
SEAquence: a Transformer-based
IUU Fishing Detection from Mar-
itime AIS Data

Tesi di Laurea Magistrale in
Mobility Engineering - Ingegneria della Mobilità

Author: Damiano Masuino

Student ID: 103354
Advisor: Prof. Mark James Carman
Academic Year: 2022-2023

i

Abstract

More than 70% of the Earth’s surface is covered by water, approximately 360,700,000
square kilometers, which is equivalent to 36.19 trillion soccer fields (36 followed by
12 zeroes).

Explorers, navigators, individuals in search of (new) opportunities... the oceans
have always welcomed everyone and have consistently been a shared habitat with
numerous other animal and plant species. For instance, there are over 250,000
different species of fish, and researchers discover new ones every day (see [24, 28]).

A shared home, an environment that is both comfortable and hostile, calm yet
stormy, rigid and accommodating.

The sea is inherently a challenging territory to control, the vast expanses of water
often concealed by sheer distance, creating a hospitable ground for various criminal
activities. From piracy actions among Greeks and Romans to modern networks
of trafficking and trading that circumvent sanctions and embargoes, the sea has
consistently provided silent consent to numerous illegal opportunities.

Regulations and standards have continually sought to maintain control over these
activities, but often they have proven ineffective or insufficient. A clear example is
the practice of Illegal, Unreported, and Unregulated (IUU) Fishing.

In recent years, the increasing availability of data has enabled new monitoring solu-
tions. The objective of this thesis is to analyze how the application of cutting-edge
visual analysis techniques can contribute to addressing the absence of a valuable
ally for maritime enforcement agencies.

The sea is as rich as it is delicate and must be constantly protected, utilizing new
technologies and procedures.

Keywords: IUU, Fishing, Maritime Activities, Transformer, Vision Transformer

Abstract in lingua italiana

Più del 70% della superficie terrestre è coperta dall’acqua. 360700000 km², cioè
l’equivalente di ben 36,19 trilioni di campi da calcio (36 seguito da 12 zeri).

Esploratori, navigatori, uomini in cerca di (nuove) opportunità... gli oceani hanno
sempre accolto tutti e sono da sempre l’habitat condiviso con molte altre specie
animali e vegetali. Esistono per esempio più di 250.000 diverse specie di pesci e ogni
giorno i ricercatori ne scoprono di nuove (vedi [24, 28]).

Una casa condivisa, un habitat che allo stesso tempo è comodo ed ostile, tranquillo
ma burrascoso, rigido ed accondiscendente.

Il mare è intrinsecamente un territorio difficile da controllare: le vaste distese d’acqua
spesso nascoste dalla semplice distanza sono un terreno ospitale per molteplici at-
tività criminali. Dalle azioni di pirateria tra Greci e Romani alle moderne reti di
traffici e scambi che eludono sanzioni ed embarghi, il mare ha sempre offerto il suo
tacito assenso a numerose opportunità illegali.

Le normative e gli standard hanno costantemente cercato di mantenere il controllo
su queste attività, ma spesso si sono rivelate inefficaci o insufficienti. Un esempio
chiaro è la pratica della Pesca Illegale, Non Dichiarata e Non Regolamentata (IUU).

Negli ultimi anni, la crescente disponibilità di dati ha reso possibili nuove soluzioni
di controllo. L’obiettivo di questa tesi è di analizzare come l’applicazione di tecniche
all’avanguardia di analisi visuale possa contribuire a risolvere l’assenza di un prezioso
alleato per gli enti di controllo marittimi.

Il mare è tanto ricco quanto delicato e deve essere costantemente protetto avvalen-
dosi anche dell’uso di nuove tecnologie e procedure.

Parole chiave: IUU, Pesca, Attività Marine, Transformer, Vision Transformer

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background Theory 3
1.1 Maritime Regulation & IMO . 3
1.2 Automatic Identification System . 3
1.3 Illegal, Unreported and Unregulated Fishing 5
1.4 Machine Learning . 5

1.4.1 Transformer Architecture . 7
1.4.2 Vision Transformer Architecture 10

2 Related Works 15
2.1 State of The Art - Maritime Activities 15
2.2 State of The Art - Transformer Applications 17

3 Research Questions 21

4 Datasets 25
4.1 From the AIS to the data . 25

4.1.1 AIS transponder classes . 25
4.1.2 AIS information . 26

4.2 AIS communication subjects . 28
4.3 Data used . 29

4.3.1 When and Where . 29
4.3.2 How is structured . 30

vi | Contents

5 Models 33
5.1 Data Preparation . 33

5.1.1 Trips Mining by applying MEC 34
5.1.2 Data Preparation - Algorithm 38

5.2 Trajectory as a sentence . 39
5.2.1 From the trajectories to the sequences 39
5.2.2 Sequence classification . 41
5.2.3 Trajectory as a sequence - Algorithm 44

5.3 Trajectory as a picture . 45
5.3.1 From the trajectories to the images 46
5.3.2 Image classification . 50
5.3.3 Trajectory as a picture - Algorithm 52

6 Experiments 53
6.1 Implementation . 53
6.2 Assumptions . 55
6.3 Metrics . 56
6.4 Sequences - Experiments . 58

6.4.1 Sequences - Results . 58
6.5 Pictures - Experiments . 59

6.5.1 Pictures - Results . 59
6.6 Real Case Scenarios . 62

6.6.1 Examples of False Negatives: The Seawolf vessel 63

7 Conclusions 65
7.1 Further Developments . 67

Bibliography 69

A Appendix A 73
A.1 Picture Creation . 73
A.2 Picture Classification . 79

List of Figures 83

List of Tables 85

List of Acronyms 87

Ringraziamenti 89

1

Introduction

Historically, fishing has played a significant role in human civilization. Early soci-
eties relied on fishing as a primary food source, contributing to their survival and
development.

Fishing has a significant economic impact worldwide. Coastal communities often
rely on commercial fishing as a vital industry, providing employment opportunities
and contributing to local economies.

Figure 1: Fishing boats.

Given this, this study aims to create a model that identifies fisheries-related activities
by isolating them from all others (such as freight or passenger traffic, general offshore
activities, etc.). This tool would be a formidable ally in the hands of supervisors,
who could rely on greater automation to identify potential illicit actions.

The core data source is the AIS. AIS stands for Automatic Identification System,
and it is a device on board a ship that emits a signal designed to uniquely identify the
boat’s position (its operation will be discussed in more detail in the next chapter).

2 | Introduction

The sea is as rich as it is delicate, and it must be constantly protected by leaning
on the use of state-of-the-art technologies.

Structure of the Thesis

For the purpose of an adequate and exhaustive treatment of the problem that
emerged, the thesis is organized as follows.

Chapter 1 defines and explains the background knowledge and concepts that are
related to this thesis.

Chapter 2 introduces past works which tackles similar subjects.

In Chapter 3, all the research questions are presented and explained.

Chapter 4 presents the datasets (from the AIS network to the data used in this
study).

In Chapter 5 the actual models are described and their experimental use is imple-
mented in the following chapter (Chapter 6).

Finally, Chapter 7 concludes this report by summarizing the work, pointing out
critical findings, and advising the possible future work.

3

1| Background Theory

In this chapter all notions required to better understand the thesis are summarized.

1.1. Maritime Regulation & IMO

Maritime regulation refers to the set of laws, rules, and international agreements that
govern activities and operations related to maritime transportation and commerce.
It encompasses a wide range of regulations designed to ensure the safety, security,
and environmental sustainability of maritime activities, as well as promote fair and
efficient maritime trade.

Within this framework, the International Maritime Organization (IMO) is a special-
ized agency of the United Nations responsible for promoting safe and secure shipping
practices on a global scale. The IMO’s work covers a wide range of areas related
to maritime affairs. It develops and adopts international conventions, protocols,
and codes that set out mandatory rules and standards for the design, construction,
equipment, operation, and maintenance of ships. These regulations cover aspects
such as ship safety, pollution prevention, maritime security, crew training, and the
facilitation of international maritime traffic.

1.2. Automatic Identification System

The AIS is a tracking and communication system implemented in the maritime
domain to improve the safety and efficiency of vessel operations (see [17]).

Specific IMO regulations govern the type of ships that must mandatorily have AIS
equipment on board (International Maritime Organization (IMO), A 29/Res.1106).
Ships with a gross tonnage (GT) of more than 300 tons are generally required to have
AIS on board, as are high-speed vessels such as fast ferries or high-speed passenger
ships. The device is mandatory in some specific areas, such as congested waterways,
ports, or environmentally sensitive areas.

4 1| Background Theory

The picture below shows how the AIS network works. The system was created as a
means of communication to improve situational awareness. Leaning on a Very High
Frequency (VHF) technology, the system emits from the device on board the ship,
a signal containing a series of coded information. The time interval between one
emission and the next, and the type and resolution of the information it contains,
are dependent on a number of variables such as mainly the type of ship and the
speed at which it is sailing.

Figure 1.1: AIS Functional Scheme, picture from [27]

The system allows three different types of communication. The first is ship-to-ship
(S2Ship); in this case, boats have the ability to transmit their own signal and receive
signals from other boats, gathering information about traffic and their location (solid
light blue arrows in Figure 1.1). The second involves satellite communication (ship-
to-satellite, S2Sat). In this case, a special network of satellites collects data from all
vessels and saves them in datasets (dashed light blue arrows in Figure 1.1). These
data are mainly used for analysis and research purposes, and given the cost and
technical difficulties associated with them, they usually are under the responsibility
of private entities. The last type of transmission is ship-to-shore, S2Shore. These
communications are used for maritime traffic management functions by coastal and
port authorities. Special land-based antennas pick up the signals thus giving real-
time views of ship traffic (solid dark blue arrows in Figure 1.1); this information
can be then saved and used for future studies. Regardless of location and situation,
every message transmitted by AIS contains (at least) the position information and
unique identification of the vessel that transmitted it.

1| Background Theory 5

An in-depth analysis of both AIS system and information contained in AIS signals
will be presented in Chapter 4.

1.3. Illegal, Unreported and Unregulated Fishing

Illegal, Unreported, and Unregulated (IUU) Fishing is a broad term that captures a
wide variety of fishing activities (see Figure 1.2). As a general description, "illegal"
fishing activities are those that are carried out in contravention of any national or
international regulations (e.g., catching prohibited species, using banned equipment,
etc.). "Unreported" fishing activities refer to those that are not properly reported or
under-reported to the relevant authority. "Unregulated" fishing activities encompass
those conducted by vessels without a flag state or operating in the gray areas of
international regulations.

Figure 1.2: Examples of IUUF-related activities.

In a reality where interest in environmental impact is increasing, being able to
quantify and control this phenomenon is of vital importance. The study focused on
analyzing all three critical types of activities, aiming to create a model capable of
identifying the type of activity performed by a vessel (fishing or non-fishing) solely
based on the AIS data transmitted by the vessel itself.

1.4. Machine Learning

In this section, a short review of the general notion of Machine Learning is made in
order to remind basic concepts.

6 1| Background Theory

Machine learning is a branch of artificial intelligence (AI) that involves the develop-
ment of algorithms and models that allow computer systems to learn from data and
make predictions or decisions without being explicitly programmed. It enables com-
puters to automatically analyze and interpret complex patterns and relationships in
data, leading to intelligent insights and actions.

At its core, machine learning revolves around the concept of training models on
historical data to recognize patterns and make accurate predictions or decisions when
faced with new, unseen data. This training process involves exposing the model to
a large dataset, where it learns from the features of the data and corresponding
outcomes. The model then generalizes this learning to make predictions on new,
unseen data. To do that, several approaches are used, such as:

• Supervised Learning : in supervised learning, the model is trained on labeled
data, where each data instance has corresponding input features and known
output labels. The model learns to map the input features to the output labels,
enabling it to make predictions or classifications on new, unseen data.

• Unsupervised Learning : unsupervised learning involves training models on un-
labeled data, where the model learns patterns, structures, or relationships
within the data without explicit output labels. It aims to discover inherent
patterns or groupings in the data, making it useful for tasks such as clustering,
dimensional reduction, and anomaly detection.

• Reinforcement Learning : reinforcement learning involves an agent learning to
make sequential decisions in an environment to maximize a reward signal. The
agent explores the environment, takes action, and receives feedback in the form
of rewards or penalties. Through trial and error, the agent learns to optimize
its decision-making strategy to achieve the highest cumulative reward.

In this thesis, a supervised (or as will be presented, a self-supervised) classification
model will be designed and tested.

Machine learning has found applications in various fields, including image and speech
recognition, natural language processing (NLP), recommendation systems, fraud
detection, financial forecasting, autonomous vehicles, and healthcare, among others.
In 2017, a specific family of ML models called Transformers was introduced to
manage NLP data. This kind of model is the core of this study and in the following
sub-chapter, a more in-depth presentation regarding them will be proposed.

1| Background Theory 7

1.4.1. Transformer Architecture

Transformers are a type of deep learning model that has revolutionized the field
of natural language processing (NLP) and made significant advancements in other
domains as well. The main structure behind them (see Figure 1.3) was presented
in the 2017 paper Attention Is All You Need (see [25]) and it shortly became the
state-of-the-art approach for various NLP tasks.

Figure 1.3: Transformer architecture.

The transformer architecture consists of two main components: an encoder and a
decoder. The encoder takes an input sequence and processes it, creating a rich rep-
resentation of the input data. The decoder then uses this representation to generate
the desired output sequence. Both encoders and decoders use the concept of ‘at-
tention’. Attention basically means to focus on the important pieces of information
and to blend out the unimportant pieces.

Specifically, the key innovation of transformers is their ability to capture long-range
dependencies and contextual relationships in sequential data, such as sentences or
sequences of words or pictures. Unlike traditional recurrent neural networks (RNNs)
that process sequences step-by-step, transformers utilize self-attention, which allows
the model to weigh the importance of different words or tokens within a sequence
and attend to relevant information when making predictions or generating output.
It is possible to say that transformers have introduced the concept of "self-supervised
learning".

8 1| Background Theory

Figure 1.4: OpenAI ChatGPT is nowadays one of the most famous examples of
Transformers’ potential.

The Transformer is the first transduction model relying solely on self-attention to
compute representations of its input and output without using sequence-aligned Re-
current neural networks (RNNs) or convolutions. A description of how the attention
mechanism works can be done with the following example. Given an input sequence
x of length n (Equation (1.1)) and a target sequence y of length m (Equation (1.2))
in an NMT problem:

x = [x1, x2, ..., xn],

y = [y1, y2, ..., ym]

(1.1)

(1.2)

A NMT architecture such as the one shown in Figure 1.3, it is possible to denote as
(1.3)

hii = 1, 2, 3, ..., n (1.3)

the encoder hidden states, which contains information from all the words forming
the input sentence with a strong focus on the i− th word among the n words in the
input.

The decoder employs an attention mechanism to generate the target words, prior-
itizing the most pertinent information extracted from the source sentence. Con-

1| Background Theory 9

sequently, the decoder processes every hidden encoder state (annotation) and, in
conjunction with the previous hidden decoder state (st−1), utilizes an alignment
model, a(), to calculate an attention score:

et,i = a(st−1, hi) = vTa tanh(Wa[st;hi]) (1.4)

et,i represents an attention score, serving as a metric to evaluate how well hi and st−1

align with each other. To achieve this alignment, it has been utilized an additional
operation known as "additive attention."

This process involves applying a weight matrix to the concatenated vectors st−1 and
hi, wherein vT acts as the weight vector. This approach facilitates an effective and
intuitive way of combining the relevant information from both st−1 and hi during
the attention mechanism.

To convert the annotation values into a range from 0 to 1, a Softmax function
(see (1.5)) on each attention score is used, which gives the corresponding weight
value. This ensures that the weights are appropriately normalized and can be used
to emphasize the most relevant information during the attention mechanism.

αt,i = Softmax(et,i) =
exp(a(st−1, hi))∑n
i′=1 exp(a(st−1, hi))

(1.5)

where αt,i, measures the alignment between the target word yt and the source word
xi.

After obtaining these scores (from equations (1.4) and (1.5)), it is possible to
proceed to compute the context vector, ct. The context vector combines the relevant
information from the source sentence by utilizing the alignment scores, αt,i. This
helps in emphasizing the most important parts of the source sentence for generating
the target word.

ct =
n∑

i=1

αt,ihi (1.6)

Now, moving to the decoder stage, the context vector ct is fed into the decoder along
with the previous hidden decoder state st−1 and the previous output yt−1. These
inputs are used to calculate the final output, st, using a function f that takes into
account the context, the previous decoder state, and the previous output.

10 1| Background Theory

This entire process is repeated iteratively until reaches the end of the sequence.
During each iteration, the decoder generates a new output, and the context vector
ensures that the decoder can access relevant information from the source sentence at
every step, aiding in the generation of accurate and contextually appropriate target
words.

Self-attention is a particular kind of attention mechanism.

Unlike conventional additional attention, which focuses on aligning input and out-
put positions in a sequence, self-attention captures dependencies between different
elements of the same input. This unique approach allows the model to consider the
context and relationships between all elements, thereby enabling a more compre-
hensive understanding of the input data.

1.4.2. Vision Transformer Architecture

The main actor of this thesis is a Transformer model of a specific kind: the Vision
Transformer (ViT). Traditionally, convolutional neural networks (CNNs) have been
the dominant architecture for image analysis.

However, ViTs offer an alternative approach that eliminates the need for handcrafted
hierarchical features and enables end-to-end learning.

The core idea behind ViTs was presented in An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale (see [5]), and it is to treat an image as a
sequence of patches, where each patch represents a small region of the image.

These patches are flattened and then fed into the transformer architecture, allowing
the model to capture both local and global dependencies within the image. In ViTs,
a typical architecture (as shown in Figure 1.5) consists of an initial patch embedding
layer that converts the image into a sequence of flattened patches.

Patches are then passed through multiple transformer encoder layers, each incorpo-
rating self-attention mechanisms to capture relationships between different patches.

1| Background Theory 11

Figure 1.5: Vision Transformer (ViT) architecture.

Finally, a classification head is attached to the model to make predictions based on
the learned features.

The main steps of a ViT model can be described as:

1. Split the input image into fixed-size patches

2. Flatten the patches

3. Create lower-dimensional linear embeddings from these flattened image patches

4. Include positional embeddings

5. Feed the sequence as an input to a Transformer encoder

6. Pre-train the ViT model with image labels

7. Fine-tune on the downstream dataset for image classification.

In the ViT architecture, there is no decoder part; only the encoder blocks are em-
ployed. At the top of the stack of encoders, an additional linear layer known as
the MLP head is added to perform the final classification task. Vision Transformer
takes a unique approach by treating image patches as if they were tokens in natural
language processing (NLP) tasks.

However, one of the drawbacks of ViT is its dependence on large-scale pre-training
on abundant datasets, followed by fine-tuning to achieve state-of-the-art results.

12 1| Background Theory

Figure 1.6: Attention masks over analyzed pictures.

In contrast, when dealing with smaller datasets directly, ViT’s performance tends
to be slightly inferior to traditional convolutional neural networks (CNNs).

This discrepancy arises due to the inherent differences between Transformers and
CNNs. Transformers lack certain inductive biases, such as translation invariance
and locality, which are essential for generalizing effectively when trained with limited
data.

Figure 1.7: Example images in the CIFAR100 training dataset.

On the other hand, ViT excels when trained on vast datasets, outperforming many
state-of-the-art architectures in various image recognition benchmarks. This phe-
nomenon can be attributed to the remarkable power of large-scale training, where

1| Background Theory 13

the absence of certain inductive biases becomes less of a hindrance, enabling the
model to learn intricate patterns and relationships in the data.

The trade-off lies in ViT’s requirement for considerable computational resources and
data availability to unleash its full potential. Nonetheless, as technology advances
and access to extensive datasets become more accessible, ViT’s capabilities are likely
to continue pushing the boundaries of image recognition and deep learning as a
whole.

By pre-training the ViT model on relevant images and then fine-tuning it on the
dataset under investigation, the study will showcase the model’s ability to adapt and
generalize to different tasks. This highlights the potential of Vision Transformers to
excel in diverse scenarios, making them a promising choice for a wide range of image-
related applications. The findings from this research could provide valuable insights
into harnessing the power of ViT to its full extent and unlocking its capabilities in
various practical settings.

15

2| Related Works

Regarding the topic addressed in this thesis, there is a significant amount of academic
material available. This chapter aims to present the relevant literature that helps
establish a starting point for the subsequent development of the model. For better
comprehension, the material will be divided into two sub-chapters: the first will cover
the literature related to the study of maritime activities, while the second will focus
specifically on the use of transformers models.

2.1. State of The Art - Maritime Activities

There is a rich body of research on analyzing behaviors at sea, such as activity clas-
sification or prediction of naval trajectories. In [23] it is possible to find an example
of classification performed by extrapolating geometric features from trajectories. In
other words, each naval trajectory, represented as a sequence of points (see Figure
2.1), has been studied to extract possible descriptive features (e.g., stop times, the
average duration of stops, small, medium, and large angle turn counts, etc.). These
features have then been used to classify naval activities, considering only cargo ships
or fishing vessels (see Figure 2.2). The core idea behind the paper is described in
[1], [4] and [7].

Figure 2.1: Basic movement patterns of ship trajectory, image from [23].

For classification, algorithms such as Decision Trees and Support Vector Machines

16 2| Related Works

have been used. A similar study was conducted in the paper [21].

Stochastic approaches were followed in the papers [10], [22], [6] and [11].

Another interesting approach can be found in the paper [12], where the trajectory
itself is not considered as a geometric entity, but rather the focus is placed on the
spatial arrangement of the vessels (see Figure 2.2).

Figure 2.2: Trajectories of different vessel types (left image) and the result of tra-
jectory clustering (right image), image from [12].

Geographical areas have been associated with the presence of a particular type
of vessel. The classification is done by spatializing the vessel and incorporating
additional information. For example, if a large-sized vessel (additional information
required) is located in the area associated with high tanker traffic (the black region
on the map), then the model classifies it as a tanker. Although the results are
encouraging, this model requires detailed data such as the tonnage of the vessel.

The last study mentioned is [30]. In this analysis, (developed from [26], [20] and
[3]) the trajectory is still regarded as a geometric entity. Various quantities are
associated with each trajectory, such as latitude range, length, etc. The researchers
conducted a study using a massive amount of data, extracting typical values of the
aforementioned features for each studied vessel type.

The classification task involves linking each new trajectory under study to the most
similar class. The performance of this model is very good, although it relies on
a large amount of data that is difficult to obtain, and handle, and therefore less
practical from an operational perspective.

2| Related Works 17

Figure 2.3: Arctic Prowdler, a vessel whose behavior was classified as "anomalous"
by the model in [30].

2.2. State of The Art - Transformer Applications

In relation to transformer architecture, some literature has already been presented in
the previous chapter. There, a brief discussion was made about what a transformer
is and what principles differentiate it from any previous deep learning model. As
mentioned, transformers were initially developed as a model for natural language
processing, and for this reason, they exhibit high performance when it comes to
handling sequential inputs and outputs.

There have been multiple cases where attempts have been made to extend the use
of transformers to different domains.

One such case is described in [32]. The aim of this study was to use a slightly
more sophisticated version of transformers, called Universal Transformers (UT), to
identify anomalies among the trajectories of different taxis. The Universal Trans-
former (UT) is an extension of the original transformer architecture that allows for
dynamic computation during each decoding step. Unlike the standard transformer,
where the number of decoding steps is fixed, the UT introduces recurrence, enabling
it to adaptively adjust the number of computation steps based on the input. This
dynamic nature makes the UT more flexible and capable of handling various se-
quence lengths. After a preprocessing phase ([31] and [29]), each spatial trajectory
was discretized and analyzed as a sequence of points. The sequence was used as
input to the UT (see Figure 2.4).

18 2| Related Works

Figure 2.4: The Architecture of UT used in the paper image from [32].

This process is very similar to the one proposed by [19]. However, instead of using
transformers, they utilize LSTM and RNN neural network models. Some notions

Another example of transformers used in the trajectory domain is [9]. In this case,
the trajectory, seen as a set of Cartesian coordinates, is embedded into a high-
dimensional space through a linear projection using a weighted matrix. Then, a po-
sitional encoding vector is considered to associate a time component with the input
embedding vector before using it as initial information for the "vanilla" transformer.
[2] and [13] propose similar approaches, both based on analyzing the trajectory data
by reflecting it over a high-dimension space.

There are also examples of using transformers in the field of image analysis. [16]
describes the use of a Vision Transformer (ViT) to efficiently analyze photos of com-
ponents during the production line, with the goal of identifying possible anomalies
or defects (see Figure 2.5). The input picture is divided into pieces and encoded us-
ing a Vision Transformer, and the results are then fed into a decoder to reconstruct
the original image, which helps the network learn representative features.

Figure 2.5: The Architecture of ViT used in the paper image from [16].

2| Related Works 19

Simultaneously, a Gaussian mixture density network models the distribution of the
transformer-encoded features to estimate the distribution of normal data in the la-
tent space. This approach allows for effective anomaly detection based on deviations
from the estimated normal data distribution.

The last example is not directly related to the use of transformers but is connected
to the theme of this thesis. [8] proposes an innovative method (based on [14], [15],
and [18]) for trajectory classification that is not based on the sequence of coordinates
but on the creation of representative images, which are then used as input to a CNN
model. The trajectories are spatially discretized, transforming them into pixels of a
2-dimensional image (see Figure 2.6).

Figure 2.6: The scheme of the process used in the paper image from [8].

The study analyzes trajectories found in a city and aims to classify them based on
the mode of transportation (such as bicycles, cars, subways, etc.). This paper can be
seen as the missing link among all the others. So, why not use Vision Transformers
(ViT) to study naval trajectories in a similar way to what is presented in this paper?

This question, along with the points listed above, serves as the starting point for
this study.

21

3| Research Questions

The purpose behind this thesis is the search for an answer to the following questions:

What is the effectiveness and potential of using ViT models

for the detection of IUU activities?

ViT models have shown impressive performance in various image analysis tasks,
including object detection and classification.

By leveraging their ability to capture spatial relationships and long-range depen-
dencies, ViTs can potentially be applied to the detection of fishing activities. The
use of ViT models for IUU detection can enable the analysis of AIS satellites to
identify suspicious or illegal activities at sea. These models can learn to recognize
specific patterns, vessel types, or behaviors associated with IUU activities, allowing
for more efficient and accurate monitoring and enforcement efforts.

Additionally, the interpretability of ViT models can provide insights into the de-
tected IUU activities, aiding in understanding the underlying factors and informing
decision-making processes.

What are the most effective strategies?

The effectiveness of transformers in handling sequential data is widely recognized.

What emerges as the optimal strategy for studying trajectories? Should textual
models be employed, treating trajectories as text sequences, or should images of
the trajectories be utilized instead? Moreover, what information is advisable to
incorporate in the inputs (e.g., the amount of information to be depicted on the
images)?

In Chapter 5 some different strategies will be proposed, starting from the simpler
ones and then adding more and more information and complexity.

22 3| Research Questions

Is the pre-training dataset always so important?

The strong limiting factor of ViT architectures (and Transformers in general) has
been previously described. The need for enormous datasets to train the model often
translates to high costs and limited practical usability. Having a highly accurate
model confined to only a few supercomputers renders it almost useless for the vast
majority of use cases.

However, the question arises: How far is it possible to push the versatility of these
models?

In this study, the aim to assess the importance of pretraining will be followed,
and there will be an examination of whether a model pre-trained on a completely
different dataset from the one used in this study can still achieve satisfactory results
in classifying naval activities.

There will be an exploration of the extent to which the pretraining effect impacts the
model’s performance, observing if a model pre-trained on diverse data can generalize
effectively and demonstrate its potential in the task of naval activity classification.
By investigating these aspects, this study hopes to gain insights into the trans-
ferability and adaptability of Vision Transformer models, shedding light on their
capabilities beyond traditional pretraining setups.

How can a model like this be used in maritime activities real-

time monitoring?

What are the true potentials of a system like this, and what are the real-world cases
where it would be useful?

In particular, this question is focused on how the results of the model explained
above can be used in real case studies. So what are the major potentialities (and
criticalities) related to the use of this kind of model in everyday life?

In Chapter 6 after explaining how the models have been tested and applied, some
interesting points will be presented from the perspective of the authorities.

In particular, there will be the evaluation of whether there is a possibility of utilizing
and harnessing the attention mechanism applied by the model to capture important
patterns or critical points in maritime traffic. By studying the attention patterns
generated by the Vision Transformer during the classification of naval activities, the
study aims to identify if the model can effectively focus on relevant areas and specific

3| Research Questions 23

features that are crucial for distinguishing different maritime activities.

Figure 3.1: Sikorsky MH-60T Jayhawk helicopter during coastal patrol operations.

Understanding how the attention mechanism works in this context can provide valu-
able insights into how the model processes and prioritizes information. It may re-
veal whether the Vision Transformer can automatically detect significant spatial and
temporal patterns in the data, potentially aiding in maritime surveillance, anomaly
detection, or optimizing navigation strategies.

By analyzing the attention distribution, it is possible to uncover the model’s ability
to discern relevant patterns and enhance its interpretability, making it an even more
valuable tool for understanding and analyzing complex maritime traffic scenarios.

25

4| Datasets

This chapter will provide an overview of the available data, analyzing the data ob-
tained from AIS systems and describing their limitations and potential.

4.1. From the AIS to the data

As already mentioned in Chapter 1 , AIS data is unique because it is exchanged
among different entities, for various purposes, and in different ways.

For completeness, it is worth mentioning a bit more information regarding this sys-
tem. AIS includes a GPS receiver that stores data on the vessel’s position and
direction. All the collected data is subsequently transmitted in a way that can be
interpreted by other AIS transponders. The VHF system is used for this transmis-
sion.

Figure 4.1: Maritime traffic around Panama Canal. Screen-shoot of MarineTraffic
website, one of the most famous AIS live maps providers.

4.1.1. AIS transponder classes

There are various classes of AIS instruments based on functionalities and range. All
commercial vessels over 300 tons and all passenger ships are equipped with Class
A AIS. These instruments transmit at very high periodicity through a dedicated

26 4| Datasets

antenna and receive data from all types of AIS. These units have a prioritization
system for transmitting navigation data, ensuring that signals from different vessels
in the same area do not overlap.

The system architecture can handle up to 4500 stations in the same area. Class A
AIS must also be equipped with a dedicated display and a computer that analyzes
collision risk with every other received signal.

On smaller vessels, many fishing boats, or yachts, it is possible to find Class B
instruments. They also transmit and receive but are less powerful than Class A.
Additionally, they do not have a prioritization system for transmitting navigation
data. They may have a dedicated screen or provide information to be displayed on
a chart plotter or laptop.

Finally, there are simple receivers, called Class C, which do not transmit any in-
formation but can receive transmitted data. This allows users to see all vessels
equipped with Class A or B AIS in the vicinity. These receivers are very useful
for avoiding collisions with commercial traffic, although users still need to remain
vigilant.

4.1.2. AIS information

Depending on whether an AIS transceiver is installed on a pleasure boat or a com-
mercial vessel, the transmitted data can be significantly different. The transmission
of the following data is generally possible through AIS but is fully utilized in the
commercial context.

In recreational boating, the MMSI number, the vessel’s name, position, course, and
dimensions are usually sufficient. It is possible to summarize all the data transmitted
via AIS into 3 main areas, where the bolded information represents the data typically
transmitted regardless of the type of vessel.

The data primarily used in this study will be related to ship identification, its
type, position, and the time the message was transmitted. In other words, an
attempt was made to develop a model that relies solely on the data that is almost
always available, without the need for specific information that might not always be
complete or present.

4| Datasets 27

Static Data

Name of the Vessel

International Call Sign

MMSI Code

IMO Code

Vessel Type (e.g., fishing, cargo ship, tanker, passenger, etc.)

Dimensions of the Vessel

Table 4.1: Static information contained in AIS messages.

Dynamic Data

Position (Latitude and Longitude)

Speed (SOG, Speed Over Ground)

Route (COG, Course Over Ground)

Time of the Transmission

Navigation Status

Heading

Course Rate of Change

Table 4.2: Dinamic information contained in AIS messages.

Travel-related Data

Current Draft

Max Draft

Destination Port

Departure Port

Estimated Time of Arrival (ETA)

Cargo Type (class of hazardous cargo, if there is any)

Table 4.3: Travel-related information contained in AIS messages.

28 4| Datasets

4.2. AIS communication subjects

As already mentioned several times, the AIS system serves various users. The pri-
mary users are undoubtedly different vessels, which use the system to increase their
situational awareness. Although AIS does not replace the use of traditional radar, it
is undoubtedly a valuable ally and the combined use of both allows for safe navigation
even in nighttime or low visibility conditions. Of course, ship-to-ship communica-
tions are inherently "closed circuits" and cannot be used (except in specific cases)
for research or study purposes.

AIS messages are then captured by specific satellites and collected by data providers
for commercial purposes. Having access to such a comprehensive and massive
amount of maritime data (practically the live and historical position of almost all
vessels worldwide) is undeniably valuable. These data can be easily used for research
purposes, as presented here.

However, the cost of the satellite equipment required for their reception makes them
available only through private data providers (and at a high price!). Nowadays,
their substantial commercial cost makes them practically exploitable only by large
entities (public or private) that can afford the expense and thus have access to them.

The third entity that intervenes in AIS communications is the port authorities. As
briefly described in Chapter 1, AIS data is collected by port authorities through a
network of coastal antennas and used for managing and monitoring traffic along the
national coastline.

Figure 4.2: AccessAIS map, the download portal of US AIS data from marinecadas-
tre.gov.

4| Datasets 29

The antennas have a limited range, and data can be collected up to approximately
200 nautical miles from the coast (depending on weather and environmental condi-
tions).

Not all countries make the data collected through this methodology available to the
public. Specifically, as of today, only Denmark and the United States have dedicated
portals where it is possible to request the download of AIS data.

The United States relies on the portal marinecadastre.gov , supported and managed
by the government agency NOAA (National Oceanic and Atmospheric Administra-
tion). Here, it is possible to download the data collected from the entire network of
U.S. coastal antennas since 2009, and the data is available in .csv format.

4.3. Data used

4.3.1. When and Where

After evaluating various options and contacting several environmental agencies, it
has been decided to use the American portal as the main source of data.

Regarding the study area, the eastern coast of the United States has been selected.
In particular, a rectangular area delimited by the coordinates provided below has
been used as the data source for both the training and testing phases of the models.

Figure 4.3: The geographic area from which the data was collected.

https://marinecadastre.gov/

30 4| Datasets

The specific zone was chosen due to its dense fishing activity. Other areas have
lower fishing activity and, therefore, are less critical in terms of fisheries (such as
the western coast or the Gulf of Mexico).

The table below summarises the characteristics of the data used in this thesis.

Detail Value

Longitude Minimum 34.18621

Longitude Maximum 43.40141

Latitude Minimum -75.94461

Latitude Maximum -65.05574

TRAIN Data Time Range from 2019-09-03 to 2019-12-07

TEST Data Time Range from 2018-12-31 to 2019-01-17

Table 4.4: Dataset description.

4.3.2. How is structured

The data downloaded from the portal is in the usual .csv format and consists of a
total of 28 features assigned to each row. Each row corresponds to an AIS signal
received, and there is a clear need for data cleaning and organization before the
actual study.

The columns comprehensively describe the characteristics mentioned in the tables
above (static data, dynamic data, etc.), but not all columns are equally complete.
After excluding the columns related to signal creation time, position, vessel speed,
and vessel type, all the remaining columns may contain empty fields to varying
degrees. This is related to the presence of different classes of AIS devices, which
allow sending information with varying levels of completeness and detail.

During the pre-processing phase in the upcoming chapter, when analyzing the num-
ber of trajectories, it becomes apparent that the dataset exhibits a slight imbalance
in terms of fishing-related activities. Approximately one-fourth of the recorded jour-
neys are associated with fishing activities, while the majority pertain to other types
of marine endeavors.

4| Datasets 31

Figure 4.4: Dataset items distribution between fishing and non-fishing activities.

Specifically, the dataset contains a total of 104,566 trajectories in the training set,
out of which 23,957 trajectories correspond to fishing vessels. This means that
roughly 22.9% of the journeys are linked to fishing-related operations. Similarly, in
the testing dataset, which comprises 20,200 trajectories, 3,778 of them are attributed
to fishing vessels. Thus, around 18.7% of the trajectories in the testing set are
associated with fishing activities.

33

5| Models

This chapter will provide a description of all the methodologies used in this thesis. It
is divided into 3 main sections: the first one is about the pre-processing phase, where
raw AIS data was converted into useful trajectories; then the second will describe the
first test done using a classic Transformer architecture and studying maritime trajec-
tories as sequences of characters; the last section will be about the actual application
of ViT models to classify naval activities.

5.1. Data Preparation

This initial phase is common to both approaches used for the actual classification. As
described in the previous chapter, AIS data appears as long sequences of rows, where
each row represents an AIS signal. Therefore, the need to organize all this amount
of data is evident, starting from the point cloud related to various coordinates and
creating ordered trajectories that are easy to study.

It is indeed possible to represent the initial AIS data as a set of spatially scattered
points. Each point is associated with a signal from a vessel, but the trajectories and
behaviors of individual ships are not clear at this stage (see Figure 5.1).

Figure 5.1: Simplified representation of AIS points from the dataset.

34 5| Models

After removing any items with NaN values in the features related to position, iden-
tification, and type, the first step was to simplify the vast amount of data as much
as possible. Specifically, all rows referring to "special" boats, such as military ves-
sels, tugboats, or those involved in search and rescue operations at sea (SAR), were
removed. These vehicles were excluded because they exhibit highly different and
unpredictable behaviors, often unrelated to existing regulations. Additionally, their
number is very limited, and removing the data associated with them does not disturb
the rest of the dataset in any way.

It is easy to notice how the human eye can almost instantly identify different tra-
jectories among the cluster of points. However, it is a completely different challenge
for an algorithm to achieve the same task. To tackle this, a decision was made
to leverage the study of various anchorage areas to create a robust method that
autonomously identifies different trajectories. This method starts with a simple
analysis of the individual AIS point messages transmitted.

As per maritime regulations, ships are obligated to emit AIS signals at regular
intervals, even during periods when they are anchored. This continuous emission of
signals results in the formation of clusters of data points, as demonstrated in the
image above. Each cluster represents the AIS transmissions from individual vessels
while they are stationed at the anchor. The primary objective of this thesis was,
therefore, to outline a procedure for creating trajectories from these simple points,
which would then be used for classification purposes.

5.1.1. Trips Mining by applying MEC

The process of transforming these discrete data points into coherent trajectories
presented several complexities. Vessels within an anchorage area may have varying
degrees of movement, leading to irregular patterns in the clustered data. Some ships
may remain relatively stationary with slight drift, while others might experience
more significant shifts due to currents or other factors.

To study this phenomenon, the Minimal Enclosing Circle (MEC) algorithm was
chosen as the primary tool.

The first step involved converting the coordinate system from degrees (longitude and
latitude) to Universal Transverse Mercator (UTM). This transformation allowed the
evaluation of different AIS signals as points in a two-dimensional reference system.

The second step was to use the unique International Maritime Organization (IMO)

5| Models 35

identification code associated with each AIS signal to partition the vast dataset
into sub-datasets, each pertaining to a single vessel (see Figure 5.2). Subsequently,
each of these datasets was temporally sorted in ascending order, from the oldest to
the most recent AIS signal. By implementing these steps, the study was able to
organize the AIS data in a more manageable and structured manner, facilitating the
application of the Minimal Enclosing Circle algorithm.

Figure 5.2: Sub-dataset containing AIS messages of one vessel only.

The Minimum Enclosing Circle (MEC) algorithm is a geometric algorithm used to
find the smallest circle that encloses a given set of points in a two-dimensional plane.
The algorithm’s basic idea revolves around finding the center and radius of the circle
that encloses the points while ensuring no point lies outside the circle.

For each point, the following five points were considered, and the Minimum Enclosing
Circle (MEC) was calculated. A threshold of 75 meters was used to determine
whether that point was related to a navigation phase or if the ship was anchored at
that point. In other words, if a ship emits a series of AIS signals close to each other
(such that the circle enclosing five consecutive signals has a radius smaller than
the 75-meter limit), it is assumed that the ship is anchored and making minimal
movements (see Figure 5.3).

Within the sub-datasets, the points were then divided between those related to
navigation phases and those related to anchoring. For further simplification, con-
secutive points related to anchoring were condensed into a single point (see Figure
5.4) whose position was the average of the positions of the AIS signals where the
ship was anchored.

36 5| Models

Figure 5.3: Cluster of points related to an anchoring phase in dark blue.

Figure 5.4: Simplification of the dataset by approximating the cluster as a single
point.

Figure 5.5: Definition of individual trajectories as a set of consecutive points between
two anchoring points.

5| Models 37

After defining the anchoring points, defining the trajectories becomes straightfor-
ward. The trajectories are the lines described by all consecutive points that lie
between two anchoring points. The algorithm identifies these trajectories and as-
signs a unique identifier to each of them.

In Figure 5.6 it is possible to see two trajectories (the green and the orange ones)
separated by a point related to an anchoring phase.

Figure 5.6: Two defined trajectories.

To increase the effectiveness and accuracy of this methodology, a second criterion was
simultaneously used for defining the trajectories. They were not only "separated"
by the anchoring points but also by a temporal factor. Specifically, whenever there
was a time gap exceeding a predefined limit (24 hours) between two AIS signals, the
end of the previous voyage and the start of the new one were automatically defined,
even without any anchoring phase between the two.

38 5| Models

5.1.2. Data Preparation - Algorithm

Pseudo-algorithms of the data preparation phase.

Algorithm 5.1 Data Preparation
1: Load required libraries and raw AIS data
2: for vessels do
3: Order items in sub-dataset
4: for items do
5: Calculate MEC with 5 consecutive items
6: if radius > threshold then
7: Item is related to navigation phase
8: else
9: Item is related to anchoring phase

10: end if
11: end for
12: end for
13: Condensate consecutive anchoring phase-related points
14: Define trips and identify them via a unique ID
15: Split trips if there is a time gap greater than the threshold within it

5| Models 39

5.2. Trajectory as a sentence

As previously mentioned, Transformer architectures are considered state-of-the-art
when it comes to natural language processing. As the first methodology to use in
identifying fishing activities, it was decided to apply them in their "natural habitat"
by transforming trajectories into sentences.

Of course, it is not possible to do this using commonly used words, so spatial dis-
cretization has been exploited to describe trajectories not as a sequence of spatial
coordinates but rather as a sequence of simple numerical characters.

Each trajectory was considered by discretizing the space it extends over. Each
portion of discretized space was associated with a unique number. Therefore, the
trajectory was described by a sequence of unique numbers referring to the sections
of space it passes through.

5.2.1. From the trajectories to the sequences

To study fishing activities using Transformer architectures, the first step was to
process the raw trajectory data. To achieve this, the continuous spatial information
of each trajectory was discretized, effectively dividing the entire geographical area
of interest into smaller sections (see Figure 5.8). These sections were then uniquely
labeled with numerical identifiers, which enabled the transformation of spatial data
into a structured sequence of discrete values (see Figure 5.10).

Imagine the geographical region where fishing activities are being monitored as a
grid-like system. Each cell or section of this grid is assigned a specific numeric label,
creating a lookup table that connects the spatial positions with their respective
unique numerical representations. This process effectively transforms the spatial
trajectories of fishing vessels into a language-like sequence of numbers, making them
amenable to analysis using the power of Transformer models.

Once the trajectories were encoded into these sequences of unique numeric labels,
they could be treated as natural language sentences, where each number corre-
sponds to a specific "word" in the trajectory "sentence." With this representation
in hand, Transformer architectures, renowned for their exceptional capabilities in
understanding and generating natural language, could be applied to the task of
classifying fishing activities. In the following sequence of images, it is possible to
observe the progression from a trajectory (it is an example, not from the dataset
used) to its spatial discretization and then to the sequence of IDs.

40 5| Models

Figure 5.7: Trajectory before spatial discretization.

Figure 5.8: Grid-based spatial discretization.

Figure 5.9: Cells touched by the trajectory.

5| Models 41

Figure 5.10: The output is simply the sequence of cell IDs.

5.2.2. Sequence classification

In this section, a briefly explanation of the model used for trajectory classification
will be presented. The details concerning the execution of scripts and programs will
be addressed together with the results in the subsequent, dedicated chapter. To
classify different character sequences, specifically ship trajectories, as either related
to fishing activities or not, researchers opted to build a transformer model from
scratch.

Regarding the model related to trajectory classification as textual sequences, it can
be analyzed and described by breaking it down into 7 main blocks.

Figure 5.11: Sequence classification model main steps.

In the initial setup section, the code imports all the necessary libraries, including
Keras and TensorFlow. Keras module provides a user-friendly and intuitive interface

42 5| Models

for building, training, and deploying deep learning models, while TensorFlow, on the
other hand, is an open-source deep learning framework that allows users to create
complex computational graphs and execute them efficiently on various hardware
platforms, including CPUs, GPUs, and TPUs (Tensor Processing Units).

Figure 5.12: Keras and TensorFlow relationship.

An appropriate flag set by the user allows them to choose the type of hardware to be
utilized by the code, either by selecting GPU acceleration or running on CPU. This
option became necessary due to the different computing environments that users
may have access to. The code was initially developed and tested on a desktop PC,
but later required virtual environments with GPUs available for training. This step
is common in both approaches presented in the thesis.

The second macro step of the code is the definition of the transformer block (named
"TransformerBlock"). At this stage, a custom Keras layer is defined, with the goal
of representing the transformer architecture. It is a basic version of a Transformer
with all the characteristics discussed previously in Chapter 1 (focusing on the self-
attention mechanism).

The third step in the code is the implementation of the "TokenAndPositionEm-
bedding" class, which serves as a custom Keras layer for embedding the input text
data (i.e., the trajectories) as tokens and their corresponding positions. This layer
is a crucial component in preparing the text data for processing through the subse-
quent Transformer blocks. The output of the layer is the sum of token and position
embeddings, effectively incorporating both the spatial information (positions) and
semantic information (tokens) into the continuous vector representations of the in-

5| Models 43

put text data. This prepares the data for further processing through the subsequent
Transformer layers, enabling the model to capture the relationships and dependen-
cies between tokens in the text sequences effectively.

In the fourth step, the dataset is loaded. Minor modifications to the data are done
at this stage.

The fifth stage is where the model architecture is defined. The input sequences are
passed through the custom TokenAndPositionEmbedding prepared in the second
step. Then, the data is passed through the TransformerBlock layer. The final
output from the TransformerBlock is averaged across all time steps using a particular
pooling layer (specifically called "GlobalAveragePooling1D"), followed by a couple
of Dense layers to classify the text into two classes (positive or negative sentiment).
The two classes are referred to as fishing or not-fishing maritime activities.

The fifth and sixth points are where the actual model defined in the previous points
is used. The model is compiled with an optimizer, loss function, and evaluation
metric. The code proceeds to train the model on the training data and evaluate its
performance on the validation data. The training is done for 10 epochs with a batch
size of 32, but further details will be discussed in the following chapter.

44 5| Models

5.2.3. Trajectory as a sequence - Algorithm

Pseudo-algorithms of the first classification method.

Algorithm 5.2 Sequence Creation
1: Load required libraries and pre-processed data
2: for trips do
3: Define grid size (regarding spatial discretization)
4: for logs do
5: Calculate the discretized space where the AIS log follows
6: if square not equal to previous then
7: Add square ID to the sequence
8: end if
9: end for

10: end for

Algorithm 5.3 Sequence Classification
1: Load required libraries and sequences
2: Define the Transformer
3: for sequences do
4: Prepare sequence
5: end for
6: for epochs do
7: Use the sequences to train the Transformer model
8: end for
9: Test the Transformer model

5| Models 45

5.3. Trajectory as a picture

In this section, the second methodology used for naval activity classification will
be presented, involving the consideration of both trajectory data and trajectory im-
ages. The research direction shifted towards this approach due to the less-than-ideal
results obtained in the first methodology. It was hypothesized that leveraging the
Transformer’s ability to capture shape features in trajectory images could potentially
improve the classification performance.

Before delving into the methodology, it is essential to recap the similarities and
differences with the first approach. As previously mentioned, the focus is now dif-
ferent: transformers will be no longer used to classify sequences, but pictures. The
core nature of the transformers model will remain the same.

In contrast to the first approach, where a single trajectory creation methodology
was employed, in this case, the study explored various trajectory image creation
techniques. As detailed in the next chapter, four different types of trajectory images
were generated and analyzed, each incorporating a different level of information.

The biggest difference is that there will be used a pre-trained version of ViT. The
decision to use a pre-trained model offered a practical and efficient solution to achieve
favorable results and it was driven by two primary reasons:

1. Transformers, as seen before, have demonstrated exceptional capabilities in
Natural Language Processing tasks. However, training these models from
scratch necessitates vast amounts of data, which, in this case, were not readily
available. Despite the abundance of AIS (Automatic Identification System)
data that captures ship movements, the time and resources required to train
a Vision transformer model from scratch were prohibitive (several times the
data required to train a vanilla transformer). Consequently, the most viable
approach was to utilize an existing pre-trained model and fine-tune it specifi-
cally for the image classification task.

2. Making the best of the situation: by utilizing a pre-trained model that had
been trained on diverse datasets, potentially dissimilar from the data used in
this particular study, researchers had the opportunity to assess the adaptability
and versatility of these models. It allowed them to explore how effectively the
pre-trained model could be fine-tuned to perform well on a specific task, even
in the presence of variations in the data distribution.

46 5| Models

5.3.1. From the trajectories to the images

Also in this case, to study fishing activities using Transformer architectures, the
first step was to process the raw trajectory data. It was necessary to find a way to
generate a vast volume of images within a reasonable time frame and with consistent
criteria.

The first approach was to leverage the spatial discretization described earlier, which
was used to create textual sequences, for generating images as well. In essence, the
groundwork was already in place: instead of extrapolating a sequence of unique num-
bers, the approach involved saving an image depicting the spatial sections through
which the trajectory passed (see Figure 5.12, it is an example of picture developed
from the same trajectory used to show the previous sequence approach).

To clarify further, the spatial discretization process, which was initially used to
create sequences of discrete points representing the trajectory’s spatial positions,
was adapted for generating trajectory images.

The generated images were square-shaped, and the scale varied from one image to
another to ensure that the entire trajectory could be represented as large as possible.

Figure 5.13: Trajectory as an image.

This approach was similar to the one used with textual sequences, where the dis-
cretization scale was not constant. As trajectories could vary significantly in length
and spatial coverage, using a fixed scale for all images might result in important
details being lost in longer trajectories or wasting space in shorter ones. Therefore
in this first case, the scale was adjusted for each image to ensure that the trajectory
was adequately captured and that important spatial features were preserved.

5| Models 47

Figure 5.14: First image synthesis approach.

In the images above and below (Figure 5.13), it is possible to see six examples of the
trajectory images used. Notice the granularity of the images, which is determined
by the spatial discretization method employed. All images are in black and white
and have dimensions of 100px by 100px (Figure 5.14). Each pixel represents one
of the spatial sections resulting from the spatial discretization process. Specifically,
each white pixel represents a space section where the ship has passed.

Figure 5.15: Zoom over pixels, related to spatial discretization.

After observing a significant improvement in the results (as discussed in the sub-
sequent chapter), the decision was made to test additional variations of trajectory
images.

48 5| Models

Figure 5.16: Second image synthesis approach.

The first evolution involved a change in the zoom perspective. Instead of focusing on
the trajectory’s shape, the attention shifted toward the ship’s geographic position.
In the second graphical approach, images were created with a constant scale and
geographic center for all trajectories (Figure 5.15). From this point onward, no
spatial discretization is used. The trajectories are represented as images of lines
formed by simply connecting the points of the AIS message coordinates.

By maintaining a consistent scale and center across all images, the shape of the
trajectory was no longer emphasized, particularly for shorter trajectories. However,
this approach provided valuable information about the geographic location of the
trajectory.

The images may appear visually similar to the first approach, but they are fun-
damentally different. In the first approach, the emphasis was on highlighting the
shape of the trajectories, whereas in these images, the focus shifted toward their
geographic distribution.

This distinction will become even more apparent with the next further evolution.

The third set of images created and used is, in fact, the same as described above in
the second point. The trajectories are the same, and the methodology is identical,
with the only difference being the addition of a map as the background. It is easy
to notice that the zoom and center of the images are constant across all images.

5| Models 49

Figure 5.17: Third image synthesis approach.

The fourth (and final) approach represents a further evolution in terms of the amount
of information included. Multiple indicators have been added for both the starting
and ending points of the trajectory. Additionally, the trajectory’s color representa-
tion is no longer constant; instead, it is depicted using a range of tones based on the
normalized velocity of the ship.

Figure 5.18: Fourth image synthesis approach.

In this approach, trajectory images are still represented as continuous lines con-
necting consecutive points from the AIS message coordinates. However, several
indicators are now incorporated at both the starting and ending points of the tra-
jectory. These indicators could represent various characteristics or events related to

50 5| Models

the ship’s journey, providing more context and information about the trajectory’s
beginning and end.

By including multiple indicators and employing a variable color representation, the
trajectory images become enriched with more relevant information. This approach
allows the model to capture and learn from not only the spatial path of the trajectory
but also the variations in velocity and other critical indicators during the ship’s
movement.

Having presented the four different approaches used to create four distinct datasets,
the model employed for their classification will now be described. Remarkably, this
model was used without any modifications on all four types of images, enabling
meaningful comparisons across them.

5.3.2. Image classification

In this section, a description of the model used for image classification will be per-
formed.

Following a similar process to what was done for the analysis of the model used for
sequence classification, the model used here has been divided into steps, which will
now be analyzed one by one.

Figure 5.19: Image classification model main steps.

Similarly to the previous approach, the first step involves initializing the actual
model, and all the required libraries for the model are loaded.

In the second step, the data used for image classification is loaded. During this stage,

5| Models 51

the different datasets created were loaded one by one to evaluate their performance
from a classification perspective.

To efficiently handle a large number of images, a special command class from the
Hugging Face library called "ImageFolder" was utilized. This class streamlines
the process of organizing and loading images into the model. By using the Image-
Folder command, the numerous images were exported in the form of a comprehensive
dataset stored in a single file. This approach significantly eased the management
and sharing of the dataset, as dealing with large amounts of image data can be
challenging and may require careful handling. This greatly facilitated the sharing of
files, which was essential given the necessity to use virtual computing environments.

The need to utilize virtual computing environments arises from the size and com-
plexity of the dataset. These environments provide the necessary computational
resources, such as GPU support, to efficiently train deep learning models like the
Vision Transformer (ViT) on large-scale datasets. By efficiently organizing and
loading the data using the ImageFolder command and leveraging virtual computing
environments, the image classification model can be effectively trained and evaluated
on diverse datasets.

In the third stage, the script defines image transformations using "transforms.Compose"
from torchvision library. The transformations include converting images to tensors,
resizing them to (224, 224) pixels, and normalizing the pixel values. This step is
required to use the images as input for the transformer layers.

This passage can be a source of confusion, so let’s take a moment to clarify. When
referring to "image transformations" here, the discussion does not pertain to the
actual Transformers model. Instead, the focus is on the phase of image transforma-
tions (such as resizing, formatting, etc.) that are required before using images with
the Vision Transformer (ViT) model.

The size of the tensors is not constant through the different datasets used. The first
image synthesis approach has a result B&W pictures (so 2-bit colors), while all the
others create images in RGBA format (four color channels: Red, Green, Blue, and
Alpha, and so a four-level tensor).

In the fourth step, the script defines a custom dataset class named ImageDataset,
which is tailored for the ViT model. It inherits from torch.utils.data.Dataset and
provides methods to access images and their corresponding labels.

In the fifth step, the code defines a custom PyTorch module for the Vision Trans-

52 5| Models

former (ViT) model. The custom module is called ViT, and it extends the function-
ality of the ViTModel class provided by the Hugging Face’s transformers library.
The ViT class combines the Vision Transformer model with a linear classifier for
multi-class classification tasks. It allows for fine-tuning the pre-trained ViT model
on a specific image classification dataset. The attention weights are also made avail-
able during the forward pass, which can be useful for understanding the model’s
attention mechanism.

The last steps are quite similar to the ones referred to in the sequences analysis.
In them, the code loads the model, loss function (cross-entropy), and optimizer
(Adam). Training data is then loaded using the ImageDataset class and then fed
into the model in batches. The model is trained for a specified number of epochs
(10), and the loss and accuracy are printed at the end of each epoch.

The script provides also a prediction function to make predictions using the trained
ViT model. It takes an image as input, pre-processes it, and returns the predicted
label.

5.3.3. Trajectory as a picture - Algorithm

See the Code Annex for the code of this last approach.

53

6| Experiments

In this chapter, the focus shifts to the "practical" aspect of this thesis. Delving
into the theory or structure of the models (which has already been described earlier)
is not the objective. Instead, the chapter addresses the practical issues associated
with experimentation. Providing a brief overview of the programming environment
used and outlining any assumptions made will serve as an introduction to the actual
experimentation with the classification models.

6.1. Implementation

Throughout the entire process of planning, designing, and building the models de-
scribed in this thesis, the Python programming language has been used as the sole
tool.

Figure 6.1: Implementation environments.

Python is a versatile and widely-used high-level programming language known for
its simplicity, readability, and extensive ecosystem of libraries and frameworks. It
has gained immense popularity in the field of data science, machine learning, and

54 6| Experiments

artificial intelligence due to its ease of use and robust community support. Python
offers a wide range of libraries and tools specifically tailored for tasks like data
manipulation, numerical computing, and machine learning, some of which have been
already mentioned in the previous chapter.

The actual coding process was performed using the Jupyter Notebook application
on a desktop PC. Jupyter Notebook is an interactive computing environment that
allows users to create and share documents combining live code, visualizations, nar-
rative text, and other rich media. Its user-friendliness and the ability to test small
code stages live were particularly useful during the more complex steps. Once the
code was defined, the execution phase was carried out on different cloud platforms.

The codes related to the pre-processing of raw AIS data were executed on the AWS
SageMaker cloud portal, mainly due to its unlimited CPU computation hours (this
step did not require GPU acceleration).

On the other hand, the experimentation with different Transformer-based approaches
was more challenging. Like many deep learning models, Transformers have a highly
efficient training phase when executed on GPUs. For this reason, they were executed
on another cloud environment: Kaggle, from Alphabet, which provides users with
several hours of weekly GPU computation.

The specifications of the computational environments used are described in the table
below.

Characteristic Desktop PC Google Kaggle AWS SageMaker

CPU Model Intel i7 4770 Intel Xeon Intel Xeon Scalable

GPU Model NVIDIA GTX760 NVIDIA TeslaP100 NVIDIA TeslaP100

RAM 16GB 8GB to 64GB 16GB to 32GB

V-RAM 2GB 13 GB to 16 GB 4GB to 8GB

CPU hours - unlimited unlimited

GPU hours - 30 per week 4 to 8 per day

Availability - very high none

Cloud storage - 5GB 5GB

Ease of use - low high

Table 6.1: Description of the different computational environments (free-plans only
are considered regarding cloud services).

6| Experiments 55

6.2. Assumptions

Some assumptions have been made, both for the sake of simplifying processes and
due to the nature of the data. They are listed below and briefly described.

• To classify fishing activities, the vessel type indicated by the AIS (Automatic
Identification System) transponder was used. This means that if a boat has
the identifier "fishing vessel," its activity will be classified as fishing activity,
regardless of whether it is actively fishing at that particular moment or not.

• It is assumed that in the dataset used for training, there is a 100% correct
indication regarding the vessel type transmitted through the AIS signal and
later used for classification. There is no available dataset with absolute truth
to reference for this purpose.

Figure 6.2: Drone footage of a fishing boat.

• The same datasets (both for training and testing) were used in all the cases
reported in the previous chapter. From the study of sequences to that of im-
ages, the same journeys from the same area were the subjects of classification.
This is not an assumption but a characteristic that is essential to emphasize
the pursuit of balance among different cases.

56 6| Experiments

6.3. Metrics

In the next section, the results of each version of the presented models will be shown.
To facilitate comparison, various commonly used metrics for evaluating classification
models have been employed. Below is a brief overview of these metrics.

A Confusion Matrix (Figure 6.3) is a popular representation of the performance
of classification models. The matrix shows the number of correctly and incorrectly
classified examples, compared to the actual outcomes (true values) in the test data.
It is easy to understand that a goof classifier should describe a matrix with high
values on the diagonal spots.

Figure 6.3: Example of Confusion Matrix.

When discussing binary classification, it is possible to refer to true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Considering the
example table above, the true positives and true negatives (TP and TN) would
be represented by cells A and D, respectively, while the false positives and false
negatives (FP and FN) would be represented by cells B and C, respectively.

Accuracy is the percentage of correctly classified samples out of the total samples
(Equation (6.1)). It provides a general measure of the model’s overall performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Precision, also known as positive predictive value (PPV), represents the proportion
of true positive predictions out of all positive predictions (Equation (6.2)). It
indicates the model’s ability to avoid false positive errors.

Precision =
TP

FP + TN
(6.2)

Recall is also known as sensitivity or true positive rate (TPR), and it represents the

6| Experiments 57

proportion of true positive predictions out of all actual positive samples. It indicates
the model’s ability to capture all positive samples (Equation (6.3)).

Recall =
TP

TP + FN
(6.3)

F1-Score is the harmonic mean of precision and recall (Equation (6.4)). It pro-
vides a balanced measure between precision and recall, especially when classes are
imbalanced.

F1Score =
2TP

2TP + FP + FN
(6.4)

58 6| Experiments

6.4. Sequences - Experiments

The first test carried out was the one done considering the trajectories as text
sequences.

During the training of the model, each epoch took approximately 12-15 minutes,
resulting in a total time of about 2 and a half hours for 10 epochs.

6.4.1. Sequences - Results

In the table below, the confusion matrix obtained by testing the model on the test
dataset and the main comparison metrics are represented.

Figure 6.4: Confusion Matrix - Sequences.

Metric Value

Accuracy 0.8124

PPV 0.0037

TPR 0.3590

F1 Score 0.0073

Table 6.2: Metrics - Sequences.

Even though the accuracy may seem reasonable, one should not be deceived. The
fact that the dataset tends to be imbalanced toward one of the two classes (the
number of trajectories associated with activities other than fishing is significantly
higher) means that if this model tends to predict all instances as belonging to the
majority class, it can achieve high accuracy. However, when studying the F1 score,
it becomes evident that the model is neither accurate nor correct in its predictions.

6| Experiments 59

6.5. Pictures - Experiments

The model used for image classification differs significantly from the one used for
sequences. One of the distinctive features is that it starts from a pre-trained trans-
former architecture and then fine-tunes it.

The model used as the base architecture is "google/vit-base-patch16-224-in21k." The
specific variant refers to the base configuration of the model. In this case, the image
is divided into non-overlapping patches of size 16x16 pixels. The input image size
of 224x224 pixels and the model is pre-trained on a large-scale dataset containing
21,000 classes. This means it has seen a wide range of visual concepts during pre-
training, which can make it more adept at recognizing different objects and patterns.

During the training (fine-tuning) of the model, the time required for each epoch was
not constant but changed from one kind of picture to another. By considering the
first and the second picture versions, 10 to 15 minutes were required, resulting in a
total time of about 2 and a half hours for 10 epochs. The third and fourth datasets
contain pictures far more complex, and so the required time was about 30 minutes
longer for each epoch, defining a total training time of about 7 hours and a half.

6.5.1. Pictures - Results

In the table below, the confusion matrix obtained by testing the model on the test
dataset and the main comparison metrics are represented.

As can be seen from the first dataset, the results are better when compared to the
previous case.

A significant improvement in quality was achieved by imposing constant focus and
centering, while the model does not seem to show significant performance gains or
losses with the addition of further information.

Figure 6.5: Confusion Matrix - Pictures (dataset 1).

60 6| Experiments

Metric Value

Accuracy 0.7440

PPV 0.3301

TPR 0.3207

F1 Score 0.3253

Table 6.3: Metrics - Pictures (dataset 1).

Figure 6.6: Confusion Matrix - Pictures (dataset 2).

Metric Value

Accuracy 0.9520

PPV 0.8089

TPR 0.9252

F1 Score 0.8632

Table 6.4: Metrics - Pictures (dataset 2).

Figure 6.7: Confusion Matrix - Pictures (dataset 3).

6| Experiments 61

Metric Value

Accuracy 0.9550

PPV 0.8200

TPR 0.9312

F1 Score 0.8721

Table 6.5: Metrics - Pictures (dataset 3).

Figure 6.8: Confusion Matrix - Pictures (dataset 4).

Metric Value

Accuracy 0.9538

PPV 0.8679

TPR 0.8831

F1 Score 0.8755

Table 6.6: Metrics - Pictures (dataset 4).

The above-mentioned results show a progressively better evolution in the model’s
performance, albeit reaching a certain asymptote.

Even though in the final chapter, they will be thoroughly discussed, it is interesting
to note that through the images, the model can accurately identify activities related
to fishing with very satisfactory performance.

62 6| Experiments

6.6. Real Case Scenarios

Ignoring for a moment the actual performance of classification models and focus-
ing solely on visual approaches (image classification), it is possible to draw some
interesting conclusions.

For example, which vessels are classified by the models as fishing boats, perhaps
incorrectly? Or which fishing boats are engaged in activities classified as "non-
fishing"?

The answer to the second question is straightforward: fishing boats often transit
between fishing areas, and during these journeys, they may exhibit behaviors similar
to non-fishing vessels traveling along the same routes. This similarity in behavior
can lead to misclassifications by image classification models.

Regarding the first question, identifying which vessels are mistakenly classified as
fishing boats by image classification models requires a more detailed analysis.

To do this, the boats that the latest model presented (ViT classifier) classified as
engaged in fishing activity, despite having a different transponder identifier from
that of fishing vessels, were studied.

Figure 6.9: View of vessel details on MarineTraffic website.

Through an additional Python script, an analysis was performed using the web-
site MarineTraffic. Each IMO identifier code associated with mistakenly classified
vessels was compared with the web portal to gather further information about the
respective boat.

It is important to note that the portal cannot be considered an absolute source of
truth. It is a dataset maintained and updated by community volunteers, so this

https://www.marinetraffic.com/

6| Experiments 63

study should only be regarded as a curiosity by researchers. However, it could
serve as evidence of how this model could be utilized by law enforcement and coast
guards (public entities with access to more comprehensive and official datasets and
information).

6.6.1. Examples of False Negatives: The Seawolf vessel

A particular boat has fueled the interest of researchers. Although it appears as a
generic AIS message "other type," the Seawolf looks like a fishing boat.

Figure 6.10: Seawolf vessel (pictures from marinetraffic.com).

The community on the website confirms this hypothesis, effectively categorizing it
as a fishing boat.

Having sparked interest, further investigation into the vessel’s history was conducted
to understand the possible reasons behind the mismatch between its activities and
the AIS indication. It was discovered that the boat, built in 1982, is now used
for research and education purposes. Its owner is Stony Brook University, which
specializes in marine and meteorological sciences. The ship is, therefore, used for
educational activities, often in situations comparable to those of fishing vessels. This
new information sheds light on the vessel’s current role and activities, explaining
the "other type" designation in the AIS message. While the ship was originally a
fishing boat, it has been repurposed for research and educational endeavors, leading
to the discrepancy in its classification. This finding highlights the importance of
considering historical context and any possible changes in a vessel’s purpose when
interpreting AIS data and identifying ship types. It is evident that this model can be
utilized to detect anomalous maritime activities (such as fishing boats attempting
to conceal their presence by changing their AIS radio classification). However, it
should always be complemented with a minimum research effort to fully understand
the possible reasons behind false negatives.

65

7| Conclusions

In this final chapter, all the possible conclusions of the work will be summarized,
highlighting critical points, and proposing future developments.

In this thesis, researchers explored the possibility of harnessing the potential of
transformer architectures in the context of marine activity classification.

Specifically, they aimed to determine the most effective strategy to achieve this
goal and identify the practical applications of such an approach. Transformer archi-
tectures have demonstrated remarkable capabilities in natural language processing
tasks, image recognition, and various other domains. The researchers hypothesized
that these architectures could be adapted and fine-tuned for marine activity classi-
fication using Automatic Identification System (AIS) data.

Figure 7.1: F1 scores comparison.

In the graph above, it is posible to see a comparison of F1 scores for different models
used. The first one on the left refers to the classifier model utilizing sequences, while

66 7| Conclusions

the others are related to trajectory classifications using the produced images (with
their four corresponding strategies).

It is useful to remember that the F1 score ranges from 0 to 1, with 1 being the
best possible score. A perfect F1 score of 1 indicates that the model has achieved
both perfect precision and perfect recall, meaning it correctly identifies all positive
instances (true positives) and does not misclassify any negative instances (false pos-
itives) or vice versa (false negatives). An F1 score of 0 means that either precision
or recall is 0, indicating a model’s complete failure in correctly classifying one of the
classes.

Evaluating the different scores, it is evident that studying trajectories as images
yields significantly better results compared to studying naval routes as sequences.

Figure 7.2: Accuracy scores comparison.

A slightly different outcome is obtained by comparing the accuracies of the different
models. This highlights the fact that the net value of accuracy tends to be not
entirely reliable in the case of even partially imbalanced datasets.

As presented earlier, the datasets used in both the training and testing phases
exhibit a relatively significant imbalance (further data processing through oversam-
pling techniques was not pursued precisely because the imbalance was not at levels
requiring it).

7| Conclusions 67

Such imbalance (a clear majority of items related to non-fishing activities) allows
for misleading results: the first model is poor, as it classifies almost all trajectories
as "non-fishing," yet it still achieves a respectable accuracy value.

Another clear conclusion is that the classification of fixed-scale and zoomed im-
ages (focusing on geographical dispersion and not just the shape of the trajectory)
promises better results than other alternatives.

The quantity of information contained in each image does not seem to significantly
impact the performance. Ships often undergo prolonged periods of cruising at con-
stant speeds, which may explain why considering speed in the analysis resulted in
almost negligible improvements.

The time required for model training was roughly constant across different types
of images, but the process of creating the images varied significantly. The first two
datasets took only a few hours, while the other two took several days. The rendering
of complex images demands more computational power, and since it did not bring
any significant benefits, it may not be the optimal option for real-time operational
environments or real-time maritime traffic analysis.

The Transformer architectures, particularly the Vision Transformer (ViT), demon-
strated versatility. Excellent classification results were achieved even when starting
from models pre-trained on entirely different images. This highlights the immense
potential of an ideal model trained solely on a massive number of naval scenarios.

In summary, using images to study trajectories and leveraging the power of Trans-
former architectures, especially ViT, holds great promise for improving the classifi-
cation of maritime activities. The study of fixed-scale and zoomed images and the
consideration of speed may be crucial factors in achieving accurate results. How-
ever, the practical implementation should consider the computational demands and
real-time operational requirements when using complex image rendering.

7.1. Further Developments

From a future perspective, several further advancements can be made in this area.

Firstly, a more in-depth study of the type of information to include in the images
could lead to new insights. While this study did not find information that signif-
icantly improved classification, it does not mean that such information does not
exist. Exploring different features or representations in the images might unveil

68 7| Conclusions

additional patterns and correlations that could enhance classification performance.
Including meteorological conditions would help to take into consideration the fact
that weather may influence some ships’ trajectories. There is also a bit of further
experimenting room by considering different ways to create the pictures themselves
(i.e., considering an image of the trajectory where for each picture, the center of the
image is the starting point of the maritime trip).

Secondly, there is potential for studying how this model could be used for classifying
other types of maritime activities or diving into more detailed classifications, such as
different types of fishing practices. Expanding the scope of the model’s capabilities
to handle various activities can widen its applicability and usefulness in monitoring
and managing maritime resources and security.

Thirdly, there is some room for development considering different ways of leveraging
this kind of deep learning architecture. Just consider, for example, how it could
be interesting to apply the models described here, which are already trained on
different geographical areas from where they have been trained, or even use them
not for the purpose of pure classification, but for example, to detect anomalies in
naval trajectories.

Lastly, developing a system that integrates real-time maritime activity on a single
dashboard, similar to the live map available on websites like marinetraffic.com, along
with indications of activities classified as suspicious by the model (false negatives),
would be highly beneficial. Such an integrated approach would increase both the ef-
fectiveness and efficiency in combating Illegal, Unreported, and Unregulated (IUU)
activities. In this way a far more dept analysis could be interesting to do, bring-
ing together information from different perspectives, such as aggregate information
about a vessel across multiple trajectories of itself. By quickly flagging potential sus-
picious behaviors, authorities can take prompt action, improving maritime security
and resource management.

Overall, continued research and development in these directions can lead to more
robust and versatile models for maritime activity classification, enhancing maritime
monitoring, management, and security measures. Using AI models like this can be
a valuable tool in monitoring and identifying unusual maritime behavior. It can
help authorities and researchers identify potential cases of misclassified vessels or
vessels engaging in suspicious activities. Nevertheless, it is essential to acknowledge
that these models may have limitations and may not always provide a complete or
accurate picture.

69

Bibliography

[1] K. G. Aarsæther. Estimating navigation patterns from ais. The Journal of
Navigation, 2019.

[2] K. Bae. Transformer networks for trajectory classification. 2022 IEEE Inter-
national Conference on Big Data and Smart Computing (BigComp), 2022.

[3] L. F. Chuah. Extracting shipping route patterns by trajectory clustering model
based on automatic identification system data. Sustainability, 2018.

[4] G. K. D. de Vries. Machine learning for vessel trajectories using compression,
alignments and domain knowledge. Expert Systems with Applications, 2018.

[5] A. Dosovitskiy. An image is worth 16x16 words: Transformers for image recog-
nition at scale. ICLR 2021, 2020.

[6] E. d’Afflisio. Maritime anomaly detection based on mean-reverting stochastic
processes applied to a real-world scenario. 21st International Conference on
Information Fusion (FUSION), 2018.

[7] M. Elwakdy. A novel trajectories classification approach for different types of
ships using a polynomial function and anfis. International Conference on Image
Processing, Computer Vision, and Pattern Recognition, 2015.

[8] Y. Endo. Classifying spatial trajectories using representation learning. Int J
Data Sci Anal 2016, 2016.

[9] F. Giuliari. Transformer networks for trajectory forecasting. 25th International
Conference on Pattern Recognition (ICPR), 2020.

[10] F. Katsilieris. Detection of malicious ais position spoofing by exploiting radar
information. 16th International Conference on Information Fusion (FUSION),
2013.

[11] R. Keane. Detecting motion anomalies. 8th ACM SIGSPATIAL Workshop on
GeoStreaming, 2017.

70 | Bibliography

[12] P. Kraus. Ship classification based on trajectory data with machine-learning
methods. The 19th International Radar Symposium IRS 2018, 2018.

[13] Y. Liang. Trajformer: Efficient trajectory classification with transformers.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA, 2022.

[14] H. Liu. End-to-end trajectory transportation mode classification using bi-lstm
recurrent neural network. 12th International Conference on Intelligent Systems
and Knowledge Engineering (ISKE), 2017.

[15] H. Liu. Spatio-temporal gru for trajectory classification. 2019 IEEE Interna-
tional Conference on Data Mining (ICDM), 2018.

[16] P. Mishra. Vt-adl: A vision transformer network for image anomaly detection
and localization. arXiv:2104.10036v1, 2021.

[17] NATO. Ais (automatic identification system) overview, 2021. URL here.

[18] A. Navaz. Convolutional lstm based transportation mode learning from raw
gps trajectories. IET Intelligent Transport Systems, 2020.

[19] D. D. Nguyen. Vessel trajectory prediction using sequence-to-sequence models
over spatial grid. DEBS ’18’, 2018.

[20] G. Palotta. Vessel pattern knowledge discovery from ais data: A framework for
anomaly detection and route prediction. Entropy, 2017.

[21] D. S. Pedroche. Architecture for trajectory-based fishing ship classification with
ais data. Sensors 2020, 20, 3782; doi:10.3390/s20133782, 2020.

[22] A. Radon. Contextual verification for false alarm reduction in maritime
anomaly detection. IEEE International Conference on Big Data, 2015.

[23] K. Sheng. Research on ship classification based on trajectory features. Cam-
bridge University Press, 2017.

[24] USGS. How much water is there on earth?, 2019. URL here.

[25] A. Vaswani. Attention is all you need. 31st Conference on Neural Information
Processing Systems, 2017.

[26] Z. Wei. Ais trajectory simplification algorithm considering ship behaviours.
Ocean Eng., 2020.

[27] Wikipedia. Illegal, unreported and unregulated fishing, 2023. URL here.

https://shipping.nato.int/nsc/operations/news/2021/ais-automatic-identification-system-overview
https://www.usgs.gov/special-topics/water-science-school/science/how-much-water-there-earth
https://en.wikipedia.org/wiki/Illegal,_unreported_and_unregulated_fishing

| BIBLIOGRAPHY 71

[28] WROMS. World register of marine species website, 2023. URL here.

[29] H. Wu. A fast trajectory outlier detection approach via driving behavior mod-
eling. CIKM’17, November 6-10, 2017, 2017.

[30] Z. Yan. Ship classification and anomaly detection based on spaceborne ais data
considering behavior characteristic. Sensors 2022, 22, 7713, 2022.

[31] D. Zhang. ibat: Detecting anomalous taxi trajectories from gps traces. Ubi-
Comp’11, 2011.

[32] Y. Zhang. Ut-atd: Universal transformer for anomalous trajectory detection
by embedding trajectory information. 10.18293/DMSVIVA2021-011, 2021.

https://www.marinespecies.org/

73

A| Appendix A

In this chapter, the code used to create and classify images will be presented.

A.1. Picture Creation
1 FILE_PS = ’Datasets/AIS_CLEAN_Data/TRAIN_POSTPROC_mk2.parquet ’
2 import math
3 import folium
4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 import matplotlib.collections as mcoll
8 import matplotlib.colors as mcolors
9 import matplotlib.path as mpath

10 from tqdm import tqdm
11 import gc
12 import geopandas as gpd
13 import io
14 import cartopy
15 import cartopy.crs as ccrs
16 import glob
17 import imageio
18 from PIL import Image
19 import shapefile
20 from shapely.geometry import shape ,mapping , Point , Polygon ,

MultiPolygon
21 import pyproj
22 import imgkit
23 def utm_to_latlon(easting , northing , zone_number , zone_letter ,

northern_hemisphere=True):
24 utm_proj = pyproj.Proj(proj=’utm’, zone=zone_number , ellps=’

WGS84’, north=northern_hemisphere)
25 lon , lat = utm_proj(easting , northing , inverse=True)
26 return lat , lon
27 def Average(lst):
28 return sum(lst) / len(lst)
29 def trip_sequencer(trip_X ,trip_Y ,cell_size ,xmin ,ymin):
30 trip_grid = np.zeros((len(trip_X) ,2), dtype=int)
31 for i in range(len(trip_X)):
32 x_value = math.ceil((trip_X[i]-xmin)/cell_size)
33 y_value = math.ceil((trip_Y[i]-ymin)/cell_size)
34 trip_grid[i,0] = x_value
35 trip_grid[i,1] = y_value
36 return trip_grid
37 def trip_completor(trip_sequence):
38 iterations = 2
39 i = 1
40 while i < iterations:

74 A| Appendix A

41 distance_with_previous = abs((trip_sequence[i,0] -
trip_sequence[i-1 ,0]))+\

42 abs((trip_sequence[i,1] - trip_sequence[i-1,1]))
43 if distance_with_previous >1:
44 points = generate_integer_points(trip_sequence[i-1,:],

trip_sequence[i,:])
45 trip_sequence = np.concatenate ((trip_sequence [:i],

points , trip_sequence[i:]), axis =0)
46 i = i+1
47 iterations = len(trip_sequence)
48 return trip_sequence
49 def PRE_trip_sequencer(trip_X ,trip_Y ,N_pixels ,border ,print_FLAG):
50 xmin , xmax = min(trip_X)-border , max(trip_X)+border
51 ymin , ymax = min(trip_Y)-border , max(trip_Y)+border
52 xrange = xmax -xmin
53 yrange = ymax -ymin
54

55 cell_size = math.ceil(max(xrange ,yrange)/N_pixels) #[m/pixel]
56

57 if xrange >yrange:
58 ymax = ymax+(xrange -yrange)
59 else:
60 xmax = xmax+(yrange -xrange)
61

62 xrange = xmax -xmin
63 yrange = ymax -ymin
64

65 num_cells_x = math.ceil(xrange/cell_size)
66 num_cells_y = math.ceil(yrange/cell_size)
67 num_cells_tot = num_cells_x*num_cells_y
68 if print_FLAG:
69 print(num_cells_tot ,’ cells created ’)
70 return xmin , xmax , ymin , ymax , cell_size , num_cells_x ,

num_cells_y
71 def generate_integer_points(start , end):
72 dx = int(round(end [0] - start [0]))
73 dy = int(round(end [1] - start [1]))
74 points = np.zeros((max(abs(dx), abs(dy)) + 1,2), dtype=int)
75 for i in range(max(abs(dx), abs(dy)) + 1):
76 x = int(round(start [0] + i*dx/(max(abs(dx), abs(dy)))))
77 y = int(round(start [1] + i*dy/(max(abs(dx), abs(dy)))))
78 points[i,0] = x
79 points[i,1] = y
80 points = points [1: -1]
81 return points
82 def POST_trip_sequencer(adding ,N_pixels ,trip_sequence ,padding):
83 trajectory_matrix = np.zeros((N_pixels+1,N_pixels +1), dtype=int

)
84 trajectory_matrix_2bit = np.zeros ((N_pixels+1,N_pixels +1),

dtype=int)
85 for i in range(len(trip_sequence)):
86 old = trajectory_matrix[trip_sequence[i,0], trip_sequence[i

,1]]
87 trajectory_matrix[trip_sequence[i,0], trip_sequence[i,1]] =

old + adding
88 for i in range(len(trajectory_matrix)):
89 for j in range(len(trajectory_matrix)):
90 if trajectory_matrix[i,j]>0:
91 trajectory_matrix_2bit[i,j] = 1
92 trajectory_matrix = np.pad(trajectory_matrix , padding , mode=’

constant ’)
93 trajectory_matrix_2bit = np.pad(trajectory_matrix_2bit , padding

, mode=’constant ’)
94 return trajectory_matrix , trajectory_matrix_2bit

A| Appendix A 75

95 def split_list(lst , split_size):
96 return [lst[i:i+split_size] for i in range(0, len(lst),

split_size)]
97 def colorline(
98 x, y, z=None , cmap=plt.get_cmap(’copper ’), norm=plt.Normalize

(0.0, 1.0),
99 linewidth=3, alpha =1.0):

100 if z is None:
101 z = np.linspace (0.0, 1.0, len(x))
102 if not hasattr(z, "__iter__"):
103 z = np.array ([z])
104 z = np.asarray(z)
105 segments = make_segments(x, y)
106 lc = mcoll.LineCollection(segments , array=z, cmap=cmap , norm=

norm ,
107 linewidth=linewidth , alpha=alpha)
108 ax = plt.gca()
109 ax.add_collection(lc)
110 return lc
111 def make_segments(x, y):
112 points = np.array([x, y]).T.reshape(-1, 1, 2)
113 segments = np.concatenate ([points [:-1], points [1:]], axis =1)
114 return segments
115 AIS_dataframe = pd.read_parquet(FILE_PS , engine=’pyarrow ’)
116 TripID_list = list(AIS_dataframe[’TripID ’]. unique ())
117 url = ’https ://stamen -tiles -{s}.a.ssl.fastly.net/toner -background /{

z}/{x}/{y}{r}.png’
118 tile_layer = folium.TileLayer(tiles=url ,name=’Custom ’,attr=’ ’)
119 color_1 = ’#FF0000 ’ #red
120 color_2 = ’#c27ba0 ’ #pinkish
121 color_cmap = mcolors.LinearSegmentedColormap.from_list(’

custom_colormap ’, [color_1 , color_2])
122 alredydone = True
123 if alredydone == False:
124 minimum_area = 1e-6
125 trips_to_remove = []
126

127 for Trip in tqdm(TripID_list , position=0, leave=True):
128 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] ==

Trip]
129 min_lat = this_trip[’LAT’].min()
130 max_lat = this_trip[’LAT’].max()
131 min_lon = this_trip[’LON’].min()
132 max_lon = this_trip[’LON’].max()
133

134 if (max_lat - min_lat) * (max_lon - min_lon) < minimum_area
:

135 trips_to_remove.append(Trip)
136

137 AIS_dataframe2 = AIS_dataframe [~ AIS_dataframe[’TripID ’].isin(
trips_to_remove)]

138 AIS_dataframe2.to_parquet(’output.parquet ’, engine="pyarrow")
139 TripID_list = list(AIS_dataframe2[’TripID ’]. unique ())
140 print(len(list(AIS_dataframe[’TripID ’]. unique ())) - len(

TripID_list))
141 Trip_analyzed = 100023
142 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] ==

Trip_analyzed]
143 trip_X = this_trip[’X’]. tolist ()
144 trip_Y = this_trip[’Y’]. tolist ()
145 trip_lat = this_trip[’LAT’]. tolist ()
146 trip_lon = this_trip[’LON’]. tolist ()
147 trip_type = this_trip[’VesselType ’]. tolist ()[0]
148 print(’Vessel Type is:’,trip_type)

76 A| Appendix A

149 map = folium.Map(location =[Average(trip_lat), Average(trip_lon)],
zoom_start =8, zoom_control=False ,\

150 scrollWheelZoom=True ,dragging=False ,tiles=tile_layer
,attr=’ ’,width =512, height =512)

151 points = []
152 folium.PolyLine(list(zip(trip_lat , trip_lon)), color=’red’).add_to(

map)
153 display(map)
154 min_lat = this_trip[’LAT’].min()
155 max_lat = this_trip[’LAT’].max()
156 min_lon = this_trip[’LON’].min()
157 max_lon = this_trip[’LON’].max()
158 fig = plt.figure(figsize =(15 ,15))
159 ax = plt.axes(projection=ccrs.PlateCarree ())
160 ax.set_extent ([-76.75, -67.95, 34.60, 43.40] , crs=ccrs.PlateCarree

())
161 #ax.stock_img ()
162 ax.add_feature(cartopy.feature.LAND)
163 ax.add_feature(cartopy.feature.OCEAN)
164 #ax.add_feature(cartopy.feature.COASTLINE ,linewidth =0.3)
165 #ax.add_feature(cartopy.feature.BORDERS , linestyle=’:’,linewidth

=0.3)
166 #ax.add_feature(cartopy.feature.LAKES , alpha =0.5)
167 #ax.add_feature(cartopy.feature.RIVERS)
168 #ax.plot(this_trip[’LON ’], this_trip[’LAT ’], color=’red ’, linewidth

=1.5, transform=ccrs.Geodetic ())
169 max_speed = max(this_trip[’SOG’])
170 colorline(this_trip[’LON’], this_trip[’LAT’],(this_trip[’SOG’]/

max_speed),cmap=color_cmap , linewidth =5)
171 ax.scatter(list(this_trip[’LON’])[0], list(this_trip[’LAT’])[0],

color=’green’, linewidth =20, marker=’x’,\
172 transform=ccrs.Geodetic ())
173 ax.scatter(list(this_trip[’LON’])[-1], list(this_trip[’LAT’])[-1],

color=’green’, linewidth =20, marker=’s’,\
174 transform=ccrs.Geodetic ())
175 plt.savefig("test.png",pad_inches =0, bbox_inches=’tight ’)
176 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] ==

Trip_analyzed]
177 min_lat = this_trip[’LAT’].min()
178 max_lat = this_trip[’LAT’].max()
179 min_lon = this_trip[’LON’].min()
180 max_lon = this_trip[’LON’].max()
181

182 print((max_lat - min_lat) * (max_lon - min_lon))
183 test_savings = False
184

185 if test_savings:
186 path_wkthmltoimage = r’E:\ Programs\PC Programs\Wkhtmltopdf\bin\

wkhtmltoimage.exe’
187 config = imgkit.config(wkhtmltoimage=path_wkthmltoimage)
188 options = {’quiet’: ’’,’crop -w’: ’512’}
189

190 map.save(’test.html’)
191

192 imgkit.from_file(’test.html’, ’out.jpg’,options=options , config
= config)

193

194 img_data = map._to_png ()
195 img = Image.open(io.BytesIO(img_data))
196 img.save(’trajectory_map.png’)
197 border = 10
198 N_pixels = 100
199 xmin , xmax , ymin , ymax , cell_size , num_cells_x , num_cells_y =

PRE_trip_sequencer(trip_X ,trip_Y ,N_pixels ,border ,True)

A| Appendix A 77

200 trip_sequence = trip_sequencer(trip_X ,trip_Y ,cell_size ,xmin ,ymin)
201 trip_sequence = trip_completor(trip_sequence)
202 adding = 1
203 trajectory_matrix , trajectory_matrix_2bit = POST_trip_sequencer(

adding ,N_pixels ,trip_sequence ,10)
204 plt.figure(figsize =(20 ,20))
205 ax = plt.axes()
206 ax.matshow(trajectory_matrix , cmap=plt.cm.inferno)
207 plt.axis(’off’)
208 #plt.savefig ("test.png", bbox_inches=’tight ’)
209 plt.show()
210 create_ANALOG = False
211 create_2Bit = False
212

213 border = 0
214 N_pixels = 512
215 adding = 1
216 fig_size = 20
217 padding = 10
218

219 trips_ID = []
220 trips_IMO = []
221 trips_VesselType = []
222 trips_Fishing = []
223 alredydone = True
224 if alredydone == False:
225 for Trip in tqdm(TripID_list , position=0, leave=True):
226 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] ==

Trip]
227 trips_ID.append(Trip)
228 if len(this_trip[’IMO’]) >0:
229 trips_IMO.append(this_trip[’IMO’].iat [0])
230 trips_VesselType.append(this_trip[’VesselType ’].iat [0])
231 if this_trip[’VesselType ’].iat[0] == 30:
232 trips_Fishing.append (1)
233 else:
234 trips_Fishing.append (0)
235

236 image_resume = pd.DataFrame(list(zip(trips_ID , trips_IMO ,
trips_VesselType ,trips_Fishing)),

237 columns =[’TripID ’, ’IMO’, ’Type’,’isFishing ’])
238 image_resume.to_csv(’TRAIN_resume.csv’)
239 alredydone = True
240 if alredydone == False:
241 for Trip in tqdm(TripID_list , position=0, leave=True):
242 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’]

== Trip]
243 if len(this_trip[’IMO’]) >0:
244 map = folium.Map(location =[Average(this_trip[’LAT’

]), Average(this_trip[’LON’])],\
245 zoom_start =8, zoom_control=False ,\
246 scrollWheelZoom=False ,dragging=False ,

tiles=tile_layer ,attr=’ ’,\
247 width=N_pixels , height=N_pixels)
248 folium.PolyLine(list(zip(this_trip[’LAT’],

this_trip[’LON’])), color=’red’).add_to(map)
249 if this_trip[’VesselType ’].iat[0] == 30:
250 name = ’Outputs/Pictures/Folium/trainHTML/

Fishing/’+str(Trip)+’.html’
251 map.save(name)
252 else:
253 name = ’Outputs/Pictures/Folium/trainHTML/

Non_Fishing/’+str(Trip)+’.html’
254 map.save(name)

78 A| Appendix A

255 %% capture --no -display
256

257 for Trip in tqdm(TripID_list , position=0, leave=True):
258 if create_ANALOG or create_2Bit:
259 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] ==

Trip]
260 trip_X = this_trip[’X’]. tolist ()
261 trip_Y = this_trip[’Y’]. tolist ()
262 xmin , xmax , ymin , ymax , cell_size , num_cells_x , num_cells_y

= PRE_trip_sequencer(trip_X ,trip_Y ,N_pixels ,border ,
False)

263 trip_sequence = trip_sequencer(trip_X ,trip_Y ,cell_size ,xmin
,ymin)

264 trip_sequence = trip_completor(trip_sequence)
265 trajectory_matrix , trajectory_matrix_2bit =

POST_trip_sequencer(adding ,N_pixels ,trip_sequence ,
padding)

266 if create_ANALOG:
267 if this_trip[’VesselType ’].iat[0] == 30:
268 name = ’Outputs/Pictures/Analog/train/Fishing/’+str(

Trip)+’.png’
269 imageio.imwrite(name , trajectory_matrix)
270 else:
271 name = ’Outputs/Pictures/Analog/train/Non_Fishing/’+str

(Trip)+’.png’
272 imageio.imwrite(name , trajectory_matrix)
273 if create_2Bit:
274 if this_trip[’VesselType ’].iat[0] == 30:
275 name = ’Outputs/Pictures /2Bit/train/Fishing/’+str(Trip)

+’_2bit.png’
276 imageio.imwrite(name , trajectory_matrix_2bit)
277 else:
278 name = ’Outputs/Pictures /2Bit/train/Non_Fishing/’+str(

Trip)+’_2bit.png’
279 imageio.imwrite(name , trajectory_matrix_2bit)
280 gc.collect ()
281 TripID_list_splitted = split_list(TripID_list , 25000)
282 len(TripID_list_splitted)
283 for Trip in tqdm(TripID_list_splitted [0], position=0, leave=True):
284 this_trip = AIS_dataframe.loc[AIS_dataframe[’TripID ’] == Trip]
285 plt.figure(figsize =(3,3))
286 ax = plt.axes(projection=ccrs.PlateCarree ())
287 ax.set_extent ([-76.75, -67.95, 34.60, 43.40] , crs=ccrs.

PlateCarree ())
288 ax.add_feature(cartopy.feature.LAND)
289 ax.add_feature(cartopy.feature.OCEAN)
290 colorline(this_trip[’LON’], this_trip[’LAT’],(this_trip[’SOG’]/

max(this_trip[’SOG’])),cmap=color_cmap , linewidth =2.5)
291 ax.scatter(list(this_trip[’LON’])[0], list(this_trip[’LAT’])

[0], color=’green’,\
292 linewidth=5, marker=’x’,transform=ccrs.Geodetic ())
293 ax.scatter(list(this_trip[’LON’])[-1], list(this_trip[’LAT’])

[-1], color=’green ’,\
294 linewidth=5,marker=’s’,transform=ccrs.Geodetic ())
295 if this_trip[’VesselType ’].iat[0] == 30:
296 name = ’Outputs/Pictures/Cartopy_mk2/test/Fishing/’+str(

Trip)+’.png’
297 else:
298 name = ’Outputs/Pictures/Cartopy_mk2/test/Non_Fishing/’+str

(Trip)+’.png’
299 plt.savefig(name ,pad_inches =0, bbox_inches=’tight ’)
300 plt.close(’all’)

A| Appendix A 79

A.2. Picture Classification
1 from datasets import load_dataset
2 import numpy as np
3 import pandas as pd
4 import torch
5 import datasets
6 import cv2
7 import torch.nn as nn
8 from transformers import ViTModel , ViTConfig
9 from torchvision import transforms

10 from torch.optim import Adam
11 from torch.utils.data import DataLoader
12 from tqdm import tqdm
13 import matplotlib.pyplot as plt
14 from sklearn import metrics
15 from sklearn.metrics import roc_auc_score , roc_curve
16 color_1 = ’red’
17 color_2 = ’blue’
18 color_bck = ’white’
19 #dataset = load_dataset (" imagefolder", data_dir=’/Users/masui/

iCloudDrive/LastBoatNotLeast -master/Outputs/Pictures/Analog ’)
20 #dataset.save_to_disk(’Datasets/AIS_CLEAN_Data/ImageFolder_Data/

Analog_dataset ’)
21 #dataset = load_dataset (" imagefolder", data_dir=’/Users/masui/

iCloudDrive/LastBoatNotLeast -master/Outputs/Pictures/Cartopy ’)
22 #dataset.save_to_disk(’Datasets/AIS_CLEAN_Data/ImageFolder_Data/

Cartopy_dataset ’)
23 #dataset = load_dataset (" imagefolder", data_dir=’/Users/masui/

iCloudDrive/LastBoatNotLeast -master/Outputs/Pictures/Cartopy_mk2
’)

24 #dataset.save_to_disk(’Datasets/AIS_CLEAN_Data/ImageFolder_Data/
Cartopy_mk2_dataset ’)

25 #dataset = load_dataset (" imagefolder", data_dir=’/Users/masui/
iCloudDrive/LastBoatNotLeast -master/Outputs/Pictures/Cartopy_mk3
’)

26 #dataset.save_to_disk(’Datasets/AIS_CLEAN_Data/ImageFolder_Data/
Cartopy_mk3_dataset ’)

27 #print(dataset)
28 #dataset = datasets.load_from_disk (’/kaggle/input/analog -dataset/

Analog_dataset ’)
29 #dataset = datasets.load_from_disk(’Datasets/AIS_CLEAN_Data/

ImageFolder_Data/Analog_dataset ’)
30 #dataset = datasets.load_from_disk (’/kaggle/input/cartopy -dataset/

Cartopy_dataset ’)
31 #dataset = datasets.load_from_disk(’Datasets/AIS_CLEAN_Data/

ImageFolder_Data/Cartopy_dataset ’)
32 #dataset = datasets.load_from_disk (’/kaggle/input/cartopymk2 -

dataset/Cartopy_mk2_dataset ’)
33 #dataset = datasets.load_from_disk(’Datasets/AIS_CLEAN_Data/

ImageFolder_Data/Cartopy_mk2_dataset ’)
34 #dataset = datasets.load_from_disk (’/kaggle/input/cartopy -mk3/

Cartopy_mk3_dataset ’)
35 dataset = datasets.load_from_disk(’Datasets/AIS_CLEAN_Data/

ImageFolder_Data/Cartopy_mk3_dataset ’)
36 print(dataset)
37 labels = dataset["train"]. features["label"].names
38 num_labels = len(dataset["train"]. features["label"]. names)
39 label2id , id2label = dict(), dict()
40 for i, label in enumerate(labels):
41 label2id[label] = i
42 id2label[i] = label

80 A| Appendix A

43 transform = transforms.Compose ([transforms.ToTensor (),transforms.
Resize ((224 , 224)),

44 #transforms.Normalize(mean =[0.5, 0.5, 0.5],std=[0.5, 0.5,
0.5])])

45 transforms.Normalize(mean =[0.5, 0.5, 0.5, 0.5],std =[0.5,
0.5, 0.5, 0.5])]) #COLOR RGBA

46 #transforms.Normalize(mean =[0.5] , std =[0.5])]) #B&W
47

48 class ImageDataset(torch.utils.data.Dataset):
49

50 def __init__(self , input_data):
51 self.input_data = input_data
52 self.transform = transforms.Compose ([
53 transforms.ToTensor (),
54 transforms.Resize ((224 , 224), antialias=True),
55 #transforms.Normalize(mean =[0.5, 0.5, 0.5],std=[0.5, 0.5,

0.5])])
56 transforms.Normalize(mean =[0.5, 0.5, 0.5, 0.5],std =[0.5,

0.5, 0.5, 0.5])]) #COLOR RGBA
57 #transforms.Normalize(mean =[0.5] , std =[0.5])]) #B&W
58

59 def __len__(self):
60 return len(self.input_data)
61

62 def get_images(self , idx):
63 return self.transform(self.input_data[idx][’image ’])
64

65 def get_labels(self , idx):
66 return self.input_data[idx][’label’]
67

68 def __getitem__(self , idx):
69 # Get input data in a batch
70 train_images = self.get_images(idx)
71 train_labels = self.get_labels(idx)
72 return train_images , train_labels
73

74 class ViT(nn.Module):
75 def __init__(self , config=ViTConfig (), num_labels =20,

model_checkpoint=’google/vit -base -patch16 -224- in21k ’):
76 super(ViT , self).__init__ ()
77 self.vit = ViTModel.from_pretrained(model_checkpoint ,

num_channels =4, add_pooling_layer=False ,
ignore_mismatched_sizes=True)

78 self.classifier = nn.Linear(config.hidden_size , num_labels)
79

80 def forward(self , x):
81 outputs = self.vit(x, output_attentions=True)
82 x = outputs[’last_hidden_state ’]
83 attention_weights = outputs[’attentions ’]
84 output = self.classifier(x[:, 0, :])
85 return output , attention_weights
86

87 def model_train(dataset , epochs , learning_rate , bs):
88 use_cuda = torch.cuda.is_available ()
89 device = torch.device("cuda" if use_cuda else "cpu")
90 # Load model , loss function , and optimizer
91 model = ViT().to(device)
92 criterion = nn.CrossEntropyLoss ().to(device)
93 optimizer = Adam(model.parameters (), lr=learning_rate)
94 # Load batch image
95 train_dataset = ImageDataset(dataset)
96 train_dataloader = DataLoader(train_dataset , num_workers =1,

batch_size=bs, shuffle=True)
97 # Fine tuning loop

A| Appendix A 81

98 for i in range(epochs):
99 total_acc_train = 0

100 total_loss_train = 0.0
101 for train_image , train_label in tqdm(train_dataloader):
102 output , attention_weights = model(train_image.to(device

))
103 loss = criterion(output , train_label.to(device))
104 acc = (output.argmax(dim =1) == train_label.to(device)).

sum().item()
105 total_acc_train += acc
106 total_loss_train += loss.item()
107

108 loss.backward ()
109 optimizer.step()
110 optimizer.zero_grad ()
111 print(f’Epochs: {i + 1} | Loss: {total_loss_train / len(

train_dataset): .3f} | Accuracy: {total_acc_train / len(
train_dataset): .3f}’)

112 return model
113

114

115 def predict(img):
116

117 use_cuda = torch.cuda.is_available ()
118 device = torch.device("cuda" if use_cuda else "cpu")
119 transform = transforms.Compose ([
120 transforms.ToTensor (),
121 transforms.Resize ((224 , 224)),
122 transforms.Normalize(mean =[0.5, 0.5, 0.5, 0.5],std =[0.5,

0.5, 0.5, 0.5])])
123 #transforms.Normalize(mean =[0.5, 0.5, 0.5],std=[0.5, 0.5,

0.5])])
124 #transforms.Normalize(mean =[0.5] , std =[0.5])])
125 img = transform(img)
126 output , attention_weights = trained_model(img.unsqueeze (0).to(

device))
127 prediction = output.argmax(dim =1).item()
128

129 return id2label[prediction]
130

131 #hyperparameters
132 EPOCHS = 10
133 LEARNING_RATE = 1e-6
134 BATCH_SIZE = 16
135 #train the model
136 trained_model = model_train(dataset[’train’], EPOCHS , LEARNING_RATE

, BATCH_SIZE)
137 image = dataset[’test’][7][’image ’]
138 image = transform(image)
139

140 device = torch.device(’cuda’ if torch.cuda.is_available () else ’cpu
’)

141 image = image.to(device)
142 output , attention_weights = trained_model(image.unsqueeze (0).to(

device))
143

144 #print(attention_weights)
145 torch.save(trained_model ,’/kaggle/working/

trained_model_10_Epo_Cartopymk3 ’)
146 #trained_model = torch.load ("/ kaggle/input/trained/Trained/

TrainedIC_10_Epo_Analog",map_location=torch.device(’cuda ’)) #cpu
or cuda

147 #trained_model = torch.load ("/ kaggle/input/trained/Trained/
TrainedIC_10_Epo_Cartopy",map_location=torch.device(’cuda ’)) #

82 A| Appendix A

cpu or cuda
148 #trained_model = torch.load ("/ kaggle/input/trained/Trained/

TrainedIC_10_Epo_Cartopy_mk2",map_location=torch.device(’cuda ’))
#cpu or cuda

149 #trained_model = torch.load ("/ kaggle/input/trained/Trained/
TrainedIC_10_Epo_Cartopy_mk3",map_location=torch.device(’cuda ’))
#cpu or cuda

150

151 trained_model = torch.load("Trained/
TrainedIC_10_Epo_Cartopy_mk3_wtAtt",map_location=torch.device(’
cpu’)) #cpu or cuda

152 print(’is’,id2label[dataset[’test’][7][’label’]],’, predicted ’,
predict(dataset[’test’][7][’image ’]))

153 dataset[’test’][7][’image’]
154 true_labels = []
155 predicted_labels = []
156 datasetname = ’test’
157 for i in tqdm(range(len(dataset[datasetname])), position=0, leave=

True):
158 true_labels.append(dataset[datasetname][i][’label ’])
159 predicted_labels.append(label2id[predict(dataset[datasetname][i

][’image ’])])
160 confusion_matrix = metrics.confusion_matrix(true_labels ,

predicted_labels)
161 cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix =

confusion_matrix , display_labels = [’Fishing ’, ’Non Fishing ’])
162 cm_display.plot()
163 plt.show()
164 print(metrics.classification_report(true_labels , predicted_labels))
165 EVALUATION_resume = pd.DataFrame(list(zip(true_labels ,

predicted_labels)),\
166 columns =[’TRUE_labels ’, ’

PREDICTED_labels ’])
167 EVALUATION_resume.to_csv(’EVALUATION_resume.csv’)
168 fpr , tpr , _ = roc_curve(true_labels , predicted_labels)
169 AUC_Score = roc_auc_score(true_labels , predicted_labels)
170 print(AUC_Score)
171 plt.figure(figsize =(20, 15))
172 colors = [color_1 ,color_1]
173 linestyles = [’solid’,’dotted ’]
174 plt.plot(fpr , tpr ,linestyle=linestyles [0], color=colors [0], linewidth

=3.5)
175

176 plt.title(’ROC Curves ’)
177 plt.ylabel(’True Positive Rate’)
178 plt.xlabel(’False Positive Rate’)
179 plt.legend ()
180 plt.grid(alpha =0.2, color=color_2)
181 ax = plt.gca()
182 ax.set_facecolor(color_bck)
183 plt.show()

83

List of Figures

1 Fishing boats. 1

1.1 AIS Functional Scheme, picture from [27] 4
1.2 Examples of IUUF-related activities. 5
1.3 Transformer architecture. 7
1.4 OpenAI ChatGPT is nowadays one of the most famous examples of

Transformers’ potential. 8
1.5 Vision Transformer (ViT) architecture. 11
1.6 Attention masks over analyzed pictures. 12
1.7 Example images in the CIFAR100 training dataset. 12

2.1 Basic movement patterns of ship trajectory, image from [23]. 15
2.2 Trajectories of different vessel types (left image) and the result of

trajectory clustering (right image), image from [12]. 16
2.3 Arctic Prowdler, a vessel whose behavior was classified as "anoma-

lous" by the model in [30]. 17
2.4 The Architecture of UT used in the paper image from [32]. 18
2.5 The Architecture of ViT used in the paper image from [16]. 18
2.6 The scheme of the process used in the paper image from [8]. 19

3.1 Sikorsky MH-60T Jayhawk helicopter during coastal patrol operations. 23

4.1 Maritime traffic around Panama Canal. Screen-shoot of MarineTraf-
fic website, one of the most famous AIS live maps providers. 25

4.2 AccessAIS map, the download portal of US AIS data from marinecadas-
tre.gov. 28

4.3 The geographic area from which the data was collected. 29
4.4 Dataset items distribution between fishing and non-fishing activities. 31

5.1 Simplified representation of AIS points from the dataset. 33
5.2 Sub-dataset containing AIS messages of one vessel only. 35
5.3 Cluster of points related to an anchoring phase in dark blue. 36

84 | List of Figures

5.4 Simplification of the dataset by approximating the cluster as a single
point. 36

5.5 Definition of individual trajectories as a set of consecutive points be-
tween two anchoring points. 36

5.6 Two defined trajectories. 37
5.7 Trajectory before spatial discretization. 40
5.8 Grid-based spatial discretization. 40
5.9 Cells touched by the trajectory. 40
5.10 The output is simply the sequence of cell IDs. 41
5.11 Sequence classification model main steps. 41
5.12 Keras and TensorFlow relationship. 42
5.13 Trajectory as an image. 46
5.14 First image synthesis approach. 47
5.15 Zoom over pixels, related to spatial discretization. 47
5.16 Second image synthesis approach. 48
5.17 Third image synthesis approach. 49
5.18 Fourth image synthesis approach. 49
5.19 Image classification model main steps. 50

6.1 Implementation environments. 53
6.2 Drone footage of a fishing boat. 55
6.3 Example of Confusion Matrix. 56
6.4 Confusion Matrix - Sequences. 58
6.5 Confusion Matrix - Pictures (dataset 1). 59
6.6 Confusion Matrix - Pictures (dataset 2). 60
6.7 Confusion Matrix - Pictures (dataset 3). 60
6.8 Confusion Matrix - Pictures (dataset 4). 61
6.9 View of vessel details on MarineTraffic website. 62
6.10 Seawolf vessel (pictures from marinetraffic.com). 63

7.1 F1 scores comparison. 65
7.2 Accuracy scores comparison. 66

85

List of Tables

4.1 Static information contained in AIS messages. 27
4.2 Dinamic information contained in AIS messages. 27
4.3 Travel-related information contained in AIS messages. 27
4.4 Dataset description. 30

6.1 Description of the different computational environments (free-plans
only are considered regarding cloud services). 54

6.2 Metrics - Sequences. 58
6.3 Metrics - Pictures (dataset 1). 60
6.4 Metrics - Pictures (dataset 2). 60
6.5 Metrics - Pictures (dataset 3). 61
6.6 Metrics - Pictures (dataset 4). 61

87

List of Acronyms

AIS

89

Ringraziamenti

In primo luogo, voglio ringraziare Mark James Carman, il mio relatore. È un pro-
fessore che ti fa innamorare di ciò che studi, trovando un equilibrio complesso ma
costante tra simpatia, serietà, semplicità e completezza. Mi ha sempre guidato,
senza mai impormi decisioni o percorsi, e penso sii la metodologia migliore con cui
affrontare un percorso di questo genere. Mi reputo fortunato ad aver potuto redi-
gere questa tesi sotto la sua guida, e sono felice di aver lavorato con estrema serenità
apprendendo tutto ciò che potevo da lui.

La magistrale è per molti versi la coronazione di un percorso accademico, la fine di
un periodo più o meno lungo che trattiene lo studente tra le mura del Politecnico;
il Poli, come lo chiamiamo noi...

Ebbene il mio percorso al Poli non è sempre stato felice o lineare. Ha visto alti e bassi
ma col senno di poi mi sento sicuro nell’affermare che questi sbalzi e vicissitudini
lo abbiano reso più ricco, non semplicemente più difficoltoso. Io stesso mi sento
una persona più ricca, e penso sii la cosa più importante e bella che si possa dire,
salutando un’università. Per questo motivo sono sinceramente convinto che questi
ringraziamenti debbano diventare delle vere e proprie dediche verso tutti quelli che
mi hanno appoggiato, dandomi man forte con ciò che mi serviva per andare avanti
e per affrontare ogni salita, gioendo poi assieme della discesa.

Dedico questa tesi a Laura e Stefano, i miei genitori. Dentro di me so che non ne-
cessitano di presentazioni o spiegazioni, ma il dovere letterario ahimè me lo impone.
Posso riassumerli dicendo che sono ciò che io voglio diventare da grande. Io desidero
essere un genitore come loro, perché so quanto fortunato ci si sente ad essere loro
figlio. Mamma e Papà ci sono sempre stati, non mi hanno mai fatto mancare nulla
ed anzi, mi hanno sempre supportato nel poter raggiungere ogni traguardo che mi
imponevo. Grazie.

Dedico questa tesi a Paola e Gabriele, i miei zii. Coinquilini talvolta improvvisati,
talvolta semplicemente indispensabili. Mi hanno dato ben più che un semplice tetto.
Sono stati la compagnia durante anni di pianti, gioie e soprattutto pandemia, in-

90 | Ringraziamenti

segandomi pian piano “cosa si fa quando si diventa grandi ” e porgendomi sempre
non solo una mano, ma l’intero braccio se serviva un aiuto. Il letto al 4° piano e
¾ avrà per sempre un posto (a tratti scomodo) nel mio cuore. Nota: la zia non
correggerà (anche) questo testo, quindi, è probabile che il lettore debba sopperire
ad eventuali errori grammaticali. . .

Dedico questa tesi ai miei prozii, Marcella e Marino. Io li definisco nonni d’adozione,
ma risulta semplicemente riduttivo. È inutile negare quanto abbia appreso da loro
in tutti questi anni, e valutando il bagaglio di nozioni che mi hanno dato, se mi
sento ora un vero ingegnere è solo grazie a loro.

Dedico questa tesi a Guido, Gabriele, Andrea, Lorenzo, Sofia, Gianluca, e a tutti i
miei compagni di viaggio che ogni giorno qui in università mi hanno sopportato, si,
con la o, prima ancore che supportato. Mi hanno reso questo viaggio divertente,
aspetto fondamentale ma di certo non scontato, e ne sarò sempre grato.

Dedico questa tesi a Jacopo, Alessandro e Jonatan, gli amici di una vita. Mi hanno
dimostrato come la mia paura che la distanza potesse rovinare il rapporto di amicizia
era del tutto infondata; forse perché in questo caso l’amicizia è semplicemente troppo
forte per essere rovinata da qualcosa.

Dedico infine questa tesi a Margherita, il mio faro sicuro. Lei è stata la certezza
che mi serviva nelle mie giornate. Ha partecipato ad ogni mia gioia e ad ogni mio
lamento, non stancandosi mai ed anzi dimostrandomi un amore che tutt’ora non
penso di meritare ma che voglio solo ricambiare, giorno dopo giorno passato al suo
fianco.

D.M.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background Theory
	Maritime Regulation & IMO
	Automatic Identification System
	Illegal, Unreported and Unregulated Fishing
	Machine Learning
	Transformer Architecture
	Vision Transformer Architecture

	Related Works
	State of The Art - Maritime Activities
	State of The Art - Transformer Applications

	Research Questions
	Datasets
	From the AIS to the data
	AIS transponder classes
	AIS information

	AIS communication subjects
	Data used
	When and Where
	How is structured

	Models
	Data Preparation
	Trips Mining by applying MEC
	Data Preparation - Algorithm

	Trajectory as a sentence
	From the trajectories to the sequences
	Sequence classification
	Trajectory as a sequence - Algorithm

	Trajectory as a picture
	From the trajectories to the images
	Image classification
	Trajectory as a picture - Algorithm

	Experiments
	Implementation
	Assumptions
	Metrics
	Sequences - Experiments
	Sequences - Results

	Pictures - Experiments
	Pictures - Results

	Real Case Scenarios
	Examples of False Negatives: The Seawolf vessel

	Conclusions
	Further Developments

	Bibliography
	Appendix A
	Picture Creation
	Picture Classification

	List of Figures
	List of Tables
	List of Acronyms
	Ringraziamenti

