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Abstract

Soil erosion is a natural process caused by the erosive forces of rainfall or precipitation
runoff, which causes soil detachment or removal of rock materials. It is addressed as
one of the main hydrological risks in the European union, and the Alps are one of the
most prone areas to soil erosion, in Europe. It causes nutrients loss and exposes the en-
vironment to landslides, with negative impacts on agriculture, ecosystem and infrastruc-
tures. Several human activities and climate change induce environmental modifications
which intensify the pressure on soils and increase their predisposition to water erosion.
Therefore, understending soil erosion spatial patterns and temporal trends could provide
important information for supporting government land use policies and strategies to re-
duce this underestimated natural hazard. In this work the potential soil erosion rate is
estimated by the D-RUSLE model under climate change and land use/land cover change
scenarios, in the Alpine section of the Oglio river basin in North Italy. D-RUSLE is a
modified version of the well-known RUSLE model that aims at providing more accurate
estimates of the potential soil erosion. The classic RUSLE was modified to include the
shielding effect of snow on soil erosion, with the integration of a model that describes
separately the behaviour of rainfall and snow and, moreover, the temporal evolution of
the land cover and its spatial distribution were estimated with the integration of Earth
Observation data. Climate projections are obtained trough statistical spatio-temporal
downscaling of 9 simulations among those available from CMIP5 protocol. Projection
of land use/land cover have been obtained through a neural network algorithm trained
with past land cover maps. The results show that the integration of satellite-derived
data in D-RUSLE allow a better representation of soil erosion forcings, thus providing a
more accurate erosion estimation to support government land use policies and strategies.
Furthermore the results show two possible scenarios at 2100: if mean annual precipi-
tation is unvaried and temperature increases of about 1.5-2 °C, almost 47% of the area
would experience a reduction in the mean annual erosion rate and only the 18% would
see an increase; If precipitation increases of about 8% and temperature raises of about
4 °C, then almost the 16% of the territory could expect an erosion rate decreases while
the 72% will see an increase. To conclude the scalability of the model was tested, im-
plementing it in a different area, the Dudh Koshi basin, in Nepal. The lower availabilty
of data forced the implementation of machine learning algorithms to better optimize
the parameters of the D-RUSLE model and its coefficients, in order to obtain realaiable
results. The model proved to be scalable in a different area and the machine learning



algorithm proved to be a useful tool to optimize the model parameters and integrate ge-
ographical with statistical data.

Keywords: Soil Erosion, RUSLE, Earth-Observation, Climate Change, Machine learn-
ing, Neural Network



Contents

Abstract v

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Study Area 9
2.1 Val Camonica Study Area . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Nepal Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Data 13
3.1 Val Camonica Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Thematic maps . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Meteorological data . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Satellite Remote Sensing data . . . . . . . . . . . . . . . . . . 16
3.1.4 Field survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Climate Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Nepal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Meteorological data . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Digital Elevation Model . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Land Cover Maps . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Satellite Remote Sensing Data . . . . . . . . . . . . . . . . . . 22

4 Method 25
4.1 Val Camonica soil erosion modelling . . . . . . . . . . . . . . . . . . . 25

4.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Standard modelling of potential soil erosion . . . . . . . . . . . 26



viii Contents

4.1.3 The Dynamic RUSLE model . . . . . . . . . . . . . . . . . . . 31
4.1.4 Projection of Precipitation, Temperature, and Rainfall Erosivity 36
4.1.5 Land Cover Scenarios . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Nepal parameters modelling . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Meteorological data processing . . . . . . . . . . . . . . . . . 41
4.2.2 Calibration of the SWE model . . . . . . . . . . . . . . . . . . 41
4.2.3 ICIMOD Land cover maps processing . . . . . . . . . . . . . . 42
4.2.4 Land Cover Projection . . . . . . . . . . . . . . . . . . . . . . 43

5 Result 47
5.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Projection of Precipitation, Temperature, and Rainfall Erosivity . . . . . 51
5.4 Projections of Future Land Cover and Cover Management Factor . . . 59
5.5 Effect of Climate Projections on the Estimates of Soil Erosion . . . . . 62
5.6 Combined Effects of Climate and Land Cover Projections on the Esti-

mates of Soil Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion 73
6.1 Correlation between model’s parameters and soil erosion estimates . . . 73
6.2 Effect of seasonality on soil erosion estimates . . . . . . . . . . . . . . 74
6.3 Climate scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Projections of Precipitations . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Projections of Temperatures . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 Simulation of Rainfall Erosivity . . . . . . . . . . . . . . . . . . . . . 81
6.7 Projections of Future Land Cover and Cover Management Factor . . . . 82
6.8 Estimates of Future Soil Erosion . . . . . . . . . . . . . . . . . . . . . 83
6.9 Comparison to Similar Studies . . . . . . . . . . . . . . . . . . . . . . 83
6.10 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusions 87
7.1 D-RUSLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Climate Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Parameter computation with lower data availability . . . . . . . . . . . 88

References 89



List of Figures

2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Dudh Koshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The DUSAF (Destinazione d’Uso dei Suoli Agricoli e Forestali) . . . . 14
3.2 Soil map of the study area. . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Study area with highlighted the rain gauges and the thermometers used. 16
3.4 Study area with highlighted the sampling plots. . . . . . . . . . . . . . 18
3.5 Temperature data - 29/Jun/2010 - 5km resolution . . . . . . . . . . . . 20
3.6 Precipitation data - 31/Jul/2010 - 5km resolution . . . . . . . . . . . . . 21
3.7 ICIMOD Land Cover map of 2010 . . . . . . . . . . . . . . . . . . . . 23

4.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Classical RUSLE parameters. . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Comparison between TOC, pH and textural class . . . . . . . . . . . . 32
4.4 Dynamic-RUSLE parameters . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 NN graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Classification process of land cover maps . . . . . . . . . . . . . . . . 42

5.1 Comparison of potential soil erosion maps . . . . . . . . . . . . . . . . 48
5.2 Comparison of potential soil erosion rates . . . . . . . . . . . . . . . . 49
5.3 Estimate of climate projection . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Mean precipitation anomalies . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Mean temperature anomalies . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 R-Factor estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 R-Factor simulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Land Cover projections maps . . . . . . . . . . . . . . . . . . . . . . . 60
5.9 Most significante land cover classes . . . . . . . . . . . . . . . . . . . 61
5.10 C-Factor projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.11 Soil Erosion Estimates with Climate projection . . . . . . . . . . . . . 64



x List of Figures

5.12 Soil Erosion Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.13 Soil Erosion Anomalies - percentages . . . . . . . . . . . . . . . . . . 68
5.14 Soil Erosion Anomalies with LC - past . . . . . . . . . . . . . . . . . . 69
5.15 Soil Erosion Anomalies with LC . . . . . . . . . . . . . . . . . . . . . 71
5.16 Soil Erosion Anomalies with LC - percentages . . . . . . . . . . . . . . 72

6.1 Time series of R-factor (Spring/Summer - Autumn/Winter) with R1 and
R2 parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Comparison of potential soil erosion rates (Spring/Summer - Autumn/Winter)
with R1 and R2 parametrizations . . . . . . . . . . . . . . . . . . . . . 77

6.3 Time series of C-factor (Spring/Summer - Autumn/Winter) with C0, C1
and C2 parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Comparison of soil erosion rates (Spring/Summer - Autumn/Winter)
with C0, C1 and C2 parametrizations . . . . . . . . . . . . . . . . . . . 79



List of Tables

3.1 List of Landsat images used in this study. . . . . . . . . . . . . . . . . 17
3.2 List of Landsat images used in this study for Nepal. . . . . . . . . . . . 22

4.1 Tabulated C-factor values assigned to each DUSAF land cover classes
(column “C-factor (DUSAF)”) and tabulated C-factor ranges for each
DUSAF land cover classes (column “C-factor range”) (1). C-factor val-
ues sources are (a) the parametrization proposed for Italy by (2), the
central value of the C-factor range values for Europe from (b) (3) or
(c) (4). The land cover classes without (a),(b) or (c) are classes not in-
cluded in above cited studies but where there can not be any soil erosion
(urbanized areas or water bodies). . . . . . . . . . . . . . . . . . . . . 28

4.2 K-factor values for different textural classes and TOC content (modified
from (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Main land cover transitions and land cover persistences highlighted by
the change detection analysis for the period 2000-2015. . . . . . . . . . 38

4.4 Bayesian optimization parameters . . . . . . . . . . . . . . . . . . . . 42
4.5 Hyper-parameter of the three Neural Network models . . . . . . . . . . 43
4.6 Model 1 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Model 2 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Model 3 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Different combinations of the parameters . . . . . . . . . . . . . . . . 50
5.2 Mean annual precipitation [mm yr−1] based on spatially distributed ob-

servations and simulated climate. . . . . . . . . . . . . . . . . . . . . 54
5.3 Mean annual temperature [°C] based on spatially distributed observa-

tions and simulated climate. . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Mean R-factor [MJ mm ha−1 h−1 yr−1] based on spatially distributed

observations and simulated climate. . . . . . . . . . . . . . . . . . . . 57
5.5 Mean observed and simulated annual erosion rates [t ha−1 yr−1] with

two climate scenarios and static land cover (DUSAF 2015). . . . . . . . 65



xii List of Tables

5.6 Mean erosion rates [t ha−1 yr−1] according to climate projections. . . . 66
5.7 Mean observed and simulated annual erosion rates [t ha−1 yr−1] with

two climate scenarios and time-dependent land cover (DUSAF 2000
from 2003 to 2010 and LC 2030 from 2011 to 2017) . . . . . . . . . . 70

5.8 Mean erosion rates [t ha−1 yr−1] according to climate and land cover
projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Pearson’s correlation between modelling parameters and erosion maps. . 74
6.2 Average Spring/Summer (S/S) and Autumn/Winter (A/W) erosion esti-

mates [t ha−1 yr−1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Chapter 1

Introduction

Soil is an extremely complex and variable medium and is subject to a series of degrada-
tion threats, as erosion, decline in organic matter, local and diffuse contamination and
landslides. However, soil formation is such an extremely slow process, that soil can be
considered as a non-renewable resource (6). As an example, the average annual soil
loss rate in Europe accounts for 2.46 [t ha-1 yr-1] (2), which is about the double of the
average soil formation rate, estimated in 1.4 [t ha−1 yr−1] (7). According to the Euro-
pean Commission Soil Thematic Strategy, soil erosion is one of the main hydrological
risks in Europe, where 115 million hectares (12% of Europe’s total land area) are sub-
ject to water erosion. Soil erosion is defined as the detachment of soil particles caused
by the locally intense shear stress generated by raindrop impact (8). This phenomena
has impact on land fertility loss, food production, drinking water quality, ecosystem ser-
vices, flood an muddy flood risk and carbon stock shrinkage (9). In fact, the increased
turbidity of fluvial and maritime environments, due to growth in suspended sediments,
can alter ecosystems with consequences on food production (e.g. eutrophication and
decrease of aquatic biodiversity (10) (11) (12) (13)). Moreover, erosion exposes soil
to landslides because of an increased runoff and can be, therefore, responsible of in-
creasing hydrological risks in case of heavy rainfall. Consequences of soil erosion are
especially relevant for agriculture, where soil loss is strictly related to the reduction of
organic matter and nutrients. Besides, human activities, human-induced forces and cli-
mate change have slightly shown an effect in accelerating soil loss (6). Among all Euro-
pean regions, the Mediterranean countries, with the Alps in particular, have the highest
soil loss rates due to special climatic conditions with prolonged dry periods followed
by heavy rainfall combined with steep slopes (2). From a modelling point of view soil
erosion is mainly controlled by precipitation, topography, soil properties, land use/land
cover and soil conservation practices. An ideal model would describe all the individual
processes on the basis of hydraulics, hydrology and sediment transport theory equa-
tions, providing the basin response in terms of volume of sediments passing through
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the closing section for a given input rainfall. However, nowadays there are many sim-
plified models in the literature. Based on their constitutive framework, erosion models
can be grouped in: i) empirical models; ii) conceptual models and iii) physics-based
erosion and sediment transport models. Empirical models do not depend on a rigorous
description of the physical process and require less computational cost and less a priori
information. While being simple models, nevertheless they are useful tools for estimat-
ing soil loss at a catchment scale when limited data and input parameters are available
(8). The most widely used empirical models are USLE (Universal Soil Loss Equation)
(14), MUSLE (Modified Universal Soil Loss Equation) (15), RUSLE (Revised Univer-
sal Soil Loss Equation) (16), AGNPS (AGricultural Non-Point Source pollution model)
(17) and SEDD (SEdiment Delivery Distributed) (18).Conceptual models describe the
watersheds with a series of storage units and incorporate the general description of the
catchment dynamics in terms of the underlying processes of sediment and runoff gen-
eration (8). Some examples are CREAMS (field scale model for Chemicals, Runoff
and Erosion from Agricultural Management Systems) (19) and LASCAM (LArge Scale
CAtchment Model) (20). Finally, physics-based erosion and sediment transport models
use the mass conservation equation for flow and sedimentation processes simulation.
They are able to describe the different phenomena contributing to erosion and their in-
teractions, simultaneously (8). The rigorous description of the physical processes makes
possible to extend their use to areas with very different characteristics. Although provid-
ing a more realistic representation of the processes, these models can suffer from high
uncertainty due to the large number of input parameters required, that often need to be
calibrated against observed data (? ). Some examples are EUROSEM (EUROpean Soil
Erosion Model) (21), WEPP (Water Erosion Prediction Project) (22) and ANSWERS
(Areal Non point Source Watershed Environment Response Simulation) (23). Soil ero-
sion models are important tools for understanding soil loss rates, spatial patterns and
trends for supporting government land use strategies for effective erosion control prac-
tices and soil conservation (24). Even if the factors that influence erosion could be
extremely variable in time and space, nonetheless these models frequently use a static
definition for some of the input parameters that may present changes in space and time
such as land cover. Therefore, Earth Observation from optical satellite, can help in the
representation of these changes in space and time and thus improving the results of soil
erosion modeling (25). In past years, multispectral satellite images were adopted to
detect erosion features and eroded areas (e.g. large and medium sized gullies and bad-
lands) or erosion consequences (e.g. water quality assessment in terms of suspended
sediments in reservoirs and lakes) (26). Land cover mapping is a common input for
soil erosion modelling because different land classes have a different protective effect
towards erosion, especially vegetation (27). Once mapped, vegetation is assigned a
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sheltering effect, depending on its type (26) or based on a vegetation index (28)(29).
The main advantage of using satellite Remote Sensing data within soil erosion stud-
ies is the ability to account for seasonal variability of vegetation, long-term land cover
changes and to provide such information with a spatial resolution suitable to exploit
soil erosion at regional/local scale (landsat satellites provide images with a 30m spatial
resolution). Of course, optical data suffer from lack of information in case of cloud
cover and shadows, which are relevant in the mountainous environment and especially
during Winter. Nevertheless, the actual high revisit time (16 days for landsat satellites)
compensate this issue. This work models the potential soil erosion rate, at the catch-
ment scale, in the central alpine and pre-alpine area of Italy by integrating a modified
version of the RUSLE model (16) with multi-temporal satellite observations. RUSLE
is widely used in the scientific community (30)(31)) and is usually applied considering
the average rainfall erosivity, no land-use/land-cover changes and, thus, static sheltering
effect provided by vegetation within the simulation period. Here we introduce i) the sea-
sonal dynamics of precipitation by considering both rainfall (active in erosion) and snow
(non-contributing to erosion); ii) the sheltering effect of snow cover dynamics; iii) the
seasonal dynamics of vegetated areas and iv) long-term land-use/land-cover changes.
All these novelties aim to improve potential soil erosion modelling in the Alps. Climate
change and land transformations can induce environmental modifications able to inten-
sify pressure on soils, thus increasing their predisposition to water erosion, modifying
the dynamics of soil erosion and related hazards. In terms of processes, rainfall amounts
and intensities are certainly the most direct and important factors controlling erosional
changes under climate change. Besides, also land use and land cover transformations,
together with biomass production, contribute in modifying soil loss (32)(33)(34). The
Alps are extremely vulnerable and dynamic environments due to their morphological
and land use/land cover variability, and are characterized by the highest soil loss rates
in Europe, further intensified by special climatic conditions with prolonged dry periods
followed by heavy rainfall (35). In particular, in the Alpine region the contribution of
climate change is twofold. On one hand, the intensification of precipitation phenom-
ena increases the rain erosive capacity. On the other hand, the temperature increase
can faster desertification processes, reducing the vegetation sheltering effect to soil ero-
sion. In addition, the Alpine glaciers retreat contribute to increase erosion since a large
amount of sediments become exposed to erosion forcing. Moreover, the anthropogenic
transformation of land cover, such as deforestation, urbanization, agricultural patterns
reshaping and intensive grazing, tillage and deforestation, makes the territory more vul-
nerable and modifies the response of river basins by producing higher surface runoff
with impact on river flow sediment transport capacity. Despite such expectations and
their medium to long-term impact on water resources (13)(36)(37)(38) and hydrological
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extremes (39)(40), little investigation has been devoted to analyze potential soil erosion
in the context of future climate change and land transformation. Anyway, a common
belief is that unsustainable land management and climate change will result in a change
in erosion rates, and that the undeniable increase in rainfall amount and intensity and
the increased human pressure on soils will lead to higher erosion rates, unless amelio-
ration or management policies are taken from a global to a regional scale (41). In this
context, the aim of this work is to provide a long-term overview of climate and land
use/land cover changes impacts on soil erosion in the Alpine part of the Oglio River
basin and to identify the potentially most fragile areas with respect to actual estimated
soil loss. Thus, the D-RUSLE model (42) (43), is applied to provide future soil erosion
estimates. This model is derived from the widely used RUSLE model, which provides
a parametric evaluation system for land degradation in terms of soil erosion by integrat-
ing parameters of climate, soil, topography and vegetation. Current soil erosion is well
addressed but the prediction of future soil erosion under climate change and land cover
transformations is still studied with insufficient detail, even though the understanding
of their combined effect on both hydrological and erosion processes is crucial (40). In
fact, most studies focused on climate change without considering the effects of land
changes (39)(41)(44), and only fewer works evaluated the impacts of both of them (40)
(45) (46). In this context, the Alps are one of the most vulnerable ecosystems of Eu-
rope. They are located in a transitional zone between the drying Mediterranean region
(South Alps) and the wetting northern Europe (North Alps). During the last century,
the temperature in the Alpine region increased about +2 °C, and most of the climate
projections agree to expect a generalized temperature increase in the future (47)(48). It
is a different matter for precipitation, which is erratic. For the future, climate projec-
tions mainly expect dryer summers and wetter winters (47)(48)(49), but future scenarios
do not agree unanimously. In this regard, (47) analyzed the climate projections of the
global climate models (GCMs) in the Coupled Model Intercomparison Project release
5 (CMIP5) (50) for the Alpine arc. For the end of the XXI century, the authors found a
very wide range of temperature changes, depending on the representative concentration
pathways (RCPs (51)) considered, extending from -0.8 °C up to +8.9 °C. The variability
in precipitation for GCMs driven by scenarios RCP2.6, RCP4.5, and RCP6.0 is quite
similar: it approximately ranges between -5 to +20% in winter, -8 to +25% in spring, -30
to +25% in summer, and -10% to +15% in autumn. For South Alps, most of the global
climate models driven by RCP4.5, RCP6.0, and RCP8.5 project precipitation increases
in winter and a generalized decrease in the other seasons. With reference to regional
modelling, (48) analyzed an ensemble of regional climate models (RCMs) projections
for the Alpine region at end of the XXI century (A1B emission scenario). Climate simu-
lations agree in expecting a temperature increase between +2.7 °C in spring and +3.8 °C
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in summer. For precipitation, the expected changes are between 20.4% in summer and
+10.4% in winter. The outcomes of the Coordinated Regional Downscaling Experiment
(CORDEX) by Smiatek et al. (49) seems confirming these trends. For the end of the
XXI century the authors predicted a temperature increase in the Greater Alpine Region
of +2.5 °C in autumn and winter, +2.4 °C in summer, and +1.9 °C in spring. Precipi-
tation is expected to increase up to +12.3% in winter, +5.7% in spring, and +2.3% in
autumn. Compared to (47)(48) their study predicted a smaller decrease in precipita-
tion in summer (about -1.7%). In this context, the Alps are one of the most vulnerable
ecosystem of Europe. (47) analyzed the climate projections of the global climate mod-
els (GCMs) available in the Coupled Model Intercomparison Project release 5 (CMIP5)
for the Alpine arc (50) that extends from 41° N to 50° N in latitude and from 4.6° E to
16.2° E in longitude. Compared to the baseline 1980–2009, the authors found that at
the end of this century (2070–2099) the North Alps are expected to be wetter in winter
and spring and dryer in summer. On the other hand, climatic simulations project dryer
seasons in the South Alps, with the exception of winter where precipitation might in-
crease. Temperature changes have a very wide range, depending on the representative
concentration pathways (RCPs (51) considered: from -0.8 °C to +8.9 °C in the North
Alps, and from 0.4 °C up to +9.5 °C in the South Alps. (48) projected temperature in-
creases for the end of the century up to +2.7 °C in spring and up to +3.8 °C in summer,
with precipitation changes between 20.4% in summer and +10.4% in winter. The anal-
ysis of regional climate models (RCMs) done by Smiatek et al. [24] seems confirming
these trends. Studying the Greater Alpine Region, which extends from 43° N to 49° N
in latitude and from 4.0° E to 19° E in longitude, for the end on the century the authors
predicted a temperature mean increases of +2.5 °C in fall and winter, +2.4 °C in summer
and +1.9 °C in spring at 2071–2100 (baseline 1971–2000). Precipitation is expected to
increase up to +12.3% in winter, +5.7% in spring, and +2.3% in fall. However, com-
pared to (48) their study predicted a small decrease in precipitation in summer of about
-1.7%. As a consequence, the peculiar morphology of the Alps, their land cover vari-
ability, and unique climatic conditions are responsible for one of the highest soil loss
rates of the whole European Union. In particular, climate change in the Alpine region
might have different impacts. On the one hand, the intensification of precipitations in-
creases the rain erosive capacity. On the other hand, the temperature increase can foster
desertification processes, thus reducing the sheltering effect of vegetation. In addition,
the temperature increase is also causes the retreat of glaciers that is exposes a large
amount of new sediments to the erosive agents (48)(52). Moreover, the anthropogenic
transformations of the landscape, such as deforestation, urbanization, agricultural pat-
terns reshaping, intensive grazing, and tillage, is makes the territory more vulnerable
to erosion and is also modifying the response of the river basins by producing higher
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surface runoffs with impacts on the sediment transport capacity of rivers (38)(39)(41).
(2) calculated the soil loss for all the European Union. The authors found that the mix-
ture of high rainfall erosivity with relatively steep slopes produces high erosion rates
in the Alpine areas, the Apennines, the Pyrenees, the Sierra Nevada, western Greece,
western Wales, and Scotland. They estimated a mean soil erosion rate of 5.27 [t ha-1
yr-1] for the Alpine climatic zone (Alps, Pyrenees, and southern Carpathians). This is
the double of the European mean value 2.46 [t ha-1 yr-1] but lower than the mean value
estimated for Italy 8.46 [t ha-1 yr-1]. Such values are coherent with the sediment yield
of 3.06 [t ha-1 yr-1] reported for the Dora Baltea mountain basin in North West Alps
(53). A common belief is that unsustainable land management and climate change will
result in a change in erosion rates, and that the undeniable increase in rainfall amount
and intensity and the increased human pressure on soils will lead to higher erosion rates,
unless suitable management policies will be taken from a global to a regional scale (41).
Nevertheless, despite such a gloomy scenario and the expected medium to long-term
impacts on water resources (54)(55)(56)(57) and hydrological extremes (58)(59), the
study of soil erosion in the context of future climate change and land transformation is
still investigated with insufficient detail. This study tries to fill this gap by analyzing
how climate change and land cover transformations are expected to impact soil erosion
in a typical territory of the Italian Alps. Based on the different assumptions described
below, bestcase and worst-case scenarios for the end of the XXI century are presented.

The second part of this work focuses not on estimating soil erosion per se, but on
different method to compute the parameter of the model, in order to make it possible
also in different part of the world, where the data availability is less precise and abun-
dant with respect to Regione Lombardia. The chosen area was the Dudh Koshi basin in
Nepal. To obtain reliable parameter of the model starting from more coarse data, statis-
tical data and machine learning algorithms were used. In this area were available daily
meteorological data, instead of hourly like for Val Camonica. To overcome this differ-
ence in temporal resolution, in the SWE model computation, the results of the model
were compared with maps derived from satellite remote sensing data of snow cover,
and the parameter of the model iteratively changed with a baesyan optimization process
to maximize the agreement between model output and satellite maps. As far as land
cover are concerned the map for this area were less accurate and with a lower temporal
update. To improve the precision of the land cover maps, statistical data of agricultural
areas, available for each year in this area, were used. A classification process with SAM
algorithm and Landsat images was performed and the results were compared with the
statistical data. The thresholds of the SAM algorithm were iteratively changed in order
to maximize the agreement between the results of the classification and the statistical
data. In this case the Neural Network for the future projection of land cover maps was



7

performed testing three different model written with a python script. All the model share
the same structure, with 16 input parameters and three hidden layers.





Chapter 2

Study Area

2.1 Val Camonica Study Area

This study estimates the potential soil erosion in the central alpine and pre-alpine area
of Italy. The study area is Val Camonica (one of the largest valleys of the Central
Alps), that is the Oglio River basin closed at Sarnico, which extends about 1,800 km2
(Figure 2.1). The analyzed area is characterized by an alpine climate, as confirmed by
the data gathered by temperature stations and rain gauges, with cold Winter (average
temperature 1.16 [°C]) and moderate Summer temperatures (average temperature 18.3
[°C]) on average, with higher temperatures in the lake areas (10.8 [°C]) respect to the
high elevation areas (4.3 [°C]). The annual average precipitation is about 1,300 [mm yr-
1], with peaks in Summer and Autumn and it is distributed almost homogeneously in the
test case area. Snowfalls are possible from October to May and the snow cover generally
persists at higher elevations until July. Within the study area, the elevations range from
185 [m a.s.l.] in Sarnico to 3,585 [m a.s.l.] of the Adamello Glacier. Almost 90% of
the landscape is vegetated (about 45% are forests and only less than 1% are croplands),
characterized by the typical mountainous vegetation distribution influenced by elevation
variations and by precipitation seasonal regimes. In the following analysis the study area
is divided in three elevation ranges: high elevation areas (elevation ≥ 1,600 [m a.s.l.])
covering about 649 [km2], medium elevation areas (1,000 [m a.s.l.] < elevation < 1,600
[m a.s.l.]) covering about 570 [km2] and Iseo Lake areas (elevation ≤ 1,000 [m a.s.l.])
covering about 580 [km2], of which about 65 [km2] corresponds to the lake surface
(Figure 2.1 and 2.2).
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Figure 2.1: Study area: a) Digital Elevation Model of Val Camonica

Figure 2.2: Subdivision of the study area in high elevation areas (elevation ≥ 1,600 [m
a.s.l.]), medium elevation areas (1,000 [m a.s.l.] < elevation < 1,600 [m a.s.l.]) and Lake
Iseo areas (elevation ≤ 1,000 [m a.s.l.]).
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2.2 Nepal Study Area

As far as the second part of the work is concerned the study area is located in the hilly
and mountain region of Nepal, and it extends for 7000 km2 with an elevation range from
155 to the 8848 [m a.s.l.] of mount Everest. The annual rain discharge is about 1800
mm, the 80% of which is focused in the monsoon season, from may to October. And
vegetation is the main land cover.

Figure 2.3: DEM of the Dudh Koshi basin, and its position inside the country of Nepal





Chapter 3

Data

3.1 Val Camonica Data

Within this work, we refer to official data supplied by Regione Lombardia (www.ge
oportale.regione.lombardia.it), Comunità Montana della Valle Camonica
(www.geoportale.cmvallecamonica.bs.it) and Environmental Protection
Agency of Regione Lombardia (www.arpalombardia.it/siti/arpalombar
dia/meteo), which are available in their geo-portals.

3.1.1 Thematic maps

With regard to thematic maps, were used:

• The 30-meters spatial resolution Digital Elevation Model of Regione Lombardia
(Figure 2.1). This data as an accuracy of 0.30m for urban areas, 1m for extra-
urban areas with presence of infrastructure and 2m for extra-urban areas;

• The DUSAF (Destinazione d’Uso dei Suoli Agricoli e Forestali) land-cover/land-
use map of Regione Lombardia for the years 2000, 2007 and 2015. This thematic
map, has a nominal scale of 1:10000 and is organized in five hierarchical levels
where the first three are compliant with the European Corine Land Cover (CLC)
map. Additional land-cover/land-use classes representative of Regione Lombar-
dia territory are also available. Within this work, we used the third level (Figure
3.1);

www.geoportale.regione.lombardia.it
www.geoportale.regione.lombardia.it
www.geoportale.cmvallecamonica.bs.it
www.arpalombardia.it/siti/arpalombardia/meteo
www.arpalombardia.it/siti/arpalombardia/meteo
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Figure 3.1: The DUSAF (Destinazione d’Uso dei Suoli Agricoli e Forestali) land-
cover/land-use map of Regione Lombardia for the year 2015.

• The soil map of Regione Lombardia (Figure 3.2). This map,produced between
2008 and 2011, has a nominal scale of 1:250000 with the minimal mapping unit
of 20 ha.
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Figure 3.2: Soil map of the study area.

3.1.2 Meteorological data

With regard to meteorological data, I used hourly time series of precipitation and air
temperature recorded from 2003 to 2017 by 30 rain gauges and 28 thermometers be-
longing to the Environmental Protection Agency of Regione Lombardia (Figure 3.3).
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Figure 3.3: Study area with highlighted the rain gauges and the thermometers used.

3.1.3 Satellite Remote Sensing data

With regard to Remote Sensing data, I used a time series made of 20 images collected
by Landsat-5/TM, Landsat-7/ETM+ and Landsat-8/OLI in the period 2002-2017. The
images were acquired both in Autumn/Winter (September-February) and in Spring/
Summer (March-August) to provide seasonal estimates. In this work were not used
Sentinel-2 data because they were not available for the entire analyzed period, but in
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an other context these data would offer reliable dataset with better spatial and temporal
resolution with respect to the Landsat data.

Table 3.1: List of Landsat images used in this study.

LANDSAT IMAGES
Image Name Acquisition Date Season

LT05_L1TP_193028_20000228_20171211_01_T1 28/02/2000 Winter

LE07_L1TP_193028_20000713_20211119_01_T1 13/07/2000 Summer

LE07_L1TP_193028_20010801_20210520_01_T1 01/08/2001 Summer

LE07_L1TP_193028_20011207_20200917_01_T1 07/12/2001 Winter

LE07_L1TP_193028_20020108_20211128_01_T1 08/01/2002 Winter

LE07_L1TP_193028_20020719_20200916_02_T1 19/07/2002 Summer

LT05_L1TP_193028_20030730_20161205_01_T1 30/07/2003 Summer

LT05_L1TP_193028_20040801_20161201_01_T1 01/08/2004 Summer

LT05_L1TP_193028_20041121_20161129_01_T1 21/11/2004 Winter

LT05_L1TP_193028_20060722_20161120_01_T1 22/07/2006 Summer

LT05_L1TP_193028_20070725_20161112_01_T1 25/07/2007 Summer

LT05_L1TP_193028_20090730_20161023_01_T1 30/07/2009 Summer

LT05_L1TP_193028_20110210_20161010_01_T1 10/02/2011 Winter

LT05_L1TP_193028_20110821_20161007_01_T1 21/08/2011 Summer

LC08_L1TP_193028_20130810_20170503_01_T1 10/08/2013 Summer

LC08_L1TP_193028_20140829_20170420_01_T1 20/08/2014 Summer

LC08_L1TP_193028_20141219_20170416_01_T1 19/12/2014 Winter

LC08_L1TP_193028_20150715_20170407_01_T1 15/07/2015 Summer

LC08_L1TP_193028_20151206_20170401_01_T1 06/12/2015 Winter

LC08_L1TP_193028_20160717_20170323_01_T1 17/07/2016 Summer

End of Table

3.1.4 Field survey

In Summer 2017 13 soil samples were collected in the North East of the study area, where the

elevation is higher and rocks are mainly metamorphic. In Summer 2018 we collected 14 soil

samples at the lower altitudes of South West, where there is a predominance of calcareous sedi-

mentary rocks. Sampling plots were selected to maximize soil texture and taxonomy variability

within the study area (Figure 3.4). The details of the sampling plots are shown in Figure 4.3.
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Figure 3.4: Study area with highlighted the sampling plots.

3.1.5 Climate Scenarios

Climate scenarios came from the spatio-temporal statistical downscaling of the GCMs under

different RCPs made available by the CMIP5 [25]. In this study we considered the following

GCMs models:

• European Centre HAmburg Model versione 6 (ECHAM6) [38];

• Community Climate System Model version 4 (CCSM4) [39];
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• European Consortium Earth system model version 2.3 (EC-Earth) [40].

driven by the following RCPs [25,25]:

• RCP2.6: peak in radiative forcing at 3 [W m2] (490 ppm CO2 equivalent at 2040), and

subsequent decline to 2.6 [W m2]);

• RCP4.5: stabilization to 4.5 [W m2] (650 ppm CO2 equivalent at 2070);

• RCP8.5: radiative forcing up to 8.5 [W m2] (1,370 ppm CO2 equivalent by 2100).

By combining the three GCMs with the three RCPs I obtained nine different climate pro-

jections. Once downscaled, they returned nine climate scenarios at hourly resolution for each

meteorological station. All the climate scenarios considered cover the period 1981–2100.

3.2 Nepal Data

Within this work were used data from the research institute ICIMOD (International Centre for

Integrated Mountain Development) (60) for land cover and meteorological data.

3.2.1 Meteorological data

With regard to meteorological data, were used daily time series of precipitation and air temper-

ature derived from a reanalysis of data from 1981 to 2010. This dataset (HIAWARE) (61) is

provided with a resolution of 5 km for the entire study area.
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Figure 3.5: Temperature data - 29/Jun/2010 - 5km resolution

3.2.2 Digital Elevation Model

With regard to the Digital Elevation Model (DEM) used in this work the SRTM with a 30m

resolution was used (62). On September 23, 2014, the White House announced that the highest-

resolution topographic data generated from NASA’s Shuttle Radar Topography Mission (SRTM)

in 2000 was to be released globally by late 2015. The announcement was made at the United

Nations Heads of State Climate Summit in New York. Since then the schedule was accelerated,

and all global SRTM data have been released. Previously, SRTM data for regions outside the
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Figure 3.6: Temperature data - 29/Jun/2010 - 5km resolution

United States were sampled for public release at 3 arc-seconds, which is 1/1200th of a degree of

latitude and longitude, or about 90 meters (295 feet). The new data have been released with a 1

arc-second, or about 30 meters (98 feet), sampling that reveals the full resolution of the original

measurements.
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3.2.3 Land Cover Maps

With regard to land cover maps, three Land Cover maps from ICIMOD were used. These maps

were available for the period: 1990, 2000 and 2010. They were available for the entire koshi area

and were divided in 9 different land cover classes: water bodies, snow/glacier, shrubland, grass-

land, forest, build-up area, barren area, rabi crops (winter cultures) and kharif crops (summer

cultures). ICIMOD recently released an update version of the land cover maps, but the earlier

version of the product was not accurate: the agriculture class was over represented, and that was

occupying also forest areas. This misclassification was discovered comparing the area classified

as "agriculture" with satellite images and statistical data provided by the Ministry of Agriculture

and Livestock Development.

3.2.4 Satellite Remote Sensing Data

As far as satellite images are concerned for this study were used 15 Landsat images from 2009

to 2010

Table 3.2: List of Landsat images used in this study for Nepal.

LANDSAT IMAGES
Image Name Acquisition Date

LT05_L1TP_140041_20090201_20200828_02_T1 01/02/2009

LT05_L1TP_140041_20090217_20200828_02_T1 17/02/2009

LT05_L1TP_140041_20090305_20200828_02_T1 05/03/2009

LT05_L1TP_140041_20090508_20200827_02_T1 08/05/2009

LT05_L1TP_140041_20090913_20200825_02_T1 13/09/2009

LT05_L1TP_140041_20091015_20200825_02_T1 15/10/2009

LT05_L1TP_140041_20091202_20200825_02_T1 02/12/2009

LT05_L1TP_140041_20100119_20200825_02_T1 19/01/2010

LT05_L1TP_140041_20100204_20200825_02_T1 04/02/2010

LT05_L1TP_140041_20100220_20200824_02_T1 20/02/2010

LT05_L1TP_140041_20100409_20200825_02_T1 09/04/2010

LT05_L1TP_140041_20100425_20200825_02_T1 25/04/2010

LT05_L1TP_140041_20100511_20200824_02_T1 11/05/2010

LT05_L1TP_140041_20101103_20200823_02_T1 03/11/2010

LT05_L1TP_140041_20101205_20200823_02_T1 05/12/2010

End of Table
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Figure 3.7: ICIMOD Land Cover map of 2010 - Updated version





Chapter 4

Method

4.1 Val Camonica soil erosion modelling

4.1.1 Framework

The Figure 4.1 shows the global framework of the methodology followed to estimate soil erosion

in Val Camonica.

Figure 4.1: shows the experimental framework described in detail in the previous sections.
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4.1.2 Standard modelling of potential soil erosion

The empirical Revised Universal Soil Loss Equation (RUSLE) is a very popular model to esti-

mate the annual potential soil erosion rate due to rainfall (16). Although originally developed

for agricultural application, today RUSLE is used as a general model to provide estimates also

for non-agricultural lands at different spatial scales, even at continental scale (2). RUSLE esti-

mates the annual potential soil erosion rate E [t ha−1 yr−1] through five parameters, as shown in

Equation 4.1:

E = R∗K ∗LS∗C ∗P (4.1)

where:

• R is the rainfall erosivity [MJ mm ha−1 h−1 yr−1], also called Rfactor, which is the

driving force of erosion and is a function of precipitation rate, air temperature and snow

cover dynamics;

• K is the soil erodibility [t ha h ha−1 MJ−1 mm−1], also called K-factor, which describes

the soil properties (i.e. soil structure and organic matter content) that influence the pre-

disposition of soil to erosion;

• LS [−] is a dimensionless combined parameter, also called LS-factor, that describes the

impact of slope length and slope steepness on soil erosion;

• C [−] is a dimensionless parameter, also called C-factor, that describes how land-use

and land-cover protect the soil from erosion (lower C-factor values correspond to higher

protection, thus to lower erosion);

• P [−] is a dimensionless parameter, also called P-factor, that describes the impact of soil

conservation practices to reduce the potential erosion.

Precipitation data were used to estimate the daily rainfall erosivity at each rain gauge with

the Rainfall Intensity Summarization Tool (RIST) code (USDA, 2017). Then, rainfall erosivity

was aggregated at a monthly scale and spatialized on a 30 [m] grid with the inverse-square law,

as shown in Figure 4.2a (R1). When organic matter content, texture, structure and permeability

are known, soil erodibility can be estimated with equations [4.2-4.3] (14); (16):

K =
2.1∗10−4 ∗M1.14 ∗ (12−OM)+3.25∗ (s−2)+2.5∗ (p−3)

100
∗0.1317 (4.2)

where:

• OM [%] is the organic matter content;

• s is the soil structure class (s=1: very fine granular, . . . , s=4: blocky, platy or massive);

• p is the permeability class (p=1: very rapid, . . . , p=6: very slow);
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• M is the textural factor computed as:

M = (Msilt +Mv f s)∗ (100−Mc) (4.3)

– Mc[%] is the fractional content of clay (particle size < 0.002 [mm]);

– msilt [%] is the fractional content of silt (0.002[mm] ≤ particle size < 0.05 [mm]);

– mv f s[%] is the fractional content of very fine sand (0.05 [mm] ≤ particle size < 0.1

[mm]);

All this information was not available for our study area, therefore the K-factor map made

by JRC (3) was resampled from its 500 [m] spatial resolution to 30 [m] spatial resolution (Figure

4.2b) (K1). The original resolution of 500m was considered adequate due to the lower spatial

variability (35) of this parameter with respect to the others. The resampling was performed just

to match the other parameter resolution. In the literature we can find several different formu-

lations for estimating the LS-factor. It is quite common using the equation proposed by (63),

which takes into account the unitary catchment area as input in each cell:

LS = (m+1)
(

Uin

22.13

)m(
sin(θ)
sin(5◦)

)n

(4.4)

where:

• Uin[m2m−1] is the contributing area to the cell for perimeter unit;

• 22.13 [m] is the length of the RUSLE standard parcel;

• θ [◦] is the cell slope;

• 5◦ is the slope of the RUSLE standard parcel;

• m and n are empirical coefficients (in literature typical values are 0.4 ≤ m ≤ 0.6 and

1.0 ≤ n ≤ 1.3).

In this study were used m=0.4 and n=1.3 as suggested by (64)(? ). Figure 4.2c shows the

map for LS-factor (LS1). In traditional RUSLE each land-cover class is assigned a unique and

static C-factor, usually retrieved from literature. In this work, the C-factor is assigned using

the DUSAF land-cover/land-use map of 2015 and tabulated data extracted from (2) and (65)

as summarized in (1). Table 4.1 reports the correspondences between land cover classes and

C-factor and Figure 4.2d shows its geographic distribution.
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Table 4.1: Tabulated C-factor values assigned to each DUSAF land cover classes (column
“C-factor (DUSAF)”) and tabulated C-factor ranges for each DUSAF land cover classes
(column “C-factor range”) (1). C-factor values sources are (a) the parametrization proposed
for Italy by (2), the central value of the C-factor range values for Europe from (b) (3) or
(c) (4). The land cover classes without (a),(b) or (c) are classes not included in above cited
studies but where there can not be any soil erosion (urbanized areas or water bodies).

C-Factor
Land cover class name Land cover class code C-factor (DUSAF) C-factor range
Continuous urban fabric 111 0.00000 0.00

Discontinuous urban fabric 112 0.00000 0.00

Industrial or commercial units 121 0.00000 0.00

Road and rail networks and associated land 122 0.00000 0.00

Port areas 123 0.00000 0.00

Airports 124 0.00000 0.00

Mineral extraction sites 131 0.00000 0.00

Dump sites 132 0.00000 0.00

Construction sites 133 0.00000 0.00

*Degraded Areas not used and not vegetated 134 0.00000 0.00

Beaches, dunes, sands 331 0.00000b 0.00

Bare rocks 332 0.00000b 0.00

Glaciers and perpetual snow 335 0.00000b 0.00

Water course 511 0.00000 0.00

Water bodies 512 0.00000 0.00

Green urban areas 141 0.00100c

Inland marshes 411 0.00100c

*Silvicolture 224 0.00130a

Broad-leaved forest 311 0.00130a 0.0001-0.003

Coniferous forest 312 0.00130a 0.0001-0.003

Mixed forest 313 0.00130a 0.0001-0.003

*New forest 314 0.00130a

Sport and leisure facilities 142 0.01000c

Transitional woodland-shrub 324 0.2420a 0.003-0.05

Natural grasslands 321 0.4160a 0.01-0.08

Moors and heathland 322 0.05500b 0.01-0.1

Pastures 231 0.09880a 0.05-0.15

Fruit trees and berry plantations 222 0.20000b 0.1-0.3

Olive groves 223 0.21630a 0.1-0.3

Sparsely vegetated areas 333 0.25090a 0.1-0.45

Non-irrigated arable land 211 0.33500b
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Vineyards 221 0.34540a 0.15-0.45

End of Table

*not in Corine Land Cover classification
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Figure 4.2: Parameters of classic RUSLE: a) rainfall erosivity (R1 parametrization); b) soil
erodibility (K1 parametrization); c) slope length and steepness (LS1 parametrization); d)
cover management type (C0 parametrization).

Finally, it is very difficult to define P-factor. In fact, although few authors tried to estimate

the P-factor from land cover information, this parameter is usually not considered in erosion

studies because its estimation needs a very detailed knowledge of the territory. Consequently, it

is usually set to P=1.
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4.1.3 The Dynamic RUSLE model

RUSLE was originally developed for the estimation of soil loss in flat agricultural areas. While

retaining the same formal equation of the original RUSLE [1], here an alternative parametriza-

tion called Dynamic RUSLE (D-RUSLE) is proposed. D-RUSLE includes the effects of rainfall

intensity, snow cover dynamics and land-cover/land-use changes in time, thus reflecting more

realistically precipitation erosivity and the sheltering effect of snow and vegetation seasonal dy-

namics. All the meteorological data recorded by rain gauges and thermometers are spatialized

with the inverse-square law on a 30 [m] grid and temperatures are spatialized using a dynamic

gradient estimated at each simulation step. The R-factor (R2) is computed at monthly scale us-

ing the equation proposed by Sun, Cornish, & Daniell (2002), where units are modified to get

erosion rate in [t ha−1 month−1] instead of [kg m−2 month−1] (25):

R =
nh

∑
t=1

0.138∗ i2e,t (4.5)

where:

• ie,t is the effective hourly intensity of precipitation;

• nh is the monthly number of hours.

The effective hourly intensity of precipitation ie,t computed with equations [4.6-4.7]:

SWEt = SWEt−1 +

+min
(

max
(

0; Tsup−Tt
tsup−tin f

)
;1
)

IF it > 0,

−min(max(0;cm ∗ (Tt −Tm)) ;SWEt−1) IF it = 0
(4.6)

ie,t =

0 IF SWEt > 0,

it IF SWEt = 0
(4.7)

where:

• SWEt [mm] is the snow water equivalent;

• Tt [
◦C] is the air temperature;

• Tin f [
◦C] is the temperature below all the precipitation is snow (Tin f =−3 [◦C]);

• Tsup[
◦C] is the temperature above all the precipitation is rain (Tsup = 0 [◦C]);

• Tm[
◦C] is the temperature above snow melting starts (Tm = 0 [◦C]);

• it [mm h−1] is the measured precipitation by rain gauge (=rain+snow);

• Cm[mm h−1 ◦C−1] is the snow melting rate (Cm = 0.18 [mm h−1 ◦C−1]);
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Equation [4.6] describes the snow water equivalent dynamics in terms of accumulation

(when it > 0) and melting (when it = 0), which is used as a proxy for snow cover dynamics.

Equation [4.7] provides the estimated effective hourly intensity of precipitation (ie) as function

of precipitation, air temperature and snow cover (Figure 4.4a). The K-factor (K2) is assigned

to the different soil textural classes derived from the official soil map of Regione Lombardia

according to information retrieved from literature (5), after local validation (Figure 4.3). For the

27 soil samples we measured total organic carbon (TOC), acidity (pH) and texture. Then the

laboratory results were compared with the information extracted from the soil map (here texture

is expressed as texture classes) (Figure 4.4b). Since the accordance was reasonably good, to

each cell was assigned a K-factor value based on its TOC and texture class provided by the soil

map, as reported in Table 4.2.

Figure 4.3: Comparison between TOC, pH and textural class measured for the 27 soil
samples and retrieved from the soil map of Regione Lombardia.
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Table 4.2: K-factor values for different textural classes and TOC content (modified from
(5)

Soil Texture Classes K-factor

For TOC < 1.16 [%] For TOC > 1.16 [%]

Sand 0.0040 0.0015
Loamy Sand 0.0066 0.0053
Sandy loam 0.0184 0.0158
Loam 0.0448 0.0342
Silt loam 0.0540 0.0487
Silt 0.0561 0.0514
Sandy clay loam 0.0263 0.0263
Clay loam 0.0435 0.0369
Silty clay loam 0.0461 0.0395
Sandy clay 0.0277 0.0277
Silty clay 0.0356 0.0345
Clay 0.0316 0.0277

The LS-factor (LS2) is estimated with the terrain analysis/hydrology module available in

SAGA (System for Automated Geoscientific Analyses) that use the popular formulation pro-

posed by Desmet and Govers (1996) (Figure 4.4c). Equation [4.8] takes into account flow accu-

mulation from upslope cells:

LS =

(
Ain +D2

)( β

beta+1+1
)
− (Ain)

(
β

beta+1+1
)

x
(

β

β+1

)
∗22.13

(
β

β+1

)
∗D

(
β

β+1+2
) (4.8)

β =

sin(θ)
sin(5◦)

0.56+3∗ [sin(θ)]0.9
(4.9)

x = |sin(a)|+ |cos(a)| (4.10)

S =

10∗ sin(θ)+0.03 IF θ < 5[◦]

16.8∗ sin(θ)−0.5 IF θ ≥ 5[◦]
(4.11)

where:

• Ain[m2] is the contributing area to the cell;

• D [m] is the cell size;

• 22.13 [m] is the length of the RUSLE standard parcel

• a[◦] is the cell orientation (aspect);

• θ [◦] is the cell slope



34 4. Method

• 5[◦] is the slope of the RUSLE standard parcel.

Finally, C-factor is estimated at 30 [m] spatial resolution as a dynamic variable using only

satellite Remote Sensing data (C1) and aggregating satellite Remote Sensing data with land

cover maps (C2). Compared to the classic “static” modelling of the cover management factor

(C0), satellite data allow the inclusion of its seasonal and inter-annual dynamics. C-factor could

be estimated from NDVI using equation [12] proposed by (28) (C1), as shown in Figure 4.4d:

C = e−α∗ NDV I
β−NDV I (4.12)

where:

• α and β are empirical coefficients (suggested values for Italy are α = 2 and β = 1).

However, it is well-known that equation [4.12] might result in unreliable overestimations

of C-factor (i.e. underestimation of the sheltering effect of vegetation) when NDVI is less than

0.65, which could in turn reflect in unreliable overestimation of soil erosion rates. Moreover,

satellite images collected over mountain areas in Winter have very large shadows, which lead

to unreliable estimation of NDVI, thus unreliable estimation of C-factor and, finally, unreliable

estimation of erosion rates. For those reasons, equation [4.12] seems not suitable to study soil

erosion in mountain areas, and would be the preferred method only in if no information on land

cover is available. Here a new method for the estimation of C-factor based on NDVI time se-

ries is proposed, where information on land cover is used as a priori knowledge to constrain

C-factor values (66) (C2). Satellite images are pre-processed through standard radiometric cal-

ibration and atmospheric corrections for non-flat terrain. All the images are grouped into two

macro-seasons: Spring/Summer (from March to August) and Autumn/Winter (from September

to February), and snow cover and clouds were masked. The study area, as most of the Alpine

environment, is characterized by the presence of many steep and narrow valleys and during Au-

tumn/Winter almost half of the territory is completely shadowed or snowed up. That can produce

undersatureted data (i.e. null values in shadowed areas) or oversaturated data (i.e. flat values in

snowy areas). For this reason, Autumn/Winter NDVI values were unreliable and thus replaced

with synthetic values reconstructed combining Spring/Summer observations and DUSAF land

cover classes. For each Autumn/Winter image, we selected the closest Spring/Summer image

and the closest DUSAF among the three maps available. Then I calculated the pixel-based ratio

between Autumn/Winter NDVI and Spring/Summer NDVI, excluding shadowed or snowy im-

age pixels. Next, we computed the average value of the ratio between Autumn/Winter NDVI and

Spring/Summer NDVI for each land cover class. Finally, I reconstructed a synthetic pixel-based

map for Autumn/Winter NDVI by multiplying the Spring/Summer NDVI by the average ratio

computed at the previous step, for each land cover class. Once reconstructed the time series of

NDVI, I estimated the C-factor time series. For each land cover class of DUSAF I defined a

range of possible values for C-factor [Cn,min,Cn,max] based on past studies (see Table 4.1 and (1))

and then linearized C-factor with NDVI as follows:
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Cn =


Cn,max FOR NDV I < NDV In,min

Cn,max +
NDV I−NDV In,min

NDV In,max−NDV In,min
(Cn,min −Cn,max) FOR NDV In,min ≤ NDV I ≤ NDV In,max

Cn,min FOR NDV I > NDV In,max

(4.13)

where:

• Cn,min[−] is the minimum C-factor value for land cover class n;

• Cn,max[−] is the maximum C-factor value for land cover class n;

• NDV In,min[−] is a threshold for land cover class n set to µNDV I −σNDV I

• NDV In,max[−] is a threshold for land cover class n set to µNDV I +σNDV I

To guarantee time and space coherence of seasonal C-factor estimates, I use the same thresh-

olds for both Spring/Summer and Autumn/Winter images. Pixel corresponding to non-vegetated

classes in DUSAF were assigned a null C-factor (Figure 4.4e).
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Figure 4.4: Parameters of D-RUSLE: a) rainfall erosivity (R2 parametrization); b) soil
erodibility (K2 parametrization); c) slope length and steepness (LS2 parametrization); d)
cover management type (C1 parametrization); e) cover management type (C2 parametriza-
tion).

4.1.4 Projection of Precipitation, Temperature, and Rainfall Ero-
sivity

The climate projections generated from GCMs driven by RCPs have a coarse spatial resolution

(more than 100 km x 100 km) and a coarse temporal resolution (daily), which are not suitable for

simulating erosion rates al local scale with D-RUSLE. In addition, it is known that precipitations

simulated by GCMs usually suffer from bias and poor intermittence and variability. Thus, they

have improper representation of mean rainfall values on the ground (bias), poor representation

of the sequence of dry and wet days (intermittence), and poor representation of the variability

of rainfall in time (variability). To overcome all these issues, we used a stochastic time random

cascades (SSRCs) approach (67) to correct and downscale in space and time our climate simula-
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tions. This technique first downscales in the spatial domain the daily time series of precipitation

and temperature simulated by the climate projections, from the GCM grid to the pinpoint mete-

orological stations. Then downscales the time series of meteorological stations in the temporal

domain, from daily to hourly (67). With reference to precipitation, the SSRCs correct the bias

by applying a constant (multiplicative) term to force the mean simulated daily precipitation from

the GCM to equate the observed value at the rain gauges. Intermittence is then introduced with

a binomial generator to evaluate the probability of wet (or dry) spells, thus reproducing the al-

ternance of days with and without precipitation. Finally, the variability of rainfall is reproduced

with a “strictly positive” log-normally distributed generator, which properly depicts the variance

of rainfall intensity during wet days. Overall, the downscaled simulations provide a series of

precipitation that are statistically equivalent (in terms of mean value, dry/wet spell dynamics,

and rainfall variance) to the observed precipitation at rain gauges and can be thus used confi-

dently for hydrological simulation. With reference to temperatures, the simulated downscaled

temperatures well mimic the observed trend at the thermometer stations, unless for an additive

bias which was corrected using a monthly Delta-T approach (68). Finally, both the downscaled

precipitation and temperature time series were further corrected for altitude using lapse rates to

preserve their observed (at meteorological stations) vertical structure, and then spatialized from

the rain gauges/thermometer stations to the whole study area with a spatial resolution of 30 m.

For every rain gauge and thermometer station, we calibrated the SSRCs models using the ob-

served hourly data in the period 2003–2017. The so tuned models were then used to downscale

in space and time precipitation and temperature simulated by the nine climate scenarios in the

period until 2100. Overall, to estimate future climate change we generated time series for four

30-years periods: 1981–2010 was used as the reference period, while the statistics of the periods

2011–2040, 2040–2070, and 2071–2100 were used as representative of future climate change.

Once simulated the climate scenarios, we simulated rainfall, snowfall, and snow cover dynam-

ics with D-RUSLE and then computed monthly maps of rainfall erosivity using the equation

proposed by Sun, Cornish, and Daniell (69):

R =
nh

∑
t=1

0.138∗ i2e,t (4.14)

where:

• ie,t [mm h−1] is the effective hourly intensity of precipitation;

• nh is the monthly number of hours.

4.1.5 Land Cover Scenarios

Automatic machine learning was used for projecting future land cover maps. For this task, many

different methods are described in the literature (e.g., logistic regression, similarity-weighted

instance-based machine learning), but neural networks are the most commonly used and are also

known to outperform the other methods (70);(71). For this simulation, the land change modeler
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Table 4.3: Main land cover transitions and land cover persistences highlighted by the
change detection analysis for the period 2000-2015.

Sub-Model Land Cover Transitions Land Cover Persistences

Sub-model 1 Non-irrigated arable land → Pastures Non-irrigated arable lands;
(arable lands) Pastured → Discontinuous urban fabric; Pastures

Pastured → Non-irrigated arable land.
Sub-model 2 Pastured → Broad-leaved forest; Pastures;
(forests) Coniferous forest → Mixed forest; Coniferous forest;

Coniferous forest → Moors and heathland; Transitional woodland-shrub
Coniferous forest → Transitional wood-
landshrub;
Transitional woodland-shrub → Broad-
leaved forest;
Transitional woodland-shrub → Mixed
forest

Sub-model 3 Pastures → Natural grassland; Pastures;
(grasslands) Pastures→ Transitional woodland-shrub; Moors and heathland;

Moors and heathland → Natural grassland; Bare rocks;
Bare rocks → Sparsely vegetated areas;
Sparsely vegetated areas.
Sparsely vegetated areas → Natural grass-
lands;
Sparsely vegetated areas → Transitional
woodland-shrub;
Sparsely vegetated areas → Bare rocks.

module of TerrSet (72) was used. First, the land cover changes that occurred in the past with a

classic change detection analysis between DUSAF 2000 and DUSAF 2015 were quantified. To

avoid meaningless changes, we retained only class transitions with a total geographic extension

larger than 3000 cells (i.e., more than 2.7 [km2], about 0.15% of the study area). This analysis

highlighted 16 main land cover transitions and 7 main land cover persistences, which were

grouped in the three sub-models reported in Table 4.3.
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Then, for each of the three sub-models I built a multi-layer perceptron neural network

(MLPNN). All the MLP-NNs were designed with three input neurons (elevation, slope, and

aspect) and a hidden layer with six neurons. Different formulation of the NN structure were

tested, with more input parameters (distance from river, distance from roads, and population),

but they resulted to be non-significant in explaining the Land Cover transitions. The output layer

used to predict the probability of land cover changes in the future had as many neurons as the

number of potential land cover transitions and potential land cover persistences (5 for sub-model

#1, 9 for sub-model #2, and 11 for sub-model #3). Figure 4.5 shows the neural network design.

Figure 4.5: Multi-layer perceptron neural network used for generating future land cover
scenarios.

The third step was the training of the networks (one for each sub-model) to set the optimal

weights (ωk
i j). A set of training data and a set of testing data were automatically extracted from

the reference land cover maps. To avoid sub-optimal solutions or an unstable training process,

we used a learning rate of 0.0001. Moreover, I used a momentum of 0.5 for increasing numerical

stability and for reducing volatility over the training epochs. Once trained, the neural networks

were used to generate a set of land cover transition/persistence potentials [44]. Finally, using the

past land cover changes and the modelled transition/persistence potentials, the future land cover

map was predicted with a Markov Chain. Specifically, having evaluated the historical land cover

changes from time t1 to time t2, the Markov Chain estimated the portion of land that is expected

to transition from one class to another other, between the time t2 and a future time t3 (73). By

repeating the process mentioned above, I simulated one land cover (LC) map for each of the

30-years simulation period: LC 2030, LC 2060, and LC 2090. For limiting error propagation in

the simulation process, the MLP-NNs were trained with at least one real land cover map (i.e.,
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DUSAF). Therefore, for the simulation at year 2030 the networks were trained with the DUSAF

2000 and DUSAF 2015 maps, DUSAF 2007 and the simulated land cover map for year 2030

(LC 2030) were used for predicting the land cover at year 2060 (LC 2060), and DUSAF 2015

and the simulated map at year 2060 (LC 2060) were used for the last prediction at year 2090

(LC 2090). Moreover, since initialization of the neural network is prone to numerical issues, we

repeated each simulation five times, for a total of 15 simulations for every 30-years period. The

final land cover maps were generated by retaining the modal value of each land cover simulation.

While this is not a Monte Carlo simulation, however the multiple repetitions allowed us to get

a more accurate prediction of the future land cover, minimizing the intrinsic error of the single

stochastic simulation.

As a result of our simulations, I described the dynamics of the cover management factor

through the following land cover maps:

• 1981-2010 (reference period): DUSAF 2000 map;

• 2011-2040: simulated LC 2030 map;

• 2041-2070: simulated LC 2060 map;

• 2071-2100: simulated LC 2090 map.

Clearly, future projections of the cover management factor cannot exploit the satellite ob-

servations for reproducing the seasonal dynamics of vegetation. Thus, the cover management

factor was estimated by assigning a fixed value to land cover classes at each simulation period

(Table 4.1) (74);(75). This means that our simulations only considered the trend of the C-factor

and were not able to reproduce its seasonal variability.
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4.2 Nepal parameters modelling

As mentioned in the introduction, this part of the work was less focused on the soil erosion

estimation per se, but more on how to compute the parameters of the model, in situation where

data availability is less abundant and reliable.

4.2.1 Meteorological data processing

With regard to meteorological data, I used a daily time series of precipitation and air temperature

derived from a reanalysis of data from 1981 to 2010. This dataset (HIAWARE) is provided with

a resolution of 5 km for the entire study area.

Through a cubic interpolation the resolution of temperature and precipitation data was up-

graded to 30 m taking into consideration the local temperature gradient thanks to a 30 m resolu-

tion Digital Elevation Model (DEM) from SRTM mission.

4.2.2 Calibration of the SWE model

The SWE model described in equation 4.6 was calibrated with the help of 15 Landsat satellite

images, over the period 2009-2010. Instead of having a fixed values for each parameter of the

model, a possible range was defined (table 8.1) and the model was performed with a random

initialization of the parameters. A classification process was applied to the 15 Landsat images,

in order to derive, for each image, a map of the snow covered areas. The classification was

performed starting from the work of (76) and further tuned for the study area, where topography

has an important role, with many areas in shadow. The classification (see Equations 4.15 - 4.16

- 4.17) is pixel based with a set of threshold on the NDSI index and the reflectance bands of the

landsat images.

Areas classi f ied as snow =


NDSI > 0.75

R(red)> 0.045

R(green)> 0.035

(4.15)

Areas classi f ied as clouds =


−0.27 < NDSI < 0.3

R(green)> 0.3

R(SWIR)> 0.4

(4.16)

NDSI =
R(green)−R(SWIR)
R(green)+R(SWIR)

(4.17)

where:

• R(green) -> represents the pixel reflectance in the green band;

• R(red) -> represents the pixel reflectance in the red band;
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Parameters Range Tuned Value

Tin f [◦C] [-7;0] -7
Tsup[◦C] [-4;7] 3
Tm[◦C] [-5;0] -5
Cm[mm d−1 ◦C−1] [2.5;15] 14

Table 4.4: Bayesian optimization parameters

• R(SWIR) -> represents the pixel reflectance in the short wave infrared.

These maps were used as true value reference. The outputs of the model, saved at the same

date of the satellite images, were then compared with the maps of snow cover derived from

the Landsat images, excluding the areas covered by clouds, and the confusion matrix, for each

pair, was computed and the F1-score derived. Through a bayesian optimization process the 4

parameter of the model were tuned in order to maximize the F1-score. At the end of the process

the average value of F1-score was 0.5860, and the values of the 4 parameters are shown in table

4.4.

4.2.3 ICIMOD Land cover maps processing

As far as the land cover maps, provided by ICIMOD, are concerned, a classification process was

performed in order to improve the quality of the earlier versions of Land cover maps. Exploiting

the power of Google Earth Engine cloud computing, all the Landsat available images from 1985

to 2015 were used to perform the classification. A SAM algorithm was used to classify the area

of agriculture and forest. The output of the first classification was compared with the statistical

data of the agricultural areas. An iterative process was then applied to modify the threshold

value of the SAM classification in order to minimize the difference between the output of the

classification and the statistical data.

Figure 4.6: Classification process of land cover maps

The publication, by ICIMOD, of the recently update LC maps, which proved to be accurate,

made unnecessary the classification process. Nonetheless the process proved to be a useful



4.2. Nepal parameters modelling 43

Hyper-parameter Value

Epochs 50
Dropouts on each hidden layer 20%
Loss Sparse categorical crossentropy
Optimizer Adam
Metric Accuracy
Batch size 32

Table 4.5: Hyper-parameter of the three Neural Network models

way to improve the accuracy of a poor land cover map, integrating satellite information with

statistical data.

4.2.4 Land Cover Projection

To simulate the future evolution of Land Cover three model of Neural Network were tested, with

python. All the model share the same structure:

• 16 input parameters

– DEM

– Slope

– Aspect

– Distance from roads

– Distance from rivers

– Population

– Input map pixels

– For each pixel of the input map the 9 pixels in the 3x3 kernel surrounding the pixel

• 3 hidden layers

– 16 nodes

– Relu activation function

• Output layer

– Softmax activation function

– 9 classes

The hyper-parameters of the three models are shown in table 4.5.

The first 6 input parameters are the same for each model, while the parameters related to the

input map, and the true value map used to train the NN are different for each model.
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4.2.4.1 Model 1

The first model used, as input map, the map of 1990 and the map of 2000, stacked together in a

single array, in order to increase the numerosity of the training sample. As true value the map of

2000 and the map of 2010 were stacked together in a single array. Of the input and true value

maps, 90% of the pixels were used to train the model, while 10% were used to validate it.

The performance of the model 1 is shown in table 4.6.

It is important to underline that between the input map (1990 + 2000) and the true value map

(2000 + 2010) 83% of the study area does not change its state. For this reason in the training

phase the class invariability is over-represented, and the neural network might just be trained to

maintain the same land cover class.
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Score Value

Loss 0.5130
Accuracy 0.8384
Validation Loss 0.4253
Validation Accuracy 0.8676

Table 4.6: Model 1 performance

Score Value

Loss 0.9927
Accuracy 0.6504
Validation Loss 0.7721
Validation Accuracy 0.7189

Table 4.7: Model 2 performance

4.2.4.2 Model 2

A second Neural Network model was tested to bypass the eventuality of over representation of

the invariability of land cover. In this model only 10% of the pixels that don’t change their land

cover class between the input map and the true value map are taken into consideration in the

training process, while for the validation the entire area is considered.

The performance of model 2 is shown in table 4.7.

4.2.4.3 Model 3

The last model tested had in input only the 1990 land cover map, and as true value reference

the 2010 land cover map. This process cuts in half the dataset dimension but excludes the land

cover map of 2000 that showed some misclassified area. Despite the time step, between the

input and the output, doubling up this model showed a better performance with an accuracy on

the validation set of 80%

The performance of model 3 is shown in table 4.8.

Score Value

Loss 0.7541
Accuracy 0.7191
Validation Loss 0.5758
Validation Accuracy 0.8071

Table 4.8: Model 3 performance
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Result

Figure 5.1 compares the estimates of potential soil erosion rates simulated with D-RUSLE

(SIM_07) and RUSLE (SIM_01). D-RUSLE takes into account a regional-based mapping of

the parameters, snow cover dynamics and both inter-annual and intra-annual variability of land

cover as follows:

• Rainfall erosivity is modelled using the R2 parametrization, as it separates rainfall and

snow contribution to soil erosion, thus providing seasonal and altitude discrimination

which are important in the mountainous environment;

• Soil erodibility is modelled using the K2 parametrization, as it can be applied to other

case studies;

• Slope length and steepness is modelled using the LS2 parametrization, as suggested by

reference works in the literature;

• Cover management type are modelled using the C2 parametrization, as satellite images

can greatly improve the dynamic estimation of the sheltering effect of vegetation;

• Conservation practice is neglected in the absence of field information.

Although the two approaches provide a different range of erosion rates variability, due to

different parameters’ formulation, their spatial patterns can be compared. That is shown in

Figure 5.1: overall, higher erosion areas are predominantly located at higher altitudes on slopes,

while lower erosion values characterize valley areas. Nevertheless, the adoption of D-RUSLE

(Figure 5.1a) lead to a decrease in soil loss estimates of more than 8 times with respect to

classic RUSLE (Figure 5.1b), with a larger difference in the high elevation areas. This difference

decreases to a fifth in the lake area (Figure 5.2).

5.1 Benchmark

Potential soil loss rate is a difficult quantity to measure in the field, thus we used the most

recent reference data available for Europe (2) as benchmark (Figure 5.1c). The comparison
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between JRC erosion estimates on Val Camonica area and D-RUSLE (SIM_07) estimates shows

a general agreement on the location of the areas more prone to erosion, given the different spatial

resolution of the studies: 100-m (aggregated) for JRC output (2)) and 30-m for our results (25).

No data values (almost 16% of the study area) in JRC map are due to a lack of data in the

C-factor estimate (77).

Figure 5.1: Comparison of potential soil erosion maps simulated with: a) D-RUSLE
(SIM_07), b) classic RUSLE (SIM_01) and c) JRC erosion estimates.
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Figure 5.2: Comparison of potential soil erosion rates (2003-2017) computed for
Spring/Summer and Autumn/Winter with D-RUSLE (SIM_07) and classic RUSLE
(SIM_01).

5.2 Sensitivity analysis

Several simulations are used to evaluate the models’ sensitivities to different parametrization of

input variables (Table 5.1). Simulation code SIM_01 corresponds to classic RUSLE, here used

as reference, while simulation code SIM_07 corresponds to the D-RUSLE model here proposed.

Intermediate simulations (from SIM_02 to SIM_06) show the impact on the estimate of different

input variables parametrization.
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Table 5.1: Different combinations of the parameters

Simulation code Parameters’ code

R-factor C-factor K-factor LS-factor

SIM_01 R1 C0 K1 LS1
SIM_02 R2 C0 K1 LS1
SIM_03 R1 C0 K2 LS1
SIM_04 R1 C0 K1 LS2
SIM_05 R1 C1 K1 LS1
SIM_06 R1 C2 K1 LS1
SIM_07 R2 C2 K2 LS2

Sensitivity to R-factor

On average, the R2 parametrization produces lower rainfall erosivity compared to the R1

parametrization (µR1 = 1094 [MJ mm ha−1 h−1 yr−1], µR2 = 439 [MJ mm ha−1 h−1 yr−1]),

with almost comparable dispersion (σR1 = 141 [MJ mm ha−1 h−1 yr−1], σR2 =

163 [MJ mm ha−1 h−1 yr−1]) In particular, the R1 parametrization overestimates rainfall erosiv-

ity in Autumn/Winter, as it does not distinguish between snow and rainfall and does not account

for snow cover. Consequently, using the R2 parametrization (SIM_02) instead of the standard R1

(SIM_01) produces lower potential soil erosion rates. The most significant decrease is located

in high and medium elevation areas, where soil loss rates decrease of 75% and 63% respectively,

due to the modelling of snowfall and snow cover dynamics. A minor decrease (47%) is retrieved

in the lake areas, as a result of lower altitudes that limit the snow occurrence and foster the snow

cover melting process. Overall, using R2 instead of R1 had the highest impact on simulations

(-68% of potential soil erosion rates).

Sensitivity analysis respect to K-factor

The effect of using K2 parametrization (SIM_03) instead of more complex and de-

tailed K1 parametrization (SIM_01) is not uniform in the whole study area. Overall, K2

parametrization produces a lower spatial variability, as each polygon of the reference soil

map is assigned a single value (Figure 4.3b). Nevertheless, statistics are comparable (µK1 =

0.0228 [t ha h ha−1 MJ−1 mm−1], µK2 = 0.0236 [t ha h ha−1 MJ−1 mm−1], , σK2 =

0.0112 [t ha h ha−1 MJ−1 mm−1] More in detail, the use of K2 parametrization has a mixed

impact: potential soil loss rate decreases of almost 50% in high elevation areas, while increases

of almost 60% in the Iseo Lake area. The impact of K2 parametrization is limited in medium

elevation areas (-16%). Therefore, moving from K1 to K2 parametrization the overall potential

erosion rate decreases by 27%. This reflects the different spatial distribution of K-factor using

K1 and K2 parametrizations, as shown in Figure 4.1b and Figure 4.3b.
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Sensitivity analysis respect to LS-factor

LS2 parametrization (SIM_04) is very different from the classic LS1 parametrization

(SIM_01), both in terms of mean (µLS1 = 29.6, µLS2 = 13.0) and standard deviation (σLS1 = 38.7,

σLS2 = 15.0). However, past studies suggested that LS2 is to be preferred for sub-basin scale

analysis (77). The adoption of LS2 parametrization has an important impact on the modelling,

with an overall decrease of potential soil erosion rate of about 55%, regardless the elevation

ranges.

Sensitivity analysis respect to C-factor

Simulation SIM_06 (C2) returns slightly increasing rates with respect to SIM_01 (C0). Nev-

ertheless, values are almost comparable among all the three altitude areas (+19%, +13% and -6%

for SIM_06 in high altitude, in medium altitude and in lake areas respectively), as all both ap-

proaches rely on the use of land cover classes to limit C-factor variability. On the contrary,

simulation SIM_05 (C1) returns a prominent increase (nearly three times) in soil loss rates esti-

mates, due to no boundaries that limit the variability of C-factor estimates. This effect is partic-

ularly evident in the lake area (+296%), characterized by a predominance of forests, and slightly

decreases when moving to higher altitudes (+188% for medium elevation area and +127% for

high elevation area), where forests are replaced by sparsely vegetated areas. On the whole area,

the use of C2 parametrization showed a limited effect of average soil erosion rates (+12%), but

differences between C0 and C2 parametrization are evident when data are analysed at seasonal

scale as in Section 6.2.

5.3 Projection of Precipitation, Temperature, and Rain-
fall Erosivity

Comparing the simulated mean annual precipitations at the rain gauges (2003-2017) with ob-

servations (2003-2017), we found the following biases in the downscaling process: 3.7% for

ECHAM6, 3.9% for EC-Earth, and 4.5% for CCSM4. In the same period, at the thermometers

the biases were: 0.1 °C (ECHAM6 and EC-Earth) and 0.0 °C (CCSM4). Among the nine climate

scenarios, GCM CCSM4 driven by RCP4.5 projected the smaller changes for annual precipita-

tion (-1.8%) and temperature (+1.4 °C) at 2071-2100. On the other hand, GCM EC-Earth driven

by RCP8.5 projected the larger changes for annual precipitation (+8.4%) and temperature (+4.0

°C) at 2071–2100. For this reason, our analysis focused only on these two extreme scenarios:

GCM CCSM4 driven by RCP4.5 (hereafter referred to as SIM4.5) is our best-case scenario

and GCM EC-Earth driven by RCP8.5 (hereafter referred to as SIM8.5) is our worst-case sce-

nario. All the other scenarios lie in the between. Figure 5.3 shows a comparison between the 30

m spatialized mean annual observed vs. simulated precipitation and temperature in the period



52 5. Result

2003–2017. On the one hand, precipitation was slightly underestimated in all the domain. On

the other hand, observed and simulated temperatures show a good agreement, being character-

ized by a negative gradient with elevation. Tables 5.2 and 5.3 summarize the numerical results.

Figures 5.4 and 5.5 report the mean precipitation and temperature anomalies simulated with

SIM#4.5 and SIM#8.5 at 2011–2040, 2041–2070, and 2071–2100. The baseline is the reference

simulated period (1981–2010).
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Figure 5.3: Estimates of mean annual precipitation (first row) and temperature (second row)
based on observations in 2003–2017 (first column); statistical downscaling of SIM#4.5 in
2003–2017 (second column) and statistical downscaling of SIM#8.5 in 2003–2017 (third
column).
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Table 5.2: Mean annual precipitation [mm yr−1] based on spatially distributed observations
and simulated climate.

Study Area North Region Center Region South Region

Observed (2003-
2017)

1212 1108 1274 1274

SIM#4.5 (2003-
2017)

1199 1086 1254 1277

SIM#8.5 (2003-
2017)

1200 1091 1253 1270

Table 5.3: Mean annual temperature [°C] based on spatially distributed observations and
simulated climate.

Study Area North Region Center Region South Region

Observed (2003-
2017)

7.0 4.3 7.1 10.4

SIM#4.5 (2003-
2017)

7.0 4.3 7.0 10.3

SIM#8.5 (2003-
2017)

7.0 4.3 7.1 10.3

Figure 5.6 shows a comparison between the spazialized R-factor based on observations vs.

simulations for the period 2003–2017. Figure 5.7 reports the projections for SIM4.5 and SIM8.5.

The simulated maps show spatial patterns that are similar to those observed but the R-factors are

underestimated by about 26% in both SIM#4.5 and SIM#8.5 (Table 5.4).
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Figure 5.4: Mean precipitation anomalies compared to the reference period (1981–2010):
simulated with SIM#4.5 (first row) and SIM#8.5 (second row) at 2011–2040 (first column),
2041–2070 (second column), and 2071–2100 (third column).
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Figure 5.5: Mean temperature anomalies compared with the reference period (1981–2010):
simulated with SIM4.5 (first row) and SIM8.5 (second row) at 2011–2040 (first column),
2041–2070 (second column), and 2071–2100 (third column).
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Table 5.4: Mean R-factor [MJ mm ha−1 h−1 yr−1] based on spatially distributed observa-
tions and simulated climate.

Study Area North Region Center Region South Region

Observed (2003-
2017)

436 296 463 581

SIM#4.5 (2003-
2017)

231 310 331 447

SIM#8.5 (2003-
2017)

325 197 328 482

Figure 5.6: Estimates of R-factor based on observations in 2003–2017 (left); statistical
downscaling of SIM#4.5 in 2003–2017 (center); statistical downscaling of SIM#8.5 in
2003–2017 (right).
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Figure 5.7: R-factor simulated with SIM4.5 (first row) and SIM8.5 (second row) at
2011–2040 (first column), at 2041–2070 (second column), and at 2071–2100 (third col-
umn).
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5.4 Projections of Future Land Cover and Cover Man-
agement Factor

The change detection analysis of past land cover (Figures 5.8 and 5.9) revealed that sparsely

vegetated areas and pastures respectively reduced by 14% and 17%. They were almost replaced

by natural grasslands, which increased by about 27%, and by moor and heathlands, which in-

creased almost 8%. On the other hand, transitional woodland-shrubs, bare rocks, glacier and

perpetual snow areas remained almost stable. With reference to future land cover simulations,

results show the following temporal trends (Figures 5.8 and 5.9):

• Sparsely vegetated areas and pastures continue to reduce almost constantly until 2090;

• Natural grasslands continue to increase almost constantly until 2090;

• Moors and heathlands show a rapid increase until 2060 and then a slower increase until

2090;

• Transitional woodland-shrubs and bare rocks show respectively a minimal increase and a

minimal decrease in the simulation periods;

• Glacier and perpetual snow considerably reduce (from -37% in the first 30-years period

to - 52% in the third 30-years period), in accordance with the expected retreat of the

Adamello glacier and the disappearance of the Ortles glacier.

Consequently, Figure 5.10 shows the dynamics of the C-factor computed with the observed

land cover maps (DUSAF 2000, DUSAF 2007, DUSAF 2015) and the projected C-factor com-

puted with the future land cover maps (LC 2030, LC 2060, LC 2090). Overall, projections show

a gradual decrease of the mean C-factor for the whole study area (from 0.046 in 2000 to 0.033

in 2090), thus a gradual increase in the sheltering effect of vegetation cover toward soil erosion.

The same result occurs when analyzing the three regions separately (from 0.052 to 0.035 for the

North region, from 0.045 to 0.034 for the Center region, and from 0.040 to 0.030 for the South

region).
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Figure 5.8: Past land cover (DUSAF) observed at 2000, at 2007, and at 2015 (first row);
simulated land cover (LC) at 2030, at 2060, and at 2090 (second row).
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Figure 5.9: Most significant land cover classes at each observed (DUSAF) and simulated
(LC) epoch.
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Figure 5.10: DUSAF based C-factor at 2000, at 2007, and at 2015 (first row) and LC based
C-factor at 2030, at 2060, and at 2090 (second row).

5.5 Effect of Climate Projections on the Estimates of
Soil Erosion

To evaluate the effects of climate change on soil erosion, independently from land cover changes,

we run our simulations with a static land cover. In this case, we used the DUSAF 2015 for the

whole simulated period (1981–2100). The erosion scenarios obtained with static land cover are

hereafter referred to as SIM#4.5_D2015 and SIM#8.5_D2015, depending on the climate sce-

narios used. Figure 5.11 presents the comparison of observed (74);(75) vs. the simulated mean

annual soil erosion rates for the period 2003–2017 and using the two climate scenarios SIM4.5

and SIM8.5. The simulated maps show spatial patterns that are similar to those observed, but the

erosion rates are underestimated of about 29% in SIM#4.5_D2015 and 44% in SIM#8.5_D2015
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(Table 5.5). As already mentioned, the overall underestimation is strictly related to the underes-

timation of the R-factor in the same period.
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Figure 5.11: Estimates of mean annual soil erosion rates based on observations (left); and
using erosion scenarios SIM#4.5_D2015 (center) and SIM#8.5_D2015 (right) with static
land cover (DUSAF 2015).



5.5. Effect of Climate Projections on the Estimates of Soil Erosion 65

Table 5.5: Mean observed and simulated annual erosion rates [t ha−1 yr−1] with two
climate scenarios and static land cover (DUSAF 2015).

Study Area North Region Center Region South Region

Observed (2003-
2017)

3.78 3.22 4.64 3.64

SIM#4.5_D2015
(2003-2017)

2.67 2.08 3.08 2.94

SIM#8.5_D2015
(2003-2017)

2.63 1.89 2.94 3.02

More in details, Figure 5.12 reports the projected changes of erosion rates (baseline

1981–2010). Under the hypothesis of a static land cover, changes in erosion rates are only

due to rainfall erosivity variability as stated in Equation (1). Expected mean erosion rates for

the periods 2011–2040, 2041– 2070, and 2071–2100 are detailed in Table 5.6. According to

SIM#4.5_D2015, the mean erosion rate of the study area is expected to remain almost constant.

The Center region, on average, has the highest erosion rates, while the North region has the

lowest rates. SIM#8.5_D2015 foresees a different scenario: the mean erosion rate of the study

area is expected to grow until 2070, and then stabilize. In this case, the territory with the highest

erosion rates is the South region, while the North region shows the lowest rates. As expected,

the erosion rates predicted by SIM#8.5_D2015 and averaged on the study area exceed those of

SIM4.5_2015 by 8% for the simulation period 2011–2040, by 28% for the simulation period

2041–2070 and by 23% for the simulation period 2071–2100. Finally, Figure 5.13 summarizes

the percentages of the study area and regions where erosion is predicted to increase, decrease,

or remain stable.
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Table 5.6: Mean erosion rates [t ha−1 yr−1] according to climate projections.

Simulation
Periods Study Area North Region Center Re-

gion South Region

SIM#4.5 1981-2010 2.69 2.03 3.20 2.96
2011-2040 2.63 1.99 3.13 2.87

D2015 2041-2070 2.57 2.06 2.96 2.77
2071-2100 2.68 2.11 3.19 2.84

SIM#8.5 1981-2010 2.61 1.78 2.96 3.26
2011-2040 2.84 1.97 2.96 3.26

D2015 2041-2070 3.30 2.31 3.76 4.04
2071-2100 3.30 2.36 3.76 3.96

5.6 Combined Effects of Climate and Land Cover Pro-
jections on the Estimates of Soil Erosion

To evaluate the combined effects of climate and land cover changes, we run our simulations

with a time-dependent land cover. In this case, we used LC 2030 as representative for the 30-

year period 2011–2040, LC 2060 as representative for the 30-year period 2041–2070 and LC

2090 as representative for the 30-year period 2071–2100. For the control period (1981–2010)

we assumed the observed land cover given by DUSAF 2000. The erosion scenarios obtained

by combining the two climate scenarios with dynamic land cover are hereafter referred to as

SIM#4.5_LC and SIM#8.5_LC. Figure 5.14 shows the comparison of observed (74);(75) vs.

simulated mean annual soil erosion rates for the period 2003–2017 and extracted from those

generated from the erosion scenarios SIM#4.5_LC and SIM#8.5_LC. The simulated maps show

spatial patterns that are similar to those observed, but the erosion rates are still underestimated

(Table 5.7). Nevertheless, the better performances of SIM#4.5_LC vs. SIM#4.5_D2015 and of

SIM#8.5_LC vs. SIM#8.5_D2015 (cf. Tables 3 and 8) are due to the land cover dynamics (i.e.,

DUSAF 2000 from 2003 to 2010 and LC 2030 from 2011 to 2017).
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Figure 5.12: Soil erosion rate anomaly with respect to the reference period (1981–2010)
for: 2011–2040 (first column), 2041–2070 (second column), and 2071–2100 (third col-
umn). SIM#4.5_D2015 (first row) and SIM#8.5_D2015 (second row).
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Figure 5.13: Erosion anomaly with respect to the reference period (1981–2010) expressed
as percentage of territory for SIM4.5D2015(onthetop)andSIM8.5D2015(onthebottom).
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Figure 5.14: Estimates of mean annual soil erosion rates based on observations (left); and
using erosion scenarios SIM#4.5_LC (center) and SIM#8.5_LC (right) with time-dependent
land cover (DUSAF 2000 from 2003 to 2010 and LC 2030 from 2011 to 2017).

Figure 5.15 shows the maps of soil erosion rate anomaly for the thirty-year periods

2011–2040, 2041–2070, and 2071–2100 under the hypothesis of changes in both climate and

land cover. The expected mean erosion rates are summarized in Table 5.8. The spatial pat-

terns of future erosion anomalies (Figure 15) are similar to those presented for SIM#4.5_D2015

and SIM#8.5_D2015 (Figure 5.12), but with local variations because of the land cover changes.

Overall, projections with land cover dynamics returned lower erosion rates compared to simula-

tions with static land cover and, as expected, SIM#8.5_LC erosion rates averaged on the whole

study area exceeded those of SIM#4.5_LC (by 7% for the thirty-year period 2011–2040, by 28%

for the thirty-year period 2041–2070, and by 23% for the thirty-year period 2071–2100). Ac-

cording to SIM#4.5_LC, the mean erosion rate on the study area is expected to slightly decrease.

On average, the Center region will have the highest erosion rates, while the North region will

have the lowest erosion rates. Conversely, according to SIM#8.5_LC the study area is expected

to slightly increase the mean erosion rate from the first (2011–2040) to the second thirty-year

period (2041–2070), and then slightly decrease in the last thirty-year period (2071–2100). In

this case, the highest erosion rates are in the South region, while the North region shows the

lowest rates. Overall, both SIM#4.5_LC and SIM#8.5_LC project a decrease in the mean soil

erosion rate and these trends seem contradicting the positive anomalies shown in Figure 5.15.

Finally, Figure 5.16 summarizes the percentages of the study area where erosion is predicted to

increase, decrease, or remain stable.
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Table 5.7: Mean observed and simulated annual erosion rates [t ha−1 yr−1] with two
climate scenarios and time-dependent land cover (DUSAF 2000 from 2003 to 2010 and LC
2030 from 2011 to 2017)

Study Area North Region Center Region South Region

Observed (2003-
2017)

3.78 3.22 4.64 3.64

SIM#4.5_LC
(2003-2017)

2.82 2.15 3.35 3.07

SIM#8.5_LC
(2003-2017)

2.80 1.95 3.23 3.39

Table 5.8: Mean erosion rates [t ha−1 yr−1] according to climate and land cover projec-
tions.

Simulation
Periods Study Area North Region Center Re-

gion South Region

SIM#4.5 1981-2010 3.12 2.17 3.79 3.57
2011-2040 2.48 1.96 3.06 2.48

LC 2041-2070 2.19 1.82 2.50 2.32
2071-2100 2.20 1.68 2.74 2.26

SIM#8.5 1981-2010 3.04 1.90 3.51 3.93
2011-2040 2.66 1.95 3.08 3.10

LC 2041-2070 2.80 2.02 3.18 3.37
2071-2100 2.71 1.89 3.22 3.16
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Figure 5.15: Soil erosion rate anomaly with respect to the reference period (1981–2010)
for: 2011–2040 (first column), 2041–2070 (second column), and 2071–2100 (third col-
umn). SIM#4.5_LC (first row) and SIM#8.5_LC (second row).
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Figure 5.16: Erosion anomaly with respect to the reference period (1981–2010) expressed
as percentage of territory for SIM#4.5_LC (on the top) and SIM#8.5_LC (on the bottom).



Chapter 6

Discussion

6.1 Correlation between model’s parameters and soil
erosion estimates

The sensitivity analysis points out that the parametrization of R-factor has the highest impact on

the average potential soil erosion, when not considering the simulation SIM_05 that is biased

by the C-factor overestimation. However, the pixel-based Pearson’s correlation with the erosion

maps shows that the R-factor is always an uncorrelated variable, regardless the parametrization

used (Table 6.1). On the other hand, while the C-factor (SIM_06 vs SIM_01) has the lowest

impact on soil erosion rates, however this parameter is the most correlated with the erosion

maps, regardless the parametrization used (Table 6.1). Even if the different parametrization

of K-factor are characterized by comparable statistics, their different spatial variability (K2 is

more homogenous than K1) strongly reduces the correlation between K-factor and expected

erosion rate, SIM_03 and SIM_07, using K2 formulation, show the lowest correlation coefficient

with K-factor. The impact of LS-factor parametrization on the average soil erosion rates is

about -56% (SIM_04 vs SIM_01), which is comparable with average reduction of LS-factor

retrieved passing from LS1 to LS2, and the correlation coefficient consequently reduces from

0.29 (SIM_01) to 0.19 (SIM_04).
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Table 6.1: Pearson’s correlation between modelling parameters and erosion maps.

Simulation code Parameters’ code

R-factor C-factor K-factor LS-factor

SIM_01 0.03 0.54 0.22 0.29
SIM_02 -0.08 0.53 0.19 0.29
SIM_03 0.04 0.52 0.02 0.29
SIM_04 0.04 0.69 0.27 0.19
SIM_05 0.04 0.54 0.25 0.44
SIM_06 0.02 0.59 0.23 0.29
SIM_07 0.02 0.51 0.08 0.20

6.2 Effect of seasonality on soil erosion estimates

Precipitation regime (i.e. R-factor) and land cover variability (i.e. C-factor) are the parame-

ters that convey seasonality in D-RUSLE. Simulations SIM_02, SIM_05 and SIM_06 show this

effect (Table 6.2). SIM_02 retrieves lower soil erosion rates, as a consequence of introducing

snow dynamics and the protective effect of snow cover. SIM_05 and SIM_06 introduce a dy-

namic estimate of C-factor, which translates into a smaller sheltering effect of vegetation during

Autumn/Winter. This increases Autumn/Winter erosion estimates, leading to higher erosion

rates in Autumn/Winter with respect to Spring/Summer. It is to be noted that traditional RUSLE

does not model this dynamic and the modelled Autumn/Winter erosion rates are smaller than

Spring/Summer erosion estimates (SIM_01). However, that is not consistent with the phenology

of vegetation cover. The out-of-range Autumn/Winter erosion values of SIM_05 are due to the

underestimated protective effect of vegetation (C1 parametrization), particularly for forest areas,

which leads to a overestimation of soil erosion rates (see Section 4.2).
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Simulation
code

Val
Camonica

High Elevation
Areas

Medium Elevation
Areas

Iseo Lake
Areas

S/S A/W S/S A/W S/S A/W S/S A/W

SIM_01 19.54 12.58 32.19 20.31 18.58 12.53 6.31 3.96
SIM_02 6.91 3.24 9.32 3.89 7.64 3.79 3.47 1.96
SIM_05 17.35 66.95 27.59 91.22 14.20 75.74 8.96 31.04
SIM_06 15.95 20.15 28.53 32.37 13.45 21.25 4.30 5.37

Table 6.2: Average Spring/Summer (S/S) and Autumn/Winter (A/W) erosion estimates
[t ha−1 yr−1].

Figure 6.1 shows the comparison of the R-factor time series for Spring/Summer and Au-

tumn/Winter. The seasonal effect is much more clearly highlighted by the R2 parametriza-

tion, as it splits snowfall and rainfall and considers the soil sheltered by snow cover. Thus,

Spring/Summer erosive force exceeds Autumn/Winter erosive force because Spring/Summer

rainfall is more abundant and almost no snow cover is present. The effect of seasonality when

using the R2 parametrization (SIM_02) is to decrease potential soil erosion rates of almost

3 times during Spring/Summer and 4 times during Autumn/Winter, compared to the classic

parametrization (SIM_01) (Table 6.2 and Figure 6.2). This reduction is much more evident in

the high altitude areas and decreases moving to the lake area, where lower erosion rates are

due effect discussed below. Figure 6.3 shows the comparison of the C-factor time series for

Spring/Summer and Autumn/Winter. The reduced vegetation abundance in Autumn/Winter pro-

duces higher values for both C1 and C2 parametrizations, while this is not accounted by the

“static” C0 parametrization. Slightly higher cover management factor values are retrieved in the

high altitude areas, due to the presence of sparsely vegetated areas and moors. On the other hand,

the Iseo Lake area has an opposite behaviour because of a larger vegetation cover protecting the

soil from erosion. As already mentioned in Section 4.2, C-factor is overestimated when using

unbounded relationships with NDVI (C1). Consequently, estimates of potential soil erosion rates

reflect the seasonality effect conveyed by land cover. However, in simulation SIM_01 only the

effect of precipitation seasonality is present, as the C0 cover management factor parametriza-

tion is constant over time. In simulations SIM_05 and SIM_06, the seasonality effect comes

from both land cover changes and rainfall/snow seasonality. Spring/Summer erosion estimates

with the parametrization of SIM_06 are slightly lower with respect to those simulated with the

parametrization of SIM_05, as a consequence of the bounding on C values. In contrast, during

Autumn/Winter, erosion rates of SIM_05 are overestimated because of low NDVI values caus-

ing overestimates of C-factor, that outreach the SIM_05 estimates of almost four times (Table

6.2). The use of multi-temporal satellite time series for the computation of C-factor (SIM_06

simulation) produces a slight increase in Autumn/Winter erosion estimates and a slight decrease

in Spring/Summer erosion estimates (Figure 6.4). Besides, the estimates of soil loss rates de-

crease from high altitude to the lake area, meaning that during Autumn/Winter land cover types

have a higher influence on erosion modelling compared to rainfall. Overall, the computation of
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the model’s parameters for the Autumn/Winter season seems the most critical for soil erosion in

the Italian Alps.

Figure 6.1: Time series of R-factor (2003-2017) computed for Spring/Summer and Au-
tumn/Winter with the R1 (SIM_01) and R2 (SIM_02) parametrizations.
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Figure 6.2: Comparison of potential soil erosion rates (2003-2017) computed for
Spring/Summer and Autumn/Winter with the R1 (SIM_01) and R2 (SIM_02) parametriza-
tions.
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Figure 6.3: Time series of C-factor (2003-2017) computed for Spring/Summer and Au-
tumn/Winter with the C0 (SIM_01), C1 (SIM_05) and C2 (SIM_06) parametrizations.
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Figure 6.4: Comparison of potential soil erosion rates (2003-2017) computed for
Spring/Summer and Autumn/Winter with the C0 (SIM_01), C1 (SIM_05) and C2 (SIM_06)
parametrizations.

6.3 Climate scenarios

Taking into account the different spatial domain and the different models used for climate change

projections, our simulated mean increase in rainfall erosivity (+24% by 2040) is in line with the

overall estimate for Europe (+18% by 2050) made by the European Commission (78). Nev-

ertheless, land cover transformations could modulate (mitigating or enhancing) some erosional

trends. Thus, the counterbalancing effects of both precipitation and land cover dynamics will

be considered when predicting future trends to avoid inaccurate predictions at local scale. Our

results clearly show that both climate and land cover changes contribute to modifying future soil

erosion rates. On the one hand, for static land cover, when simulating the climate change with the

worst-case SIM#8.5_D2015 scenario we see a growth of the areas with increasing soil erosion

and a gradual regress of the areas with decreasing soil erosion. On the other hand, when compar-

ing the same climate scenario with and without the land cover evolution (i.e., SIM#4.5_D2015

vs. SIM#4.5_LC or SIM#8.5_D2015 vs. SIM#8.5_LC), we see a decrease in the mean soil ero-

sion rate over the whole study area because of an enhanced sheltering effect by vegetation and

the retreat of glaciers, which compensates for the increase of rainfall erosivity. Nevertheless,

the spatial extent with enhanced erosion anomalies with higher (positive and negative) erosion
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anomalies expand. Results show that a critical point is the capability of the climate scenarios

to correctly simulate the occurrence and the intensity of the precipitation events: biases in the

precipitation intensity cause a general underestimation of the R-factor in the reference period,

even if the annual mean precipitation is well reproduced. Therefore, the variability of climate

projections results in the absence of a clear direction of change of erosion rates that seems

more influenced by the temperature increase rather than by precipitation trends. Specifically,

the expected temperature increase will cause an increase in rainfall erosivity because snowfall

is expected to diminish and rainfall is expected to increase, even if the annual precipitation (i.e.,

rainfall+snowfall) does not change significantly.

6.4 Projections of Precipitations

Considering the first thirty-year period (2011–2040), the SIM4.5 climate scenario predicts that

precipitations will slightly increase (between +2.5% and +15%) in 17% of the study area and

will slightly decrease (between -15% and -2.5%) in the 3% of the of the study area. More in

detail, this scenario returns that:

• North: 5.5% of this territory will have a slight increase, 9.0% will have a slight decrease

and the rest will have almost constant precipitation;

• Center: 19% of this territory will have a slight increase and the rest will have almost

constant precipitation;

• South: 25% of this territory will have a slight increase and the rest will have almost

constant precipitation.

Over the same period, the SIM8.5 climate scenario predicts a slight increase for 99% of the

study area and a moderate increase for the remaining 1%, mostly located in the Center (overall

about 2.4% of Center region). Considering the second thirty-year period (2041–2070), SIM4.5

predicts that precipitation is expected to slightly decrease in 97% of the study area, and all the

three regions show the same trend. On the other hand, SIM8.5 predicts a different signal over

the same period; about half of the study area (48%) will have a slight increase, and about half

of the study area (52%) will have a moderate increase. More in details, the slight increase

of precipitation is expected in 88% of the North region, 34% of the Center region, and 15%

of South region, while the moderate increase will affect 12% of the North region, 66% of the

Center region, and 85% of South region. Considering the last thirty-year period (2071–2100),

SIM4.5 predicts that the majority of the study area (91%) will have almost constant precipitation

and only 9% a slight decrease. In this case, the precipitation reduction is foreseen in 15% of the

North region, 8.4% of Center region, and 2.4% of South region. Over the same period, SIM8.5

projects a slight increase in precipitation for the whole study area.
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6.5 Projections of Temperatures

According to SIM#4.5 (Figure 5.5), the mean annual temperature is expected to change almost

homogenously on the whole study area. The mean projected changes of temperature are +0.79

°C for 2011–2040, +1.48 °C for 2041–2070, and +1.42 °C for 2071–2100. In the period 2071-

2100, our simulation shows a temperature anomaly decreasing from the South region (+1.44 °C)

to the North region (+1.40 °C), while the valley floor that crosses the study area from North-West

to South-East displays a higher temperature anomaly compared to its surroundings. The SIM8.5

climate scenario depicts a different picture: The mean projected changes of temperature are

+0.62 °C for 2011–2040, +2.02 °C for 2041–2070, and +4.06 °C for 2071–2100. In the period

2071–2100, our simulations show a temperature anomaly decreasing from the North (+4.13 °C)

to the Center (+4.05 °C) to the South (+3.99 °C). In this scenario, the northeastern of the North

region, the western part of the Center region and the valley floor have the lowest temperature

anomalies.

6.6 Simulation of Rainfall Erosivity

The spatial distribution of the simulated R-factors for 2003–2017 are similar to those estimated

from observations in the same period (Figure 5.6). However, as already pointed out, both simu-

lations underestimate the rainfall erosivity by about 26%. A more detailed analysis revealed that

the climate scenarios returned different results at local scale (Table 6.2):

• North: the bias is +5% for SIM#4.5 and -33% for SIM#8.5;

• Center: the bias is -29% for both SIM#4.5 and SIM#8.5;

• South: the bias is -23% for SIM#4.5 and -17% for SIM#8.5.

Overall, the underestimation of the rainfall erosivity might be related to differences in the

sequence and intensity of the observed and simulated precipitation events, which are further

emphasized by the quadratic relationship between hourly rainfall intensity and R-factor (equa-

tion (2)). The stochastic generator used to downscale the simulated precipitation, by its nature,

reproduces second-order statistics (i.e., mean and variance) of the observed dry/wet spell se-

quence and of mean daily precipitation. However, it does not replicate path-wise the observed

precipitation patterns. This is consistent with the aim of projecting future precipitation patterns

by downscaling IPCC projections, which are statistically consistent with the current, yet includ-

ing modified climate change effects as projected. According to SIM#4.5 the mean R-factor of

the study area is expected to be almost constant (Figure 5.6), with simulated values of 312 [MJ

mm ha−1 h−1 yr−1] in 2011–2040, 302 [MJ mm ha−1 h−1 yr−1] in 2041–2070, and 316 [MJ

mm ha−1 h−1 yr−1] in 2071–2100. SIM#8.5 envisage a different scenario: the mean R-factor is

expected to reach its maximum by 2041–2070 (400 [MJ mm ha−1 h−1 yr−1).
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6.7 Projections of Future Land Cover and Cover Man-
agement Factor

The apparent disagreement between the trends predicted by SIM#4.5_LC and SIM#8.5_LC

(Figure 5.14), which project a decrease of the mean soil erosion rates, and the positive ero-

sion anomalies (Figure 5.16) is due to the small areas with large changes in C-factor estimates.

In fact, the land cover evolution from DUSAF 2000 to LC 2090 projects that about 16% of

the whole study area will see a reduction of C-factor. More than 55% of the land classified

as “sparsely vegetated areas,” “pastures,” and “non-irrigated arable land” in DUSAF 2000 are

modelled to evolve into land cover classes with lower C-factor. Thus, even local changes in land

cover might have a big influence on the mean erosion rates of the whole study area. Specifically:

• “Sparsely vegetated areas” cover 8.7% of the study area in 2000 (it is the third more

frequent land cover) but are projected to reduce to 4.6% in 2090;

• “Pastures” cover 10.9% of the study area in 2000 (it is the fifth more frequent land cover)

but are projected to reduce to 4.9% in 2090;

• “Non-irrigated arable land” covers 1.1% of the study area in 2000 but is projected to

reduce to 0.7% in 2090.

Result strongly depends on the reliability of the land cover simulation process but, unfortu-

nately, there are few chances to assess its real accuracy. An exception is the simulated land cover

map for the thirty-year period 2011–2040 (LC 2030) because the neural networks was trained

using the observed land cover (DUSAF) for both the periods (2000 and 2015). The weighted

skill score (Equation 6.1) used to evaluate the projected land cover map is similar to the Co-

hen’s kappa statistic, where the expected accuracy by chance is estimated as the same chance of

happening (Equation 6.2):

Si =
n

∑
j=1

pi j
Ai j −E(Ai j)

1−E(Ai j)
, (6.1)

E(Ai j) =
1

Ti +Pi
(6.2)

where:

• Si is the skill score for the sub-model i;

• Ai j is the measured accuracy of the transition/persistence for class j for the sub-model i;

• E(Ai j) is the expected accuracy of the transition/persistence for class j for the sub-model

i;

• pi j is the percentage of land cover class j for the sub-model i;
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• Ti is the number of transitions in the sub-model i;

• Pi is the number of persistence classes in the sub-model i.

Overall, the weighted skill score shows a moderate agreement for the sub-models #1

(S=0.43) and #3 (S=0.30), but no agreement for the sub-model #2 (S=0.03). That could be

due to the very short span of time considered for training the models (only 15 years), which

seems not enough for defining the reliable trends in land cover changes. Nevertheless, that was

the best option for our study area.

6.8 Estimates of Future Soil Erosion

With respect to static land cover simulations, SIM#4.5_D2015 foresees an erosion scenario with

limited variability on the whole area: about 90% of the study area will have no changes or a

slightly decrease in erosion rates. Only a small portion of the study area (7.7% in 2011–2040,

8.0% in 2041– 2070, and 15.5% in 2071–2100) will see a slight increase in the erosion rates,

mostly in the South and North regions. On the other hand, SIM#8.5_D2015 foresees a dif-

ferent scenario: most of the study area (72.7% in 2011–2040, 77.1% in 2041–2070, 85.1% in

2071–2100) will increase its erosion rates and the rest is expected to remain stable. This erosion

scenario does not predict any decrease of erosion rates. When combining climate with the land

cover projections, SIM#4.5_LC foresees a similar scenario to SIM#4.5_D2015. However, in

this case a smaller part of the study area is predicted to have no changes or a slight decrease

in erosion rate (78.6% in 2011–2040, 66.1% in 2041–2070, and 65.3% in 2071–2100), and a

larger part of the study area will see an increase in erosion rates (11.5% in 2011– 2040, 13.0%

in 2041–2070, and 18.4% in 2071–2100). In the rest of the study area, the soil erosion is ex-

pected to decrease moderately. As for SIM#4.5_DUSAF2015, the regions more exposed to soil

erosion increase are the South and North. Alike SIM#8.5_D2015, when considering land cover

dynamics SIM#8.5_LC foresees an erosion scenario where most of the territory is supposed to

increase its erosion rates. However, contrary to the static land cover simulation, SIM#8.5_LC

highlights some local areas where soil erosion moderately decreases due to land cover changes.

6.9 Comparison to Similar Studies

Although a common belief is that increased rainfall amounts and intensities will lead to greater

erosion rates, it is rather difficult comparing our findings with existing literature. The reason is

that different studies have substantial differences in:

• Working scale. The majority of papers performs global, national, or regional analysis,

and not local-scale analysis;

• Topographic and land cover characteristics of the study areas;
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• Model used to estimate soil erosion;

• Model used to project climate and land cover changes.

Even with these limitations, our study complements the existing literature on the synergic

effects of climate and land cover change on soil erosion. In their review about studies of poten-

tial effect of climate change on soil erosion rates at a national scale (USA), Nearing et al. (38)

reported that, unless amelioration measures were taken, erosion will increase (with significant

geographic heterogeneity) mainly as function of an increase in rainfall amounts and intensities,

rather than the number of days of precipitation in a year. In this review, erosion and runoff

rates were mainly computed with the Water Erosion Prediction Project (WEPP) model (22) and

changes in rainfall erosivity were determined according to estimations of future climate change

provided by two GCMs through statistical relationships. Moreover, where rainfall amounts were

projected to increase, erosion and runoff were expected to increase at an even greater rate (the

ratio of erosion increase to annual rainfall increase is approximately 1.7). Although not pre-

dicting land cover changes, the authors declared that even in cases where annual rainfall would

decrease, systems feedbacks related to decreased biomass production could lead to greater sus-

ceptibility of the soil to erosion. A more detailed study by (41), evaluated the potential impacts

of precipitation changes on soil erosion and surface runoff in southeastern Arizona. The authors

used seven GCMs models, three emission scenarios for the 2050s and 2090s and the Range-

land Hydrology and Erosion Model (RHEM) described in (39). The seven models used show

a similar variability in the annual precipitation for all the three scenarios, ranging from -17.9

to +13.7%. However, a decreased biomass production could lead to long-term increase in soil

erosion due to sparser vegetation cover (38). In this case, the authors expected an increment of

soil erosion between +44.7 and +210.4%, depending on the models and scenarios considered.

The authors also claimed that future increase in runoff and soil erosion could accelerate the tran-

sition of grassland to shrubland, or to more eroded states, due to the positive vegetation-erosion

feedback. Other authors (42);(43);(79);(44) evaluated the long-term impact of climate change

on sediment yield and soil erosion for the Mediterranean region, projecting future climate to

2100. These studies demonstrated that estimated erosion variations can be closely related to

changes in precipitation and temperatures, although a biomass growth could be significant in

determining the climate change impacts on erosion. However, there is a wide spatial variability

in the trends for soil erosion depending on rainfall changes and biomass growth and relevant

uncertainty still characterize these types of works. The analysis of the combined effect of both

climate and land cover changes is more common at a local scale. Asselman et al. (45) stud-

ied the potential effects of changes in both climate and land use on sediment transport from

the upstream basin to the lower Rhine delta. In this case, the authors considered three climate

change scenarios based on the UK Hadley Centre’s high-resolution atmospheric general circu-

lation model [53], corresponding to a temperature rise at 2100 of +1 °C, +2 °C, and +4 °C.

Considering the intermediate climate change scenarios, the authors estimated across the entire

Rhine basin a temperature rise from +3.2 °C to +3.9 °C in summer and from +4.3 °C to +4.5
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°C in winter. While precipitation changes were projected from -9.8% to 10.9% in summer and

from +16.6% to +32.7% in winter. In addition, they considered two land use change scenarios

that forecast a decrease in crop production because of population growth, and a considerable

reduction of the agricultural land because of temperature and CO2 concentration increase. Soil

erosion was estimated with the Rhine model for evaluating the effects of Environmental Change

On Delivery of Eroded soil to Streams (RECODES) described in (80), which is based on the

Universal Soil Loss Equation (USLE) model (14). Their findings showed that, for the projected

climate and land use changes, erosion rates were expected to increase in the Alps and to decrease

in the German part of the basin, with a mean increase of +12% for the Rhine basin. (40) ana-

lyzed the impact of climate and land use changes on streamflow (water quantity) and erosion in

humid (Sao Lourenco) and dry (Guadalupe) Mediterranean catchments in Portugal. They used

the SWAT hydrological model [56], which computes soil erosion through the Modified Univer-

sal Soil Loss Equation (MUSLE) model (81). Climate change scenarios were developed for the

period 2071–2100 using the ECHAM5 GCM [57] driven by two emission scenarios (A1B and

B1) projecting a decrease in annual rainfall for both catchments (humid: -12%; dry: -8%), but

a significant increase of rainfall in winter (+19% for Sao Lourenco and +40% for Guadalupe).

Land use scenarios were defined from a linear downscaling of European trends for generic land

use types in Portugal, improved by local trends estimated from a comparison with past land

cover to identify possible land-cover type replacements. In their study, the authors also analyzed

socio-economic trends to gain insight into the driving forces behind land use changes. They

defined two scenarios, which both predicted a decrease in agricultural lands for food production.

Their results showed that both climate and land cover changes strongly influence soil erosion

and sediment transport in both the basins studied. However, they got contrasting results in esti-

mations of sediment transport for the humid (A1B: -29%; B1: -22%) and dry (A1B: +222%; B1:

+5%) catchments. (82) published an application of the SWAT model in the Spanish area of the

Ompólveda River catchment. They considered eight scenarios obtained by combining climate

and land use projections. According to their findings, the increase of scrublands and forests

were expected to reduce future soil erosion, while the increase of croplands could make the soil

more prone to erosion. Finally, the work by (46) investigated the future changes in erosion rates

for three catchments in West, North, and East Saxony/Germany under climate and land use/soil

management changes. The climate projection showed a slight increase of precipitation, with a

decrease in the number of events with low intensities (0.1 – 0.2 [mm min-1]) and medium in-

tensities (0.2 – 0.5 [mm min-1]). On the other hand, the number of rainstorms with high and

very high intensities (> 1 [mm min-1]) was expected to increase. The authors concluded that,

without proper soil management and land use policies, climate change will lead to an increase of

soil loss by 2050 and a partial decrease from 2050 to 2100. Moreover, the authors also pointed

out that changes in soil management such as “no tillage” or land use changes from agriculture

to pasture/forest could reduce the soil erosion of more than 90%, thus with a much higher im-

pact than that of climate change alone. This means that, according to (46), land cover and use

changes and soil management practices are expected to have higher impacts on soil erosion than
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precipitation patterns. The analysis of existing literature has evidence that both climate change

and land cover changes will have an impact on future soil erosion. Nevertheless, all past works

highlight that projected soil erosion patterns could be very heterogeneous in the areas studied.

Our research is substantially in line with these outcomes, confirming an overall increase of soil

erosion in the Alps due to climate change, modulated by land cover changes which can generate

local patterns of decreasing erosion. That makes very challenging the definition of a general

trends.

6.10 Current Limitations

D-RUSLE is an empirical method for modelling potential erosion caused by the impact of rain-

drops. Thus, from the modelling point of view, erosion is mainly controlled by precipitation,

land cover, topography, soil properties, and soil conservation practices. This means that, similar

to any other erosion model derived from RUSLE, also D-RUSLE does not consider the melt-

ing of permafrost. While the effects of permafrost should be very limited in the study area, in

other sites, latitudes or elevations, permafrost could play a very important role in controlling soil

erosion. As a matter of principle, D-RUSLE could be modified for including a new parameter

related to permafrost (the permafrost factor, PF-factor), but specific experimental activities and

maps of the extension and dynamics of permafrost would be needed. That is beyond the scope of

our research. We are also aware that snow-induced erosion might be relevant in some mountain

areas and RUSLE-like models cannot describe this effect (83). In D-RUSLE, the computation

of R-factor includes the snow cover sheltering effect, thus simulating the snow accumulation

and melting process, but our model neglects the erosion because of snow melting. Theoretically,

snow melting could be included in the computation of the rainfall erosivity factor by considering

the snow-water equivalent data (this is a different process from the raindrop action on soil sim-

ulated by RUSLE-like models). However, it might be complex to get a satisfactory conversion

of snowfall into equivalent liquid precipitation because the snow cover usually has a significant

spatial and temporal heterogeneity (84) and the snow melting processes might show oscillations

over time. With respect to C-factor, currently unvegetated soils are given a null value, thus a null

erosion regardless the rainfall intensity. This is a heritage of RUSLE-like modelling that seems

reasonable for compact rocks but could be not true for the moraines exposed to the retreat of

glaciers. Consequently, this parametrization is conservative and underestimates the soil erosion

at higher elevations. Finally, our study did not include land management policies as constraints

for simulating future land cover transformations. Future refinements could might also consider

this aspect.
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Conclusions

7.1 D-RUSLE

Recently, many environmental protection agencies have recognized soil degradation due to ero-

sion processes as a serious threat and the European Commission addresses soil degradation as

a key priority within its Soil Thematic Strategy. Therefore, soil erosion models are extremely

useful for quantifying the impact of soil loss at the basin scale, assessing the potential effects

of climate-driven land cover changes on soil erosion rates, defining priorities for effective and

sustainable land management actions (i.e. re-vegetation of sparsely vegetated areas with high

soil loss rates). In this work, we proposed a RUSLE-like dynamic model (D-RUSLE) to estimate

potential soil erosion rates and we tested its performances in the fragile ecosystem of the Italian

Alps, where climate change, together with both natural and anthropogenic land transformations,

contribute to soil degradation. Our model is able to catch variations in potential soil erosion

due to different landscape characteristics: higher rates were found within the land cover classes

which are more affected by seasonality (e.g. broad-leaved forests), alike higher altitude areas

which were more prone to erosion due to sparse or absent vegetation coverage, while forested

areas at lower altitudes were found less exposed to erosion. Moreover, D-RUSLE showed that

integrating satellite-derived information in the estimation of C-factor helps in providing a more

detailed and reliable estimate of potential soil loss, both including seasonal and long-term land

cover changes. In particular, the use of satellite images may increase the spatial resolution of

C-factor improving the estimates of soil erosion at regional/local scale, in particular in areas

where vegetation is the predominant land cover. Besides, Spring/Summer and Autumn/Winter

contribution to soil erosion can be evaluated separately and focused actions towards soil erosion

could be programmed.

7.2 Climate Projection

Global warming, and its consequences on glacier retreat and frequency of extreme events, is

now undeniable (85). Climate change and land cover transformations have gained increasing
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attention because of their impacts on the environment. In particular, they are considered to be

the main causes of accelerated land degradation and, specifically, of soil erosion. Therefore,

maintaining soil quality for achieving food security, acting to mitigate climate change, and re-

straining land degradation have been considered among the recently approved United Nations

Sustainable Development Goals (86). This is the first study investigating the future scenarios

of soil erosion under both climate and land cover changes in Val Camonica and Lake Iseo, one

of the largest valleys of the central Alps. Specifically, we investigated nine climate scenarios

until 2100 and then analyzed in detail the impacts of soil erosion on two of them: GCM CCSM4

driven by RCP4.5 and the GCM EC-Earth driven by RCP8.5. The first climate scenario fore-

cast a best-case (and optimistic) temperature increase of +1.4 °C and small changes in annual

precipitation (-1.8%) by 2100. The latter scenario forecast a worstcase temperature increase of

+4.0 °C and also larger changes in annual precipitation (+8.4%). Future land covers were sim-

ulated using automatic machine learning based on past observed land changes. Our outcomes

confirm past findings: both climate change and land cover changes will have an impact on soil

erosion. Nevertheless, it is impossible to describe a trend consistent throughout the study region

or for the entirety of Europe’s Alps because the projected soil erosion patterns are contextual

and heterogenous. Depending on the simulation scenario, if the mean annual precipitation does

not change significantly and temperature increases no more than 1.5-2.0 °C, then about half of

the study area will experience a decrease in its mean annual erosion rate and less than 20% will

see an erosion increase. At the other extreme, if the mean annual precipitation increases more

than 8% and the temperature increases more than 4.0 °C, then about three-quarters of the study

area will see increase in annual erosion. What clearly emerges from the study is that areas with

higher (positive and negative) erosion anomalies are expected to expand, and their patterns will

be modulated by future land transformations. With a doubts, land cover prediction could be

improved but it is important to consider this parameter in future scenarios. When working with

future climate scenarios, we have no real way to validate such models because they provide pre-

cipitation projections that are consistent with observed precipitation amounts, but do not truly

replicate climate. Thus, we cannot determine whether most of the uncertainties stem from land

cover projections or from the climate scenarios used.

7.3 Parameter computation with lower data availability

It is possible to affirm that the model is scalable on a different study area, with different data

availability. The integration of machine learning algorithms and statistical data proved to be a

useful tool to optimize the model parameters in such situations. The future development of this

work is to conclude the processing of the D-RUSLE parameters, in order to evaluate the future

evolution of soil erosion, under the influence of climate changes.
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