
Executive Summary of the Thesis

Duckrace: Iterative Learning Control for Autonomous Racing

Laurea Magistrale in Automation and Control Engineering

Author: Giulio Vaccari

Advisor: Prof. Simone Formentin

Co-advisor: Valentina Breschi, Riccardo Busetto

Academic year: 2021-2022

1. Introduction
The development of autonomous vehicles has be-
come an increasingly important research focus in
recent years. One crucial aspect of autonomous
vehicle development is the development of ef-
ficient and effective racing algorithms that can
navigate complex road networks and achieve op-
timal performance. Model Predictive Control
(MPC) is a powerful control method that can be
used to design racing algorithms for autonomous
vehicles. However, traditional MPC algorithms
are based on pre-computed trajectories that do
not adapt to the environment.
In this thesis, we present a comprehensive study
on the development of a Learning MPC (LMPC)
algorithm for the Duckiebot, a miniature differ-
ential drive wheeled vehicle that navigates a race
track using computer vision and control tech-
niques. The objective of the LMPC algorithm is
to learn the optimal trajectory for the Duckiebot
based on feedback from previous laps.
To achieve this objective, we first designed and
implemented a traditional MPC algorithm that
could control the velocity and steering angle of
the Duckiebot, with the objective of completing
a lap of the Duckietown as quickly as possible
but following a pre determined trajectory that
we chose to be the center line of the road. We re-

searched existing MPC algorithms and adapted
them to fit the specific needs and constraints of
the Duckiebot.
We then evolved the MPC algorithm into an
LMPC algorithm by incorporating a method to
efficiently decide the optimal reference for the
MPC. The LMPC algorithm learns from the pre-
vious laps of the Duckiebot and adapts its tra-
jectory to minimize the lap time.
During the course of this research, we estab-
lished a Duckietown laboratory at Politecnico di
Milano that is purpose-built for the task of rac-
ing. The laboratory is equipped with a variety
of hardware and software tools, including multi-
ple Duckiebots, cameras, and a dedicated track
that is designed to challenge the capabilities of
the Duckiebots. One of the secondary objectives
of this thesis is to develop a cheap but effective
localization technique that is specifically tailored
for the challenging task of racing in our Ducki-
etown environment.
Finally, we evaluated the performance of the
LMPC algorithm in the Duckietown lab. We
compared the performance of the LMPC algo-
rithm with that of traditional MPC algorithms
and observed that the LMPC algorithm achieved
better performance in terms of lap time, with a
time reduction of the 44% already from the first
lap.

1

Executive summary Giulio Vaccari

Overall, this thesis presents a comprehensive
study on the development of a Learning MPC
algorithm for the Duckiebot. The results of this
thesis are expected to contribute to the develop-
ment of more efficient and effective racing al-
gorithms for autonomous vehicles, which will
ultimately lead to safer and more reliable au-
tonomous vehicles.

2. Problem statement and liter-
ature

2.1. Duckietown
Duckietown is an open-source platform for
teaching and research in robotics and machine
learning, consisting of miniature robotic vehicles
called Duckiebots that navigate a urban road
network. The Duckiebot are differential drive
wheeled mobile robots equipped with a front fac-
ing camera and an IMU. Duckietown provides
a low-cost and accessible platform for students
and researchers to experiment with autonomous
vehicle technologies. In addition to the phys-
ical Duckietown platform, there is also a sim-
ulation environment available on OpenAI Gym
[1]. The simulator is easily customizable, allow-
ing users to modify various aspects of the simu-
lation, such as the road layout and eventual re-
wards. Duckietown has been used in a variety of
educational and research settings, including uni-
versity courses, hackathons, and robotics com-
petitions, and the availability of the simulation
environment has made it even more accessible
to a wider range of users.

2.2. Optimal trajectory planning
Optimal trajectory planning is a crucial aspect
of autonomous racing, the goal is to find the
fastest and safest path for the vehicle to com-
plete the race.
Optimal trajectory planning is a topic that has
received significant attention in the field of au-
tonomous racing, with a wide range of ap-
proaches and techniques proposed. However,
there are still many challenges and open ques-
tions in this area, as many of these approaches
have focused on finding the optimal trajectory
offline and following it throughout the race,
without considering the impact of variations in
the trajectory dictated by the presence of other
vehicles or obstacles on the track, or the han-

dling of uncommon environments such as dirt
roads and rallies. This approach may not al-
ways be optimal, as it does not allow for the
real-time adaptation of the trajectory to chang-
ing conditions or the exploitation of opportuni-
ties to maximize the performance of a specific
vehicle in a specific environment [2].
A different online approach has been developed
by Rosolia and Borelli [3] [4]. In this approach a
Learning Model Predictive Controller (LMPC)
is used to learn and improve the trajectory at
each lap, using the last iterations as baselines to
improve. This approah allows to maximize the
car performance online in a given track.
Duckietown represents a unique challenge in the
development of an iterative MPC: it is difficult
to build a model of the duckiebot that takes into
account in its state an accurate distance from
the track border, making it harder to set the
constraint to stay inside the track. As we will
see a solution to this problem will also open a
new way to dynamically take into account fixed
and moving obstacles in the track. On the other
hand the Duckietown gym environment is ideal
to virtually collect iterative high quality data at
each lap, making it the perfect solution to test
an iterative controller.

3. Experimental Setup
3.1. Duckiebot
Duckiebots are the mobile robots used in the
Duckietown platform. Duckiebots are equipped
with sensors and actuators, including a cam-
era, ultrasonic sensor, IMU, motor controller,
and motors. They are powered by a Nvidia
Jetson Nano single-board computer, which pro-
vides powerful computing capabilities for com-
puter vision and high computing tasks. Duck-
iebots are differential wheeled robots and they
are designed to be controlled by giving the left
and right wheel speed to a ROS node, with the
control of the motors and the internal ROS con-
nectivity being handled entirely by the robot out
of the box.
Duckiebots require calibration, which consists in
finding the optimal trim and gain parameters.
To calibrate the wheels the robot runs along a
straight line of known lengths, such as 2 meters.
The trim and gain parameters are then adjusted
until the robot is able to run straight along the

2

Executive summary Giulio Vaccari

entire length of the line.
The Duckiebot model we used is (1), with u lon-
gitudinal speed, ω angular speed, Vr right wheel
speed, Vl left wheel speed and parameters to be
estimated: γ1, γ2, γ3, ξ1, ξ2, ξ3, aur , aul , a

ω
r , aωl .[

u̇
ω̇

]
=

[
−γ1u− γ2ω + γ3ω

2

−ξ1ω − ξ2u− ξ3uω

]
+

[
aur aul
aωr aωl

] [
Vr

Vl

]
(1)

The αs are related to wheel dimensions and
the distance between the wheels, but the other
parameters do not have an immediate physical
meaning. Duckietown provides the ideal param-
eters used for the simulator, while we estimated
the vehicle parameters minimizing the following
function with respect to γ1, γ2, γ3, ξ1, ξ2, ξ3, aur ,
aul , a

ω
r , aωl :

Ex = Fx(γ1, ..., a
ω
l , xi+N−1)− xi+N

Ey = Fy(γ1, ..., a
ω
l , yi+N−1)− yi+N

10∑
N=1

(E2
x + E2

y) ∀i

(2)
(3)

(4)

With 10 being the horizon in the MPC.

Parameters

Ideal Edtimated

γ1 5 2.14148837

γ2 0 0.12200042

γ3 0 -0.28237442

ξ1 4 1.3380637

ξ2 0 0.40072379

ξ3 0 1.30781483

aur 1.5 1.30781483

aul 1.5 1.03762896

aωr 15 2.9650673
aωl 15 2.89169198

Table 1: Estimated parameters.

To discretize the Runge-Kutta integration
method has been used.

3.2. Connectivity: ROS and UDP
Duckietown is a system that is designed to be
easily integrated with ROS. However, due to
the limitations of ROS (which are addressed by

ROS2), it is not possible to create a decentral-
ized network. Each robot in Duckietown re-
quires its own master node, and two masters
cannot communicate with each other, making it
difficult to establish communication between the
devices. To address this issue and decrease mes-
saging delay, a UDP multicast has been built
on top of ROS messaging standards, allowing
nodes in different masters to communicate with
each other while still using standardized ROS
libraries.

3.3. Map
Both in simulation and in the real environment
the standard yet challenging Duckietown loop
"ETH Large Loop" has been used. The physical
track of the same shape has been named "Milano
Duckar".

3.4. Watchtower
To accurately determine the position and orien-
tation of the Duckiebot in the track during our
experiments, we implemented a color extraction-
based localization algorithm, which was based
on the use of a Raspberry Pi computer equipped
with a fisheye camera mounted to the ceiling of
the track. The camera has been calibrated us-
ing ROS standard packages, and the rectifica-
tion matrices have been stored for later use. We
then placed colored paper on the Duckiebot, and
used the camera and the algorithm to track the
Duckiebot’s position and orientation based on
the colors of the paper. This allowed us to ob-
tain accurate and reliable location information.
We called this camera "watchtower", as it fol-
lows the original watchtower idea proposed by
Duckietown, but following a very different im-
plementation.

3.4.1 Localization strategy

The localization in the real track is performed
by a ROS node in the watchtower with a fre-
quency of around 20Hz. To be able to extract
the Duckiebot location we followed a pipeline of
image preprocessing and final localization based
entirely on OpenCV:

1. Image rectification based on previously ex-
tracted parameters.

2. Origin definition: the origin is set on the top
right to be coherent with the image stan-
dard.

3

Executive summary Giulio Vaccari

3. Set resolution, the image is downscaled
from 1296x972 pixel to 324x243, to allow
lower processing times.

4. Automatic white balancing. To account for
different lights during the day an algorithm
based on the gray world assumption has
been implemented.

5. Car localization
Car localization:
The following strategy has been adopted:

1. Pink pixels extraction and computation of
their mean with respect to x and y axis,
point P is found. The pink color is very
well defined and can be used as reference.

2. Draw a bounding box around the pink pix-
els.

3. Look for the blue pixels inside the bound-
ing box and compute their mean, point B is
found.

4. The mean between the two points P and
will be the car position.

5. Use P and B to compute the car orientation.

3.4.2 Trajectory extraction

As first trajectory reference for the Duckiebot we
decided to use the central yellow line. To extract
the line this are the steps that have been fol-
lowed, using as input the top view of the track:

1. Filter the image by color to extract the yel-
low.

2. Extract the points using Hough Lines point
extraction.

3. Sort the points by angle or by distance.
The first is easier but less reliable in com-
plex tracks where a single angle can refer
to multiple points along the track. To sort
by angle the mean of the x and y coor-
dinates have been computed as track cen-
ter, then we considered the angle formed
by each point to the center point.

4. Interpolation of the points by angle or dis-
tance. Another advantage of using distance
is that the interpolation can be more precise
as the sampled points can have the same
distance between one and the other. On the
other hand, it is very difficult to translate
the distance from a starting point to a po-
sition on the track. The best interpolation
is quadratic, with some smoothing.

5. Finding the borders is only a matter of find-
ing two points equally distant to each point

along the central trajectory. This strat-
egy has been adopted as it is the most
lightweight and straight forward.

4. Control Algorithm
4.1. Trajectory following with MPC
The Model Predictive Control (MPC) is a widely
utilized technique for advanced control that uti-
lizes a mathematical model of the system being
controlled and an optimization algorithm to de-
termine the optimal control sequence. In our
work CasaDI with IPOPT has been used for nu-
merical optimization. The general MPC defini-
tion is the following:

min J

s.t. Xk+1 = F (Xk, Uk)

− 1 ≤ Uk ≤ 1

X0 = [x0, y0, θ0, v0, ω0]
T

(5)
(6)
(7)

(8)

Both without and with preview MPC has been
tested. In MPC without preview the reference is
a constant point, thus pkr = pr∀k. From an im-
plementation prospective the next pkr is taken
when the position of the car is close enough to
the reference point and this distance is a tun-
able parameter. The MPC without preview is
very good at following straight trajectories but
it is late to the curves. To overcome these lim-
itations the MPC with preview has been used.
This is the formulation, with another parameter
umax introduced to maximize speed:

J =

N+1∑
k=0

∥pk − pkr∥
2
Q1

+ ∥θk − θkr∥
2
Q2

+ ∥uk − umax∥2Q3
+ ∥U∥2R(9)

The formulation takes into account the reference
for the orientation of the car. To compute the
orientation the following approach was followed:

θr = arctan(
yk+1 − yk
xk+1 − xk

) ∀k = 0, ..., N − 1

θN = arctan(
y1 − yN
x0 − xN

)

(10)

(11)

From a practical perspective at each step the
closest point in the trajectory is found and its
next N point are provided as reference for the
MPC. To find the closest point quickly Voronoi
regions are computed at the start of the process.
In the MPC the tunable parameters are:

4

Executive summary Giulio Vaccari

• N : prediction horizon. Higher means pre-
dictions of longer term but more computa-
tional time. N=5 is the best, higher does
not provides significant improvements.

• Q1: the weight on the distance from the
reference in meters.

• Q2: the weight on the distance from the
angular reference in radians.

• Q3: the weight on the difference between
the current speed and the max speed.

• R: the weight on inputs.
To find the best combination of parameters a
sensitivity analysis has been carried forward
where R has been kept fixed to 1 and the ra-
tio between the other parameters has been ad-
justed. The results showed that Q1/Q2 and
Q1/Q3 should be bigger than 103, while Q2/Q3

should be smaller than 1.

4.2. Trajectory planning and follow-
ing with LMPC

The Learning Model Predictive Controller is a
recently developed technique [?] based on it-
erative learning control. The idea is similar to
the MPC but this time the reference is not given
but computed in real time based on the latest it-
eration. The aim of the LMPC is to minimize
a parameter learning the optimal trajectory, in
our case it needs to minimize the time per loop.
The LMPC formulation, with a change from the
original version to take into account the track
margins, is the following.

JLMPC,j
t→t+N (xjt , z

j
t) = min

Uj
t ,λ

j
t

J j−1
l (zjt)λ

j
t

s.t. xjt|t = xjt

λ ≤ 0, I1λ = 1,Dj−1
l (zjt)λ

j
t = xjt+N|t

xjk+1|t = F (xjk|t, u
j
k|t)

xjk|t ⊆ X,ujk|t ⊆ U

∀k = t, ..., t+N − 1

λSS ≤ 0, I1λSS = 1,T(zjt)λSS = x

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Where F (xjk|t, u
j
k|t) is the function with the

Duckiebot model that returns the next state.
Direct your attention on the convex constraint

in (14):

λ ≤ 0, I1λ = 1,Dj−1
l (zjt)λ

j
t = xjt+N|t

zjt =

{
xj−1
N if t = 0.

Sj
l (z

j
t−1)λ

j,∗
t−1 else.

(19)

(20)

The vector zjt represents a candidate terminal
state for the planned trajectory of the LMPC
at time t. S is the matrix which collects the
evolution of the states stored in the columns of
the matrix D:

Sj
l (x) = [xl

tl,∗1 +1
, ..., xl

tl,∗k +1
, ..., xj

tj,∗1 +1
, ..., xj

tj,∗k +1
]

(21)

T (zjt) are a given number of points in the track
margin that are close to the Duckiebot. the
distance from the Duckiebot and the number
of those points are tunable parameters. In our
case there is only one input constraint in 16,
−1 ≤ u ≤ 1.

Figure 1: LMPC in Milano Duckar simulation.

4.2.1 Sensitivity analysis

The following hyperparameters had to be tuned:
1. N (integer): The horizon, the bigger the

N the faster the convergence, but compu-
tationally it gets very heavy already with
N=10. N=2 was found to be best;

2. K (integer): The number of nearest neigh-
bours to consider for the convex hull. Big-
ger K means more exploration, sometimes it
leads to cutting too much the curves. K=8
was found to be best;

5

Executive summary Giulio Vaccari

3. i_j (integer): The number of past itera-
tions to consider in the nearest neighbour.
i_j = 4 was found to be best;

4. Frame_rate (integer): Default for Ducki-
etown is 30Hz, 10Hz have been used in our
experiments to guarantee a good accuracy
of the model but also faster computational
times.

5. Experimental results
5.1. MPC
The application of MPC without preview using
real parameters proved to be ineffective both in
simulation and on the actual track. Therefore,
MPC with preview was utilized. In this study,
the formulation used for MPC with preview is
the one already defined, with the following pa-
rameters: N = 10, Q1 = 103, Q2 = 10−2,
Q3 = 0 and R = 10.

5.2. LMPC with preview
The LMPC formulation we originally proposed
is a MPC without preview and as explained in
the section before it can not work. To overcome
this limitation a new LMPC with preview has
been designed. The idea is:

1. Compute the reference as a line between the
current position and the target, where the
target is the nearest point in the previous
iteration at distance d, where d is a tunable
parameter. For d we used d = N ∗ 0.03,
being 3cm the distance that the duckiebot
covers in 0.1s;

2. Run the MPC with preview and a slack on
the reference, to be able to generate a tra-
jectory that stays inside the margins.

As visible in Figure 3 the LMPC is highly effec-
tive, already at the first lap it decreases the lap
time by 44%.

Figure 2: LMPC lap times in Milano Duckar.

Figure 3: Significative LMPC laps in Milano
Duckar.

6. Conclusions
Overall, this thesis provides compelling evidence
that a learning MPC approach can be a valuable
tool for autonomous navigation tasks and can
potentially lead to improved performance and
robustness in real-world applications. Further
research is needed to explore the full potential
of this approach and its integration with other
control strategies and sensors.

References
[1] Maxime Chevalier-Boisvert, Florian Golemo,

Yanjun Cao, Bhairav Mehta, and Liam
Paull. Duckietown environments for openai
gym. https://github.com/duckietown/
gym-duckietown, 2018.

[2] Brian Paden, Michal Cáp, Sze Zheng Yong,
Dmitry S. Yershov, and Emilio Frazzoli. A
survey of motion planning and control tech-
niques for self-driving urban vehicles. CoRR,
abs/1604.07446, 2016.

[3] Francesco Borelli Ugo Rosolia. Learning
model predictive control for iterative tasks. a
data-driven control framework. IEEE Trans-
actions on Automatic Control, 2017.

[4] Francesco Borelli Ugo Rosolia. Learning how
to autonomously race a car: A predictive
control approach. IEEE Transactions on
Control Systems Technology, vol. 28, no. 6,
pp. 2713-2719, 2020.

6

https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown

	Introduction
	Problem statement and literature
	Duckietown
	Optimal trajectory planning

	Experimental Setup
	Duckiebot
	Connectivity: ROS and UDP
	Map
	Watchtower
	Localization strategy
	Trajectory extraction

	Control Algorithm
	Trajectory following with MPC
	Trajectory planning and following with LMPC
	Sensitivity analysis

	Experimental results
	MPC
	LMPC with preview

	Conclusions

