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Sommario Le recenti evoluzioni delle missioni spaziali hanno richiesto continui sviluppi di

tecnologie sempre più all’avanguardia. Obiettivi complessi come la navigazione in formazio-

ne o la manutenzione orbitale attualmente ricercati necessitano di strumenti e metodi di

navigazione evoluti, in grado di garantire prestazioni elevate e sicurezza nelle operazioni.

Il campo di ricerca che si occupa specificamente di navigazione ottica è quello della computer

vision. Esso nasce dalla volontà di capire meglio il sistema visivo umano e poggia le sue

basi su vari ambiti tecnologici come il processo di segnali, di immagini, statistica, metodi di

ottimizzazione etc. Uno dei processi più comuni con cui la navigazione ottica viene condotta è

spesso definito V-SLAM, ad indicare la localizzazione di un robot in un ambiente sconosciuto

e la mappatura di quest’ultimo. Inoltre grazie all’introduzione di nuove tecnologie nell’ambito

dell’AI, machine learning in particolare, nuovi metodi sono emersi in questi ultimi anni ed

un loro possibile contributo viene investigato in questo lavoro.

La seguente tesi esplora quindi il processo V-SLAM adottando una architettura monoculare

applicata al settore spaziale. Un software di generazione immagini è stato utilizzato per ot-

tenere immagini di un satellite non noto e non cooperativo. Un metodo per la navigazione

relativa basato su features è stato implementato e test preliminari sono stati effettuati con

risultati soddisfacenti. Inoltre il problema della stima della Region of Interest in immagi-

ni affette dalla presenza della Terra è stato affrontato utilizzando strumenti di intelligenza

artificiale. Una Convolutional Neural Network è stata addestrata su un nuovo dataset conte-

nente immagini e informazioni dell’assetto e posizione relativi di due satelliti. La CNN offre

performance positive e, testata anche su immagini di satelliti mai visti prima, conferma la

possibilità di queste network di generalizzare ad oggetti sconosciuti.

Keywords: Stima di posizione e assetto, Visione monoculare, Convolutional Neural

Networks, Operazioni di prossimità, V-SLAM
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Abstract. The recent evolution of space missions has required continuous development of

cutting-edge technologies. Complex objectives such as formation flying or orbital mainte-

nance currently sought-after necessitate of advanced navigation tools and methods, capable

of guaranteeing performance and safety during operations.

The research field that deals with optical navigation is the one of computer vision. It was

born from the desire to better understand the human visual system and it is built on various

technological fields such as signal and image processing, statistics, optimization methods

etc. One of the most common processes by which visual navigation is performed is often

referred to as V-SLAM, designating the estimation of the location of a robot in an unknown

environment and the mapping of the latter. Furthermore, thanks to the development of new

AI technologies, machine learning in particular, new methods have been introduced in recent

years and their possible contribution is investigated in this work.

The following thesis explores the V-SLAM process by adopting a monocular architecture

applied to the space sector. An image generator software has been used to obtain images of

an unknown and uncooperative satellite. A feature based method for relative navigation has

been implemented and preliminary tests have been performed with satisfying results. More-

over, the problem of estimating the Region of Interest in images affected by Earth presence

is addressed by means of artificial intelligence tools. A Convolutional Neural Network has

been trained on a new data set containing satellite images and information of relative atti-

tude and position. The CNN offers positive performance and, tested also on images of never

seen before satellites, confirms the capability of these networks to generalize to previously

unknown objects.

Keywords: Pose Estimation, Monocular vision, Convolutional Neural Networks, Proximity

Operations, V-SLAM
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1 Introduction

Relative navigation between two space objects can be expressed as the problem

of estimating the relative parameters, such as the position and orientation, of one

object with respect to the other. Understanding the surrounding environment and

how to navigate it is a vital process for any entity, it being a satellite imaging space

debris, a rover exploring the surface of an unknown planet or a bird migrating to

warmer regions. Satellites of course are not an exception and they too need some

form of localization procedures. Even though this can happen remotely, the need of

having on-board awareness and autonomy is an interesting and emerging challenge

especially when time critical decision must be made, as during formation flying or

proximity operations, and appropriate solutions should be sought.

Two satellites orbiting together can be categorized into two cooperative objects,

which can communicate to each other, or two uncooperative and unrelated objects.

In the first case, where the two objects are cooperative, a telecommunication link

can be established between the two to share the appropriate pose information. In

this case, each satellite can be tasked to reconstruct its state and share it. Laser

or camera based sensors are also a common choice and a mandatory one when one

object might not be cooperative or known. A LiDAR, Light Detection and Ranging,

is essentially a radar that exploits light, a laser, to understand the range of a target

object. Through spinning and tilting of the laser beam, a full scan of the environment

can be performed too. These solutions are generally very expensive but offer high

degree of precision and can be applied to relative navigation with respect to another

satellite or planetary body [13]. Cameras on the other hand provide simple and low

cost solutions with a penalty in the accuracy of the results. By implementing vision-

based sensors on board, resources that would be needed for a LiDAR solution could

then be redirected towards mission objectives. A camera can be used in a mono

configuration, which could be very appealing for cubesats application, or in stereo

configuration in order to retrieve the depth of the scene. A camera and laser beam

can be exploited to indirectly obtain the scene depth too.

Autonomy is another aspect of space systems which can grant major improvement

in the current generation of space missions and its effect would be beneficial also

to many future missions. An autonomous system must be self-directed towards its

goals and self-sufficient, being able to operate without any external inputs [14]. In

the space sector an increase in autonomous capabilities can affect many different

fields that span from spacecraft formation flying up to rover ground operations.

Close relative navigation and proximity operations must be performed safely and

precise poses knowledge is fundamental. Docking, satellite inspection, refueling and
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maintenance are all possible applications that could benefit from this novel approach.

Moreover relative navigation of unknown and uncooperative objects can be applied

to asteroid navigation and mining or space debris removal, which are emerging fields

in recent years. Introduction of autonomy in space system would provide a great

boost to its capabilities, however its implementation should be handled with high

attention as the risk involved in this process must not be underestimated.

1.1 Relative navigation in space

In this section a brief review of important past space missions developed with differ-

ent forms of relative navigation is provided. The increased interest in autonomous

proximity operations has indeed given birth to many technology demonstration mis-

sions. At first missions with cooperative objects are discussed, followed by spacecraft

operating in unknown environments.

The first mission for demonstration of rendezvous and docking capabilities, the

Japanese ETS-7, was launched in 1997. Proximity operations were carried out au-

tomatically and with remote control through a camera-aided robotic arm [15] and

in orbit refuelling was also investigated successfully. NASA launched in 2005 the

XSS-11 spacecraft, meant to conduct proximity operations with its carrier, the sec-

ond stage of the Minotaur I rocket. The XSS-11 was equipped with both a LiDAR

and a camera to intercept that stage and also other expended stages close to its

orbit [16]. The DART spacecraft, also launched in 2005, was intended to perform a

24 hours mission with no human intervention which included several rendezvous and

proximity navigation, but unfortunately ended with a soft collision with its target

due to spacecraft malfunctions [17]. Moreover docking with the international space

station, the ISS, has become an important problem to solve and in 2009 a LiDAR

based solution has been introduced by the Canadian Space Agency and NASA. An

all-in-one solution, called TriDAR (Triangulation & Light Detection and Ranging

Automated Rendezvous & Docking) is an automated rendezvous and docking sensor

composed by a LiDAR and a thermal imager. The shape of the target is assumed to

be known and is compared to the estimated one to retrieve important parameters

like the relative range and position between the spacecraft and the ISS, up to 1 km

distance. Three Space Shuttle missions and Cygnus spacecraft adopted this tech-

nology [18]. Also Dragon spacecraft uses a similar sensor asset called DragonEye.

Relative GPS navigation is used up to 750 m, after which the ISS is tracked using

the LiDAR, DragonEye, and thermal cameras [19].

For what concerns relative navigation around unknown space objects, the main and

most recent missions include OSIRIS-REx, Hayabusa 2 and Rosetta. In order to

have a broader view of cameras characteristics in these spacecraft, few parameters
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are listed too.

Rosetta consisted of an orbiter and a lander for the first ever study of a comet,

67P/Churyumov-Gerasimenko [20]. Launched in 2004, Rosetta was equipped with

one redundant navigation camera called NAVCAM [21] for AOCS only and a pair

of cameras for optical, spectroscopic and infrared imaging called OSIRIS [22]. The

NavCam provided imaging data for optical navigation of the spacecraft around the

comet. It had a CCD sensor resolution of 1024×1024 pixels and the optics had an

effective focal length of 152.5 mm with an aperture of 30 or 70 mm mode-dependent.

Fig. 1.1: Rosetta instruments overview [1]

OSIRIS was a scientific payload instead that comprised two cameras: a high resolu-

tion Narrow Angle Camera, NAC, and a Wide Angle Camera, WAC. Both of them

had CCD detectors of 2048 x 2048 pixels. The NAC was developed to produce high

resolution images of the comet, its focal length was of 717 mm and the aperture was

of 90 mm, resulting in a moderately fast system with f/8. The WAC instead was

mainly used to study the intensity of gas emissions and dust-scattered sunlight and

it had a focal ratio of f/5.6 with a focal length of around 140 mm.
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A more recent mission similar to Rosetta is Hayabusa 2. It is an asteroid sample-

return mission by JAXA (Japanese Space Exploration Agency) developed to study

Asteroid 1999 JU3 and is provided with an optical navigation system which includes

three Optical Navigation Cameras and a LiDAR [23]. There are two wide angle

cameras onboard the spacecraft, called ONC-W1 and ONC-W2, and a telescopic

one called ONC-T. All of them use CCD detectors of size 1024 by 1024 pixels and

the telescopic camera has a focal length of 121 millimeters and an aperture diameter

of 15 millimeters.

Finally OSIRIS-REx, launched in 2016, is a sample and return mission from NASA

targeting the asteroid Bennu. A redundant LiDAR is used for ranging to the surface

and two NavCams are used to support the navigation during mission operations and

in particular during the sampling operation. NavCam images track star-fields and

landmarks on Bennu to determine the spacecraft position [24].

As stated before, these missions generally use a mix of laser-based and vision-based

sensor for relative navigation. Specifically, visual navigation for Rosetta was essential

during the whole the mission duration. In the far approach navigation, images com-

ing from the cameras were used to understand the centroid position of the comet and

perform various optical measurements, including the comet rotational period [25].

Then in the following phases of comet characterization and mapping a landmark-

based visual navigation was performed on ground. This process, manual at first and

automatic later on, allowed to predict the spacecraft position and orientation along

with a very detailed shape model of the comet [26]. Limitations however present in

the system, such as the amount of data that can be sent due to the link budget,

could be solved by researching and developing more autonomous navigation systems

which could also expand the fan of possibilities for proximity operations. One excit-

ing mission that is due to launch in 2024 and will extensively use visual techniques

for navigation is the HERA mission. It will visit in 2026 the Didymos pair of near-

Earth asteroids after NASA DART mission and will be equipped with two cameras,

a thermal imager and a LiDAR as a baseline [27]. Line-of-sight navigation will be

performed at far range from thermal and visual images processing, while feature

based navigation will be added when closer to the asteroids system [28].

1.2 Visual relative navigation methods

In this next section vision based navigation methods are discussed. Visual naviga-

tion methods have their primary building blocks in computer vision, which is an

interdisciplinary field tasked to understand and extract useful information starting

from images only. This has proven to be a very complex challenge and it still is, as

O. Faugeras wrote: “making a computer see was something that leading experts in
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the field of Artificial Intelligence thought to be at the level of difficulty of a summer

student’s project back in the sixties. Forty years later the task is still unsolved and

seems formidable” [3]. Closely connected to the understanding of how the human

visual system works, computer vision is now a continuous developing field with many

different practical applications.

The problem of computing the trajectory and 3D structure of a scene is often re-

ferred to as V-SLAM, standing for Visual Simultaneous Localization and Mapping.

It is a subcategory of the SfM problem, the structure from motion problem, and

there are mainly two branches that attempt at solving the online, real time version

of V-SLAM. One category exploits the use of filtering techniques and the most pop-

ular filters lie in the Kalman filter family (KF, EKF, ...). They constitute a tool

that continuously predicts and updates the state of a dynamical system in time re-

cursively. They are very light in terms of memory and fast, making them ideal for

real time problems and embedded systems for space applications [29] [30].

On the other hand, keyframe based methods derive their popularity on the optimi-

sation approach of global bundle adjustment. Bundle adjustment is an optimization

algorithm targeted for structure and motion refinement and is often too expensive

to be executed real time. For this reason a windowed version of it might be used

on a subset of the available frames or keyframe only optimization can be exploited.

Keyframes are selected from the available frames and are mainly meant to reduce the

computational load and enable real time performances. A very popular algorithm

in this category is the ORB-SLAM one [2], which consists in a complex workflow

capable of automatic map initialization, loop detection and closure, re-localization.

Moreover the tracking and local mapping steps are split in parallel threads, en-

hancing even further the time execution performances. An investigation between

these two categories has been performed by Strasdat et al. in [31], which concluded

that keyframe-based techniques with bundle adjustment are superior with respect

to filtering ones for the same computational cost while filter techniques might be

beneficial if a small processing budget is available. This last consideration is an usual

condition for the space domain, however as the sector continues to grow, autonomous

systems are introduced and private companies start to emerge, the problem of de-

velopment of new and more powerful processors for space applications will need to

be tackled.

With respect to V-SLAM for space applications, solutions include the use of ORB-

SLAM for spacecraft non-cooperative rendezvous image sequences, such as in [32].

ORB-SLAM performs accurately even in a very different scenario with respect to

the robotic field ones. The authors however do point out that pose reconstruction is
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Fig. 1.2: ORB-SLAM pipeline [2]

lost when too many features disappear from the images, but the algorithm is always

able to recover the trajectory once it revisits previously known map features.

Finally a subcategory of the V-SLAM problem is the visual odometry one. Visual

odometry, or VO, is not generally tasked at reconstructing the 3D scene structure

but only in recovering the trajectory. As such different methodologies are used and

it might be useful mainly in situations where it would be impossible or improbable

to revisit a particular 3D scene point twice, such as landing trajectories or rover

ground operations.

One feature that might be needed in vision-based algorithms, depending on the ap-

plication, is the ROI, region of interest, estimation. It can occur that not every part

of an image should be processed in a V-SLAM framework, as it can happen for a

spacecraft imaged with the Earth in the background. The different motion of the

target spacecraft and the background can be very dangerous for the mapping and

trajectory estimation process and a ROI extraction can help handling these cases.

ROI algorithms were categorized by Lin et al. [33] into feature based algorithms,

which use feature points to generate a ROI [34], and target based ones, which in-

stead use higher level information, the target shape and structure, to compute the

ROI [35] [36]. Feature based algorithms however do not provide accurate results as

not all target feature points exhibit the same optical behaviour, while target based
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algorithms have been limited by the available computing power. Target based ap-

proaches generally exploit template matching or the learning of the known target

shape, which can be conducted for example on support vector machines [37]. Thanks

to the increasing computational resources, advanced machine learning techniques in

recent years were explored, which are able to learn not only the final target shape

but also its features, patterns and parts, and show very good performance in ROI

estimation [38]. Machine learning, one of the research areas in computer vision, will

be discussed next.

1.3 Machine Learning

In this section a description of machine learning is presented along with state of the

art applications for space domain.

Machine learning is a field of artificial intelligence in which an agent learns how to

perform a certain task through leaning. A formal definition is given by Tom Mitchell,

professor at the Carnegie Mellon University [39]: “A computer program is said to

learn from experience E with respect to some class of tasks T and performance mea-

sure P, if its performance at tasks in T, as measured by P, improves with experience

E”. The task has one or more target variables that the model should be able to

reconstruct when an input, or predictor variable, is given. AI instead, or artificial

intelligence can be defined as “the capability of computer systems to perform tasks

that normally require human intelligence” and can be used to increment system au-

tonomy. Machine learning, robotics, computer vision, natural language processing

all fall in the AI category [14].

Machine learning is generally distinguished in three major branches:

– Supervised learning: the model at first learns to associate an input to a given

output through a training phase; it will then be able to predict target variables

when a new input is shown.

– Unsupervised learning: the model is shown unlabelled inputs and is asked to

recover unknown patterns or features by itself.

– Reinforcement learning: software agents take actions in an environment to explore

or exploit it and learn from the outcome of their choices. Agents are generally

required to maximize a cumulative reward.

Artificial neural networks, ANNs, are one of the tools that have been developed in the

context of machine learning. They are present in everyone of the previous categories

and mimic a very complex function that maps a given input to its output. They

need at first to learn what prediction is expected when a given input is shown: this
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process is referred to as training and requires a very large amount of data to be

accomplished correctly. Next ANNs can be deployed by giving data as input and

retrieving the output estimation.

Another way through which ANNs can be trained is through transfer learning, where

a previously trained ANN is retrained on a different set of target data. This is done

after having removed some of the last hidden layers and output layer of the network.

The main concept behind transfer learning is that hidden layers of a network learn

features to be recognized step by step. The first layers learn simple patterns and

features, while the deeper ones learn more complex patterns. Thus by keeping the

initial layers, a pretrained neural network can be specialized through further training

to recognize different target variables.

For what concerns space applications, machine learning is best suited to automate

various tasks and indeed it has found its role in performing several manual oper-

ations. For example many machine learning tools have been developed in order to

retrieve information in Earth imaging data, from automated ice-charting [40] to ship

detection [41]. For what concerns the space engineering sector, deep reinforcement

learning has recently been used for the autonomous imaging and mapping of small

bodies [42] [43]. The authors mention how interesting it would be to plan trajec-

tories for very complex missions in autonomy with simultaneous attention to the

mapping capabilities. A clear path towards neural network verification and valida-

tion is however needed before being able to deploy these tools in real world scenarios.

Moreover various ESA challenges for space applications have taken place from 2015

by the Advanced Concepts Team [44]. The team mission is “to monitor and per-

form research on advanced space concepts and technologies, preparing ESA for any

disruptive change to come” and, starting from the end of 2018, all the proposed

challenges are developed with a machine learning approach. MISR, multi image su-

per resolution, has been applied in the PROBA-V Super Resolution challenge to

obtain a high definition image of a scene from low resolution ones. The winning

team, with the DeepSUM network, used a complex CNN based architecture [45] to

tackle the problem and obtain invariance to temporal and brightness variations in

the network. In 2019 a challenge to estimate the pose of a known uncooperative

satellite from the Prisma mission took place. It poses its foundation on the work by

Sharma and D’Amico [46] who proposed a CNN based approach to retrieve the pose

of a known and uncooperative spacecraft. A state of the art ROI neural network,

Faster R-CNN [47], is trained to gain information about the 2D bounding box and

then a hybrid classification/regression CNN obtains the pose of Tango spacecraft

from custom generated images. The image dataset was implemented into the ESA

challenge, which was later won by a team from the University of Adelaide. Their
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solution leverages on the regression of 2D positions of some interest points of Tango

by a trained neural network. Once those selected points are known, they are matched

to a 3D model of the spacecraft to again obtain the relative pose [48]. Finally, at the

end of 2019, the spacecraft collision avoidance challenge took place, which provided

users with a real world dataset of timed collision risk of ESA satellites. Naive fore-

cast methods proved to be excellent at this task and machine learning techniques

can provide additional accuracy by improving upon those methods [49].

Up to now, to the author’s knowledge no current mission exploit machine learning

in a substantial way. A clear road-map has been established for future develop-

ment, showing the interest in machine learning research for space applications [50].

Many fields are discussed, from machine learning-based processing for star trackers

to on board autonomy, failure prognostics and detection, etc, demonstrating how

revolutionary machine learning could be for space exploration in the future.

1.4 Rendering for space applications

In this final section a brief survey of rendering softwares is provided. Accurate space

imaging software is an important tool while dealing with visual relative navigation

techniques: indeed it can be an useful instrument to deploy in combination with

an experimental GNC facility, thanks to its fast prototyping capabilities. Moreover,

thanks to the increasing improvements on graphic processors, it is often very efficient

to run rendering engines on such GPUs which, when clustered in a server, can provide

a huge amount of computational power.

Some softwares for space imaging already exist, such as PANGU [51], Planet and

Asteroid Natural Scene Generation Utility, created by the Univerisity of Dundee

in Scotland with support from ESA. It can generate camera and LiDAR images of

different planetary bodies and spacecraft to test vision-guided navigation, guidance

and landing systems. The software is licensed and to be used free of charges in ESA

projects only.

Another similar software has been developed by Airbus Defence & Space. It is named

SurRender [52] and it utilizes a ray tracing engine to generate images specifically

for space scenes such as planetary approach, landing and in orbit rendezvous. The

software is free to use upon request.

Both softwares include various effects induced by the space environment in which the

camera is placed, in a quantitative manner. Examples can be camera lens distortion

and internal light scattering, motion blur, electronic noises and rolling shutter.

In this thesis Blender [53] is used in order to get synthetic images of orbiting space-

craft. Blender is a free and open source 3D creation suite very popular in the enter-
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tainment industry, often used in animation, film production and 3D modeling. To

the author’s knowledge no major space-related tools have been produced in Blender,

even if it is a standard referenced instrument for satellite and asteroids 3D model-

ing [54] [55]. A similar software called Unreal Engine 4 was also used to generate

images of a spacecraft orbiting the Earth [56].

1.5 Thesis overview and contributions

The aim of this thesis is to explore the topic of relative navigation between two

unknown and uncooperative space objects in the V-SLAM formulation and to study

the possible use of machine learning methods in this research area. In order to do so,

Blender is used to develop realistic space images of artificial satellites with the pos-

sibility of changing the target satellite model or the natural background. A V-SLAM

like method has been implemented in Matlab from the ground up, using preexisting

functions only for classical computer vision algorithms. Then, after understanding

what kind of applications machine learning could be suited for, region of interest

estimation has been chosen and examined. It is indeed important that features are

detected for the target satellite only and are not derived from the background, where

the Earth could be present, and a ROI solution can help mitigate this problem. While

it would be possible to use standard techniques to code a ROI estimator, it would

be incredibly difficult to set all the rules to find the proper bounding box around

the target. As such, machine learning techniques are used, where a neural network

learns the rules and patterns by itself from experience obtained through training.

A dataset of around 10000 valid images has been produced in Blender with cor-

responding pose data in order to reconstruct the ground truth bounding box and

a CNN has been designed to tackle this problem on a predefined scenario. Finally

the CNN is tested in off design conditions to understand its behaviour in untrained

scenes. Indeed CNN testing is an important aspect that often is not performed when

dealing with known scenarios for predefined problems, however understanding the

flexibility and robustness of an algorithm is essential for practical applications.

In summary, a new image rendering framework has been developed to aid V-SLAM

and CNN ROI simulations. Often in literature actual spacecraft images are used for

validation of V-SLAM pipelines, however they are small in number, with a small

time duration and are affected by the ground trajectory estimation error (ex via

GPS), which is not present when using an analytical framework. The V-SLAM ap-

plication has been built from ground up and tested with synthetic space images,

showing promising results. ROI detection for a target satellite has been studied

with a machine learning approach, a research field in the early stages for space en-

gineering applications. Instead of exploiting transfer learning, the typical but costly

solution for state of the art networks applied in the space domain for the first time
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in late 2018 [46], a novel CNN is trained with a less demanding supervised learning

pipeline. Insights on off-nominal behaviour, to the author’s knowledge not discussed

in literature works, are obtained by testing the CNN on various off-design scenarios.

With respect to the thesis structure, in Section 2 an introduction to relative dy-

namics is present. Used as a theory framework, it mainly investigates the system of

equations for nonlinear translational-rotational relative dynamics with simulations.

In Section 3 projective geometry theory is discussed. This includes the basics for

homogeneous transformations and the image formation through a pinhole camera

model. Section 4 introduces computer vision theory and methods, starting from

feature extraction, feature tracking and epipolar geometry and going through im-

portant numerical methods like the fundamental matrix estimation, triangulation

and Perspective-n-Point. Essential machine learning theory is presented in Section 5

while in Section 6 the proposed architecture for relative spacecraft navigation is

shown. A summary of the V-SLAM method and the CNN ROI estimation is given

in order to provide an general overview of the work performed in the next chapters.

The rendering framework, based on Blender and able to generate spacecraft images

along with relevant pose data, is also introduced. This has been used to obtain pic-

tures and ground truth data for the V-SLAM algorithm and for the CNN training

process. The V-SLAM application to space objects is reported in Section 7 along

with examples. A novel CNN design for region of interest estimation is then outlined

in Section 8 along with off design testing and sensitivity to blur/noise assessment.

For what concerns the appendix, mathematical tools for computer vision and ma-

chine learning are discussed in Appendix A, Appendix B and Appendix C. A brief

description of Vespa 3D model generation, a payload adapter for VEGA launcher,

is described in Appendix D while a broad overview of the CNN testing datasets is

present in Appendix E.
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2 Relative dynamics

In order to have a consistent framework to develop this thesis, relative dynamics

has been investigated first. Relative dynamics is important for visual navigation

problems as any computer vision algorithm should reconstruct it from images as its

goal. In the following sections the nonlinear relative dynamics system of equations

and the coupled translational-rotational relative dynamics system of equations are

derived. The latter is implemented and simulated in Matlab, with results shown in

Section 2.4 along with the linear Clohessy Wiltshire model.

2.1 Reference Frames

Some standard reference frames are used through this chapter. They will be written

as apices of the quantities they refer to.

– ECI, Earth Centered Inertial reference frame (2.1a) [I]: inertial reference frame

where X̂ points towards the vernal equinox and forms with Ŷ the equatorial

plane. Ẑ is positive towards the North Pole.

– Perifocal reference frame (2.1b) [P ]: x̂ and ŷ denote the orbital plane, with x̂

pointing towards the periapsis of the orbit.

– LVLH, Local Vertical, Local Horizontal reference frame (2.1c) [L]: x̂ is directed

as the radial vector, ŷ lies in the orbital plane and ẑ completes the frame.

– Rotating reference frame (2.1d) [R] used to write equations in polar coordinates,

the vector r̂ goes outwards as r vector.
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(a) ECI reference frame (b) Perifocal reference frame

(c) LVLH reference frame

(d) Rotating reference frame

Fig. 2.1: Reference frames
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2.2 System of equations for nonlinear relative dynamics

Fig. 2.2: Chief and Deputy spacecraft

The two-body problem equations of motion in an inertial reference frame are given

by:

r̈ = − µ
r3

r (2.1)

And by specializing them for the chief and deputy become:

r̈c = − µ
r3
c

rc (2.2)

r̈d = − µ
r3
d

rd (2.3)

where r denotes the position vector and µ is the planetary gravitational constant.

The relative position of the deputy relative to the chief, as can be seen in Fig. 2.3,

is:

ρ = rc − rd (2.4)

Subtracting Eq. (2.2) and Eq. (2.3) and rewriting the position of deputy with respect

to the chief as rd = rc + ρ, results in:

ρ̈ = − µ

||rc + ρ||3
(rc + ρ) +

µ

r3
c

rc (2.5)

Eq. (2.5) is written with respect to an inertial frame reference frame, however it

would be useful to have it written in the LVLH frame. Since this last frame is not

14



an inertial one by definition, the relative acceleration ρ̈ written in LVLH frame can

be recovered as [57]:

aa = ar + aτ + ac (2.6)

Where aa is the absolute acceleration of the deputy, so measured in I frame, ar is the

relative acceleration of the deputy (relative to the chief), ρ̈, measured in L frame,

aτ = aQ + ω̇×QP +ω× (ω×QP ) is the entrained acceleration and ac = 2ω×vr
is the Coriolis acceleration. ω is the relative angular velocity of the two frames, the

difference between the angular velocity of the chief LVLH frame and the ECI one.

vr is the relative velocity (of the deputy relative to the chief, ρ̇), so measured in L

frame, while Q is the origin of the chief reference frame and P denotes the position

of the deputy as in Fig. 2.3. Rewriting these terms yields:

aa − aQ = ar + ω̇ ×QP + ω × (ω ×QP ) + 2ω × vr (2.7)

since aa − aQ is the relative acceleration of point P with respect to Q measured in

the inertial frame, Eq. (2.7) can be rewritten as:

d2 Iρ

dt2
=
d2Lρ

dt2
+
d IωL

dt
× ρ+ IωL × (IωL × ρ) + 2IωL × dLρ

dt
(2.8)

Where the notation IωL = ωL −ωI denotes the two reference frames as well (ωI is

null). Since the derivative of IωL is the same measured from the inertial I or the non-

inertial L reference frames, its derivative doesn’t have any apexes, differently from

the ones of ρ. By substituting Eq. (2.5) and quantities in L frame IωL = [0,0, θ̇c]
T ,

rc = [rc,0,0]T , ρ = [x, y, z]T into Eq. (2.8) the system of nonlinear equations for

relative motion is obtained [58]:



ẍ− 2ḟcẏ − f̈cy − ḟ 2
c x = − µ (rc + x)[

(rc + x)2 + y2 + z2
] 3

2

+
µ

r2
c

ÿ + 2ḟcẋ+ f̈cx− ḟ 2
c y = − µy[

(rc + x)2 + y2 + z2
] 3

2

z̈ = − µz[
(rc + x)2 + y2 + z2

] 3
2

(2.9)

The equation for absolute motion of the chief completes this set, namely Eq. (2.2).

In order to have fc (chief true anomaly) and rc explicitly, that equation is solved in

R frame where rc = rcr̂. By derivating twice this last expression, where r̂ = r̂(t),

one gets:
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r̈c = rcḟ 2

c −
µ

r2
c

f̈c = −2ṙcḟc
rc

(2.10)

Eqs. (2.9) and Eqs. (2.10) form a system of five second order differential equations

which can be reduced in order into ten ODEs and integrated.

2.3 System of equations for coupled translational-rotational relative

dynamics

When two spacecraft are in close proximity, they cannot be modeled anymore as

single points, as their dimensions might be comparable in order of magnitude to

their relative distance. It is thus important to develop a model that can take into

account both the relative dynamic and the attitude dynamics of chief and deputy.

Each spacecraft will then have its own LVLH frame, labelled as Lc and Ld, and its

own Body frame, Bc and Bd. For this model, it is assumed that the satellites are

Earth pointing, so that Lc ≡ Bc and Ld ≡ Bd.

Fig. 2.3: Chief and Deputy spacecraft with their reference frames

2.3.1 Relative rotational model

First define ωc as the chief angular velocity, ωd as the deputy angular velocity and

ω = ωd − ωc (2.11)
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as the relative angular velocity in a given reference frame. Define ζ the eigenangle

of rotation and e the eigenaxis of rotation which uniquely parametrize the Euler

rotation from Lc to Ld. The relative quaternion vector β is then:



β1 = e1sin(
ζ

2
)

β2 = e2sin(
ζ

2
)

β3 = e3sin(
ζ

2
)

β0 = cos(
ζ

2
)

(2.12)

The rotation matrix from Lc to Ld expressed in terms of quaternions becomes:

D(β) =

β2
1 − β2

2 − β2
3 + β2

0 2 (β1β2 − β3β0) 2 (β1β3 + β2β0)

2 (β1β2 + β3β0) −β2
1 + β2

2 − β2
3 + β2

0 2 (β2β3 − β1β0)

2 (β1β3 − β2β0) 2 (β2β3 + β1β0) −β2
1 − β2

2 + β2
3 + β2

0

 (2.13)

and the quaternion kinematic equation of motion is :

β̇ =
1

2
Q(β)ω|Ld

(2.14)

with:

Q(β) =


−β1 −β2 −β3

β0 −β3 β2

β3 β0 −β1

−β2 β1 β0

 (2.15)

and:

ω|Ld
= D(β)Tω|Lc (2.16)

To derive the attitude dynamics of the deputy relative to the chief, express Eq. (2.11)

in Lc and derive it in I:

ω|Lc= ωd|Lc−ωc|Lc= D(β)ωd|Ld
−ωc|Lc (2.17)

dI ω

dt

∣∣∣∣
Lc

=
dI ωd
dt

∣∣∣∣
Lc

− dI ωc
dt

∣∣∣∣
Lc

= D(β)
dI ωd
dt

∣∣∣∣
Ld

− dI ωc
dt

∣∣∣∣
Lc

(2.18)

The derivative in I of ω|Lc can be obtained in another way too. The derivation rule

from an inertial I to a non-inertial V frame of a generic vector c is [57]:

dIc

dt
=
dV c

dt
+I ωV × c (2.19)
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and by exploiting it on ω and expressing the resulting equation in Lc:

dIω

dt

∣∣∣∣
Lc

=
dLcω

dt

∣∣∣∣
Lc

+ ωc|Lc×ω|Lc (2.20)

Comparing Eq. (2.18) and Eq. (2.20) gets:

dLcω

dt

∣∣∣∣
Lc

= D(β)
dI ωd
dt

∣∣∣∣
Ld

− dI ωc
dt

∣∣∣∣
Lc

− ωc|Lc×ω|Lc (2.21)

In order to drop the deputy angular velocity in the previous equation, it is possible

to write Euler’s equation for the deputy and chief angular velocity (by applying

Eq. (2.19) to the angular momentums of the chief and deputy Icωc and Idωd):

Ic
dIωc
dt

∣∣∣∣
Lc

= Ic
dLcωc
dt

∣∣∣∣
Lc

+ ωc|Lc×Icωc|Lc= Nc (2.22)

Id
dIωd
dt

∣∣∣∣
Ld

= Id
dLdωd
dt

∣∣∣∣
Ld

+ ωd|Ld
×Idωd|Ld

= Nd (2.23)

where N denotes the external torque applied on the spacecraft, if any. Moreover,

since the chief spacecraft is in an LVLH frame, ωc can be written as ωc = [0,0, ḟc]
T .

Finally, substituting Eq. (2.17), Eq. (2.22) , Eq. (2.23) into Eq. (2.21) and multi-

plying by Ic yields the equation of relative attitude dynamics written in terms of

chief/relative angular velocities:

Ic
dLcω

dt

∣∣∣∣
Lc

=IcD(β)I−1
d {Nd −D(β)T (ω|Lc+ωc|Lc)× IdD(β)T (ω|Lc+ωc|Lc)}

− Icωc|Lc×ω|Lc−{Nc − ωc|Lc×Icωc|Lc}
(2.24)

Eq. (2.14) and Eq. (2.24) fully describe the relative attitude behaviour. Next, the

relative translational motion is investigated.

2.3.2 Relative translational model

For what concerns relative translational motion, feature points on the two spacecraft

must be taken into account. Define P i
d a generic point on the deputy and P j

c a generic

point on the chief. Denote the distance from the CMs as P i
d|Ld

and P j
c |Lc , ρij being

their distance.

The velocity of the deputy feature point in Lc is obtained as [57]:

dLcP i
d

dt
=
dLdP i

d

dt
+
dLcρ

dt
+ ω × P i

d (2.25)
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Fig. 2.4: Chief and Deputy spacecraft

and the acceleration is, by using Eq. (2.6):

d2LcP i
d

dt2
=
d2LdP i

d

dt2
+
d2Lcρ

dt2
+
dω

dt
× P i

d + ω × (ω × P i
d) + 2ω × dLdP i

d

dt
(2.26)

Since the deputy is a rigid body, the derivatives in Ld of P i
d are null; the last two

equations become:
dLcP i

d

dt
=
dLcρ

dt
+ ω × P i

d (2.27)

d2LcP i
d

dt2
=
d2Lcρ

dt2
+
dω

dt
× P i

d + ω × (ω × P i
d) (2.28)

The relative distance and derivatives in Lc are obtained, from Fig. 2.4, as:

ρij|Lc= P i
d|Lc−P j

c |Lc (2.29)

dLcρij
dt

∣∣∣∣
Lc

=
dLcP i

d

dt

∣∣∣∣
Lc

+
dLcP j

c

dt

∣∣∣∣
Lc

(2.30)

d2Lcρij
dt2

∣∣∣∣
Lc

=
d2LcP i

d

dt2

∣∣∣∣
Lc

+
d2LcP j

c

dt2

∣∣∣∣
Lc

(2.31)

or by substituting Eq. (2.27) and Eq. (2.28) into Eq. (2.30) and Eq. (2.31) respec-

tively:

ρij|Lc= P i
d|Lc−P j

c |Lc (2.32)

dLcρij
dt

∣∣∣∣
Lc

=
dLcρ

dt

∣∣∣∣
Lc

+ ω × P i
d +

dLcP j
c

dt

∣∣∣∣
Lc

(2.33)

d2Lcρij
dt2

∣∣∣∣
Lc

=
d2Lcρ

dt2

∣∣∣∣
Lc

+
dω

dt
× P i

d + ω × (ω × P i
d) +

d2LcP j
c

dt2

∣∣∣∣
Lc

(2.34)

Denoting ρ = [x, y, z]T , ρij = [xij, yij, zij]
T , P i

d = [P i
xd
, P i

yd
, P i

zd
]T , P j

c = [P j
xc , P

j
yc , P

j
zc ]

T ,

ω = [ωx, ωy, ωz]
T and substituting this last three equations into Eq. (2.9) gets the

following system for relative motion dynamics [58]:
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ẍij −
[
ωy
(
ωxP

i
yd
− ωyP i

xd

)
− ωz

(
ωzP

i
xd
− ωxP i

zd

)]
− ω̇yP i

zd
+ ω̇zP

i
yd

− 2ḟc
[
yij −

(
ωzP

i
xd
− ωxP i

zd

)]
− f̈c

(
yij − P i

yd
+ P j

yc

)
− f 2

c

(
xij − P i

xd
+ P j

xc

)
=

−µ
(
rc + xij − P i

xd
+ P j

xc

)[(
rc + xij − P i

xd
+ P j

xc

)2
+
(
yij − P i

yd
+ P j

yc

)2
+
(
zij − P i

zd
+ P j

zc

)2
] 3

2

+
µ

r2
c

ÿij −
[
ωz
(
ωyP

i
zd
− ωzP i

yd

)
− ωx

(
ωxP

i
yd
− ωyP i

xd

)]
− ω̇zP i

xd
+ ω̇xP

i
zd

+ 2ḟc
[
xij −

(
ωyP

i
zd
− ωzP i

yd

)]
+ f̈c

(
xij − P i

xd
− P j

xc

)
− ḟ 2

c

(
yij − P i

yd
+ P j

yc

)
=

−µ
(
yij − P i

yd
+ P j

yc

)[(
rc + xij − P i

xd
+ P j

xc

)2
+
(
yij − P i

yd
+ P j

yc

)2
+
(
zij − P i

zd
+ P j

zc

)2
] 3

2

z̈ij −
[
ωx
(
ωzP

i
xd
− ωxP i

zd

)
− ωy

(
ωyP

i
zd
− ωzP i

yd

)]
− ω̇xP i

yd
+ ω̇yP

i
xd

=
−µ
(
zij − P i

zd
+ P j

zc

)[(
rc + xij − P i

xd
+ P j

xc

)2
+
(
yij − P i

yd
+ P j

yc

)2
+
(
zij − P i

zd
+ P j

zc

)2
] 3

2

(2.35)

The system of differential equations is then composed by Eq. (2.14), Eq. (2.24) and

Eq. (2.35) along with Eq. (2.10). There are a total of 17 ODEs to be integrated: six

come from ρ̈ij, two from f̈c, two from r̈c, three from the relative omega ω̇|Lc and

four from quaternions kinematics β̇.

2.4 Numerical Simulations

In this section a numerical simulation and validation is presented for the models

previously discussed. The nonlinear translational-rotational coupled (NL) model is

integrated while Clohessy-Wiltshire (CW) model is used for validation. CW model

is the linearization of Eq. (2.9), it holds whenever chief orbit is circular and the

relative distance ρ is much smaller with respect to the orbital radius. The following

data have been used:

Table 1: Orbital simulation data

ac [km] ec [-] ic [deg] Ωc [deg] ωc [deg] fc [deg]

7170 0.05 15 0 340 20

The inertia matrix of the two spacecraft has been assumed diagonal with Ix = 500

[kg m2], Iy = 500 [kg m2] and Iz = 500 [kg m2]. The integration time is one orbital

period. Finally the selected feature points are Pc = (0 0 0) [m] and the set Pd =
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Table 2: Relative translation simulation data

x00(t0) [m] y00(t0) [m] z00(t0) [m] ẋ00(t0) [m] ẏ00(t0) [m] ż00(t0) [m]

25 25 50 0 -0.0555 0

Table 3: Relative attitude simulation data

ωx(t0) [◦/s] ωy(t0) [◦/s] ωz(t0) [◦/s] β0 β1 β2 β3

0.006 0.006 0.12 1 0 0 0

[(0 0 0),(1.5 1.5 0),(-1.5 -1.5 0)] [m]. The ICs for points different from the CM are

computed as [59]:

ρij(t0) = ρ(t0) + P i
d (2.36)

dLcρij(t0)

dt
=
dLcρ(t0)

dt
+ ω(t0)× P i

d (2.37)

In Fig. 2.5 the orbital description of the chief spacecraft is obtained by integration of

Eq. (2.10) and its behaviour is coherent with the propagation of an elliptical orbit.

Fig. 2.6 shows instead the propagation of ρ, so deputy CM in Lc in terms of relative

position and relative attitude quantities.
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Fig. 2.5: Orbital dynamics
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(b) Relative quaternions and angular velocity

Fig. 2.6: Attitude and position propagation

Fig. 2.7a shows the relative position of the three deputy feature points and denotes

how relative rotation can affect relative translation through the kinematic coupling.

Fig. 2.7b shows the difference between the propagation of Pd = (0 0 0) and the

other two points. It’s possible to see how the motion of those feature points can be

recovered by applying a sinusoidal motion aroud the CM of the deputy.
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Fig. 2.7: Comparison of different feature positions
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(a) ρ propagation with the NL model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-60

-40

-20

0

20

40

60

80

100

120

140

x

y

z

(b) ρ propagation with CW model

Fig. 2.8: Comparison of deputy CM position with CW and NL models
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(a) Difference between CW and NL, Pd = (0,0,0) and ec = 0
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Fig. 2.9: Differences of deputy CM position, CW and NL models for ec = 0 &

ec = 0.05

In Fig. 2.8 the position of the deputy CM is presented. In Fig. 2.8a the NL model

is used with ec is set to zero. In Fig. 2.8b, integration with CW model is presented.

23



Finally, in Fig. 2.9a the difference between the NL propagation with zero eccentricity

is plotted against the CW one. Fig. 2.9b shows the NL propagation with ec = 0.05

against the CW one. The CW model is extremely close to the NL one when ec=0,

however is not able to precisely describe the behaviour of the deputy CM in the

second case. This error would be even greater if the point to be described were

features points different from the CM of the deputy.

The subject of relative dynamics was the first one to be thoroughly explored dur-

ing the course of this thesis. Even though these models and simulations have not

been used later on, they provide a valuable theory framework in which to shape and

understand further topics. Most rendering software adopt the same quantities def-

inition as in these relative dynamics models and this theory background can prove

to be very useful. Since those software allow for the definition of trajectory of an

object before imaging, such models could be exploited in the future to automate the

trajectory rendering process.

Moreover relative motion models are fundamental when a filter based solution to

the V-SLAM problem is sought. In this case a motion model is directly embedded

into the selected filter generating a simple and efficient estimation procedure [30].
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3 Projective geometry

In the following chapter important topics needed for a visual navigation system,

such as geometrical transformations and camera model, are discussed. The context

in which cameras operate and pictures are taken cannot be fully explained through

the classical Euclidean geometry. For instance, two parallel lines will never intersect

together in R3. However this clashes with the perception of the world that we live

in: for example when looking at railway tracks in the distance as in Fig. 3.1, they

do appear to converge and meet at an infinite distance while being parallel. A way

to understand and model how 2D images of 3D objects are formed comes from

projective geometry.

Fig. 3.1: Parallel railway tracks converging at infinity

In 2D projective geometry a particular notation for coordinates is used, called ho-

mogeneous. A general 2D point x = (x, y)T is written in homogeneous coordinates

as x̃ = (x1, x2, x3)T . In order to recover the inhomogeneous representation it is nec-

essary to divide by the last element x3, thus getting the point x = (x1/x3, x2/x3)T .

Moreover, if x3 = 0, x̃ becomes a point at infinity, where lines, that in R2 or R3

would be parallel, meet.

Lines can be written as homogeneous vectors too, where homogeneous indicates that

scaling that particular vector won’t change what it represents. A line ax+by+c = 0

can be rewritten in a vector form as l̃ = (a, b, c)T . This is an homogeneous form too

since l̃1 = k(a, b, c)T is representing the same line as l̃. It can be quickly demon-

strated that a point x̃ = (x1, x2, x3)T lies on a line l̃ = (a, b, c)T if x̃ · l̃ = 0. By

applying this property, it holds that two parallel line l̃1 = (a, b, c)T and l̃2 = (a, b, c′)T

do indeed meet at the same point at infinity x̃ = (x1, x2, 0)T .
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3.1 Geometric Transformations

A discussion on the expression of 2D geometric transformations with homogeneous

coordinates is reported below. These transformations can be generalized from 2D

to 3D with minor efforts and are an essential step for further projective geometry

topics.

3.1.1 Translation

The easiest form of geometric transformation is a simple translation. It can be

expressed as:

x̄′ =

(
I t

0T 1

)
x̄ (3.1)

where the notation x̄ indicates an augmented vector, which is an homogeneous vector

with the scale term x3 = 1. I is the 2×2 identity matrix and t is the translation

vector. The expression for x̄′ is then:

x̄′1 = x̄1 + t1 (3.2)

x̄′2 = x̄2 + t2 (3.3)

x̄′3 = 1 (3.4)

A simple translation is shown in Fig. 3.5.
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Fig. 3.2: Translation example
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Note that, if vector x̄ was scaled by a factor k, so that x3 6= 1, its expression would

be x̃ = (kx̄1, kx̄2, k)T = (x̃1, x̃2, x̃3). The vector x̃′ is then:

x̃′1 = x̃1 + t1x̃3 (3.5)

x̃′2 = x̃2 + t2x̃3 (3.6)

x̃′3 = x̃3 (3.7)

The resulting vector x̃′ is different from the previous vector x̄′, as it is just a scaled

version of it. When trying to recover the inhomogeneous point however, the result

will be the same:

x′1 =
x̃′1
x̃′3

=
x̃1 + t1x̃3

x̃3

=
kx̄1 + t1kx̄3

k
=
x̄′1
x̄′3

= x̄1 + t1 (3.8)

x′2 =
x̃′2
x̃′3

=
x̃2 + t2x̃3

x̃3

=
kx̄2 + t2kx̄3

k
=
x̄′2
x̄′3

= x̄2 + t2 (3.9)

Indeed in P 2, two vectors differing only from scale will be projected in the same P 2

point, as shown in Fig. 3.3.

Fig. 3.3: Scaled homogeneous vectors to inhomogeneous one
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3.1.2 Euler transformation

Euler transformation, also referred to as rigid body transformation, encodes a trans-

lation and a rotation in its transformation matrix. It can be expressed as:

x̄′ =

(
R t

0T 1

)
x̄ (3.10)

where R is the rotation matrix and t is the translation vector.
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Fig. 3.4: Euler transformation example

3.1.3 Similarity transformation

The similarity transformation is an Euler transformation with the addition that

space is equally scaled in all directions. It can be expressed as:

x̄′ =

(
sR t

0T 1

)
x̄ (3.11)
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Fig. 3.5: Similarity transformation example
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3.1.4 Affine transformation

An affine transformation adds up to the previous ones by including bi-directional

shear terms in the transformation matrix. It is written as:

x̄′ =

a11 a12 a13

a21 a22 a23

0 0 1

 x̄ (3.12)

and deforms space coordinates as seen in Fig. 3.6.
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Fig. 3.6: Affinity transformation example

3.1.5 Projective transformation

A projective transformation is the most important one within projective geometry.

Also referred to as homography, it maps points in one R3 plane to another one, or,

in other terms, points in one image to another one. It is defined up to scale, meaning

that it has only 8 degrees of freedom, since homogeneous coordinates are used:

x̃′ =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 x̃ = Hx̃ (3.13)

After this transformations, parallel lines will not be parallel anymore. Instead, par-

allel lines will converge to a unique ideal point, or point at infinity. The set of ideal

points forms the ideal line. Example of this transformation are shown in Fig. 3.7.
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Formally 3D geometric transformation are identical to 2D ones. The only major

difference is the definition of the rotation matrix R, which can be defined either

through euler angles or quaternions.
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(a) Example 1, before transformation
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(b) Example 2, before transformation
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(c) Example 1, after transformation
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(d) Example 2, after transformation

Fig. 3.7: Projective transformation examples, infinite horizon line in blue
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3.2 Camera model and image formation

The simplest model for a camera is the pinhole camera model. Light rays converge

in the camera center and points are projected onto the image plane (called also

virtual image plane to differentiate it from the one of Fig. 3.13) at distance f from

the center. The principal axis of the camera encounters the image plane in point p,

the principal point. A generic point in space X = (X, Y, Z)T is mapped into the P2

image plane to x = (fX/Z, fY/Z)T as shown in Fig. 3.8.

Fig. 3.8: Pinhole camera model [3]

In homogeneous coordinates, that mapping goes then from point X = (X, Y, Z,1)T

to x = (fX, fY, Z)T and can be easily written as a matrix:

fX

fY

Z

 =

f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1

 (3.14)

or:

x = PX (3.15)

where P is the 3×4 the camera matrix. The axis of the image plane generally is not

centered in the principal point, so two additional translational degrees of freedom

for the image plane origin can be introduced in P as:

x =

f 0 px 0

0 f py 0

0 0 1 0




X

Y

Z

1

 (3.16)
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Fig. 3.9: Camera translation and rotation [3]

The previous expression for P matrix holds only if the camera reference frame and

the world one are coincident. In order to take into account possible rotation and

translation of the camera coordinate frame with respect to the world coordinate

frame, an Euler transformation can be exploited as follows:

X|camera=

[
R −RC
0 1

]
X|world (3.17)

Where R is the rotation matrix from world to camera frame and C is the inho-

mogeneous vector of the camera center in world coordinate frame. Denoting with

t = −RC the world center in camera frame the mapping becomes [3]:

x =

f 0 px

0 f py

0 0 1

 [R|t]


X

Y

Z

1

 = K[R|t]X|world= PX|world (3.18)

K is referred to as the calibration matrix and takes into account intrinsic param-

eters of the camera. It describes the projective mapping from 3D camera frame to

2D image plane. The other matrix [R|t] describes instead a 3D to 3D rigid trans-

formation and for this reason it embeds extrinsic parameters only. For the pinhole

camera there are 9 DOFs in total - 3 for rotation, 3 for translation, 2 for image axis

translation, 1 for focal distance f.

In Fig. 3.10 an example of a point projection on a generic sensor is shown. Moreover

note that the parameters of the intrinsic matrix K must all have the same unit,

pixels. For this reason f needs to be converted in pixels by multiplying it by the
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(a) World reference frame (b) Camera frame, image plane behind camera center
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(c) Sensor reference frame

Fig. 3.10: Camera model examples

pixel density ( px
mm

) assuming square pixels while px, py can be taken as half image

resolution in x and y directions.

In order to check the validity of the code developed with the theoretical notions

discussed above, the image of a Dragon spacecraft has been simulated in Matlab

environment using the pinhole camera model and in parallel has been rendered in

Blender as in Fig. 3.11. Blender is a rendering software that has been exploited

in this thesis to obtain realistic spacecraft images along with a list of important

simulation parameters, such as the satellite position and attitude. More information

is available in Section 6.3. In Fig. 3.11a single dots composing the mesh are shown

and the visual comparison of the two pictures gives satisfying results. The spacecraft

is distant roughly 30 meters and the camera has a focal length f = 150 [mm]. The
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sensor size is of 36×20.25 [mm] with an image resolution of 1152 by 648 pixels

and standard 16:9 proportions. Camera parameters have been selected mainly by

previous heritage as discussed for past missions in Section 1.1. Another criteria for

the image resolution selection was the rendering time duration. It is indeed necessary

that images are rendered in a reasonable time in Blender. This point will be crucial

in the next sections, especially in Section 8.1, where the rendering software will be

tasked with thousands of images to reproduce.

(a) Pinhole camera model image

(b) Blender rendered image

Fig. 3.11: Dragon spacecraft rendered images

3.3 Ray casting

Often throughout this thesis the operation of reconstructing the structure of the

3D scene given some 2D points is necessary. This is very useful for example to

understand if some estimated scene 3D points are computed accurately with respect

to the true 3D points. Indeed later in Section 7 the estimated structure of the scene

is compared to the true one through this method. Ray casting acts by first casting
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rays from the camera center. Rays pass through the sensor 2D points and are then

propagated in space. The intersection between these rays and every object in the

scene must be verified in order to retrieve the corresponding 3D intersection point.

The intersection operation is processed through an algorithm proposed by Möller

and Trumbore (1997). More in-depth information and the original code can be found

in [60].

Fig. 3.12: Ray triangle intersection example

Ray casting can become quickly expensive as the number of mesh triangles increases

in the scene structure. Some improvements can be introduced by checking intersec-

tion only with triangles whose normal is opposite to the ray direction. In this way

a lot of unnecessary intersections are avoided. Another important improvement has

been implemented by parallelizing the process. The effect of parallelization is en-

hanced on multi-core CPUs and multiple workers are deployed that check randomly-

chosen ray/triangles intersections. The 3D point reconstruction can still take a large

amount of time to process, depending on the triangle mesh number, going from

some seconds to some minutes, however this method is not part of on-board visual

navigation algorithms as it is used for validation purposes.

3.4 Analogies to photography and optics

Most imaging software use a mixture of terminology that comes from projective

geometry theory, photography and optics theory. For this reason parameters of a

camera related to this fields are mentioned and described next.
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Fig. 3.13: Converging lens representation [4]

First of all, a camera lens can be generally approximated as a converging lens which

collects light rays to the focus. The lens equation reads [4]:

1

f
=

1

g
+

1

h
(3.19)

Where related quantities are shown in Fig. 3.13. The camera focal length f , as

seen before, is the distance between the camera center and the image plane. For

real cameras, that translates as the distance between the lens of the camera and

the imaging sensor. In Fig. 3.8 the image plane is shown along Z axis, however the

imaging sensor is actually placed behind the camera center along negative Z axis.

Focus distance d is:

d = g + h (3.20)

where g and h must be such that the lens equation is satisfied. From the focal length

an important parameter can be computed, the FOV or field of view. It is the angular

extent of a given scene that is imaged by a camera, as in Fig. 3.14.

FOV can be computed as:

FOV = 2 arctan
dsensor

2f
(3.21)

where dsensor is the size of the imaging sensor, generally expressed in millimeters.

From Eq. (3.21) it results that FOV depends on the camera focal length too. The

bigger the focal length, the narrower the FOV.
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Fig. 3.14: Camera field of view

Another quantity of interest is the f-number. It is defined as the ratio between the

focal lenght f and the aperture a, the size of the lens opening, as:

fnumber =
f

a
(3.22)

This parameter is very important as it is an absolute measure of how much light

enters the camera lens. Indeed aperture by itself is not enough. It is true that a big

aperture will gather more light with respect to a smaller one, especially against a

pinhole camera, however also the spherical rectangle view of the camera must be

taken into account, by means of the FOV or the focal length. For example, a lens

with f = 100 [mm] and a = 25 [mm] will gather as much light as a f = 200 [mm]

and a = 50 [mm] one, despite the second having double the aperture of the first,

since their f numbers are the same, f/4.

In summary, in this chapter important theory topics of projective geometry have

been discussed, which will be extensively applied in the V-SLAM and DL, deep

learning, sections. Geometric transformations are useful to better understand com-

puter vision algorithms and the Euler one in particular is essential for changes in

coordinate systems. Moreover the image formation and ray casting method are the

building blocks for ground truth estimation of the DL and V-SLAM algorithm re-

spectively.
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4 Computer Vision

Computer vision is the engineering field that seeks to understand and extract var-

ious types of information from images. Methods and algorithms used in V-SLAM

pipelines are presented in this chapter. V-SLAM, which stands for Visual Simulta-

neous Localization and Mapping, is the problem of computing the trajectory and

3D structure of a scene from visual data. The general structure of a V-SLAM algo-

rithm starts from an initial 3D map computation which is later used for navigation.

In order to do so, features, special points of an object which are easy to recognize,

can be exploited. They are extracted and matched/tracked so that two images with

a set of point tracks between them are obtained. Two view geometry, or epipolar

geometry, is then applied to compute the rotation and translation of the camera in

time: an important matrix, called fundamental/essential matrix, is estimated from

the point tracks and is decomposed into the relative rotation matrix and translation

vector. Triangulation allows to compute the initial map, which is later navigated by

continuously tracking features and solving the PnP, Perspective n-Point, problem.

Finally an optimization method called Bundle Adjustment is presented. Each of

these topics is discussed and analyzed individually in the following sections.

4.1 Feature Detection

The first step in a V-SLAM algorithm is information retrieval from the input images.

The main approaches to this problem rely on feature detectors, but other solutions

exists too. Direct methods for example aim to use information from every pixel

in the images, while feature detectors only use accurately selected points. More

complex structures can be found too, such as lines and edges, however the increased

complexity can result in an higher computational cost and lower accuracy. For this

reason, feature detectors have been preferred.

Features are special points in an image which stand out among the other ones and

are easy to relocate in different images of the same scene. Feature detectors need to

be able to locate them accurately without being affected by external manipulation.

An ideal detector should be invariant to scale and rotation changes, to noise, to

illumination changes, to affine or projective transformations and still be computa-

tionally efficient. Several feature detectors have been developed in literature with

different properties between each other. Corner detectors have been prioritized due

to the kind of object, an artificial one, that is studied. Among those ones there

are the minimum eigenvalue algorithm detector, Harris detector, FAST, BRISK and

ORB. It is out of the scope of this thesis to discuss each one of them, however a

review can be found in [61].
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Statistical characteristics of the detectors have been explored by applying them over

a number of synthetic spacecraft images depicting a rotation of 90 degrees around

a deputy satellite. The first and last frames are shown below.

(a) First frame (b) Last frame

Fig. 4.1: Example of minimum eigenvalue detector

In Fig. 4.2 the mean and the standard deviation of the number of features and

execution time are reported for every detector. All the investigations performed in

this thesis are executed on a Ryzen R7 3700X and a RTX 2070 Super. The average

number of features for all the algorithms is fairly consistent along the frames while

the execution time is noticeably smaller for FAST and ORB detector.

MinEig Harris ORB BRISK FAST

Method

102

103

104

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
fe

a
tu

re
s
 p

e
r 

fr
a

m
e
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(b) Average execution time per frame

Fig. 4.2: Statistics for feature detection
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4.2 Feature Matching and Tracking

After finding good features in an image, the subsequent step is to try to find them

in other frames. Two approaches are commonly used: feature matching or feature

tracking.

4.2.1 Feature Matching

Feature matching is the process through which descriptors are extracted for each

detected feature in two different frames and are then compared. The ones that are

most closely related will then get matched to create a track. A high number of de-

scriptors are available in literature and their purpose is to compress key information

of a feature point generally into vectors.

In Fig. 4.3a an example of feature matching is presented. Features detected through

the minimum eigenvalues algorithm are found in two frames and then matched.

The result is not accurate as a lot of false tracks are present, due to the fact that

many points can be very similar to each others, and they must be removed. For this

purpose a popular algorithm that is used is RANSAC [62].

RANSAC, which stands for RANdom Sample Consensus, is a simple and efficient

algorithm for outliers detection. It starts by randomly selecting a subset of the

input data and fitting it with a model, that could be for example a least square

linear regression. A threshold is then defined to compare the remaining input data

with respect to the model. Some will be marked as inliers while other ones will be

outliers. This procedure is repeated up to a number of iterations, after which the

model with the most number of inliers is selected between all the computed ones.

RANSAC is implemented in Matlab but a similar algorithm called MSAC has been

used for outlier removal. The main difference between MSAC and RANSAC is that

the former chooses the best model by scoring inliers based on their fitness to the

model, while the latter simply uses the cardinality of the inliers group. The authors

conclude that this simple modification grants a modest to high benefit to the method

with insignificant added computational cost [63].

In Fig. 4.3 an example of this process is provided. Features are extracted in two

different frames and then matched. The outlier removal algorithm, MSAC, is then

used to detect false matching. When looking at Fig. 4.3b, even though the quality

of the matching seems to be good at first, various tracks are not coherent with the

spatial movement of the object when zoomed as in Fig. 4.3c. Further processing

would be needed to remove the inaccurate ones as they must not appear when

estimating the fundamental or essential matrix. Errors that would appear during
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the matching process would be later amplified and threaten the integrity of the

entire SLAM algorithm.

(a) Frame after MinEig feature matching (b) Frame after MSAC

image 1

image 2

(c) Zoom of ORB feature matching after MSAC

Fig. 4.3: Example of feature matching

Finally in Fig. 4.4 feature matching with outlier removal for the same image sequence

used in Section 4.1 is shown. Feature detection has been capped at 1000 features

per image and most of them are lost during frames. The average execution time is

roughly between 0.04 and 0.18 seconds as in Fig. 4.4b. Due to the high variability in

the feature matching step, this process has not been deemed accurate enough to be

used for space applications. For this reason feature tracking has been investigated

further and is presented in the next section.
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(a) Average feature number per frame (b) Average execution time per frame

Fig. 4.4: Statistics for feature matching

4.2.2 Feature Tracking

Feature tracking is another possibility that can be used for finding 2D correspon-

dences between points in images. One of the characteristics of feature tracking is

that it is generally faster than feature matching and is a popular choice for online

applications. In particular in this thesis the KLT tracker has been used [64].

This tracker can be derived by Lucas-Kanade image alignment method. An image

can be aligned with another one by first defining a cost function as:

E(u) =
∑
i

(f1(xi + u)− f0(xi))
2 (4.1)

where f(x) is a generic image function, x is a vector containing the two x and y

pixel coordinates of every pixel and u is the optical flow, a parameter that allows to

shift the first image by (u, v)T . By finding the optimal value for u, the cost function

will be minimized.

A fast solution of the minimization of E is needed for online applications. It can be

found by linearizing the cost function around an initial guess of u as:

E(u+ ∆u) =
∑
i

(f1(xi + u+ ∆u)− f0(xi))
2 (4.2)

and by developing the Taylor series expansion up to the first order:
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E(u+ ∆u) =
∑
i

(f1(xi + u) +∇f1(xi + u)∆u− f0(xi))
2 (4.3)

The goal of minimizing E(u+ ∆u) can be reached by imposing ∂E(u+∆u)
∂∆u

= 0. This

leads to a linear system in the form A∆u = −b where A is the discrete structure

tensor of f1 and b is composed by the image derivatives in space and time [65]. In

this way a very fast tracking algorithm is obtained. Due to the linearization ap-

proximation, KLT tracker assumes that pixel intensity values do not change rapidly

between frames and pixel motion is small.

This basic KLT tracker can be made more accurate and robust at the cost of increas-

ing complexity. For example a pyramidal implementation can be exploited to make

feature tracking invariant to the scale of the features themselves [66]. Moreover an

iterative and windowed method to deal with feature tracking is generally adopted,

and a different mathematical approach can be derived to describe feature motions

different than simple translation too [67].

In Fig. 4.5 an example of tracks found by the KLT tracker are shown. The image

sequence is still the same as for the previous paragraphs, with 91 images linearly

covering angles from 0 to 90 deg. The tracking for all the image set is shown in

Fig. 4.6. Different feature detectors are used in the first frame to detect a maximum

of 1000 points, after which KLT is used to track them. As expected some features

are lost while moving around the target spacecraft as in Fig. 4.6a. Execution times

shown in Fig. 4.6b are very fast, in the order of milliseconds; feature points detected

with Harris appear to be the fastest, however they are the fewest too.

(a) 20 degrees view (b) 40 degrees view

Fig. 4.5: Example of KLT tracking with Min. Eig. feature points
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(a) Tracked feature number per frame (b) Average time per frame

Fig. 4.6: Example of KLT traking

4.3 Epipolar geometry

The term epipolar geometry is used to refer to the intrinsic projective geometry

properties that arise between two views. When a camera images a point X in world

frame, it is projected in the image plane to x1 as seen in Section 3.2. In Fig. 4.7

O1, O2 are the camera centers, B is the baseline while e1, e2 are the epipoles, the

projection of the camera centers onto the image planes. The epipolar lines are a

family of lines that pass through one epipole, so that if the camera moves to another

position in space or a second camera takes an image of the same point X, the

projection x2 is constrained to be fixed on the epipolar line l2.

Fig. 4.7: Two view geometry representation
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This constraint can be expressed in mathematical formulation through a matrix E,

called the essential matrix, which maps points in one image to the corresponding

epipolar lines in the other one:

Ex̂1
T = l2 (4.4)

Where the x̂ = K−1x notation refers to normalized coordinates, in which a camera

matrix P , such that x̂ = P ,X becomes K−1K[R|t] = I[R|t]. Moreover, since it

must hold that x̂1
T l1 = x̂2

T l2 = 0, the epipolar constraint is formulated as:

x̂2
TEx̂1 = 0 (4.5)

The demonstration for this last equation leverages on various geometric properties

of the elements of Fig. 4.7, and in particular the matrix E is defined as:

E = R[t]× (4.6)

Where R is the rotation matrix from camera frame 2 to 1 and t is the translation

vector of frame 2 written in frame 1. This expression can be used to recover ana-

lytically the expression of E given the two camera poses as well as to retrieve the

extrinsic parameters of the relative camera pose if an estimate of E is available.

The generalization of the essential matrix is the fundamental matrix F . The main

difference between the two is that F estimation does not require calibrated cameras

and thus a priori knowledge of K. It relates to the essential matrix as E = KTFK.

For this reason F has more degrees of freedom with respect to E, a total of 7 degrees

of freedom against 5 for E. The previous equations for the essential matrix hold too

for the fundamental matrix using non-normalized points: for example the epipolar

constraint can be written as x2
TFx1 = 0.

4.4 Fundamental and essential matrix estimation

The fundamental matrix F and essential matrix E can be estimated from a set of

point correspondences in two images. Due to the fact that the essential matrix has

a lower number of degrees of freedom with respect to the fundamental one, it can

also be extracted from a lower number of correspondences with respect to F even

though the algorithm complexity increases.
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The simplest algorithm for F estimation is the 8 points normalized algorithm. By

recalling that, given two set of corresponding points, it must hold for each one of

them that xT2Fx1 = 0, one linear equation in F components can be obtained per

points pair. By rearranging the set of equations in a linear system it is possible to

obtain [3]:

Af =

 x2x1 x2y1 x2 y2x1 y2y1 y2 x1 y1 1
...

...
...

...
...

...
...

...

xn2x
n
1 x

n
2y

n
1 x

n
2 y

n
2x

n
1 y

n
2 y

n
1 y

n
2 x

n
1 y

n
1 1

f = 0 (4.7)

where f contains the components of F and n is the index for the n-th correspon-

dence. Unfortunately when points couples are not exact, which can happen during

feature tracking or matching, a least square solution must be sought for that sys-

tem. By referring to Appendix A, ||Af || subjected to ||f ||= 1 can easily be solved

through an SV decomposition of F . In this case the solution f will be the last column

of the right singular vector matrix V . This procedure will not however guarantee

that det(F ) = 0, which comes from the mathematical definition of F , and is the

condition responsible for having all the epipolar lines meet in the epipole. Indeed

an epipole e1 belongs to any epipolar line, so that eT1 l1 = 0. By exploiting the fact

that l1 = Fx2 the previous expression becomes (eT1F )x2 = 0 ∀x2 or eT1F = 0. This

condition only holds if one eigenvalue of F is zero, or equivalently if det(F ) = 0. It

is possible to demonstrate that, by imposing to zero the last singular value of F ,

the Frobenius norm ||F − F ′|| with det(F ′) = 0 is minimized.

Finally the normalization step at the beginning of the algorithm is fundamental to

retrieve good results, and it refers to the choice of the coordinates in the image,

since the algorithm is sensible to its changes. Points are first translated so that their

centroid is at the origin and scaled so that their average distance from the origin is

equal to
√

2.

In general the 8 point algorithm is accurate when points correspondences are very

precise, which might not always happen when noise is present too. In this case, noise

is assumed to be Gaussian and a maximum likelihood method is adopted. The cost

function to be minimized is defined as the squared sum of the reprojection errors in

both images:

∑
n

d(xn1 , x̂
n
1 )2 + d(xn2 , x̂

n
2 )2 (4.8)

where d defines the geometric distance. xn1 ,x
n
2 are the measured correspondences

generally found through feature matching or tracking while x̂n1 , x̂
n
2 are the estimated
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true correspondences that satisfy exactly the epipolar constraint x̂n,T1 F x̂n2 = 0. In

this algorithm, called the Gold Standard method, an initial estimate of F̂ is ob-

tained through the previously shown linear algorithm. From it, the two camera

matrices P1,P2 are computed and 3D points X̂ can be obtained through triangu-

lation. The 2D points correspondences that satisfies exactly the epipolar constraint

are x̂n1 = P1X̂
n
1 and x̂n2 = P2X̂

n
2 . The cost function can then be minimized through

a Levenberg-Marquardt algorithm as in Appendix C thanks to its fast execution

times.

4.5 Extrinsic parameters from essential matrix

The essential matrix E embeds the information about the relative translation and

rotation of two different camera poses. It is thus possible to reversely extract the

relative extrinsic parameters when an estimation of it is available. However the

camera matrix can be recovered up to scale, as the essential matrix is an homo-

geneous one. It can be demonstrated that, for a SV decomposition up to scale of

E = Udiag(1,1,0)V T and P1 = [I|0] four possible choices for P2 are present [3].

The translation vector can be recovered by solving the linear system t̂TE = 0, since

by definition t̂T [t̂]× = 0. The solution will then be the last column of U and is up

to scale, so that the sign is not known too. With respect to the rotation matrix, it

is possible to demonstrate that [t̂]× can be decomposed as Udiag(1,1,0)WUT or

equally Udiag(1,1,0)W TUT with:

W =

0−1 0

1 0 0

0 0 1

 (4.9)

Finally since E = [t]×R = UZUTR, the expression for R can be:

R = UWV T or R = UW TV T (4.10)

with:

Z =

 0 1 0

−1 0 0

0 0 0

 (4.11)

Since the scale of E is not defined, the sign in not set too and both R expressions

are valid. With two possibilities for the translation vector and two for the rotation

matrix a total of four possible solutions are retrieved and shown in Fig. 4.8. It is

47



Fig. 4.8: Camera ambiguity in reconstruction [5]

trivial to understand which is the correct one by imposing that the 3D points must

lay in front of both cameras.

4.6 Triangulation

The aim of triangulation methods is to estimate the position of the world point X

given two image points x1 and x2 and the respective camera matrices P1 and P2.

In real applications image points are affected by noise and will not satisfy exactly

geometrical relations, so that optimal algorithms are needed.

The easiest methods for triangulation are the linear ones, which are not optimal.

The system of equations is obtained by expanding the expressions x1 = P1X and

x2 = P2X. The corresponding system is AX = 0 with A equal to:

A =


x1P

3T
1 − P 1T

1

y1P
3T
1 − P 2T

1

x2P
3T
2 − P 1T

2

y2P
3T
2 − P 2T

2

 (4.12)

where the notation P n indicates the rows of P . If the system is solved through SVD,

then the method is referred as DLT. The solution is the singular vector corresponding

to the singular value of A.
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Triangulation algorithm however must take into account that the pair of image

points will be affected by noise and geometric relations will not be exactly solved,

so that the projected rays in 3D world will not meet. A cost function is then defined

as:

C(x1,x2) = d(x1, x̂1)2 + d(x2, x̂2)2 (4.13)

with x̂ indicating the exact image point and d(x, x̂) the distance. By denoting with l1

the epipolar line in which x̂1 lies, the squared distance d(x, x̂) can also be written as

d(x1, l1). d(x1, l1) represents the perpendicular distance of point x to the unknown

epipolar line l. The cost function is rewritten by parametrizing the epipolar lines

families with parameter t as:

C(x1,x2, t) = d(x1, l1(t))2 + d(x2, l2(t))2 (4.14)

This cost function can be minimized using numerical methods such as Levenberg

Marquardt as in Appendix C, however the problem can be reduced to the solution

of a 6-th order polynomial. A traslation is performed to place points x1 and x2 in

the image origins (0,0,1)T and epipoles in (1,0, f1) and (1,0, f2). The fundamental

matrix can be parametrized as a function of variables F = F (a, b, c, d, f1, f2). An

epipolar line l(t) passes through the epipole of the corresponding image and point

(0, t,1). The distance from the origin to the line l1 is then:

d(x1, l1(t))2 =
t2

1 + (tf)2
(4.15)

The epipolar line l2 is computed as l2(t) = F (0, t, 1)T and is equal to:

l2(t) = (−f2(ct+ d), at+ b, ct+ d)T (4.16)

so that the perpendicular distance from the origin becomes:

d (x2, l2(t))2 =
(ct+ d)2

(at+ b)2 + f 2
2 (ct+ d)2

(4.17)

and the cost function becomes:

C(t) =
t2

1 + (tf)2
+

(ct+ d)2

(at+ b)2 + f 2
2 (ct+ d)2

(4.18)
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There are a total of six roots which can be computed numerically. After finding the

optimum value for t, the corresponding epipolar lines can be found and so also the

points x̂1 and x̂2. These points can be given as input to the linear triangulation

algorithm to compute more accurately the 3D points in world frame.

4.7 Perspective n-Point Problem

The perspective n-point problem, or PnP, is the problem of estimating the camera

matrix of two view geometry when the 3D points and corresponding 2D points in

both images are given as well as camera parameters.

The simplest form of the PnP problem is expressed by expanding the relation x =

PX:

 x̃ỹ
w̃

 =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



X

Y

Z

W

 (4.19)

and casting it into a linear system. This is obtained by taking the fractions x̃/w̃ and

ỹ/w̃ in Eq. (4.19) and isolating the mij components as:

(
X Y Z 1 0 0 0 0−xX −xY −xZ −x
0 0 0 0 X Y Z 1 −yX −yY −yZ −y

)
m11

m12

m13

...

 (4.20)

By adding at least n > 6 correspondences the linear system Am = 0 can be solved

through SV decomposition methods as detailed in Appendix A [68].

Other formulation of the PnP problem are available that solve it in different ways.

When n = 3, the P3P problem is formulated in its minimal form. This formulation

is provided in Matlab and is joined with RANSAC too for outlier removal. There

are up to four solutions that come from the linear system:
Y 2 + Z2 − Y Zp− b2 = 0

Z2 +X2 −XZq − c2 = 0

X2 + Y 2 −XY r − a2 = 0

(4.21)

An extensive description of the problem is provided in [69]. Another formulation can

be adopted when n > 3 which has been named EPnP, which stands for efficient PnP.
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The first step consists in generating four control points c expressed as homogeneous

vectors that are used as a basis to express all other 3D world points. By using αij

as weights, the linear combination is written as:

Xi|world=
4∑
j=1

αijcj|world (4.22)

The projection onto the image sensor of the 3D points is given by:

xi = K

4∑
j=1

αijcj|camera (4.23)

with K expressing the calibration matrix. The same steps as in Eq. (4.19) and

Eq. (4.20) can be taken to generate a linear system in the form Ax = 0 by ex-

ploiting the n 3D world points, where x contains the coordinates of the control

points expressed in camera frame. Further details are available in [70]. A nonlinear

refinement is also performed to optimize the position of the control points and their

corresponding image points. Finally the R and T matrices that minimize the repro-

jection error of the world reference points and the corresponding image points are

computed.

4.8 Bundle Adjustment

Bundle adjustment is an optimization technique generally found at the last steps of

a computer vision algorithm. It aims to refine the model of the structure of the scene,

3D points, and the motion of the camera in terms of relative poses. Camera optical

parameters can be optimized too, but in this thesis it is assumed that cameras are

already known and calibrated.

As detailed in [3] any 3D point is projected onto an image frame by solving the

equation x = PX, where x is the 2D point, X is the 3D world one and P is

the camera matrix. This equation in presence of noise is never solved exactly and

estimated quantities needs to be used instead:

x̂ = P̂ X̂ (4.24)

By assuming the noise to be Gaussian the goal is to estimate the three parameters

above such that Eq. (4.24) is solved exactly and the reprojection error between

the estimated 2D point and the real 2D point is minimized. This needs to happen

for every reconstructed 3D point and for every camera poses that is available. By
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denoting with the index i the i-th camera view and j the j-th point, Eq. (4.24)

becomes:

x̂ij = P̂ iX̂j (4.25)

while the equation for the reprojection error is written as:

min
P̂ i,X̂j

∑
i,j

d(P̂ iX̂j,x
i
j) (4.26)

with d denoting the geometric distance between the estimated and true 2D points.

The problem is generally solved through Levenberg–Marquardt method thanks to

its implementation being fast to execute. However, global bundle adjustment can

quickly become a huge minimization problem and is generally not implemented in

real time simulations. Indeed, since a full camera matrix requires 11 parameters at

minimum and a 3D point requires 3 coordinates, 3j+11i parameters are needed in

total. When using Levenberg–Marquardt method (3j+11)×(3j+11) matrices must

be factored or inverted. Important processing power should be available on board,

which is generally not the case for space applications, so that the problem of bundle

adjustment is reduced in dimension. One simple solution consists in applying the

method to a moving window between frames or to carefully selected frames in the

image sequence, called key-frames. Moreover bundle adjustment method can be

selectively used to optimize structure only, the 3d points in the scene, or motion

only, the camera parameters, trajectory included, to provide further customization

options.
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5 Deep Learning

In this chapter theory background regarding Fully Connected Neural Network and

Convolutional Neural Network is presented. In particular the backpropagation algo-

rithm is closely discussed.

Deep learning is a sub-field of machine learning that exploits multiple layers neural

networks to extract progressively complex and elaborate features along the network

from the input. Deep learning and artificial neural networks, ANNs, were at first

inspired by the information processing of the brain neural network and its basic

elements, neurons.

Fig. 5.1: Biological and artificial neuron [6]

The term “deep” is referred to the capability of such networks to extract profound

features in the input data when the number of hidden layers increases. For example

the detection of such features could begin from identification of lines in an image,

then corners, basic geometrical figures up to letters or complex objects.

Fig. 5.2: Example of neuron connections
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Fig. 5.2 shows the simplest connections that a neuron can have. The input to the

neuron is the linear combination of all the j-th connections coming in plus a bias

term. Its output can be written as:

output = f(ω · a+ b) (5.1)

where a is the vector of outputs [a1, a2, ...]
T coming from the preceding neurons, ω

is the vector of weights [ω1, ω2, ...]
T associated to the connections and b is a bias.

f is called activation function and determines if and how strongly the neuron fires.

Moreover f is necessary in order for the ANN to be able to model nonlinearity

in the given problem. The most common activation functions are ReLu, or rectified

linear unit, for regression problems and softmax for classification problems with k-th

categories, usually in the last layer:

fReLu(x) = max(0, x) (5.2)

fsoftmax(xj) =
exj∑
j e

x
j

(5.3)

There are many different types of ANNs, the simplest one being the fully connected

one. These generally receive a vector of values as input and output another vector.

When the input is composed of images CNNs, or Convolutional Neural Networks,

can be used. The hidden layers are composed by a large amount of filters which span

the input image at different scales. In the following sections details and algorithms

about these two types of networks is discussed.

5.1 Fully Connected Neural Networks

Neurons in fully connected ANNs are organized in layers, where each layer contains

a certain number of cells. Every layer is connected with the previous and the subse-

quent layers as shown in Fig. 5.3. Each neuron of a given layer receives information

coming from the previous layer and streams it forward after some operations. The

first and last layers have connections on one side only.

In order to understand ‘how good’ an ANN performs, a loss function is defined:

mean squared error, MSE, is adopted to this purpose. When an input x is presented

to the network, it travels through the various layers until an output ŷ is produced.

The loss function with respect to the true target output y is:

C(x,ω, b) =
1

2n

n∑
x=1

||y(x)− ŷ(x,ω, b)||2 (5.4)
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Fig. 5.3: Fully connected ANN example

Where n is the number of training samples, ω and b are the vectors containing

all the weights and biases of the ANN. MSE computes the differences between the

target and predicted outputs for every training sample and then takes an average

over those inputs.

The objective becomes then the minimization of the error as defined statistically by

C(x,ω, b) by acting on weights and biases of the network. This can be achieved by

using the methods described in Appendix B and the gradient descent method can

be used thanks to its simplicity. Indeed using algorithms which compute the second

derivatives can quickly become problematic: for example in an ANN with one million

parameters the algorithm would have to compute a matrix with 1
2
million2 elements,

which can become a short stopper in terms of available computing resources.

Recalling Eq. (B.6) and using the direction of the gradient it is possible to write the

updates that must be made on the k-th weight l-th and bias as:

ωk+1 = ωk − η
∂C

∂ωk
(5.5)

bl+1 = bl − η
∂C

∂bl
(5.6)

Where η is the learning rate and defines how big of a step in the gradient direction

is taken at every update. The main problem with this approach is that the loss

function C(x,ω, b) should be evaluated for all the training samples n before making

an adjustment to the parameters of the previous equations through its gradient,

which must be computed too. Again, generally due to the size of the ANN and its

weights and biases in particular, duration of training and hardware requirements

can scale up very quickly, leading to failure during training due to lack of memory.
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To avoid this problem, SGD or stochastic gradient descent is introduced. A way to

estimate the gradient is provided by the following equation:

∇C ≈ 1

m

m∑
j=1

∇Cxj (5.7)

where ∇Cx is the gradient of C computed for one training input only and the sum

goes over m randomly selected inputs. The set composed by those random inputs

is called a minibatch. This is an approximation of the gradient over some samples

but, if the minibatch is statistically coherent with the training set, this method will

find a low-cost way to decrease the cost function. Moreover the next update will

also start from a vantage point with a lower cost function. Eq. (5.5) and Eq. (5.6)

become:

ωk+1 = ωk − η

(
1

m

m∑
j=1

∂Cxj
∂ωk

)
(5.8)

bl+1 = bl − η

(
1

m

m∑
j=1

∂Cxj
∂bl

)
(5.9)

Once a minibatch is used, another one is generated with different samples for the

next iteration. When all inputs are used, an “epoch” of training is concluded.

5.2 Backpropagation

In this chapter backpropagation algorithm is discussed. This method allows to com-

pute the gradient of C(x,ω, b) and is used along with SGD to train a neural network.

The description will follow the notation and structure of [71].

First alj is defined as the activation output of j-th neuron in layer l. The weight

connecting k-th neuron in layer l − 1 to j-th neuron in layer l is ωljk while the bias

of neuron j-th in layer l is blj. As in Eq. (5.1), the expression for alj is:

alj = f

(∑
k

ωljka
l−1
k + blj

)
(5.10)

or, in matrix form:

al = f(Ωlal−1 + bl) (5.11)

with al activation output vector for layer l, bl bias vector for layer l and Ωl matrix

of weights with entries ωljk. For convenience define also zlj the weighted input as:
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Fig. 5.4: Notation for ANN

zlj =
∑
k

ωljka
l−1
k + blj (5.12)

or:

zl = Ωlal−1 + bl (5.13)

so that alj = f(zlj) or al = f(zl). The main objective of backpropagation is, given

the cost function Cx of one sample, to trace back the error through the network and

compute ∂Cx/∂w
l
jk and ∂Cx/∂b

l
j for any weight and bias in the ANN in order to

update them with Eq. (5.8) and Eq. (5.9). To this purpose define the error of the

j-th neuron as:

δlj =
∂Cx
∂zlj

(5.14)

The reasoning behind this definition is that when δlj is high in value, it means that

the corresponding neuron can still be updated in order to reduce the value of the

cost function. If instead δlj is close to zero, the j-th neuron already contributes to

lower Cx as much as possible. The objective of the following discussion is to find a

way to compute δLj and to go backwards in the network computing every other δl−1
k .

Finally from these information gradients can be extrapolated.

The error in the output layer δLj can be rewritten starting by its definition:

δLj =
∂Cx
∂zLj

(5.15)
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Since Cx = Cx(a
L
j ), the chain rule can be applied as:

δLj =
∂Cx
∂aLj

∂aLj
∂zLj

=
∂Cx
∂aLj

∂f(zLj )

∂zLj
(5.16)

and so:

δLj =
∂Cx
∂aLj

f ′(zLj ) (5.17)

or, in matrix form, denoting with � the component-wise product or Hadamard

product:

δL = ∇aCx � f ′(zL) (5.18)

The error in any other hidden layer δl−1
k is, by definition:

δl−1
k =

∂Cx

∂zl−1
k

(5.19)

Since Cx = Cx(z
l
1(zl−1

k ), zl2(zl−1
k ), ...), using the chain rule:

δl−1
k =

∑
j

∂Cx
∂zlj

∂zlj

∂zl−1
k

(5.20)

which becomes:

δl−1
k =

∑
j

δlj ω
l
jk f

′(zl−1
k ) (5.21)

or:

δl = ((Ωl+1)Tδl+1)� f ′(zl) (5.22)

The gradient of the cost function with respect to biases, the partial derivative of Cx

with respect to blj, is easily obtainable considering that Cx = Cx(z
l
j(b

l
j)):

∂Cx
∂blj

=
∂Cx
∂zlj

∂zlj
∂blj

=
∂Cx
∂zlj

1 (5.23)

and so:
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∂Cx
∂blj

= δlj (5.24)

Finally, considering that Cx = Cx(z
l
j(ω

l
j)), the gradient of the cost function with

respect to weights:

∂Cx
∂ωljk

=
∂Cx
∂zlj

∂zlj
∂ωljk

=
∂Cx
∂zlj

al−1
k (5.25)

so:

∂Cx
∂ωljk

= δlj a
l−1
j (5.26)

The backpropagation algorithm can now be built from the equations developed

above. As seen in previous sections backpropagation allows to compute the cost

function gradients from an input sample. This input is propagated forward through

the network up to the last layer with Eq. (5.11) and Eq. (5.13). Then the error is

computed by going backwards along the network through Eq. (5.18) and Eq. (5.22)

in order to compute the corrections with Eq. (5.24) and Eq. (5.26). Then weights

and biases values can be updated using SGD procedure similarly to Eq. (5.8) and

Eq. (5.9) as:

ω̂ljk = ωljk − η

(
1

m

m∑
x=1

∂Cx
∂ωljk

)
(5.27)

b̂lj = blj − η

(
1

m

m∑
x=1

∂Cx
∂blj

)
(5.28)
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With ω̂ and b̂ denoting updated values. Pseudocode of this method is shown below.

Algorithm 1: SGD with Backprop pseudocode

for epochs = 1:NE do

generate minibatches;

for minibatches = 1:Nm do

for one input sample x in minibatch do

supply input values to Input Layer;

for layer = 2:L do

% propagate forwards;

compute zl (5.13);

compute al (5.11);

end

compute output error δL (5.18);

for layer = L-1:2 do

% propagate backwards;

compute δl (5.22);

end

compute ∂Cx/∂ω
l
jk (5.26) ∀ωljk;

compute ∂Cx/∂b
l
j (5.24) ∀blj;

end

update all ωljk (5.27);

update all blj (5.28);

end

end
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5.3 Convolutional Neural Networks

Convolutional Neural Networks are specialized kind of networks that perform the

convolution operation inside their layers instead of simple matrix multiplication,

which is usually performed only in their last layers [8].

The history of CNN is a very recent one, having its fundations in the Neocognitron,

introduced by Kunihiko Fukushima in 1980 [72]. Its contribution to shift invariance

of the NN to shapes in the input layer is the precursor of convolutional neural layers.

In 1998 one of the most iconic CNN was built, called LeNet-5 [7]. It was a CNN

able to recognize digits from 32x32 images and, while its architecture was not very

complex with respect to modern standards, it obtained excellent performances, with

a 1% error rate.

Fig. 5.5: LeNet-5 architecture [7]

In early 2010s GPUs started being used as a tool to train neural networks, which

resulted in a great boost in the training time duration. GPUs indeed have thousands

of computing cores while a CPU might have only few of those, as they are built

with different purposes in mind. This enabled CNNs to achieve state of the art

performances on image recognition challenges and in 2012 AlexNet was published

[73]. It contained a total of eight layers, the first five being convolutional ones and

the rest fully connected ones for a total of 61 million parameters. It achieved high

performances on the ImageNet dataset and was overcomed only after three years by

a 100 layers deep CNN by Microsoft. Currently neural networks can be built using

hundreds of layers and tens of millions of parameters and with complex architectures.

Another kind of layer, called the recurrent layer, can be exploited to provide a

feedback effect inside the nested layers and has proven to be very useful for state of

the art neural networks [74]. Even though CNNs are a very recent tool and still an

open research field, they have already contributed to technology advancements in the

space sector. In Earth imaging data analysis most applications, from automated ice-

charting [40] to ship detection [41], are built with CNN based architectures. MISR,
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multi image super resolution, has been implemented in space context too [45] to

enhance image resolution, while object pose estimation from a single image is another

strong research field applied successfully to a known satellite [46].

From a mathematical point of view, the 1D convolution operation is defined as:

y(t) =

∫
x(a)w(t− a)da (5.29)

and in discrete domain, the one in which CNNs operate, it becomes:

y(t) =
∞∑

a=−∞

x(a)w(t− a) (5.30)

1D convolution is especially useful with LTI systems. Any signal can be decomposed

into a weighted sum of shifted delta functions, exactly as it can be decomposed as

an infinite sum of sines and cosines for a Fourier decomposition. The output of any

LTI system then can be defined as a weighted sum of shifted impulse responses. In

CNNs however the input are images, so 2D convolution needs to be defined:

Y (i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (5.31)

where I is the image matrix and K is the kernel, or filter of the operation. Since

convolution is commutative, a simpler implementation that is kernel focused is given

by:

Y (i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (5.32)

However the kernel or the image in this operation needs to be flipped [75] and this

adds unnecessary complexity to machine learning codes. Convolution is redefined

as:

Y (i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (5.33)

which is actually the cross-correlation operation. This contrast of notation is not

important for CNN implementation as, if the kernel is flipped, then the CNN will

learn flipped weights as well. The use of “convolution” terminology has been inter-

preted as a way to bond CNNs to traditional signal processing and image filtering

techniques.
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Fig. 5.6: Example of convolution without kernel flipping [8]

Various parameters of a kernel are tunable in CNNs, such as their size in width and

height and the stride, which is correlated to how many times the filter will act on a

single image. The kernel entries are instead learned while training.

A generally unwanted effect that happens when doing a convolution operation on

images is that the output size will be different with respect to the input size and the

reduction of dimension depends on the filter size. To compensate for this effect zero-

padding can be used, where the input image is padded with zeros until the output

size matches the input one. In between CNNs layers an operation called Pooling can

be performed, which reduces the image size by a predefined amount. It is important

that a CNN is scale invariant, in the sense that features at low scale are detected as

well as the same features at larger scales. For this reason, pooling layers are usually

exploited, which resemble the pyramidal formulation of the KLT algorithm. Another

advantage of pooling in between layers is that images become sequentially smaller,

reducing the computational requirements by reducing the feature map sizes. Other

tools can be used in between network layers, which include batch normalization and

dropout layers, in order to stabilize the learning process and allow faster training.

Once a CNN layer has been activated, a trainable bias can be added to the numerical

output and an activation function can be used to add nonlinearity capabilities to the

network as done previously for the Fully Connected Neural Networks. The resulting

feature maps, the output of the convolutional layer, is passed forward to the next

layers until the output layer is reached.
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6 Architecture for relative spacecraft navigation

In the following chapter the framework for relative spacecraft visual navigation pro-

posed in this thesis is provided. In Section 6.1 the V-SLAM problem, the problem

of the relative spacecraft trajectory and 3D structure of a scene computation, is

briefly discussed and used to asses relative navigation capabilities. A CNN is also

deployed, as discussed in Section 6.2, to restrict the feature search region only to

the bounding box of the target satellite to remove as many false features as possible.

In order to generate images and pose data for both the V-SLAM algorithm and the

neural network training, validation and testing datasets, Blender, a rendering soft-

ware, has been used. The details of its implementation are presented in Section 6.3.

The proposed architecture is shown in Fig. 6.1, with the navigation blocks denoted

in orange.

Fig. 6.1: Relative spacecraft navigation architecture

The choice of this architecture is mainly based on a tradeoff between complexity/cost

and accuracy. Thanks to continuous development in rendering software the ability to

model real scenarios is constantly increasing. Software cannot completely replace a

dedicated GNC laboratory, however it is still a valid solution and its cost is definitely

irrelevant with respect to the laboratory one. It is an even more compelling solution

when considering that it allows for fast prototyping, with tests that can be carried

quickly even if they use completely different target and background models. Thou-
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sands of tests can be performed in a relatively small amount of time and any kind

of trajectory can be defined. Numerous quantities of interest can be extrapolated,

which would otherwise need dedicated sensors in a laboratory environment. With

respect to the navigation algorithm, V-SLAM represents the state of the art for

relative navigation. Filtering techniques have not been used, even if they are very

efficient and computationally inexpensive, as they do not provide the same level

of accuracy overall with respect to optimization ones, as discussed in Section 1.2.

CNNs represent the state of the art as well for image processing and machine learn-

ing, a field of research still in its initial stages. False feature detection is important

to ensure a proper behaviour of the V-SLAM algorithm and few methods to face

this problem have been developed, as discussed in Section 6.2. Each one has its

strengths and drawbacks, but a trained CNN would offer the best performance with

insignificant computational time.

6.1 V-SLAM for Visual Navigation

The problem of computing the trajectory and 3D structure of a scene is generally

referred to as SLAM. In order to settle in the most inclusive situation, the one of an

inspector spacecraft visiting an unknown and uncooperative object, no hardware,

such as telecommunication antennas or markers, is considered available on the target.

A LiDAR is excluded due to its high mass and power requirements and a single mono

camera is chosen over a stereo one thanks to its simplicity and better applicability

on cubesats scenarios.

Fig. 6.2: Typical V-SLAM pipeline

65



As such visual SLAM is considered and in Fig. 6.2 its typical feature based imple-

mentation is shown. It is composed of an initialization step, in the left column, in

which features are extracted and tracked between two frames. If any, outliers can

be removed through RANSAC/MSAC and the essential matrix estimation can take

place. From it, roto-translation properties of the camera motion are retrieved and

an initial map is computed via triangulation. The map can then be used to navigate

in the scene by continuously solving a PnP problem with features that are tracked

between frames. When some predefined conditions are met, new feature points can

be extracted in a given frame, 3D points are computed and added to the map. Often

V-SLAM methods have also a loop detection process that improves map consistency

over time and reduces the uncertainty in the pose estimation, which otherwise may

grow indefinitely. In image-to-image loop closing popular approaches require the use

of a visual dictionary, or bag of words, in order to compare images in an efficient way,

which represents a non trivial challenge for space applications. Local optimization

is also performed to improve the map and trajectory consistency through bundle

adjustment. Global bundle adjustment is too expensive to run in real time, so other

solutions should be used such as a windowed version or a key-frame based one. In

Section 7 two versions of a V-SLAM navigation algorithm are designed by increasing

complexity. Bundle adjustment is discussed in the last test scenario.

6.2 CNN for ROI Estimation

V-SLAM algorithms have to deal with challenges typical of the space environment,

such as feature absence due to unavoidable lack of texture. The presence in camera

frame of unwanted objects like the Earth or natural celestial bodies can also become

problematic for the navigation algorithm. In Fig. 6.3 and Fig. 6.4 false point detec-

tion is shown, where points not belonging to the target are incorrectly triangulated

and propagated in successive frames. This occurrence can be very dangerous for

navigation as it can jeopardize the trajectory estimation. Some approaches that can

mitigate this effect are the use of RANSAC/MSAC to remove outliers, but care must

be taken not to exclude real target points, which is not a trivial task [76]. Point life

algorithms can also be used, where a point is triangulated and added to the map

only if it appears in a minimum number of frames. This approach however prevents

instant use of feature information and does not guarantee that all false features are

eliminated. In this thesis another approach is presented, consisting in the estimation

of the region of interest through CNNs. In this way a bounding box region is gen-

erated around the target satellite for which the network has been trained. Dataset

generation, CNN training and architecture are discussed in Section 8 along with

CNN testing in different off-nominal conditions.
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Fig. 6.3: Example of false positive tracks

(a) 3D map with outliers (b) 3D map with CNN ROI

Fig. 6.4: Examples of 3D map generation with and without CNN ROI

6.3 Modeling of realistic spacecraft scenarios

In order to obtain realistic spacecraft images along with relative or absolute pose

data of the target and inspector spacecraft, Blender, a free and open source 3D

creation suite, has been used, denoted by the blue block in Fig. 6.1. Synthetic images

of two orbiting spacecraft and the relative pose data for V-SLAM testing, used in

Section 7, have been simulated entirely in Blender. Moreover images for the deep

learning training, validation and testing datasets have been generated as well with

this tool, along with pose data for bounding box generation, as detailed in Section 8.

Further description of the algorithm for dataset generation is provided in the next

section. Some of the used 3D models have been sourced online and are available under

non commercial use. Links to original authors are provided in [77] [78] [79] [80] [81].

The main Blender graphic engine is called Cycles and is a path tracer engine. Path

tracers are an evolution of ray tracers and are built with photorealism as their

goal. The main idea behind ray tracing algorithms is the rendering of an image by

following light paths casted from the sensor as rays until they hit a light source.

Bounces and reflections off an object can split a single ray into multiple ones which
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need to be followed too. In complex scenes this becomes a short stopper, as the

number of rays can become so huge that memory and computational power can be

insufficient. For this reason a Monte Carlo method is adopted, in which multiple

rays are casted from the same image sensor pixel into the scene and are followed

without splitting them. When a ray should be splitted, for example due to a diffuse

reflection, one random path is instead chosen and followed. This technique is the

path tracing one and allows to perform a trade off between cost and quality of the

final result. Quality is penalized when a low number of Monte Carlo iterations is

adopted, as noise will be present, while cost in terms of computational resources and

time is lowered.

Fig. 6.5: Ray tracing basic principle [9]

6.3.1 Image generation algorithm

The algorithm that has been written for space images generation was initially con-

ceived as a general purpose one, so that its scope of interest could be narrowed later

on during this thesis. From it, two categories of scripts have been written. The first

one, for image generation when a spacecraft trajectory is imposed around an object,

is used in Section 7 in order to provide image data and ground truth data to the

V-SLAM algorithm. Thanks to the in-built animation capabilities, the trajectory

definition is imposed in Blender and the script stores the pose data in an appropri-

ate database. The second type of scripts are more involved and have been written
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for the deep learning dataset generation used in Section 8. The pseudo-algorithm

that has been written for deep learning image generation is briefly described below.

Algorithm 2: Random image generator

for image = 1:NI do

generate random xd|I , ρ|I ;
compute xc|I= xd|I−ρ|I ;
generate random qd;

impose track constraint of chief versus deputy;

impose small random perturbation on qc;

generate random Sun position not in camera view;

render image;

write on csv/json format: image name, rc|I , rd|I , ρ|I , qc, qd;
end

At first the deputy spacecraft is generated in a random position. The relative dis-

tance is set, constrained between two appropriately chosen boundaries, and the chief

spacecraft position can be computed. Attitude of the deputy is randomized, while

the attitude of the chief is imposed in order to point to the other spacecraft. A ran-

dom perturbation is added to the chief attitude too. The Sun position is randomized

but constrained not to appear in camera frame. Finally the image can be rendered

and parameters are saved in a csv and json files for redundancy.

With respect to the scenarios developed for the two categories, in both of them

the inspector satellite is equipped with a full frame, 1152 by 658 [px] and 150 [mm]

focal length camera as discussed in Section 3.2. The distance between the target and

inspector spacecraft is set, for the V-SLAM scripts category, in order to have most

of the target spacecraft in view with no pointing errors. As such their distance in

the beginning of the trajectories is roughly 80 [m], which varies during the motion.

For the CNN scripts category instead the orbit around the Earth is in LEO at 1500

[km]. The excursion of the distance from the target and the inspector spacecraft is

randomly chosen between 100 [m] up to 600 [m]. These values have been chosen to

have most of the target satellite in view or to have a recognizable shape at high

distances when the Dragon spacecraft model is used. During CNN testing other

models are employed and the exact distance values vary, but the reasoning for the

threshold selection is the same.

Unfortunately, due to the characteristic lengths of the different objects present in

the scene, a compromise in terms of scale was needed in order to fit everything

together. Indeed the radius of the Earth is of about 6.370 km while a typical space-

craft can be few meters tall. That is a difference in characteristic lengths of about
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1.000.000:1 which makes small meshes unstable and will yield distorted renders. For

what concerns absolute distances scaling was introduced by a simple proportion:

xreal =
r♁real
r♁synth

xsynth (6.1)

Where ♁ is the symbol for the Earth, x is a generic distance measured in the real

world and in Blender world. With respect to relative distances and proportions

between the deputy and chief spacecrafts another scaling equation has been used.

The proportion is similar to the previous one:

ρreal =
lreal
lsynth

ρsynth (6.2)

where l denotes the characteristic length of the spacecraft, for example its height,

in real and synthetic worlds. A comparison between results obtained in Blender

and Matlab softwares is reported in Fig. 6.6 for generic deputy/chief poses set. The

difference in the convention used for the camera reference frame is visible, with

Blender pointing the Z axis away from the target.

Fig. 6.6: Blender and Matlab outputs example
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6.3.2 Render examples

Some examples of renders are presented below at 1152 by 648 pixels resolution. One

of the major problems that has been encountered during the render development was

the computational time required. Initially renders could take several tens of minutes

to compute, and this would have definitely become a short stopper whenever a

big dataset of images was needed. However, thanks to the recent improvements to

ray tracing technologies, NVIDIA [82] has released in previous years new GPUs

optimized for ray tracing and machine learning operations. Moreover, very recently

a new implementation of a ray tracing engine on RT cores present in RTX graphic

cards, called OptiX, has been introduced into Blender. This new tools have been

able to reduce the computational time from tens to few minutes. Following renders

were obtained with an RTX 2070 Super coupled with a Ryzen R7 3700X processor.

Fig. 6.7: Render example of Dragon spacecraft with Earth in background
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Fig. 6.8: Render examples of Dragon spacecraft with Earth in background
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Fig. 6.9: Comparison between rendered image on top and real spacecraft image [10]
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7 V-SLAM Implementation and results

In this chapter a V-SLAM like navigation algorithm is presented and analyzed. The

algorithm is based on concepts shown in previous chapters and has been developed

at first with no synthetic images in the loop. This implementation is discussed in

Section 7.1 and is used to asses the model capability to recover the relative pose

estimation in one of its simplest form. Then, in Section 7.2, the algorithm using

images rendered in Blender is shown.

7.1 Preliminary simulation implementation

In this preliminary simulation a validation study was performed to better understand

the method behaviour without introducing image complexity and to a ensure solid

foundations for the algorithm discussed later in Section 7.2. In Fig. 7.1 the reference

trajectory is shown along with the attitude of the chief spacecraft. The camera that

is used is assumed to have a focal length of 150 [mm] and the resolution which is set

at 1152x648 pixels is now assumed infinite. This parameters allow to have the target

spacecraft occupy most of the image sensor at a distance of 75 [m]; normalized units

are used, with each BU, Blender Unit, corresponding to 3 [m].

Fig. 7.1: Reference trajectory plot

In Fig. 7.2 mesh points are plotted. Since it is assumed that the sensor has infinite

resolution, each feature is retrieved exactly. Mesh points in sensor frame are com-

puted using a rasterization-like method: 3D mesh points are casted onto the sensors

as rays and are kept only if they do not intersect any other mesh triangles. The
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intersection method [83], which is shown previously in Fig. 3.12, can quickly become

CPU intensive when a fine mesh is used and parallelization over multiple cores has

been introduced to reduce the computation time.

(a) Frame 1 (b) Frame 4

(c) Frame 8 (d) Frame 11

Fig. 7.2: Feature detection examples

Once the feature points are available, they can be tracked between frames as in

Fig. 7.3. Since this is done analytically, the tracks are computed exactly. Following

the sequence of operations detailed before, the algorithm is divided into an initial-

ization part and a main body one. In the initialization part the first two frames are

used and tracks are obtained. Essential matrix can be estimated and the extrinsic

parameters relative to the camera motion are obtained. Then 3D point triangulation

can take place and an initial map of the environment, the target satellite, is built.

Only some tracks are converted into 3D points and are selected to reduce track man-

agement computational load. After the initialization is performed, the PnP problem

is continuously solved to provide information on subsequent relative poses.
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A monocular solution however is not able to retrieve the scale of the scene, which

analytically can be explained by the fact that homogeneous vectors are used and

the essential matrix is defined up to scale. To compare the estimated results with

the ground truth ones scale needs to be reconstructed. This is done by using a

ray-casting like method: 2D image points in the initialization step are casted back

into the scene where the target spacecraft mesh is present. In this way the actual

position of the triangulated 3D points is recovered. The barycenter of the estimated

and actual triangulated 3D points is reconstructed through a RANSAC-like method

and the relative scale is finally obtained.

(a) Frame 1 to 2 (b) Frame 4 to 5

(c) Frame 7 to 8 (d) Frame 10 to 11

Fig. 7.3: Feature tracking examples

In Fig. 7.4 results for this simulation are shown. As expected, since features are

detected and tracked perfectly as the sensor is assumed to have infinite resolution,

the error in pose determination, shown in Fig. 7.4b, is very low. The 4x4 pose matrix

error is shown in the heat plot: it is composed by the 3x3 rotation matrix in the
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upper left part and 3x1 translation vector in the upper right part. Elements from 1

to 11 except 4 and 8 are the rotation matrix components while elements from 13 to

15 are the translation components. Translation error only is reported in Fig. 7.4c.

(a) Estimated and actual trajectory with 3D points

(b) Pose matrix elements and error (c) Translation error elements

Fig. 7.4: Results for preliminary simulation
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7.2 Simulation implementation

In this section the algorithm in Section 7.1 is further developed to accept images

in the loop. Feature detection and tracking must take place, as well as a proper

track management method. Since feature tracking is not an ideal process anymore,

error will be introduced into the estimation procedure. Another source of error is

the resolution of the image sensor: by discretizing the image into pixels information

is inevitably lost.

It is assumed that the Sun is never present in the camera frame. This requirement is

necessary to preserve the functionality of the relative estimation algorithm, however

it also becomes a constraint on other subsystems, Mission Analysis in particular.

Non-nominal cases in which the requirement is violated must however be taken into

account too and a failure recovery routine should still be implemented.

In Section 7.2.1 the initialization step is further studied to understand how to prop-

erly generate the map during the initialization step. Then from Section 7.3.1 tests

of the V-SLAM algorithm are reported.

7.2.1 Map initialization test

V-SLAM algorithm behaviour depends heavily on the initialization step, the process

in which the map is generated for the first time. Since that map is used for navigation

in the subsequent steps, it is important to obtain an accurate estimation of its 3D

points. For this reason a study on the accuracy reconstruction on 3D points has

been performed by using as a variable the separation angle between the views. In

Fig. 7.5 the effect of the difference in viewing angle is shown: very low difference

in the separation angle will result in failure of the method as the uncertainty for

the 3D points location is too high. Moreover docking or landing on an asteroid

in a straight trajectory with respect to the target does not allow any perspective

view on the target object, so that the map will not be correctly generated. Other

approaches must be used, such as a prior investigation of the object with consequent

map initialization.

However high difference in viewing angle is also problematic in terms of feature

tracking. It is generally assumed for feature trackers that features do not change

in appearance by large amounts, as small perturbation hypothesis is introduced.

Features tracked between largely different frames will inevitably be small in number

and might lead to poor accuracy in the pose estimation. For this reason, a trade off

must be made to understand how the two mentioned effects combine together.

An algorithm that computes the error in 3D points reconstruction has been devel-

oped. The first frame used in the process is always the same while the other one

is chosen so that the angle between the views increases. The image sequence used
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Fig. 7.5: Angle between views and uncertainty on 3D points [3]

is the same as in Section 4.1. The initialization step is performed starting with the

Essential matrix estimation, its decomposition into rotation and translations parts

and then 3D points triangulation. Finally a ray-casting like algorithm is used to

compute the real position of the 3D points that correspond to the estimated ones.

Fig. 7.6 shows the results for angles ranging from 1 to 15 [deg]. Fig. 7.6a in particular

denotes how the error mean on the 3D points reconstruction varies with the viewing

angle. Both small separation angle between views and relatively high ones are not

ideal for reconstructing world points and a plateau can be found for some values

of the viewing angle. As shown in Fig. 7.6b, even though very small viewing angles

do not produce a high error in the translation estimation, the error associated to

the 3D point reconstruction is high and might be problematic in the subsequent

trajectory estimation. Moreover the larger the viewing angle, the more difficult it is

for the tracker to find point tracks.

79



(a) Estimated 3D points accuracy (b) Triangulated points number and translation error

(c) Pose matrix elements and error

Fig. 7.6: Results for 3D points accuracy test
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7.3 Results

In the following subsections test cases of the V-SLAM algorithm are reported. The

initialization step is performed by tracking points between the first frame and the

next ones until a proper separation angle is achieved. If this condition is not met,

then another condition to force the algorithm to start based on the number of

previous frames can be introduced.

Images are obtained through the image generation software by imposing a specific

trajectory in space without considering pointing errors possibly arising from the chief

spacecraft. The target attitude is not commanded and, in case of a rotating one, the

camera exposure must be fast enough not to cause blurring. Images and relative pose

data is transferred to Matlab where the V-SLAM algorithm takes place. Features

are detected through the minimum eigenvalues algorithm and tracked through the

KLT algorithm. In order to reduce the accumulating tracking error of the KLT

tracker, its bidirectional error can be imposed to be low enough which, depending

on the wanted precision, has been set to 10−1/5 · 10−3 [px]. Tracks are saved in a

data-store which needs to be managed carefully due to the different validity vectors

and indexes that need to be used. Features are extracted, already detected ones are

removed and then the remaining ones are tracked for triangulation. Triangulation

after the initial mapping is performed between two non consecutive images spaced

by a few number of frames in order to achieve good 3D point reconstruction and is

executed when tracked 3D points become too low. Camera parameters are the same

as in Section 3.2, with a focal length of f = 150 [mm], sensor size of 36×20.25 [mm]

and image resolution of 1152 by 648 [px].

Test number 1 in Section 7.3.1 starts with a standard partial circular trajectory

achieving good results. In test case 2 a closed trajectory is imposed while in test

case 3 a rectilinear one is set, both of which can potentially be challenging for

the algorithm. Finally in test case 4 a demanding natural scenario is introduced

by means of the comet 67P/Churyumov-Gerasimenko while in test case 5 bundle

adjustment optimization is examined. From these tests, performed with no a priori

information about the target, good navigation performance is obtained. It emerges

that proper initial mapping process must be ensured in order to correctly continue

the navigation process. Good feature detection is fundamental as features are the

only source of motion information and enough of them must be found in order to

picture the overall motion. The tradeoff for the feature tracking error threshold

is also a delicate process, necessary to ensure a good amount of tracked features

versus their quality. Limitations are also present, such as the Sun appearance in

view inducing sensor saturation or motion blur from a spinning spacecraft, which

represent challenges to be addressed in the future.
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7.3.1 Test case 1

In this first test a simple circular trajectory has been chosen, as in Fig. 7.7a. Images

are processed as stated before (Fig. 7.8) and the estimated trajectory is shown in

Fig. 7.7b. 3D points composing the map of the V-SLAM algorithm are presented in

Fig. 7.9, showing that they are consistent with the actual points of satellite mesh.

Finally translation and orientation errors are plotted in Fig. 7.10. The quaternion

error is small and can be neglected, while the translation error is more noticeable.

In percentages, it is about 1% of the range distance, which translates to a maximum

of 0.6 [m] of error per component over a 75 [m] range. The execution time is in the

order of tenth of a second at maximum, as in Fig. 7.10c, depending on whether new

features are extracted or not. This results in a mean time per frame of 0.057 [s] and

mean fps, frames per second, value of 17.6 frames.

(a) Reference trajectory (b) Estimated trajectory

Fig. 7.7: Reference and estimated trajectories
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image 1

image i

(a) Initialization tracking (b) Detection of new points in red, previous points in green

image
1

image
2

(c) Tracking example, frame 29 to 30

image
1

image
2

(d) Tracking example, frame 49 to 50

Fig. 7.8: Examples of feature detection and tracking

(a) 3D points reconstruction (b) Actual 3D points in black, estimated in red

Fig. 7.9: Actual and estimated 3D points

83



0 5 10 15 20 25 30 35 40 45 50

Frames

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Q
u
a
te

rn
io

n
 e

rr
o
r

q
1

q
2

q
3

q
4

(a) Quaternion error
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(b) Translation error

(c) Execution time histogram

Fig. 7.10: Test case 1 results
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In the following figures the translation error for other feature types is reported.

BRISK, FAST, ORB and Harris features are used and every simulation has been

executed few times before extracting the translation error. All of them provide worse

results with respect to the Minimum eigenvalues features and thus MinEig algorithm

has been selected for feature extraction.
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(a) BRISK feature detector

0 5 10 15 20 25 30 35 40 45 50

Frames

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

[B
U

]

x

y

z

(b) FAST feature detector
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(c) ORB feature detector
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(d) Harris feature detector

Fig. 7.11: Translation error for different feature detectors
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7.3.2 Test case 2

In this second test a triangular shaped trajectory is used to check the consistency of

the algorithm when returning to an already visited point. The reference trajectory is

shown in Fig. 7.12a and the estimated one in Fig. 7.12b. Some images are provided

in Fig. 7.13. 3D points composing the map are reported in Fig. 7.14 showing again

no evident deviation from the true 3D points. Translation and orientation errors are

plotted in Fig. 7.15, not being particularly different in magnitude from the previous

example. Both of them tend to increase when moving away from the original position

in which the map is generated, but decrease when the spacecraft is brought back to

the starting point. The execution time is again in the order of tenth of a second, as

in Fig. 7.15c, reaching a maximum of 0.3 [s].

(a) Reference trajectory (b) Estimated trajectory

Fig. 7.12: Reference and estimated trajectories
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image 1

image i

(a) Initialization tracking (b) Detection of new points in red, previous points in green

image
1

image
2

(c) Tracking example, frame 29 to 30

image
1

image
2

(d) Tracking example, frame 74 to 75

Fig. 7.13: Examples of feature detection and tracking

(a) 3D points reconstruction (b) Actual 3D points in black, estimated in red

Fig. 7.14: Actual and estimated 3D points
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(a) Quaternion error
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(b) Translation error

(c) Execution time histogram

Fig. 7.15: Test case 2 results
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7.3.3 Test case 3

The third test deals with a peculiarity of V-SLAM algorithm that affects specific

trajectories. A fully rectilinear trajectory with no attitude change does not provide

enough perspective information on the target object to build a consistent map.

The trajectory, an almost straight departing one, is shown in Fig. 7.16a, while the

estimated one is present in Fig. 7.16b. Images are again provided in Fig. 7.17. 3D

points composing the map are reported in Fig. 7.18 and are not consistent with

the actual 3D points. Even if translation and orientation errors are not extremely

affected, navigation through the map in Fig. 7.18b will definitely jeopardize the

future pose measurements. The initialization step must thus be provided with enough

information to produce a correct triangulation and these kind of trajectories should

be avoided.

(a) Reference trajectory (b) Estimated trajectory

Fig. 7.16: Reference and estimated trajectories
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(a) Initialization tracking (b) Detection of new points in red, previous points in green

image
1

image
2

(c) Tracking example, frame 14 to 15 (d) Tracking example, frame 24 to 25

Fig. 7.17: Examples of feature detection and tracking

(a) 3D points reconstruction (b) Actual 3D points in black, estimated in red

Fig. 7.18: Actual and estimated 3D points
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(a) Quaternion error
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(b) Translation error

(c) Execution time histogram

Fig. 7.19: Test case 3 results
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7.3.4 Test case 4

In this fourth test a circular trajectory is used with a different object as target. A

natural scene is introduced by means of the comet 67P/Churyumov-Gerasimenko,

with the shape model provided in [84]. The model does not include a texture, which

has procedurally been generated in Blender to be as realistic as possible. The refer-

ence trajectory of about 32 [km] radius is shown in Fig. 7.20a, the estimated one in

Fig. 7.20b and images used by the algorithm in Fig. 7.21. As it is possible to see from

these last ones, a natural scene can provide denser region of features to be tracked

thanks to the geological surface features. However some texture-less regions can also

be present, as in the right side of Fig. 7.21d. This scenario is very challenging for the

algorithm in terms of feature detection, which has been applied mainly to artificial

objects, however it is still shows good results. 3D points composing the map are

reported in Fig. 7.22 showing good accuracy in the reconstruction. Relative pose er-

rors are plotted in Fig. 7.23. Translation error reach up to 0.4 [BU] per component,

or 600 [m] which, depending on the wanted accuracy, might be too high. In that

case bundle adjustment with loop closure or sensor fusion techniques, for example

with an altimeter or IMU, should be sought. In this simulation new map points are

added to the map as soon as possible, every third iteration, as feature points are

more easily lost with respect to the other tests. This induces a better accuracy dur-

ing navigation but also increases the number of frames that require execution times

in the order of 0.1 [s]. The average fps value decreases to 5.4 frames per second.

(a) Reference trajectory (b) Estimated trajectory

Fig. 7.20: Reference and estimated trajectories
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(a) Initialization tracking (b) Detection of new points in red, previous points in green

image
1

image
2

(c) Tracking example, frame 14 to 15

image
1

image
2

(d) Tracking example, frame 24 to 25

Fig. 7.21: Examples of feature detection and tracking

(a) 3D points reconstruction (b) Actual 3D points in black, estimated in red

Fig. 7.22: Actual and estimated 3D points
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(c) Execution time histogram

Fig. 7.23: Test case 4 results
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7.3.5 Test case 5

In this last test the effect of bundle adjustment on the initial part of the Test case 1

is studied. Bundle adjustment is run once at the end of the simulation and takes 0.35

seconds to run. The estimated trajectory, as in Fig. 7.24b, shows very good accuracy

with respect to the reference one in Fig. 7.24a. 3D points are plotted in Fig. 7.25

while errors are presented in Fig. 7.26. Those last ones are lower in value with respect

to the non-optimized version and show much better behaviour in terms of variability.

Thanks to bundle adjustment a more coherent simulation can be obtained with a

more refined map. Windowed or key-frame based bundle adjustment would prevent

the computational cost of the simulation from exploding due to the large number of

operations needed, but with future development in space-grade processors it will be

an useful tool for space related scenarios.

(a) Reference trajectory (b) Estimated trajectory

Fig. 7.24: Reference and estimated trajectories
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(a) 3D points reconstruction (b) Actual 3D points in black, estimated in red

Fig. 7.25: Actual and estimated 3D points

(a) Quaternion error (b) Translation error

Fig. 7.26: Test case 5 results
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8 CNN ROI Design and results

In this chapter the process of training and testing of the CNN for ROI estimation

is presented. The training, validation and testing datasets are generated first for

the reference design scenario. The neural network is trained on these dataset and a

trade-off is performed to optimize the network performance through its architecture

definition. The CNN is then analyzed in its nominal scenario and in off-design ones.

The off-nominal conditions are obtained by varying the target object and the natural

body in the background or by adding noise or blur. Finally an example of V-SLAM

trajectory with CNN ROI estimation is provided.

8.1 Dataset generation and description

The first step in the implementation of a CNN structure is the generation of a large

enough dataset for training. CNN need a lot of data in order to learn which features

to detect and which one to leave out, and generally a large dataset implies greater

performance of the network along with the added computational cost of the dataset

generation itself and longer training time.

The dataset is generated, in this thesis, using Blender script detailed in Section 6.3.

Its output is composed of an image folder containing 16000 images and a file con-

taining the pose elements for target and inspector spacecraft written in inertial and

relative frames. Examples of some images are reported in Fig. 8.2.

Fig. 8.1: Dataset generation environment
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A tradeoff between image quality an memory available was necessary as the mini-

batch size for 1152x648 resolution images was very small and leading to training

times in the order of hours. The GPU card deployed for training, an RTX 2070

Super, is provided with 8 GB GDDR6 memory which would quickly fill up during

training computations. The only viable solution was to reduce the memory require-

ments by converting images to half their size at 576x324. Images are also converted

in BW from RGB to reduce again the dimension of the images from three to one.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 8.2: Examples of dataset images

Outliers need to be dealt with too. Some images are indeed completely black due

to the fact that the Sun and Earth can be in line with the spacecraft, so that the

chief and deputy are in eclipse. Images with very low illumination are discarded too.

About 40% of the images are considered not valid and discarded, leaving roughly

10000 images to train the model with. Of the remaining images about 25% of them

contain the Earth in the background. As described in Section 6.3 a 1500 [km] LEO

orbit has been selected. The absolute position of both spacecraft is randomly selected
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but the relative distance is constrained to range from 100 [m] to 600 [m]. After

an initial tradeoff, the Sun position in frame has been selected to have a random

azimuth and a minimum elevation angle of 90 [deg] in order to retain more images

with better illumination quality. A random perturbation has been assigned to the

camera to move the center of mass of the target spacecraft up to the image edges.

Once data is transferred to Matlab, the bounding box can be generated. The imag-

ing scenario is recreated in Matlab using previously described projective geometry

theory, with inertial and relative pose data acquired from a database generated in

Blender. The coordinates of the target spacecraft on the sensor are then obtained.

Two transformations are needed in order to retrieve the sensor image, one going

from the 3D world reference frame to the 3D chief spacecraft frame and one from

the 3D chief spacecraft frame to the sensor one. An example of this process is pro-

vided in Fig. 8.3. The bounding box has been parametrized by using the x and y

coordinates of the top left corner of the bounding box and its width and height. An

attempt to change the bounding box parameters to its center coordinates and its half

width/height has been made, however results of the trained network were visually

worse in quality with respect to the top-left corner parametrization. Moreover some

considerations have been made in deciding which mesh points of the target objects

are considered to be valid and can contribute to the bounding box definition. Indeed

very dark pixel regions of the target satellite, of intensities lower than 20 units are

not used to define the bounding box to prevent the CNN from learning the exact

satellite shape.

(a) Pinhole camera model with Blender data results (b) Bounding box generation

Fig. 8.3: Bounding box generation process
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8.2 CNN Training and Architecture Tradeoff

CNN architectures can be specified by changing many parameters that affect their

performances. A continuous training and architecture tradeoff is thus needed to

converge towards better and better results. The most important parameters that

can be varied in a CNN are mainly the number of layers, the number of filters in

each layer and the filter sizes. Other relevant parameters include for example the

learning rate, the minibatch size and the train/test/validation splitting percentages.

Architecture tradeoff is also necessary to avoid under/overfitting: a small neural

network might not be able to recognize important patterns as its capability to learn

is limited, denoting the underfitting condition. However a large neural network could

also undergo the inverse problem, that its performance is so high on the training set

that it will learn to recognize only specific patterns and won’t be able to generalize

well on unknown objects.

Various architectures have been proposed by varying the parameters mentioned be-

fore. The minibatch size of 32 frames has been used to reduce the training time,

which is otherwise very long. Every training, performed on an R7 3700X and RTX

2070 super, typically lasts from 30 to 45 minutes depending on the architecture com-

plexity. The layers have been continuously increased until no major improvements

were obtained or until the training time became too expensive. In the architecture,

the progressively increasing filter number has been used to enhance the network

complexity, as done in past design, for example in [85]. A compromise has been

performed to split the dataset in the training/validation and testing sets in order

to retain more data in the training set. For this reason, the training set consisted of

70% of the total pictures in the dataset while the other two were both split at 15%.

The learning rate was set at 1e−5 and no major improvements have been registered

by varying its value. 30 different architectures have been trained with varying level

of accuracy in the results and a list of some selected networks is available in Table 4.

RMSE is presented as testing (T) and validation (V). The minibatch column reports

the size of the minibatch and LR reports the learning rate at the starting fifteen

epochs and in the last ten epochs of the training. The “TrainTestVal” column shows

the splitting of the dataset into the training, testing and validation ones. In the

architecture column a summary of the convolutional layers layout is given. A single

layer is denoted with its filter size followed, after a dot, with the filters number. In

between any blocks of convolutional layers a max pooling operation is performed,

while batch normalization and ReLu activation function is used after every con-

volutional layers. In the last column, BPR, black pixel removal, it is indicated if

an algorithm to remove part of the bounding boxes containing only black pixels is

used. This algorithm has been implemented to prevent the CNN from guessing the
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shape of the target object when no clear visual clue is available, which for example

happens when a black solar panel is imaged with black space in the background.

Table 4: CNN architecture tradeoff

RMSE T [px] RMSE V [px] MiniBatch LR TrainTestVal [%] Architecture BPR

34.88 35.52 16 1e-5, 1e-6 70/15/15 3.16, 3.32, 3.64, FC4 -

26.82 27.25 24 1e-5, 1e-6 70/15/15 3.16, 3.32, 3.64, 3.128 FC4 -

20.16 20.24 24 1e-5, 1e-6 70/15/15 3.16, 3.32, 3.64, 3.128, 3.256 FC4 -

17.50 18.03 24 1e-5, 1e-6 70/15/15 3.16, 3.32, 3.64, 3.128, 3.256, 3.256 FC4 -

17.24 17.62 16 1e-5, 1e-6 70/15/15 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 -

17.95 17.88 16 1e-5, 1e-6 70/15/15 4x3.16, 3x3.32, 2x3.64, 2x3.128, 3.192, 3.256 FC256 FC32 FC4 -

13.81 14.03 32 1e-5, 1e-6 70/15/15 2x3.8, 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 -

10.89 9.49 32 1e-5, 1e-6 70/15/15 2x3.8, 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 V

10.91 10.33 32 1e-6, 1e-7 70/15/15 2x3.8, 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 V

9.15 10.10 32 1e-5, 1e-6 60/20/20 2x3.8, 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 V

11.37 9.47 32 1e-5, 1e-6 70/20/10 2x3.8, 2x3.16, 2x3.32, 2x3.64, 2x3.128, 2x3.192, 2x3.256 FC4 V

The architecture that has been chosen is then the eight one, with a test RMSE of

10.89 and a validation RMSE of 9.49. Changing the learning rate or the dataset

splitting percentages slightly impacts the network performance, and even though

the second to last architecture shows marginally better results, a bigger training set

percentage has been prioritized, in order to retain as many images during training as

possible. CNN training, performed in Matlab, is presented in Fig. 8.4. In the report

the RMSE in pixels is shown along with the loss function. They follow the same

trend and find their way to a minimum point.

The selected architecture is also visually shown in Fig. 8.5. The pairs of convolutional

layers are shown as boxes. To summarize, the input size is of 576x324, 14 hidden

convolutional layers are present and the output layer consists of four fully connected

neurons. About 1.9 million parameters are learned during the training phase, which

takes around 30 minutes for this specific network.
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Fig. 8.4: CNN training report

Fig. 8.5: CNN final architecture
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8.3 CNN Analysis and results for design scenario

The previously described CNN performance parameter has been computed by eval-

uating the RMSE of the validation and testing data. It is defined as

RMSE =
√
mean(SQE) (8.1)

Where the SQE is the SQuared validation/testing Error vector of all four outputs

concatenated. The RMSE value in pixels, as presented before, is 9.49 for the valida-

tion error and 10.89 for the testing one. The prediction time is very fast, achieving

state of the art performance in the order of units of milliseconds which is suitable

to operate in real time applications. In Fig. 8.6 a set of 100 predictions are plot-

ted against their respective execution times while in Fig. 8.7 some examples of the

prediction on synthetic images are shown.

Fig. 8.6: CNN execution times
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Fig. 8.7: CNN Results examples
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A drawback of CCNs is that they are often referred to as “black boxes” since they

can hardly be fully understood after training. This has definitely to do with the fact

that there are millions of parameters that work together to filter learned patterns,

however with layer by layer analysis some insights on the network can be obtained.

For example, early layers in a network often recognize simple shapes like edges. The

first layer of filters in the proposed CNN is strongly activated when black pixels are

present (Fig. 8.8). From the author’s point of view this happens mainly to recognize

if the Earth is present in the background or not. The second layer builds on the

first one and some of its channels start to recognize edges, as in Fig. 8.9, while the

third layer starts looking for contours too as in Fig. 8.10. Jumping to the ninth

layer, the network is already able to isolate the artificial object from the Earth

background as in Fig. 8.11 and Fig. 8.12. It is however true that it is difficult to

properly interpret the deeper layers of the network. In Fig. 8.13 some of the features

learned by the seventh convolutional layer are shown. They consist of complex wavy

patterns that might be used to detect geographical and terrain features or seas

and clouds patterns, however a very deep analysis would be needed to understand

their precise role in the estimation process. Thanks to this intrinsic hierarchical

approach in pattern recognition, an ANN learns to recognize the specific object only

in the last layers and can still recognize learned patterns of a similar objects in the

scene. As an example, prediction of real images on a Soyuz spacecraft and various

Cubesats, spacecraft never seen before by the CNN, are shown in Fig. 8.14 and

Fig. 8.15. Results are satisfactory, demonstrating the interesting capabilities that a

CNN possesses and which are further explored in the next section.

Fig. 8.8: Example of filtering after first convolutional layer
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Fig. 8.9: Example of filtering after second convolutional layer

Fig. 8.10: Example of filtering after third convolutional layer

Fig. 8.11: Example of filtering after ninth convolutional layer
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Fig. 8.12: Example of filtering after ninth convolutional layer

Fig. 8.13: Example of learned patters in the seventh convolutional layer
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 8.14: CNN Results examples, previously unseen spacecraft [11]
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 8.15: CNN Results examples, previously unseen cubesats [11]
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8.4 CNN Testing

The CNN has been tested in various off-design scenarios in order to better under-

stand its behaviour. These include tests with spacecrafts different than the design

one such as MarCO, Vespa, Envisat etc and different natural backgrounds such as the

Moon and comet 67P/Churyumov-Gerasimenko. Noise and blur analysis have been

performed next. A broad overview of all the scenarios is available in Appendix E.

8.4.1 Off-nominal scenarios

Various off-nominal scenarios have been studied in order to understand the CNN

behaviour in these types of situations. The target spacecraft has been changed to

other satellites while still keeping the Earth in background. These are MarCO [86], a

cubesat from NASA which joined the InSight mission to Mars, Vespa [87], a payload

adapter of Vega launcher from ESA, and Envisat [88], the largest Earth observation

satellite ever flown. Dragon spacecraft previously used is also reintroduced for com-

parison purposes, both in its original state and with a broken solar array. Moreover

Dragon has been studied with Rosetta comet in the background, while Dragon and

MarCO have been pictured with the Moon too.

Apart from Vespa, which 3D model has been developed from existing pictures of

the adapter as in Appendix D, and Envisat, which model has been provided by

the ASTRA research team at Department of Aerospace Sciences and Technology of

Politecnico di Milano, all the other 3D models have been outsourced online. They

can be found, with their original authors, in [77] [78] [79] [80] [81]. A list of the

tests performed is shown in Table 5. Each test contains approximately 250 valid

images and, when needed, the scene has been differentiated in “close” and “far”.

That is to differentiate images in which the celestial body mostly occupies all the

camera frame (close) and the ones in which the body is fully visible (far) and black

space is present too. Images with the Earth in background have been developed with

the same method used for CNN training, so that roughly 25% of the valid images

contain the Earth in the background while the other ones are in black space. For

what concerns the Moon and Rosetta comet, the celestial bodies have been placed

in the line of sight of the chief vs deputy with some random variability in their exact

position.

The test images have been fed to the network and the obtained results are shown in

the following tables. In Table 6 the root mean squared error and the mean absolute

error are presented, along with a score value. This last quantity has been arbitrarily

defined as the amount of estimations that produce a maximum difference of the

bounding box sides of at most 5% of the image height, approximately 16 pixels.

Results show that the first two Dragon tests are mostly identical due to how the
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Table 5: List of test datasets

OBJECT SCENE

Dragon Earth & Space

Dragon w/o SA Earth & Space

Vespa Earth & Space

Modified MarCO Earth & Space

Envisat Earth & Space

Modified MarCO Moon close

Dragon Moon, close

Dragon Moon, far

Dragon Comet, far

Dragon Comet, close

neural network has been trained. Vespa and MarCO, two satellites that the network

has never seen, are still identified with accuracy in more than 80% of the cases.

Envisat falls lower than these last two satellites as its statistical parameters are

worse. Indeed one problem that affects Envisat ROI estimation is that its solar panel

is far from the main bus and sometimes it is not recognized correctly, especially when

the back plate of the solar array is imaged, which can blend with the background,

as shown in Fig. 8.17f. Some pictures of these test are presented below in Fig. 8.17

while a broader overview of all the test sets can be found in Appendix E.

Table 6: Statistic data for tests

OBJECT SCENE RMSE [px] MAE [px] SCORE [%]

Dragon Earth & Space 7.42 4.50 90.5

Dragon w/o SA Earth & Space 7.60 4.69 91.0

Vespa Earth & Space 11.16 7.38 82.2

Modified MarCO Earth & Space 11.23 6.99 81.4

Envisat Earth & Space 14.48 7.91 78.0

Modified MarCO Moon close 15.70 8.47 74.7

Dragon Moon, close 14.84 8.89 70.6

Dragon Moon, far 81.20 15.84 30.6

Dragon Comet, far 91.91 71.15 < 0.1

Dragon Comet, close 104.75 74.02 0.2

For what concerns the Moon and comet images, the CNN starts to struggle as it

is shown different patterns and geographical features with respect to the training

cases. It is still able to perform sufficiently in the close images of the Moon, both

with Dragon and MarCO satellites. One interesting and unexpected result is that,

even though the CNN has been trained with the Dragon spacecraft and the RMSE is
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lower in this case, MarCO test set outperforms the Dragon one in terms of score and

MAE. One possible explanation to this behaviour is that Dragon can blend in more

easily with the Moon background due to its white color. Moreover the backside of the

solar panel, as happens for Envisat, is very difficult to spot in these kind of images, as

in Fig. 8.18f, and results in worsening the average performance of this test scenario.

Both cases however suffer from the bounding box “being pulled” towards regions

with very high color gradient as in Fig. 8.18b, such as the terminator region or the

passage from the bright moon to black space. During training with Earth scenarios,

terminator regions are present, however the gradient from light to darkness is softer

with respect to the sharp one of the Moon thanks to the atmosphere presence. This

is especially true for the last three tests, in which the score is very low and shadows

casted from the comet morphological features are not filtered correctly. Moreover

the natural body is not recognized at all when fully imaged, as in Fig. 8.18d, as this

condition never occurred during the training steps.

In Table 7 a breakdown of the RMSE is provided showing how the detection of the

top left corner is performed more easily with respect to the height and width values

in every set. This weakness of the bounding box definition is an hint to explore

new types of parametrization and further improve it in future works. In the last

two columns the RMSE for picture with black space or the Earth in background is

shown. As expected the RMSE for images with the black space are easier to deal

with by the CNN and thus their RMSE is lower with respect to the ones with the

Earth. However, when using different spacecraft with respect to Dragon, the values

start to converge. A part from Vespa, which has a very simple conical shape, the

other spacecraft shown no difference in the space related and Earth related RMSE.

Table 7: Insights on RMSE variations

OBJECT SCENE RMSE x [px] RMSE y [px] RMSE h [px] RMSE w [px] RMSE S [px] RMSE E [px]

Dragon Earth & Space 4.97 5.87 8.75 9.21 6.16 10.42

Dragon w/o SA Earth & Space 5.86 6.16 7.49 10.10 6.07 10.29

Vespa Earth & Space 6.12 9.39 12.53 14.68 9.55 12.48

Modified MarCO Earth & Space 6.17 10.46 13.94 12.77 11.94 10.47

Envisat Earth & Space 12.75 10.10 15.59 18.22 14.32 14.95

Modified MarCO Moon close 11.35 8.39 19.38 20.28 - -

Dragon Moon, close 10.18 9.59 18.88 18.16 - -

Dragon Moon, far 79.62 26.45 69.31 120.54 - -

Dragon Comet, far 82.17 40.05 104.68 120.29 - -

Dragon Comet, close 74.39 49.02 111.42 148.88 - -
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Finally in Table 8 some parameters regarding a normal distribution hypothesis are

shown. The mean of the error is in most cases very low, and when this happens

the RMSE and standard deviation coincide. The error data seems to be distributed

normally, however fitting the data gives rise to a poor result. As it is possible to

see in the last column of the table, at least 80% of the error values are contained

inside the standard deviation region, so that only the remaining 20% error data are

left outside of that region, which is not consistent with a Gaussian distribution. An

example of Gaussian fitting in the case of Dragon with the Earth in background is

shown in Fig. 8.16.

Fig. 8.16: Dragon error data and normal distribution fitting

Table 8: Parameters of the normal distributions for the tests

OBJECT SCENE Error STD [px] Error mean [px] Error elements < RMSE [%] Error elements < STD [%]

Dragon Earth & Space 7.42 -0.44 83.87 83.87

Dragon w/o SA Earth & Space 7.57 -0.52 83.43 83.43

Vespa Earth & Space 11.13 0.85 75.00 80.25

Modified MarCO Earth & Space 11.21 -0.77 80.99 80.99

Envisat Earth & Space 14.49 0.19 87.14 87.14

Modified MarCO Moon close 15.29 3.61 86.83 86.53

Dragon Moon, close 14.79 1.34 84.63 84.51

Dragon Moon, far 79.77 50.03 74.66 74.66

Dragon Comet, far 88.76 24.31 62.64 61.49

Dragon Comet, close 100.41 30.17 69.72 67.96
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(a) Dragon (b) Dragon w/o solar array

(c) Vespa (d) MarCO

(e) Envisat (f) Envisat, example of challenging recognition

Fig. 8.17: Example of random test images, Earth cases, estimation in yellow
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(a) Dragon, Moon, close (b) Dragon, Moon, far

(c) Dragon, Comet, close (d) Dragon, Comet, far

(e) Dragon, Moon, example of challenging recognition (f) MarCO, Moon, close

Fig. 8.18: Example of random test images, Moon and Rosetta comet, estimation in

yellow
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8.4.2 Noise and Blur

Two other tests have been performed in order to asses the capability of the network

to deal with noise and blur in the images, as those are two common causes of

image degradation, for example due to thermal noise or camera vibrations. Noise is

obtained through a Gaussian noise model while blur is performed through Gaussian

filtering. The design scenario has been reused from previous test sets, specifically

with Dragon and the Earth/space in background. For what concerns noise, its effects

can become more and more detrimental on the CNN behaviour as the noise variance

is increased. Intrinsic noise from the rending process is always present, however as

the noise in the image increases, the network performance are slowly but gradually

reduced, as can be noted in Table 9. When noisy images are expected, the training

process should be performed again to ensure proper CNN behaviour, or at least

some denoising algorithm should be used to preprocess images. The different noise

levels are shown in Fig. 8.19 and full size images can be found in Appendix E.11.

Table 9: Noise tests

OBJECT SCENE Var noise RMSE [px]

Dragon Earth & Space 0.5e-6 7.43

Dragon Earth & Space 1.0e-6 7.47

Dragon Earth & Space 0.5e-5 8.12

Dragon Earth & Space 1.0e-5 9.04

Dragon Earth & Space 0.5e-4 14.79

Dragon Earth & Space 1.0e-4 21.68

Dragon Earth & Space 0.5e-3 120.95

Dragon Earth & Space 1.0e-3 156.78

Dragon Earth & Space 1.0e-2 171.66

Fig. 8.19: Noise tests, Dragon with Earth in background
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Finally, for what concerns blurring, small details and patterns can be lost during this

process, which leads to worsening of the CNN performance. An interesting result is

that small intensity blurring can be beneficial to the CNN estimations, as can be

noted for small values of σ in Table 10. This low blurring effect has been interpreted

as a denoising effect on the image which guarantees better estimations. However, as

happens for the noise test, the higher the blurring intensity, the higher the RMSE

and the higher the uncertainties in the estimations. Again a summary figure of the

blurring tests is presented below in Fig. 8.20 while full size images are present in

Appendix E.12.

Table 10: Blur tests

OBJECT SCENE σ blur RMSE [px]

Dragon Earth & Space 0.1 7.43

Dragon Earth & Space 0.2 7.43

Dragon Earth & Space 0.3 7.42

Dragon Earth & Space 0.4 7.07

Dragon Earth & Space 0.5 7.16

Dragon Earth & Space 0.6 9.22

Dragon Earth & Space 0.7 11.82

Dragon Earth & Space 0.8 14.69

Dragon Earth & Space 0.9 18.60

Dragon Earth & Space 1.0 22.35

Dragon Earth & Space 1.5 42.36

Dragon Earth & Space 3.0 71.09

Fig. 8.20: Blur tests, Dragon with Earth in background
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8.5 V-SLAM with CNN ROI results

In this last section a comparison between two identical V-SLAM test cases is pro-

vided, in which only one of them benefits of the CNN ROI extraction method.

Features are thus not detected on the whole image but only in the estimated bound-

ing box. The trajectory that has been used is the same as in the Test case 1 for the

V-SLAM algorithm reported in Fig. 7.7a, while the background has been chosen to

be an Earth one with visible and intense cloud patterns. This constitutes a chal-

lenging scenario as numerous false features are incorrectly detected an triangulated

in the V-SLAM process as in Fig. 8.21.

(a) Frame example, with CNN ROI estimation

(b) Frame example, without CNN ROI estimation

Fig. 8.21: Frame examples, with and without CNN ROI estimation

In particular in Fig. 8.21a it emerges how most of the false features are eliminated

by the CNN bounding box estimation. This effect is also visible in the translation
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and quaternion errors as in Fig. 8.22. By comparing Fig. 8.22a and Fig. 8.22b with

Fig. 8.22c and Fig. 8.22d the test case without the CNN is consistently worse in

error quality with respect to the one with the CNN enabled. Due to the bounding

box rectangular shape however some features are still present in the top part of the

spacecraft even with CNN ROI estimation, as in Fig. 8.21a, which contributes to

worsen the trajectory estimation of this case. In the future an image-to-image CNN

could be developed in order to tackle this problem and align the error accuracy of

Fig. 8.22a and Fig. 8.22b to the one obtained in Test case 1 in Section 7.3.1.

(a) Quaternion error with CNN ROI (b) Translation error with CNN ROI

(c) Quaternion error without CNN ROI (d) Translation error without CNN ROI

Fig. 8.22: Results for V-SLAM algorithm with and without CNN ROI
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9 Conclusion

The present thesis has faced the problem of V-SLAM for space operations with

machine learning applications. The most general situation has been assumed, with

an inspector satellite investigating an unknown and uncooperative target, it being

another satellite or a natural body. A simple and cheap sensor, a mono-camera,

has been assumed as the only available instrument. This choice could be especially

interesting for small satellites missions while its drawbacks, such as the saturation

of the imaging sensor due to the Sun or eclipse periods, must be dealt with during

mission design.

An image generation software has been introduced in order to produce high quality

space images and orbital pose data. Images are used to study the implementation of

a monocular V-SLAM method for relative navigation and to better understand its

benefits and limitations. Simulations have been performed by varying the inspector

and target relative trajectory with satisfactory results. Moreover the presence of

unwanted objects in the camera frame has been considered, problem that has to be

avoided as it can interfere heavily with the image capturing process. Detection of

false features is a possibility when imaging Earth geographical patterns, but tracks

must not be propagated throughout the V-SLAM process. Thanks to the recent

developments in machine learning tools, the possible contributions of a CNN has

been assessed. By training it on recognizing the bounding box of a particular satellite,

it shows good performances also when real images of off-design satellites are given

as input. Tests have been performed to understand the neural network behaviour

with different scenarios, changing both the target spacecraft and the natural body

in the background. The CNN behaves properly when the target satellite is swapped

for another probe, however changing the planetary background to an asteroid or

comet one gives rise to negative results.

AI and machine learning methods have been quickly developing in these few last

decades, revolutionizing many engineering sectors, from robotics to computer vision.

Moreover these technologies have shown great performance, excellent computational

time and robustness to different scenarios and noise. As such these novel methods

will definitely be able to impact the space domain too and revolutionize many current

applications.
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9.1 Future Work

Future development can be carried out to improve the performances of both the

V-SLAM and the CNN applications.

9.1.1 V-SLAM method

Various modules can be added to the V-SLAM like algorithm presented in this thesis,

such as loop detection and failure recovery. Loop closure is generally performed

via a bag-of-words approach which compares current images to a pretrained visual

dictionary. Extensive study could be performed on this topic, to understand whether

this approach can be still valid for space applications. More insights on bundle

adjustment could be seeked too, whether a windowed approach or a key-frame one

is used. These two concepts would also enable the study of long trajectories with

multiple intersections, in which the error would otherwise drift indefinitely.

The V-SLAM algorithm has been written from ground up, using existing functions

only for computer vision algorithms. One of the most challenging problem in terms

of code structure was the data structure for track management. A proper data

structure is needed to save the tracks evolution in frames and provide them for

tracking, triangulation, bundle adjustment, new feature tracking etc. A study to

improve the data structure could be performed, or pre-existing track management

code could instead be used, for example as in Matlab “viewSet” object.

Finally, an extensive testing with the tools denoted in this thesis could be performed

on the V-SLAM algorithm. Various tests could be done by changing parameters, for

example the focal length, noise, image resolution and illumination conditions with

different target objects. It could be very interesting, and challenging as well, to per-

form a Monte Carlo simulation by varying these parameters and generating a huge

amount of images and trajectory data to be analyzed. A powerful computer would

probably be needed to generate and process this kind of data. In those simulations

the feature detection process might be problematic when lots of features are lost

and few features are detected. Artificial objects might have less texture with respect

to natural ones and some form of failure recovery could be studied.

9.1.2 CNN ROI estimation

For what concerns the CNN design, a larger dataset would definitely be beneficial

to the training process of the network. A starting point could be to enlarge by 5x

the number of images in order to have the same dataset dimension as the ESA Pose

Estimation challenge one. The dataset could also be enlarged with images containing

different models for the target satellite in order to understand if any improvements

can be obtained in this way.
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It could also be interesting to change some parameters of the dataset to understand

the effects on the network. For example the bounding box parametrization could be

further explored as well as the criteria with which dark pixels belonging to the target

satellite are discarded. Another approach that could result in even better estimation

could be the use of image to image regression, where the CNN uses convolution and

deconvolution operations to output an image with only the estimated satellite pixels

highlighted, removing completely the need for the bounding box.

Cloud computing could also be explored, with services like Amazon AWS, Google

Cloud or Microsoft Azure. These solutions would allow to use more powerful GPUs

to perform faster training. High resolution images could also be exploited, that will

otherwise overload a single desktop GPU, however these services are pay per use.

Finally testing in real scenarios with actual sensors and targets should be performed.

Testing could be conducted on embedded systems or in a GNC facility, such as the

one present at Politecnico di Milano with an asteriod and satellite mock-ups.

122



123



A Singular value decomposition

A matrix decomposition very useful for computer vision problems is the singular

value decomposition. It can be seen as a generalization of the eigenvalue decompo-

sition and can be applied to any square and rectangular matrix. A matrix A can be

decomposed as [89]

A = UΣV H (A.1)

where U is the n×n orthonormal left singular vectors matrix, Σ is the n×m diagonal

singular values matrix and V H is the hermitian transpose of the m×m orthonormal

right singular vector matrix. The columns of U and V , ui and vi are the singular

vectors while σi are the singular values. If the matrix A is square, symmetric and

positive definite then the singular values decomposition and the eigendecomposition

are the same.

The reasoning behind this decomposition is visually explained in Fig. A.1. The

matrices U and V H represent rotations while Σ adds scaling in between the two

transformations.

Fig. A.1: SVD illustration [12]

A.1 SVD for least squares problems

SVD is useful to solve total least squares minimization problems that often appear

in computer vision. The problem can be expressed as finding the minimum of ||Ax||2

with ||x||2= 1. Using the decomposition previously described and noticing that an
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initial rotation U or V H does not change lengths, the formulation can be rewritten

as min||ΣV Hx||2 with ||V Hx||2= 1. Since Σ contains singular values in decreasing

order, the solution becomes the singular vector of V corresponding to the lowest

singular value, or x = V [0, 0, ...,0,1]T [90].

A.2 SVD for overdetermined systems

SVD can be used to solve overdetemined systems in the form of Ax = b when A is

a m×n matrix with m > n. First of all, the solution of that system can be rewritten

as a n× n linear system as

ATAx = ATb (A.2)

ifA is a real matrix, then the hermitian transpose and the transpose coincide. Under

this assumption, Eq. (A.2) becomes

V ΣTΣV Tx = V ΣTUTb (A.3)

and the solution is

x = V (ΣTΣ)−1ΣTUTb (A.4)

Where (ΣTΣ)−1ΣT is the pseudoinverse of Σ.
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B Unconstrained Numerical Optimization

Optimization is the core of any machine learning algorithm. A cost function is gen-

erally defined and the objective is to minimize it. In this appendix section, most

popular unconstrained optimization methods are discussed.

The general unconstrained optimization problem for a cost function f(x) is to find

min f(x) ∀x ∈ Rn (B.1)

It is then necessary to find the conditions for which ∇f(x) = 0.

B.1 Newton method

The most popular method for minimizing a function is Newton method. It is used to

obtain the zeros of a function but can be easily adapted to deal with minimization

problems.

Given a vector valued function g(x) it is possible to construct its first order approx-

imation in the point xk as

g(x) = g(xk) + J(g(xk))(x− xk) (B.2)

By requiring that g(x) = 0, in order to obtain its zero(s), it results that

x = xk − J(g(xk))
−1 g(xk) (B.3)

and by rewriting Eq. (B.4) to be used in an iterative manner, the core equation of

Newton method reads

xk+1 = xk − J(g(xk))
−1 g(xk) (B.4)

In order to apply Newton method in a minimization problem, it is sufficient to just

impose the vector function to be g(x) = ∇f(x) so that

xk+1 = xk −H(f(xk))
−1∇f(xk) (B.5)

In general matrices are not inverted but a linear system is solved. This method is

simple, however it can quickly become computationally very expensive when the

dimensions of x increase, as the gradient and the Hessian matrix must be computed

at every iteration. Anyhow, there are other methods that can avoid using the infor-

mation on the curvature of the function through the Hessian to reach the minimum

and thus be computationally lighter. They are grouped in a family called line search

methods.
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B.2 Line search methods

Line search methods are iterative algorithms that aim to find the direction of steepest

descent through the gradient information. They are written as [91]

xk+1 = xk + αkd(xk) (B.6)

where d(xk) must be a descent direction. The directional derivative of f(xk) along

that direction must be negative and the descent direction must be zero when a

stationary point is reached. So d(xk) must satisfy

d(xk)
T∇f(xk) < 0 if ∇f(xk) 6= 0

d(xk) = 0 if ∇f(xk) = 0
(B.7)

In Eq. (B.6) both αk and d(xk) needs to be selected. For the descent direction, the

most common ones are

– Newton directions: d(xk) = −H(f(xk))
−1∇f(xk)

– Quasi-Newton directions: d(xk) = −H−1
k ∇f(xk)

– Gradient directions: d(xk) = −∇f(xk)

The gradient direction is the simplest one, where steps are taken just proportionally

to the negative gradient, thus closing to the minimum at every iteration. Newton

directions instead use also the information on the curvature to get to the mini-

mum point through the fastest route. However, the Hessian matrix needs to be

computed and the linear system solved which can be very heavy computationally.

Quasi-Newton methods approximate the value of the Hessian matrix instead of using

the analytic one.

For what concerns the step αk, in principle it should be chosen such that the new

point xk+1 of Eq. (B.6) is the minimum one ∀xk+1(αk) given d(xk). This is a min-

imization problem in itself and may not be worth to solve it. Instead, αk can be

chosen such that f(xk+1) is arbitrary lower than f(xk). Wolfe conditions roughly

apply this principle and impose that αk must satisfy

f(xk+1) ≤ f(xk) + σαk∇df(xk) (B.8)

∇df(xk+1) ≥ δ∇df(xk) (B.9)

where ∇df(xk) = d(xk)
T∇f(xk) is the directional derivative along d(xk) of f(xk),

∇df(xk+1) = d(xk)
T∇f(xk+1) is the one of f(xk+1) and 0 < σ < δ < 1 are param-

eters. The first condition ensures that the difference f(xk+1)−f(xk) is proportional
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to the directional derivative and is bigger when αk increases. The second one in-

stead ensures that the gradient along d of the iteration k + 1 is lower in magnitude

with respect to the previous iteration, thus reaching a stationary point for f . This

guarantees that the steps are not too small when a function is almost stationary.

An iterative method can be adopted to get αk. Starting from αk = 1, it can be

gradually lowered in value until the first condition of Eq. (B.9) is met. The sec-

ond condition will be automatically satisfied as the value of αk will be the biggest

allowable one.

B.3 Trust region methods

Trust region methods aim to solve the minimization problem choosing at the same

time the descent direction and the step size. The search space at every step is con-

strained by a maximum radius δk which defines the trust region. At every iteration

step a quadratic model with a Taylor expansion is fitted to the function in xk as

fk(s) = f(xk) + sT∇f(xk) +
1

2
sTHks (B.10)

the step increment sk is then the solution of the problem

min fk(s) with ||s||≤ δk (B.11)

and if the resulting step size is suitable, the iteration step becomes xk+1 = xk + sk,

otherwise the trust region is modified and the problem is solved again.

If the minimum of the function f(x) is inside the trust region, then sk will be lower

than δk and the Hessian Hk must be positive definite. In this case the problem is

solved as with a quasi-Newton method, resulting in sk = −H−1
k ∇f(xk). Otherwise

the constrained minimization problem of fk(s) with ||s||= δk can be solved using

the method of Lagrange multiplier. The Lagrangian Lk(s, λ) = fk(s) − λ(||s||−δk)
is minimized by imposing that ∇sLk(s, λ) = 0 and ∂Lk(s,λ)

∂λ
= 0. Those expressions

result in

(Hk + λkI)sk = −∇f(xk) and ||sk||−δk = 0 (B.12)

with (Hk + λkI) positive definite. Newton method can be used to compute the

corrections on sk and λk, generally through the solution of a linear system.
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The criteria with which a step is considered accurate is if the actual change in f in

xk and xk+1 is similar to the estimated change of fk. ρk is defined as

ρk =
f(xk + sk)− f(xk)

fk(sk)− fk(0)
(B.13)

When ρk is close to one the approximation for f is good, otherwise the trust region

needs to be shrinked.
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C Nonlinear least square methods

Nonlinear least square fitting methods can be adopted to solve some computer vision

tasks. Thanks to their implementation, that can be very efficient and fast, they can

be adopted for real time applications too [3]. The following discussion will trail the

guidelines of [91].

By denoting with r(x) the residual error vector, the objective is to find the minimum

of f(x) defined as

f(x) =
1

2
||r(x)||2=

1

2

∑
i

ri(x)2 (C.1)

This optimization can be achieved by methods detailed in Appendix B. The Jacobian

Jr(x) of the vector function r(x) is by definition

[Jr(x)]ij =
∂ri(x)

∂xj
(C.2)

while the expression for the components of the gradient of f(x) is

[∇f(x)]j =
∂f(x)

∂xj
=
∂f(x)

∂ri(x)

∂ri(x)

∂xj
=
∑
i

ri(x)
∂ri(x)

∂xj
=
∑
i

ri(x)[Jr(x)]ij (C.3)

By merging the two previous equation the relation between the gradient of f(x) and

the Jacobian of r(x) is

∇f(x) = JTr (x)r(x) (C.4)

Moreover the Hessian matrix H(x) = ∇2f(x) is, by definition

[∇2f(x)]lm =
∂2f(x)

∂xl∂xm
=

∂

∂xl

(∑
i

ri(x)
∂ri(x)

∂xm

)
=

∑
i

∂ri(x)

∂xl

∂ri(x)

∂xm
+
∑
i

ri(x)
∂2ri(x)

∂xl∂xm

(C.5)

Or, in matrix notation

H(x) = JR(x)TJR(x) + S(x) (C.6)
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C.1 Gauss-Newton method

By recalling that H(f(xk))d(xk) = −∇f(xk) and xk+1 = xk +δxk, Gauss-Newton

method is written as

[JR(xk)
TJR(xk)]δxk = −JR(xk)

Tr(xk) (C.7)

In the expression for the Hessian matrix, the component S(x) has been omitted as

in several cases it has minor importance with respect to the Jacobians term [91].

Eq. (C.10) is a linear system in δxk that can be solved through a singular value

decomposition method or QR method.

C.2 Levenberg-Marquardt method

The Levenberg-Marquardt method is a trust region method that solves the con-

strained minimization problem

min fk(s) with ||s||≤ δk (C.8)

where fk is the linear expansion of r(x) as in Eq. (C.1)

fk(s) =
1

2
||r(xk) + JR(xk)s||2 (C.9)

In particular the step direction update is searched by solving [92]

[JR(xk)
TJR(xk) + λkI]δxk = −JR(xk)

Tr(xk) (C.10)
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D Vespa 3D model development

During the CNN testing the development of a 3D model for Vespa payload adapter

of Vega launcher has been accomplished. Vespa is a challenging object for a visual

system as it is almost completely black and is an axisymmetric object. Moreover

it is an important target for European space debris removal missions under the

ESA project ADRIOS, Active Debris Removal/ In-Orbit Servicing. The model has

been generated almost fully in Blender, apart from small details that have been

modeled in Autodesk Inventor and then imported in Blender. The reference material

has been provided by ASTRA research team at Department of Aerospace Sciences

and Technology of Politecnico di Milano and some other pictures have been found

online. The main two images used for Vespa development are shown in Fig. D.1. The

first one, Fig. D.1a, has been used to understand the body dimensions. The broad

values given, like the heigh and the diameter of Vespa, are compared to the pixels

dimensions in the image to obtain a pixel to meter conversion. Then, by measuring

in pixels the quantities of interest, their respective dimensions in meters can be

obtained. The other picture, Fig. D.1b, was mainly used to obtain visual accuracy

of the model.

Two procedural textures have been developed for Vespa. The first one, for the golden-

coloured metallic material, is obtained with a noise node as displacement and it is

used for the lower and upper parts of the adapter. The second one, for the pre-

impregnated carbon fiber, is obtained with a checker node to give the characteristic

carbon fiber stripes and a noise node displacement for the roughness.

Two models of Vespa were developed during this thesis. The first one, shown in

Fig. D.2, has been the first one and has been used in the CNN tests. Later on, more

details were added to obtain the model seen in Fig. D.3. These part are modeled in

Inventor, as it is easier to generate them with an engineering software, and are then

imported and textured in Blender.
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(a) Vespa, source image for dimensions [93]

(b) Vespa, real image [94]

Fig. D.1: Vespa, source images
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(a) Vespa rendering example, 1 (b) Vespa rendering example, 2

(c) Vespa in Blender environment

Fig. D.2: Examples of Vespa initial renderings
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(a) Vespa rendering example, 1 (b) Vespa rendering example, 2

(c) Vespa in Blender environment

Fig. D.3: Examples of Vespa renderings
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E CNN Testing dataset overview

In this section the CNN test datasets are reported. They are organized as follows:

– Dragon, Earth and Space

– Dragon without solar array, Earth and Space

– Vespa, Earth and Space

– MarCO, Earth and Space

– Envisat, Earth and Space

– MarCO, close Moon

– Dragon, close Moon

– Dragon, far Moon

– Dragon, far Comet

– Dragon, close Comet

– Dragon, Earth and Space, Noise

– Dragon, Earth and Space, Blur

For every test the two best and the two worst estimations are reported. Four random

examples along with the estimation closest to the dataset RMSE are shown as well.

The error and RMSE histogram are presented lastly along with the error CDF, the

cumulative density function.

The network performs equally well on both Dragon and Dragon without solar array,

Earth and Space cases. Vespa, MarCO and Envisat follow next, which are completely

new satellites that the network has never seen during training. Thanks to the training

step in which features are learned in the early layers, the CNN still recognizes them

with good results. Performance starts dropping however when the background is

changed too, adding another layer of difficulty. The CNN shows acceptable behaviour

in the cases of close Moon for Dragon and MarCO spacecraft, however Dragon cases

with far Moon and Rosetta comet are insufficient. Very strong color gradients, such

as those found in the shadows due to the comet morphology or in the terminator

region of both the Moon and the comet have not been encountered and trained

for during the design phase of the CNN. Moreover images with the whole Moon

or Rosetta comet in the background are often very erroneous since training was

performed in LEO orbit, where the Earth was never fully imaged.

Finally CNN performance with Noise and Blur on the Dragon spacecraft case are

shown, denoting moderate robustness to these unwanted effects.
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E.1 Dragon, Earth & Space

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.1: Dragon, Earth & Space, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.2: Dragon, Earth & Space, 2
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E.2 Dragon without solar array, Earth & Space

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.3: Dragon without solar array, Earth & Space, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.4: Dragon without solar array, Earth & Space, 2
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E.3 Vespa, Earth & Space

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.5: Vespa, Earth & Space, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.6: Vespa, Earth & Space, 2
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E.4 MarCO, Earth & Space

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.7: MarCO, Earth & Space, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.8: MarCO, Earth & Space, 2
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E.5 EnviSat, Earth & Space

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.9: EnviSat, Earth & Space, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.10: EnviSat, Earth & Space, 2
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E.6 MarCO, close Moon

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.11: MarCO, close Moon, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.12: MarCO, close Moon, 2
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E.7 Dragon, close Moon

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.13: Dragon, close Moon, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.14: Dragon, close Moon, 2
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E.8 Dragon, far Moon

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.15: Dragon, far Moon, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.16: Dragon, far Moon, 2
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E.9 Dragon, far Comet

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.17: Dragon, far Rosetta comet, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.18: Dragon, far Rosetta comet, 2
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E.10 Dragon, close Comet

(a) Best estimation, 1 (b) Best estimation, 2

(c) Worst estimation, 1 (d) Worst estimation, 2

(e) Random example, 1 (f) Random example, 2

Fig. E.19: Dragon, close Rosetta comet, 1
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(a) Random example, 3 (b) Random example, 4

(c) Estimation close to RMSE example (d) Error histogram vs fitting normal distribution in red

(e) CDF vs normal CDF in red (f) i-th image RMSE histogram, dataset RMSE in red

Fig. E.20: Dragon, close Rosetta comet, 2
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E.11 Dragon, Earth & Space, Noise

(a) Noise example, Var = 1e− 5 (b) Noise example, Var = 1e− 4

(c) Noise example, Var = 1e− 3 (d) Noise example, Var = 1e− 2

(e) Original picture

Fig. E.21: Dragon, Earth & Space, Noise
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E.12 Dragon, Earth & Space, Blur

(a) Blur example, σ = 0.3 (b) Blur example, σ = 0.7

(c) Blur example, σ = 1 (d) Blur example, σ = 3

(e) Original picture

Fig. E.22: Dragon, Earth & Space, Blur

158



159



Acknowledgements

Vorrei iniziare prima di tutto ringraziando i miei genitori e mia sorella Francesca,

che sono sempre stati presenti per supportarmi nei momenti importanti di questa

esperienza universitaria. Il loro sostegno incondizionato è stato fondamentale per la
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