant deformation with
respect to the usual sp3 structure. What is expected, indeed, is to find similar elec-
tronic structures with some di�erences due to this deformation, since the quantum
confinement e�ect is the same for both structures.

3. Diamondoids Optimization: The hydrogen-terminated clusters were then sub-
jected to an initial optimization using the PBE functional with a tolerance of
10�4 Ha/Bohr for the maximum force. In this initial calculation, the tolerance
was kept high, to obtain precise references.

4. NV Implantation: After optimizing the pristine structures, the NV center was
implanted into each nanoparticle. The choice of the NV position was somehow forced
since the size of the nanoparticles doesn’t allow exploring di�erent configurations.
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(a) C33H36NV �
(b) C52H56NV �

(c) C67H62NV �

Figure 4.1: NV-diamondoids used in this work.

At the end of this step the obtained structures are C33H36NV �, C54H56NV � and
C69H62NV �; they are shown in figure 4.1.

5. NV-nanoparticles Optimization: Following NV implantation, it was conducted
a second optimization using the PBE functional with the same tolerance level.



42

4.2. Electronic Structures

After the nanoparticles design phase, ground state calculations including unoccupied
single-electron orbitals were performed to obtain the electronic structures of the three
distinct clusters.
In this section, we present the complete analysis for each cluster, beginning with the
smallest one.

4.2.1. C33H36NV �

Figure 4.2: Electronic structures comparison between C35H36 (pristine) and C33H36NV �

(NV implanted).

The electronic structure of the C35H36 cluster has some similarities with the NV-diamond
electronic structure in figure 1.7a (see Chapter 1 at page 12).
In particular, the HOMO-LUMO gap of the C35H36 cluster (4.4 eV ) is similar to the
value for band gap of diamond (4.2 eV ) obtained with the same functional [31], and is
also comparable to previous studies on diamondoids [15]. As expected, this simulated
gap is underestimated with respect to the experimental value (5.4 eV ), because the PBE
functional is known to underestimate the band gap. For this reason, every comparison
with other simulations is numerically meaningful if the chosen functional is the same,
otherwise, it would be useful just to compare qualitatively the results. For example, if
the HSE functional is used the diamond gap is found to be 5.34 eV , in good agreement
with the experimental value [34].
After implanting the NV-center, the band gap decreases to 4.2 eV . This reduction has
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been verified to be independent from the energy cut-o�, so it may be caused by a smaller
cell than the perfect one, since, if it is taken as a reference the behavior of the C69H62

band gap in figure 3.3, it is expected that a larger cell may increase the gap slightly. We
decided to continue using this cell dimension because we wanted to explore the qualitative
e�ect of di�erent surface terminations on the NV-nanodiamonds, for which the chosen cell
dimension is su�cient.
The main issue with the C33H36NV � cluster is that it is characterized by a negative elec-
tron a�nity, also observed previously for small clusters [15].
Electronic single-particle levels of the NV-center inside the gap can be easily identified,
but the electronic structure has some di�erences with respect to the NV-center in dia-
mond (in figure 1.7a, chapter 1 at page 12). In particular, for both ↵ and � spin channels,
the lower NV-localized levels, lay 1 eV above the valence band, unlike that of the NV-
diamond, where they lay within the valence band.

4.2.2. C52H56NV �

Figure 4.3: Electronic structures comparison between C54H56 (pristine) and C52H56NV �

(NV implanted).

Though the electronic structure for this cluster is similar to the previous one, it is impor-
tant to notice that, using the same criteria to assess the localization of the wavefunctions
inside the NV, the electron here is less localized (around 30% in the sphere of 1.5 radius
centered in the vacancy). However, the IPR approach assesses the localization of the
levels that in principle should belong to the NV-center as it can be seen in figure 3.4 (see
chapter 3 at page 35).
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For proper understanding, it is necessary to visually investigate the wavefunctions.

(a) C33H36NV � HOMO �

2 orbital in the ↵ spin chan-

nel (NV-localized).

(b) C52H56NV � HOMO�

2 orbital in the ↵ spin chan-

nel (not NV-localized).

(c) C67H62NV � HOMO�

2 orbital in the ↵ spin chan-

nel (NV-localized).

Figure 4.4: Orbital comparison between C33H36NV �, C52H56NV � and C67H62NV �.

It can be seen that the levels are influenced by the ring deformation and they partially
localize on it. This is also the reason why the 50% localization approach is better with
respect to IPR in assessing the localization of the orbitals, as IPR is incapable to distin-
guish the region of the localization in the system.

4.2.3. C67H62NV �

Figure 4.5: Electronic structures comparison between C69H62 (pristine) and C67H62NV �

(NV implanted).
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The C67H62NV � cluster shows an electronic structure almost identical to the others, with
a quantitatively improved localization with respect to C52H56NV �.
In fact, comparing the HOMO�2 orbital of C52H56NV � and C67H62NV � (figure 4.4), it
is possible to see that the delocalization e�ect is induced by the ring deformation in both
the structures, but the numerical approach for the orbital localization confirms that, the
higher the ring deformation the more the delocalization.
We also notice that with respect to the diamond, which has a perfect C3v symmetry, the
degeneracy is lifted because of the broken symmetry of the system. Though the ex,y can
still be identified by inspection (in figure 4.6), they are separated in energy.

(a) HOMO orbital in the ↵

spin channel.

(b) HOMO � 1 orbital in

the ↵ spin channel.

Figure 4.6: ex,y orbitals in C67H62NV �.

4.2.4. Nanoparticles Comparison

Figure 4.7: Electronic structures comparison between C33H36NV �, C52H56NV � and
C67H62NV �.
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Comparing the di�erent clusters a couple of interesting e�ects can be underlined.
First of all, with an increase in the size of the nanoparticles, NV-localized levels approach
the valence band, both in the lower ↵ and � spin channels. This e�ect is consistent with
the fact that by increasing the cluster size, the structure is more and more similar to the
diamond, so it is expected to have similar electronic structures.
We notice a slight decrease in the gap when the particle dimension is increasing. This
e�ect is not so pronounced because the particle dimensions are similar, but it confirms
the stronger quantum confinement e�ect on the smallest nanoparticle, as also observed in
a previous work [43]. Unfortunately the study in ref. [43] has used the B3LYP functional,
so the results cannot be numerically compared.
Anyway, it is encouraging that the results obtained in this work confirm some behavior
of other types of calculations found in the lacking literature on NV-center embedded in
diamondoids.
In fact, all the other results that, in principle, could be taken as a reference are the output
of multi-configurational studies of NV-diamond cluster models.
These calculations are based on the fact that some NV-center properties in diamond can
be retrieved simulating diamond clusters instead of supercells: an optimized diamond su-
percell with the NV embedded into it is cut, then the multi-configurational calculation is
carried out on the passivated nanoparticle without an optimization of the cluster. In this
way, the symmetrical properties of the diamonds are preserved and the calculation can be
carried out faster, because of the smaller number of atoms with respect to the supercell
case.
For this reason, these calculations cannot be considered to make a numerical comparison,
since their results refer to the diamond in its crystalline system.
Lastly, we notice that the localization in the smallest cluster is more pronounced than
the localization in the largest one. This can be explained by considering the morphol-
ogy of the di�erent structures. The smallest one is composed of one complete carbon
shell around the central carbon atom, so the sp3 geometry is preserved. The other two
nanostructures have an incomplete second carbon shell, so, after the relaxation, the sp3

geometry is deformed. The e�ect of this deformation is more pronounced in the mid-size
cluster, and in fact, the localization is worse with respect to the localization in the largest,
which, however, is a�ected by deformed-ring delocalization.

In summary, we found that the small nanoparticles with a number of carbon atoms less
than 87, which complete the second carbon shell, cannot be used for the purpose of quan-
tum information application, since it is impossible to excite an electron localized in the
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NV-center, without expelling the electron from the nanodiamond, that is a must to per-
form the optical readout cycle used to detect the spin state of the NV-center. However,
the presence of a well-defined NV-center electronic structure inside the gap motivates us
to search for some solution to engineer the nanoparticles with the aim of making them
suitable for qubit use. Once all the defect levels reside within the gap, we can assume the
system to show similar properties to its promising solid-state counterpart (above all the
long coherence time), harnessing the advantages of the molecular environment.





49

5| Surface Functionalization

A possible idea to improve the electronic properties of the NV-nanodiamonds is to func-
tionalize the nanoparticles’ surface with electron-withdrawing functional groups or atoms.
As a general chemical idea, the electron-withdrawing group draws electron density toward
itself, creating more space to accommodate the additional NV-electron, which is stabilized
since the Coulomb repulsion decreases.
The functionalization choices have been carried out considering di�erent aspects of chang-
ing the termination to the nanodiamonds. Among all, we considered the literature and
the eventual experimental realization of nanodiamonds terminated di�erently from the
hydrogenated one.
Henceforth, the analysis is carried out on the biggest nanoparticle (C67H62NV �) since it
is the one that would su�er the least due to the surface e�ect, despite we can still exploit
the e�ects of the di�erent terminations. Moreover, this cluster is more similar in size to
the experimental realizations.

5.1. Termination Localization

To investigate the impact of the surface functionalization on the levels near the HOMO
and the LUMO, we defined the measure of the localization on the single termination as
the integral over the sphere centered in the central point for each functional group, in the
same flavor of what we did to evaluate the localization around the vacancy.
The radius of the sphere is determined by nearest-neighbor criteria to avoid the super-
position of integrals between near-terminations. The radius is chosen as the minimum
between 1.5Å and half the distances between the terminations on which the localization
is calculated.
We defined the orbital to be termination-localized if at least the 50% of the wavefunction
is localized on all the terminations of the nanoparticles:
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loci =
NX

k=1

Z

V✓Vsphere,k

| i(r)|
2dV, (5.1)

where N is the number of functional groups in the nanoparticle.

5.2. Fluorine-terminated Nanodiamonds

The first systems that were explored are the F -terminated diamondoids. In the literature
it is possible to find some experimental realization of this type of nanostructures [36][53].
In particular, in a previous work [53], the researchers were able to push the surface ter-
mination to 1

3
of the total number of carbon atoms inside the structure, for this reason,

the maximum number of termination in a single nanoparticle was chosen to be 17, that
represents slightly less than the 30% of functionalization.

5.2.1. Design Procedure

1. Initial Guess: C67H62NV � optimized structure was chosen as the starting point.
To understand which is the number of terminations on a single nanoparticle that
can a�ect significantly the electronic properties of the system, since in the literature
there are not any references for this type of nanostructures, except for the experi-
mental work that underlines the maximum fluorination obtained on a nanodiamond.
We decided to build some nanostructures with an increasing number of F -termination:
C67H59F3NV �, C67H56F6NV �, C67H51F11NV �, and C67H45F17NV �.
Moreover, we built C67F62NV � cluster, since, after the analysis of the previously
cited nanodiamonds, it was found the extremely promising e�ect of the F -termination,
so it was interesting to study a nanostructure in which the functionalization was
pushed far beyond the actual experimental limit.

2. Random Position Selection: Depending on the number of the terminations we
wanted to accommodate on the surface, we chose an equal number of random H

positions. We began from the lowest functionalized structure (C67H59F3NV �), to
see the e�ect of the termination on the NV electron. The random positions were
chosen to be near the N atom or near the vacancy.

3. Bond Lenght Adjustment: For each F atom on the surface, the bond lengths
were manually adjusted using AVOGADRO software, taking as a reference the C�F

bond length in CH3 � F (1.39 Å [25]).
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4. Structures Optimization: The clusters were optimized using the PBE functional
with a tolerance of 10�3 Ha/Bohr for the maximum force. In these calculations, the
tolerance was kept lower than the H-terminated structure, to speed up the process.
We found that it is accurate enough to obtain reliable electronic structures.

(a) C67H59F3NV �
(b) C67H56F6NV �

(c) C67H51F11NV �
(d) C52H45F17NV �

(e) C67F62NV �

Figure 5.1: F -terminated clusters analyzed in this work.
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5.2.2. Electronic Structures

Figure 5.2: Electronic structures comparison increasing the number of F -termination on
the C67H62NV � surface.

It can be seen that, starting from 6 F atoms, as we increase the number of terminations
on the surface, the overall behavior is positive from the point of view of stabilization,
and also from the point of view of the localization. In fact, the C67H56F6NV � shows
an increasing degree of localization for one of the unoccupied levels that start localizing
inside the NV.
Then, the C67H56F6NV � shows another important behavior: increasing the number of
fluorine atoms the electron a�nity of that NV localized empty level becomes positive,
allowing to excite the electron in that level without making it dispersed in the vacuum.
For the C67H45F17NV � cluster, we identify all the NV-like defect levels within the gap.
The only di�erence is again the lifted degeneracy of the e0

x,y
levels due to the broken

symmetry.
This latter e�ect is mitigated if the fluorination is complete (as in C67F62NV �). For
C67F62NV �, though a more symmetrical nanoparticle is obtained, yet a perfect degener-
acy of the various levels is not obtained due to the asymmetrical behavior of the initial
diamondoid.
Moreover, in this latter nanoparticle, it can be seen that the electron a�nity is remarkably
large (⇠ 4 eV) and the separation between the HOMO and the LUMO is ⇠ 2 eV. This
behavior is crucial in the perspective of quantum information science application since it
guarantees more robust excitation protocols.
It is possible to underline another behavior of increasing fluorination: the more the num-
ber of fluorine atoms, the more the occupied NV levels approach the VBM (valence band
maximum) until when the lower energy ones are absorbed into the valence band, like in
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the diamond.

After this first analysis, we decided to limit at 3 the number of structures analyzed for
each termination, to avoid an excessive computational time consumption for this type of
explorative investigation.

5.3. Hydroxyl-terminated Nanodiamonds

Now we explore the OH-termination e�ect on the electronic structure of nanodiamonds.
This choice was motivated by a previous experiment [2], which showed the possibility of
functionalizing the surface of the diamondoids with OH-groups using ozone in ambient
conditions .
The OH-group is also an electron-withdrawing group, so it may stabilize the NV center
electron and it is worth to explore.
C67H56(OH)6NV �, C67H51(OH)11NV �, and C67H45(OH)17NV � are the three chosen
nanostructures for the following analysis.

5.3.1. Design Procedure

1. Termination Substitution: The F -terminated nanodiamonds were taken as the
starting point of the design procedure, and the F atoms were substituted with the
OH groups.
We noted that AVOGADRO placed the H atom of each group following a geomet-
rical criteria that doesn’t account for an optimized arrangement of the atoms, so
the orientation of the OH bond had to be optimized, for each functional group.

2. Bond Lenght Adjustment: The bond lenghts were manually adjusted to the
Methanol (CH3 � (OH)) bond lenghts (C �O: 1.43 Å and O�H: 0.96 Å [25]) for
each OH group on the surface.

3. Structures Optimization: To avoid excessive time consumption the optimization
process was carried out only on the surface of the diamondoids, thanks to the op-
portunity given by QBOX to freeze the atoms of the carbon cage. In this way, after
fixing the OH bond lengths their orientations were optimized.
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(a) C67H56(OH)6NV �
(b) C67H51(OH)11NV �

(c) C67H45(OH)17NV �

Figure 5.3: OH-terminated clusters analyzed in this work.

5.3.2. Electronic Structures

Figure 5.4: Electronic structures comparison increasing the number of OH-termination
on the C67H62NV � surface.

We see that with an increasing number of OH-group on the surface, the overall behavior,
as expected, is positive from the point of view of the stabilization. However, it is not
particularly e�ective from the point of view of localization, since, increasing the number
of OH terminations, an occupied wavefunction that was localized inside the NV starts
to localize on the terminations. It is shown a localizing behavior only on one of the two
empty states needed to complete the NV-electronic structure.
However the stabilizing e�ect of the OH termination guarantees the positive electron
a�nity in C67H51OH11NV � (⇠ 0.6 eV ) and C67H45OH17NV � (⇠ 0.8 eV ).
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5.4. Thiol-terminated Nanodiamonds

Similar to the OH-termination, we also investigated the impact due to the SH-termination.
It was expected to have a milder e�ect since its withdrawing capacity is less pronounced
with respect to the OH-group, but it may give interesting e�ects due to the higher elec-
tronic cloud di�usion.
We have selected C67H56(SH)6NV �, C67H51(SH)11NV �, and C67H45(SH)17NV � nanos-
tructures for the following analysis.

5.4.1. Design Procedure

1. Termination Substitution: We started with the OH-terminated structures and
substituted all the O atoms with the S atoms.
We assumed that the SH bond orientations were already adjusted, thanks to their
optimization in the OH-terminated nanostructures, so the surface optimization pro-
cess was skipped to save computational resources.

2. Bond Lenght Adjustment: The bond lenghts were manually adjusted to the
Methanthiol (CH3 � (SH)) bond lenghts (C � S: 1.82 Å and S �H: 1.33 Å [25])
for each OH group on the surface.

(a) C67H56(SH)6NV �
(b) C67H51(SH)11NV �

(c) C67H45(SH)17NV �

Figure 5.5: SH-terminated clusters analyzed in this work.
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5.4.2. Electronic Structures

Figure 5.6: Electronic structures comparison increasing the number of SH-termination
on the C67H62NV � surface.

We observe that with an increasing number of SH-group on the surface, the overall be-
havior, as expected, is again positive from the point of view of the stabilization. However,
it is not desirable from the point of view of the preservation of the NV-center electronic
levels inside the band gap.
First of all, the band gap in which the NV-levels are supposed to reside is reduced, e.g.
for C67H56(SH)6NV � it is reduced to ⇠ 2.6 eV.
Moreover, the defect levels within the gap become localized on the terminations showing
the great impact of the SH group inside the nanoparticle.
The positive aspect is the NV-localization of an empty orbital with a significant energy
decrease and the ensemble unoccupied orbitals stabilization.
It can be seen that, besides these favorable features, the overall e�ect of the SH termi-
nation is negative on the NV-electronic structure when the surface functionalization is
increased.

5.5. Carbonyl-terminated Nanodiamonds

The last electron withdrawing termination that we analyzed is the CHO-group because
it could give interesting insight due to the presence of the mesomeric resonance e�ect.
Since the presence of the CO double bond was expected to significantly alter the electronic
structure, the decision regarding the number of terminations was made in this instance
to capture the e�ect of the CHO group even at low functionalization concentrations.
For this reason, C67H59(CHO)3NV �, C67H56(CHO)6NV �, and C67H45(CHO)17NV �
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are the structures analyzed in this section.

5.5.1. Design Procedure

1. Termination Substitution: We substituted the F atoms of the F -terminated
nanodiamons with the CHO groups.
These structures also show the same problem as the initial OH-terminated nanos-
tructures, where the OH bond was wrongly oriented, so the orientation of the CO

and CH bonds had to be optimized.

2. Bond Lenght Adjustment: The bond lenghts were manually adjusted to the
Acetaldehyde (CH3 � (CHO)) bond lenghts (C � C: 1.50 Å, C � O: 1.39 Å and
CH : 1.11 Å [25]) for each CHO group on the surface.

3. Structures Optimization: To save computational resources we carried out the
optimization process only on the surface of the diamondoids.

(a) C67H59(CHO)3NV �
(b) C67H56(CHO)6NV �

(c) C67H45(CHO)17NV �

Figure 5.7: CHO-terminated clusters analyzed in this work.
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5.5.2. Electronic Structures

Figure 5.8: Electronic structures comparison increasing the number of CHO-termination
on the C67H62NV � surface.

We notice that already in C67H59(CHO)3NV � the defect levels inside the gap (that is
reduced to ⇠ 3.0 eV) are not preserved and some wavefunctions start to localize on the
terminations.
This behavior is accentuated when the functionalization is increased and becomes partic-
ularly evident in the C67H45(CHO)17NV � structure.
In this latter structure, it is clear the huge influence of the termination in terms of local-
ization behavior, in fact almost all the levels are localized on the CHO-group.
The explanation of this behaviour can be retrieved by computing the Maximally Localized
Wannier Functions [39], since, once controlled by inspection, they reveal the shape of the
orbitals localized on the termination: those wavefunctions (some of them in figure 5.9) are
similar to the classic ⇡-orbital shape (bonding and anti-bonding), and it is known that in
a system rich in ⇡-orbitals the gap is extremely narrow.

(a)

C67H45(CHO)17NV �

HOMO � 3

(b)

C67H45(CHO)17NV �

LUMO

(c)

C67H45(CHO)17NV �

LUMO + 1

Figure 5.9: C67H45(CHO)17NV � Maximally Localized Wannier Functions.
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However, it is important to notice the massive stabilization of the empty levels, which cre-
ates a more stable particle in the excited states, in fact, the electronic a�nity is ⇠ 2.6 eV
in C67H45(CHO)17NV �, but it is also significant in C67H51(CHO)11NV � (⇠ 1.0 eV).

5.6. Termination Comparison

After having described all the terminations in detail, it is important to understand the
di�erences between each of them. For this sake, we compare the di�erent systems to
extract deeper insight into the e�ect of the terminations.

5.6.1. Spin Accumulation Analysis

The first simple analysis that was performed on the terminated-nanoparticles to under-
stand their di�erences is the evaluation of each termination e�ect on the spin accumulation
in the ground state.
It was expected to find an increase in the localization of the spin accumulation inside the
NV for each electron withdrawal groups since the extra spin can accommodate better due
to a more favorable Coulomb potential.
The spin accumulation is an index that shows clearly where the extra spin is distributed
inside the nanoparticle, so, after having subtracted the two spin densities and using the
localization approach described in chapter 3, the localization factor has been calculated
and the results are shown in figure 5.10.

Figure 5.10: Spin accumulation in each structure with di�erent termination.

It is clear that in the ground state, the e�ect of the terminations is overall slightly positive,
except for the CHO termination. Evidently, the CHO termination is not promising for
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the target applications.

(a) C67H59(CHO)3NV �

spin accumulation

(b) C67H56(CHO)6NV �

spin accumulation

(c) C67H45(CHO)17NV �

spin accumulation

Figure 5.11: Spin accumulation in the CHO-terminated clusters.

Visual inspection of the spin densities (in figure 5.11) makes clear that the spin accumu-
lation behavior is dominated by the CHO-group distribution on the surface.
So when the functionalization increases, the additional electron is attracted towards the
terminations, provoking a decrease in the spin accumulation, which also becomes negative
in a lobe when the functionalization is pushed to 17 CHO-groups.

5.6.2. Electronic Structure Comparison

Figure 5.12: Electronic structure comparison between the structures terminated with 17

functional groups.

In this analysis, to understand the peculiar e�ect of each termination it is considered only
the highest-functionalized nanoparticles for each group.
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It is clear that the most e�ective termination in terms of combining localization and sta-
bilization is the fluorine, but SH and CHO show interesting behavior from the point of
view of empty levels general stabilization.
For this reason, in the following section, we explore the combined e�ect of F with SH or
CHO, to understand if it is possible to exploit the favorable behavior of each termination.

5.6.3. Double-terminated Nanodiamonds

The structures built and analyzed in this section are summarized in table 5.1.

F � CHO-terminated F � SH-terminated

C67H45F16(CHO)1NV � C67H45F16(SH)1NV �

C67H45F15(CHO)2NV � C67H45F15(SH)2NV �

- C67H45F14(SH)3NV �

- C67H45F12(SH)5NV �

Table 5.1: Double-functionalized nanodiamonds analyzed in this section.

Design Procedure
The design procedure for each of these double-terminated nanoparticles is similar to the
design of the single-terminated structures, and, to save computational resources, the op-
timization was not carried out, since this analysis was performed to obtain a tentative
idea of the combined terminations e�ect.

1. Termination Substitution: C67H45CHO17NV � was taken as the starting point
for the F�CHO-terminated nanostrcutures, since we can assume to have the CHO

bond directions optimized. In this way, it was possible to substitute the CHO groups
with the F atoms. We repeated the same procedure for the F � SH-terminated
nanostructures, starting from C67H45SH17NV �.

2. Bond Lenght Adjustment: We adjusted the bond lenghts (CF ) as described
earlier.
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(a)

C67H45F15(CHO)2NV �
(b)

C67H45F15(SH)2NV �

Figure 5.13: Two of the double-terminated clusters analyzed in this work.

Electronic Structures

(a) Electronic structure comparison between the structures terminated with F and

CHO functional groups.

(b) Electronic structure comparison between the structures terminated with F and

SH functional groups.

Figure 5.14: Electronic structures of all the double-terminated structures analyzed in this
work.



63

The electronic structures of the various clusters show that the e�ect of the combined
terminations is undesirable. In particular, a single CHO group combined with 16 F atoms
doesn’t preserve the NV electronic structure, since it introduces two empty termination-
localized states within the NV-levels. On the other hand, the SH termination is not as
impactful as the CHO group, but the trend is again detrimental.
In both types of structures, the termination-localization e�ect and the gap reduction e�ect
are way more pronounced than the stabilization e�ect.
In conclusion, we can confirm that the most e�ective termination is the F -termination
alone.

5.6.4. Radial Potential Calculation

To retrieve the crucial information that can explain the di�erent e�ects of each termination
we calculated the radial potential starting from the barycentre of the nanoparticles.
QBOX code provides the Coulomb potential as a volumetric file, so to evaluate the mean
potential at a certain radius we integrated the potential within two consecutive spherical
surfaces:

�(r) =
1

Vsphere(r)� Vsphere(r� dr)

Z

V✓(Vsphere(r)�Vsphere(r�dr))

V (x,y, z)dV, (5.2)

where dr is the thickness of each spherical shell in which the potential was integrated.

Figure 5.15: Radial potential comparison between each termination, with a focus in the
NV region.

In the region around the N atom, the potential has a minimum at a radius corresponding
to the distance of the vacancy from the center of the nanoparticles.
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Evidently, the only termination that guarantees an e�ective stabilizing behavior for the
electron within the vacancy is the F -termination. All the other terminations perform
even worse than the H-terminated structure.
The reduced Coulomb repulsion stabilizes the unoccupied levels of the nanodiamonds with
di�erent terminations, as evident from the radial Coulomb potential, which is highest for
the H-terminated nanodiamond.
This evidence underlines the importance of the chemical concept of withdrawing/donating
functional group, since the stabilization process occurs due to the modification of the
coulomb potential, without the necessity to include electron exchange and correlation
contributions.
On the other, it is important to notice that the chemical intuition fails with the stabiliza-
tion order of OH and SH, since it is expected that OH stabilize more than SH.
To investigate this last consideration on chemical intuition a more profound analysis of
the CO bond and CS bond was performed, to understand the reason for the intuition
failure.

Bond Axis Analysis
To reveal the reason why the SH group stabilizes better the electronic structure with
respect to the OH group, regardless of the less electronegativity, we calculated the linear
charge density along the CO bond axis and the CS bond axis.
From the computational point of view, we have integrated the charge density volumetric
file slice by slice in a cylinder of 2 Å radius, to ensure the inclusion of all the electrons
near the O/S atom.

�(z) =

Z

V✓(Vslice(z|dz))
⇢(x,y, z)dV, (5.3)

where dz is the thickness of each cylindrical slice in which the charge density ⇢ is inte-
grated.

The linear charge density was calculated for each bond in C69H45(OH)17NV � and C69H45SH17NV �,
then the average profile was evaluated and it is shown in figure 5.16.
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Figure 5.16: Linear density comparison along the bond axis between OH termination and
SH termination.

The linear charge density profiles show that the SH termination stabilizes better the
nanoparticle electronic structure due to the more di�used 3sp3 orbitals of the S atom
with respect to the 2sp3 orbitals of the O atom (both atoms in a C3v symmetrical envi-
ronment hybridize their s and p orbitals to obtain sp3 hybrid orbitals), and the CS bond
length that is longer than the CO bond length.
For these reasons the charges are better accommodated in the SH terminations.

Figure 5.17: Radial density comparison between OH termination and SH termination.

✓(r) =
1

Vsphere(r)� Vsphere(r� dr)

Z

V✓(Vsphere(r)�Vsphere(r�dr)

⇢(x,y, z)dV, (5.4)

Moreover, this last consideration becomes even more evident if it is evaluated the radial
charge density (in figure 5.17), which is calculated with the same approach of the radial
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potential. In fact, it is clear the larger spacing between charges in the SH-terminated
structure.

During the exploration of the di�erent terminations we have found that all the electron-
withdrawing groups stabilize the unoccupied levels, but only the F -termination does not
damage the defect levels within the gap. In fact, all the other terminations localize the
spin density slightly outside the NV or delocalize some of the NV-localized levels, which
is undesirable for applications.
In conclusion, we want to underline that the promising result for the F-terminated nanos-
tructures, which is ideal for quantum information science applications, may push the
research towards smaller cluster functionalization, to understand if the termination e�ect
is strong enough to counterbalance the negative electronic a�nity of these clusters.
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6| Nanodiamonds Molecular
Crystals 1

This last chapter on results aims to investigate the behavior of the nanodiamonds’ elec-
tronic structure when they crystallize and are pressurized.
We have decided to study this system because it approaches the idea of building a proper
quantum hardware, in which qubits are not isolated, but they can be entangled, and, in
general, interact with each other.
Moreover, in such a system it is also possible to explore the e�ect of macroscopic vari-
ables such as temperature and pressure. In fact, di�erent works showed the e�ectiveness
of pressure in controlling the electronic structure of the crystals on which it acts, and in
particular on the diamond electronic structure [11].
In fact, it was demonstrated through DFT-GGA calculations that, under extreme pres-
sure conditions (1, 100 GPa) the gap in the diamond increases from 4.4 eV to 6.9 eV [11].
In this context could be interesting to understand whether the diamondoid molecular
crystal shows the same behaviour since in that case, it would be possible to isolate the
NV-levels well inside the gap.
Moreover, it would be also interesting to investigate the localization properties of each
orbital when it is put under pressure.
On the other side of the picture, since the population of the di�erent phonon modes can
have a significant impact on our system’s electronic structure, the e�ect of temperature,
which is important to study in the context of ambient-temperature qubit, has to be ex-
amined. [16][17]
In this chapter, we analyze both the C67H62NV � and C67H45F17NV � when they form a
BCC no-point symmetric molecular crystal.

1
This chapter has been developed within the context of the Honours Programme “Scientific Research

in Industrial Engineering”.
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6.1. Crystal Structure Design

Designing the crystal structure for this type of molecule is not straightforward due to its in-
herent asymmetry. In fact, the geometry choice for the crystal symmetry was constrained
by the incompatibility between the proper representation of a BCC crystal structure (or
whatever else basic crystal structure) and the computational power needed to simulate
the system.
We used PyXTAL [14], in combination with VESTA [40] to build the primitive cell.
Through PyXTAL it was possible to determine that the number of C67H62NV � needed
in a single cell to replicate a BCC system is 96, which clearly requires a huge cell param-
eter and 96⇥ 131 = 12576 atoms to be simulated.
This number of nanoparticles is needed to guarantee the symmetry requirements (both
lattice symmetry and point symmetry) of the BCC crystal structure.
Considering that in a BCC unit cell are contained two equal elements (1 in the center
and 1/8 for each vertex), each nanoparticles aggregate is composed of 48 C67H62NV �

nanodiamonds.
It was expected that for the C67H45F17NV � molecular crystal, these numbers increase,
due to the asymmetric behavior introduced by the di�erences in the terminations.
For this reason, we decided to simulate a BCC crystal structure that respects only the
lattice symmetry and not the point symmetry.
For this sake, we built the primitive cell for the BCC structure, which is a triclinic cell
with a = b = c and ↵ = � = � = 109.46

�. To simulate the e�ect of di�erent values for the
hydrostatic pressure, the cell parameter was chosen equal to 24, 21, 18, 15, 12 Å, then
the respective hydrostatic pressure was obtained through the stress tensor calculation
performed with QBOX.

(a) C67H62NV �
unit cell. (b) C67H45F17NV �

unit

cell.

Figure 6.1: BCC molecular crystal unit cell with cell parameter a = 18 Å.
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We chose to simulate the BCC crystal structure since some diamondoids crystalize with
this symmetry [52]. The violated point symmetry does not a�ect drastically the general
result of the calculations.
All the crystal systems obtained were optimized with a force tolerance of 10�3 Ha/Bohr.

6.2. Electronic Structure

In this section, we describe the electronic structures of the two di�erent crystalline sys-
tems, in order to underline di�erences and common characteristics.

6.2.1. C67H62NV � Molecular Crystal

Figure 6.2: Electronic structures comparison for the C67H62NV � BCC molecular crystal
under di�erent pressures.

If we consider the C67H62NV � in the 60 Bohr cell as the isolated nanoparticles we can
observe that, once the electronic structures are aligned at the VBM (Valence Band Max-
imum), the conduction band show an overall energy increasing behavior.
However, since the CBM (Conduction Band Minimum) seems to be stationary in energy,
it cannot be stated that the VBM-CBM gap is increasing as well. The behavior of the
CBM will be investigated later, since if it is excluded, it can be shown that the VBM-
(CMB+1) gap is gradually increasing with the pressure, as was expected considering the
gap behavior in the diamond under pressure [11].
The pressures reached in these simulations are far below the maximum pressure reached
in other computational studies [11], and in experimental setup [52], making these results
reliable and meaningful also for practical applications.
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Although we demonstrated the e�ciency of the pressure in increasing the gap in which the
NV-levels could reside, we noticed that the NV defect levels are not complete: one of the
unoccupied levels becomes NV-localized and grossly respect the e0 orbital shape, as it can
be seen in figure 6.3, but the CBM lays in between the HOMO and this level. Moreover,
the other unoccupied level needed to complete the NV-center electronic structure is not
found to be localized.

Figure 6.3: C67H62NV � LUMO + 1 at 1.06 GPa.

For these reasons, the C67H62NV � molecular crystal cannot be exploited to implement
quantum hardware.
The second important finding is that the NV localized levels become even more localized
(70% of the wavefunctions are inside the 1.5Å radius sphere centered in the vacancy),
which is beneficial from the point of view of applications.
Moreover, the valence band levels become localized inside the vacancy, but this doesn’t af-
fect any states-controlling protocol, since it is important to understand that the localization-
inside-the-vacancy criteria is not e�ective on the real properties of the system, it is a
measure to evaluate quantitatively what is the spatial di�usion of the orbitals, that can
be evaluated by inspection.
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(a) C67H62NV � HOMO �

5 in the ↵-spin channel at

1.06 GPa.

(b) C67H45F17NV �

HOMO � 5 in the ↵-spin

channel at 1.67 GPa.

Figure 6.4: Localized orbitals in the valence band for the molecular crystals with cell
parameter a = 12 Å.

In fact, proceeding in this direction, we analyzed the valence-band-localized orbitals.
These levels are localized outside the NV-center, in particular, they are localized on the
bonds surrounding the vacancy, so they are included in the 1.5 Å sphere used to evaluate
the localization.

6.2.2. C69H45F17NV � Molecular Crystal

Figure 6.5: Electronic structures comparison for the C67H45F17NV � BCC molecular crys-
tal under di�erent pressures.

The electronic structures of C67H45F17NV � and C67H62NV � molecular crystals behave
similarly with increasing pressure: NV-levels localization increases, valence band localizes,
and conduction band energy increases as well (with CBM stationary).
In this case, the pressure e�ects are favorable since the NV electronic structure is still
complete but improved in localization. We note that here the separation between the



72

highest in energy NV-localized empty orbitals and the CBM is of 0.9 eV , which is positive
for practical quantum protocol implementation since the risk of exciting one of the NV-
electrons to a delocalized level is reduced.
It is now imperative to comprehend the underlying reasons for the pressure’s influence on
the electronic structures of nanodiamonds.
The localization e�ect can be understood qualitatively considering that if the distance
between the nanoparticle decreases the Coulomb repulsion between the electronic cloud
increases, leading to a higher electron localization on the nanoparticle.
On the other hand, it is not so straightforward to understand the reason for the increasing
energy for the conduction band.

6.2.3. Empty Levels Behaviour

The investigation of the conduction band levels properties starts from a phenomenolog-
ical observation, in fact, it can be shown that the energy of the conduction band levels
(excluding the CBM) behaves as a 1

L2 (in figure 6.6 and 6.7) as a first approximation if
as L is taken the cell parameter.
So, we assume this tendency to be a good approximation to describe the e�ect of pressure
on the molecular crystal.
This phenomenological intuition has a profound physical meaning since it resembles the
energy behavior of a particle in a box model.
This simple model serves as a foundational example of quantization in quantum mechanics
and helps to understand the quantized energy levels and wave functions associated with
confined particles.
It describes the energy levels of a particle when it is confined within a cubic box, and
shows that the energy dependence on the box dimension (confinement length) is propor-
tional to 1

L2 where L is the confinement length. In fact, if it is considered a 2D box (for
simplicity and to visualize the wavefunctions), the associated energy eigenvalues follow
the equation:

Enx,ny =
~2⇡2

2mL2
(n2

x
+ n2

y
) (6.1)

where nx and ny are positive integers respectively representing the quantum numbers in
the x and y dimensions, and the corresponding wave functions,  nx,ny(x, y), are:

 nx,ny(x, y) =

r
4

L2
sin

⇣nx⇡x

L

⌘
sin

⇣ny⇡y

L

⌘
(6.2)
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The wavefunctions are represented in the range from 1 to 3 for each quantum number in
figure 6.8.

(a) C67H62NV �
conduction band.

(b) C67H62NV � LUMO + 1 behaviour

with
1
L2 fit.

(c) C67H62NV � LUMO + 2 behaviour

with
1
L2 fit.

Figure 6.6: Conduction band energy behaviour in the C67H62NV � molecular crystals.

(a) C67H45F17NV �
conduction band.

(b) C67H45F17NV � LUMO + 1 behaviour

with
1
L2 fit.

(c) C67H45F17NV � LUMO + 2 behaviour

with
1
L2 fit.

Figure 6.7: Conduction band energy behaviour in the C67H45F17NV � molecular crystals.
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Figure 6.8: Wavefunctions for the 2D particle in a box model, with each quantum number
ranging from 1 to 3.

This means that it is interesting to evaluate if there exists a confinement length for those
orbitals that show the 1

L2 behavior.
For this reason, if the LUMO + 1 orbital is taken as a reference, it is possible to show
that increasing the pressure at a certain hydrostatic stress the orbital, which is in nor-
mal condition localized outside the nanoparticle, collapses in between two consecutive
nanoparticles, as it can be seen in figure 6.9.
After the collapse, the confinement length is well defined as the distances between the
two nanoparticles, which clearly decreases as the cell parameter.
This simple model could help to understand the quantum confinement e�ect on the con-
duction band orbitals, but it cannot be rigorously mathematically formulated for di�erent
reasons.
First of all, the confinement length is not easy to be defined, because of a shape e�ect that
can be thought as a sort of orbital fluidity, since the wavefunction doesn’t remain fixed
in the direction between the nanoparticles, and changes its shape continuously during the
pressurization process, as it can be observed in figure 6.9.
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(a) C67H62NV � LUMO + 1 in

the ↵-spin channel at 0.168 GPa.

(b) C67H62NV � LUMO + 1 in

the ↵-spin channel at 0.272 GPa.

(c) C67H62NV � LUMO + 1 in

the ↵-spin channel at 0.508 GPa.

Figure 6.9: LUMO+1 instability leading to collapse in between the C67H62NV � nanopar-
ticles.

Another important evidence is that the orbital is not completely localized in between the
nanoparticles, but has some important contributions localized on the nanoparticles, that
do not perceive the e�ect of the pressure.
Then, the most impactful e�ect on this simple model is the presence of interactions be-
tween the conduction band levels and all the electronic and nuclear states in the particle
itself, which in a pure particle-in-a-box approach are not considered.
Besides this issue, it is important to understand that this simple model allows to explain
the behavior of the conduction band levels from a quantum confinement perspective.

The last unresolved question is the behavior of the CBM (↵ spin channel LUMO in the
C67H62NV � crystal and in the C67H45F17NV � crystal); by inspection, we can show that
the morphology of this level is not a�ected by the pressure, since it is not massively
localized outside the nanoparticle, but it is relatively localized on the nanoparticle, as
it can be seen in figure 6.10 and in figure 6.11. Comprehensibly, the incomplete local-
ization on the nanoparticle provokes the energy fluctuation in the CBM, especially in
the C67H45F17NV � crystal, since it is clear the presence of an orbital lobe outside the
nanoparticle, which perceives intensively the pressure e�ect.
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(a) LUMO in the ↵-spin channel

at 0.168 GPa.

(b) LUMO in the ↵-spin chan-

nel at 0.272 GPa.

(c) LUMO in the ↵-spin channel

at 0.506 GPa.

(d) LUMO in the ↵-spin chan-

nel at 1.06 GPa.

Figure 6.10: LUMO wavefunctions shape stability increasing the pressure in C67H62NV �.

(a) LUMO in the ↵-spin channel

at 0.301 GPa.

(b) LUMO in the ↵-spin chan-

nel at 0.484 GPa.

(c) LUMO in the ↵-spin channel

at 0.883 GPa.

(d) LUMO in the ↵-spin chan-

nel at 1.665 GPa.

Figure 6.11: LUMO wavefunctions shape stability increasing the pressure in
C67H45F17NV �.

This evidence demonstrates even better why the energy increase phenomenon is related
to the quantum confinement e�ect.
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6.3. Electron-Phonon Renormalization

After having studied the e�ect of the pressure on the molecular crystal, we have decided
to advance the description of our system including the electron-phonon interaction. As
a consequence, it is possible to evaluate the e�ect of the temperature on the electronic
structure of the system.
To perform the analysis, we have considered the most pressurized crystal since it was
possible to obtain the results of the calculations within a reasonable amount of time.
In fact, it is necessary to stress that, to obtain reliable results, a wide number of displaced
samples, has to be generated, and a DFT calculation has to be performed for each con-
figuration.
In particular, in table 6.1, we report a preliminary analysis of the estimated compu-
tational time needed to obtain statistically meaningful electron-phonon renormalization
results, based on the computational time needed to complete one single DFT calculation
on each molecular crystal.

Pressure [GPa] DFT single point [s] Computational time

1.6654 250 3 days
0.8827 750 9 days
0.4836 1500 17 days
0.3005 4020 46 days
0.1989 7700 88 days

Table 6.1: Computational time needed to compute the electron-phonon renormalization
for each pressure.

The total computational time in table 6.1 considers both the calculations needed to re-
trieve the dynamical matrix and the calculation of the significant statistical sample of 200
configurations.
All the DFT calculations performed in this analysis were carried out using Qbox, cou-
pled with PyEPFD [30][31][1], a Python package that allows to create all the Qbox input
files needed to compute the dynamical matrix, the phonon frequencies, and the electron-
phonon renormalization following the approaches discussed in chapter 2.
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6.3.1. Dynamical Matrix Calculation

As anticipated in the previous paragraph, the first important step is to obtain an accurate
approximation of the dynamical matrix.
The dynamical matrix is computed by the finite displacement method, which consists
of displacing each atom position along the Cartesian coordinates and generating for each
displacement a Qbox input file. Then, DFT calculations on the created files are performed
and, merging the results, it is possible to retrieve the potential energy surface around the
ion equilibrium positions. Finally, it is possible to compute the dynamical matrix follow-
ing the harmonic approximation. For the sake of detail, PyEPFD compute the dynamical
matrix as the Jacobian matrix of the forces that act on each ion in the displaced coordi-
nates, which is equivalent to evaluate it as the Hessian matrix of the potential energy.
The calculation of a precise dynamical matrix is dependent on the accuracy of the po-
tential energy surface that is obtained, so it is important to evaluate which is the best
possible way to scan that surface.
We have decided to evaluate the potential energy considering di�erent displacement num-
bers for each coordinate, and di�erent displacement amplitudes.
The results that we have obtained for each approach are reported in table 6.2.

# Displacement 1 2 4 2
Displacement [Å] 0.005 0.02 0.03 0.02

BFGS optimization (i-PI) no no no yes
-35.8113 -23.5605 -18.2991 0.0000
-0.0000 -0.0000 -9.0785 0.0000

Low-frequencies [cm�1] -0.0000 0.0000 -0.0000 0.0000
0.0000 0.0000 -0.0000 26.6981
7.0640 15.4943 -0.0000 37.5498
33.2045 33.3588 29.6095 45.2681

Table 6.2: Dynamical matrix evaluation with the first six normal modes frequencies.

The quality of the dynamical matrix calculation can be retrieved by looking at the low-
frequency modes: we expect to obtain only three zero-frequency modes, related to the
crystal movement as a whole.
In the case of Qbox-optimized structures (10�5 Ry/Bohr), the frequencies suggest that
we have not reached an accurate result for the potential energy surface scan, which could
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be improved with a more refined optimization of the crystal structure.
For this reason, a trust-radius based BFGS optimization calculation was performed with
i-PI [27], a universal force engine interface written in Python, designed to be used together
with an ab initio, machine-learned, or force-field-based evaluation of the interactions be-
tween the atoms.
Additionally, we have considered to use also the results with the lower level of optimiza-
tion, exploiting the PyEPFD capability of excluding the additional zero-frequency modes
when the configurations sample is built. In this way, the divergence of the Bose-Einstein
occupation factor (2.16) and of the Gaussian broadening (2.15) is avoided.
Now we can proceed to the second stage of the process: the evaluation of the electron-
phonon renormalization.

6.3.2. Electron-Phonon Results

First of all, we have carried out calculations at T = 0 K to understand which are the
issues related to the divergences, obtaining precious insight on the low-energy phonons
e�ect. Additionally, we have explored the di�erences between two di�erent algorithms
for the generation of the configuration sample: the one-shot random with antithetic pair
(OSRAP) and the Monte Carlo with antithetic pair (MCAP).
Within the dynamical matrices calculated on the Qbox-optimized structure, we have
chosen the second in table 6.2 for the next analysis.

(a) Electron-phonon renormalization in the ↵-

spin channel (!k > 30 cm�1
).

(b) Electron-phonon renormalization in the �-

spin channel (!k > 30 cm�1
).

Figure 6.12: Electron-phonon renormalization obtained with the OSRAP algorithm and
600 independent confiugrations.
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(a) Electron-phonon renormalization in the ↵-

spin channel (!k > 30 cm�1
).

(b) Electron-phonon renormalization in the �-

spin channel (!k > 30 cm�1
).

(c) Electron-phonon renormalization in the ↵-

spin channel (!k > 35 cm�1
).

(d) Electron-phonon renormalization in the �-

spin channel (!k > 35 cm�1
).

Figure 6.13: Electron-phonon renormalization obtained with the MCAP algorithm and
600 independent configurations.

Despite the OSRAP algorithm guarantees a faster convergence, the results are more accu-
rate with the MCAP algorithm, which can even halve the maximum error in the electron-
phonon renormalization predictions on the same statistical sample.
For this reason, we have decided to compute the electron-phonon renormalization on the
i-PI optimized structure only with the MCAP algorithm.
Secondly, we can confirm that the low-frequency normal modes do not a�ect massively the
accuracy of the results, in fact, excluding the frequencies below 35 cm�1, the uncertainty
does not improve significantly.
Moreover, we want to stress that the results obtained with the di�erent approaches are
almost identical, underlying the reliability of the electron-phonon renormalization results.
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(a) Electron-phonon renormalization in the ↵-

spin channel (no !k excluded).

(b) Electron-phonon renormalization in the �-

spin channel (no !k excluded).

(c) Electron-phonon renormalization in the ↵-

spin channel (!k > 40 cm�1
).

(d) Electron-phonon renormalization in the �-

spin channel (!k > 40 cm�1
).

(e) Electron-phonon renormalization in the ↵-

spin channel (!k > 46 cm�1
).

(f) Electron-phonon renormalization in the �-

spin channel (!k > 46 cm�1
).

Figure 6.14: Electron-phonon renormalization on the i-PI optimized molecular crystal
obtained with the MCAP algorithm and 600 independent configurations.

Nevertheless, after having taken all frequencies into account, the accuracy in the i-PI
optimised case is su�ciently high and, as general consequence of the inclusion of low-
frequency modes, we can find an increase in the maximum error.
Within the acquired accuracy, the magnitude of the electron-phonon renormalization does
not change the electronic structure of the molecular crystal significantly (in figure 6.15)
and confirms the system’s promise for quantum information applications.
In particular, we can notice that, even if the gap is reduced, the defect levels are almost
una�ected by the phonon coupling.
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Figure 6.15: Electronic structures of the C67H45F17NV � at 1.665 GPa when the electron-
phonon interaction is considered.

(a) Electron-phonon renormalization in the ↵-

spin channel at 300 K (no !k excluded).

(b) Electron-phonon renormalization in the �-

spin channel at 300 K (no !k excluded).

(c) Electron-phonon renormalization in the ↵-

spin channel at 300 K (!k > 46 cm�1
).

(d) Electron-phonon renormalization in the �-

spin channel at 300 K (!k > 46 cm�1
).

Figure 6.16: Electron-phonon renormalization on the i-PI optimized molecular crystal
obtained with the MCAP algorithm and 600 independent configurations at 300 K.

Then, we have chosen to assess the impact of the phonons on the molecular crystal elec-
tronic structure at room temperature (T = 300 K), following the 0 K analysis.
The temperature increase does not a�ect the accuracy of the results, even if the maximum
error increases in the beta spin channel (in figure 6.16).
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From the perspective of stability, we observe in figure 6.17 that the electron-phonon
coupling e�ect is advantageous since the NV electronic structure is maintained and the
LUMO, along with all the other empty orbitals, is stabilized. The increase in the valence
band energy is not detrimental because in the NV-diamond electronic structure the lower
defect levels reside into the valence band, so we can assume also in this molecular system
that the NV properties are not a�ected by this beahviour.
Moreover, if we compare the electron-phonon renormalization in figures 6.14 and 6.16,
both with and without the frequency cut-o�, the magnitude of the electron-phonon renor-
malization does not change with the temperature that reaches 300 K, underlining the in-
sensitivity of the electronic structure of this system to large temperature variation. This
is crucial to obtain an ambient-temperature reliable qubit system.

Figure 6.17: Electronic structures with the electron-phonon renormalization of the
C67H45F17NV � at 1.665 GPa and 300 K.

In this chapter, we explored the e�ect of pressure and temperature on nanodiamond
molecular crystals, including the electron-phonon coupling.
The quantum confinement e�ect, caused by the increasing pressure, lifts the conduction
band levels that are not completely localized on the nanoparticle, creating more space to
accommodate the defect levels. This beneficial behavior is also coupled with an increasing
localization of the defect levels in the vacancy.
When we introduced the e�ect of the temperature, including the electron-phonon inter-
action, we demonstrated that the molecular crystal at high pressure shows an electronic
structure weakly dependent on the temperature, which is crucial for this qubit system.
These observations in the molecular crystal electronic structure emphasize the system’s
promise in the context of quantum information science application.
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7| Conclusions and Further
Research

The central endeavor of this research was to scrutinize the suitability of distinct diamon-
doid systems when coupled with the nitrogen-vacancy (NV) center for quantum informa-
tion science applications.
During the course of this theoretical and computational study, developed within the Den-
sity Functional Theory framework, we have unveiled several noteworthy findings.
Firstly, we have established that isolated H-terminated diamondoids, in which the NV-
center is embedded, lack the presence of localized empty states below the vacuum level,
thus rendering them inherently unsuitable as qubits since any optical control protocol is
impossible to establish without letting escape the additional electron.
Conversely, once the surface was engineered, we have demonstrated that terminations
involving hydroxyl (OH), thiol (SH), or carbonyl (CHO) groups o�er the advantage of
stabilizing nanodiamonds, guaranteeing a positive electronic a�nity.
This e�ect stems from the electron-withdrawing nature of these functional groups.
However, it became apparent that these terminations do not exert a favorable influence
on the NV-electronic structure, which is a requisite element for the realization of quantum
information processing.

In contrast, we have revealed a promising direction through the exploration of fluorine
termination.
This particular termination demonstrated the capability to e�ectuate a complete recon-
struction of the NV electronic structure. In fact, this functionalization guarantees the
presence of localized empty levels, which characterize a nanostructure with a positive
electronic a�nity, residing within the electronic band gap.
The emergence of such localized states within the band gap o�ers intriguing prospects for
the manipulation of NV centers within diamondoids with the purpose of realizing reliable
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and robust qubits.

Finally, we have analyzed the e�ects of pressure on diamondoid molecular crystals and
we have also included the electron-phonon interaction, which allows also to account for
the temperature e�ect on the electronic structure.
It emerged that pressure exerts a favorable influence from the perspective of practical ap-
plications since the increase in the gap guarantees a more spacious accommodation for the
NV-levels. Given that, it is eventually possible to build more robust qubit manipulation
protocols.
Moreover, we have found that the underlying mechanism facilitating this enhancement
resides in the phenomenon of quantum confinement.
On the other hand, the gap is only slightly reduced by the electron-phonon renormaliza-
tion, which is not harmful to the applications, even at room temperature.

This research endeavor contributes significantly to the understanding of the electronic
properties of diamondoids in the context of quantum technologies. Nevertheless, it is
imperative to acknowledge the existence of certain limitations inherent to this study, in-
cluding the constraints imposed by the extreme computational demand needed for each
calculation, that limited the possibility of exploring deeply some of the analyzed systems.
Furthermore, it has to be reminded that none of these systems has been already pro-
duced, but the encouraging experimental works cited in the bibliography have shown the
probable capability to produce the most promising structures [36, 53].
On the other hand, the exploitation of plane waves basis set properties gave the opportu-
nity to obtain precise references and accurate results, at the expense of the computational
time needed. Moreover, in this framework, it was possible to investigate rigorously the
e�ect of pressure on the diamondoid molecular crystal, which would not be practicable at
the same level of precision with other basis sets implied.
In light of this, the implications arising from these numerical findings hold promising sig-
nificance within the domain of quantum information science, giving a direction to follow
for eventual experimental realizations.

7.1. Recommendations and Future Directions

In this section, several promising avenues are outlined for future research and experimen-
tation. These recommendations are designed to build upon the findings of this study and
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further advance the understanding of diamondoid-based quantum systems for practical
applications.

7.1.1. Experimental Measurement

The first interesting aspect that could be investigated is the experimental realization and
characterization of the systems that are analyzed in this work.
Experimentation provides a crucial bridge between theoretical predictions and practical
applications.
Experimental setups should involve the synthesis of F-terminated diamondoids and the
creation of NV center configurations with controlled parameters. Characterization tech-
niques, such as electron spin resonance (ESR) spectroscopy and photoluminescence mea-
surements, can be employed to probe the electronic and optical properties of these systems.
In particular, ESR spectroscopy can provide valuable insights into the electron spin dy-
namics and the presence of localized empty states.
Photoluminescence measurements can shed light on the quantum emission properties of
F-terminated diamondoids with NV centers, o�ering a direct assessment of their potential
for quantum information processing and sensing.

7.1.2. Decoherence Time Simulation

Decoherence represents a critical challenge in quantum information processing. To harness
the full potential of NV centers embedded in F-terminated diamondoids, it is imperative
to investigate and eventually consider how to mitigate decoherence e�ects.
In particular, to tackle these latter eventual e�ects it would be necessary to understand
which is the dominating decoherence mechanism, considering the spin-phonons interac-
tion and the interaction with all the other nuclear spin in the nanoparticle. [35]
This would also reveal eventual possibilities and di�culties in storing information and
entangling adjacent qubits in real devices.

7.1.3. Post-DFT Calculation

While density functional theory (DFT) has been a valuable tool in understanding the
electronic properties of diamondoids, post-DFT calculations o�er a pathway to refine our
models and predictions.
Post-DFT methods, such as many-body perturbation theory (MBPT), quantum Monte
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Carlo (QMC), and complete active space self-consistent field (CASSCF), can provide more
accurate descriptions of electronic correlations and excitations.
In fact, it was demonstrated the incredible accuracy of this methods in predicting the
experimentally measured NV-center electronic structure, overcoming all the calculation
bias introduced by DFT.
Incorporating post-DFT calculations into this research can lead to a more comprehensive
understanding of the electronic structure of F-terminated diamondoids with NV centers.
These calculations can yield insights into excited states and electron correlation e�ects.

In summary, this research has shed light on the electronic properties of the NV-center
embedded in isolated diamondoids and diamondoid molecular crystals within the context
of quantum information science. These findings, when combined with future research
e�orts in this field, have the potential to advance the discipline, contributing to progress
in quantum technology.
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