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Abstract

High-Performance Computing (HPC) is driving innovation in multiple fields and reaching
exascale performance, even if fault tolerance represents an obstacle to its growth. The
most common interconnection medium, MPI, does not yet provide reliable assumptions
to continue execution after a fault. Recent efforts from the MPI Forum aim to address
this need for the next generation of applications, but they still require in-depth knowledge
of MPI to achieve resiliency to faults. Fault tolerance can be implemented with different
methods, such as checkpoint/restart, but the existing frameworks still lack transparency
and are not easy to integrate.
This work tries to understand the issues preventing MPI from offering a transparent
interface to recover from faults, starting the journey from the ambitious goal of providing
a completely transparent fault recovery mechanism through C/R in generic applications
by hiding faults from the application and re-creating failed nodes. Due to the complexity
of low-level memory management in distributed systems and the lack of support for MPI
of state-of-the-art transparent checkpoint frameworks, the initial transparency goal was
relaxed. We propose a transparent fault recovery framework to enable MPI to automati-
cally recover from failures of critical processes and continue the execution after non-critical
failures. We build our work on top of the User-Level Fault Mitigation (ULFM) library
and Legio, a resiliency library. We distinguish between critical and non-critical processes,
ensuring that only the ones crucial to the completion of the application are restarted to
lower the overhead of failures.
We tested the work on a supercomputer, proving that the overhead is negligible compared
to the loss of a critical rank. Finally, we discussed further evolutions of the work, which
could leverage the upcoming MPI 5.0 Standard and better dynamic process management
runtimes for MPI.
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Abstract in lingua italiana

Il calcolo ad alte prestazioni sta guidando l’innovazione in diversi campi e raggiungendo
exascale performance, ma la tolleranza ai guasti rappresenta un ostacolo limitante per la
sua crescita. Il metodo di comunicazione più comune, MPI, non fornisce ancora garanzie
affidabili per continuare l’esecuzione dopo un errore. I recenti sforzi dell’MPI Forum mirano
a soddisfare questa esigenza per la prossima generazione di applicazioni, ma attualmente
richiedono ancora una conoscenza approfondita di MPI per tollerare fallimenti in appli-
cazioni esistenti. La tolleranza ai guasti può essere implementata con diversi metodi, come
il checkpoint/restart, ma i framework esistenti non sono ancora trasparenti nell’utilizzo o
facili da integrare.
Questo lavoro esplora i problemi che impediscono a MPI di offrire un’interfaccia trasparente
per il recupero dagli errori, partendo dall’ambizioso obiettivo di fornire un meccanismo
di recupero trasparente attraverso C/R in applicazioni parallele, nascondendo i guasti e
ricreando i nodi falliti. A causa della complessità della gestione della memoria a basso
livello nei sistemi distribuiti e della mancanza di supporto per MPI dei framework di
checkpoint trasparenti più avanzati, l’obiettivo iniziale di trasparenza è stato attenuato.
Proponiamo un framework di recovery che permetta ad MPI di gestire fallimenti di pro-
cessi critici, e continuare l’esecuzione durante guasti non critici. Costruiamo il framework
sopra User-Level Fault Mitigation Library (ULFM) e Legio, una libreria per la tolleranza
ai guasti. Il risultato distingue automaticamente nodi critici e non, creando overhead
solamente per i processi cruciali al completamento dell’applicazione.
Abbiamo misurato l’overhead su un supercomputer, dimostrando che è trascurabile se
paragonato alla perdita di un processo critico. Abbiamo poi discusso evoluzioni della
ricerca che potrebbero sfruttare lo standard MPI 5.0 e migliorie nella gestione dinamica
dei processi per MPI.

Parole chiave: MPI, ULFM, tolleranza agli errori, checkpoint, calcolo ad altre prestazioni
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1| Introduction

High-Performance Computing (HPC) is the field of computer science where supercom-
puters and large clusters solve advanced computation problems. Given the increasing
computational requirements, both in academia and industry, HPC has been at the latest
years at the heart of computer development.
The increased complexity and problem size in various domains called for huge improve-
ments in systems’ performances. To keep up with the demand, the capabilities of these
computing systems must grow exponentially faster than Moore’s law. To quantify these
conditions, it is possible to reference exascale computing, which refers to a system having
a minimum computing power 1018 floating point operations per second (FLOPS), or one
exaFLOPS. The achievement of such performance is having a transformative impact on a
wide range of applications, ranging from weather forecasting and physical simulation to
new drug discovery, simulating health risks before human or animal testing.
The biggest challenges stand in upgrading existing platforms [10]. There is active research
for a computing paradigm model that is flexible enough to port existing workloads and an
interface that abstracts low-level network details, enabling low-latency interconnection
between the different nodes. Considering the length of the workloads running on the
platforms and the number of components involved in achieving the desired goal, the
likelihood of faults increases substantially. To solve this problem, we must introduce fault
tolerance, which enables systems to continue operating even in the event of one or more
faults. Strategies for fault tolerance must be researched and plugged in to ensure that a
single fault won’t jeopardize the work previously done. This thesis explores tolerance to
faults and its ties to the communication method used in distributed systems.
The standard process communication paradigm in HPC is the Message Passing Interface
(MPI). First released in 1994, it is currently actively maintained by the main contributors
in the industry and academia. Although the MPI Forum is the main point of reference for
the semantic (API) of function calls exposed to developers, different implementations solve
communication problems differently, such as MPICH, OpenMPI, and Intel MPI. Generally,
parallel applications have always used MPI in its most basic features, which enable the
distribution of work across multiple nodes and a general collection of the results through
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collective network operations. The simple paradigm (distribute, process, and collect) has
been at the core of the efforts from both the MPI Standard and the MPI implementations
cited above. With new paradigms and technologies revolutionizing the computing sphere
in HPC, actions must be taken to keep MPI able to satisfy the applications’ requirements.
In particular, the new upcoming version, MPI 5.0, is creating specific work groups to
work on new approaches that will help MPI with the new generation of architectures,
such as hybrid and heterogeneous programming (CUDA, OpenCL), alternate concepts for
the initialization of MPI enabling more holistic, dynamic process management, and fault
tolerance, to define support that enables portable fault tolerance solutions. This work
focuses on the process fault tolerance techniques in MPI environments.
According to the MPI standard with versions equal or minor to 4.0, an error in any process
inside the MPI application made the subsequent behavior undefined. The reason for this
functioning is MPI’s simplicity, thanks to which MPI has a low communication cost, but it
is now becoming an obstacle. With the increasing number of components, the likelihood of
faults grows, and more advanced features are needed. Development for fault management
solutions in MPI has been ongoing for years, and recently a dedicated Working Group
focused on different fault tolerance solutions.
To better comprehend the concept of fault tolerance, it is useful to distinguish two branches:
fault resiliency and fault recovery. When an application is resilient to faults, its execution
can continue ignoring the failed processes and produce a result. In some cases, fault
resiliency can lead to an approximate result due to the missing contribution of the failed
processes. Instead, with fault recovery, we point to techniques that users may employ to
recover the execution from a failure. An example of such a technique is checkpoint/restart,
where a failure can trigger the restart of the entire application (global restart) or only the
failed processes (local restart).
One of MPI’s most used libraries that enable fault resiliency and recovery is User-Level
Fault Mitigation (ULFM) [7]. Maintained by the MPI Fault Tolerance Working Group, it
exposes low-level directives to deal with faults, allowing users to integrate fault tolerance
in their applications. Due to the implementation details exposed in ULFM, different frame-
works have tried to simplify integration with existing applications by creating all-in-one
solutions. In fault resiliency, the focus was on continuing the application with the live
processes after a failure without re-computing lost samples [20, 21] or on applying changes
to data structures once a failure is detected [27]. In fault recovery, the computation
continued either on spare nodes from the latest checkpoints [29] or by adding new processes
to the pool by forwarding the checkpoint responsibilities to the user[3].
Another approach is explored from Legio[24], which focuses on transparent fault resiliency
in embarrassingly parallel applications. An essential difference from the previously refer-
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enced solutions is that it does not require any change to the application code. Its main
goal is minimizing the changes for the application developer while allowing transparent
fault resiliency. It deals with failed processes by discarding them and continuing the
execution of the application. In case the loss is a non-critical node for the application, the
correctness of the result may be impacted, but the trade-off could be acceptable in case
an approximate result is enough.
This thesis explores transparent fault tolerance, focusing on fault recovery. Existing
transparent frameworks such as Legio can bring results only if the failures are in processes
that are not critical to the completion of the application. To eliminate this inconvenient
assumption, we start the exploration journey with transparent fault recovery techniques,
which enable existing applications to be checkpointed and restarted without any change to
the application’s code, outlining the main difficulties in reaching such results with the tools
and frameworks existing today. After, we continue the journey by relaxing our requirements
and accepting that the applications’ code must be responsible for checkpoint/restart. We
then propose an extension to Legio, called Legio++, which enables the reparation of
communication structures by automatically restarting critical processes in case of failures.
We evaluate the results measuring the overhead and the additional accuracy of results,
demonstrating that the impact on performance is limited compared to the trade-off in
losing a critical process.
To summarize, the contributions of the thesis are the following:

• We explore existing checkpoint/restart frameworks and attempt to integrate them
with MPI and Legio to achieve transparent fault recovery.

• We propose Legio++, an evolution of Legio which transparently repairs and respawn
failed critical MPI processes in case of failures.

• We evaluate the overhead of the proposed solution by analyzing the time for a
complete restart of a failed process and the completion time of a complete application.

This thesis is structured as follows: Chapter 2 gives the background knowledge needed to
fully understand the problem, its solution, and the state-of-the-art of existing frameworks.
Chapter 3 covers the first exploration of transparent fault-recovery techniques and the
attempts to integrate them with MPI and ULFM. Chapter 4 proposes a framework to
recover from failure by abstracting the MPI structures while exposing high-level directives
for the developer to be responsible for application checkpointing. Chapter 5 goes through
the experimental evaluation of the work by showing the overhead related to the respawn
of a failed MPI process and the total overhead in an embarrassingly parallel application.
Finally, Chapter 6 wraps up the thesis by showing the possible next steps of this effort.
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2| Background

This chapter introduces the basic concepts on which the following chapters are based.
Section 2.1 introduces the Message Passing Interface (MPI) fundamentals. Section 2.2
focuses on MPI fault resiliency and User Level Failure Mitigation (ULFM), while Section 2.3
explores checkpoint techniques to reach fault tolerance. Finally, Section 2.4 summarizes
the state-of-the-art and lays the foundations for the exploratory work in Chapters 3 and 4.

2.1. Message Passing Interface

Parallel computing is using multiple computing resources to solve a computational problem.
An integral part of the flow in parallel applications is the coordination between different
processes, which handle different parts of the task. The Message Passing Interface (MPI)
[2] aims to empower communications in a parallel environment.
MPI is just a specification: the standard abstracts core concepts able to empower highly
complex communication models. At the MPI interface’s basis is the MPI operation -
a sequence of steps that enable data transfer and synchronizations between different
processes. To execute an MPI operation and facilitate coordination, communicators are
used. They encapsulate the context of communication between a group of processes, which
are identified uniquely inside the communicator through their rank, starting from 0.
The section is structured as follows: Section 2.1.1 digs deeper into MPI initialization
and procedures, Section 2.1.2 focuses on point-to-point and collective communication,
Section 2.1.3 describes group management, and 2.1.4 summarizes communicators handling.
Finally, Section 2.1.5 explains the dynamic process model and the Process Manager
Interface.

2.1.1. MPI Initialization and Procedures

The main goal of the MPI Standard is achieving a portable parallel programming model
on high-end systems. To achieve this, MPI presents two models to initialize processes
while being agnostic to the specific command line or environment setups: the World
model, where a set of processes are created as members of a common MPI_COMM_WORLD
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communicator, and the Session model, where the application itself manages the creation of
the MPI groups, which are sets of processes. This thesis assumes the usage of the World
model, which is analyzed in the current section.
The first step before interacting with the MPI interface is the invocation of MPI_Init;
only after the call finished without errors, MPI_COMM_SELF and MPI_COMM_WORLD will be
usable in operations involving communicators. The initialization assigns to each process
calling the procedure a rank, starting from 0. Ranks can be used in cooperative algorithms
to divide the workload between different processes.
After initializing an MPI program, communication is done through MPI operations, which
are implemented as one or more MPI procedures. The main distinction is between local
and non-local procedures. Non-local procedures require the cooperation of other MPI
processes, while local procedures do not. To fully grasp the content of the thesis, it is also
important to define operation-related procedures: they implement one of the four stages
of an MPI operation, which are initialization, starting, completion, and freeing. On the
contrary, non-operation-related procedures do not implement any of the four stages for MPI
initialization, such as MPI_Comm_rank. Finally, collective procedures require all processes
in the target groups to invoke the procedure. A synchronizing collective procedure, such as
MPI_Barrier, will return only after all processes have called the matching MPI procedure.
In case one or more processes belonging to the communicator on which the collective is
called do not participate, a deadlock occurs. Consequently, execution cannot continue in
all the processes of waiting for the collective operation to conclude.
To exchange messages, MPI sets up communication methods that can be tuned through
the run-time command-line, by disabling or enabling the Modular Component Architec-
ture (MCA) components related to the Byte Transfer Layer (BTL). Examples of such
components are shared memory, which is available for exchanging messages in processes
running in the same node, and TCP, which requires opening sockets to communicate.

2.1.2. Point-to-point and Collective Communication

Point-to-point operations focus on the simplest model of communications: exchanging
messages between single processes. Given a communicator, processes are identified with
their respective rank in the communicator and can send and receive messages. The simple
procedures require a communicator, a rank, and either a full data buffer to send data
or one to receive the data, which must have the correct type and size to account for the
sent buffer. The operations can be either blocking or non-blocking; the difference is that
blocking operations do not return until the completion of the procedure, waiting for the
transmission to end. For example, a blocking receive procedure will not return until a
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message has been correctly received. On the other hand, a non-blocking procedure will
initialize the communication but will not wait for the communication to complete. In
this way, the process can perform other work and only periodically check if it is ready for
communication.
MPI_Send and MPI_Recv are the most commonly used pair of operations in blocking
point-to-point communication. They allow exchanging of messages between two different
processes. When sending messages, it is necessary to pass the data being sent, the number
of elements and their type (to correctly initialize the buffer), the rank of the receiving
process, a tag, and a communicator. The receive operation is very similar, taking similar
parameters: the main difference is that instead of initializing a buffer to send the data, it
will receive the data from the corresponding send. The specular non-blocking functions
are MPI_Isend and MPI_Irecv: due to their non-blocking nature, it is possible to proceed
with other work while waiting for their completion. Both functions return a Request

object, which can be used in a MPI_Wait to wait for the result of the operation. If all
non-blocking operations need to complete simultaneously, the MPI_Waitall can be used.
Another example of a point-to-point operation is the MPI_Probe (MPI_Iprobe is the non-
blocking version). It obtains information about a message waiting for the reception but
does not acknowledge it. Since it just checks for incoming messages, it is unnecessary to
know the length of the message beforehand. Similarly to the operations above, it takes
the source rank, a tag, a communicator, and the status object, which will contain whether
a message has been probed.
Collective operations enable complex communication models by involving all processes
within the used communicator and must be issued by all the processes in the given com-
municator. When considering the usage of collective operations, it is important to analyze
the flow to avoid possible deadlocks. It would be incorrect to call a collective operation
in an MPI process on a communicator in which other processes would not reach the call,
since the program would block. Finally, in a multi-threaded implementation, particular
attention must be taken to ensure that the same communicator is not simultaneously used
in a collective communication operation that is not thread-safe.
The simplest collective and synchronizing operation is the MPI_Barrier, which is useful
in cooperative contexts to ensure all ranks reach a predefined step in the flow of the
application. Similarly to point-to-point operations, also collectives can be either blocking
or non-blocking. For example, MPI_Ibarrier is an example of a non-blocking collective
operation. Since work can be done while waiting for synchronization, non-blocking opera-
tions can save waiting times.
Other important examples of collectives operation are the MPI_Reduce and MPI_Reduceall.
Both operations combine data from multiple processes by reducing it into a single result.
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Users can define custom functions to combine the data or use predefined ones (such as
MPI_SUM). Both functions take as parameters the pointer to the data to combine, the
number of elements and their type, the pointer to the data in which the result will be
written, and finally, the type of operation to apply to combine the data. The main
difference between the two functions is that MPI_Reduce combines data in a unique process
specified in the parameters as root. MPI_Reduceall instead writes the result to all the
ranks participating in the operation.

2.1.3. Group management

Groups are used in MPI to create complex interconnections between the various processes
in an MPI application. They allow us to divide and conquer the necessary problem, by
breaking it down into two or more sub-problems, potentially with completely different
procedures run in each group of processes.
In MPI, groups are an ordered set of references to MPI processes. The order is achieved
through ranks, representing single application processes. They are represented with a
local object which can be freely manipulated with a local procedure since cooperation is
not required. The direct consequence is that groups cannot be moved between different
processes, and their change is not propagated in the MPI universe. They are the key
element enabling the description and evolution of communicators, whose ranks are defined
by the related group of the communicator. The local procedures MPI_Group_rank and
MPI_Group_size return the rank of the calling process in the group and the size of the
group, respectively.
Groups can be constructed starting from a communicator: MPI_Comm_group is a local
procedure that extracts the group describing the communicator. Starting from a group, it’s
also possible to maneuver the process identifiers to create new groups through functions
with the MPI_Group prefix, such as the following:

• MPI_Group_incl. It creates a new group from the input one, which contains only
the ranks passed as an argument. It is useful if we already know which ranks we
want to include in a new group.

• MPI_Group_excl. It creates a new group by deleting ranks from an existing group.

• MPI_Group_union. It merges two groups in a single one, with potentially overlapping
rank identifiers.

• MPI_Group_difference. It creates a group with all the elements of the first group
that are not in the second group.
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• MPI_Group_intersection. It creates a new group from the intersection of two
existing groups.

In all set-like operations for groups seen above, the order of the processes of the output
group is determined primarily by the order in the first group and then by the order of the
second. Figure 2.1 shows the exemplify of the sets operation as described above.

Figure 2.1: The figure shows sets operation on MPI_Groups: MPI_Group_union,
MPI_Group_difference, and MPI_Group_intersection. The rectangles represent dif-
ferent MPI_Groups, while the number inside the circle is the rank according to
MPI_COMM_WORLD.

When working with different groups, a single process can exist in multiple ones. It might
then be helpful to translate the processes’ ranks in one group to those in another. For
example, starting from a known rank in the MPI_COMM_WORLD, it could be necessary to
retrieve the related rank according to a specific group that must be used for the current
operation. It is sufficient to use the MPI_Group_translate_ranks function, which takes
as arguments the starting group, the ranks to translate and their number, the destination
group, and the pointer in which the translated ranks should be written. If a given rank
does not exist in the new group, MPI_UNDEFINED is returned.
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Figure 2.2: The figure shows an example of the MPI_Group_translate_ranks.
The rectangles represent two MPI_Group. The number in the circles is their rank according
to the group, while two circles with the same color are the same process. MPI_UNDEFINED
are indicated with X for brevity.

Figure 2.2 shows the effects of the translation in two groups with four ranks. The figure
shows that the white circle (rank 1 in group_one) is not present in group_two, therefore
the operation returns MPI_UNDEFINED. Similarly, the blue and green circles have shifted
positions.

2.1.4. Communicator management

Communicators encapsulate a group providing the base for collective and point-to-point
communication. They can be divided into two types:

• Intra-Communicators. They are the most used communicators and are straight-
forward in their composition: they contain a group whose processes can exchange
messages through the communicator itself. There are predefined intra-communicators
that are available for usage without any additional work, such as MPI_COMM_WORLD
and MPI_COMM_SELF, made available after the MPI_Init function is called. The user
can also create communicators through the functions explored below.

• Inter-Communicators. They empower exchanges between two different groups.
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Suppose, for example, an application follows a partitioned approach in a parallel
problem. In that case, exchanging information between the different communicators
executing the application code may be needed at a certain point. Another example
would be the dynamic creation of MPI processes: other communicators are created
related to processes designed during application startup and automatic scaling to
increase the resources currently working on a problem. To interact between the old
communicator and the new one (which uniquely identifies the new processes), it is
possible to bind a communicator to two groups which are local and remote, based
on the current process.

Similarly to group management functions, communicators can be manipulated through
the MPI library. Functions that are used to manipulate communicators are listed below:

• MPI_Comm_dup. A simple but often used operation that duplicates an existing
communicator.

• MPI_Comm_create. It creates a new communicator starting from a given communi-
cator, and a group passed as a parameter. The MPI_Group must be a subset of the
group internal to the communicator passed as a parameter unless an error is raised.

• MPI_Comm_split. It creates a disjoint group of communicators by taking a com-
municator to split, an integer (the color), and another integer called the key. The
output is a set of communicators where the processes in each communicator have the
same color and are ordered through the key parameter (ties are broken with rank in
starting communicator). Thanks to the key parameter, it is possible to use the split
for re-ordering an existing communicator. An example of the function’s behavior is
in Figure 2.3, where the color of the ranks represents the color parameter, and the
number of each process is the related key.
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Figure 2.3: The figure shows the behaviour of the MPI_Comm_split operation. On the
right a communicator containing nine processes. Each one of the processes calls the split
operation with the color and key, as shown in the figure. The operation’s output is the set
of three communicators on the left.

.

A specific set of functions also deals with inter-communicators. They are significant in
this work since they allow the management of MPI applications with processes spawned
after the initialization of the application (dynamic process management):

• MPI_Intercomm_create. It allows the creation of an inter-communicator between
two disjoint groups. Note that a similar output inter-communicator is also cre-
ated in the context of dynamic process management. In particular, the func-
tion MPI_Comm_spawn dynamically creates a new process, constructing an inter-
communicator with the local group containing the pre-existing processes and the
remote group containing the spawned ones.

• MPI_Intercomm_merge enables the conversion of an inter-communicator to an intra-
communicator. This is useful to allow the usage of easier collective and point-to-point
communications between all the processes.

An essential difference with the operation on groups is that operations on communicators are
non-local and collective; therefore, the participation of every process in the communicator
we are modifying is needed. An exception to this is the MPI_Comm_create_group operation,
which is called only from the processes in the group of the communicator being created.
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2.1.5. Dynamic Process Management

MPI allows for the creation and termination of MPI processes after the initialization of
the universe. When processes are created outside of the application’s initialization, they
must be able to connect to the pre-existing universe. To do so, it is necessary to share a
common means of communication.
To achieve this and start processes that can interact with existing ones, MPI defines two
similar functions: MPI_Comm_spawn and MPI_Comm_spawn_multiple. They execute one
or multiple processes, with the given executable, arguments, and related hosts to spawn
them.
Similarly to any communicator-modifying operation, spawning a new process is a blocking
collective which must be called from every process in the communicator. Moreover, the
operation blocks until the spawned child(s) contact the MPI_Init operation. The joining
of a new process into an existing universe is made possible by three sets of features that
are implemented in the MPI Standard, described below:

• MPI_Publish_name and MPI_Lookup_name. They are primitives needed for MPI
processes to publish the port names in a public registry, which must be used to
connect the processes.

• MPI_Comm_accept. It is a function used by a server application that indicates the
status of waiting for the connection from a new process.

• MPI_Comm_connect. It establishes communication with an application waiting for a
new process to join.

The three features described above enable the dynamic creation of processes and the more
generic client-server paradigm through MPI parallel applications.

2.2. Fault Tolerance

When managing exascale computing applications, dependability must be considered: the
increase of processors, computational nodes, and in general, points of failures makes it
necessary to take the system’s health into account.
One of the many sides of dependability is fault tolerance, which serves the purpose of
understanding the risks, the mitigation, and the prevention of faults. In an MPI application,
the analysis of faults must consider that the behavior after a fault is undefined, as stated
in the MPI Standard. It is impossible to continue execution with the guarantees and
assumptions outlined in the standard. It is then clear that a single fault of a single
component in an MPI application makes it impossible to reach a successful run. Given
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the high risk, the rest of the thesis will approach the problem of fault mitigation through
different techniques in the realm of dependability, and the section expands on the concepts
related to fault tolerance in an MPI environment.
The section is structured as follows: Section 2.2.1 outlines the necessary Fault Tolerance
background for the rest of the thesis, Section 2.2.2 explains the MPI user-level error
handler, Section 2.2.3 digs deeper into the User Level Fault Mitigation (ULFM) proposal.
This section could also include a part for checkpoint/recovery, one of the most common
fault recovery techniques, but it will be treated separately in Section 2.3.

2.2.1. Background

To deeply understand the need for fault tolerance, it’s first important to analyze the
taxonomy of faults. Faults (which could be software errors, such as a mishandled bug, or
hardware errors, such as a component failure) can lead to errors - which are inconsistencies
in the system’s state. Finally, the error becomes a failure if the application cannot handle
the inconsistent state. If a failure happens, the component in which the inconsistent state
is present may not be repaired from the higher-level components, causing an escalation of
the fault to the entire system - blocking the successful completion of the task at hand.
To share a common terminology for the rest of the thesis, it’s necessary to define three key
terms used in the context of this work:

• Fault tolerance. It is the high-level term that describes any technique which enables
an application to deal with faults.

• Fault resiliency. It indicates methods that allow the application to continue execution,
even in the presence of faults, without recovering the lost processes.

• Fault recovery. It indicates methods that, in the event of a fault, recover from it by
restarting the execution of the lost process.

After understanding the basics of fault tolerance, it is also crucial to outline why it is a
key factor in current HPC systems, which are the main users of MPI as a communication
protocol. The main goal of such systems is to provide a result, which may be constrained
in hours or days, and empowered by thousands of processes running on different nodes.
It is therefore straightforward that a hardware fault in a single node could escalate to a
system failure for multiple applications running in the HPC system, provoking massive
loss in terms of computation in the unfortunate case of missing fault tolerance.
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2.2.2. MPI Error Handling

Before diving deeper into error handling in the MPI ecosystem, it is crucial to reference
the following quote from the MPI Standard in Section 9.3

An MPI implementation may be unable or choose not to handle some failures
during MPI calls. These can include failures that generate exceptions or traps,
such as floating point errors or access violations. The set of failures that
MPI handles is implementation-dependent. Each such loss causes an error to
be raised. The above text precedes any text on error handling within this
document. Specifically, text that states that errors will be handled should be
read as they may be handled.

Any MPI-provided object which helps deal with errors is therefore not sufficient by itself
to guarantee the correct and successful execution of an application.
In the context of error handling, the standard supports predefined handlers which are tied
to MPI objects (communicators, windows, files, and sessions):

• MPI_ERRORS_ARE_FATAL. It is the default error handler for any MPI object unless
otherwise specified. In case an error is detected, the program (the process receiving
the error, and the other connected processes in the MPI application) abort.

• MPI_ERRORS_RETURN. The error handler has no effect, and the failure is returned to
the user. Note that this does not imply that the application can proceed normally -
in fact, the behavior of a standard MPI application is still undefined after an error
occurs.

To reach fault tolerance, MPI_ERRORS_RETURN is a necessary but insufficient tool.

2.2.3. User-Level Fault Mitigation

Given the significance of the fault tolerance topic in HPC systems, and therefore in most
MPI applications, the omission of a standardized Fault Tolerance framework inside the
MPI Standard can be startling. Multiple efforts have tried to implement measures to
reach fault tolerance and recovery in MPI implementations. An example is the LAM/MPI
checkpoint/restart framework [25], which tried to introduce coordinated and transparent
checkpointing by using the Berkey Lab Checkpoint/Restart library [15], created in 2005
and whose development has been abandoned since 2009.
One of the most active projects is the User-Level Fault Mitigation proposal (ULFM)
[7]. The proposal’s main goal is the continuous operation of MPI programs after crashes
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without impacting the execution. No MPI call should block indefinitely but raise an error
if it cannot succeed.
The approach taken from the proposal does not go in the direction of a specific fault-
resiliency framework or approach (such as Checkpoint/Restart). Still, it provides er-
gonomics APIs to enable users to integrate fault tolerance in their application. The general
scope of the goal also succeeds in making the ULFM proposal one of the main goals of
the Fault Tolerance Working Group, to include it in the MPI standard. Moreover, the
upcoming new version of OpenMPI (one of the most used MPI standard implementations)
includes ULFM, empowering numerous projects to adopt Fault Tolerance easily. Also,
MPICH, another notable implementation, has proven the implementation of ULFM as
possible and with low run-time overheads.
The ULFM proposal defines three supplementary error codes as return codes of MPI
operations:

• MPIX_ERR_PROC_FAILED. It is raised when a failure prevents the completion of an
MPI operation.

• MPIX_ERR_PROC_FAILED_PENDING. It is raised when a potential sender matching a
non-blocking wildcard source receive has failed.

• MPIX_ERR_REVOKED. It is raised when another rank in the application has called the

Moreover, five additional interfaces are introduced to handle faults:

• MPI_Comm_revoke. Revokes the communication on the communicator used in the
call.

• MPIX_Comm_revoke(MPI_Comm comm). Interrupts any communication pending on
the communicator at all ranks.

• MPIX_Comm_shrink(MPI_Comm comm). Creates a new communicator where dead
processes in comm were removed.

• MPIX_Comm_agree(MPI_Comm comm, int *flag). Performs a consensus (i.e., fault-
tolerant allreduce operation) on a flag (with the operation bitwise or).

• MPIX_Comm_failures_get_acked(MPI_Comm, MPI_Group*). Obtains the group of
currently acknowledged failed processes.

• MPIX_Comm_failure_ack(MPI_Comm comm). Acknowledges that the application in-
tends to ignore the effect of known failures on wildcard receive completions and
agreement return values.
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To detect when a failure occurs (and raise to the user a MPIX_ERR_PROC_FAILED), ULFM
uses a timeout for each MPI operation. Due to spurious network errors, this approach can
cause problems; to solve this, it is possible to adopt two approaches, configurable through
Modular Component Architecture (MCA) configuration parameters:

• mpi_ft_detector_thread spawns a separate thread that checks the liveliness of the
active MPI process.

• errmgr_detector_priority which employs the new (present in MPI 5.0) PMIx
Reference RunTime Environment (PRRTE) [8], which is a scalable run-time used in
HPC network stack clients, supporting the detection of failures natively. Unfortu-
nately, this is only supported in OpenMPI 5.0, an experimental version at the time
of writing, and therefore not suitable for production usage.

2.3. Checkpoint/Restart

One of the most widespread techniques to reach fault recovery in computing systems is
checkpoint/restart, enabling rollback strategies that empower applications to complete
successfully as if no fault ever occurred. The high-level approach consists of periodically
writing the state of the application (at the different layers discussed in the next sections)
in a parallel file system. After the failure of a component, it is then possible to restart
the application starting from the state previously written, avoiding losing the work done
beforehand.
To further explore the topic, Section 2.3.1 dives deeper into the taxonomy of different check-
point/restart techniques, Section 2.3.2 outlines the existing interactions between MPI and
checkpoint frameworks, and Section 2.3.3 shows the limitations of the checkpoint/restart
approach concerning other fault-tolerance techniques.

2.3.1. Classification

Checkpoint/Restart is a generic methodology to save and restore the state of a program.
However, the central concept has been implemented in many different ways according
to the specific needs of the users. For example, many applications benefit more from
a transparent approach that does not require code changes, while others require the
minimization of disk usage. Given these differences, it’s helpful to consider a taxonomy of
the different approaches:

• Application-Level. It indicates a dedicated library is integrated inside the application
code to implement application-aware checkpoint/restart. For example, it can be
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implemented as a periodic checkpoint phase of the data necessary for the application
to run and an initialization phase to load already check-pointed data optionally. It
is the least transparent checkpoint technique since it cannot be used on existing
applications without code additions (which may not always be possible, especially in
the case of large legacy applications).

• User-Level. It indicates a transparent checkpoint-restart of processes by capturing
system calls in user space. Although implementation cost seems not existent for this
type of checkpoint, it’s important to note that the framework must fully support
the application’s system calls and needed environment, and the size of the image is
larger due to additional user-level information, which is not strictly needed for the
application, such as internal run-time states. For example, in case an MPI_Reduce

is performed, the node which accumulates the results is critical, and in case of a
failure, the entire application would be jeopardized without recovery.

• System-level. The operating system actively supports the checkpoint of a process
thanks to a kernel module. The method is fully transparent to the application. Still,
it requires high privileges, and it is very low-level, tied to the support of a particular
Operating System, and therefore has low portability.

• Hypervisor. The virtualization environment used to run the application can save,
stop, and restart the application transparently. It presents similar pros and cons as
the system-Level checkpoint but requires low administrative rights and generally has
higher overhead (due to the restart of an entire virtualized environment).

Given the above classification, it is clear that there is no gold solution to the check-
point/restart problem, but each alternative has its trade-offs. After analyzing the layer at
which the checkpoint happens, we can explore when the different nodes of a distributed
system may perform the actual checkpoint.
In particular, we will focus on checkpoint-based protocols with no log-based rollback recov-
ery: the restart is performed solely with the checkpointed image; we can then distinguish
three different types of checkpoints:

• Uncoordinated Checkpoint. Each process performs checkpoints with maximum
autonomy without synchronizing with the other processes. At the time of restart, the
set of checkpoints that produce a consistent state of the execution is computed. The
main drawback is the domino effect: when restarting, a large amount of computation
can be lost since a consistent state may incur a considerable rollback with respect
to the application progress. In the worst case, a consistent state may not be found,
making it necessary to restart the entire application from scratch.
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• Coordinated Checkpoint. The checkpoints are determined in such a way as to make
every single checkpoint consistent. Restarting is greatly simplified, but a higher
overhead is paid due to the necessity of a regular checkpoint. To ensure coordination
of the checkpoints, there must be synchronization between the different processes
through collective operations.

• Communication-Induced Checkpoint. The checkpoint is based on the information
received in the messages from other processes - therefore, a consistent state may
always exist.

The three different techniques offer different trade-offs concerning the sunk work of
performing the checkpoint in case of no failures and the restart cost.

2.3.2. Checkpoint in MPI

After reviewing checkpoint taxonomy, together with the main related to fault resiliency in
MPI applications (achieved thanks to ULFM), it is possible to distinguish the two main
high-level techniques used to checkpoint MPI applications, focusing on the restart phase:

• Stop-and-restart. The entire application aborts if failure is detected in one or more
processes. There is no need to add complexity inside MPI itself since the entire
application will restart execution. It is necessary to have a consistent checkpoint
between all processes from which they can restart.

• Resiliency. After failure detection, the application can continue to execute without
any undefined behaviors. To compensate for the failed processes, the reconstruction
phase takes place by restarting the execution of the failed processes. To achieve this, it
is possible to roll back all the existing approaches to the latest checkpoints (backward
recovery) or restart only the failed processes on their latest checkpoint (forward
recovery) without interrupting other processes’ execution. The failed processes can
start execution either on new nodes (through dynamic process management) or spare
ones. Note that the application’s behavior mustn’t be undefined after a failure to
achieve this state.

2.3.3. Limitations

The biggest drawback seen in checkpoint/restart (C/R) solutions is the overhead in terms
of time and disk load given by introducing a periodical checkpoint, which must be repeated
during the entire application life cycle. In case no failure occurs, the overhead has no
tangible benefit. Therefore the need for a checkpoint/restart framework must be evaluated
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beforehand concerning the likely hood of failures in the current system. Together with
the risk of failures, also the costs and benefits of restarting execution for failed nodes of
the application should be estimated. It is often sufficient to reach an approximated result,
accepting a margin of errors due to the missing contribution of the failed processes without
restarting their work.
Finally, each checkpoint technique at each layer has its trade-offs. In the case of the
application-level checkpoint, it may be unfeasible to integrate state-of-the-art frameworks
in legacy applications. Moreover, the time cost of adopting the solution can be estimated as
superior to the related benefits. The same applies to more "transparent" techniques, such
as OS-level checkpoints, which rely on the execution of specific systems and environments.
A possible solution to deploying a checkpoint/restart solution is the usage of virtual
environments [6]. Thanks to a different climate where memory and state are contained,
transparent checkpoint frameworks pose fewer problems. However, a more significant
limitation of this approach is the lack of shared memory communication between processes
in the same node, which is otherwise used with substantial performance gains. By
encapsulating the application, problems such as the checkpoint of memory can be.

2.4. State of The Art

With a background in fault-resiliency and checkpoint, it is possible to review the most
up-to-date solutions and the efforts which helped shape the domain. The main distinction
taken when analyzing the current work in MPI follows the classification outlined in
Section 2.3.2, demarcating stop-and-restart approaches (where the entire application
restarts after a failure of one of the components) versus resiliency approaches. Given the
focus on transparency of this work, the following sections explore transparent approaches
to the problem.
To give a comprehensive outline, the section is divided as follows: Section 2.4.1 analyzes
transparent checkpoint/restart techniques, comprehensive of both user-level and system-
level approaches. In contrast, Section 2.4.2 explores fault recovery without a transparent
checkpoint/restart. Finally, Section 2.4.3 digs deeper inside stop-and-restart techniques for
MPI applications, while Section 2.4.4 concludes the section with the analysis of resiliency
techniques (with backward and forward recovery).

2.4.1. Transparent Checkpoint/Restart

Checkpoint/Restart is a branch of C/R that focuses on providing fault recovery to the
application. In particular, transparent C/R focuses on keeping the application unaware of
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the C/R framework. User-level and system-level checkpoint techniques are transparent to
user applications since the checkpoint is initiated outside the application’s execution. Due
to the transparency, consistency issues between different checkpoints must be handled; there
needs to be a set of consistent checkpoints which can be used to restart the application.
One of the historic system-level frameworks - using kernel modules to integrate into running
applications fully - is Berkeley Lab Checkpoint Restart (BLCR) [15]. To use the software,
it is necessary to load a custom kernel module that provides what cannot be otherwise used
from user space. Although it is less time and space efficient than application checkpoint
due to the missing context of the application, it can optimize for error precursors (such as
elevated error rates in memory). The latest development date back to 2013, making it
difficult to use with up-to-date applications, and it does not support statically compiled
applications.
User-level checkpoint approaches do not require any change to the OS, making them
easier to deploy. An example of a framework currently used for fault recovery and process
migration is Checkpoint/Restore in Userspace (CRIU) [22]. The library’s primary goal is
to provide tooling to the checkpoint and restore any running Linux application without
super-user privileges and with full transparency concerning network and file protocols
used (it fully supports TCP and UDP sockets). The user-space C/R tool is made possible
thanks to the new option CONFIG_CHECKPOINT_RESTORE, from Linux 3.3: it allows access
to parameters of the kernel which needed a custom kernel module otherwise. A novelty
introduced to checkpoint/restore is the migration of TCP connections; to perform a live
migration of containers, along with the active connections, it was necessary to introduce
the possibility of disassembling and recreating TCP sockets without exchanging any packet.
Unfortunately, CRIU does not have any active and maintained support for distributed
systems.

2.4.2. Other techniques

Other solutions aim to reach fault recovery without using checkpoint/recovery. In case it
is possible to use algorithms to re-create the data loss during the fault, it is possible to
use Algorithm-Based Fault Tolerance methods [11]. Other than the lack of transparency,
such solutions are not explored further due to not being highly generalizable.
Finally, another approach is application checkpointing. The saved state of the application
has only the data needed for restoring it. Therefore, it is space and time efficient. The
main drawback is that it lacks transparency since it requires direct modification to the
existing code. A checkpoint system library that writes checkpoints to disk, RAM, or
parallel file systems, is the Scalable Checkpoint/Restart (SCR) library [19]. Its main
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novelty is exposing the usage of multi-level checkpointing, which accounts for different
levels of resiliency in a single run. For example, it employs frequent lightweight (on RAM)
checkpoints for common failure modes and uses more expensive checkpoints only for less
common but severe failures.
A similar approach is taken from the Fault Tolerance interface (FTI) [5], which allows
computational scientists to granularly select the data needed to be checkpointed. As a
result, it minimizes the utilization of space and energy. The main goal of the framework is
to reduce the I/O bandwidth used by HPC systems since it is a scarce resource concerning
computational capabilities. Adopting complex storage hierarchies and redundancy schemes
using error codes empowers the users to choose the best checkpoint strategy for their
problem.
The main drawback of the past application-level approaches is the coupling with the
application code, which removes transparency. However, such techniques might be helpful
in HPC systems if integrated with existing recovery methods to restart or continue the
application. Such examples will be explored in Section 2.4.4.

2.4.3. MPI stop-and-restart

Analyzing the checkpoint/restart techniques in MPI, considering that resiliency is not
a part of the standard, it’s clear that most rely on a global restart technique, where
all processes are restored after failure. Although the frameworks explored below incur
overhead due to the lack of resiliency, they are helpful to better understand strategies to
checkpoint an MPI application transparently.
The Distributed MultiThreaded Checkpointing (DMTCP) [4] is a great utility that achieves
a similar goal as CRIU, transparently checkpointing a process without any modification
to the code or system. Moreover, it provides native support for job schedulers (such as
SLURM), networking communications commonly used in HPC systems (such as InfiniBand),
and initial support to C/R for distributed applications. The main novelty concerning
CRIU is the support for distributed applications, such as MPI. To further support MPI
checkpoint/restart in HPC systems, a special plug-in of DMTCP was created. MPI-
Agnostic, Network-Agnostic MPI (MANA) [13, 31] innovates by dividing the memory of
an MPI application into two parts: an upper part, which is restricted to application-level
objects, and a lower part, which is used only for MPI low-level details. The checkpoint is
focused on the application-level part, while the MPI memory is rebuilt by replaying the
previous MPI calls, reaching a consistent state before the failure. Although development
is active, the plug-in is currently working mainly on Cori, a system that is part of the
NERSC supercomputer.
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Another significantly different approach that was proposed is Reinit [9]. The model assumes
that in case of a failure, MPI processes reinitialize themselves going through MPI_Init.
Furthermore, the approach takes a global synchronous restart of the application. To
achieve this, all the processes must be notified of the fault promptly to avoid deadlocks.
The main flaw is the limitation to the recovery procedure adopted: any failure leads to a
global synchronous restart, with the risk of unnecessary overhead for non-critical tasks.
Finally, an effort, which is now abandoned but provides insight into how checkpoint/restart
frameworks can be integrated, is the usage of CRIU with MPI [23]. It is transparent
to the user of the application. It is integrated directly inside the C/R infrastructure of
the OpenMPI project and its ORTE run-time, providing hooks to the checkpoint with
CRIU for the processes running at each node. Unfortunately, the C/R infrastructure on
which the plug-in was based is now deprecated, and ORTE run-time is no more actively
developed.
The approaches require the application to stop in case of any type of failure, therefore
they share the following drawbacks:

• In case of non-critical failures, the application is stopped and work is lost. This
causes overhead in latency and resource usage in case the failure was not critical and
would have not impacted the result.

• Since the application performs a global stop-and-restart, a checkpoint must be done
on all the nodes of the application, producing overhead in terms of disk usage and
unnecessary latency.

• The recovery is backward to the latest consistent checkpoint, therefore the work
done from the other non-failed processes is lost.

2.4.4. MPI resiliency

In this final section, efforts that aim at the reconstruction and correct completion of the
application after a failure, without any global restart, are explored. To understand the
high-level differences in resiliency solutions, it’s useful to define the following two terms:

• Global backward. All the processes recover backward to the latest consistent check-
point, both alive and failed ones that are restarted, losing the progress done in the
meantime.

• Local backward. The failed processes recover backward to the latest consistent
checkpoint, while the alive processes can continue to perform work and not necessarily
participate in every part of the reparation.
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Local backward is not faster than global backward for all processes since restarting pro-
cesses may have to participate in the reparation procedure. Moreover, local backward
could require more attention while saving the state of checkpoints, considering that some
processes will not repeat synchronizing calls. On the other hand, the main advantage
is less coordination during restart phases since processes not involved with the failed
ones can continue processing without interruptions. This is particularly significant for
embarrassingly parallel distributed applications, where synchronization is rare.

The next chapter focuses mainly on the second approach - due to its numerous performance
advantages, such as skipping the re-initialization of the entire process. Analyzing the
resilient solution, two main approaches make it possible to reconstruct a consistent state:

• Shrinking solution - in case of failures in processes that are not crucial to the
completion of the application, it is possible to continue without restarting them.
However, in this case, we are not restoring the failed process.

• Non-shrinking solution - for critical processes where a restore is necessary, due to the
importance of the process in the flow of the application, it is possible to reconstruct
the failed process through the dynamic process management of MPI applications, or
by using spare processes started during initialization.

Figure 2.4: The figure shows the difference between shrinking and non-shrinking operations
on communicators after a failure. Taken from [18]

.

The figure 2.4 shows how fault-tolerant applications must consider changes in the size of
communicators (malleable applications). Inflexible applications, on the other hand, can
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use a non-shrinking approach to keep the same communicator.
We start by analyzing the non-shrinking approaches in the current literature. The first
framework analyzed is Reinit++ [14], which builds on Reinit [9]. To use the library, the
application is modeled with a hierarchical topology - when the root node detects a process
failure, it proceeds with recovery by rollbacking all survivor processes. The survivor
processes continue execution from the MPI_Reinit function call, which defines a rollback
point. The application is then responsible for autonomously recovering the state. The
approach is a backward restart, with the risk of losing work already done by survivors.
Moreover, only the global communicator is repaired after the rollback, which can lead to
additional complexity in repairing the existing communicators.
A series of other libraries build upon ULFM to implement fault recovery. For example,
Checkpoint-Restart and Automatic Fault Tolerance (CRAFT) [26] provide a generic library
for application-level checkpointing and dynamic process recovery in case of failures. It
introduces the support for non-shrinking and shrinking recovery and enables the checkpoint
of application-variable through an easy-to-use interface. Different from the goal of this
work, it does not repair MPI objects such as communicators, leaving the responsibility
to the users; this can limit the usability of the framework with existing applications.
Moreover, it cannot differentiate shrinking or non-shrinking recovery based on the process.
The communication recovery method must be used at the communicator level, limiting
the possibility of respawning only the critical processes.
Similarly, Fenix [12] uses ULFM to detect failures, and, differently from CRAFT, it also
recovers the communicators. It does not allow skipping the respawn of the new processes
since it only supports the non-shrinking model. The approach lacks support for the failure
of critical nodes that are needed for the completion of the operation (for example, the root
of an MPI_Reduce operation).
An innovation to save disk space and achieve diskless checkpointing is introduced from
Local Failure Local Recovery (LFLR) [30]. Instead of using MPI’s dynamic process man-
agement utilities to implement non-shrinking global backward recovery, it pre-emptively
creates spare processes during startup. Although it saves time during restart, it incurs
higher latency overhead during startup, and resource usage in a shared cluster.
The ComPiler for Portable Checkpointing (CPPC) [17] is an example of a library that
can be used on top of ULFM. It implements portable data recovery by not tying the
application-level checkpoint technique to the MPI communicators. The main advantage
with respect to other frameworks is that the integration of an application with CPPC can
be re-used with multiple C/R frameworks.
About shrinking solutions, it’s crucial to distinguish approaches that require modifications
to the existing code or transparent ones. The first ones are built on top of ULFM, allowing
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us to solve problems where the application is malleable thanks to the specific support of
the algorithm. Examples of applications that can be adapted dynamically without loss of
accuracy are Partial Differential Equation solvers, which are made fault resilient through
ULFM in [28]. To conclude with transparent solutions, novelty is introduced by Legio
[24]. It builds on the ergonomic ULFM APIs to provide resiliency to MPI applications by
repairing communicators and skipping any rollback to previous checkpoints. No restart
capabilities are included since the recovery phase does not include respawning the lost
processes. This property implies that the failure of a critical node could jeopardize the
entire application without the possibility of recovery.
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3| Transparent fault recovery

This chapter will focus on the various attempts to reach transparent recovery with check-
point/restart. In complex applications, resiliency (allowing continuation after a fault) is
not enough to reach a meaningful enough result. The optional possibility to introduce
recovery in the most critical processes while maintaining resiliency in the rest would
empower embarrassingly parallel applications to reach the desired results even in the
presence of faults. Moreover, a novelty introduced from distinguishing critical processes
is to execute checkpoints only where needed, with important savings in disk usage. The
journey starts with integrating the fault resiliency framework Legio and different fault
recovery tools to reach the end goal.
Section 3.1 introduces the initial critical requirements of the project, outlining the needed
functionalities and nice-to-haves, and Section 3.2 outlines the basics of the Legio frame-
work, on which the subsequent efforts are based. Then, Section 3.3 explores user-space
checkpointing and the integration between the DMTCP and MANA framework, while
Section 3.4 focuses on the attempt to integrate CRIU with MPI in different OpenMPI
versions. Finally, Section 3.5 explains the rationale behind abandoning a transparent
approach for C/R and lays the foundation for the application checkpointing work of
Chapter 4.

3.1. Requirements

At the high level, it is possible to summarize the key requirements which make up
transparent fault recovery as follows:

• Fault resiliency must be supported. In the presence of faulty process(es), the
application should be able to continue without any problems. This ensures that the
application can continue without non-critical processes and that it can start the
recovery process in case of critical failures.

• Fault recovery must be supported, and activating it on specific ranks should be
possible. The overhead created from a restart procedure may not be worth it for
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non-critic processes, for which an acceptable error in the final result may be accepted
with the goal of faster execution. On the other hand, failure on critical ranks
jeopardizes the execution of the application, and recovery is necessary.

• In the presence of fault(s), the semantics and guarantees of MPI commands must
not change. The behavior of MPI operations must be defined and transparent to the
user after a failure.

• No change should be needed in the application code. Note that changes in the
run-time environment, run-time commands, and general libraries installed in the run-
time OS are acceptable. The necessity of transparency may indeed pose constraints
on the environment used. On the other hand, given that the recovery procedure
should be transparent, the application developer should not autonomously save the
application’s state before a fault. Moreover, the user can still decide the timeline in
which the checkpoint is performed (by modifying the code) or tuning a periodic job
to checkpoint the application.

• The overhead of fault resiliency and recovery should be minimum. This is particularly
important in the absence of failures: many jobs could have a life period for which
failures are unlikely. Therefore, introducing heavy overheads on time and disk usage
in the absence of failures may be a net loss concerning restarting from zero in case
of faults. In practice, keeping the overhead to a minimum also in the presence of
a fault drives the thesis towards reaching a local restart framework, which avoids
the global restart of the entire application and removes the need for synchronization
between the active processes.

3.2. Legio - a fault resiliency framework

Legio is a framework designed to offer resiliency in MPI applications[24]. Its main focus
is the absence of any intrusiveness to the target application by wrapping MPI calls to
manage faults and handling failed processes gracefully. The overall performances are
radically unaffected, and the library is based on the ULFM framework, which is included in
OpenMPI version 5.0.0. These properties make Legio a perfect candidate for the backbone
of the work of the thesis, providing transparent fault resiliency.
Section 3.2.1 outlines the high-level approach employed by Legio to support the most
common MPI operations and the necessary glossary from the underlying ULFM library
to grasp the subsequent sections fully. In contrast, Section 3.2.2 goes deeper into the
Legio architecture to understand the underlying algorithm enabling the framework, with
particular attention to the presence of multiple communicators.
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3.2.1. Overview

Before digging deeper into Legio’s architecture, it is necessary to define a few key terms
and concepts used in the rest of the thesis and the Legio domain:

• MPI_ERR_PROC_FAILED is the return code of MPI calls after a failure has been noticed.
Note that this is present in the ULFM proposal and not the official MPI standard.

• A faulty communicator is a communicator where one of the processes failed, but it
has not been noticed.

• A failed communicator is a communicator where (at least) one process noticed the
failure.

• Local operations work in faulty and failed communicators, such as MPI_Comm_rank
and MPI_Comm_size. In addition, point-to-point communications work in faulty
communicators if the processes are not failed, and collective communicators will not
work in failed communicators.

Note that the rest of the thesis focuses on local, collective, and point-to-point operations
mentioned above since they are the most used in MPI applications. Legio supports other
types of operations (such as File operations) but is not explored further in the context of
fault resiliency and recovery.

Given these assumptions, it is now possible to dig deeper inside Legio; the framework
reaches failure resiliency by ensuring that every supported MPI operation is wrapped in
custom structures by using the profiling interface PMPI to intercept any call. By avoiding
the direct use of the application communicators, Legio can prevent failure and faulty
communicators from being used directly by the user. We can then distinguish two types
of operations: the first are the ones where a process can notice a failure. Therefore
the communicator can become a failed one, and they are the collective operations; the
second ones are point-to-point operations, but they do not involve all the processes in a
communicator. Therefore, it does not introduce any particular algorithm to recover from
faults other than retries, which aim to limit transient faults.
An outline of how the framework currently reacts to a fault in a collective operation,
exemplified as a MPI_Barrier on MPI_COMM_WORLD and the high-level operations taken in
the wrapped call from Legio:

1. The MPI_Barrier is executed on the application code, and thanks to the PMPI

interface, the call is forwarded to Legio.
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2. The first operation is retrieving the MPI structure, which maps the MPI_COMM_WORLD
component to a Legio internal structure. This operation ensures that the commu-
nicator used from the application (alias, in the rest of the thesis) is not used in
actual MPI operations but only its duplicate.

3. The MPI_Barrier is performed on a duplicate communicator of the alias, which
is created during the creation of the communicator (which is during MPI_Init for
MPI_COMM_WORLD.

4. In case the operation succeeds, Legio returns the return code to the application, and
no further step is required. However, if a failure occurs and the return code is equal
to MPI_ERR_PROC_FAILED, Legio must replace the communicator of the failed process.
To do so, it uses the MPIX_Comm_shrink operation to create a communicator without
any error, the communicator saved in the internal MPI structure is substituted with
the shrunk one, and the operation is repeated until success.

The failure of a process in a communicator can therefore cause the shrinking of the
communicator itself; this assumption requires additional steps to keep the loss transparent
to the rest of the application. When MPI operations from the application code need to
specify the exact rank number of a process (for example, the MPI_Bcast), they will use a
rank number that is not consistent with the ranks of the processes after the communicator
has shrunk. To maintain compatibility, Legio uses the MPI_Group_translate_ranks

function, which must be applied to all application-provided rank numbers to ensure the
correct rank is referenced in the substitute communicator.

3.2.2. Multiple communicators support

The example described in the previous section focuses on the MPI_COMM_WORLD, which is a
single communicator. In MPI applications, multiple communicators are often created and
used to separate chunks of work. Any alias communicator created in the application must
then be mapped to an internal object in Legio, which contains the authentic communicator
used for MPI communication: Legio implements this wrapper as a ComplexComm. The
translation from an alias communicator to a ComplexComm is possible thanks to a key-
value map. To link the two communicators, Legio extracts an integer from the alias

communicator with the MPI_Comm_c2f function (present in MPI for compatibility with
Fortran). The MPI operation ensures that each returned integer is unique and associated
with each MPI object - even two duplicated communicators will produce a different result.
By exposing this key-value map, all the communicators passed as parameters to MPI calls
can be translated into the related ComplexComm. The support is integrated into each MPI
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operation which causes the creation of a new communicator: the alias communicator,
coming from the user code, is transformed into the communicator internal to Legio (the
ComplexComm), and the MPI routine is applied to the real communicator.
The problem is fascinating in the context of fault recovery since it shows how much MPI
applications can rely on different communicators, which can be wrapped but are saved as
MPI structures in MPI memory regions. Moreover, a pointer to a communicator could
also change its value during the application’s lifetime, making it even more challenging to
keep track of it from the underlying framework. This pitfall will be discussed more in the
following sections, where user-space checkpointing will overcome it.

3.3. Distributed MultiThreaded Checkpointing

As suggested in the future work of the Legio paper [24], one of the main frameworks for
checkpoint/restart supporting distributed systems is Distributed MultiThreaded Check-
pointing (DMTCP)[4]. In this section, we explore DMTCP with its main plugin, MANA
[13, 31].
One of the main characteristics of DMTCP, differentiating it from other frameworks, such
as CRIU, is the support of distributed applications like MPI. Rather than supporting
the specific distributed computing framework, DMTCP checkpoints the main application
thread and intercepts forking system calls, managing to affect also the forked threads.
Although it satisfies most requirements and appears to be fully fledged, the main drawbacks
concerning the goal of the thesis are its higher overhead during the restart phase. It
performs stop-and-restart and misses fault resiliency without recovery for non-critical
processes.
This section outlines the main characteristics of the DMTCP architecture in Section 3.3.1
and focuses on the attempts to modify the framework to make it work with Legio and
local restart in Section 3.3.2. Finally, Section 3.3.3 digs deeper into the MANA plugin,
which better supports DMTCP specifically for MPI applications.

3.3.1. DMTCP Overview

Four main features characterize DMTCP:

• Multithreaded - each checkpointed program can have dynamic threads, which will
be recursively checkpointed without any additional configuration.

• Distributed - it allows the checkpoint of a network of programs connected by sockets
(TCP in particular).
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• Transparent - no modification is needed in the binary source code.

• User-level - the kernel is not modified, unlikely other checkpoint frameworks such as
BLCR. Therefore, DMTCP can be directly bundled with the application.

At the backbone of the multithreaded support is MTCP, the MultiThreaded Checkpointing
component; the DMTCP framework builds on top of it to reach distributed processes
support.

Figure 3.1: The figure shows the checkpoint operation in DTMCP in two nodes with 2
and 1 threads respectively. Taken from [4]

During the startup of a new process run with the DMTCP wrapper, the framework adds a
library that accomplishes two main goals: a checkpoint coordinator thread is spawned, and
a TCP/IP connection is opened between the application and the coordinator. Moreover,
DMTCP wraps the necessary calls to the libc library, to ensure that system calls which
must be known to DMTCP are intercepted.
The manager waits until the coordinator requests a checkpoint (which can happen either
programmatically or periodically). Once the checkpoint is requested, the user threads
(where the application binary is running) are suspended, sockets information is saved, ker-
nel buffers are drained (by receiving until there is no more available data), the checkpoint
is written in the disk, and the drained socket buffer is sent back to the sender. Finally,
MTCP resumes the user threads, so the application can continue (optionally, DMTCP can
skip this step if the checkpoint is a destructive operation, such as in the cases of process
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migrations). Figure 3.1 shows the checkpoint procedure in the case of two nodes, with
2 and 1 threads respectively. Each thread is attached to a checkpoint manager which
suspends the execution while the data is written to disk, and resumes the user threads
afterward.

Figure 3.2: The figure shows the restart operation in DTMCP in two nodes with 2 and 1
threads respectively. Taken from [4]

During restart, each host of the distributed application participates in the process; the files
are re-opened and sockets reconnected, and the user processes are restarted by checking
the number of open user processes running at the checkpointing time. Finally, the MTCP
routine is run and restores the local process memory, and the threads are free to be
restarted. Figure 3.2 shows the restart procedure after figure 3.1 the checkpoint procedure
is completed. Each node spawns a single thread to recreate and connect the sockets, before
optionally forking and resuming the original user-threads.

3.3.2. DMTCP with local restart

The high-level description of the checkpoint-restart phases of DMTCP shows the global
nature of the framework’s architecture. Given this assumption, the goal of the thesis
is twofold: experiment with OpenMPI to determine whether the DMTCP framework is
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working as described with the latest stable version, and modify the necessary parts to
skip a full restart and support the restart of a single process, with a special look into how
resiliency for non-critical processes can be implemented.
The first step in the research was ensuring whether DMTCP works with MPI without
additional modification. A simple test showed already that the framework lacks full
compatibility with generic MPI applications (the last update of the framework dates
back to 2019) since various errors prevented the correct checkpoint of the application. In
particular, MPI opens disk devices (for shared memory communication purposes) that
DMTCP does not directly support. The library presents a list of supported hardcoded
devices’ names, which does not include the device in which shared memory communication
was performed. The support was easy to introduce, adding the device’s name to the list
and reusing the same utilities for draining the buffers before a checkpoint.
After this fix, it was possible to achieve restart of an MPI application. Moreover, introduc-
ing the ULFM layer and Legio library didn’t create problems during compilation time.
Although not optimal for the requirements of this work, it would also easily be possible
to perform a stop-and-restart only when critical failures occur by using DMTCP’s API
inside Legio as follows:

• Checkpoint is taken only for critical ranks since they are the ones that must be
restarted in case of failure.

• In case of a failure of a critical rank, DMTCP is expected to perform a stop-and-
restart of the processes still alive from the latest checkpoint.

• In case of a failure of a non-critical rank - no global restart is required; the application
is expected to continue thanks to fault resiliency.

The proposal does not satisfy the local restart requirement since a stop-and-restart
procedure would be needed.
The leading blocker in achieving this behavior is the architecture of the manager of DMTCP
and the concept of a coordinator, which has three primary states: RUNNING, CHECKPOINTED,
or RESTARTING. An assumption for the checkpointing of multiple threads is that such
states are shared between the entire group of processes. The constraint is particularly tied
to the sockets and their ties to the state of these processes. The following steps happen
during the flow of the application to the sockets:

1. During the application’s startup, socket connections are opened between the different
ranks of the MPI application. DMTCP intercepts the system calls automatically
(wrapping TCP, Unix, or terminal calls), saving the parameters used.
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2. During the restart operation, the sockets will be re-opened before restarting the main
application. This is done to ensure that if sockets are shared between the various
application processes, they can be shared since they are opened only once.

In the case of a restart of a single node (with state RESTARTING), the DMTCP coordinator
will try to open the socket connections which were already opened are currently used
from the already RUNNING processes. Therefore, the socket information saved during the
startup cannot be used to reconnect to the running application. Moreover, it cannot
reconnect to the existing sockets as the old (failed) process is being restarted. OpenMPI
sets the process as failed concerning the socket it was connected to, making it impossible
to rejoin the communication: the attempt to reconnect goes into deadlock. A possible
solution to this problem would be to use re-connection methods internal to MPI, such as
MPI_Comm_connect/accept. This strategy is not pursued in the context of DMTCP, since
it goes beyond the nature of the framework itself (which should autonomously handle
distributed processes). Instead, it will be explored in Section 3.4, since CRIU is more
flexible in checkpointing a single process.
A final attempt was also tried by using the primitive MTCP (which does not support
distributed processes) framework, the backbone of DMTCP; unfortunately, it cannot
efficiently work since the DMTCP coordinator is also responsible for infecting the forked
processes when forked, and with MTCP it is not possible to checkpoint processes performing
forks.

3.3.3. MANA Plugin

Given the failed attempt to implement DMTCP with a local restart, the MPI-Agnostic,
Network-Agnostic MPI (MANA) [13] plugin for the DMTCP framework was explored.
Built on top of DMTCP, MANA is a plugin that hooks in the main phases of DMTCP
and was extremely inviting for a few reasons: it seems to be actively developed since the
efforts for transparent checkpointing for MPI tied to DMTCP are moved on the MANA
plugin. It focuses on reducing overhead by separating the memory zones for checkpoints.
In particular, since it divides memory related to the application and the MPI low-level
structures, it can perform a fast checkpoint, restart user-level processes, and recreate only
the necessary MPI structures by repeating the MPI calls done previously to the checkpoint.
By requiring a statically linked version of MPI, MANA can differentiate memory zones
that will contain MPI-specific structures and ensure that the rest of the application’s
memory will go to other predefined zones that can be easily checkpointed.
Unfortunately, the project is far from general enough to provide a generic checkpointing
system. Instead, MANA and its research group focused on the Cori supercomputer
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at National Energy Research Scientific Computing Center (NERSC), which is used for
checkpointing and restarting processes. Still, the support for different architectures is low.
Moreover, there is no compatibility with OpenMPI since MANA builds up on different
assumptions starting from how the MPI communicators are saved in MPICH.

3.4. CRIU

Checkpoint/Restore in Userspace (CRIU) is a tool for the Linux operating system which
can freeze running applications, checkpoint it to persistent storage, and use the saved files
to restore it and restart the application from the point it was frozen. Given the relevancy
of CRIU in the C/R space, it was a natural target for tools to explore to reach transparent
C/R in an MPI context. Many domains use CRIU as the tool of choice for C/R and live
migration of processes, ranging from IoT Edge Functions to Kubernetes pods.
This section explores CRIU’s internals and attempts to integrate them inside different
MPI versions. Section 3.4.1 outlines the leading architecture and internals of CRIU,
while Section 3.4.2 explores the previous attempt at integrating CRIU and MPI. Finally,
Section 3.4.3 investigates a possible flow for integrating CRIU with Legio and outlines the
problems encountered with the various MPI versions.

3.4.1. Internals

CRIU provides its services through three main interfaces: the Command Line Interface,
Remote Procedure Calls (RPC), and application libraries in different languages (such as
C and GO) which wrap the RPC interface. When checkpointing a process, it must be
indicated the PID to dump to disk; CRIU can then save in a provided directory information
about the system, memory dump files (which contain memory content, open file descriptors,
and sockets), and auxiliary files.

The main steps are the following, starting from the dumping phase:

1. Code is injected into the target PID through ptrace - a system call that provides
a means to observe the state and manage the execution of another process. CRIU
can then list the relevant sub-processes reading the proc$pidtask/$tid/children files.
While collecting the processes, the tracer requests to stop each one.

2. After all threads attached to the target PID are frozen, CRIU starts dumping the
resources. Virtual Memory Areas, memory-mapped files, and file descriptors are all
dumped, together with the registers and the other core parameters.
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3. In case CRIU is used as a C/R tool and the process should be kept running after
the checkpoint, CRIU cleans up the injected code and resumes the processes where
they’ve been stopped.

After the dumping phase is finished, CRIU can be used to restore the process as follows:

1. The restorer process reads all the dumped images, to understand which resources
must be restored, and restores the processes by calling the fork system call. Note
that to assign the same PID as the one that was assigned, it sets the
/proc/sys/kernel/ns_last_pid file to the desired PID minus one. Alternatively,
to avoid slowdowns and race conditions, the clone3 system call can be used to set
the PID of a cloned process directly.

2. After creating all the files, CRIU restores all the resources dumped previously, from
memory areas to file descriptors, from the forked processes in the precedent step.

3. Finally, CRIU switches context to the restorer process, cleans up the memory, and
lets the forked processes run from where they were initially checkpointed.

One of the significant similarities with DMTCP is that CRIU is a user-space C/R tool; this
allows to keep the kernel clean, avoiding problems of compatibility and maintainability.
However, it currently requires root permissions, which can be hard to obtain on shared
supercomputer resources. Work is ongoing to support unprivileged runs of CRIU, and
modified versions of CRIU already support it [1], by losing some capabilities such as
restoring sockets upon restoration.

3.4.2. MPI Process Migration with CRIU

Given the trend in High-Performance Computing, a major need is to augment the man-
agement approach by enabling process migration, moving processes that are running
to the location which is best for their resource need (which can change over time). To
reach the high-level goal, CRIU integrated with OpenMPI, by re-introducing the old
checkpoint/restart module [25] in the MPI codebase.
In the work from Adrian Reber, a new module was added that allowed to call the
orte-checkpoint command; by communicating directly with mpirun, it automatically
checkpoints also the child processes. During restart (which happens in case of a process
migration, when the initial checkpointed program has terminated in another node), the
orte-restart utility spawns a new mpirun process, which has the main goal of restoring
the original processes. The main problem encountered during the implementation is the
collision with the MPI expectation of having the restored processes as a child of mpirun.
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The spawned processes were instead children of criu. The problem was solved by running
an exec call (with root privileges). With this new flow, the library libcriu.so is not
used and the processes created are children of mpirun.
Unfortunately, the work done in the paper was based on an older MPI version, and
currently, the checkpoint restart/framework powering the integration has been completely
removed from MPI.

3.4.3. Legio with CRIU

Given the tool’s robustness and the previous successful attempt at integrating CRIU with
OpenMPI, we investigated the integration between Legio (and the underlying ULFM
framework) and CRIU. The problem to face is very different in the case of the local
checkpoint/restart of a single MPI process since it requires the entire application to be
transparent over the migration of a single process, concerning MPI low-level details (such
as communicators and ranks).
The high-level execution flow relies on the dynamic process management capabilities of
MPI and is described below:

1. The first step is the checkpoint of the current process, which is done synchronously
before each MPI call. This always ensures a consistent state of checkpoints between
the different processes and avoids deadlocks.

2. In case the application detects a failure of a non-critical process, CRIU should not
be involved in the failure resiliency operations; Legio will autonomously repair the
existing communicators, and the operations will restart without any problems.

3. In case the application detects a critical process failure, Legio will handle the failure
by restarting the failed process(es) and re-joining it with the already running MPI
application by repairing the communicators removing the failed process, and including
the new one.

Dumping the current process to permanent storage is explored first; in the context of
maintaining consistent checkpoints, it’s necessary to checkpoint the application before
every MPI operation; this ensures that in case of a failure, the latest checkpoint always has
the necessary context to restart, without creating any deadlock. To achieve this goal, the
check-pointing flow must be aware of the application execution and checkpoint before any
MPI call. To implement this behavior, CRIU was integrated inside Legio, using libcriu, a
C API for CRIU, which wraps the RPC, providing C function calls for each RPC command
to interact with the CRIU daemon. The library integration into the project was seamless,
and the checkpoint phase succeeded without problems.
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Legio already partially supports the second step. It was sufficient to implement a list of
non-critical processes which would not have gone through any restart procedure; instead,
they repaired the communicator removing the failed ranks.
The third step, which is the restart, was the one that caused more problems during the
implementation. First, the restart flow should be implemented using MPI dynamic process
management operations. A caveat is that the most commonly used one, MPI_Comm_spawn,
expects the created process to call MPI_Comm_Init; this cannot happen in case of a restart
with CRIU since the restarting process is already initialized. MPI also exposes a set of
routines to mimic a client-server execution flow, MPI_Comm_connect and MPI_Comm_accept;
the two operations could then be used to link the restarted process with the already running
one, and repair afterward the remaining processes by re-constructing their communicators
taking into account the new process. Below is a code snippet that shows the functionality
achievable with the two routines:

1 // server.c
2 char myport[MPI_MAX_PORT_NAME ];
3 MPI_Comm intercomm;
4 /* ... */
5 MPI_Open_port(MPI_INFO_NULL , myport);
6 printf("port name is: %s\n", myport);
7 =
8 MPI_Comm_accept(myport , MPI_INFO_NULL , 0, MPI_COMM_SELF , &intercomm);
9 // intercomm enables connection with the client

10

11 // client.c
12 MPI_Comm intercomm;
13 char name[MPI_MAX_PORT_NAME ];
14 printf("enter port name: ");
15 gets(name);
16 MPI_Comm_connect(name , MPI_INFO_NULL , 0, MPI_COMM_SELF , &intercomm);
17 // intercomm enables connection with the server

To complete the restart (let CRIU pass control of execution to the restarted MPI program),
it was necessary to disable the shared memory communication layer of MPI through
the Modular Component Architecture (MCA) configuration options. CRIU could not
checkpoint and restart MPI programs that were using shared memory; instead, setting TCP
as Byte-Transfer Layer (BTL) allowed CRIU to close and open the sockets of the restarted
process correctly. Note that this change comes with a great performance drawback in the
communication between processes in the same node, where shared memory communication
shines. Although this could represent a violation of one of our requirements in our work,
we assume that our application is embarrassingly parallel. Therefore the communication
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and synchronization between different processes should be minimal.
Unfortunately, the integration was still problematic due to the poor support of the dynamic
process management routines inside the different MPI versions:

• The main version of Legio is built with ULFM dating back to November 2018, with
the related OpenMPI version 4.0.2. Unfortunately, the OpenMPI version had a
critical bug that made it impossible to use MPI_Comm_connect and MPI_Comm_accept

calls; the two dynamic process management functions worked with the assumption
of a shared broker, called orte-server, which allowed the communication and
discovery between different MPI applications. Unfortunately, in the specific version
of OpenMPI, the broker proved to be non-functional. Although later minor versions
fixed the problem, ULFM support was tricky to re-introduce since the next supported
version of ULFM was the major 5.0.0.

• Given that OpenMPI version 5.0.0 is in beta and contains ULFM, the integration
was attempted by updating the Legio framework to the new version. The first steps
of the restart flow (the sharing between restarter and restarted process of a common
port to connect their sockets) worked. However, after the MPI_Comm_connect and
MPI_Comm_accept functions were called, an internal error was raised, which aborted
the application. The new OpenMPI runtime, introduced in the 5.0.0 version, sets
the restarted process communicator as malfunctioning internally, making subsequent
MPI operations fail and rendering the socket unusable.

After the attempts described above, it is even more apparent that a transparent approach
to reach C/R in OpenMPI would be tricky to reach without complete holistic support of
such a feature internally to the OpenMPI runtime.

3.5. Moving to application checkpointing

Although the need for a completely transparent solution to the problem of checkpoint/restart
in a parallel environment remains strong, the conditions of the existing tools prove to
make it currently unfeasible:

• CRIU explicitly states that it does not support distributed frameworks such as MPI;
other sources proved that it could be used for C/R in MPI contexts wrapped by a
container [6], but such examples focus on the restart of the entire MPI application.

• The support for the dynamic process management functions still seems exceptionally
raw. In recent findings, [16], it is shown that most MPI operations used are the
Point-to-Point ones and the collective. This justifies the low interest and support for
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dynamic process management capabilities.

• Other system-level approaches such as DMTCP/MANA proved not general enough
and required high effort to configure system parameters and ensure the application
is working; moreover, they proved not to be tested and working with OpenMPI.

The above reasons force the re-evaluation of the requirements initially outlined in the
current chapter. In particular, two requirements are affected:

• Transparency. Given the analysis in the previous sections, we should define an
alternative to the transparent checkpoint initial goal. Given that ULFM gives us
the primary tooling to repair the communication structures, we focus on the MPI
flow, leaving the responsibility of checkpointing to the user.

• Periodicity and checkpoint flow. Given that the system is no more external to the
application, our work should have no control over when the checkpoint is taken.
Instead, the application developer will have complete control over the frequency and
position of checkpoints.
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This chapter continues the journey by using application checkpoint to reach non-transparent
fault resiliency and recovery. In the context of embarrassingly parallel MPI applications,
we evaluate and propose a framework built on top of Legio and ULFM.

Section 4.1 gives an overview of application checkpointing in the context of MPI applications,
outlining a high-level solution to the problem at hand. Section 4.2 explores the initialization
phase, while Section 4.3 digs deeper into failure detection. Finally, Section 4.4 concludes
the flow with details about the restart phase, and Section 4.5 lists the limitations of the
current approach.

4.1. Overview

Application-level checkpoint is the alternative approach to system-level (which includes
both kernel and user-level checkpoint/restart). At its core application checkpoint leaves the
job of saving (and restoring) the needed variables to the developer - while the system-level
checkpoint aims at full transparency in the process. The chapter explores the appli-
cation checkpoint as a failure recovery mechanism for critical processes and outlines a
framework that allows restoring the MPI structures (such as communicators) transparently.

Section 4.1.1 explores the application checkpoint frameworks in MPI distributed appli-
cations and compares them to system checkpoints. In contrast, Section 4.1.2 outlines a
high-level design of the proposed solution in the rest of the chapter.

4.1.1. MPI application checkpointing

In the previous sections, the system-level checkpoint was explored, and the difficulty in
the feasibility of reaching a functional prototype was clear; in addition to that, application
checkpointing has other advantages concerning system-level checkpointing:
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• It’s common for a system-level checkpoint to have to checkpoint the entire group of
MPI processes in the application, to reach a consistent checkpoint. Due to MPI being
unable to dump and restore from file low-level structures automatically, memory
content must be dumped periodically for all the parallel processes. This is not
needed in application checkpointing when only the most critical processes in the
critical paths (where an error is most likely to occur) can be checkpointed. The
application awareness given from the application checkpoint can help minimize the
overall overhead in terms of time and disk usage.

• In case peak memory usage and checkpoint time collide, the risk is saving a lot of
data that is not needed at all. Low-level details about an ongoing computation could
be far more accessible to re-compute on-demand after the restore. The application
developer chooses each checkpoint’s granularity, frequency, and criticality. It is then
possible to easily integrate multi-level checkpointing where the likelihood of failure
influences the storage system of the checkpoint, following a similar approach as
Scalable Checkpoint/Restart [19].

• System-independent; although many system-level checkpoint/restart alternatives
aim to be highly portable, it’s natural that the application run-time environment
must be adapted. In the case of application checkpoints, the only requirement is a
storage layer that allows to dump and restore checkpoints.

A common approach, suggested for example in Reinit [14] when it comes to application
C/R is to modify the application flow into a loop, or series of loops. The architecture of a
similar program reflects the embarrassingly parallel nature of the MPI application. The
approach is incredibly efficient since it enables an iterative checkpoint of the minimum
data necessary to restore the application.

4.1.2. High-level design

In the context of the journey of the thesis, what we are most interested in is the ability to
restore, after a failure, a process together with its MPI communication abilities without
removing any MPI assumption from the developer using the C/R framework. For this
reason, saving and restoring application-specific variables is outside the scope of the
framework. To enable application developers to test the framework, a simple function that
checks whether the current process is restarted or the original is provided. It is then easy
to expand it with complex dump/restore logic. Considering the importance of Legio in the
current thesis, the proposed framework will be called in the rest of the thesis Legio++.
At the high level, the main parts of the application in which our framework plays an
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important part are three:

1. Initialization - the application code should use specific routines to ensure our frame-
work can keep track of the MPI structures.

2. Failure detection - during process failure, the framework will notice a fault and act
accordingly based on the criticality of the failed process. Failure resiliency without
recovery is already implemented and mainly based on Legio, but it needs a revamp
in the context of possible restarted processes.

3. Restart phase - the routine that enables a failed process to be restarted and re-join
the existing group of MPI processes is at the core of the thesis work.

To have a solid basis with fault resiliency built in, the recovery framework is built as a
modification of the Legio framework. The following sections will dig deeper into each one
of these three points, explaining the taken solution and problems faced on the way.

4.2. Initialization phase

This section explores the initialization phase of the Legio++ framework. The MPI objects
created during this phase will support resiliency and recovery since Legio will transparently
intercept and repair subsequent failures to the user.
Section 4.2.1 explores the MPI_Init routine call and the additions to ensure the functioning
of the application in case of failure, while Section 4.2.2 outlines the initialization of failure-
resistant communicators.

4.2.1. MPI_Init

The starting phase of an MPI application is marked from the MPI_Init routine call, which
initializes the internal MPI environment of the current process. It must be called by all
the processes interacting with MPI. As described in the last chapters, Legio intercepts
the MPI calls with the PMPI interface, so it is possible to initialize additional structures
during the MPI initialization call.
MPI_Init initializes the most important structures internal to the framework:

• ComplexComm. A structure that wraps A communicator, ensuring that failures
are not exposed to application developers. It ensures that, even after an error,
operations on communicators still work flawlessly. For example, the rank of the
current process will not change for a communicator in which a failure happened.
During initialization, two ComplexComm are initialized, containing the following
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communicators: MPI_COMM_WORLD and MPI_COMM_SELF.

• MultiComm. It contains a map of ComplexComm and all the necessary operations to
interact with them (such as retrieving one starting from a MPI_Comm coming from
the application).

Legio++ additionally parses a series of command-line arguments to enable customization
at run-time of the behavior of the application:

• List of critical processes that should be restarted, specifying their rank. In case no
process is specified, the application fallbacks to fault resiliency.

• (Restarted process only) List of failed processes. A failed process must know during
startup the series of processes that already failed processes to avoid performing
operations with them.

4.2.2. Communicators

Legio does manage both MPI_COMM_WORLD and MPI_COMM_SELF, the two communicators
created during initialization, but also the other ones created during the application flow.
As a result, communicators’ values can change (for example, overwriting an existing
communicator with a new one with different processes inside). This poses a risk in tracking
their usage and restoring them in case of critical failures. For example, consider this
situation:

1 MPI_Comm new_comm;
2 MPI_Comm_create_group(MPI_COMM_WORLD , group_1 , tag_1 , &new_comm);
3 /* ... do first computation ... */
4 MPI_Comm_create_group(MPI_COMM_WORLD , group_2 , tag_2 , &new_comm);
5 /* ... do second computation ... */

It’s clear that the value of the communicator changes between the first and the second
computation, but the application, when restarting, cannot know which one is the correct
one.
To overcome this risk, a simple solution is adopted: the creation of (failure-resistant)
communicators must be done through a specific function exposed from the library,
initialize_comm(int n, const int *ranks, MPI_Comm *newcomm):

• n defines the number of ranks inside the communicator

• ranks is an array of size n containing an ordered list of ranks that should be included
in the communicator
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• newcomm is the pointer to the communicator object in which the newly created
communicator will be saved.

The communicators initialized with the function above are saved together with the ranks
they are included in them in an internal structure. When a failure occurs, the related rank is
saved in internal structures. Having the initial and failed processes for each communicator,
we can ensure that local functions such as MPI_Comm_Rank and MPI_Comm_size work in
case of failures and restart.
The standard function MPI_Group_translate_ranks was enough before the introduction of
failure recovery to maintain transparency in retrieving the ranks and size of a communicator.
However, with dynamic process creation, MPI cannot translate any more ranks from the
alias communicator to the new one. Therefore, a correspondent rank in the alias can
differ from that of the newly created communicator. For example, in the case of newly
spawned processes, the new rank in the new communicator is not present in the alias, so
it will produce an MPI_UNDEFINED. To achieve the same goal, we implemented an internal
translate_ranks which is exposed directly from the MultiComm structure and uses the
internally saved information about failed processes to translate the ranks.
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Figure 4.1: The figure shows the difference between the MPI_Group_translate_ranks

and the custom translate_ranks in the presence of failed and restarted processes. The
rectangles on the left represent the same communicator before and after two failures: rank 3
(non-critical, therefore not repaired) and rank 4 (critical, therefore repaired). The number
in the circles represents the rank’s number according to the related communicator. Circles
with the same colors indicate that the rank is equal for the internal MPI_COMM_WORLD. On
the right, the two operations performed after the failure and with the results.

Figure 4.1 shows the value created from the custom translate_ranks function. In the
presence of non-critical and/or critical faults, it is able to translate the ranks according to
the alias to the internal communicator. Analyzing the situation, we start from the before
communicator with 4 ranks. Supposing that rank 3 (non-critical) and rank 4 (critical) fail,
the result communicator is composed of three ranks. Using the translate_ranks it is
then possible to convert the ranks of the alias to the alias of the internal communicator
correctly.

4.3. Failure detection phase

When an MPI operation detects a process failure, the error code MPIX_ERR_PROC_FAILED

is returned. Legio handles the behavior gracefully by detecting the problem, shrinking the
communicator that caused the problem removing the failed process, and repeating the
operation. The flow works flawlessly since only the processes involved in the communication
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are affected and should join in the clean-up of the communicator.
In the high-level design envisioned in the journey, the old flow has two main drawbacks.
The first one is that failure detection and resiliency are applied only to one communicator
simultaneously. Therefore, if a process fails, every time a communicator containing the
process is used, the reparation would restart. This adds complexity to the flow since not
all communicators agree on the same status of the aliveness of the processes when the
application is running. Different communicators may see some processes as failed or not
based on whether a remote MPI communication has run on them after the failure.
The second is that the failure recovery operation cannot work reliably without the full
participation of all processes in the MPI application. When recovering the state and
restarting an MPI process, reaching a consistent MPI_COMM_WORLD between the alive
processes and the restarted one is crucial. In case processes do not participate in the
restart procedure, this goal is unfeasible due to how the dynamic process creation works.
Without the participation of all the processes in the re-spawning of failed processes, it
would not be possible for processes to contact each other. This would make it necessary
to repeat repair procedures in case they will be needed, paying an extra cost in terms of
latency overhead.
To solve the two problems above, the flow is slightly modified by ensuring that the resiliency
procedure (the shrinking of the communicator) and the restart procedure (described in
the next section) are performed from all the processes in the main MPI application. To
achieve this goal, we implement the following high-level steps:

1. During initialization, a thread is started that probes for messages with a specific tag.

2. When a failure is detected, a message is sent to the list of alive MPI processes inside
MPI_COMM_WORLD, with a particular tag allowing the thread to read the message.

To expand on the first point, we implemented the spawn of a demonized thread that
runs until the application ends. The main goal is to listen on the (failure resistant)
MPI_COMM_WORLD to wait for messages indicating that a failure happened, and the process
must participate in the resiliency/recovery process. It is necessary to notice a failure from
all the processes in the application since reparation of failures in case of fault recovery.
When spawning a new process in place of a failed one, all the survivor processes must
participate. Otherwise, the risk is noticing the fault from a group of disjoint ranks,
which could spawn the failed processes twice or more. Since a thread is used, the routine
MPI_Init_thread replaces calls to MPI_Init.
The thread uses the MPI_Probe command to check if any messages are sent to the
communicator, filtering them with a specific tag to ensure that application messages
are not considered. The receival of one of these messages indicates the possibility of
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having to start the failure-reparation mechanism. In case a message is received, the
MPI_Recv command is used to read the content and start the restart mechanism, which
will be described in Section 4.4. In both cases, an exclusive mutex lock is used before
accessing MPI_IProbe and MPI_Recv. This is necessary since the main application could
detect a failure and change the internal communicator used from the ComplexComm of
MPI_COMM_WORLD. To avoid this behavior, a mutex is used to ensure no change happens
while probing for failure messages. If no message is probed, the threads sleep for a
configurable amount before repeating the same steps. The choice for the sleeping time
between each cycle is a trade-off between velocity in detecting failure and overhead in
probing continuously.
With this change in the flow, every alive process inside MPI_COMM_WORLD will participate in
the procedure, either in case of resiliency (for non-critical processes) or recovery (for critical
processes), ensuring that after the procedure, each process will have a consistent state for
the present communicators. A significant difference with respect to Legio’s solution is that
a failure of a single process will be detected and acted upon only once, by repairing all the
necessary MPI communicators. In Legio, on the other hand, the failure was detected only
by processes acting on the communicator with the failed rank.

4.4. Restart phase

The core of the solution is the restart phase, which ensures that after the procedure is
completed for each rank, the application can continue working and operating with MPI
without any problems.
This section starts with Section 4.4.1, outlining the assumptions before going inside the
restart phase. Then, in Section 4.4.2, the main flow for resiliency and recovery is explained
in detail. Finally, Section 4.4.3 explores the custom flow in the restarted process of
rebuilding MPI structures.

4.4.1. Assumptions

The primary assumption built upon the modifications in the previous sections is the
synchronization of all ranks during the restart phase. To achieve this, a separate thread
runs in every MPI process, ready to manage failure messages from other ranks. This
creates two different points at which the reparation routine can start: the process which
detects the failure in the main thread and the secondary threads which receive the message
prompting to participate in the routine. This makes it necessary to create safeguards
against a possible deadlock or race condition issues:



4| Application checkpointing 51

• A mutex is used to ensure that only one single thread can enter the recovery
procedure; before entering the function, an exclusive lock is taken, ensuring that
no race condition can occur by two threads modifying the internal state of MPI
structures at the same time.

• MPI operations should not be able to complete while the restart procedure is ongoing
- to achieve this, a shared lock is taken every time an MPI operation is ongoing.

Moreover, since different messages starting the restart procedure can arrive multiple times,
it must be idempotent; in case no process is failed, it should complete fast, reducing the
overhead on the rest of the application.

4.4.2. Resiliency and Recovery

The core of the modification is the actual restart procedure, which ensures that resiliency
and recovery are tightly coupled with the detection of failure.

Firstly, the failures present in MPI_COMM_WORLD are retrieved using the MPIX_Comm_failure_ack
function. In case no failure is present, it means that the reparation has already been
completed. Therefore the reparation procedure can terminate.
After, failed ranks are compared with the critical processes parsed during initialization
time; if no process must be restarted, the execution continues. Otherwise, the list of
processes that are failed and must be restarted are retrieved and restarted using the
MPI_Comm_spawn_multiple routine, re-running the original process. Additional argu-
ments are passed to the process, such as the lists of critical and failed processes; in this
way, the restarted process can re-create the structures present before the failure. It is
also essential for the restarted process to have MPI_COMM_WORLD as an intra-communicator
containing all the ranks present in the MPI applications; this is different from what happens
in a spawned process through MPI_Comm_spawn_multiple, where MPI_COMM_WORLD is the
group of the respawned processes. To achieve this, the following steps are taken:

1. The MPI_Intercomm_merge routine is used to merge the inter-comm between the
spawned processes (which is their parent) and the intercommunicator produced
from the MPI_Comm_spawn_multiple in the processes that perform the routine. The
result is an intra-comm that contains all the processes (the ones that respawned and
the ones which started the respawn).

2. The MPI_Comm_split is used to re-order the ranks, ensuring they are consistent with
the ordering before the failure.
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3. The generated communicator is set as the new MPI_COMM_WORLD, directly inside the
ComplexComm structure.

After the restart, the steps taken are identical between recovery and resiliency situations.
The list of communicators is iterated, and each is re-created, considering only the remaining
non-failed ranks. This ensures that all communicators are now free from failures, and the
control can be passed again to the application.

4.4.3. Restarted process and MPI structures

During the recovery procedure, it is necessary that also the restarted process(es) participates
in it since operations to create communicators are blocking all the processes involved.
Therefore, the operations done on communicators must be synchronized and ordered
correctly. The following changes in the flow for a restarted process are then applied:

• When the MPI_Init routine is called, the process must call the MPI_Intercomm_merge
and MPI_Comm_split procedures, synchronized with the alive processes, to re-create
a consistent MPI_COMM_WORLD.

• The initialize_comm function call must behave differently in case of the restarted
process since ranks that are passed may be failed. To achieve this, the work follows
these steps:

1. Retrieve the ranks in the MPI_COMM_WORLD and the communicator to create
which are not failed and should be used in the process.

2. Use the custom translate_ranks to translate ranks from the communicator
(the alias for the restarted process) to the ranks according to the newly created
MPI_COMM_WORLD.

3. Create a communicator by using PMPI_Comm_create_group and passing the
ranks found at point 2.

4. Save the newly created communicator internally, with the related information
about the currently alive and failed ranks.

4.5. Known limitations

The approach designed above proved to be working in re-constructing the MPI structures in
case of failures (either critical or non-critical, or a sequence of a combination of both). One
drawback noticed is in the context of multiple failures, where it is not easy to assume that
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all processes will recognize the same list of failed ranks. This could mean race conditions
when restarting processes and cause application failure. Note that this case has been
considered rare since the reparation procedure should be relatively fast and the likelihood
of more than one contemporary failure is low.
Another found limitation is the best effort in the MPI_Iprobe routine, which does not
necessarily detect messages sent from other ranks promptly; this can cause a slowdown
during the reparation procedure, and a solution has not yet been found.
Finally, it is essential to note that full control is left to the application developers, which
should ensure that the application checkpoints the current state before each MPI operation.
This is important to have consistent checkpoints across the different processes and avoid
deadlock in the presence of collectives where some ranks cannot participate because they
are involved in various MPI operations. An example of such a situation is the following:

1 // 0 is a critical process
2 if(rank == 0)
3 raise(SIGINT);
4 else
5 MPI_Barrier(MPI_COMM_WORLD);
6

7 MPI_Barrier(MPI_COMM_WORLD);

In the simple example above, if rank 0 is a critical process, Legio++ will restart it after
the failure injected through the SIGINT. After restart, rank 0 will perform the second
barrier, while the rest of the ranks in the application will complete the first one. In
this case, a deadlock will occur since every survivor process will indefinitely wait for
rank 0 at the second barrier, which has already been performed. Such situations can be
common in complex applications with many communications but should be manageable in
embarrassingly parallel applications. Moreover, Legio++ exposes APIs to fix the above
problem:

1 // 0 is a critical process
2 if(is_respawned () && rank == 0)
3 raise(SIGINT);
4 MPI_Barrier(MPI_COMM_WORLD);

By simply injecting the failure only in rank 0 if it is not respawned, it is possible to avoid
a deadlock.
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5| Experimental Evaluation

This chapter introduces the experimental results of the application checkpointing framework
defined in chapter 4, with the main goal of measuring the overhead given by a dynamic
restart.
Section 5.1 outlines the purpose and environment in which the experiments are run;
Section 5.2 explores the overhead focusing on the main restart routine, while Section 5.3
analyzes further the overhead given from the entire checkpoint/restart flow. Finally,
Section 5.4 wraps up the chapter with the conclusions.

5.1. Experimental setup

During the validation of a framework for HPC computing, checking edge cases and whether
the application works as expected is as essential as evaluating potential overheads, which
could make it unfeasible to run at the desired scale. Given this, and following the
requirements defined in Section 3.1, we measure the overhead in different conditions in an
HPC environment for our framework.
The experiments conducted are two folds - first, we focus on the overhead of the restart of
an MPI process. Afterward, we analyze a more holistic, embarrassingly parallel application
to review the tradeoffs of recovery versus resiliency better.
We conducted both experiments on Antarex, a single node at Politecnico di Milano,
featuring 2 x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz processors and 128 GB of
RAM. We also used Karolina, a supercomputer with 829 computational nodes, for the
parallel application campaign. Each node is a powerful x86-64 computer, equipped with
128/768 cores (64-core AMD EPYC™ 7H12 / 64-core AMD EPYC™ 7763 / 24-core Intel
Xeon-SC 8268) and at least 256 GB of RAM. For our experimental campaign, we used 2
nodes with 128 cores.
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5.2. Restart

The first experimental campaign focuses on understanding the impact of the restart
operation and its overhead, described in chapter 4. The following code snippet featuring
the MPI_Barrier(MPI_COMM_WORLD) highlights the operation in which overhead has been
evaluated.
Below is a code snippet exemplifying the benchmark:

1 // if the process is not already respawned , raise a SIGINT; otherwise ,
continue

2 if(! is_respawned () && rank == 0)
3 raise(SIGINT);
4

5 // measure barrier with a failure
6 start = MPI_Wtime ();
7 MPI_Barrier(MPI_COMM_WORLD);
8 end = MPI_Wtime ();

As shown above, the SIGINT signal is injected in one of the processes, making it impossible
to continue and abort immediately. Therefore, the MPI_Barrier right after will not
succeed immediately - making it necessary for the framework to act with either resiliency
or recovery. To distinguish whether the given rank (in the above case, the rank 0) should
be respawned or the application should continue without it, it is sufficient to add the
related command-line argument with the lists of critical processes. If rank 0 is critical, the
application will initiate a respawn procedure after failure. Otherwise, resiliency will occur,
and the application will continue repairing the existing communicators without additional
changes.
In both cases, the MPI_Wtime functions are used to extract reliable measurements about
overhead; for simplicity, it is measured on one rank only, which has no failure during the
run. The following type of test is run 40 times each, with the number of processes in the
application varying from 8 processes to 256, showing how the overhead changes with the
size of the application:

1. Legio, which is the latest version of the Legio framework without any additional
changes. In this case, no recovery will be executed, only resiliency.

2. Legio++, considering the failing process (rank 0) as a non-critical process. Therefore,
also, in this case, no recovery will be performed.

3. Legio++, considering rank 0 as a critical process, performing a recovery for it.
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Figure 5.1: Failure recovery time by varying the number of processes in the MPI_Barrier

operation and the failure tolerance method.

Figure 5.1 show the result obtained following the guidelines described above. It clearly
shows that resiliency in Legio++ does not create visible latency overhead concerning Legio.
On the other hand, failure recovery through restart has a more significant overhead which
grows with a higher factor than resiliency. Two factors can explain this result:

• The network size between 64 and 256 nodes is oversubscribed. This provokes a
non-negligent overhead into the MPI operations and could be directly linked to the
exponential increase of the overhead.

• A restart includes dynamic process management operations, which are by design
costlier.

To further explore this result, we perform a granular benchmark to understand the impact
of the various parts of the restart operation; the following times are stacked below, in
order of execution:

1. Failure propagation - the time needed to communicate to the alive processes the
failure through a MPI_Isend, which will be picked up from the secondary thread.

2. Failure ack - time to ack the failure and understand the failed process.

3. MPI_COMM_WORLD shrinking - Time to shrink the MPI_COMM_WORLD communicator to
remove the failed processes.

4. Respawn - Time to restart the failed processes (in our test, one).
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5. Restart reparation - Time to re-order the MPI_COMM_WORLD ranks, ensuring they are
consistent as before the failure.

6. Communicator reparation - Time to repair an extra communicator created during
the application’s startup as a failure-resistant communicator. For simplicity, the
communicator used in the test has the same size as MPI_COMM_WORLD.

The test has been run 40 times, and a mean value has been taken for each measurement.
Figure 5.2 shows each operation contributes to the restart procedure for a different number
of processes in the MPI network - 8, 16, 32, 64, 128.
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Figure 5.2: Overhead of each operation in the restart procedure, varying by the number of
processes involved.

Results outline how the contribution of a dynamic process management operation, such as
the spawning of a new process, is heavier with the number of processes involved. Similarly,
the reparations of each communicator grow with the number of processes involved, which
can be attributed to the over-subscription of processes in the application.
To wrap up the campaign regarding the restart operation, we further analyze the restart
time concerning the communicator’s reparation. Legio++, differently from Legio, repairs
all the communicators after a failure, even if they are not directly involved in the current
failure. This achieves consistency in the application regarding the status of failed and
alive processes. A possible drawback is a higher overhead if multiple communicators are
not used extensively in the application but are still repaired in Legio++. On the other
hand, if communicators are frequently used, repairing them once avoids reparation for
every use of different communicators with the failed process.
To analyze the situation, we prepare a test that performs a MPI_Barrier when one process
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fails. In particular, we perform three suites of tests comparing Legio and Legio++, with
10 iterations each, using 32 MPI processes. The suite of tests is as follows:

• 1 barrier - 1 communicator: we consider an application with only one communicator
and a MPI_Barrier. In this case, the work performed from Legio and Legio++ are
similar.

• N communicators - 1 barrier: we consider an application with 100 additional com-
municators and a MPI_Barrier. Legio++ will have to repair all the additional
communicators, even if they are not used.

• N communicators - N barriers: we consider an application with 100 additional com-
municators and N MPI_Barrier on each one of the communicators (100 MPI_Barrier

in total). Legio++ will repair all the communicators only once, while Legio will
repeat the failure procedure for each barrier.

The results can be seen in Figure 5.3, confirming a low overhead in any of the three cases
reported above. It proves that the resiliency approach taken from Legio++ has no strong
performance drawback.
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Figure 5.3: Average execution time of the restart procedure, comparing Legio and Legio++
with resiliency. The three tests show how the time varies by changing the number of
communicators and synchronization operations on each.

5.3. Parallel application

The second type of experiment comprehends a series of tests on an embarrassingly parallel
application: a Montecarlo simulation computing the value of π.
The main interest is evaluating the entire execution time and how it evolves with the
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number of processes. Results in the previous sections show that Legio++ improves the
management of MPI processes without incurring significant overhead in the case of non-
critical processes. Therefore we focus this experimental campaign on Legio++ with critical
and non-critical processes.
To run the test, the computation is distributed in a different number of processes: 8, 16,
32, and 64, and tests are repeated for both experiments 10 times.
The experiment showcases the time to completion for a Montecarlo simulation which
computes π: random (x, y) points are simulated in a 2D plane, and an approximation of
the value of π is computed knowing that the area of a square is 4 ∗ r2, while the area of a
circle is π ∗ r2. To check if a randomly generated point is inside the circle, it is sufficient to
check whether x2 + y2 <= r2. To test the overhead tied to recovery, the rank 0 (which is
the root of the MPI_Reduce accumulating the results of the processes) fails in the middle
of the computation. For resiliency, a non-critical process (rank 5) fails - reducing the
accuracy of the result.
The results can be seen in Figure 5.4, confirming the minimal overhead of restart concerning
resiliency considering the major impact of a critical node.
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Figure 5.4: Average execution time of a Montecarlo simulation by varying the number of
processes involved and the failure tolerance method.

We also evaluate the performances of a parallel Montecarlo application on the cluster
Karolina, evaluating only Legio with a restart. We repeat the testing campaign using
64 and 127 cores in one node and 192 and 240 cores in two nodes. The results shown
in Figure 5.5 confirm the minimal overhead of fault recovery through the restart and its
usability in larger clusters.
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Figure 5.5: Average execution time of a Montecarlo simulation with an injected failure
using Legio with fault recovery by varying the number of processes involved.

5.4. Conclusion

The testing campaign proved that the proposed work has contained latency overhead for
fault recovery and resiliency. Furthermore, it recognized that the overhead for reparation
grows with the number of processes, mainly due to the spawning of new processes and the
reparation of the MPI_COMM_WORLD communicator. Nonetheless, reparation’s benefits to
existing applications can be worth it in case of failures in critical nodes. Moreover, we
proved that the proactive reparation of communicators does not bring latency overhead
and concentrates the restart cost in a single operation.
The developers are in the best position to evaluate whether a process should be marked
critical, considering fault recovery’s more significant performance overhead than fault
resiliency. Therefore, Legio++ gives its users the necessary flexibility to make this choice
autonomously.
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6| Future Work and Conclusions

This chapter will discuss the next steps in the journey of fault tolerance and summarize
the results achieved in this thesis.
Section 6.1 focuses on the transparent user-level checkpoint, while Section 6.2 explores
possible improvements in application checkpointing. Finally, Section 6.3 wraps up the
work with the conclusions.

6.1. Transparent checkpointing next steps

The first goal was the introduction of a transparent checkpoint/restart framework for MPI
applications. Then, the overhead of the C/R could have been applied only to critical
processes, accepting approximate results in case of non-critical failures. But unfortunately,
complex technological limitations and unexpected failures made the task impossible. The
direction and research path are still open, with the actively developed tools referenced in
chapter 3 trying to solve the problem with a different scope described below.
The system-level checkpoint approach in MANA, which focuses on separating MPI and
application-level memory during a checkpoint, is promising; the priorities of the team
working on it are tied to their internal systems. Therefore a possible effort could entail a
deeper study of the memory checkpoint model adopted in MANA and trying to port it to
other platforms.
The most encouraging tool remain CRIU; its features are apparent, and the support
for a wide range of systems and network (such as full TCP support) makes it a perfect
candidate. To continue the work in that direction, it would be possible to act in two
paths: containerization and modifications to the new MPI runtime. Regarding the first,
CRIU has been proven to work in the MPI context with single containers in a stop-and-
restart. Although it would relax the constraint of a local restart and incur additional
overhead, containerizing an MPI application could be easy (and maybe already done
in existing applications); it should then be explored whether the overhead incurred for
stopping the processes during the checkpoint is acceptable, and directly integrate the
checkpoint framework inside Legio itself. Finally, regarding the MPI runtime, significant
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steps have been made recently with the new PMIx runtime in OpenMPI 5.0; this could
open new possibilities by making possible plugins to the runtime, which handle the low-level
rejoining (without direct MPI routines) of a process after it has been respawned with
CRIU. Unfortunately, the integration between ULFM and the new runtime is still at its
early stage at the time of writing, and work is underway to better document how dynamic
process management can be used together with ULFM.

6.2. Application checkpointing next steps

The proposed work, Legio++, goes toward minimizing the cost for applications that can
be easily checkpointed (or already are) at the application level and easily abstract the
checkpoint about MPI structures and communicators. Different improvements could be
made to this path, such as providing a more ergonomic API for application checkpointing
and integrating the support with the new OpenMPI 5.0 version once a stable version is
released. The two future work paths will be described below.
The respawn flow proposed in chapter 4 mainly focuses on the restart of the process by
using dynamic process management features. Therefore the ergonomics and ease of use
of the APIs exposed from the library to perform a checkpoint/restart could be greatly
improved. To support existing applications which already use checkpoint, without any
dynamic flow for restarting the application in case of crashes, might be integrating and
supporting commonly used libraries for checkpoint in scientific applications, such as FTI,
which allows for multi-level checkpointing offering flexible configurations to choose the
best checkpoint strategy to minimize overhead.
With an active working group focusing on Fault Tolerance in the MPI domain, the ULFM
framework is being revamped - it’s even more important to confirm the support of the
work of this thesis with newer MPI versions. The MPI Forum has been working on a new
coarse-grained fault-tolerance interface since September 2022 (after the completion of the
project work of this thesis) in the context of Reinit [9, 14]. Its main goal is to ensure MPI
can automatically recover from failures, without any additional code from the developer,
by leveraging the existing application checkpoint/restart model.
Moreover, the recent revamp in OpenMPI 5.0 of the runtime aims to have better fault-
detection methods and revamp the dynamic process management.
The changes above go in the direction of ensuring that the MPI fault tolerance will be
battle-tested and ready for production usage.
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6.3. Conclusions

This thesis presents a journey through fault tolerance in MPI applications, starting with
the ambitious goal of full transparent checkpointing and finishing with automatic failure
recovery in all process ranks when a failure is detected.
The thesis starts with an extensive attempt to integrate user-level C/R techniques with
MPI, aiming to reduce the involvement of the application developer to zero and bring
failure recovery to an existing application without changes.
After evaluating the difficulties in reaching the goal, we propose Legio++, a prototype
that allows application developers to tolerate failures without significant changes to the
code for what regards MPI usage; we shield the behavior of MPI under failure by making
the application developer unaware of the underlying failures of processes.
The experimental evaluations demonstrate that, although the latency and disk overhead of
fault recovery is greater than fault resiliency, the trade-off is acceptable regarding critical
processes.
The problem and challenges to deal with MPI failures remain, and breakthroughs are still
needed to make dependability a first-class citizen in exascale architectures. However, the
MPI Forum is working on the challenge. Although the proposed solution is not general
enough to solve fault recovery problems, it leverages C/R techniques without involving
the developer in adding code to detect and handle low-level MPI failure details.
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