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1. Introduction
On November 5, 2006, the International Space
Station performed a zero-propellant reorienta-
tion maneuver that saved NASA $1,000,000.
The relative Optimal Control Problem (OCP)
was solved with a hybrid method: the em-
ployed algorithm solved a Nonlinear Program-
ming (NLP) problem using a pseudospectral
trsncription scheme; the Optimality Necessary
Conditions associated with the original problem
were at the same time satisfied; the optimiza-
tion algorithm, therefore, merged the robustness
of direct transcription with the accuracy of in-
direct methods, thanks to a Covector Mapping
Theorem (CMT) [1]. ISS exploited environmen-
tal disturbances to complete a 90◦ reorientation
without use of thrusters.
Eleven years later, on March, 2017, SpaceX
reused successfully a first stage for the first
time; the stage performed a vertical landing au-
tonomously, on a barge two times wider than
landing gear footprint. Precision was achieved
with an online guidance algorithm that itera-
tively solved convexified formulations of the orig-
inal pinpoint landing problem [2].
The following work gathers the algorithmic
workhorses of the guidance milestones just de-
scribed, and applies them to the Aerodynamic
Powered Landing Problem; it merges a pseu-

dospectral convex strategy based on Legendre-
Gauss-Radau (LGR) transcription with a tai-
lored indirect collocation scheme, managing to
exploit aerodynamic disturbances to minimize
fuel consumption during vertical landing: drag
damps kinetic energy, while lift deflects trajec-
tory in turn of thrusters. The elaborated strat-
egy evaluates accurate solutions with reduced
computational times; convex solver, based on
previous studies led within the Institute of Space
Sytems, DLR [3] generates guesses; the afore-
mentioned CMT maps multipliers to costates
and then feeds the indirect solver that refines
them to obtain the problem optimum. The indi-
rect solver is an original contribution inspired by
remeshing strategies elaborated within DART
Group, in Politecnico di Milano [4].
The present Executive Summary is organized
as follows. The Aerodynamic Powered Landing
Problem is formulated in section 2 along with
the structure of the optimal solution; section 3
outlines two possible approaches to solve the
problem: the former, a fully indirect approach, is
discussed in section 4; the hybrid method builds
on results obtained in section 4 and is presented
in section 5; results are drawn in this section
too. Section 6 summarizes the work and hints
to further research topics.
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2. Aerodynamic Powered
Landing Problem

2.1. Problem formulation
A landing site-topocentric cartesian reference
frame is accounted for, of type East-North-Up,
with z−axis directed upwards; for a flat Earth
model, therefore, initial and final conditions
x0, xf ∈ R7 and gravity vector g ∈ R3 read

x0 =



r0

. . .

v0

. . .
m0


=



1200
600
5000
−10
0

−300
1000



}
mm/s

kg

xf =

 rf
vf
mf

 =

03×1

03×1

free



g =

 0
0

−9.81

m/s2

This most general case corresponds to a 3-D tra-
jectory, on which no cartesian dimensional re-
duction can be applied, as represented in the
following figure.
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is seeked for in the context of this work: a landing site-topocentric cartesian reference
frame is accounted for, of type East-North-Up, with z−axis directed upwards; chosen
initial conditions force trajectory to lie on a curved surface, preventing from any
dimensional reduction to simplify the problem, as graphically represented in Fig. 4.1.
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Figure 4.1: Trajectory not reducible to cartesian 2-D analysis
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Mass depletion is modelled assuming constant specific impulse Isp from the thruster;
maximum thrust Tmax is hypothesized not to depend on height.
For what concerns controls, thrust direction is identified by uT ∈ R3, and thrust

Figure 1: Candidate feasible trajectory

Mass depletion is modelled assuming constant
specific impulse Isp from the thruster; maximum
thrust Tmax is hypothesized not to depend on
height. It is further useful introducing the thrust

parameter α̂
.
= (Ispg0)

−1.
Thrust direction is identified by uT ∈ R3, and
thrust acceleration is therefore directed along
such vector. uT makes up for the first control.
Aerodynamic controls are instead the bank an-
gle σ and the total angle of attack αeff. Such two
angles identify, along with velocity versor v/v,
the body axis direction ub ∈ R3 . ub

.
= 1, thus σ

and αeff are equivalent to ub.
Aerodynamic forces D,L ∈ R3 read

D = −1

2
ρ(rz)Sref CD (αeff) v v

L ≈ 1

2
ρ(rz)Sref CL/α [v ⊗ ub (αeff, σ)]⊗ v

where lift coefficient CL for an axisymmetric
body, the drag coefficient CD and variable at-
mospheric density ρ are modelled according to

CL(αeff) = CL/ααeff

CD(αeff) = CD,0 + kC2
L(αeff)

ρ (rz) = ρ0e
−rz/H

Dynamics right-hand side, therefore, reads
v

Tmax

m
uT + g +

D

m
+

L

m
−α̂TmaxuT

 = f (x,uT , αeff, σ)

Total angle of attack, defined as positive, is lim-
ited to αmax. Thrust authority is bounded as
well, due to limits on mass depletion rates. Thus

αeff ≤ αmax = 15◦

uT ≥ uT,min = 0.3
uT ≤ uT,max = 1

At last, aim is minimizing fuel consumption,
or, equivalently, thrust acceleration integral [5].
The objective function reads then

J =

∫ tf

0

α̂

m
TmaxuT dt

The Aerodynamic Powered Landing Problem is
formulated followingly

min
αeff,σ,uT ,tf

J s.t.



ẋ = f
x(0) = x0

x(tf) = xf

αeff ≤ αmax
uT ≥ uT,min
uT ≤ uT,max

(1)
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Thruster and aerodynamic parameters are sum-
marized in table 1.

Parameter Value

Isp 320 [s]
Tmax 40 [kN ]
Sref 0.44 [m2]
ρ0 1.225 [kg/m3]
H 7200 [m]

CD,0 0.5 [-]
k 2.5 [-]

CL/α 2.2 [-]

Table 1: Parameters summary

2.2. Optimal Control Structure
The optimal thrust magnitude u∗T follows a bang-
bang profile, while the optimal total angle of at-
tack α∗

eff follows a continuous-bang profile. Op-
timal thrust direction and σ∗, instead, minimize
projections respectively of thrust acceleration
and of aerodynamic acceleration on a specific
direction, defined by the primer vector pv. To
better understand, the following digression con-
textualizes and builds on the cited concepts.
Primer vector is defined as pv

.
= λv/λv, and

λv can be in turn defined dualizing the origi-
nal problem. Indeed, the OCP in eq. (1) can
be transformed in a Two Point Boundary Value
Problem (TPBVP): defining the system Hamil-
tonian H .

= J +λTf , with vector λ ∈ R7 gath-
ering the costates, the dynamics of λ obey

λ̇
.
=

d
dt

 λr

λv

λm

 = −

 ∇rH
∇vH
∇mH


with the boundary λm = 0, Hf = 0. The
optimal control minimizes, at each instant, H:
this condition, the Pontryagin’s Minimum Prin-
ciple (PMP), dictates the structure of the opti-
mal control profiles.
Therefore, the statements at the beginning of
this section are mathematized as follows. For
the thrust control, PMP requires i∗T

.
= uT /uT =

−pv, and

u∗T =


uT,min if Sf > 0

uT,max if Sf < 0

∈ (uT,min, uT,max) if Sf = 0

where the switching function Sf is defined as

Sf
.
=

1

m

(
1− λv

α̂

)
− λm

For the treated problem Sf is non-null almost
everywhere. For the aerodynamic controls, the
quantity to be minimized is pT

v (D +L); for un-
bounded σ (as in our case) optimal L∗ belongs
to the plane defined by pv and v; specifically,
it is aligned and opposed to pv,⊥, the compo-
nent of pv orthogonal to v. The procedure is
graphically represented in fig. 2, where Fa de-
notes Fa

.
= D + L and the blue surface is the

aerodynamic polar Fa is constrained to lie on.
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D ̸=D (σ), thus pv// D is not regulated with σ.
Let us now add the lift: the function to be minimized becomes pT

v (D +L) = pv// D+

pT
v⊥L. If lift L is orthogonal to plane defined by pv and v, then pT

v⊥L = 0: results
obtained for the drag-only analysis are unchanged. However, if σ is not bounded,
there always exists an interval [σ1, σ2] such that 1) pT

v⊥L(σ
∗) < 0 ∀σ∗ ∈ (σ1, σ2),

2) pT
v⊥L(σ1) = p

T
v⊥L(σ2) = 0, 3) σ∗ = (σ1 + σ2)/2 minimizes pT

v⊥L(σ
∗). Procedure

is graphically reported in Fig. 4.2.
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Figure 4.2: Generic L and optimal L∗ associated with the same D and obtained
for different σ. Generic aerodynamic force Fa and optimal one F ∗

a move on the
paraboloid associated with the aerodynamic polar, in blue. L∗ minimizes pT

v F
∗
a

Therefore there always exists an optimal σ minimizing the contribution of the aero-
dynamic forces on the Hamiltonian. Imposing the optimal σ corresponds to 1) im-
posing ub to lie in the plane defined by pv and v, 2) guaranteeing that L obtained
with positive angle of attack satisfies pT

v⊥L < 0. Optimization of αeff is thus reduced

Figure 2: Optimal L representation.

Optimal total angle of attack α∗
eff obeys instead,

for the given aerodynamic polar, to the relation

α∗
eff =


tan ς

2kCL/α
if tan ς < 2kCL/ααmax

αmax else

where ς defines the angle between pv and v. Op-
timal bank angle σ∗ is imposed by finding the
corresponding optimal u∗

b . Rodrigues’ formula is
employed in such context: v/v is rotated around
eigenaxis −v/v ⊗ pv about angle αeff to obtain
u∗
b .

3. Numerical Methods
It is now worth introducing the underlying idea
behind the analyzed algorithms proposed in this
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work. Figure 3 provides a complete overview of
the possible strategies to approach the solution
of the OCP.

B BN

Bλ BλN

BNλ

Convergence

Discretize

D
ua

liz
e

Discretize

Convergence

D
ua

liz
e

C
M

T

Figure 3: Summary of Optimal Control
Problem formulations

In red: Pure indirect strategy
In blue: Hybrid strategy

B, stated in eq. (1), refers to the common prob-
lem formulation, and the superscripts indicate
variants of it:
• Bλ is the TPBVP formulation, obtained

with dualization, as described in section 2.2.
It is the formulation tackled by indirect
methods.

• BN is the NLP formulation, i.e. the opti-
mization problem obtained discretizing the
domain with nodes, and computing states
and controls at such points. It is the for-
mulation approached by direct methods.

• BNλ is the zero-finding problem obtained
imposing optimality conditions on problem
BN , and represents the final mathematical
formulation tackled by common softwares,
as the open-source convex solver ECOS.
Optimal controls make part of the output
of the problem.

• BλN is the discrete-time version of Bλ, as
nodes are introduced and optimality condi-
tions are imposed at such points. Optimal
controls are found applying the PMP on the
output of the problem.

The optimality conditions of B actually define

Bλ, thus solution of Bλ coincides with the one
of B. The most direct path to solve Bλ, namely
B → Bλ, is highlighted in red in fig. 3; ini-
tialization of costates and dynamical system ill-
conditioning constitute relevant problems: an
algorithm following this path is used to verify
how the general control structure in section 2.2
specializes to our case, but additional strategies
shall be used to circumvent the aforementioned
setbacks.
An alternative is represented by the longest
path, B → BN → BNλ → BλN → Bλ: it
exploits the mapping, called Covector Mapping
Theorem, between the multipliers of the NLP
and the costatates of the TPBVP; the process
is represented by the blue path in fig. 3. Such
approach is followed by the proposed hybrid
method, where BN is the convex problem form,
BNλ is solved using ECOS and BλN is tackled
by the indirect collocation scheme.

4. Pure indirect strategy
Solution of the presented problem is first eval-
uated using a single shooting technique: λ0

and tf are tuned such that the flow of x0 and
λ0 through the Hamiltonian dynamics φ satis-
fies the final boundary conditions over states,
costate λm and Hamiltonian H. However, the
optimal uT is discontinuous; this results in a
small basin of convergence for the original zero-
finding problem. Two homotopic continuation
schemes are therefore adopted in series:
• The first is applied on the objective func-

tion: it generalizes J with Jε, an objec-
tive function including a quadratic term in
uT ; the continuation scheme starts from the
purely quadratic objective function (ε =
εEO

.
= 0) and reaches the purely linear one

(ε = εAO
.
= 1), corresponding to the orig-

inal problem. Aerodynamic forces are dis-
carded from dynamics. The first step is ini-
tialized using Random Number Generation
(RNG).

• The second is applied on the aerodynamic
forces, generalizing f with fS̄ref

. A weight-
ing factor S̄ref ∈ [0, 1] is employed in
fS̄ref

to scale aerodynamic forces linearly;
S̄ref = 0 and S̄ref = 1 correspond respec-
tively to the cases with no aerodynamic
forces and with full aerodynamic forces.

Optimal control profiles for the first homo-
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Figure 4: Jε homotopic continuation scheme for uT profile
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Figure 5: fS̄ref
homotopic continuation scheme for uT profile

topic loop are represented in fig. 4, while the
results for the aerodynamics continuation are
represented in fig. 5. Variation of ε shifts the
control profile from a C∞ control profile to
a bang-off-bang discontinuous profile; varying
instead S̄ref , the profile degenerates in an
off-bang type. The decreasing duration of the
thrusting arcs through the iterations further
hints to a decreasing fuel consumption. Indeed,
as reported in table 2, addition of aerodynamic
forces allows propellant savings amounting
approximately to the 4% of the initial rocket
mass.

Dynamics uT profile mf [kg]

No D,L Bang-idle-bang 839.1
Full D,L Idle-Bang 882.5

Table 2: Main outcomes from indirect method

5. Hybrid strategy
5.1. Algorithm overview
With respect to the pure indirect strategy, the
hybrid one cuts out the homotopic continuation
substituting it with the convex step. The Covec-
tor Mapping Theorem employed to link the di-
rect and indirect steps stems from the employed
LGR transcription and from the number of collo-
cation points, i.e. the discrete instants at which
dynamics is reinforced. For n collocation points,
the CMT reads

λ̃f =
2

tf
DT

n Λ̃

λ̃i =
Λ̃i

w̃i
i = 0, . . . , n− 1

where Λ̃ are the multipliers at the collocation
points. In addition w̃i, with i = 0, . . . , n − 1, is
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the ith nodal quadrature weight wi scaled with tf
according to w̃i = tfwi/2. X̃ gathers the states
at nodes; D is the pseudospectral differentiation
matrix approximating dynamics at each ith col-

location point according to ˙̃Xi ≈ 2

tf
DiX̃ ; fi-

nally DT
n is last row of DT. The marker ~ refers

to a non physical parameterization of states used
within the direct solver; prior to feeding the in-
direct solver X̃ and λ̃ are then mapped to the
physical domain. The overall pipeline is repre-
sented in fig. 6.

Figure 6: Algorithm simplified pipeline

The convex step (BNλ) merges two convex-
ification techniques, a lossless convexification
(LCvx) that handles non-convex thrust magni-
tude constraints and successive convexifications
(SCvx) that address aerodynamic and free final
time contributions. Lift is here explicitly formu-
lated in terms of σ rather than ub to avoid the
non-convex constraint ub = 1.

• the LCvx builds on [5] and, for fixed final
time and ignoring aerodynamic forces, pro-
vides a problem that convex solvers handle
with no approximations. Its working prin-
ciple is based on 1) a change of variables
(hence the need for ~), 2) a formulation of
the fuel optimal landing problem as accel-
eration optimal and 3) a relaxation of the
non-convex thrust magnitude constraint.

• the SCvx technique comes into play as aero-
dynamic and final time contributions are
linearized sequentially: the convex opti-
mization problem is therefore solved multi-
ple times, and requires initialization. More-
over, trust regions ζtf and ζαeff constrain
variations of tf and αeff at each iteration,
according to

|∆tf | ≤ ζtf
|∆αeff| ≤ ζαeff

This approach limits linearization inaccu-

racy errors, thus improving algorithm ro-
bustness.

Therefore the convex loop linearizes the original
problem and solves the resulting subproblem se-
quentially and iteratively; such procedure is it-
erated as long as ∆tf satisfies |∆tf | > tol. At
last, nonlinear contributions are added to the
solved problem one after the other, thus grant
algorithm convergence: the pure LCvx form is
solved first, guessing fixed final time tf from a
1-D model; free final time contribution is added
afterwards, then drag and, finally, lift. The pro-
cedure is reported in fig. 7, where {1} denotes
the described SCvx + LCvx problem, the su-
perscript k̄ conventionally indicates solution at
convergence and {1} denotes the problem BNλ64 | 5| Hybrid Pseudospectral Algorithm

X̃(k̄),U (k̄), t
(k̄)
f

X̃(k̄), U (k̄), t
(k̄)
f

X̃(k̄), U (k̄), t
(k̄)
f

X̃(0̄) ← X̃(k̄)

U (0̄) ← U (k̄)

tf
(0) ← tf

(k̄)

1← k

k ← k + 1

tf
(k̄) ← t̄f

Start

End

Start

Solve
{1}

Solve
Eq.(5.16)

Start
{1}

End
{1}

w/ fixed tf
w/ no D,L

w/ no D,L

w/ no L

Solve
{1}

Solve
{1}

Solve
{1}

X̃, Λ̃, tf

X̃(k̄) ← X̃(k)

U (k̄) ← U (k)

tf
(k̄) ← tf

(k)

X̃(k),U (k), tf(k)

|∆tf
(k)| < tol

X̃(k−1),U (k−1), tf(k−1)

X̃(k),U (k), tf
(k)True

False

Figure 5.3: Direct step zoom-in, from Fig. 5.1
On the left: Solver structure

On the right: Solver loop block - {1}

procedure is applied to H̃f , thus constraining the degree of freedom provided by tf.
Results outlined in Chap. 4 show m(t) and λm(t) are not C1; this is due to the
structure of the optimal thrust magnitude profile. Collocation shall therefore deal
with such non-regularities with a tailored approach. To do this, domain is meshed
exploiting the guess from the direct method, and structure of such mesh is hold dur-
ing the BVP solution procedure. Moreover, the resulting linear system is rescaled
to minimize ill-conditioning of the dual system [20].

Remark 5.2: A further higher-order non regularity arises from the saturation of
αeff; since αeff ∈ C0, this would ensure m(t), λm(t) ∈ C1. Inaccuracies associated
with thrust switch angular points are however dominant, and therefore treated.

Figure 7: BNλ – Sequential problems pipeline

The indirect step (BλN ) is a collocation
scheme based on an r-method; switching time
tsw is included in the unknowns and the closure
condition for it is provided by the constraint

Sf (tsw) = 0

Since optimal thrust profile requires one switch
only, two segments are sufficient to discretize
the domain. Comass, mass and covelocities are
not C1 due to the bang in the control; however,
separate polynomials are employed to approx-
imate states and costates on the two subarcs;
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non-regularities are handled in this way.
To initialize the mesh, the switching function
Sf is evaluated at each node and interpolated
along [0, tf ]. The obtained estimation S̄f is then
inverted to find tsw satisfying S̄f (tsw) = 0. Do-
main is then remeshed and the mesh structure
is hold. The zero-finding problem is handled via
sequential linearizations, using analytical Jaco-
bians and a fixed trust region ζỸ acting on each
component of Ỹ .

=
[
XT,λT, tsw, tf

]T. Jacobian
is further normalized at each iteration step to
decrease problem conditioning numbers. The
generic problem solved within the indirect step
at kth step is

Ã
(k)
lin ∆Ỹ (k) = b̃

(k)
lin



Ã
(k)
lin

.
= KfA

(k)
lin

b̃
(k)
lin

.
= Kfb

(k)
lin

Kfi,j
.
=


0 if i ̸= j

1∥∥A(k)
lin,i

∥∥
2

else

and

A(k)
lin =



A(k)
dyn,y

Aknot
ABCs

A(k)

H̃f

A(k)
Sf

A(k)
dyn,t

0(4ns+2) x 2


The different contributions within Jacobian A(k)

lin
mirror the different constraints.
Controls are finally extracted and accuracy of
the final solution assessed using a Zero-Order-
Hold for thrust magnitude and cubic approxi-
mations for the remaining controls.

5.2. Final results
Evaluation of performances of the direct step
shall take into account computational time, as
well as accuracy of costates estimation. As far
as the former is considered, computational time
have been timed for different grid configurations,
and are reported in table 3; the configuration
with 5 segments and 5 collocation points per
segment (CPpS) has been selected as nominal:
the maximum percentual deviation of λm with
respect to the configuration with 20 nodes and
10 segments amounts to 5% only. Improvement
of such parameter does not pay off the sensible
increases in CPU time.

Table 3: Computational times† for dif-
ferent combinations of segments and
collocation points per segment (CPpS)

Segments

1 2 5 10

C
P

pS

5

C
P

U
ti

m
e†

[s
]

- 0.4 1.1 3.0

10 0.4 1.3 - 11.4

20 1.2 3.9 13.9 43.4

† Relative to Dell XPS w/ 2.6 GHz Intel
Core i7, 16 GB 2666 MHz DDR4

For what concerns accuracy, instead, results are
shown in fig. 8 for the 5 segments-5 CPpS con-
figuration: λ∗ is retrieved from the pure indi-
rect solution. It is evident the orders of mag-
nitude are correctly grasped for covelocities and
comass; as well, order of magnitude is correctly
estimated for λrz , while errors grow sensibly for
λrx and λry . This setback, however, is of minor
importance in the economy of the complete al-
gorithm: ∂H/∂rx = ∂H/∂ry = 0, thus λrx and
λry can be corrected in a single iteration within
the indirect algorithm.
Considering the indirect step, instead, 40 collo-
cation points per segment offer a fair trade-off
between computational times and error over tf
and tsw; for the same sets of collocation points an
accuracy analysis over the final condition is car-
ried out: controls are retrieved using the PMP
and rocket dynamics is simulated. Results are
reported in table 4: absolute error over final
touchdown position erf is computed at the final
instant of simulation; the corresponding touch-
down velocity vTD is reported as well; this is
evaluated during the simulation, within the in-
tegrator when the condition rz = 0 m is de-
tected. It does not correspond, therefore, to
the final velocity evaluated by the solver. Re-
sults show maximum accuracy slightly higher
than 1 m over final landing site position. Ver-
tical touchdown velocity levels down at 9 m/s,
corresponding to the 3% of the initial vertical
velocity; the need for online optimization, even
ignoring unmodelled dynamics, is evident. Yet,
performances offered employing 40 collocation
points per segment are extremely promising: it
is the error over final position that determines
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Figure 8: Summary of relative errors in costates estimated with the direct convex method

non null touchdown velocity, and its error is in
the order of 0.2‰ of the initial height.
Moreover, the proposed approach overcomes the

Table 4: Overview of touchdown posi-
tion accuracy and relative touchdown
velocities

erf,z [m] vTD [m/s]

C
P

pS

10 13.5 30.0

20 8.1 22.1

40 1.2 8.6

80 1.2 8.6

† Relative to Dell XPS w/ 2.6 GHz Intel
Core i7, 16 GB 2666 MHz DDR4

pure indirect approach by far when it comes to
computational times. Despite the latter being
penalized by non-tailored functions from MAT-
LAB, the gap is significant: the proposed ar-
chitecture handles the same problem with much
lower effort, as shown in table 5. The optimal
trajectory is reported fig. 9: full thrust and idle
arcs are highlighted; aerodynamic forces are pro-
jected, as well as trajectory, on the planes x− y
and y−z. The orientation of aerodynamic forces
confirms their capability do damp kinetic en-
ergy while deflecting the trajectory: at all points
aaero features a component opposed to velocity
and a centripetal one.

Figure 9: Optimal landing with aerodynamic
forces and thrust magnitude
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Table 5: Comparison of computational times be-
tween purely indirect homotopic approach and
hybrid technique

CPU Time†[s]

Indirect
homotopy

J̄ε homotopy 256.7

fSref
homotopy 124.9

Hybrid
method

Direct step 1.1708

CMT 6 10−5

λ̃ mapping 5 10−4

Indirect step 4.7608

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7, 16 GB
2666 MHz DDR4

6. Conclusions
A hybrid algorithm to assess solution of a bang-
bang problem with accuracy and limited com-
putational time has been designed and tested.
Method has demonstrated net supremacy over
a traditional approach. The indirect collocation
scheme has allowed to reduce sensibly the time
required to solve the First Order optimality nec-
essary conditions; the convex step has provided,
within limited time, a guess accurate enough to
allow the indirect solver to converge. Future di-
rections include development of a first strategy
to constrain uT pointing direction and of a sec-
ond one to limit the relative angle between ub

and uT , mirroring a finite TVC capability.
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