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Abstract 

On October 29, 2018, one among the towers part of the high-voltage power 
transmission line in Albula Pass, Switzerland collapsed due to extreme storm event, 
causing a cascade sequence on other three elements of the latter.  

The study hereby reported discusses about the effective and reliable modeling of 
both the lattice towers and the line as a whole, with the purpose of estimating the 
load-bearing capacity, identifying possible failure positions, and replicating the 
dynamics of the event. 

To accomplish that, Finite Element Analysis (FEA) has been employed via the 
software Abaqus CAE 2021, and different analysis procedures and modeling 
strategies have been investigated with the purpose of better simulating structural 
instabilities both in simple and complex structures. 

An imperfection sensitivity on the single tower model has been performed, under 
reasonable load assumptions and aiming to detect possible unfavorable failure 
modes and load-bearing capacity.  

Ultimately, possible cascade dynamics of the entire line have been proposed and 
analyzed, and the shortcomings of the proposed approaches have been discussed. 

 

Key-words: Failure Analysis, Lattice Structures, FEA, Structural Instabilities, Joint 
Modeling. 

 

 

 

 





 iii 

 

 

Abstract in italiano 

Il 29 ottobre 2018, uno dei piloni della linea di trasmissione ad alta tensione al Passo 
dell'Albula, in Svizzera, è crollato a causa di un forte temporale, provocando una 
sequenza a cascata su altri tre elementi di quest'ultima. 

Lo studio qui riportato si occupa della modellazione efficace ed affidabile sia dei 
tralicci che della linea nel suo complesso, al fine di stimare la capacità portante, 
identificare la posizione di rottura e replicare la dinamica dell'evento. 

A tal fine, è stata utilizzata l'analisi agli elementi finiti (FEA) tramite il software Abaqus 
CAE 2021 e sono state studiate diverse procedure di analisi e strategie di 
modellazione con l'intento di simulare correttamente le instabilità strutturali sia in 
strutture semplici che più complesse.  

È stata eseguita una sensibilità all'imperfezione sul modello di torre singola, in base 
a ipotesi di carico ragionevoli e con l'obiettivo di rilevare possibili modalità di 
rottura sfavorevoli e capacità di carico. 

Infine, sono state proposte e analizzate le possibili dinamiche del collasso in 
sequenza dell'intera linea e sono state discusse le carenze degli approcci proposti. 

 

Parole chiave: Failure Analysis, Strutture reticolari, FEA, Instabilità Strutturale, 
Modellizzazione di Giunti. 

 

 

 

 



 

 

  

 

 

 



 v 

 

 

Contents 

Abstract ................................................................................................................................. i 

Abstract in italiano .......................................................................................................... iii 

Contents ............................................................................................................................... v 

Introduction ........................................................................................................................ 1 

Failure case ................................................................................................................. 2 

Event and initial investigations on the site ....................................................... 2 

Historical record in the area ................................................................................ 5 

Initial assessments on the 2018 case ................................................................... 6 

Approach to failure analysis .................................................................................. 10 

Limitations of past analysis on the failure topic ............................................ 10 

The use of finite element methods in failure analysis cases ......................... 11 

Outline of the study ................................................................................................ 12 

Methodology ....................................................................................................... 12 

Goals ..................................................................................................................... 12 

Structure of the thesis ........................................................................................ 13 

1 Chapter one: Best practices for FEA of structural instabilities ..................... 17 

1.1. Introduction to the structural instabilities .............................................. 18 

1.2. Example of buckling problem and solution ........................................... 23 

1.2.1. Analytical solution .............................................................................. 23 

1.2.2. EC 1993-1.1 ........................................................................................... 26 

1.3. Introduction to FE procedures in Abaqus ............................................... 28 

1.3.1. Linear Buckling Analysis (LBA) ........................................................ 28 

1.3.2. Static and dynamic implicit ............................................................... 29 

1.3.3. Dynamic explicit .................................................................................. 30 

1.3.4. RIKS / Arch – Lenght method ........................................................... 30 



vi | Contents 

 

 

1.4. FE modeling of buckling............................................................................ 31 

1.4.1. Material models ................................................................................... 34 

1.4.2. Linear Buckling Analysis (LBA) ........................................................ 35 

1.4.3. Nonlinear geometry, with linear elastic material ........................... 36 

1.4.4. Material nonlinearity .......................................................................... 37 

1.5. Conclusive discussion on the results ....................................................... 41 

2 Chapter two: Validation of FE models ............................................................... 43 

2.1. Experiments ................................................................................................. 43 

2.2. Analytical solutions and applicable standards ...................................... 45 

2.2.1. Secant formula ..................................................................................... 45 

2.2.2. EC 1993-1.1 ........................................................................................... 48 

2.2.3. EC 1993-3.1 ........................................................................................... 48 

2.2.4. Graphical display of load limits ........................................................ 49 

2.3. FE Model ...................................................................................................... 50 

2.3.1. Results for case A ................................................................................ 52 

2.3.2. Results for case B ................................................................................. 54 

2.4. Conclusive discussion on the results ....................................................... 56 

3 Chapter three: Boundary conditions modeling ................................................ 58 

3.1. Kettler's approach to joint modeling ....................................................... 59 

3.2. FE Model ...................................................................................................... 60 

3.2.1. Modeling of stiffness functions ......................................................... 60 

3.2.2. EC 1993-1.8 for joint modeling .......................................................... 62 

3.2.3. Results for A ......................................................................................... 64 

3.2.4. Results for B ......................................................................................... 66 

3.3. Conclusive discussion on the results ....................................................... 67 

4 Chapter four: Modeling of an assembly ............................................................ 69 

4.1. FE Model ...................................................................................................... 69 

4.1.1. Planar model ........................................................................................ 70 

4.1.2. 3D sub-structure model ...................................................................... 72 



| Contents vii 

 

 

4.1.3. Connector models ............................................................................... 73 

4.1.4. Results for planar substructure ......................................................... 74 

4.1.5. Results for 3D substructure ............................................................... 75 

4.2. Conclusive discussion on the results ....................................................... 76 

5 Chapter five: Towers analysis and load capacity estimation ........................ 78 

5.1. Line FE model for load estimation ........................................................... 78 

5.2. Wind model ................................................................................................. 82 

5.2.1. RS 734.31 ............................................................................................... 84 

5.2.2. SIA 261/1 ............................................................................................... 85 

5.2.3. Eurocode 1991-1.4 ................................................................................ 89 

5.2.4. Eurocode 1993-3.1 ................................................................................ 95 

5.2.5. EN50341 ................................................................................................ 97 

5.2.6. Experimentally derived wind load model ..................................... 100 

5.2.7. Models comparison and considerations ........................................ 103 

5.3. Load model validation ............................................................................. 107 

5.3.1. Analytical model ............................................................................... 107 

5.3.2. Only gravitational load..................................................................... 108 

5.3.3. Under wind load ............................................................................... 109 

5.4. Tower FE model ........................................................................................ 109 

5.5. Linear Buckling Analysis (LBA) ............................................................. 113 

5.6. Load capacity and model imperfection sensitivity .............................. 116 

5.6.1. Superimposed buckling imperfections .......................................... 117 

5.6.2. Missing structural elements ............................................................. 117 

5.6.3. Support displacement ....................................................................... 117 

5.6.4. Conductor load unbalance ............................................................... 119 

5.6.5. Imperfection sensitivity analysis results ........................................ 119 

5.7. Post-buckling analysis ............................................................................. 121 

5.8. Brief analysis of tower n22 ...................................................................... 123 

5.9. Comparison with IED report .................................................................. 125 



viii | Contents 

 

 

5.10. Conclusive discussion on the results ..................................................... 127 

6 Chapter six: Cascade of the transmission line ................................................ 128 

6.1. Line FE model ........................................................................................... 128 

6.1.1. Connector failure criteria ................................................................. 129 

6.1.2. Model validation ............................................................................... 132 

6.2. Cascade hypothesis: effect of tower dynamic collapse ....................... 132 

6.2.1. Check on the connector cables and the insulators ........................ 135 

6.2.2. Full cascade simulation .................................................................... 137 

6.3. Sequence hypothesis: post-collapse analysis ........................................ 141 

6.4. Conclusive discussion on the results ..................................................... 142 

7 Chapter seven: Brief discussion about dynamic analysis ............................ 144 

7.1. State-of-the-art on dynamic analysis ..................................................... 144 

7.1.1. Fluid-Structure interaction analysis ............................................... 144 

7.1.2. Nonlinear response ........................................................................... 145 

7.1.3. Dynamic wind modeling ................................................................. 145 

7.1.4. Material model ................................................................................... 145 

7.2. Applicability and limitations .................................................................. 145 

8 Chapter eight: Conclusions ................................................................................ 147 

8.1. Main points ................................................................................................ 147 

8.2. Outlook and future research ................................................................... 150 

Bibliogaphy..................................................................................................................... 151 

List of Figures ................................................................................................................. 157 

List if Tables ................................................................................................................... 163 

List of symbols ............................................................................................................... 165 

Acknowledgments ......................................................................................................... 168 

 

 

 

 



 1 

 

 

Introduction 

Overhead transmission lines are a vital component in the correct functioning of the 
electric power grid.  

When a failure of even a single tower takes place, the damage can be extensive, 
involving adjacent towers along the line, and costly, in terms of repair, power 
disruption, and litigation. (Campbell et. al [1], Hoffmann et al. [2]). 

The accurate prediction of service life, based on correct estimation of environmental 
conditions, is key when designing structures aiming at reliability and safety. 

Lattice transmission towers are built with eccentrically connected members, which 
are usually joined with bolts or welds (S. Fang et al. [3]). During the design phase, 
stress calculations are obtained via simple linear elastic analysis, in which members 
are assumed as pinned in place and axially loaded, in the name of more 
conservativeness, despite full-scale tower testing often show member behavior far 
from this hypothesis, manifesting effects of bending stresses passing through the 
joints. The validation of the models through full-scale testing is expensive and not 
always possible, thus is kept only as a design check. 

Nowadays a second-order analysis, accounting for the structure deformation under 
load in the computing of the forces and displacement (geometrical nonlinearities), 
is mandated for almost every structure (Section 7.2, Eurocode 1993-3.1 [4]). The 
problem is, however complex, and a way to perform such analysis accurately and 
cost-effectively is to use Finite Element (FE) methods. Some software that employ the 
method, like Abaqus CAE 2021 [5], can also include the yielding of the cross-section 
(material nonlinearities) and imperfection modes. 

The following study aims to use nonlinear FE analysis to understand the possible 
causes of a collapse event, trying to spot where and why the catastrophic failure has 
occurred. 
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Failure case 

Event and initial investigations on the site 

The 29th of October 2018, four pylons of the overhead power line “380kV Filisur – 
La Punt” located close to the Albula pass, collapsed during the “Vaia” storm.  

 

Figure 0.1: Towers from n23 to n26 after the storm in 2018 (source SwissGrid).  

The four pylons were found laying in a direction close to the perpendicular  to the 
line (Figure 0.4). The conductor cables were still intact and attached to the insulators 
(Figure 0.1, Figure 0.3, Figure 0.4). The earth wire was detached in tower n23 (Figure 
0.2a), an insulator was broken in tower n22 (Figure 0.2b), and several wires were 
found partially ruptured (Figure 0.2c). 

 
(a) Disconnected earth wire 

in tower n23. 

 
 (b) Broken insulator in tower 

n22. 

 
(c)Partially ruptured conductor 

wires in tower n24. 
Figure 0.2: Details of the collapse (source SwissGrid). 
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Figure 0.3: Towers from n22 to n27 after the storm in 2018 (source SwissGrid). Marked in 
red, the line path, towers n22 to n25 fallen in perpendicular direction. 

 

Figure 0.4: Arial view of tower n25 after the storm in 2018 (source SwissGrid). Marked in 
red, the line path, and, highlighted, the angle with the tower axis. 

Tower n22 was the only one that failed at midheight, found intact up to the fourth 
level (Figure 0.5), while the others are found laying on the side, clearly ruptured at 
the base. 
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Figure 0.5: Tower n22 after the storm in 2018 (source SwissGrid). 

Severe but localized damage affected the towers, sign of catastrophic and sudden 
event restricted to a precise area (Figure 0.6). In such cases, the main difficulty is to 
differentiate the source and spread of the failure from secondary damage, caused 
by the contact with the ground. 

 

(a) Tower n22, upper area. 

 

(b) Tower n25, basement. 

Figure 0.6: Details of the structural condition (source SwissGrid). 

Towers n22 and n26 resisted the event (in the backwards, Figure 0.1, Figure 0.3). 
Tower n26, is a so-called "Abspannmasten" (tensioning pylon), a reinforced structure 
precisely designed for long span line supporting, equipped to withstand and stop 
the cascade. 
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Figure 0.7: Location map of the line segment "Tragmasten", (towers n20 to n25) marked 
with a dot and "Abspannmasten" (towers n26 and n19) with an "x"(source SwissGrid). 

Historical record in the area 

The power transmission line has been in function since the 60s, time at which the 
towers were designed. SwissGrid provided record of the activities since that time. 

The area is well known for extreme wind cases, as a similar occurrence happened 
on April 26, 1986, in the same spot of the line. The resemblance with the event of 
2018 is strong, involving the same array of towers and with a shockingly similar 
failure pattern and direction: tower n25 collapsed at the base, whereas towers n23 
and n24 in the upper area (Figure 0.8). 

 

Figure 0.8: Towers n22, n23, n24 and n25 after the event in 1986 (source SwissGrid). 

Tower n22 at that moment did not have the additional radio equipment installed 
and it remained intact (Figure 0.8, Figure 0.9). 
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Figure 0.9: Towers n22, n23 and n24 after the event in 1986 (source SwissGrid). 

The structure condition was, however, unclear at the moment of the collapse, but, 
according to the available data, it appears that the cause of the collapse was mainly 
associated with an avalanche tower n25, which caused a cascade effect on n24 and 
n23. 

The concrete basements of the towers were refurbished and the towers rebuilt. 

Initial assessments on the 2018 case 

There was no ice nor snow on the structures after the event, and the ceramic 
insulators and wires, features expected to detach under a heavy ice surplus, were 
still intact. This led to suppose that the sole wind must have been the main cause. 

The initial checks on whether the masts were designed in "state of the art" in 
accordance with the current and past standards were performed by a preliminary 
study by AF-Consult [6]. 

EMPA [7] and IWT [8, 9] were initially responsible for the material testing from 
specimens gathered in the site, as earlier incidents in power conduction lines in 
Germany were attributed to the negative impact of "hydrogen embrittlement" in the 
structure steel (a check that could be performed by measuring the fracture 
toughness). Other assessments on the yield and ultimate strength proved that the 
properties were in fact higher, or in line, with the nominal values for construction 
steel S355. 

For example, the measured yield strength was between 380 and 420 MPa, 
outclassing the nominal Sy=355 MPa used in the design. 
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Figure 0.10: Tensile test stress ("Spannung") - strain ("Dehnung ") curve on a specimen from 
tower n23's collected components [7]. 

IED [10] task was to assess the load-carrying capacity of the mast with their FE tools. 
EMPA [11] had ultimately to take care of validating the results. The two software 
used by IED, PLS-Cadd and TOWER, are complementary: the first calculates the 
towers-cables system static equilibrium based on the applied load case and weather 
conditions; the latter software inputs the forces at the wire attachment points and 
the external loads, and performs a linear FE analysis of the tower structure. 
Depending on the chosen design code, it can be also used to assess validity. 

 

Figure 0.11: PLS-Cadd model [10]. 

The usual approach in these cases is to prove that the masts could actually fail under 
the conditions present in the incident. However, there was no record of the structure 
conditions nor the wind pressure, speed or direction at the moment of the collapse. 
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For this reason, plausible assumptions had to be made by IED on the scenario: the 
wind characteristic had to be estimated from SIA 261 weather maps [12]. The 
adopted ground profile was from SIA 261/1 code [13]. 

 

Figure 0.12: SIA 261 wind pressure map in the Albulapass area [10, 12]. 

It was also examined the possibility of a vertical component to the wind, as the 
mountainside is inclined of around 30˚, as shown in Figure 0.13. 

 

(a) Mountain profile. 

 

(b) Wind inclination. 

Figure 0.13: Vertical wind component display [10]. 

The resulting forces at the conductors and the nodal forces in the lattice structure 
due to wind were represented via polar plots, so-called "wind rosette". Different load 
cases were applied in TOWER changing wind direction, thus obtaining a new 
rosette for utilization factor of each tower member, compounding the limits from 
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linear buckling, net section plasticization onset and member end limit states derived 
from codes and standards (Figure 0.14). 

 

Figure 0.14: "Wind rosettes" for wind magnitude [10]. 

Out of this type of analysis, the obtained critical wind direction was 172˚ to 180˚. 

The maximum utilization factor was found in several members of tower n22, some 
of which close to the area interested in the collapse. Therefore, it was speculated 
that the line section collapse had initiated from tower n22, and then propagated to 
the following n23, n24 and n25.  

 
Figure 0.15: "Utilization factor" in tower n22, from green (<80%) to red (>100%) in each 

member [10]. 

EMPA [11] had validated the results in terms of linear buckling analysis. 
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Approach to failure analysis  
When providing such evidence, the aspect of "conservatism of assumptions" must 
be taken into account. For a failure analysis case, its meaning can differ quite a lot 
from what is normally associated with it in the design phase. 

 DESIGN PHASE FAILURE ANALYSIS 

Loads and  
actions 

High/extreme loads to cover 
unexpected and unknown 

interactions and uncertainties. 

Plausible/realistic loads that 
can be reasonably estimated. 

Strength and 
material 
properties 

Low/minimum guaranteed 
strength, to account for 
statistical production 

variability. 

Relatively high/true material 
strength, possibly the highest 
among the performed tests. 

Table 0.1: What means "conservatism" in different analysis types. 

In short terms: the design procedure sets as target the survival of a component made 
of low-end strength material under extreme conditions, whereas a failure analysis 
aims to prove that even the component with high-end material properties can fail 
under realistic working conditions. 

A small remark on structural instabilities (topic further discussed in Chapter 1): 
when designing a component, the limit strength is set according to the load that 
causes the instability to happen, when, the component could actually maintain 
some residual plastic reserve in the post-instability phase (Figure  1.6) or, in the case 
of a lattice structure, redundant structural elements.  

Limitations of past analysis on the failure topic 

Although effective, there are some major limitations to the performed analysis:  

• When trying to estimate loads and weather conditions, it is appropriate 
not to fall into applying too much conservativeness (design-wise 
speaking).  

• IED has heavily based their limit load on design standards, giving to 
elements a "utilization factor". This results in a safe estimation, far from a 
realistic load-bearing capacity.  

• Even though TOWER is able to perform geometric nonlinear analysis, it 
does not account for material plasticity and more complex joint modeling: 
most of the braces of the lattice structure are regarded as pinned axially 
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connected loaded trusses. No bending moment is transferred across the 
structure, only forces, and no load eccentricity is present. 

• No comparison with the real counterpart was made in order to validate 
the analysis. 

• Only static models were analyzed until maximum load. No collapse 
simulation, neither of the single tower, nor of the entirety of the line, has 
been performed. No dynamic loading was considered: possible wind 
turbulence could cause resonance that might amplify the vibrations. 

• Possible model imperfections (geometric from the lattice tower shape, 
load asymmetry, internal forces on specific members due to uneven 
assembly or thermal shrinkage) were not investigated. 

In short terms: IED has employed design tools to analyze a failure case. 

The use of finite element methods in failure analysis cases 

Many authors have addressed the problem of modeling large and complex 
structures like power transmission towers. 

Past cases offer a good reference and indication on how to properly perform such 
analysis. 

F. Albermani et al. [14] advocate the use of nonlinear analysis as a tool to improve 
design accuracy and failure prediction, aiming to reduce the need of full-scale 
testing. Their in-house built FE solver, which accounts for geometrical and material 
nonlinearities, has been used to conduct analysis on different loading cases on a 
high-voltage transmission tower and has predicted the collapse location and load 
within 5% of the test result. F. Alminhana et al. [15], adopted the nonlinear method 
from [14] in their transmission line cable rupture time-response analysis, obtaining 
results within ±12% of the test data.  

W. M. Wang et al. [16], used FEM to analyze the progressive collapse of 
transmission tower-line system under earthquake, applying material nonlinearities 
(bilinear elastic material model) and element death via VUMAT subroutine. 

Y. M. Darestani, et al. [17] analyzed the impact of nonlinear material and geometry, 
imperfections, joint flexibility and failure, as well as stochastic uncertainties, in a 
pushover analysis using the FE software OpenSEES, with the purpose of 
determining the load-bearing capacity under the specific load case.  The large scatter 
of the ultimate load capacity indicates a particular sensitivity on applied 
imperfection modes. 

J. Wang et al. [18] employed the Eigenmode Assembly Method (EAM) based on the 
superimposition of multiple imperfection modes obtained from a Linear Buckling 
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Analysis (LBA), suggesting the best way to model imperfections. C. Affolter et al. 
[19] analyzed the collapse, due to structural instability, of a high storage rack by 
means of FEA using Abaqus CAE. They applied both buckling Eigenmodes 
imperfections as well as local ones (dents). 

N. P. Rao et al. [20] used nonlinear FE analysis software NE-Nastran, applying the 
Arc-Length method built within it, with the initial purpose of replicating a 
transmission tower test and ultimately achieved with 3-14% error, accounting for 
both geometrical and material nonlinearities. In further studies of theirs ([21, 22]), 
they described the load - displacement curve and rupture position within the same 
range of accuracy. 

Most of the presented techniques, alongside novel proposed approaches, are going 
to be used in the current study. More on this topic in the following section. 

Outline of the study 

Methodology 

The presented study aims to improve on the failure analysis approach adopted by 
IED [10], by shifting the focus as much as possible on real structural capacity instead 
of relying on design standards. 

For this purpose, Simulia Abaqus CAE 2021 [4] has been adopted, as it is a general-
purpose 3D FE tool that opens up to a large variety of approaches, including Arc-
length methods ([20-22]). Based on the above mentioned past works, introducing all 
sorts of required model imperfections ([17, 19]), nonlinearities (both geometrical 
and material) ([14-18]), and joint flexibility (as opposed to a "fixed" or "pinned" 
approach) ([17]). Moreover, the model was built with different element types and 
arrangements that better suited the tasks. 

Goals 

The following questions are going to be developed: 

1. Which is the best way to perform FEA for structural instabilities? 

2. How would joint flexibility influence the FEA? 

3. Which modeling approaches are applicable to the modeling of large lattice structures 
with a multitude of joints? 



| Introduction 13 

 

 

4. What is the load-bearing capacity of the high-voltage transmission towers in 
AlbulaPass and their sensitivity to imperfections? How is it far from the static design 
load? 

5. How can a cascade sequence occur in the power transmission line and, possibly, 
where it is more likely to have started?  

Structure of the thesis 

The structure is summarized in Figure 0.16. 

In Chapter 1, the optimal procedure and approach for FE modeling of structural 
instabilities is studied. The chapter presents basic concepts of the structural stability 
under the external loads and the post-instability behavior, as well as the procedures 
offered by the FE software and their applicability to the problem. Some indications 
on the optimal practices are given as a result of a sensitivity analysis. 

In Chapter 2, the validation of column nonlinear FE models is performed. Both 
experimental data from buckling tests and design standards are employed for this 
purpose. 

In Chapter 3, the modeling of joints in lattice towers is introduced. Two bolted 
column models with end flexibility are presented and validated against FEM and 
experimental results.   

The modeling approaches discussed in Chapters 2 and 3, then applied in Chapter 4 
to lattice assemblies, in order to prove feasibility for larger structures, with some 
inherent limitations. 

In Chapter 5, the chosen strategy from Chapter 4 is used to build the towers from 
the Failure Analysis case. Different wind models from design codes are compared, 
to find a better load assumption. Their ultimate load capacity is estimated via push-
over analysis, and an imperfection sensitivity analysis is carried out. 

In Chapter 6, the transmission line cascade effect and the collapse sequence 
hypothesis are investigated, trying to identify the starting point. A simplified multi-
body model of the entirety of the line has been built for the purpose, and the full 
cascade dynamics is simulated.  

Dynamic and resonance effects, as well as constraints and possible improvements 
to the modeling approaches are briefly discussed in Chapter 7.  

The overall conclusions and final comments are drawn in Chapter 8. 
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Figure 0.16: Structure of the document and interconnections between different chapters. 
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1 Chapter one: Best practices for FEA 
of structural instabilities 

The study of structural instabilities with FE tools is not a trivial enterprise, especially 
if there are computational power restrictions or high complexity in the model. 

It is well recognized the correlation between mesh size, solution error and time 
required to compute the solution (Figure 1.1). 

 

Figure 1.1: Qualitative representation of the relationship between mesh size, solution error 
and computational time. 

Therefore, it is of prime importance to find a compromise between these two 
opposing variables at the very beginning with a simple, manageable model, in order 
to set a standard to keep for every further, more complex analysis in the study. 

In this initial chapter, the structural instability topics, as well as available types of 
analysis, mesh and material models within Simulia Abaqus CAE 2021 [4], are 
presented and compared in order to set standard methodology for further 
approaches. 

With the purpose of validating the FEA results, both analytical formulae and design 
codes are going to be employed. 
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1.1. Introduction to the structural instabilities 
Mechanical components can fail due to structural instabilities under loads 
considerably lower than the material strength, leading to a sudden collapse. The 
problem depends on the equilibrium state internal energy (Figure 1.2) and is a major 
issue in geometries such as slender columns or thin plates, when the applied loads 
are of the compressive kind.  

 

Figure 1.2: Physical explanation of the equilibrium state: when the ball in 1 is given a 
small disturbance, it would ultimately return to the initial position (stable); any small 

input to the ball in 2 makes it move away to a new equilibrium state (if exists) [23]. 

In general, three types of static instability are recognized: classical buckling or 
bifurcation, finite disturbance buckling and snap-through buckling. The kind depends 
upon factors such as the geometry of the structure, the initial geometric and load 
imperfections, and boundary conditions. These factors also outline whether the 
post-buckling path might be stable or not (if, following the instability, a new 
equilibrium state can be reached).  

As for the first type of instability, the structure undergoes a secondary deformation 
that amplifies the loading, up to a point of instability. The usual representation is of 
a beam-like member under compression (Figure 1.3). 

 

Figure 1.3: Beam member under compression. 
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If the loading is increased, a bifurcation point is reached, upon which the stiffness of 
the system suddenly changes the beam undergoing lateral deflection (secondary 
deformation). This secondary path could be either stable or unstable, depending on 
the potential energy function concavity (similarly to what it is shown in Figure 1.2), 
which again is a function of the applied force: if the force is over the critical limit, 
the instability will occur at the bifurcation point. 

 

(a) Load-deformation curve. 

 

(b) Potential energy function. 

Figure 1.4: Stable and unstable secondary paths. 

In this case, the post-buckling behavior is always unstable, since the load-carrying 
capacity of the column is completely hindered. 

There are other examples in which, after the bifurcation point is reached, a stable 
post-buckling path is obtained. 

This is the case of a cylindrical shell under compression or a shallow arc under 
distributed load. 

 

(a) Shell cylinder under compression. 

 

(b) Shallow arc under distributed load. 

Figure 1.5: Other examples of structural instabilities present in [23]. 
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In the first example, after the first bifurcation point, the load drops and the cylinder 
wrinkles, in what is called finite disturbance buckling. 

In the second, when the arc reaches the instability, it suddenly snaps to the opposite 
deflection shape, obtaining snap-through buckling. 

 

Figure 1.6: Post-buckling behavior in finite disturbance and snap-through buckling. 

The limit critical load for columns is traditionally set by the Euler buckling formula 
[24] or the Secant formula [25] for eccentric loading (examples of analytical solutions 
can be found in the next Chapter 1 and 2), which are derived from the maximum 
bending moment in the deformed shape.  

The solution results as an inverse function of the beam slenderness, function of the 
length and section properties, and it is always based on the hypothesis of linear 
elastic deformations (reason for which the limit is often called Elastic buckling 
formula): 

 𝐹𝐹𝑐𝑐𝑐𝑐 =
𝐾𝐾2 ∙ 𝐸𝐸 ∙ 𝐼𝐼

𝐿𝐿2 =
𝐾𝐾2 ∙ 𝐸𝐸
𝜆𝜆2  (1.1) 

Where 𝜆𝜆 = 𝐿𝐿 ∙ �𝐼𝐼
𝐴𝐴

 is the slenderness ratio, E Young's modulus of the material, the 

chosen axis moment of inertia, A the section area and L the length of the element.  

K is a boundary condition dependent variable, which has to be modified according 
to the end restrains (for example K=𝜋𝜋 for pinned columns). The buckling solution, 
in fact, is highly sensitive to boundary conditions that can considerably change the 
load capacity and deformed shape, thus the instability point. 
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When reducing the slenderness, the buckling critical load approaches the yield load 
that causes the section plasticization. The prediction of the bifurcation load in this 
area, with both yield and buckling limits, is quite poor and leads to overestimation, 
showing an effect of the section yielding in the secondary deformation stiffness.  

For this reason, this area goes by the name of inelastic buckling and the limit is set by 
experimental formulation (such as Eurocodes buckling curves), depending on section 
and material. 

An example of the application of the Euler formula and the codes can be found in 
the following chapters. 

 

Figure 1.7: Buckling limits comparison [26]. 

The final load-displacement curve can differ quite a lot if, in fact, more details are 
introduced into the model, such as geometric or material nonlinearities (Figure 1.8). 

 

Figure 1.8: Example of load-displacement curve variation, accounting for model geometric 
or material nonlinearities [26]. 



22 
1| Chapter one: Best practices for FEA 

of structural instabilities 

 

 

In load and deformation in the structure can be aligned in the same direction or not, 
depending on the specific classification of instability.  

 

Figure 1.9: Types of possible limit states in columns [27]. 

In this section, the focus was placed more on the flexural buckling, in which the 
secondary deformation is on the bending around a specific axis. Many other types 
of structural instabilities do exist (Figure 1.9), but are not in the specific interest of 
this study, mainly addressing constrained ends Angle (L-section) columns subjected 
to axial loading. 

It has to be mentioned that some studies (P. B. Dinis et al. [28]) proved that if the 
section is particularly thin, torsional and flexural-torsional buckling could play a 
relevant role and lower the allowable compressive load limit quite a bit.  

However, the analytical or empirical solutions to other buckling modes (like the 
ones proposed by the Eurocodes [4]), are convoluted and require complete 
knowledge of the forces and moments in the end restrains and state of stress within 
the element. On top of that, it might not suit a failure analysis case, as the level of 
approximation and conservativeness applied by the code is unclear. 
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1.2. Example of buckling problem and solution  
The chosen model for the study is a simple "Pinned-Fixed" beam under compression 
(one end completely restrained and the other free to rotate around the cross-section 
centroid, see Figure 1.10), in order to calculate the analytical solution with ease. 

The length of the beam has been chosen as L=1900mm, with an "L" (Angle) cross-
section L50x4 mm, for two main reasons: to have cross-section and slenderness 
comparable with the ones present in the larger tower model, and in order to remain 
in the "Elastic buckling" region (refer to Figure 1.7), thus having an accurate analytical 
solution. 

The section properties are listed in Table 1.1, based on Figure 1.10. It is possible to 
see how the moment of inertia in v-v axis (secondary) is the lowest, hence it is the 
most critical. 

 

Figure 1.10: "Angle" section dimensions. 

Property Ixx Iyy Ixy Iuu Ivv cx cy cv cu A E 

Value 
92607 
mm4 

92607 
mm4 

55102 
mm4 

147712 
mm4 

37503 
mm4 

13.98 
mm 

13.98 
mm 

19.77 
mm 

35.36 
mm 

384 
mm2 

208 
GPa 

Table 1.1: List of section L50x4 properties. 

1.2.1. Analytical solution 

The first approach is based on the solution of the equilibrium equation of the 
deformed column (Figure 1.11).  
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Figure 1.11: Deformed column diagram 

The bending equilibrium at distance 𝑥𝑥 is then given by the following equation: 

 𝑀𝑀(𝑥𝑥) = 𝑀𝑀0 − 𝐹𝐹 ∙ 𝛿𝛿 − 𝑅𝑅 ∙ 𝑙𝑙 (1.1) 

With 𝑀𝑀 bending moment through the column length, 𝑀𝑀0 bending moment at the 
fixed end, 𝐹𝐹 vertical force and 𝛿𝛿 the lateral deflection. 

At l=0, 𝛿𝛿(𝐿𝐿) = 0: 

 
𝑀𝑀(𝐿𝐿) = 0 = 𝑀𝑀0 − 𝑅𝑅 ∙ 𝑙𝑙 (1.2) 

 𝑀𝑀0 = 𝑅𝑅 ∙ 𝑥𝑥 (1.3) 

 𝑀𝑀(𝑙𝑙) = −𝐹𝐹 ∙ 𝛿𝛿 − 𝑅𝑅 ∙ (𝑙𝑙 − 𝐿𝐿) (1.4) 

If we introduce the Euler Beam bending moment equation: 

 
𝑀𝑀(𝑙𝑙) = 𝐸𝐸 ∙ 𝐼𝐼 ∙

𝜕𝜕2𝛿𝛿
𝜕𝜕𝑙𝑙2  (1.5) 

We finally get the following differential equation: 

 
𝜕𝜕2𝛿𝛿
𝜕𝜕𝑙𝑙2 + 𝐾𝐾 ∙ 𝛿𝛿 =

𝑅𝑅
𝐸𝐸 ∙ 𝐼𝐼  (𝑙𝑙 − 𝐿𝐿) (1.6) 

with 𝐾𝐾 = � 𝐹𝐹
𝐸𝐸∙𝐼𝐼

 . Its solution is of the type: 

 𝛿𝛿(𝑥𝑥) = 𝐶𝐶1 ∙ sin(𝐾𝐾 ∙ 𝑙𝑙) + 𝐶𝐶2 ∙ cos(𝐾𝐾 ∙ 𝑙𝑙) + 𝐶𝐶3 ∙  (𝐿𝐿− 𝑙𝑙) (1.7) 
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The solution to this equation can be found by applying the problem boundary 
conditions: 

 
�   

𝛿𝛿(0) = 𝐶𝐶1 ∙ 0 + 𝐶𝐶2 ∙ 1 + 𝐶𝐶3 ∙ 𝐿𝐿 = 0,
𝛿𝛿(𝐿𝐿) = 𝐶𝐶1 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝐾𝐾 ∙ 𝐿𝐿) + 𝐶𝐶2 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(𝐾𝐾 ∙ 𝐿𝐿) + 𝐶𝐶3 ∙ 0 = 0,

𝜕𝜕𝛿𝛿
𝜕𝜕𝑙𝑙

(0) = 𝐾𝐾 ∙ 𝐶𝐶1 ∙ 1 − 𝐾𝐾 ∙ 𝐶𝐶2 ∙ 0 + 𝐶𝐶3 = 0
 

(1.8a) 
(1.8b) 

(1.8c) 
 

From which the coefficients of the non-trivial solution (𝛿𝛿(𝑙𝑙) ≠ 0) can be derived: 

 
�   

𝐶𝐶2 = 𝐾𝐾 ∙ 𝐿𝐿 ∙ 𝐶𝐶1,
𝐶𝐶3 = −𝐾𝐾 ∙ 𝐶𝐶1,

𝑡𝑡𝑡𝑡𝑠𝑠(𝐾𝐾 ∙ 𝐿𝐿) = 𝐾𝐾 ∙ 𝐿𝐿
 

(1.9a) 
(1.9b) 
(1.9c) 

The solutions of from Equation 1.9c can be found only iteratively and the first three 
solutions (modes) are reported in Table 1.2.  

  

Figure 1.12: Deformed mode shapes 1, 2 and 3 according to the results. 

Mode 𝐾𝐾 ∙ 𝐿𝐿 that satisfy Equation 1.9c 

1 4.4934 
2 7.7253 
3 10.904 

Table 1.2: List of 𝐾𝐾 ∙ 𝐿𝐿 values that satisfy the equation. 
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The resulting deformed shapes are shown in Figure 1.12. The highest deflection 
point is located at 59.8% of the length for mode 1, 37.2% and 27.1% for mode 2 and 
3 respectively. 

The critical buckling load is then found by reversing the formula into Equation 1.10: 

 𝐹𝐹𝑐𝑐𝑐𝑐 =
(𝐾𝐾 ∙ 𝐿𝐿)2 ∙ 𝐸𝐸 ∙ 𝐼𝐼

𝐿𝐿2   (1.10) 

The formula is also known under the name of Euler buckling formula [24]. 

The different modes solution can be quantitatively appreciated in Table 1.3. 

Mode 
Fcr in x-x, y-y  

[kN] 
Fcr in u-u 

[kN] 
Fcr in v-v  

[kN] 

1 107.7 171.8 43.6 
2 318.4 507.9 128.9 
3 634.4 1011.9 256.9 

Table 1.3: Critical buckling loads in every bending axis. 

Naturally, the solution of interest is the lowest load of 43.6 kN at which the column 
buckles on the v-v axis. 

1.2.2. EC 1993-1.1 

The Eurocode 1993-1.1 [29], based on experimental data, reduces the buckling critical 
load limit in order to account for the inelastic region, in which there is an interaction 
between the plasticized section and the buckling mode. 

The formulation is taken without the safety factor, as the pure limit is sought.  

It has to be said that, however, the formulation of a standard is often very 
conservative and would consequently give underestimated validation data 
(supported also by Kettler et al. [30]). Data that would be kept as a lower bound to 
support our simulation. 

 
𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑋𝑋 ∙ 𝐴𝐴 ∙ 𝑆𝑆𝑦𝑦 (1.11) 

 
𝜆𝜆𝑛𝑛 = �

𝐴𝐴 ∙ 𝑆𝑆𝑦𝑦
𝐹𝐹𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑙𝑙

 (1.12) 
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 𝛷𝛷 = 0.5 ∙ (1 + 𝛼𝛼𝜆𝜆 ∙ (𝜆𝜆𝑛𝑛 − 0.2) + 𝜆𝜆𝑛𝑛
2) (1.13) 

 

𝑋𝑋1 =
1

𝛷𝛷 + �𝛷𝛷2 − 𝜆𝜆𝑛𝑛
2

 
(1.14) 

 
�   𝑋𝑋 = 1, 𝑠𝑠𝑖𝑖 𝑋𝑋1 > 1
𝑋𝑋 = 𝑋𝑋1, 𝑠𝑠𝑖𝑖 𝑋𝑋1 < 1 

(1.15a) 
 (1.15b) 

 

With 𝑋𝑋,𝑋𝑋1, and Φ buckling parameters, 𝜆𝜆𝑛𝑛 normalized slenderness ratio according 
to EC 1993-3.1, and 𝛼𝛼𝜆𝜆 = 0.34 imperfection factor for angles. 

With 𝜆𝜆𝑛𝑛 < 0.2 the buckling effect could be ignored and the limit is the one for pure 
compression (𝑋𝑋 = 1). 

 

Figure 1.13: Stress limit according to Euler and Eurocode function of the 

slenderness. 

The buckling limits according to the code are displayed in Table 1.4. 

Fcr in x-x, y-y  
[kN] 

Fcr in u-u 
[kN] 

Fcr in v-v  
[kN] 

76.5 101.8 36.8 

Table 1.4: Critical buckling loads in every bending axis. 
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The buckling limit, as well as the slenderness ratio, changes according to the 
considered axis. It is more natural to display the buckling limit load as a function of 
the element length instead, in order to immediately spot the axis with the lowest 
margin. 

 

Figure 1.14: Limit load for buckling in different axis. X and Y refer to the x-x and y-
y axis, P to the principal axis (u-u), S to the secondary (v-v). 

It is clearly noticeable how the limit introduced by the Eurocode curve affects mostly 
the inelastic buckling region, while it is very close to Euler for higher slenderness 
ratios. In the analyzed case, the lowest limit is in the v-v axis and it is equal to 36.8 
kN, 13.4% lower than the analytical solution. 

1.3. Introduction to FE procedures in Abaqus 
All the Finite Element calculations have been made using Simulia Abaqus CAE 2021 
[4]. The software offers different possibilities of analysis procedures and it is 
relevant to understand the strength and weaknesses of each and ultimately choose 
the most adequate for our final purpose. 

1.3.1. Linear Buckling Analysis (LBA) 

Abaqus linear buckling analysis (LBA), as the name hints, is based on the structural 
linearity theory, therefore inheriting the limits of the approach:  

• Small displacements (thus strains) 
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• Linear elastic material with constant properties (no strain-, strain rate-, 
temperature-dependent property variation are accounted for) 

• Definite stiffness matrices (excludes contact and friction between elements, 
connector elements and rigid body motion) 

The procedure finds the buckling Eigenmodes that make the stiffness matrix singular, 
based on the initial perturbation (force, stress field or prescribed motion): 

 [𝐾𝐾] ∙ 𝑢𝑢� = 0�   (1.16) 

Therefore, the solution is the series of eigenvalues of the introduced perturbations 
that make the system unstable (upon which the stiffness is equal to zero). However, 
it does not mean that the capacity of the structure is always the one that causes 
instability.  

Some of this procedure's limitations can be partly overcome in a second-order load-
displacement (LD) analysis. A first LBA on the structure is anyway always required 
in order to obtain an initial estimate of the collapse load and the deflection modes, 
which can be used as initial geometrical imperfections in the LD analysis (as 
generally required for second-order analysis in the Eurocodes). 

1.3.2. Static and dynamic implicit  

The "General, Static" and "Dynamic, Implicit" procedures are based on the implicit 
(Standard) solver, which finds the new increment's solution from a function of both 
the current and new state, resulting in a coupled system of equations that requires 
iterative methods (such as Newton-Raphson's) to compute a solution. 

Both of them are able to deal with every type of nonlinearity and complexity. The 
time increment size is not fixed and relatively large, depending on the system 
complexity and dynamics. 

The static solver excludes most dynamic behavior and equations (completely 
neglecting, for example, inertia forces) in favor of a much quicker computational 
time and large time increments, thus obtaining steady-state solutions. 

The dynamic solver includes the dynamic response, but the large increments could 
miss, in some specific cases, some quick transients or high-frequency dynamics, 
resulting in errors: if large enough to overcome iterative solution relative error 
threshold, the solver might not reach solution convergence. It has to be noted, 
however, that Abaqus includes some internal strategies to obtain more accurate 
results in these specific cases. 
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1.3.3. Dynamic explicit 

The explicit solver ("Dynamic, Explicit" procedure) finds the exact solution of an 
equation in which the next increment state is direct function of the previous one. 

This results in a much more accurate computation, with the only possible source of 
errors being numerical. The best practice suggests reduction via the use of finer 
mesh and double-precision numbers. 

The computational effort needed for every increment is incredibly small, but, in 
order to solve the equation, it is required to have a very tiny time increment as well 
to capture all the dynamic effects within the system. 

For this reason, the time increments depend on the element size 𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙 and speed 
of sound 𝑠𝑠 through the material: 

 
∆𝑡𝑡 ≈

𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙

𝑐𝑐 ;      𝑠𝑠 = �
𝐸𝐸
𝜌𝜌  (1.17); (1.18) 

Where 𝜌𝜌 is the material density. 

Therefore, this kind of approach finds its use in cases in which the problem size and 
complexity is large and with very fast dynamics, where the implicit approach would 
require more iterations to find the solution. 

 
(a)Dynamics and nonlinearity. 

 
(b) Problem size and complexity. 

 

 

Figure 1.15: Implicit and explicit comparison. 

1.3.4. RIKS / Arch – Lenght method 

"General, RIKS" procedure is presented as a different approach to the LD problem 
by detaching from time as the independent variables. 
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In this method, the increments are no longer time-based, but, in fact, Arc length 
based (also alled Arc-Length method) 

This new variable is the length of the path between two increments in the load - 
displacement curve as displayed in the following diagram. 

 

Figure 1.16: Arc-length increment displayed in load - displacement curve. 

Both the load and displacement are then variables in the simulation and they can 
vary deliberately in magnitude and direction, using the initial input value only 
when reaching the initial instability load. 

The points of instability are stabilized via the introduction of fictitious viscosity to 
reach an equilibrium, later released in order to reach an accurate prediction at the 
following increment. 

However, this approach requires the introduction of an initial imperfection (load 
eccentricity, mesh asymmetry or in boundary conditions), in order to guide the 
path after the point of instability. 

The only limitation of this approach is that the dynamics (transients and 
vibrations) cannot be displayed (which could also be seen as an upside) and it 
cannot properly display bodies detachment in contact interaction problems (such 
as slip in bolted joints, which might be relevant in our study). 

1.4. FE modeling of buckling 
The following analysis steps have been compared for different element types and 
mesh sizes: 

1. "Linear Perturbation, Buckle": for Linear Buckling Analysis (LBA). 
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2. "General, Static": for static analysis. 
3. "General, RIKS": for Load-Displacement (LD) analysis. 
4. "Dynamic, Implicit" and "Dynamic, Explicit": for dynamic and quasi-static 

analysis. 

P. Uriz et al. [31] presented modeling approaches to analyze inelastic buckling for 
different sections, aiming to achieve results that are more accurate. For modeling it 
in L-sections, they suggest at least 3-4 elements through the width of the flange and, 
when using 3D elements, 2-3 elements through the thickness. Different 
combinations have been tried.  

Shell elements in an angle section can be extruded from the mid-plane in different 
ways (Figure 1.17). The three cases have been tested.  

 
(a) Top 

 
(b) Mid 

 
(c) Bottom 

Figure 1.17: Types of shell element extrusion, highlighted in red the mid-plane. 

The case in Section 1.2 was analyzed, and a set of different mesh sizes was initially 
selected for the analysis steps (Table 1.5). 

Element type – element discretization – (size) – shell el. extrusion plane 
1D Beam - Quadratic - (5 mm) 
1D Beam - Linear - (50 mm) 
1D Beam - Quadratic - (150 mm) 
3D Shell - Quadratic - (5x5 mm) – top extrusion 
3D Shell - Quadratic - (5x5 mm) – mid extrusion 
3D Shell - Linear Full Integration - (5x5 mm) – bottom extrusion 
3D Shell - Linear Reduced Integration - (15x40 mm) - mid extrusion 
3D Shell - Linear Full Integration - (15x40 mm) - mid extrusion 
3D Shell - Quadratic - (50x50 mm) - top extrusion 
3D Shell - Quadratic - (50x50 mm) - mid extrusion 
3D Shell - Quadratic - (50x50 mm) - bottom extrusion 
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3D Solid - Quadratic Full Integration - (5x5x1.33 mm) 
3D Solid - Quadratic Reduced Integration - (5x5x1.33 mm) 
3D Solid - Quadratic Reduced Integration - (5x5x4 mm) 
3D Solid - Linear Full Integration - (5x5x4 mm) 
3D Solid - Quadratic Full Integration - (12.5x30x2 mm) 
3D Solid - Quadratic Red Int. - (12.5x30x2 mm) 
3D Solid - Quad. Red. Int. - (16.66x70x4 mm) 
3D Solid - Linear Full Int. - (16.66x40x4 mm) 
3D Solid - Linear Red. Int. - (16.66x40x4 mm) 
3D Solid - Quadratic - (50x50x4 mm) 

Table 1.5: Selected mesh sizes. 

Two different load introduction approaches have been used for the procedures: 

• Prescribed motion in "General, Static"; 
• Force controlled in "Dynamic, Implicit" and "Dynamic, Explicit"; 
• Arc-length controlled in "General, RIKS". 

The simulations using explicit solvers were carried out with force-controlled 
"General, Static" preloading step, up to 80% the load-bearing capacity, in order to 
have a more efficient computation. As seen before, explicit solvers are fairly slow if 
used in simple but refined mesh models (Figure 1.15b) and not very keen on quasi-
static forcing (Figure 1.15a) due to the limitation in time increment length (Equation 
1.17). The preloading is achieved via "Restart" or "Initial condition" options, which 
allow the results (coordinates, displacements, material conditions and internal 
forces) to be transferred from the last step of one model to the first of another. This 
is extremely useful since "General, Static" and "Dynamic, Explicit" procedures are 
based on different solvers altogether and cannot be employed within the same 
model. 

This results in a different behavior at discontinuities like the collapse of a structure, 
with the inertia of the structure playing a big role after the load capacity is reached. 
This is better shown in Figure 1.18: if the load - displacement curve is not monotonic, 
neither of the two approaches is correctly able to fully represent it, therefore a 
different approach for this specific case is required. 

In all the analysis procedures, a standard imperfection (according to Section 5.3.2, 
EC 1993-1.1 [29]) coefficient e=l/300, based on the first buckling mode, has been used. 
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Figure 1.18: Post-collapse behavior in force and displacement controlled simulations. 

1.4.1. Material models 

The complete material characteristic is well known, thanks to thorough testing 
made by Empa on the specimens collected in the failure site. However, a more 
detailed material characteristic would prove to be challenging to be used for a very 
large model, increasing the problem complexity (and so the computational effort) 
without bringing effective benefits. For this reason, three different material models 
have been compared in the following section: 

1. Linear Elastic: linear with simple Young's Modulus E=208000 MPa, Poisson's 
ratio υ=0.3. 

2. Elasto-Plastic: bi-linear with yielding at Sy=420 Mpa. 
3. Nonlinear: full representation of the material true stress – true strain curve. 

Figure 1.19 shows the different approaches for stress – strain curve. 

 

Figure 1.19: Material characteristics and different models. 



1| Chapter one: Best practices for FEA 
of structural instabilities 35 

 

 

Note: plastic deformation recovery upon unloading is left treated as isotropic 
hardening (same Sy both in loading and unloading), completely neglecting the 
kinematic hardening (Bauschienger effect). This simplification is supported by the fact 
that we do not expect, during the collapse, that the structure undergoes inelastic 
cycling or some parts reach yielding limit upon unloading and loading in the 
opposite direction, or, at least, not more than once, with a very limited overall effect. 

Moreover, the bi-lineari model has a slight inclination (420 MPa at 0.2% strain to 430 
MPa at 30% strain) to improve solver convergence, as it avoids large accumulation 
of strains at the yielding onset. 

1.4.2. Linear Buckling Analysis (LBA) 

With the initial LBA, the first 6 buckling Eigenmodes were analyzed. 

In Figure 1.20 some examples of the usual modes the column undergoes are 
reported. Note that however not every mode is clearly displayed for every mesh 
type or/and size, and sometimes higher Eigenmodes are shown instead (Table 1.6). 
In this study, the focus would be on the 1st mode, being the one with the lowest 
critical load. The results from the 1st mode from LBA are summarized in Figure 1.21. 

 
(a) 1st flexural Eigenmode 

on secondary axis. 

 
(b) 1st flexural Eigenmode on 

x- or y- axis. 

 

(c) 2nd flexural Eigenmode on 
secondary axis. 

 
(d) 1st torsional Eigenmode. 

 
(e) 1st flexural-torsional 

Eigenmode. 

 

 
(f) 2nd flexural-torsional 

Eigenmode. 

Figure 1.20: Buckling Eigenmodes from LBA. 
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Element 
type 

Flexural, secondary  Flexural, x- or y-  Torsional Flexural-torsional 
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 1 Mode 2 

Beam o o o o x x x 
Shell o o x x o x o 

3D o o o x o o o 

Table 1.6: Mode types the element is able (marked with "o"), or not (with "x"), to display. 

 
Figure 1.21: Linear buckling load for every mesh size. Notice the large disparity in very 

coarse 3D elements. 

Most of the mesh sizes match almost perfectly the Euler analytical result. Full 
integration elements are inconsistent and do not provide any improvement, while 
there is a slight difference if coarser meshes are discretized with linear or quadratic 
elements. The Shell elements have proven to be "stiffer" than 1D and 3D elements, 
and there is a scatter in ultimate load depending on the way the shell element is 
extruded (Figure 1.21). 

The Eurocode load is considerably lower than the linear elastic solution. 

1.4.3. Nonlinear geometry, with linear elastic material 

The results of the different types of analysis procedures are reported in Figure 1.22. 
The post-buckling behavior of the column is monotonic. It remains unclear why the 
dynamic simulations using beam element types have lower capacity. 
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Figure 1.22: Load capacity for every mesh size and analysis type, linear material. 

1.4.4. Material nonlinearity 

By introducing the material nonlinearity, the section in the deflected area is fully 
plasticized (Figure 1.23), thus reducing the ultimate load. The deflection shape upon 
instability (Figure 1.24) in the bilinear or nonlinear models slightly shifts away from 
the midpoint of the column (located at 24.2% of the total length).  

 

(a) Linear elastic material. 

 

(b) Nonlinear material. 

Figure 1.23: Deformed column shape, in grey the area that has yielded. 
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Figure 1.24: Deflection shapes with different material models. 

 
Figure 1.25: Load capacity for different material models and element types. 

The nonlinear and bilinear material models are virtually equivalent (0.5% difference), 
as can also be observed in the load-displacement curves for "General, RIKS" 
procedures (Figure 1.25). For this reason, the Elasto-Plastic material model is almost 
as accurate as the complete curve and it is worth using it for the following nonlinear 
analysis of the study. 

The load capacities (Figure 1.27) are now to be compared with the Eurocode values: 
beam elements seem to underestimate the load of 23%, while Shell and 3D 
overestimate of 15% and 4.5% respectively. 
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(a) Linear elastic material. 

 

(b) Nonlinear material. 

Figure 1.26: Load - displacement curves of different element type and material model, 
performed in Arc-Length analysis procedure. 

 
Figure 1.27: Load capacity for different mesh sizes and element types. 

This structural energy released upon ultimate loading (highlighted in Figure 1.28) 
is then converted into the acceleration of the structure during the sudden collapse 
(Snap). With the nonlinear material, the dynamic simulations show inertia that 
keeps higher stability in the post-buckling phase. 
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Figure 1.28: Load - displacement curve for different analysis procedures and element 
types. 

 
(a) Fine 3D. 

 
(b) Medium 3D. 

 
(c) Coarse 3D. 

 
(d) Fine Shell. 

 
(e) Medium Shell. 

 
(f) Coarse Shell. 

 

 
(g) Beam 

 

Figure 1.29: Different local buckling shapes at different mesh sizes. Notice how the fine-
meshed columns (a, b and d) are able to show a local buckling of the flanges. 
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As in the previous analysis, the shell element proved to be the stiffest, while the 1D 
the softer. In addition, the difference between load capacities with different mesh 
size appears more pronounced than in the linear material case. The reason behind 
these two behaviors could be related to the local buckling happening on the flanges, 
close to the fixed end of the column, which develops differently depending on mesh 
and element type (Figure 1.29). 

1.5. Conclusive discussion on the results 
In the Chapter, the structural instability problem has been introduced and 
numerical methods have been developed aiming to improve simulation 
performances. 

In conclusion, it has been possible to assess: 

• Only with fine mesh 3D or Shell elements, the local buckling is able to be 
properly displayed. Shell elements do not show local deformation, thus 
resulting in a more stiff deflection at midspan than the others types, whereas 
3D elements, by accurately simulating this behavior, have a slightly lower 
buckling load. 

• 1D elements do not show any sign of local effects, thus resulting in an overall 
softer element type and lower load to collapse. 

• Only Shell and 3D element types are able to display a sign of other buckling 
modes, such as flexural-torsional. 

• As P. Uriz et al. [31] suggest, at least 3-4 elements per flange are necessary to 
simulate buckling reliably.  

• A bi-linear model is enough to show the material nonlinearity effects and 
section yielding in the elastic and inelastic buckling areas. 

• In general, if the 3D elements are considered a good reference, it is possible 
to state that the Eurocodes underestimate the ultimate load. This is an intrinsic 
feature of a design standard, as it needs to assure safety rather than accuracy 
(visible in the comparison between the design limit and the tests on which 
these standards are based, Figure 1.30). 

The element types better suited for a nonlinear FE buckling analysis of a large 
structure cannot however be 3D, as they are very computationally expensive. Shell 
elements can be used in areas where a local effect is expected, while 1D elements 
are to be used in areas of not primary importance as a way to reduce the 
computational cost. 
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Figure 1.30: Example of buckling limits for single bolt end restrain (more about 
this in the following Chapters) according to different standards, compared to the 

1974 C.I.G.R.E. test campaign [32]. 

Based on these grounds, in the next Chapters' investigations, the following mesh 
types are going to be used, when referring to a specific type of element: 

• 3D Solid - Quadratic Reduced Integration - 5 elements per flange width - 3 
elements per thickness - 100 elements per member length (biased towards 
the edges). In detailed regions, such as the bolt position, the number of 
elements per width is going to be increased up to 20. 

• 3D Shell - Linear Reduced Integration - 6 elements per flange width - mid 
extrusion - 60 elements per member length (biased towards the edges). 

• 1D Beam - Linear - 40 elements per member length. 
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2 Chapter two: Validation of FE 
models 

Design codes or analytical solutions are limited in their applicability, given the 
conservativeness purposes and the analytical models' limitations. Therefore, 
validation experiments are a necessary step to support a FE model accuracy. 
Moreover, in most experimental setups the end restrain condition is very simplified 
or the initial assumption to model imperfections is  non-existent. Very conveniently, 
Kettler et al. [30, 32], have thoroughly treated the same issue in a complete and 
methodic approach to FE modeling of structural instabilities in slender columns. 

In this Chapter, the experimental ([30]) and modeling ([32]) setup is described and 
two bolted columns with different end restrains are modeled and validated with 
experimental results. 

2.1. Experiments 
The columns studied by Kettler are angles connected to a gusset plate on each end 
by one or two bolts. 

 

Figure 2.1: BC1, BC2 and BC3 from Kettler's experiments. In BC2, the end is connected by 
knife support (one free rotational degree of freedom), in BC3 to a spherical joint, in order 

to have all rotational degrees of freedom free [30]. 

As it is shown in Figure 2.1, in their experiments they have applied three different 
types of end constraints to the gusset plates: 



44 
2| Chapter two: Validation of FE 

models 

 

 

BC1: clamped support with all rotational degrees of freedom restraint at both 
member’s ends; 

BC2: a knife-edge support (centered in the axis of the gusset plate) that allows 
only for rotations about the axis parallel to the connected leg; 

BC3: pinned support (centered in the axis of the gusset plate) with only the 
rotation about the longitudinal axis restraint. 

The chosen experiment to replicate (A5 and C1, as marked in [30]), are both of 
section L80x8 mm, with different end-restrain and column length. The common 
section properties are reported in Table 2.1, based on Figure 2.2. The two braces 
have different lengths and end restrains, thus a new "system length" has to be 
introduced, between the two points of load application, and to be used for critical 
load estimation: 

A, BC2: 𝐿𝐿𝑠𝑠𝑦𝑦𝑠𝑠 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 + 215𝑚𝑚𝑚𝑚 (2.1a) 

B, BC1: 𝐿𝐿𝑠𝑠𝑦𝑦𝑠𝑠 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒𝑙𝑙𝑛𝑛 + 40𝑚𝑚𝑚𝑚 (2.1b) 

Moreover, they have also different geometrical and material properties, found by 
tensile testing, as highlighted in Table 2.2 and Figure 2.3. 

 

Figure 2.2: Angle section dimensions [30]. 

Property Ixx Iyy Iuu Ivv ey ex ev eU b t A 

Value 
737298 
mm4 

737298 
mm4 

1173850 
mm4 

300751 
mm4 

18.95 
mm 

18.95 
mm 

26.79 
mm 

0 
mm 

80 
mm 

8 
mm 

1216 
mm2 

Table 2.1: List of section L80x8 properties. 

Note that in [30], the imperfection is only accounted in the v-v axis, when in reality 
it could be in any direction and make a large difference on the failure mode and 
result. 
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Experiment 
Ref. in 

[30] 
End 

restrain 
Number 
of bolts 

Lmember 
[mm] 

Lsys 
[mm] 

eimp 
[mm] 

Lsys/eimp 

[-] 
E 

[MPa] 
Sy 

[MPa] 

A A5 BC2 2 1550 1765 1.15 1535 212400 289.9 
B C1 BC1 1 3170 3210 1.10 2918 209300 333.9 

Table 2.2: A and B experiments properties [30]. 

 
(b) End geometry A. 

 
(b) End geometry B. 

Figure 2.3: End gusset geometry for the two experiments [30]. 

2.2. Analytical solutions and applicable standards 
With the purpose of having an additional reference, other two methods have been 
used in this case: 

1- Analytical results from the 'Secant Formula" [25] for eccentric loading, related 
to the before used "Euler buckling" formulation [24] (Section 1.2). 

2- Eurocode 1993-1.1 [29] code for lattice structures, taken without any safety 
factors. 

3- Eurocode 1993-3.1 [4] code for lattice tower members, taken without any safety 
factors. 

2.2.1. Secant formula 

The first approach is based, as Euler's formula, on the solution of the equilibrium 
equation of the Pinned-Pinned column with eccentricity. The same approach as in 
Section 1.2 was used, from the bending equilibrium at distance 𝑥𝑥 is then given by 
the following equation: 
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 𝑀𝑀(𝑥𝑥) = −𝐹𝐹 ∙ (𝛿𝛿 + 𝑒𝑒0) (2.2) 

With δ(𝐿𝐿) = 0: 

 
𝑀𝑀(𝑙𝑙) = −𝐹𝐹 ∙ 𝑒𝑒0 (2.3) 

If we introduce the Euler Beam bending moment equation: 

 
𝑀𝑀(𝑥𝑥) = 𝐸𝐸 ∙ 𝐼𝐼 ∙

𝜕𝜕2𝛿𝛿
𝜕𝜕𝑙𝑙2  (2.4) 

We finally get the following differential equation: 

 
𝜕𝜕2𝛿𝛿
𝜕𝜕𝑙𝑙2

+ 𝐾𝐾2 ∙ 𝛿𝛿 = −𝐾𝐾2 ∙ 𝑒𝑒0    (2.5) 

with 𝐾𝐾 = � 𝐹𝐹
𝐸𝐸∙𝐼𝐼

. Its solution is of the type: 

 𝛿𝛿(𝑙𝑙) = 𝐶𝐶1 ∙ sin(𝐾𝐾 ∙ 𝑙𝑙) + 𝐶𝐶2 ∙ cos(𝐾𝐾 ∙ 𝑙𝑙)− 𝑒𝑒0 (2.6) 

The constants 𝐶𝐶1, 𝐶𝐶2 in this equation can be found by applying the problem 
boundary conditions: 

 
⎩
⎨

⎧
   

𝛿𝛿(0) = 𝐶𝐶1 ∙ 0 + 𝐶𝐶2 ∙ 1 − 𝑒𝑒0  = 0,
𝛿𝛿(𝐿𝐿) = 𝐶𝐶1 ∙ sin(𝐾𝐾 ∙ 𝐿𝐿) + 𝐶𝐶2 ∙ cos(𝐾𝐾 ∙ 𝐿𝐿) − 𝑒𝑒0 = 0,

𝜕𝜕𝛿𝛿
𝜕𝜕𝑥𝑥

�
𝐿𝐿
2
� = 𝐾𝐾 ∙ 𝐶𝐶1 ∙ cos �𝐾𝐾 ∙

𝐿𝐿
2
� − 𝐾𝐾 ∙ 𝐶𝐶2 ∙ sin �𝐾𝐾 ∙

𝐿𝐿
2
� = 0

 

(2.7a) 
(2.7b) 

(2.7c) 
 

From which the coefficients of the non-trivial solution (𝑣𝑣(𝑥𝑥) ≠ 0) can be derived: 

 

�   
𝐶𝐶1 = 𝑒𝑒0 ∙ tan �𝐾𝐾 ∙

𝐿𝐿
2� ,

𝐶𝐶2 = 𝑒𝑒0,
𝐾𝐾 ∙ 𝐿𝐿 = 𝜋𝜋

 

(2.8a) 

(2.8b) 

(2.8c) 

The solutions of 𝐾𝐾 from Equation 2.8c are 𝐾𝐾 ∙ 𝐿𝐿
2

= 𝑠𝑠 ∙ 𝐿𝐿
𝜋𝜋
 , valid for every integer 𝑠𝑠 > 0. 

The resulting deformed shapes are shown in Figure 2.4; all the first three modes 
have the highest deformation at midspan. 
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Figure 2.4: Analytical mode shapes, based on experiment B length. 

The critical Euler buckling load is then found in Equation 2.9: 

 𝐹𝐹𝑐𝑐𝑐𝑐 =
𝜋𝜋2 ∙ 𝐸𝐸 ∙ 𝐼𝐼

𝐿𝐿2   (2.9) 

From the maximum deflection at midspan, the Secant formula can be then derived: 

 

𝛿𝛿 �
𝐿𝐿
2� = 𝑒𝑒0  �

sin2 �𝐾𝐾 ∙ 𝐿𝐿2� + cos2 �𝐾𝐾 ∙ 𝐿𝐿2�

cos �𝐾𝐾 ∙ 𝐿𝐿2�
− 1�

= 𝑒𝑒0  �sec�𝐾𝐾 ∙
𝐿𝐿
2� − 1� 

(2.10) 

 𝑀𝑀�
𝐿𝐿
2�

= 𝐹𝐹 ∙ 𝑒𝑒0 + 𝐹𝐹 ∙ 𝛿𝛿 �
𝐿𝐿
2� =  𝐹𝐹 ∙ 𝑒𝑒0 ∙ sec �𝐾𝐾 ∙

𝐿𝐿
2� (2.11) 

If the maximum stress condition at midspan is then computed as follows: 

𝜎𝜎𝑙𝑙𝑚𝑚𝑚𝑚 �
𝐿𝐿
2� =

𝐹𝐹
𝐴𝐴 +

𝑀𝑀�𝐿𝐿2�
𝑊𝑊 =

𝐹𝐹
𝐴𝐴
⎝

⎛1 +
𝐴𝐴 ∙ 𝑒𝑒0 ∙ sec �𝜋𝜋2 ∙ � 𝐹𝐹

𝐹𝐹𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑙𝑙
�

𝑊𝑊
⎠

⎞ (2.12) 

The solution is found by iterating on F, setting as a limit state the onset of yielding 
in the midspan section 𝜎𝜎𝑙𝑙𝑚𝑚𝑚𝑚 �

𝑙𝑙
2
� = 𝑆𝑆𝑦𝑦. 

It should be observed, however, that this result would be conservative for ductile 
materials that can easily withstand the full section plasticization. 
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The other limitation of this approach is that at the very beginning, a Pinned-Pinned 
ends column has to be considered, thus somewhat increasing the conservativeness 
for a more stiff joining, such as the two-bolt connection in A. 

 

2.2.2. EC 1993-1.1 

The EC 1993-1.1, Annex BB [29] for lattice structures modifies the slenderness ratio 
in the buckling directions, depending only on the end-constrains and neglecting the 
eccentricity. 

If single bolt brace, the result is taken as the one from EC 1993-1.1 for columns (used 
in Section 1.2), without any amendment. 

If double bolted, the slenderness ratio has to be modified as follows: 

 
   

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.35 + 0.7 ∙ 𝜆𝜆𝑛𝑛, 𝑠𝑠𝑠𝑠 𝑣𝑣 − 𝑣𝑣
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.5 + 0.7 ∙ 𝜆𝜆𝑛𝑛, 𝑠𝑠𝑠𝑠 𝑥𝑥 − 𝑥𝑥 𝑡𝑡𝑠𝑠𝑎𝑎 𝑦𝑦 − 𝑦𝑦 

(2.13a) 
(2.13b) 

 

The resulting limit values can be quantitatively appreciated in Table 2.3 and 2.4. 

2.2.3. EC 1993-3.1 

EC 1993-3.1, Annex G1 [4] is specifically for lattice towers members and, similarly to 
the previous code, adds a modification of the slenderness for secondary braces to 
the base EC 1993-1.1 [29]. The element length is either the distance between the two 
inner bolts that connect it to other primary or secondary elements (Figure 2.5). In 
the current case, the system length is used instead (as it is the pivot position, in 
accordance to [30]). 

  

Figure 2.5: Buckling length, from Table G2, EC 1993-3.1 [4]. 

If singe bolt brace, the slenderness ratio has to be modified as follows: 

 



2| Chapter two: Validation of FE 
models 49 

 

 

 
   

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.35 + 0.7 ∙ 𝜆𝜆𝑛𝑛, 𝑠𝑠𝑠𝑠 𝑣𝑣 − 𝑣𝑣
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.58 + 0.7 ∙ 𝜆𝜆𝑛𝑛, 𝑠𝑠𝑠𝑠 𝑥𝑥 − 𝑥𝑥 𝑡𝑡𝑠𝑠𝑎𝑎 𝑦𝑦 − 𝑦𝑦 

(2.14a) 
(2.14b) 

If instead double bolted, the slenderness ratio has to be amended as follows: 

 
   

𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.35 + 0.7 ∙ 𝜆𝜆𝑠𝑠, 𝑠𝑠𝑠𝑠 𝑣𝑣 − 𝑣𝑣
𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 0.4 + 0.7 ∙ 𝜆𝜆𝑛𝑛, 𝑠𝑠𝑠𝑠 𝑥𝑥 − 𝑥𝑥 𝑡𝑡𝑠𝑠𝑎𝑎 𝑦𝑦 − 𝑦𝑦 

(2.15a) 
(2.15b) 

 

The resulting limit values can be quantitatively appreciated in Table 2.3 and 2.4. 

2.2.4. Graphical display of load limits 

The ultimate loads according to analytical formulas and standards are summarized 
in Table 2.3 and 2.4. 

 

Figure 2.6: Critical load in different flexural buckling axis, according to analytical 
solutions and standards, experiment A 

Mode 
Fcr in x-x, y-y 

[kN] 
Fcr in u-u 

 [kN] 
Fcr in v-v  

[kN] 

Euler 494.2 786.8 201.6 
Secant 104.8 120.9 201.6 

EC 1993-1.1 191.8 - 132.2 
EC 1993-3.1 213.8 - 147.7 

Table 2.3: Critical buckling loads for every bending axis, based on column A. 
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Figure 2.7: Critical load in different flexural buckling axis, according to analytical 
solutions and standards, experiment B. 

Mode 
Fcr in x-x, y-y 

[kN] 
Fcr in u-u  

[kN] 
Fcr in v-v  

[kN] 

Euler 146.8 233.8 59.9 
Secant 76.5 99.6 59.9 

EC 1993-1.1 115.4 - 51.7 
EC 1993-3.1 106.9 - 60.2 

Table 2.4: Critical buckling loads for every bending axis, based on column B. 

Note that experiment A is within the inelastic region, while B is in the elastic region 
in almost every considered axis (reference Figure 1.7).  

The lowest limit estimations appear to be the one from the Secant Formula in x-x or 
y-y axis, and the EC 1993-1.1 [29] and EC 1993-3.1 in the secondary axis (v-v). 

2.3. FE Model 
The FE analysis was carried out using a static displacement controlled procedure, 
since the slow displacement rate of the experiment should not introduce dynamic 
effects on the structure and, as it has been proved in the last Section, an angle's 
buckling curve is of the monotonic kind. 
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To match the experimental data, and to have a more clear and complete picture of 
sensitivity to variables, different models with different imperfection magnitude and 
direction, friction coefficient and/or bolt class have been analyzed. 

As for gusset plate properties, a simple linear elastic material model, with E=210000 
MPa, has been adopted as in [32], since the plate thickness (and overall size) is much 
larger than the angle and thus expected to experience very little deformation in the 
process (remaining in elastic regime). 

The bolts are also taken as linear elastic with E=210000 MPa, as in [32]. The bolt 
connection is designed according to Eurocode 1993-1.8 [33], with a bolt M20 class 
10.9 (Rm=1000 MPa, Sy=900 MPa) and a bolt pre-tensioning factor γM7=1: 

 𝑁𝑁𝑃𝑃𝑐𝑐𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑠𝑠𝑙𝑙𝑐𝑐𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 = 0.7 ∙ 𝑅𝑅𝑚𝑚∙𝐴𝐴𝑠𝑠
𝛾𝛾𝑀𝑀7

= 201600 𝑁𝑁  (2.16) 

AS is taken as the nominal bolt area with a diameter of 20mm. 

The friction coefficient is taken as in the FE model in [32], as a simple penalty factor 
f=0.25. 

Note that according to buckling curve b, Table 5.1, EC 1993-1.1 [29], a standards 
imperfection magnitude is e0=L/250 for elastic analysis e0=L/200 for plastic analysis. 
Y. M. Darestani et al. [17] and P.Uriz et al. [31] use a simple sinusoidal imperfection 
(maximum displacement at the center of the element) of 0.05-0.1% the length 
(e0=L/500 to e0=L/1000). J. Wang et al. [18] employed the Eigenmode Assembly Method 
(EAM) based on the superimposition of multiple imperfection modes obtained from 
a Linear Buckling Analysis (LBA). 

The following models have been used for experiment A: 

• Standard e0=L/300, f=0.25: with all the variables as in [32]; 

• Reduced imperfections e0=L/1350, f=0.25; 

• Reduced imperfections, 5.6 class bolt e0=L/1350, f=0.25; 

And for experiment B: 

• Standard e0=L/300, f=0.25: as in [32]; 

• Reduced imperfections e0=L/1350, f=0.25; 

• Multiple mode imperfections (EAM [5]) and increased friction e0=L/400, f=0.4; 
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2.3.1. Results for case A 

Despite lower axial stiffness (in Z, Figure 2.8), the deflection in the failure direction 
Y (Figure 2.9) perfectly matches both the experimental and numerical results ([30, 
32]), a sign that all the models undergo the same failure mode. 

 

Figure 2.8: Force – axial displacement (Z) curves  for model A [30, 32]. 

 

Figure 2.9: Axial force – midspan deflection curves (in Y and X) for model A [30, 32]. 

The models proved to be fairly accurate in the ultimate load estimation, as reported 
in Table 2.5. The connection slip barely affects the ultimate load of the column and 
the initial stiffness, but only the displacement at failure. 

 
Kettler 

EXP 
Kettler 

FEM 
e0=L/1350, 

f=0.25 
e0=L/300, 

f=0.25 
Bolt 5.6, 

e0=L/1350, f=0.25 

Load capacity [kN] 118.0 119.0 120.6 116.0 116.5 
Err. [%] - 0.8% 2.3% -1.6% -1.2% 

Table 2.5: Load comparison with the experimental value. 

A qualitative comparison with the failure mode of the real experiment is displayed 
in Figure 2.10. It is possible to notice how almost the entirety of the section is also 
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undergoing yielding upon buckling: there is an correlation between the two 
phenomena that reduces the load-bearing capacity as the length is within the 
inelastic buckling region.  

 

 
(a) FEM A, deformation scale 2.  

(b) Experiment A (A5 in [30]). 

Figure 2.10: Comparison with the real counterpart. 

 

Figure 2.11: Load capacity of every model, analytical solutions and standards. 
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The results are then compared with the analytical and standards for buckling in x-
x in Figure 2.11: the codes greatly overestimate this specific case, while the secant 
formula provides a more accurate description. The load eccentricity, perhaps, plays 
a more important role than the end restrain condition, if the collapse degree of 
freedom is left free to rotate, while the standards consider the brace closer to 
completely restrained in all directions. 

2.3.2. Results for case B 

 

Figure 2.12: Force – axial displacement (Z) curves for model B [30, 32]. 

 

Figure 2.13: Axial force – midspan deflection curves (in Y and X) for model B [30, 32]. 

As in model A, the numerical results show lower axial stiffness in Z (Figure 2.12), 
but the deflection in the failure direction in X is well matched (Figure 2.13), with all 
the models undergoing the same failure mode. Even with the 10.9 bolt, the single 
bolt connection slips with friction coefficient f=0.25. Only the model with increased 
friction (and EAM) does not display the behavior, thus better reproducing the 
experiment. 

The models showed a large scatter in the ultimate load estimation, largely 
dependent on the type and magnitude of imperfections and friction, as reported in 
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Table 2.6. The lower initial imperfection gives the higher ultimate load in this 
specific case. This is due to the fact that the superimposed buckling mode is in the 
opposite direction to the actual failure. 

 
Kettler 

EXP 
Kettler 

FEM 
e0=L/300, 

f=0.25 
e0=L/1350, 

f=0.25 
EAM, e0=L/400, 

f=0.4 

Load Capacity [kN] 98.5 107.0 106.9 85.0 93.7 
Relative Err. [%] - 8.6% 8.6% -13.7% -4.8% 

Table 2.6: Load capacity comparison with the experimental value. 

 
(b) FEM B, deformation factor 2. 

 
(b) Experiment B (C1 in [30]). 

Figure 2.14: Comparison with the real counterpart. 

In Figure 2.14, a qualitative comparison of the failure mode with the real 
counterpart: being in the elastic buckling area (Figure 1.7), the column does not 
undergo complete section plasticization at peak load (not even afterwards). 

The results are then compared with the analytical and standards for buckling in y-
y, in Figure 2.15. Overall, the results are better represented by the Eurocodes, 
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probably because the case more closely resembles the Pinned-Pinned column, upon 
which those standards are based. 

 

Figure 2.15: Load capacity for every model, analytical solutions and standards. 

2.4. Conclusive discussion on the results 
The validation procedure aimed to verify that the FE methods and the modeling 
approaches studied so far can be employed to accurately describe a real phenomena.  

Either of the analyzed models can achieve a good estimation (within 3%) in the 
ultimate load capacity for A, whereas for B only the EAM model achieved within 
5% accuracy. However, depending on which buckling imperfection mode is 
applied, the models show a large scatter in the ultimate load and displacement at 
collapse (around 3.9% difference in experiment A, 22.3% in B). This could be 
attributed to the clearances and assembly misalignments present within the real 
systems and not accounted in the FE model. 

The single mode superposition seem to be too restrictive in terms of buckling 
direction (as in B, it could be a "false" mode and the element would otherwise take 
a different path). The EAM method in [18] can be a more equilibrated approach. 

Furthermore, by simplifying the contact problem with a penalty friction coefficient 
(without displacement rate dependent effects) it might be possible to miss time 
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dependent effects that happen if the collapse is sudden (such is the nature of the 
instability). 

The analyzed standards for ultimate buckling load do not estimate effectively the 
ultimate load. The complexity of the end-restrain conditions is not trivial and cannot 
be portrayed by simplified formulas and assumptions. This is also in line to what 
Kettler et al. [30] have found similar results in their tests (Figure 2.16) and there is 
the need of a more accurate or less "conservative" design standard.  

 

Figure 2.16: Normalized member capacity – slenderness ratio for two-bolt connection 
experiments, compared to current standards [30]. Marked in red, the experiment A (A5 as 

in [30]). 
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3 Chapter three: Boundary conditions 
modeling 

Modelling a whole lattice tower as a full 3D assembly would be also time consuming 
and computationally unfeasible: a simpler and more effective approach is required. 

As seen in Chapters 1 and 2, the buckling modes and critical loads are highly 
dependent on the boundary conditions of the analyzed elements. In a lattice 
structure, the members are connected among each other, thus the load sharing and 
the flexibility of the joints is of extreme importance. 

The topic of modeling joints and restrains is not new: Y. M. Darestani et al. [17] 
analyzed the impact of nonlinear material, geometry, imperfections and joint 
flexibility; W. Q. Jiang et al. [34] used stiffness functions to describe joint behavior 
in a lattice structure.  

Relying on a single stiffness coefficient would not make for an accurate description 
of the slip phenomena after the friction limit is reached and the progressive shearing 
of the bolt shanks after the gap is cleared. A more complex modeling technique was 
first proposed by Ungkurapinan et al. [35], introducing a "joint slippage model" 
consisting of a series of linear stiffness coefficients, depending on the specific case. 

 

Figure 3.1: Bolted connection between bolted laps, slipping under tension [34]. 

Kettler et al. [36] offers a solution to this problem, by introducing a handy and user-
friendly 3-steps method to obtain end restrain stiffness, based on the experimental 
results in [30], with the ultimate goal of introducing it as a variable to be accounted 
for in the member design procedure. 

In the Chapter, Kettler's approach has been reviewed and some joint modeling 
options are tested and validated on the experimental results from [30].  



3| Chapter three: Boundary conditions 
modeling 59 

 

 

3.1. Kettler's approach to joint modeling 
The approach is based on three main steps: 

Step 1) Calibration of the FE model with equivalent geometric imperfections on 
experimental tests from literature or on additional tests. 

Step 2) Development of spring stiffness functions based on FE numerical results: the 
end restrain of the brace is loaded in each direction, recording the load – 
displacement curve. Only the gusset plate and the bolts are linear elastic, 
the column end is set as rigid, as the bending stiffness of the beam is already 
part of the following model. 

Step 3) Validation of the design model by comparison with experimental tests and 
with an additional FE study on 3D-angle members with detailed joint 
configuration.  

 

Figure 3.2: The three steps from Kettler's procedure, schematized [36]. 

Note that the purpose of Kettler's approach, is to outline new design rules for braced 
components: as it could be seen in the past sections, the present Eurocodes do not 
show great accuracy in forecasting of the load capacity for braced columns, even 
leading to overestimation. Understandably, a more detailed description is needed 
and it might find its roots in [36].  
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3.2. FE Model 
The first calibration step was carried out in the previous Chapter 2 experiments A 
and B, thus the FE models used refer to Section 2.3. All the following FE analysis, as 
before, were carried out using a static displacement controlled procedure, as the 
Load - displacement curve is of the monotonic kind (Figure 2.8 and Figure 2.12). 

The reference model to be matched was taken as the previous full 3D simulation 
"Standard e0=L/300, f=0.25", for two main reasons:  

• it has same input parameters as [32] and has fairly close results to both 
experimental and FE results [30, 32]; 

• It showed the slip at the bolted connections, thus more compelling from a 
"demonstrator" standpoint. 

To match the reference data, and to have a clearer and complete picture on some 
variables sensitivity, several models with different imperfection magnitude have 
been analyzed.  

3.2.1. Modeling of stiffness functions 

 

Figure 3.3: End model loading. 

The end stiffness functions have been retrieved from a full 3D model of the latter, 
but differently to the presented Step 2, deformable parts with elastoplastic material 
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characterization have been subjected to loading in every direction, from the column 
side, with the end of the gusset plate fixed in place (thus characterizing the whole 
system stiffness). 

As an example (as it is a straightforward representation), the resulting stiffness 
function for the case of tension and compression along Z axis, in experiment B 
(single-bolt restrain), is reported in Figure 3.4. It is possible to notice the bolt 
slippage and the full section yielding.  

All the directions shown in Figure 3.3 have been characterized in a similar manner. 

 

Figure 3.4: Stiffness functions for tension and compression in Z, experiment B. 

The resulting functions have been employed in a connector model that simulates 
what happens at the beam-ends, in the following ways: 

• Linear: by using the linear stiffness coefficients, using Shell element type; 

• Nonlinear: by using the complete force-displacement curve/stiffness function 
(as in Figure 3.4), with either 3D, Shell or Beam element types. 
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• Rigid: completely compliant joint (fixed) in A, with only a rotational degree 
of freedom in Y in B (able to pivot around the bolt axis), using Shell elements. 

Note that, differently to Kettler's, in which the beam is then extended to the points 
of force application, the column is cut at the joint end and the part in contact with 
the gusset is completely simulated by the stiffness function. 

 
(a) 3D end. 

 

 
(b) Connector model. 

Figure 3.5: 3D end and connector modeling. 

There are three main limitations to this approach: 

• local deformations close to the joint are misrepresented: the section surface 
at the cut is planar and compliant to the loading node, thus losing any 
possibility of deforming in both the joint model and the beam with connector 
(however, it could be improved by increasing the offset from the bolt); 

• multiaxial loading that cannot be properly represented by mere uniaxial 
stiffness functions, especially when friction plays an important role; 

• no time-dependent effect, such as dynamic friction or damping, can be 
modeled, as there is no possibility of knowing the displacement or load rates 
beforehand. 

3.2.2. EC 1993-1.8 for joint modeling 

The classification of joints as pinned, rigid or semi-rigid is addressed between 
Section 5, EC 1993-1.8 of the above-mentioned standard [33] and could hint at the 
correct way to model them. 

According to the standard, the classification depends on the initial stiffness:  
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• Rigid: 𝐾𝐾0 > 25 ∙
𝐸𝐸 ∙ 𝐼𝐼𝑣𝑣
𝐿𝐿

 (3.1) 

• Pinned: 𝐾𝐾0 < 0.5 ∙
𝐸𝐸 ∙ 𝐼𝐼𝑣𝑣
𝐿𝐿

 (3.2) 

• Semirigid: if it does not fit these two classes. 

The initial joint stiffness and the limit is reported in Figure 3.6 (in kN/rad). 

 

Figure 3.6: Limits according to EC 1993-1.8 [33]. 

 

Figure 3.7: Connection force – displacement curve according to different modeling 
strategies. 

The stiffness in X is over the rigid limit, thus the modeling as fixed can be an option. 
In plane (in Y), the two joints are clearly semi-rigid.  
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The standard, however, compares the two stiffness coefficients only with the lowest 
bending stiffness of the member, ignoring the possibility that considering the 
stiffness along other axes, the classifications could differ. As an example, 
considering the moment of inertia along x or y, both would fall into the semi-rigid 
category in X and be close to pinned in Y (Figure 3.8). 
 

 

Figure 3.8: Limits according to EC 1993-1.8, but considering the corresponding rotational 
axis. 

3.2.3. Results for A 

The displacement in Z (Figure 3.9) and the deflection in Y are perfectly matched 
(Figure 3.10), but in X most of the models show larger deviation. They are 
undergoing an intermediate mode between x-x and v-v, probably due to lower 
rotational stiffness in Z, as this does not happen in the completely rigid model, 
which has almost the failure mode as the 3D model and the experiment.  

 

Figure 3.9: Force – axial displacement (Z) curves  for model A [30, 32]. 
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Figure 3.10: Axial force – midspan deflection curves (in Y and X) for model A [30, 32]. 

Almost all the models have proven to be accurate in the ultimate load estimation, 
as reported in Table 3.1, the Shell elements show around a 5% to 10% overestimation 
with respect to the reference. Rigid and Linear models are able to represent the 
behavior almost as close as the others, probably due to the lack of slippage in the 
experiment. 

 
Fully3D 

REF. 
Shell, 

Rigid joint 
Shell,  

Linear joint 
3D, 

Nonlinear 
Shell, 

Nonlinear 
1D,  

Nonlinear 

Load Capacity [kN] 120.7 133.1 126.9 123.8 126.3 117.6 
Relative Err. [%] - 10.5% 5.3% 2.7% 4.8% -2.6% 

Table 3.1: Load capacity comparison with the 3D reference. 

 
 

 
(a) FEM A – With end 

connector model, 
deformation scale 2. 

 
(b) FEM A, deformation 

scale 2. 

 
(c) Experiment A (A5 in 

[30]). 

Figure 3.11: Comparison with the 3D FE reference and the real counterpart. 
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3.2.4. Results for B 

The load-displacement curves correctly show the slippage of the joints in axial 
direction (Figure 3.12), but not in the transversal (Figure 3.13). The deformation at 
ultimate load is identical in each direction, the failure mode is similar to the 
reference and the real counterpart, showing at least a fair level of accuracy. 

 

Figure 3.12: Force – axial displacement (Z) curves  for model B [30, 32]. 

 

Figure 3.13: Axial force – midspan deflection curves (in Y and X) for model B [30, 32]. 

Compared to the reference (Table 3.2), the ultimate load is overestimated by a factor 
of around 10%. The dissimilarity is probably due to a combination of large end-
displacements in multiaxial direction that cannot be well expressed by simple 
uniaxial stiffness functions. 
 

 
Fully3D 

REF. 
Shell,  

Rigid+Free Shell, Linear  
3D,  

Nonlinear  
Shell,  

Nonlinear 
1D,  

Nonlinear 

Load Capacity [kN] 106.9 103.7 117.6 117.8 119.2 115.1 
Relative Err. [%] - -3.0% 10.0% 10.2% 11.5% 7.7% 

Table 3.2: Load capacity comparison with the reference. 
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A qualitative comparison of the failure mode with the real experiment can be found 
in Figure 3.14. 

 

 
(a) FEM B – With end 

connector model, 
deformation factor 2. 

 
(b) FEM B, deformation 

factor 2. 

 
(c) Experiment B (C1 in [30]). 

Figure 3.14: Comparison with the 3D FE reference and real counterpart. 

3.3. Conclusive discussion on the results 
Different joint modeling methodologies have been tested and the results have been 
compared to the more detailed 3D FEM and experimental data. The following can 
be said about the results: 

• The simpler connector models, such as Rigid or Linear, have in general a fair 
accuracy on the display of at least the ultimate load and the right mode, and, 
given their simplicity, they are of interest in the study of the lattice tower.  

• Beam elements with joint connector models are as accurate as the other types, 
if not more. In other words, it is possible to assess that if the boundary 
conditions are well represented (and if the buckling mode is not local), the 
element type does not affect the load estimation. 
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• The single bolt model is strongly sensitive to initial applied geometrical 
imperfection, which partly explains the large range of ultimate loads 
obtained. 

 

Figure 3.15: Load - displacement curves for models with different initial 
imperfections. Depending on the applied imperfection magnitude, the ultimate 

load in (linear) connector models ranges of around ±34%, in 3D models of around 
25%.  

This shows how, more than the single initial imperfection magnitude, the 
imperfection shape and position within the brace can play a huge role in the 
load capacity estimation using FEM. This is supported by the studies of J. 
Wang et al. [18], which have found that, depending on the type and 
magnitude of the applied initial imperfection, the buckling capacity of tower 
members can vary between 82 and 125% of the nominal value. Similarly, in 
their study case, C. Affolter et al. [19] found a difference of around 10% in 
structure ultimate load estimation, depending on the applied mode.  
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4 Chapter four: Modeling of an 
assembly  

It is crucial to assess how the knowledge built up in the last few Chapters, in simpler 
models, would transfer to a more complicated system. 

The idea of using spring and dampers to model connections between lattice tower 
members is not new and it has been well documented: W.Q. Jiang et al. [34] and R. 
Ramalingam et al. [37] used Ungkurapinan stiffness functions [35] to model all the 
joints present in a lattice tower, then comparing the results with the experimental 
counterpart; M. Fong et al [38] applied linear spring to a simple model, 
experimentally verifying it. 

 

Figure 4.1: Model of the joints in [34]. 

In this Chapter, the joint modeling is applied to a simple subassembly of the lattice 
tower, later subjected to two different load cases, aiming to focus on different parts 
of the structure and visualizing what the effects of model simplification are. 

As it is not possible to validate the lattice structures results with design standards, 
nor with any analytical solution, due to large displacements in the non-elastic 
regime and variable joint flexibility, the results are only compared with a 3D model, 
when possible. Considerations on the applied methodologies are drawn in the view 
of employing them in the modeling of large lattice structures. 

4.1. FE Model 
Two similar sub-models have been built in order to test the capabilities of the 
methodology, the first one being a simple planar model of lattice structure face, the 
second a simplified section of the tower.  
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In all the simulations, a geometrical imperfection based on the previous LBA of 
e=10mm (e0=L/500, with reference L=5000mm) has been adopted. The material 
parameters were the ones from the bi-linear model in Chapter 1, with yield strength 
Sy=420 MPa, and young modulus E=210 GPa. 

Displacement controlled static step is again chosen as load application method, as 
the resulting load - displacement curve is monotonic. 

4.1.1. Planar model 

The structure is part of a section of the tower, specifically the 5th level from the base: 

 
Figure 4.2: Side of the full tower sketch, the 5th level highlighted. 

For the sake of reducing the modeling complications and possible misalignments, since the 
focus is only a comparative study between different methodologies, the face has been 
simplified, nullifying the tapering and rounding main the dimensions.  

The resulting shape, with dimensions, is reported in Figure 4.3. 
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Figure 4.3: Dimensions of the chosen model. 

Single-bolt connections have been placed in the horizontal braces (Figure 4.4b and 
4.4c) and double for the diagonals when attached to the main legs (Figure 4.4a), 
slightly simplifying the head and nut geometry as the average between the 
hexagonal head's inscribing and circumscribing circumferences. 

 
(a) Double-bolt 

 
(b) Single-pin 

 
(c) Single bolt 

Figure 4.4: Details of the joints of the lattice structure. 

Several model strategies have been tested: 

• 3D model: reference, with different friction coefficients f=0.05, f=0.25, f=2.0.  
Class 6 M16 (Rm=600 MPa, Sy=480 MPa) bolts have been used for the 
connections, according to Eurocode 1993-1.8 [33] with a bolt pre-tensioning 
factor γM7=1.25: 

 𝑁𝑁𝑃𝑃𝑐𝑐𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑠𝑠𝑙𝑙𝑐𝑐𝑛𝑛𝑙𝑙𝑛𝑛𝑒𝑒 = 0.7 ∙ 𝑅𝑅𝑚𝑚∙𝐴𝐴𝑠𝑠
𝛾𝛾𝑀𝑀7

= 67556 𝑁𝑁  (4.1) 

𝐴𝐴𝑠𝑠 is the nominal bolt area with a diameter of 16mm. 
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• Beam model: modeled in a single part made of beam elements rigidly 
connected; 

• Shell model: modeled in a single part made of shell elements rigidly connected; 
• Shell+Beam model: modeled in a single part with main legs modeled with shell, 

braces with beam, attached with stringers to have a more uniform load 
transfer. 

4.1.2. 3D sub-structure model 

The entirety of the section (highlighted in green in Figure 4.2) has been modeled, 
using similar strategies as in the planar model: 

• Beam model: modeled in a single part made of beam elements rigidly 
connected; 

• Shell+Beam model: modeled in a single part with main legs modeled with shell, 
braces with beam, attached with stringers to have a more uniform load 
transfer. 

A complete 3D model was not a possibility for such large substructure, due to time 
constrains in assembly, as it required the accurate positioning of such large number 
of parts and bolts. Even in a single part with only shell elements, the extrusion of the 
elements is as tedious and inefficient. Another limitation is the large number of 
elements created, exponentially increasing the computation time. 

 

Figure 4.5: Dimensions of the model face. 
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Figure 4.6: Model sections. 

4.1.3. Connector models 

Furthermore, three connector models have been analyzed for both the planar and 3D 
substructure, based on "Shell+Beam" builds, and with stiffness functions out of full 
3D joint characteristics, in a similar way to the second step of the connector-
modeling paragraph in Section 3.2.  

The joint undergoes a series of load cases (a total of 12, two in each direction), in 
order to obtain the load-displacement curve (or stiffness function). Subsequently, a 
connector element is put in its place, using the previously obtained joint data. 

The following models are created: 

• Shell+Beam, Linear Connector: initial stiffness coefficient. 
• Shell+Beam, Nonlinear Connector: full stiffness function. 
• Shell+Beam, Rigid+Free Connector: hinge in the single bolt, rigid in double. 

The result mimics what was done by W.Q. Jiang in [34]: 

   

Figure 4.7: Details of the connectors as joints in the simplified structure. 
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4.1.4. Results for planar substructure 

The load-displacement curves and the load capacity table, in terms of ultimate load 
on the single leg (total divided by two), are reported in Figure 4.8. None of the 
models has shown evidence of joint slippage. The ultimate load, in fact, does not 
have a large deviation in the 3D models when changing the friction coefficient, nor 
when using different connector models. 

 

Figure 4.8: Load - displacement curves at the loading points. 

 3D, 
f=0.25 

Shell Shell+Beam Beam 
Shell+Beam, 
conn Linear 

Shell+Beam, 
conn NL 

Shell+Beam, 
conn Rigid+Free 

Load [kN] 534.8 524.2 625.4 544.4 662.9 662.8 669.1 
Err. [%] - -2.9% 15.8% 0.8% 22.8% 22.8% 23.9% 

Table 4.1: Load capacity compared to the 3D model reference. 

The main reason could be that the buckling is localized in the main legs with a 
flexural- buckling mode in v-v axis, close to the boundary, thus limiting the load 
sharing between legs and braces. 

The models made solely of beam and shell elements appear to match the 3D results 
the best, in terms of ultimate load, while all the hybrid models, built with both shell 
and beam elements, overestimate the load capacity quite a bit and undergo a 
different mode (flexural-torsional buckling). However, the accuracy of the results is 
debatable, as the buckling mode is very dependent on the boundary conditions, 
which in this case are too close to the diagonals attachment points. 
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(a) 3D 

 
(b) Beam 

 
(c) Shell  

 
(d) Shell+Beam 

 
(e) Connector 

Figure 4.9: Different buckling shapes for different models, scale factor of 10. 

4.1.5. Results for 3D substructure 

The load-displacement curves and the load capacity table, in terms of ultimate load 
on each leg (total divided by four), are reported in Figure 4.10 and Table 4.2. 

 

Figure 4.10: Load - displacement curves at the loading points. 

 Shell+Beam Beam 
Shell+Beam, 
conn Linear 

Shell+Beam, 
conn NL 

Shell+Beam, 
conn Rigid+Free 

Load 3D structure [kN] 696.0 621.8 559.1 564.7 621.0 

Table 4.2: Load capacity comparison between 3D geometry models. 

In this case, the boundary conditions are well set and all the models undergo the 
same flexural buckling mode in the v-v axis. 

The difference between the models with rigid joints and the ones with connector 
stiffness is now more substantial. There is also a minor difference between the one 
using only the initial stiffness and the one using the joint model, the slip does not 
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change the load capacity. The model with rigid connectors shows a higher load of 
around 10% with respect to the linear and nonlinear stiffness models. This is in line 
with the results from Y. M. Darestani et al. [17] predicted, a load capacity reduction 
of 6% and an increase in displacement at ultimate load of 16.7% when using joint 
flexibility models accounting for slippage in large assemblies. 

The Shell+Beam strategy has between 12.1 to 24.5% higher instability load than the 
rest of the models. One reason might be the extreme stiffening provided by the 
stringer elements that connect the diagonals to the legs. 

 

 
(a) Beam 

 
(b) Shell+Beam 

 
(c) Connector 

Figure 4.11: Different buckling shapes for different models, scale factor of 10. 

However, since a 3D model accounting for joint slip was not analyzed, it is hard to 
say which modeling approach is the most accurate. 

4.2. Conclusive discussion on the results 
Two subassembly geometries have been analyzed with different modeling 
approaches and the results have been compared. 

Even if there is a clear overestimation, the joint simulation produces coherent results 
and can be adopted to achieve a physically accurate phenomena description. 
However, it requires consistent effort for 3D joint sub-model creation, stiffness 
function modeling, connector built up and validation, thus losing convenience if 
these steps have to be carried out for a large number of times. It might as well be 
easier to build a completely 3D structure. Moreover, connector models take a long 
to be set up, since no quick way to set up multiple joints at once is present in Abaqus 
2021.  
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The hybrid (Shell+Beam) models are the most suited for the modeling of a large 
structure of the studied case, being easy to set up. It consistently tends to 
overestimate the buckling capacity, thus being conservative in the sense of failure 
analysis. Moreover, contrarily to a model made only with 1D elements, it is also able 
to display different buckling modes other than the purely flexural. 

However, in a more general design approach, a Shell+Beam model is not suited for 
all the design phases, as a lower load capacity estimation is preferred. Nevertheless, 
it could be used for Failure Mode, Effects, and Criticality Analysis (FMECA), in which 
the correct reproduction of failure causes and effects is preferred.  
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5 Chapter five: Towers analysis and 
load capacity estimation 

The initial studies and analysis on-site suggest that the collapse of the structure is 
due to the overcoming of the load-bearing capacity due to excessive wind loads. 

The first topic to address is the load capacity estimation under quasi-static loading.  

Having perfected the approach to structural analysis for frame structures in the past 
Chapters, the main challenge was related to the wind direction and speed realistic 
estimation. Different design standards and experimentally derived methods have 
been compared. 

The structural analysis is conducted initially via LBA, to obtain an initial estimate, 
later with RIKS, to perform a static pushover analysis, determining the ultimate load 
as a margin with respect to the design values, and hinting on the post-buckling 
behavior. 

5.1. Line FE model for load estimation 
This model's goal is to set up the line loading. 

The entirety of the line segment from tower n19 to tower n26 has been modeled. The 
first and last towers have been neglected and replaced with pin joints, as they are 
"Abspannmasten" (tensioning pylons) designed to stop a cascade propagation in 
events of this type. 

The positioning of the towers (which stand over concrete foundations), has been 
done according to the technical data. They are aligned in an almost straight line. 

 

Figure 5.1: Tower position in the line. 

The modeling has been done following the conclusions drawn in Chapter 4. The 
two options were to use beam elements for the entirety of the structure or a hybrid 
between beam and shell elements. 
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In this initial stage, this model was used only for the load case estimation. As the 
main focus was to accurately reproduce the tower deformation within elastic 
domain, the towers are modeled using single-span 1D elements connecting the 
intersections, a stable enough solution that avoids the diverging plastic hinge 
behavior for loadings approaching collapse (more about that in Section 5.4). 

 
(a) 21 

 
(b) 22 

 
(c) 23 

 
(d) 24 

 
(e) 25 

Figure 5.2: Towers shape. 

The cables, as in X. Liu et al. [39], were modeled as truss elements, 1D elements that 
have only unidirectional tension elasticity, in accordance also to the ideal string 
hypothesis. 

The loading of the cable, on which the loading on the masts depends, is basically 
shape-governed, thus it is focal to have good precision in its estimation.  

The deformed shape of each wire under gravitational load was taken from technical 
drawings (Figure 5.3) using an image data extraction tool.  

The lack of data on the undeformed shape has been addressed via iterative 
estimation: 

1. A simple but effective first guess value could be obtained by subtracting the 
displacement under gravitational load of a straight string of the same span.  

2. By using Abaqus FE, the undeformed shape can be checked under gravity if 
it matches with the deformed. 

3. If not, correct the undeformed shape of the error, until it is small enough. 
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Figure 5.3: Line span dimensions [10]. 

 

Figure 5.4: Cable deformation under load. 

Another way could be to use the formula for catenary elements, but the matter is 
fairly complicated and not the scope of the study. 

An example of the method could be found in R. Anshika [40], or in X. Liu et al. [39], 
in which the method is applied for the determination of the sag profile. 

The ground profile was taken from the technical drawings as well, as a rigid surface 
swept between the profile underneath the line and the one 20m on the right side. 
This profile has been linearly extended further to around 80m, in order to contain 
the collapsed towers and cables. 
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Figure 5.5: Line model view. 

The span dimensions are the following: 

Considered span Span length [m] 
n19 – n20  321.1 
n20 – n21 445.4 
n21 – n22  204.4 
n22 – n23 368.5 
n23 – n24 325.3 
n24 – n25  409.0 
n25 – n26  329.3 

Total 2370.9 

Table 5.1: List of cable spans, source IED [41]. 

Property 
AAAC-600mm2 
(transmission) 

Steel-95mm2 
(earthwire) 

Cross-section area [mm2] 600.38  93.3  
Outer diameter [mm]  31.86 12.62  

Density [Kg/m3] 2813.3 7298.7  
Ultimate tension [kN] 177.1 123.5 

Modulus of elasticity [Mpa] 55000  175400  
Thermal expansion [10-6] 2.3  1.15 

Table 5.2: List of cables mechanical properties, source IED [41]. 
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Considered tower Elevation [m] 
n19 2388.8 
n20 2375.6 
n21 2381.7 
n22 2405.2 
n23 2348.0 
n24 2314.2 
n25 2256.6 
n26 2225.1 

Table 5.3: Line elevation, source IED [41]. 

As for the insulators, they have been modeled as beam elements with circular cross-
section of diameter 250mm, length of 4.95m and weight of 110 Kg. 

 
Figure 5.6: Insulators design [41]. 

5.2. Wind model 
How to model the wind is a challenging and focal task. Without experimental or 
computational reference, the only remaining option is to rely on standards. A 
comparison is required, to obtain a better sense of the problem and avoid too 
conservative assumptions. 

SIA 261/1 [13] and RS 734.31 [42] are considered as a mean of comparison with the 
load cases provided by IED [10], while the Eurocodes would provide a different 
perspective. 
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Moreover, an empirical method has been developed based on experimental data. 

All the following calculation methods have been integrated into a MatLab [43] code, 
in order to easily create the load cases in Abaqus [5] via Macros. 

The load, according to the different codes considered, can be applied in several 
ways: 

a) As an overall, considering the entire wind facing area; 

b) Level-wise, dividing the tower into sub-assemblies and applying the codes 
separately on each; 

c) To every single brace, accounting for the force separately on every element 
that the tower consists of. 

 

Figure 5.7: Structure subdivision into sections or levels for the wind load 
application. 

Since the first method is too simplistic for an appropriately accurate load estimation, 
and the third requires additional effort without assuring a realistic result, the second 
method was therefore chosen and the tower was divided into 18 levels and 3 arm 
sections.  

The load was applied on the structure nodes: 4 each level and 8 each arm. 
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The wind load on the cable has been applied as body-force, since truss elements in 
Abaqus do not support distributed loads: 

   𝑖𝑖𝑤𝑤(𝑧𝑧) =
𝐹𝐹𝑤𝑤

𝐴𝐴𝑤𝑤𝑙𝑙𝑐𝑐𝑒𝑒,𝑠𝑠𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑛𝑛 ∙ 𝑙𝑙𝑤𝑤𝑙𝑙𝑐𝑐𝑒𝑒
 

(5.1) 

When instead analyzing the single tower, the wind load for every cable is then 
applied to the arm tip, where the insulator is connected (Figure 5.8). 

 

Figure 5.8: Load application on the structure: in yellow on the levels and on the 
conductors, in red on the arms. 

In the following codes, only wind load is considered, without any overload or safety 
factor applied. 

5.2.1. RS 734.31 

The swiss norm RS 734.31 [42], also called “LeV” for German-speaking part 
("LeitungsVerordnung") or “OLEI” for French-speaking part (Ordonnance sur les lignes 
électriques), was written and published in 1994 and is the one used by all the Swiss 
companies to design lines and structures within Switzerland. 

It consists of a series of static load cases to verify the structure under working 
conditions (mainly weather: temperature, ice, wind, rain,…). 

An example of load case is the following: 
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Figure 5.9: Example of load case 3.1, RS 734.31 [42]. 

According to Appendix 15, the wind pressure depends on the maximum height of 
the structure: 

 

Figure 5.10: Wind pressure, Appendix 15, RS 734.31 [42]. 

As the structure height is 68 m, the wind pressure 𝑞𝑞𝑏𝑏 is therefore taken as 1200 Pa 
for the structure and 650 Pa for the wires. 

For design purposes, the wind pressure is usually applied on the wires with a 
reduction factor (between 0.76 and 1) dependent on the span. Since the studied case 
is not a regular event, the full pressure value was considered. 

The wind is applied to the structure without any profile (constant through the 
height), on the section projected area using the same shielding factor: 

   𝐹𝐹𝑙𝑙 = 𝑞𝑞𝑏𝑏 ∙ (1 + 𝛼𝛼𝑙𝑙) ∙ 𝐴𝐴𝑝𝑝𝑙𝑙  (5.2) 

5.2.2. SIA 261/1 

Swiss standards on actions on structures, derived from the Eurocodes. Chapter 6, SIA 
261/1 [13] on wind action is based on a dynamic pressure, characterized by a height 
profile dependent on type of terrain roughness: 

                       
𝑞𝑞𝑝𝑝(𝑧𝑧) = 𝑐𝑐ℎ(𝑧𝑧) ∙ 𝑞𝑞𝑏𝑏

𝑐𝑐ℎ(𝑧𝑧) = 1.6 ∙ �� 𝑧𝑧
𝑧𝑧0
�
𝛼𝛼𝑟𝑟

+ 0.375�
2 

(5.3) 
 

(5.4) 
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𝑧𝑧0 and 𝛼𝛼𝑐𝑐  depend on the terrain type, according to Table 4, SIA 261/1: 

 

Figure 5.11: Table 4, SIA 261/1 [13]. 

 

Figure 5.12: Resulting wind profile coefficients SIA 261/1 [13]. 

Even though it refers to flat land wind profile, curve II has been adopted, as the 
others refer to proximity with buildings or obstacles. 

The base pressure 𝑞𝑞𝑏𝑏 value can be derived from the measured values in the area of 
the event. However, no measurement system was active during the night of the 
collapse. 

SIA provides fortunately maps of wind pressure magnitude in Switzerland: 
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Figure 5.13: SIA 261/1, appendix E wind pressure map, Albula Passhighlighted [13]. 

 

Figure 5.14: SIA weather maps on their website, Albula Pass [12]. 

Wind pressure values of 1.1-2.7 kPa are taken according to SIA weather map 
website, as it better represent the area; 𝑞𝑞𝑏𝑏=1.1 kPa is taken as a conservative estimate. 

The force can be applied either via application on each single member, accounting 
for inclination and wind direction, or via application on the face projected area 
(Table 75, SIA 261/1).  
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Figure 5.15: Force application scheme, SIA 261/1  [13]. 

 

Figure 5.16: Table 75, SIA 261/1 [13]. 

As the average ratios 𝑙𝑙
ℎ
≈ 𝑠𝑠

ℎ
≈ 1, a slenderness factor of 1 had been used. The 

shielding factor was taken as a function of 𝐴𝐴𝑝𝑝
ℎ∙𝑙𝑙

. 

The total force on the profile is then obtained from the following formula: 

   𝐹𝐹𝑙𝑙 = 𝑐𝑐𝑒𝑒1i
∙ 𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟 i ∙ 𝑞𝑞𝑝𝑝i

∙ (1 + 𝛼𝛼𝑙𝑙) ∙ 𝐴𝐴𝑝𝑝𝑙𝑙  (5.5) 

As for the conductors, according to Appendix C, Table 74, they are considered as 
rough cylinders, with force coefficients from 1.1 to 1.3, depending on the wind 
pressure. 
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Figure 5.17: Table 74, SIA 261/1 [13]. 

The conductor force is then obtained through the following formula, where lcond is 
the wire length and dcond the diameter: 

   𝐹𝐹𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 = 𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟) ∙ 𝑙𝑙𝑐𝑐𝑐𝑐𝑠𝑠𝑎𝑎 ∙ 𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟  (5.6) 

5.2.3. Eurocode 1991-1.4 

Eurocode 1991-1.4 [44] is specific for wind action, based on the use of a peak velocity 
pressure, accounting for mean static plus dynamic stochastic component. 

The first step (Section 4, Eurocode 1991-1.4 [44]) is to find a characteristic 10-minutes 
mean wind velocity 10mt above-ground, that can be derived from the wind 
pressure characteristic of the geographical area. 

These values can be derived from SIA wind pressure maps via the formula: 

 𝑣𝑣𝑏𝑏0 = �2∙𝑞𝑞𝑏𝑏0
𝜌𝜌

 
(5.7) 

With the air density 𝜌𝜌 = 1.25 𝑘𝑘𝑘𝑘/𝑚𝑚3. 

The base wind velocity is then calculated as: 

   𝑣𝑣𝑏𝑏 = 𝑣𝑣𝑏𝑏0 ∙ 𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑛𝑛 ∙ 𝑐𝑐𝑠𝑠𝑒𝑒𝑚𝑚𝑠𝑠𝑐𝑐𝑛𝑛 ∙ 𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦  (5.8) 

𝑐𝑐𝑟𝑟𝑙𝑙𝑐𝑐𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑛𝑛 and 𝑐𝑐𝑠𝑠𝑒𝑒𝑚𝑚𝑠𝑠𝑐𝑐𝑛𝑛 are direction and seasonal wind stochastic variabilities, that can 
be assumed equal to 1, if no information on those aspects is given.  
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   𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑏𝑏𝑚𝑚𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦 = �
1 − 𝐾𝐾 ∙ ln (− ln(1 − 𝑝𝑝))
1 − 𝐾𝐾 ∙ ln (− ln(0.98)) � 

(5.9) 

Where probability for annual exceedance 𝑝𝑝 is set as 0.02, shape parameter K is 
recommended of 0.2. 

The base wind has then to be multiplied for the terrain roughness factors and the 
orography coefficient to obtain the mean wind velocity: 

   𝑣𝑣𝑙𝑙(𝑧𝑧) = 𝑣𝑣𝑏𝑏0 ∙ 𝑐𝑐𝑐𝑐(𝑧𝑧) ∙ 𝑐𝑐𝑐𝑐  (5.10) 

The first coefficient is calculated as a function of height, depending on the terrain 
type from Table 4.1, EN50341 (similarly to what done in SIA 261/1) Terrain type II is 
chosen, as there are no obstacles in the vicinity: 

   𝑐𝑐𝑐𝑐(𝑧𝑧) = 𝑘𝑘𝑐𝑐 ∙ 𝑙𝑙𝑠𝑠 �
𝑧𝑧
𝑘𝑘0
� (5.11) 

 

Figure 5.18: Table 4.1, EC 1991-1.4 [44]. 

The orography coefficient accounts for the increase in wind velocity over inclined 
ground profile: 

 

Figure 5.19: Figure A1, EC 1991-1.4 [44]. 
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The numerical calculation is a bit convoluted and, as the mountainous profile is 
complex and not treated in the standard (pass, an inclined valley in between two 
mountainsides, with some towers on an escarpment), would not prove accurate for 
the purpose anyway, hence the orography coefficient 𝑐𝑐𝑐𝑐 is taken equal to 1. 

The oscillatory wind component is considered via a turbulence intensity factor  

    𝐼𝐼𝑣𝑣(𝑧𝑧) = 𝜎𝜎𝑣𝑣
𝑣𝑣𝑚𝑚(𝑧𝑧)

 (5.12) 

    𝜎𝜎𝑣𝑣 = 𝑘𝑘𝑐𝑐 ∙ 𝑣𝑣𝑏𝑏 (5.13) 

With 𝜎𝜎𝑣𝑣 as wind velocity standard deviation, considered constant with height. 

The overall peak velocity pressure (accounting for the maximum dynamic wind 
velocity component) is then calculated according to the following formula: 

   𝑞𝑞𝑝𝑝(𝑧𝑧) = �1 + 7 ∙ 𝐼𝐼𝑣𝑣(𝑧𝑧)� ∙
1
2 ∙ 𝜌𝜌 ∙ 𝑣𝑣𝑙𝑙(𝑧𝑧) = 𝑐𝑐𝑒𝑒(𝑧𝑧) ∙ 𝑞𝑞𝑏𝑏 (5.14) 

This is extremely conservative: increasing of 7 standard deviations means to account 
for 99.99…% of the components in a normal distribution (the wind characteristic 
can be considered as such) so this rule might not apply.  

The resulting 𝑐𝑐𝑒𝑒 factor:  

 

Figure 5.20: Figure 4.2, EC 1991-1.4 [44]. 

The peak velocity pressure compared with SIA and RS 734.31 distributions, is 
shown in Figure 5.21: 
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Figure 5.21: Comparison of different design standards' pressure distributions. 

It is clear that the mean velocity pressure distribution without the dynamic 
component is more realistic and in line with the previously analyzed codes, thus it 
is going to be used in the study, thus: 

   𝑞𝑞𝑝𝑝(𝑧𝑧) =
1
2 ∙ 𝜌𝜌 ∙ 𝑣𝑣𝑙𝑙(𝑧𝑧) (5.15) 

The force on the surfaces is given by the following equation (Section 5.3): 

   𝐹𝐹𝑙𝑙 = 𝑐𝑐𝑠𝑠 ∙ 𝑐𝑐𝑟𝑟 ∙ 𝑐𝑐𝑒𝑒,𝑙𝑙 ∙ 𝑞𝑞𝑝𝑝,𝑙𝑙 ∙ 𝐴𝐴𝑝𝑝,𝑙𝑙 (5.16) 

Where 𝑐𝑐𝑠𝑠 ∙ 𝑐𝑐𝑟𝑟 is the structural factor, 𝑐𝑐𝑒𝑒 the force coefficient and 𝐴𝐴𝑝𝑝 the projected 
area. 

The structural factor includes the aeroelastic effects, accounting for the structure 
response to the peak loading. As this factor, based on calculations on the structure 
dynamics, does not have a large overall effect (±2%) and the loading is considered 
quasi-static, it is considered as 1. 

The force coefficient is a combination of the force coefficient without end-flow 
(vortex formation due to profile shape, that causes additional drag) and an end-flow 
factor: 

   𝑐𝑐𝑒𝑒 = 𝑐𝑐𝑒𝑒0 ∙ 𝜑𝜑𝜆𝜆 (5.17) 
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The force coefficient can be derived from interpolation of Figure 7.34, EC 1991-1.4  
and 7.35, EC 1991-1.4: 

 

Figure 5.22: Figure 7.34, EC 1991-1.4 [44]. 

 

Figure 5.23: Figure 7.35, EC 1991-1.4 [44]. 

Where the Reynold's number: 

   𝑅𝑅𝑒𝑒 =
𝑎𝑎 ∙ 𝑣𝑣𝑙𝑙(𝑧𝑧)

𝜈𝜈  (5.18) 

In which d, l are the section reference lengths (Figure 5.23), 𝜈𝜈 the kinematic viscosity 
of the air (15∙10-6 m2/s). The section solidity is the ratio between the projected and 
the section area: 

𝜑𝜑 =
𝐴𝐴𝑝𝑝
𝑎𝑎 ∙ 𝑙𝑙 (5.19) 

The end flow coefficient can be derived from interpolation of Figure 7.36, EC 1991-
1.4: 
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Figure 5.24: Figure 7.34, EC 1991-1.4 [44]. 

Where the section slenderness for lattice structures is: 

    𝜆𝜆𝑠𝑠𝑙𝑙𝑐𝑐 = �
 0.7 ∙

𝑙𝑙
𝑎𝑎

70     𝑠𝑠𝑖𝑖  0.7 ∙
𝑙𝑙
𝑎𝑎

> 70
 

(5.20) 

The resulting formula for calculations is the following: 

   𝐹𝐹𝑤𝑤(𝑧𝑧) = 𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧) ∙ 𝐴𝐴𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 (5.21) 

The wires can be considered very rough cylinders of diameter dcond (Section 7.9, EC 
1991-1.4): 

   𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 = 𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 ∙ 𝜑𝜑𝜆𝜆,𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 ∙ 𝜅𝜅 (5.22) 

Where the wire force coefficient can be found in Figure 7.28, EC 1991-1.4 and the end 
flow coefficient in Figure 7.34, EC 1991-1.4, related to a slenderness coefficient: 

    𝜆𝜆𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 =

⎩
⎨

⎧  0.7 ∙
𝑙𝑙𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟
𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟

70     𝑠𝑠𝑖𝑖  0.7 ∙
𝑙𝑙𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟
𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟

> 70
 

(5.23) 

Where k is the equivalent roughness.  
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Figure 5.25: Figure 7.28, EC 1991-1.4 force coefficient depending on Reynolds number [44]. 

Being coupled wires, an extra factor κ=1.1 is being considered if they are wind-
aligned: 

 

Figure 5.26: Table 7.14, EC 1991-1.4 [44]. 

5.2.4. Eurocode 1993-3.1 

Eurocode 1993-3.1 [4] expands on the general rules of 1991-1.4 [44], focusing on lattice 
towers. 

The force coefficient is better estimated in Annex B: 

𝑐𝑐𝑒𝑒 = 𝑐𝑐𝑒𝑒0 ∙ 𝐾𝐾𝜃𝜃 (5.24) 

𝐾𝐾𝜃𝜃 is the wind incidence factor and, for angle sections, it is equal to: 
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   𝐾𝐾𝜃𝜃 = 1 + 𝐾𝐾1 ∙ 𝐾𝐾2 ∙ sin2(2 ∙ 𝜗𝜗) (5.25) 

   𝐾𝐾1 = 0.55 (5.26) 

   𝐾𝐾2 = �
0.2          𝑠𝑠𝑖𝑖 𝜑𝜑 = 0 ÷ 0.2   𝑐𝑐𝑜𝑜 𝜑𝜑 = 0.8 ÷ 1
𝜑𝜑            𝑠𝑠𝑖𝑖 𝜑𝜑 = 0.2 ÷ 0.5                             
1 − 𝜑𝜑    𝑠𝑠𝑖𝑖 𝜑𝜑 = 0.5 ÷ 0.8                              

 (5.27) 

And 𝜗𝜗 is the angle of incidence with respect to the face normal. 

The force coefficient is given by the following formula (for square base structures): 

   𝑐𝑐𝑒𝑒0 = 3.9 ∙ (1 − 1.5 ∙ 𝜑𝜑 + 𝜑𝜑2) (5.28) 

The total coefficient at a given angle of attack, however, is given by the combination 
of the ones of the structure faces: 

   𝑐𝑐𝑒𝑒 = 𝑐𝑐𝑒𝑒1 ∙ cos2(𝜗𝜗) + 𝑐𝑐𝑒𝑒2 ∙ sin2(𝜗𝜗) (5.29) 

   𝑐𝑐𝑒𝑒1 = (1 + 𝜂𝜂1) ∙ 𝑐𝑐𝑒𝑒0 ∙ 𝐾𝐾𝜃𝜃 (5.30) 

   𝑐𝑐𝑒𝑒2 = (1 + 𝜂𝜂2) ∙ 𝑐𝑐𝑒𝑒0 ∙ 𝐾𝐾𝜃𝜃+90𝑜𝑜  (5.31) 

 

Figure 5.27: Load application in EC 1993-3.1 [4]. 

Where 𝜂𝜂1 and 𝜂𝜂2 are the shielding factors from the faces on the opposite side (behind 
face 1 and face 2), function of the solidity: 

   𝜂𝜂𝑐𝑐 = (1 − 𝜑𝜑)1.89 (5.32) 
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Figure 5.28: Figure B2.4, EC 1993-3.1 [4]. 

As for the wires, a simple force coefficient 𝑐𝑐𝑒𝑒 is used, according to Table B2.1, EC 
1993-3.1, to be applied with the pressure distribution calculated in EC 1991-1.4: 

 

Figure 5.29: Table B2.1, EC 1993-3.1 [4]. 

5.2.5. EN50341 

In a similar fashion to Eurocode 1993-3.1 [4], EN50341 [45] expands on the general 
rules of 1991-1.4 [44]. 

The first point touched is related to the air density value, here corrected for 
temperature and elevation in Table 4.2, EN50341: 

 

Figure 5.30: Table 4.2, EN50341 [45]. 
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According to the formula, being the average altitude of the line 2300mt (it spans 
between 2200 and 2400 mt) and the temperature considered -20 C, the resulting air 
density is of 0.857 Kg/m3. 

The main calculation formula is very reminiscent of the ones used before in EC 1993-
3.1: 

   𝑐𝑐𝑒𝑒 ∙ 𝐴𝐴𝑝𝑝 = 𝑐𝑐𝑒𝑒1 ∙ 𝐴𝐴𝑝𝑝1 ∗ cos2(𝜗𝜗) + 𝑐𝑐𝑒𝑒2 ∙ 𝐴𝐴𝑝𝑝2 ∙ sin2(𝜗𝜗) 
(5.33) 

   𝑐𝑐𝑒𝑒0 = 3.96 ∙ (1 − 1.5 ∙ 𝜑𝜑 + 𝜑𝜑2) 
(5.34) 

   𝐾𝐾𝜃𝜃 = 1 + 0.2 ∙ sin2(2 ∙ 𝜗𝜗) (5.35) 

   𝑐𝑐𝑒𝑒1 = 𝑐𝑐𝑒𝑒01 ∙ 𝐾𝐾𝜃𝜃 
(5.36) 

   𝑐𝑐𝑒𝑒2 = 𝑐𝑐𝑒𝑒02 ∙ 𝐾𝐾𝜃𝜃+90𝑜𝑜  
(5.37)   

A special case are the cross arms, which in this case are only a function of the sole 
frontal area: 

   𝑐𝑐𝑒𝑒 ∙ 𝐴𝐴𝑝𝑝 = 𝑐𝑐𝑒𝑒0 ∙ 𝐴𝐴𝑝𝑝,2 ∙ (0.4 ∙ cos(𝜗𝜗) + sin(𝜗𝜗)) (5.38) 

   𝑐𝑐𝑒𝑒0 = 3.96 ∙ (1 − 1.5 ∙ 𝜑𝜑 + 𝜑𝜑2) (5.39) 

With the frontal projection the one perpendicular to the wind: 

 

Figure 5.31: Arm effective area according to EN50341 [45]. 
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The resulting force from the wires, the support with equal line spans on both sides, 
following a straight trajectory (no turning in the line), as in the studied case, only a 
transversal force is applied, perpendicular to the line direction: 

 

Figure 5.32: Wire force direction EN50341 [45]. 

   𝑄𝑄𝑤𝑤𝑐𝑐 = 𝑐𝑐𝑐𝑐 ∙ 𝐺𝐺𝑐𝑐 ∙ cos2(𝜗𝜗) ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧) ∙ 𝑙𝑙𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 ∙ 𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟 (5.40) 

Where 𝐺𝐺𝑐𝑐 is the structural factor, which can be found in Table 4.4c, EN50341: 

 

Figure 5.33: Table 4.4c, EN50341 [45]. 

The considered height is the one of the center of mass of the wire. Since the cable 
position range from a height of 25 to 55 mt and the span is of around 370m, the 
structural coefficient is taken as 0.685 for all of them. 

The drag factor 𝑐𝑐𝑐𝑐 is the one from Table B2.1, EC 1993-3.1 (Figure 5.29). 
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5.2.6. Experimentally derived wind load model 

Another calculation method has been developed starting from experimental force 
coefficient values, in order to potentially obtain a more realistic load estimation. 

Individual members are considered separately and the force on each is then 
summed up at every level, to simplify the force application within the FE software 
and to be quickly compared with results from the standards. 

Experimental values from S. Prud'homme et al. [46] have been adopted for the 
structural elements. In their study, the drag and lift coefficients of angle profiles 
were measured, and the effects of turbulence, Reynold's number, profile shape 
(thickness and edge sharpness) were analyzed. 

The experimental values are given in terms of drag and lift coefficients, based on 
the projected or the nominal area ("normalized" values): 

   

𝐶𝐶𝐷𝐷 =
𝐹𝐹𝐷𝐷

1
2 ∙ 𝜌𝜌 ∙ 𝑈𝑈

𝐶𝐶𝐿𝐿 =
𝐹𝐹𝐿𝐿

1
2 ∙ 𝜌𝜌 ∙ 𝑈𝑈

 

(5.41) 
 
 
 

(5.42) 

 

Figure 5.34: Wind speed and forces directions, according to Simon Prud'homme et al [46]. 

The chosen dataset are the normalized values of drag and lift coefficients from 
experiment S52x3R.  

According to the experiments, the Reynolds number and the profile shape might 
give different coefficient values, but for the sake of simplicity, those effects are not 
taken into account in the present study. 

The data has been interpolated via pchip interpolation (piecewise shape-preserving 
piecewise cubic interpolation, reduces overshoot in non-sinusoidal functions, 
something between a regular spline and linear interpolation): 
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Figure 5.35: Drag coefficient interpolation from experimental data [46]. 

 

Figure 5.36: Lift coefficient interpolation from experimental data [46]. 

A shielding factor of 0.85 has been applied on the elements of the non-wind-facing 
side. 

Deriving the force direction and magnitude for every member is a complex 
trigonometric problem: 

 

Figure 5.37: Force application on each member of the structure. 
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   𝐹𝐹𝐷𝐷 = 𝐶𝐶𝐷𝐷(𝛼𝛼45) ∙ 𝐴𝐴𝑛𝑛𝑐𝑐𝑙𝑙 ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧𝑙𝑙) ∙ cos2(𝛼𝛼𝑙𝑙) (5.43) 

   𝐹𝐹𝐿𝐿 = 𝐶𝐶𝐿𝐿(𝛼𝛼45) ∙ 𝐴𝐴𝑛𝑛𝑐𝑐𝑙𝑙 ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧𝑙𝑙) ∙ cos2(𝛼𝛼𝑙𝑙) (5.44) 

Where α45 is the angle with the plane normal to the member, and α45 the one with 
the reference face in the plane. 

The drag from the velocity component parallel to the element is neglected, thus the 
resulting drag and lift forces lie on the normal plane of the member. 

The conductor forces are based on the experimental values from J. C. Stroman et al. 
[47] experimental works, in which he measured the drag coefficient of different 
cable models.  

Test specimen 142-15026-2 [47] was chosen as reference, since the conductor type 
(steel core with aluminum strands) resembles the studied case the most. 

 

Figure 5.38: Cable section type (source Swissgrid) [47]. 

A coefficient of 1.05 is taken as mean value, as a Reynolds number higher than 10^5 
is expected: 

 
Figure 5.39: Drag coefficient of Test specimen 142-15026-2 [47] varying Reynold's number. 
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Since the cables are coupled, a factor of 1.15 is added to the total force, according to 
SIA 261/1. 

The cable span between towers n22 and n23 was chosen as reference, as it is 
representative of the segment between tower n22 and n26, close to the average 
dimensions. 

The wires deformed shape (due to gravity) is subdivided into smaller elements, and 
on each, the same method is applied and the forces are then summed in each 
direction.  

 

Figure 5.40: Cable profile used, subdivided into smaller elements. 

Although more precise than a simple formula, it does not account for the 
deformation due to wind. 

 

Figure 5.40: Drag force direction. 

    𝐹𝐹𝐷𝐷 = 𝐶𝐶𝐷𝐷 ∙ 𝐴𝐴𝑛𝑛𝑐𝑐𝑙𝑙 ∙ 𝑞𝑞𝑝𝑝(𝑧𝑧𝑤𝑤) ∙ cos2(𝛼𝛼𝑙𝑙) (5.45) 

In this case, the drag from the velocity component parallel to the element is also 
neglected, thus the resulting drag force lays on the normal plane of the member. 

5.2.7. Models comparison and considerations 

A comparison between wind models can be useful to understand the 
conservativeness of the assumptions made.  
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Tower n23 has been taken as a reference, since it is going to be the focus of further 
analysis. The base data in Table 5.4 has been chosen in order to equalize the initial 
assumptions to have a more fair comparison. 

Standard 
Base pressure for 
the structure [Pa] 

Wind profile 
model 

Base pressure for 
the cables [Pa] 

RS 734.31 1250  RS 734.31 650 
SIA 261/1 1100 SIA 261/1 650 

EC 1991-1.4 1100 EC 1991-1.4 650 
EC 1993-3.1 1100 EC 1991-1.4 650 

EN50341 1100 EC 1991-1.4 650 
Experimentally 
derived model 

1100 SIA 261/1 
650 

Table 5.4: Standards base pressure values. 

The forces have been computed in MatLab [43] with changing wind approaching 
angle, shown in a polar plots in Figure 5.41. 

In terms of total forces on the structure, the forces are the highest at 45˚, and the 
Eurocodes (EN50341 [45], EC 1991-1.4 [43] and EC 1993-3.1 [4]) are definitely more 
conservative. 

The forces from the experimentally derived model have a magnitude in between EC 
1993-3.1 and EC 1994-1.4, with a maximum obtained between 0˚ and 25˚. 

The forces at the conductors are very similar in terms of magnitude per approaching 
angle, going from the maximum at 0˚, to zero at 90˚ (the only exception being the 
experimentally derived one). 
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(a) Total force on the structure. 

 
(b) Total force on the cables. 

 
(c) Total force (structure + cables). 

Figure 5.41: Total forces according to different standards, shown in a polar plot with 
respect to the angle of attack to the structure. 
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Figure 5.42: Forces per level height, with purely transverse wind (0˚). 

The total values of forces for purely transverse wind (0˚) are the following: 

Standard 
Total force on the 

structure [kN] 
Total force on 
the cables [kN] 

Total forces 
[kN] 

RS 734.31 134.91 123.83 257.06 
SIA 261/1 119.95 123.83 242.70 

EC 1991-1.4 313.51 92.87 406.38 
EC 1993-3.1 205.75 92.87 298.60 

EN50341 222.54 63.61 286.16 
Experimentally 
derived model 

321.75 117.14 438.90 

Table 5.5: Total forces according to different standards, purely transverse wind. 

In general, the experimentally derived method has proven not to be less 
conservative than the others. 

Since the purpose of the study is to verify if the collapse was possible under specific 
weather conditions, to keep the load assumption conservative (in the sense of a 
failure analysis), the wind load according to SIA 261/1 has been selected. 
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As for the load on the cables, the assumption of 650 Pa on the wires (in accordance 
with RS 734.31) was a little too optimistic, thus, the experimental model has been 
adopted. 

Another reason to use these two values is that IED [10] have as well employed SIA 
261/1 in their calculations as well, thus being a good cross-reference. 

5.3. Load model validation 
As it is not possible to extract data from real experiments, for obvious budget 
constraints, the only way is to cross-validate the models built in different platforms: 
PLS-Cadd and TOWER models from IED, analytical solutions and Abaqus FE results. 

The main load cases to be verified are the ones under gravitational load and under 
transverse wind. 

5.3.1. Analytical model 

A simple analytical verification is to assume the line is longitudinally balanced 
under gravitational load.  

At each insulator, the horizontal forces have to be the same in the two attached 
spans (Figure 5.43). Moreover, the sum of the vertical component at the two sides 
has to equal the weight of the wire (Figure 5.44). Knowing the deformed shape of 
the wires, it is possible to obtain the weight and each angle at the wire ends:  

𝑡𝑡𝑐𝑐𝑡𝑡𝑒𝑒𝑜𝑜 𝑒𝑒𝑞𝑞𝑢𝑢𝑠𝑠𝑙𝑙𝑠𝑠𝑏𝑏𝑜𝑜𝑠𝑠𝑢𝑢𝑚𝑚    𝑇𝑇𝐻𝐻1 = 𝑇𝑇𝐻𝐻2       (5.46) 

𝑐𝑐𝑡𝑡𝑏𝑏𝑙𝑙𝑒𝑒 𝑒𝑒𝑞𝑞𝑢𝑢𝑠𝑠𝑙𝑙𝑠𝑠𝑏𝑏𝑜𝑜𝑠𝑠𝑢𝑢𝑚𝑚    �
 𝜌𝜌𝑤𝑤𝑙𝑙𝑐𝑐𝑒𝑒 ∙ 𝑙𝑙𝑤𝑤𝑙𝑙𝑐𝑐𝑒𝑒 ∙ 𝐴𝐴𝑤𝑤𝑙𝑙𝑐𝑐𝑒𝑒,𝑠𝑠𝑒𝑒𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑛𝑛 =  𝑇𝑇𝑉𝑉1 + 𝑇𝑇𝑉𝑉2
𝑇𝑇𝐻𝐻1 = 𝑇𝑇𝐻𝐻2                                                             

(5.47a) 
(5.47b) 

Tension at wire ends and vertical forces on the tower can be used for reference. 

 

Figure 5.43: Equilibrium at each tower. 



108 
5| Chapter five: Towers analysis and 

load capacity estimation 

 

 

 

Figure 5.44: Equilibrium at each cable. 

5.3.2. Only gravitational load 

The results are reported below: 

Tower 
Tran. Load 

[kN] 
Long. Load 

[kN] 
Vert. Load 

[kN] 
Tension 1 

[kN] 
Tension 2 

[kN] 

21 0.0 0.0 9.6 31.4 30.2 
22 0.0 0.0 19.6 31.1 31.0 
23 0.0 0.0 13.6 31.1 29.9 
24 0.0 0.0 13.9 30.4 29.3 
25 0.0 0.0 13.3 30.6 29.4 

Table 5.6: Conductor cable forces according to analytical solution. 

Tower 
Tran. Load 

[kN] 
Long. Load 

[kN] 
Vert. Load 

[kN] 

22 0.0 0.7 20.5 

23 0.0 0.3 12.8 

24 0.0 0.6 13.1 

25 0.0 -0.2 12.4 

Table 5.7: Conductor cable forces according to PLS-Cadd [10]. 

Tower 
Tran. Load 

[kN] 
Long. Load 

[kN] 
Vert. Load 

[kN] 
ΔFV to 

analytical [%] 
Tension 1 

[kN] 
Tension 2 

[kN] 

21 0.0 0.4 9.0 -6.3% 29.1 29.5 

22 0.0 -0.2 19.8 1.0% 30.6 29.7 

23 0.0 0.1 13.4 -1.5% 30.3 28.8 

24 0.0 0.3 13.7 -1.4% 29.6 28.2 

25 0.0 0.0 13.0 -2.3% 29.8 28.4 

Table 5.8: Conductor cable forces according to Abaqus FEA. 
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Having longitudinal mismatch on the order of just a few hundred Newtons, against 
a tension of tens of thousands, the line can be considered balanced. 

5.3.3. Under wind load 

As there was no reference cable deformed shape under wind loading, the 
comparison is only between the two finite element models: 

Tower 
Tran. Load 

[kN] 
Long. Load 

[kN] 
Vert. Load 

[kN] 

22 16.4 0.3 27.4 

23 18.9 -0.4 13.1 

24 20.2 0.0 12.8 

25 19.6 -1.7 11.8 

Table 5.9: Conductor cable forces according to PLS-Cadd [10]. 

Tower 
Tran. Load 

[kN] 
Long. Load 

[kN] 
ΔFT to [10] 

[%] 
Vert. Load 

[kN] 
Tension 
1 [kN] 

Tension 2 
[kN] 

21 18.4 1.3 - 7.0 51.7 49.2 

22 17.2 -1.1 4.9% 25.3 52.6 50.1 

23 19.6 -0.3 3.7% 13.6 52.9 50.4 

24 18.7 0.0 -6.4% 13.6 52.7 50.2 

25 20.3 -0.7 3.6% 12.6 53.5 50.9 

Table 5.10: Conductor cable forces according to Abaqus FEA. 

The results match with 6% of error, there might be some minor difference in the two 
model cable shape. As it is not possible to have certainty on which model is built 
with larger error, or the real cable shape at the moment of the collapse, the line 
model can be considered verified. 

5.4. Tower FE model  
The purpose of this model is to estimate the ultimate load capacity of the structure 
under the analyzed load cases, thus being able to reproduce the complete structural 
characteristic. 

The tower FE Model in Abaqus has been built up starting from the technical 
drawings provided by the SwissGrid. 
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As the masts in the collapsed line were built with minor differences, tower number 
n23 (the second from the top of the escarpment) was chosen, the one that contains 
the most recurring elements from all the others, the tallest, with the largest wind 
facing area (thus the largest force applied and resulting momentum at the 
basement), and the only one with strongly uneven legs length. 

As a result of the previous analysis in Chapter 4, there are two feasible options in 
modeling large structures: Beam or Shell+Beam elements. 

The 1D beam configuration is however not free of complications: stress 
concentration in the area of beam element intersection halts the convergence of the 
solution, mainly due to the complexity of load sharing between elements connected 
to the same node in which a plastic hinge is forming, and the non-uniqueness of the 
bifurcation mode in this specific scenario. 

 
Figure 5.45: Local yield at intersections (plastic hinge), that can reduce 

convergence. 

This kind of issue was not present in the models analyzed before, as the buckling 
modes superimposed on the entirety of the structure provided a more guided 
failure mode. In such large model, the principal buckling modes are localized in a 
few key areas, while in load-displacement analysis multiple concurring failure spots 
can appear all over the structure. 

The problem cannot be easily resolved via mesh refinement, as it increases the 
number of elements undergoing plastic deformation at the intersection, worsening 
the problem. Improvements in solution stabilization can be made:  
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• decreasing the number of elements in the member (up to a single element), 
sacrificing solution accuracy. 

• dissipative effects introduction into "Static, General" procedure, as it assures 
the reach of a converging solution, however in exchange of reduced solution 
accuracy. The other way is to use "Dynamic, Implicit" or "General, RIKS", as 
these effects are already built into the solver by default, without 
compromises. 

• slightly change the material model, to avoid instantaneously large 
displacement when yield limit is reached, by adding slight inclination to the 
curve. 

In order to be conservative according to failure analysis, the Shell+Beam model with 
rigid connections was chosen, as it has consistently overestimated the results in 
Chapter 4. 

The hybrid model is built with main legs made with shell elements, and diagonals 
and horizontal braces made with quadratic beam elements. The upper part (above 
the lower arms) is simply made of beam elements, as it has been proven not to be as 
critical. 

Moreover, it appears to be a more promising trade-off, improving on the local 
instability being able to simulate accurately what happens at the diagonals 
attachment points. 

 
Figure 5.46: No local yield at intersections if it is modeled with Shell elements. 

Note that neither of the two presented models contains load eccentricity, as the beam 
elements lay in the same plane as the two flanges of the leg's angle section. This 
effect might play a role in the structural capacity. 
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Figure 5.47: Hybrid shell and beam elements model. 
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5.5. Linear Buckling Analysis (LBA) 
The initial LBA on the tower is performed in order to localize potential failure points 
on the structure, identify the most critical failure direction and provide buckling 
imperfections. 

As it is a quicker and more practical procedure, it is suited for finding which wind 
direction is the most unfavorable for the structure, even though it does not provide 
the ultimate load of the structure, but only the onset of instability. 

This can be achieved by creating a series of load cases in MatLab and via setting up 
an Abaqus Macro function that iteratively copies the model and changes the force 
direction and magnitude. 

Gravity and vertical cable load are applied as a dead load in a pre-loading step, and 
the wind load is then used as a perturbation (both on the structure and the 
connectors). 

The result from this analysis is displayed in the following polar plots, depending on 
the wind approaching angle: 

 

Figure 5.48: Instability load as from LBA, in terms of total load, against SIA 261/1 loadcase. 

Another way to look at the results is to see them in terms of structure utilization: 

   𝑈𝑈𝑡𝑡𝑠𝑠𝑙𝑙𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠 (𝜗𝜗) =
𝐹𝐹𝑆𝑆𝐼𝐼𝐴𝐴 261/1(𝜗𝜗)

𝐹𝐹𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑒𝑒,𝐿𝐿𝐿𝐿𝐴𝐴(𝜗𝜗)       
(5.34) 
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Figure 5.49: Instability load as from LBA, in terms of utilization factor, against SIA 261/1 
load case utilization. 

Few observations can be drawn from this analysis: 

• although the basement legs in tower n23 are different in length, there is 
negligible ultimate load variation asymmetry. 

• the unfavorable wind direction is between 10˚ and 25˚ to the transverse 
direction, in which the wind forcing is equal to the LBA instability load. 

• the failure mode is always focused between the 7th and 8th levels of the tower: 

 
(a) Mode 1, 0˚ 

 
(b) Mode 2, 0˚ 

Figure 5.50: Result of LBA, transverse wind forcing (0˚), scale factor=500. 
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(a) Mode 1, 24˚ 

 
(b) Mode 1, 96˚ 

Figure 5.51: Result of LBA, wind acting at 24˚ and 96˚, scale factor=500. 

If further eigenvalues are analyzed, another possible failue mode localized on the 
second level can be seen: 

 
(a) Mode 3, 0˚ 

 
(b) Mode 4, 0˚ 

Figure 5.52: Result of LBA, transverse wind forcing (0˚), scale factor=500. 

However, the eigenvalue for these modes is higher, around 2.14 (equivalent to a 
total force of 502.68 kN). 

Other two load cases have been analyzed, under purely transverse wind conditions 
(0˚), in order to see what load is the more unfavorable on the structure: 

1. wind on structure (119.9 kN) as dead load (cable load as perturbation); 

2. wind on the cables (117.1 kN) as dead load (structure load as perturbation). 
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 In both these cases the failure mode is also localized in the same spot (7th level) and 
the total ultimate load is quite close: 

Case Perturbation 
Perturbation 

Magnitude [kN] 
1st Eigenvalue from 
LBA (Max/Applied) 

Max Total Load 
[kN] 

ref Total load 237.1 1.04 247.76 
1 Only connector load 117.1 1.14 253.39 
2 Only wind on structure 119.9 1.08 246.59 

Table 5.11: Maximum load according to LBA. 

The ultimate load capacity does not change drastically between the analyzed cases, 
but the wind load on the structure appears to be slightly more critical in the sense 
of an LBA. 

SIA 261/1 load of 237.1 kN has been taken as a reference also fur further analyses. 

5.6. Load capacity and model imperfection sensitivity 
G. Piskoty et al. [48] and J. Wang et al. [18], which studied the effects of 
superimposed buckling imperfections the collapse of a roof and a steel lattice tower 
due to structural instabilities, as well as the analysis developed in the previous 
Chapters 2 and 3, pointed out that the sensitivity to imperfections can significantly 
affect the ultimate load capacity of the structure. 

Section 5.3.3, Eurocode 1993-3.1 [4], specifies a formula for standard imperfections to 
be adopted during analysis: 

   

𝑒𝑒0 = 𝛼𝛼𝑙𝑙 ∙ 𝐿𝐿/500

𝛼𝛼𝑙𝑙 = �0.5 ∙ �1 +
1
𝑚𝑚�

 

(5.48) 

(5.49) 

In which m is the number of members of the bracing system, in the analyzed case 
m=668, thus 𝛼𝛼𝑙𝑙 = 0.7076 and 𝑒𝑒0 = 𝐿𝐿/706.5. 

This imperfection amplitude is used for all the following imperfections. 

The ultimate load is estimated using a RIKS procedure, in which gravity and vertical 
cable load are applied as a dead load in a pre-loading step, and the lateral wind load 
is then scaled according to the load-displacement curve path. 
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5.6.1. Superimposed buckling imperfections 

In order to specifically trigger a single failure mode, as the buckling mode 
deformation is localized (applying the multiple ones simultaneously would not 
show a combination), the buckling modes previously found in the LBA are 
superimposed: 

1) Buckling modes 1 and 2 (7th level), amplitude 3.06mm (𝑒𝑒0 = 𝐿𝐿/706.5  L=2.17m); 

2) Buckling modes 3 and 4 (2nd level), amplitude 3.8mm (𝑒𝑒0 = 𝐿𝐿/706.5,  L=2.17m); 

3) Buckling modes 3 and 4 (2nd level), amplitude 8.96mm (𝑒𝑒0 = 𝐿𝐿/300, L=2.69m); 

5.6.2. Missing structural elements 

IED [10] pointed out that the lack of structural capacity of some reinforced elements 
might be crucial to the structural capacity. 

S. D. Eslamlou et al. [49], as well, analyzed the impact of element removal on the 
tower capacity.  

The following configurations were analyzed: 

 
CASE1: 

missing of 2 
braces at 5th 

level; 

 
CASE2: 

missing of 5 
braces at 5th 

level; 

 
CASE3: 

missing of 2 
braces at 1st 

level; 

 
CASE4: 

missing of 8 
braces at 1st 

level. 

Figure 5.53: Removal of structural elements displayed. 

RIKS analysis requires buckling modes 1, 2, 3 and 4 to be superimposed (magnitude 
of 1.6mm, 𝑒𝑒0 ≈ 𝐿𝐿/1400), in order to guide the failure, improving convergence. 

5.6.3. Support displacement 

This type of imperfection can be quite harmful to the structural integrity, as proved 
by W. M. Wang et al. [16] and M. Jian et al. [50], who respectively analyzed, via 
numerical methods, the effect of displacement at tower basement supports. 
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The displacement value range used in the mentioned articles is on the order of tens 
of centimeters, due to ground foundations movement over time. 

In the case of the studied failure, the foundations were made of stiff concrete, 
carefully replaced after the 1987 event. A small magnitude in the order of a few 
centimeters can still however be present and being overlooked. 

 

Figure 5.54: Foundations of mast n25, unaffected by the collapse (source Swissgrid). 

Three hazardous cases have been analyzed and compared to the pristine structure: 

 
CASE1: single 

support 
displacement, 

vertical and lateral 
of 15mm; 

 
CASE2: two 

supports move 
downward and 

sideways of 15mm; 

 
CASE3: the two 
supports move 

inward and down 
by 15mm. 

Figure 5.55: Support movement cases displayed. 

As in the previous case, buckling modes 1, 2, 3 and 4 (Figure 5.50 and 5.52) were 
superimposed with a magnitude of 1.6mm. 

The stress state after application of the displacement can be considerably high, 
reaching, in the worst case, a peak of around 190 MPa in some elements (Figure 
5.56). 
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Figure 5.56: Stress state after CASE 3, scale factor of 5. 

5.6.4. Conductor load unbalance 

The possible longitudinal load unbalance of the line can potentially cause a torsional 
moment on the line or an increase of the load: 

 
(a) CASE1 and CASE2: Torsional effect in 

y: 2 kN in opposite directions at each 
connector, for a total torsional moment 
of 100 kNm; CASE 2 without 5th level 

reinforcements. 

 
(b) CASE3: Bending effect in x: 2 kN 

in the same direction at each 
connector, for a total longitudinal 

force of 16 kN. 

Figure 5.57: Torsional and bending effects due to longitudinal load unbalance. 

Buckling modes with a magnitude of 1.6mm were applied as in the previous case. 

5.6.5. Imperfection sensitivity analysis results 

The results of the imperfection sensibility are summarized in the following Table 
5.12, as absolute and relative (with respect to SIA 261/1 load of 237.1 kN) magnitude. 
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Case 
Load in transverse 

dir. [kN] 
Load capacity 

(applied/ref.) [%] 
Position of the 

failure [level n.] 
Buckling case 1 313.9 132% 7th  
Buckling case 2 292.9 123% 2nd  
Buckling case 3 244.0 103% 2nd  

Missing el. case 1 321.3 135% 7th  
Missing el. case 2 320.9 135% 7th  
Missing el. case 3 292.9 123% 2nd  
Missing el. case 4 288.2 122% 2nd  

Support displ. case 1 246.8 104% 2nd  
Support displ. case 2 282.4 119% 2nd  
Support displ. case 3 314.9 133% 7th  

Unbalanced case 1 324.0 137% 7th  
Unbalanced case 2 323.7 136% 7th  
Unbalanced case 3 278.0 117% 2nd  

Table 5.12: Maximum load according to LD analysis. The reference is SIA 261/1 value in 
Table 5.5 (237.2 kN of total force).  

 

Figure 5.58: Recurring failure positions highlighted. 
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It is possible to draw the following conclusions: 

• The failure consistently occurs in the 7th or 2nd level. As imperfections are 
introduced in the 7th level, the ultimate load ranges from 1.32 to 1.37 times 
the reference load. The load capacity at 2nd level appears to be even more 
sensitive to imperfections, ranging from 1.03 to 1.23 times the reference. 
Particularly unfavorable is the displacement at the support of one single leg.  

• The lack of structural reinforcements does not appear to cause any variation 
to the load capacity of the tower, even if coupled to other imperfections 
(unbalanced, case 2). 

• The failure is inelastic buckling driven, only a small portion of the section is 
plasticized when the ultimate load is reached. 

5.7. Post-buckling analysis 
The tower post-buckling behavior, according to the RIKS procedure (reference 
Figure 5.59), is not monotonic, as the load is not aligned to the buckling elements. 

This means that the Arch-Length method does not have a single bifurcation path 
anymore for the remaining elements of the section, resulting in solution divergence.  

 

Figure 5.59: Load - displacement curve from Missing el. case 4 as an example. It is possible 
to notice the two legs buckling sequence. Note that in the real case the two would fail 

almost simultaneously, as the force applied to the structure does not decrease.  
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Therefore, to obtain a more stable estimation of the remaining capacity after the first 
elements had failed, a pushover analysis has been carried out in a model in which 
the 7th level these elements are removed. 

The tower is able to sustain itself under its own weight, but, as expected, the wind 
load-bearing capacity falls from 313.1 kN (reference Buckling case 1, Table 5.12) to 
39.4 kN (around 87.4% reduction), thus the sudden collapse of the structure. 

If the buckled elements are instead removed from the 2nd level, the tower is not able 
to withstand even its own weight. 

It is possible to say that: 

• The tower loses almost all the load-bearing capacity when the first elements 
fail.  

• In the post-buckling phase, the failure sequence remains localized, leaving 
the rest of the tower pretty much intact and unaffected. 

 
(a) Missing elements at 7th level 

 
(b) Missing elements at 2nd level 

Figure 5.60: Post-buckling deformations, scale factor 10. 
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(a) Failure at midheight, tower n22, 7th 

level highlighted. 

 
(b) Failure at the base, tower n23, 2nd level 

highlighted. 

Figure 5.61: Towers as found after the event. Notice the failure propagates downwards in 
the case of tower n22, as well as in tower n23, hindering the capacity of the tower, which 

suddenly collapses. 

5.8. Brief analysis of tower n22 
Up to this point, tower n23 was the one considered for the analysis, as it well 
represent the other n24 and n25 in terms of load case and shape. 

Although having a similar geometry as well, n22 has an additional vertical force on 
the conductor connectors, that might make a difference: 

Tower Tran. Load 
(kN) 

Long. Load 
(kN) 

Vert. Load 
(kN) 

n22 17.2 -1.1 25.3 

n23 19.6 -0.3 13.6 

Table 5.13: Comparison of cable forces under wind load according to Abaqus FEA. 

Note that the wind load applied to tower n22 is lower than in n23, because the 
structure is around 5m shorter and the neighboring cable span a total of 572m 
against 693m (18% longer for tower n23). 
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Tower Wind force on 
cables (kN) 

Wind force on 
structure (kN) 

Total wind force 
(kN) 

n22 105.26 110.88 216.14 

n23 119.95 117.14 237.09 

Table 5.14: Reference load according to SIA 261/1. 

Moreover, being the one identified as the origin of the collapse from most of the 
parties involved in the study ([10]), it is interesting to see how the margin compares 
with tower n23. 

Mind that the modeled tower n22 lacks important reinforcements and auxiliaries 
structures (antennas and radio equipment) present in the real counterpart, which 
might increase the wind loading and the load capacity. 

The results of the initial LBA are quite close to the ones of the other towers, both in 
terms of eigenvalue and eigenmode, as the failure occurs at the 7th level in the same 
manner and with a similar margin from the perturbation value. However, the other 
Eigenmodes were not located at the 2nd level, but rather at the 10th (Figure 5.62): 

Tower 
Failure position 

[n. level] 
Eigenvalue from 

LBA [max/applied] 
Max. total load  

[kN] 
n22 7th  1.025 221.5 
n22 10th  1.744 376.9 
n23 7th  1.045 247.7 
n23 2nd  2.135 502.2 

Table 5.15: Results from LBA, with perturbation loads from SIA 261/1. 

 

(a) Mode 1, failure at 7th level 

 

(b) Mode 3, failure at 10th level 

Figure 5.62: Result of LBA for tower n22, transverse wind forcing (0˚), scale factor=500. 
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A RIKS analysis has been performed, with introduced first mode buckling 
imperfection of  𝑒𝑒0 = 𝐿𝐿/706.5 ("Buckling case 1" analyzed before), and subsequently 
a post-buckling analysis at the 7th level. The results are compared in terms of 
absolute and relative values with the ones from tower n23 in Table 5.16. Tower n22 
and n23 relative values refer to SIA 261/1 loads of 216.1 and 237.1 kN respectively 
(Table 5.14). 

Case Tower 
Load in transverse 

dir. [kN] 
Ultimate limit 

(applied/ref.) [%] 
Failure position 

[level n.] 
Buckling case 1 n22 274.3 127% 7th  
Buckling case 1 n23 313.9 132% 7th  
Buckling case 2 n23 292.9 123% 2nd  

Table 5.16: Ultimate wind load from LD analysis, reference loads according to SIA 261/1. 

Case Tower 
Load in transverse 

dir. [kN] 
Load capacity reduction  

(post-buckling vs buckling) 
Post-buckling at 7th n22 15.9 -94.3% 
Post-buckling at 7th n23 39.4 -87.4% 

Table 5.17: Ultimate load in post-buckling analysis. 

In terms of total wind load applied, the transverse load-bearing capacity of tower 
n22 is 10.6% lower in LBA and 12.2% in LD analysis than of tower n23, mostly 
attributed to the extra vertical cable load. 

If the relative margin is referenced instead, the relative loads are within a 3% 
difference in both analysis types (for the same failure mode), which is to be expected 
as transmission line towers are purposely designed with similar safety margins. 

The fact that the structures fail in the same position in both cases, hints that could 
be the point with the lowest structural surplus. 

5.9. Comparison with IED report 
IED in [10] have analyzed the structure in terms of single-member "utilization 
factor", based on member design limits (buckling, section yielding onset, member 
ends and bolted joints capacity).  

The elements with the largest utilization were initially localized in the lower part of 
tower n22 (Figure 0.15). Just a few diagonals at the 4th or 5th level had utilization over 
100%. Therefore, their collapse hypothesis considered these elements to be the first 
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to fail, which led to an increase of utilization in the main legs at the 4th level (from a 
base of 50%, up to 204%), causing the structure to crumble (Figure 5.63). 

However, this hypothesis does not account for possible damage during collapse to 
members underneath the first failing level, which had supposedly remained 
perfectly intact. 

 

Figure 5.63: Failure positions in tower n22 highlighted, according to IED [10] (yellow) and 
this study (red). 

The resulting margin with respect to the design values (SIA 261/1) is close to the one 
calculated by the LBA and RIKS analysis (Figure 5.64), for both towers n22 and n23. 
However, the members with the largest utilization are not located in the same area! 

 

Figure 5.64: Towers load capacity, according to IED [10] (yellow) and this study (red). 
Lower and upper estimates are shown for tower n22 (IED) and n23 (reference Table 5.12). 
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5.10. Conclusive discussion on the results 
Viable wind load models have been compared and a load case for the line has been 
estimated. The two towers of the line have been subjected to a pushover analysis to 
determine their load-bearing capacity and safety margin in that condition. 

It is possible to say that: 

• The towers have limited capacity margin (maximum of 37%) with respect to 
the reference load case SIA 261/1, which proved that the towers were close to 
their limit. A failure due to wind only can be plausible. 

• Both towers have no safety margins if compared with Eurocode standards 
(which have considerably higher total load than the SIA 261/1, since they 
account for an additional dynamic component).  

• The results from LBA and RIKS analyses are close to the utilization factors 
calculated by IED  for the same load case ([10]). Their failure position, 
however, was located more towards the base of the towers, in contrast to the 
state the structures were found after the event. Moreover, as it was 
demonstrated in Chapter 1 and 2, design standards do not always match the 
member capacity nor the stability limit, as the stress state in lattice structure 
members is extremely end-restrains dependent. 

• The structure is very sensitive to specific imperfection modes, such as 
buckling or support displacement. The applied imperfections, however, do 
not change the main failure modes, which are located in the same two spots 
of the 2nd and 7th levels in both towers n22 and n23. Particularly unfavorable 
is the displacement at the support of one single leg, while the missing 
structural reinforcements do not affect the load capacity. 

• The load capacity calculated by the RIKS analysis is around 30% higher than 
the values from LBA. Section yielding or redundant members might increase 
the capacity over the stability limit. 

• The failure is inelastic buckling driven: only a small portion of the section is 
plasticized when the ultimate load is reached. 

• The tower loses almost all the load-bearing capacity when the first elements 
fail.  

• In the post-buckling phase, the failure sequence remains localized, leaving 
the rest of the tower pretty much intact. The remaining damage found on the 
real towers could be attributed to the fall damage and contact with the 
ground. 
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6 Chapter six: Cascade of the 
transmission line 

The other main objective of the study is to prove that a cascade is plausible, and to 
reproduce it, trying to estimate which of the towers has the highest probability of 
causing a cascade on the line. 

The topic is not well documented in the literature, as the majority of the studies 
focus on the causes of a single tower failure.  

Under the same load case as Chapter 5 (wind perfectly transverse to the line), to 
maintain a certain continuity, the feasibility of two possible line failure modes was 
investigated: 

1) Cascade effect: line collapse due to dynamic load on the neighboring towers' 
through the conductors, measuring the overload at cable connectors on the 
rest of the line. 

2) Collapse sequence: the other towers collapse in a second moment with 
respect to the first, due to reduction in load-bearing capacity caused by 
conductor force unbalance with a tower on the ground. 

Collapse of the single towers and the cascade sequence have been simulated. 

6.1. Line FE model  
To simulate the failure of the elements, the model was subdivided in core levels and 
linked with connector elements, to which failure load can be assigned. 

Each connector has set the failure load of the above level (Figure 6.1). 

The contact of towers and cables with the ground was modeled as normal 
exponential spring, allowing small compenetration, and without any transverse 
action (frictionless), greatly improving simulation stability. The resulting downside 
is the loss of any sort of physical accuracy starting from the moment the tower or 
the cables touch the ground. However, the behavior after the contact is very 
dynamic and not very meaningful anyhow. 

Another simplification lays in the fact that it was not possible to introduce any 
stiffness nor damping of the connector models, as it is complex to estimate with 
accuracy. Thus, when one fails, the other will behave as a simple spring 
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The simulations have been carried out using "Dynamic, Implicit" procedure, as it 
offer quicker computation if the simulation time is large, at expense of risking to 
miss low-frequency dynamics.  

This trade-off was accepted since the quasi-static preloading steps to reach an 
equilibrium state under gravity and wind, last around 600s (10 min). During initial 
loading, the system, as it contains many free degrees of freedom, can easily undergo 
dynamic effects, such as cable galloping vibrations (longitudinally in the line). 

The other limiting factor to this approach is the restriction from importing data, 
such as coordinates, out of connector elements, thus limiting the quick static 
preloading transferring to Dynamic, Explicit simulations across Abaqus models using 
"restart" or in "initial condition" functions.  

6.1.1. Connector failure criteria 

 

Figure 6.1: Tower n22 dissected into selected sections. 

In Abaqus 2021 the criteria for connector failure is a uniaxial force or momentum 
limit. However, the loading on the assembly components during collapse can 
become complex and multiaxial. 
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Several configurations were tested, also accounting for section yielding criteria 
under shear and bending moment. However, the failure appears to be purely 
buckling driven, even during the post-collapse, without noticeable difference 
whether or not these other criteria were implemented. 

The connectors were modeled as pinned joints, coupling only the translational 
degrees of freedoms, as the bending bearing capacity of the members is nullified 
moment after the collapse.  

The limit for the conductor connector and insulator is set at 110 kN, only under pure 
tension (according to their specifications), although this has never been reached. 

The compressive limit is then found via substructure behavior simulation: the key 
levels, alongside the one above and one underneath in order to provide boundary 
conditions, are subjected to displacement-controlled compression. 

A buckling imperfection of 𝑒𝑒0 = 𝐿𝐿/706 was introduced to each level. 

 

Figure 6.2: Load-Displacement curve of the 2nd level, tower n23. 
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The collapse at every leg happens almost simultaneously and the ultimate load 
estimation is straightforward, except for the 2nd level in tower n23, in which the 
buckling of each leg happens in a sequence, due to different leg length (Figure 6.2). 
In this very case, the chosen ultimate load has been assumed as the ultimate one for 
leg 1, and as the mean one for legs 2, 3, 4, to be a more conservative estimation in 
the sense of the failure analysis. 

The limit under pure tension is set as the yield limit of the section. 

The limit loads for each section are summarized in the following table: 

Level 
Failure load in 

compression [kN] 
Failure load in 
tension [kN] 

8th  580.6 982.4 
7th  1006.1 1365.5 
6th  1006.9 1365.5 

2nd – tower n23 850.3 – 936.3 1553.8 
2nd – tower n22 1227.9 1553.8 

2nd – tower n24, n25 1252.2 1553.8 

Table 6.1: Connector failure criteria at each level. 

Note that tower n22 had undergone first levels reinforcement (addition of "butterfly 
profiles") to allow mounting of radio equipment and antennae, which was taken 
into consideration in the capacity study. Hence, the 2nd level might be sturdier than 
estimated. 

 

Figure 6.3: Tower n22, reinforcements made at the basement level (yellow) and at 
the diagonals (red) [11]. 
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6.1.2. Model validation 

Each simplified tower is loaded until connector failure, and the failure position and 
ultimate wind load are compared to the one of the single tower model, to assure 
continuity between the two methods: 

Model 
Failure position 

[level n.] 
Ultimate load 

tower model [kN] 
Ultimate load line 

model [kN] 
Error 
[%] 

Tower n22 7th 274.3 313.3 +14.2% 
Tower n23 2nd  292.9 272.4 -6.8% 

Table 6.2: Failure load in the two towers, single tower and line models compared. 

Even though they were built from the same premises, the two models show 
different behavior in comparison to the tower model. This hints that there might 
have been a more complex loading than pure compression of the member.  

However, the ultimate values found in this manner are still within the range of load 
capacities estimated in the more complete single tower model. Hence, as this model 
has not been used for ultimate load estimation, a larger tolerance can be adopted 
and it can be considered acceptable. 

6.2. Cascade hypothesis: effect of tower dynamic 
collapse 

A falling tower can bring to the ground its neighboring towers along with it.  

The loading that passes through the cables is dissipated through the whole line, 
thus, it is important to look at the forces at the insulator connector points (arm tips 
of the tower) during the fall.  

An example, tower n23 falling is analyzed. The earth wire connector was omitted 
as it was broken, perhaps during the event.  

Shortly after the tower starts to fall (0), the towers n22 and n24 are subjected to an 
immediate load release in the transverse and vertical direction (around 1s in the 
timeline), as the two neighboring cable segments are released.  

The fall of the tower is slowed by the cable inertia, proof of which is in the positive 
transverse and vertical force on tower n23 (I). The release of the horizontal balancing 
cable load is evident in the towers n22 and n24, pulled in the opposite longitudinal 
directions by the other standing spans (to towers n21 and n25 respectively).  
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I. Long. load release in 

neighboring towers 

 
II. Tower n23 touches the 

ground 

 
III. Cable "whip effect". 

Figure 6.4: Collapse of tower n23. 

 

Figure 6.5: Tower n23 collapsing, insulator forces on towers n22, n23 and n24 
normalized with the reference component before the collapse. Dashed, the single 

insulator force, in red the mean between the tower's insulators. 
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The tower n23 starts to pull the neighboring towers and, as tower n23 touches the 
ground (II), the load is released, only to come back with a sort of "whip" effect of the 
interaction between cables and the ground (III). A similar waveform can be seen in 
the studies of F. Alminhana et al. [15]: the force initially drops as soon as the cable 
connector is broken, just to raise to maximum moments after. 

There is a delay of around 0.15 to 0.3 s (depending on which tower or which cable 
is considered) from what happens to tower n23, to the moment the effect is "felt" by 
the other two. 

This behavior is similar in the collapse of every of the other towers, especially the 
one in tower n23 and n24 collapse (Figure 6.6). 

 

Figure 6.6: Comparison of towers n22, n23 and n24 collapsing, insulator mean 
forces normalized with the reference component before collapse, and time 

normalized at the instant tower n22 touches the ground.  

The mismatch in the collapse time and response delay in the neighboring towers 
can both be attributed to the different shape and length of the cable spans. The 
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marked difference in the collapse of tower n22, might lay in the fact that it collapses 
at midheight and it is located the most elevated in the line segment. 

Collapsing 
tower n. 

Time to contact 
with terrain [s] 

Neighboring tower n. 
ΔFLongitudinal. 

[kN] 
ΔFTransverse 

[kN] 
ΔFVertical 

[kN] 

Tower n22 2.21 
Uphill: Tower n21 -101.4 211.8 176.4 

Downhill: Tower n23 88.2 118.2 42.6 

Tower n23 2.75 
Uphill: Tower n22 333.6 146.8 157.1 

Downhill: Tower n24 -233.9 220.2 60.4 

Tower n24 2.46 
Uphill: Tower n23 367.1 165.0 105.5 

Downhill: Tower n25 -76.2 132.0 57.2 

Table 6.3: Additional loads due to neighboring tower collapsing (sum of the six 
components), reference to the design load in Table 5.5 (SIA 261/1). 

The load increase with respect to the reference is enough to make the neighboring 
towers fall, no matter the failure mode or which tower collapses first.   

The tower most likely to cause a cascade effect is tower n23, as it is causes a large 
overload on its neighbors. If tower n22 were the first to collapse, it would have 
introduced a large loading on tower n21 as well, possibly causing its collapse as 
well. 

6.2.1. Check on the connector cables and the insulators 

As none of them has failed during the event, they have been modeled without 
failure criteria. However, some damage to the cables and insulator was visible, but 
it had been associated with the fall (secondary damage). 

The limits are posed in the form of limit tension on the elements. According to LeV 
1994, the maximum capacity of the cable has to be set at 2/3 of the ultimate strength: 

Property 
Insulator AAAC-600mm2 

(transmission) 
Steel-95mm2 
(earthwire) 

Ultimate tension [kN] 107.1 177.1 123.5 
Maximum allowed LeV 1994 [kN] - 118.1  82.3  

Table 6.4: List of limits for the single cable. 

During the collapse of tower n23, the tension at the element was measured on the 
two neighboring towers and the results are the following: 



136 
6| Chapter six: Cascade of the 

transmission line 

 

 

 

Figure 6.7: Cable spans to tower n22 and to tower n24. The limits are set double 
than to the datasheet and LeV 1994 [42] (Table 6.4), as the wires are coupled. 

 

Figure 6.8: Insulators in tower n22 and tower n24. The limits are set according to 
the datasheet [41]. 
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The earth wires are under extreme tension, and they are sure to break. The early 
detachment from tower n23 tip might have prevented it from happening. 

Cables and insulators in all positions are under tension that approaches the limit 
(the mean peaks between 61% and 72% of the limit), especially the ones at the top 
of the towers (31 and 32). The threshold, however, is set for the coupled wires, 
hence, it is plausible that some damage to the single one occurred during the event. 

 
Figure 6.9: Damaged cable in tower n22, positions 12 
(back) and n22 (front), which were close to limit load 

(Figure 6.7). 

 
Figure 6.10: Broken insulator, tower n22, 

position 32, the closest to the limit 
(Figure 6.8). 

6.2.2. Full cascade simulation 

As previously discussed, one of the towers most likely to have caused the cascade 
effect is n23, thus a collapse simulation of the whole line with connector failure 
criteria, was performed. 

All the towers were loaded up to 80% of their reference load (SIA 261/1), and only 
the structural wind load of tower n23 was increased until its collapse in a 
subsequent step.  

The collapse of tower n23 (0) creates an oscillatory wave that travels through the 
line (period of around 1.2s), in the transverse direction (not galloping), which was 
visible in the towers furthest from the event (n21, n25 and n26). 

Towers n22 and n24 fail at the closest leg to n23 (I and II), in wind direction, before 
the peak in longitudinal force is reached. The towers' legs not facing the wind will 
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fail in sequence due to buckling, as they are the closest to their ultimate capacity in 
that specific mode (the mechanism is explained in Figure 6.13).  

Tower n25 fails shortly after (III).  

Note that when n23 touches the ground (IV), the disturbance travels through the 
cables, reaching all the other towers while still falling. 

 
I. Tower n23 collapse. 

 
II. Tower n22 and n24 

collapse. 

 
III. Tower n25 collapse 

Figure 6.11: Key steps in cascade initiated from tower n23. 

 

Figure 6.12: Insulator mean forces during the cascade starting from tower n23, normalized 
with the reference component before collapse. 
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Figure 6.13: Collapse mode in the towers: the leg facing the collapse neighbor fails first (1), 
followed by the other in the perpendicular direction (2). 

The overall collapse event lasts only a few seconds (around 4.2s, when tower n25 
hits the ground). There might be some variations depending on the initial load 
assumptions, ultimate capacity or failure of the cables.  

Tower n21 undergoes much lower loading in transverse or vertical direction 
compared to the others, which might be the reason why it remained intact during 
the collapse. 

The comparison out of the dynamic simulation has been compared to the pictures 
taken on-site in Figure 6.14, 6.15 and 6.16: although the large model simplifications 
(structure made of few connected beam subassemblies, incapable of yielding), thus 
constraining the possible deformations the towers can undergo, a fair similarity 
with the real case is shown. Examples are in Figure 6.14, in which the model does 
not allow the extensive damage to the neighboring area to the two failed levels (6th 
and 7th), as the ones below were rigidly intact; or in Figure 6.20, in which the section 
twisting due to the contact to the ground is not shown. 

 

(a) Real.  

 

(b) Line model. 

Figure 6.14: On-site pictures after the collapse (source Swissgrid), compared to line FE 
model results, tower n22. 
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(a) Real.  

 

(b) Line model. 

Figure 6.15: On-site pictures after the collapse (source Swissgrid), compared to line FE 
model results, tower n23. 

 

(a) Real.  

 

(b) Line model. 

Figure 6.16: On-site pictures after the collapse (source Swissgrid), compared to line FE 
model results, tower n24. 



6| Chapter six: Cascade of the 
transmission line 141 

 

 

6.3. Sequence hypothesis: post-collapse analysis 
In this case, the collapse is not simultaneous and the towers fall at a separate time 
during the event, after the fall dynamics has finished and upon the next wind 
magnitude increase (like a gust). A missing tower in the line might in fact cause 
unbalance to its neighbors, which can reduce the load-bearing capacity under wind 
load. 

The cable loading when the towers n22, n23 and n24 were quasi-statically brought 
on the ground have been analyzed in order to measure the load unbalance in a non-
simultaneous event, with and without wind.  

As the cable load is huge on the tower/s uphill to the first collapsed (much larger 
than both towers and cables ultimate loads), only the following three cases are 
considered:  

 
(a) Collapse of the sole 

tower n22. 

 
(b) Collapse of tower n22 

propagated to n23, or 
n23 to n22. 

 
(c) Collapse of tower n22, 

n23 or n24, propagated to 
others. 

Figure 6.17: Line section (n22 to n25) with some previously failed towers. 

The resulting load unbalances are then measured at the insulators of the downhill-
most tower that has not yet collapsed (Table 6.5). 

Tower n22 experiences in general a lower load with respect to the other towers, both 
from static and dynamic point of view. 
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Tower n. Load case 
Longitudinal 

total load [kN] 
Transversal 

total load [kN] 
ΔTransv. 

[%] 
Vertical total 

load [kN] 
ΔVert. 
[%] 

Tower n21 
Only gravity 31.9 13.2 - -80.8 +44% 
With wind 52.1 135.9 +20% -92.5 +64% 

Tower n23 
Only gravity 28.5 9.2 - -108.0 +35% 
With wind 37.5 151.5 +25% -128.6 +61% 

Tower n24 
Only gravity 173.6 62.4 - -123.9 +55% 
With wind 183.2 244.9 +112% -146.0 +83% 

Tower n25 
Only gravity 13.5 17.6 - -100.9 +26% 
With wind 6.8 79.2 -37% -106.7 +33% 

Table 6.5: Additional load due to uphill tower/s on the ground: n21 and n23 unbalance 
when n22 is on the ground (Figure 6.17a), n24 due to n22 and n23 on the ground (Figure 

6.17b), n25 with n22, n23 and n24 on the ground (Figure 6.17c). 

In general, the missing towers increase the vertical load that the neighbors have to 
carry, up to 83%, as well as in longitudinal direction (previously perfectly balanced). 

Tower n25 is the least affected by the missing sustain of the other towers, probably 
being close to the tensioning pylon, and due to the terrain profile, as all the cables 
are laying on the ground (Figure 6.17c).  Towers n24 and n23 are subjected to a high 
rise in transversal and in longitudinal load. The two would most certainly fail in 
lower wind conditions than the analyzed so far. 

6.4. Conclusive discussion on the results 
The cascade and sequence hypotheses have been investigated and the load 
unbalances on the neighboring towers have been analyzed. 

A cascade effect has proven to be feasible in the analyzed conditions, but it was not 
possible to identify the source. Collapse simulations similar to Section 6.2, starting 
from other towers, have been performed, all resulting in a complete failure of the 
four towers (Figure 6.18). All the line collapse modes remain plausible and lead to 
a similar outcome. 

Moreover, as discussed at the end of the previous Chapter 5, the towers all have 
similar margins with respect to the reference wind load case, thus none of them can 
be pointed with certainty as the least resistance of the lot. The large spread in 
ultimate capacity depending on the applied geometric imperfection modes hints 
that the failure might have occurred due to an unfavorable wind magnitude on the 
weakest tower. 
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(d) Collapse starting from 

tower n22.  

 
(e) Collapse starting from 

n24. 

 
(f) Collapse starting from 

n25. 

Figure 6.18: Collapse dynamics if the cascade had started from other towers. 
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7 Chapter seven: Brief discussion 
about dynamic analysis 

The analysis performed in Chapter 5 and 6 have analyzed only the quasi-static effect 
of the wind loading. Load amplification as a consequence of resonance instability, 
or fatigue under the dynamic wind components, can potentially reduce structural 
margin with respect to the static design value. 

Many studies in the field of wind-induced collapse analysis, remark the importance 
of a wind response analysis, both in time and frequency domain and different 
aspects of transmission lines response to wind excitations are treated by several 
authors. The main points of view are going to be discussed in Section 7.1. 

The applicability to the current study and possible limitations are discussed in 
Section 7.2. 

7.1. State-of-the-art on dynamic analysis 

7.1.1. Fluid-Structure interaction analysis 

H. Keyhan et al. [51] performed a Fluid-Structure Interaction (FSI) analysis on 
transmission line conductor system, in order to obtain a correct loading on the 
conductors during their transversal vibration under turbulent wind.  

The conductors, being the part of the line that undergoes the largest displacement 
(thus the largest aeroelastic interaction with the wind), participated in a two-
dimensional FSI analysis: at each dynamic simulation time step, a two-dimensional 
Computational Fluid Dynamic (CFD) analysis is performed, and the integral surface 
pressure on the cable section is used as an external load in the following step. The 
section is maintained in place by a lateral stiffness model, based on the 3D cable. 
The load is then introduced in the 3D model in different span positions.  

The results show up to 26% lower loading with respect to the coefficient-based 
method used by design standards such as IEC 60826, which transfers to up to 37% 
lower tension in the conductors for the analyzed models. 
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7.1.2. Nonlinear response 

Q. Li et al. [52] used an Ansys FE model to analyze the nonlinear response of a power 
transmission line system to turbulent wind time-history. The wind load was applied 
according to the Chinese standards and then dynamically varied according to 
Kaimal power spectral density. 

It was possible to assess that the displacement due to line vibration was greater (up 
to almost five times larger) if more towers of the line were considered. 

7.1.3. Dynamic wind modeling 

A. Dua et al. [53] compared the dynamic response of a transmission line to turbulent 
wind, to the static load given by Eurocode EN50341 [45], via nonlinear dynamic FEA 
in SAP2000, accounting for large displacements (geometrical nonlinearity). 

The average wind profile and forces were taken as in EN50341, neglecting the 
dynamic part. They produced a turbulent wind time history via Weighted Amplitude 
Wave Superposition (WAWS) based on Von-Karman spectral density for the wind in 
the longitudinal direction, Kaimal in the transverse direction, Bush-Panofsky in the 
vertical direction. The effective force applied to elements larger than the turbulent 
eddies (such as the conductor cables) can be up to 45% higher. 

They proved that the static loads from the codes were underestimating the peak 
response by a factor of 12% in terms of cable tension and around 31% in terms of 
peak displacement. The difference between a model of the sole cables and one in 
which cables and towers are considered is 4.6% in peak tension and 15% in 
displacement. 

7.1.4. Material model 

L. Tian et al. [54] performed FEA in Abaqus 6.10 on a 60m-tall steel lattice 
communication tower collapse under stochastic wind load. They employed Tian-
Ma-Qu material model to simulate the post-yield material behavior and the 
Bauschinger effect (material nonlinearities).  

The bucking in the main legs due to structure vibrations was the reason for the 
failure in most of the simulations. 

7.2. Applicability and limitations 
In Abaqus CAE 2021, free excitation modes can be estimated from a "Linear 
perturbation, Frequency" procedure, which works similarly to an LBA, by finding the 
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stiffness matrix instability modes in frequency domain. A best practice is to analyze 
the cable and the tower systems both separately and combined, to assess possible 
overlapping resonance frequencies.  

However, the study would need some sort of validation (that might be provided by 
studies like X. Liu et al. [39], which propose an analytical solution to cable vibration) 
but the accuracy would be limited, as the "Linear perturbation, Frequency" is based 
on linear elastic material properties and small displacement hypothesis. Moreover, 
to address properly the response to wind excitation, the model has to be excited in 
the right magnitude and frequency, and to contain geometrical and material 
nonlinearities. 

A complete nonlinear forced-response analysis can be performed in time domain, 
by transforming the wind dynamic spectrum into a function of time and varying a 
constant static load (as in [52, 53]). However, the limitations are mainly due to the 
lack of more precise data to perform an accurate analysis of this type: 

• Unknown wind characteristic: wind speed and direction, as well as its spatial 
distribution across the line-span, are not available. As in [53], they can be 
estimated from well-known models, but a CFD analysis on the mountainous 
profile could potentially locate the real wind distribution, as well as localized 
wind gusts that can cause excitation on specific components of the line. 
However, it might prove too computationally expensive and the wind 
pressure boundary conditions, as well as the simulation scale, might not be 
accurate enough to give a reliable outcome. 

• A realistic response to wind loading would include a study of the aero 
elasticity (coupled vibrations of the structure and of the wind). A full Fluid-
Structure Interaction (FSI) procedure as in [51] could be performed, but it has 
also to account for effects such as wake / vortex shedding - structure 
interaction. However, it might prove again too computationally expensive 
and the starting wind conditions should be correctly estimated. 

• A more complex material model need to be used, with would require more 
experimental parameters in order to perform an accurate analysis ([54]). As 
discussed in [54], the main failure mode in slender structure might still be 
buckling governed (caused by peak load or by peak response), thus the 
importance of fatigue analysis is limited. 
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8 Chapter eight: Conclusions 

The study proposes modeling methods for lattice towers under wind loading and 
affected by structural instability, with the final purpose of being applied to a failure 
analysis. Some modeling strategies are discussed in Chapter 1 to 4 and the failure 
analysis case is treated in Chapter 5 and 6. In Chapter 7, possible further analysis 
methods and limitations are proposed. 

8.1. Main points 
The final objective of the analysis was to employ and review new modeling 
techniques in failure analysis and compare the results with the work of other 
consultancies. 

To address the point, different modeling techniques are proposed, in the form of 
element types adoption, joint modeling and different analysis procedures usage. 
The analysis proved to be inconclusive in terms of finding the origin of the collapse, 
but the critical structural elements have been correctly identified. 

The dynamics of the event has been simulated starting from different assumptions 
and the results hint that a cascade effect is highly probable, no matter what tower 
fails first. 

More specifically, the key questions that the study posed are answered as follows. 

1. Which is the best way to perform FEA for structural instabilities? 

The main difficulties in modeling for structural instabilities are: 

• Boundary conditions: the correct simulation of boundary conditions is key to 
accurate modeling. The buckling mode and ultimate load highly depend on the 
element end-restrains by definition. 

• Imperfections: different modes can influence buckling direction and ultimate load. 
The mode magnitude and direction are critical parameters and might be a source 
of discrepancies with experimental data. 

There is no generalized "optimal" approach to the problem: a tradeoff between 
model accuracy and complexity (proportional to computational cost) has to be 
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achieved. In single braces or low complexity assemblies, the best result is achieved 
with 3D elements (Chapter 4), able to better simulate the complete joint friction 
interaction or the section yielding. When analyzing a larger structure, Beam or Shell 
elements should be used. Connector elements can limit the downsides.  

2. How would joint flexibility influence the FEA? 

In structures in which member buckling is a predominant failure mode, joint 
flexibility affects both the single beam and lattice structure ultimate load capacity. 
Joint slippage can influence the displacement at ultimate load and might as well 
reduce the load-bearing capacity. 

The pinned joint connection, often employed in the design phase, is not a correct 
representation and leads to underestimation of member capacity, and to incorrect 
failure mode prediction.  

The modeling with elements fixed to each other can be a more realistic 
representation in some cases, but it is based on the assumption of infinite moment 
transmission through the joints.  

The modeling via stiffness functions or coefficients can be a good solution, but it 
requires a large number of parameters based on several 3D sub-models simulations. 

3. Which modeling approaches are applicable to the modeling of large lattice structures 
with a multitude of joints? 

A completely 3D model is usually not a possibility for such a large lattice structure, 
as it required the accurate positioning of such a large number of parts and bolts and 
can be computationally expensive. Even with only Shell elements, the extrusion 
process is inefficient and a large amount of elements is anyway created. 

1D elements are much quicker to set up and can represent a structure with lower 
computational effort. However, they cannot properly display torsional-flexural 
buckling modes. 

Hybrid Shell+Beam models can be a nice improvement, but they are not suited for 
the design phase, where an ultimate load underestimation is preferred. 
Nevertheless, they could be used for Failure Mode, Effects, and Criticality Analysis 
(FMECA), in which the correct reproduction of failure causes and effects is required.  

Models that integrate joint flexibility can be a good tradeoff between complexity 
and accuracy in physical behavior. However, it requires consistent effort for 3D joint 
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sub-model creation, stiffness function modeling, connector built up and validation, 
thus losing convenience if these steps have to be carried out for a large amount of 
times. Partially building the lattice structure with connector models (for example 
focusing on the most critical area only), or using pinned joints for single-bolt 
connections, might be a good tradeoff for very complex structures. 

4. What is the load-bearing capacity of the high-voltage transmission towers in 
AlbulaPass and their sensitivity to imperfections? How is it far from the static design 
load? 

The towers n22 and n23 were analyzed. Their margin to collapse with respect to the 
same reference load model SIA 261/1 was around 30% in both structures (Table 
5.16), thus a collapse due to the wind only can be assumed plausible. As the 
considered load cases were taken from a conservative assumption (in the failure 
analysis sense), the structure would most certainly not be able to withstand larger 
loads, such as the ones considered in the Eurocodes. 

However, it is not possible to point out the tower closest to failure, as the high 
sensitivity on the applied imperfections makes the ultimate load capacity range 
from 104% to 137% the design value (Table 5.12): any difference in margin smaller 
than this range could not be an undebatable proof. Relatively tiny imperfections 
could be overlooked in an investigation on-site, or misinterpreted as secondary 
damage. 

The estimated load-bearing capacities from RIKS analysis were around 30% higher 
than LBA for both tower n22 and n23 (Figure 5.64). This indicates that the structure 
is able to overcome loads higher than the linear elastic instability limit, probably 
due to member plastic reserve.   

The results from LBA and RIKS analyses are close to the utilization factors calculated 
by IED for the same load case (Figure 5.64). Their results, however, were calculated 
using a design-standard-based "member utilization factor", thus the failure position 
was located more towards the base of the towers, in contrast to the state the 
structures were found after the event. Moreover, as it was demonstrated in Chapter 
1 and 2, design standards do not always match the member capacity nor the stability 
limit, as the stress state in lattice structure members is extremely end-restrains 
dependent. 
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5. How can a cascade sequence occur in the power transmission line and, possibly, 
where it is more likely to have started?  

The dynamic simulations in Chapter 6 proved that a cascade effect has proven to be 
plausible, but it was not possible to identify the source. 

Moreover, all the towers (except for maybe n25) are greatly compromised in terms 
of load-bearing capacity if the ones uphill are on the ground (sequence effect). 

The fact that the loading on tower n21 was minimum when tower n22 was not the 
first to collapse may exclude at least one tower. The 1986 event, in which tower n22 
was not involved at all, might hint that the others were at larger risk. 

8.2. Outlook and future research 
The main limitations of the study are given by the lack of comprehensive data and 
by time restrictions. 

Weather data or wind measurements are required to improve the load assumptions, 
but good estimates are difficult to achieve (Chapter 7). 

The model accuracy could not be further assessed: validation procedures for the 
sub-structures (Chapter 4) and transmission line (Chapter 5 and 6) were not 
available, as testing on large lattice structures is expensive and not economically 
viable for this failure analysis. 

A larger time span could allow to investigate further in the failure analysis case: 

• Other wind directions and could have been investigated; 

• A dynamic wind loading could have been investigated (however, with the 
limitations discussed in Chapter 7), with a possibility of "Dynamic, Explicit" 
collapse simulation of the single tower with measured cable loads in order 
to reproduce the progressive failure of the elements; 

• How much the load unbalances resulting from a collapse sequence (Section 
6.3) can actually hinder the towers load capacity; 

• Further investigation on the 1986 event, trying to understand why tower 
n22 had resisted the cascade. 
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𝒄𝒄𝑷𝑷𝒆𝒆𝒓𝒓 slenderness factor, SIA 261/1 - 
𝒄𝒄𝒆𝒆𝑪𝑪 global force coefficient, SIA 261/1 - 

𝒄𝒄𝒆𝒆,𝒄𝒄𝑷𝑷𝒏𝒏𝒓𝒓 wire global force coefficient, SIA 261/1 - 
𝒗𝒗𝒃𝒃 base wind velocity, Eurocode 1991-1.4 m/s 
𝒗𝒗𝒃𝒃𝟎𝟎 10-min mean wind velocity, Eurocode 1991-1.4 m/s 

𝒄𝒄𝒓𝒓𝑷𝑷𝑷𝑷𝒆𝒆𝒄𝒄𝒕𝒕𝑷𝑷𝑷𝑷𝒏𝒏 direction coefficient, Eurocode 1991-1.4 - 
𝒄𝒄𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔𝑷𝑷𝒏𝒏 season coefficient, Eurocode 1991-1.4 - 

𝒄𝒄𝒑𝒑𝑷𝑷𝑷𝑷𝒃𝒃𝒔𝒔𝒃𝒃𝑷𝑷𝒍𝒍𝑷𝑷𝒕𝒕𝒑𝒑 probability coefficient, Eurocode 1991-1.4 - 
𝒗𝒗𝒆𝒆 mean wind velocity, Eurocode 1991-1.4 m/s 
𝒄𝒄𝑷𝑷 roughness coefficient, Eurocode 1991-1.4 - 

𝒌𝒌𝑷𝑷,𝒌𝒌𝟎𝟎 roughness formula coefficients, Eurocode 1991-1.4 - 
𝒄𝒄𝟎𝟎 orography coefficient, Eurocode 1991-1.4 - 
𝝈𝝈𝒗𝒗 wind velocity std deviation, Eurocode 1991-1.4 - 
𝑰𝑰𝒗𝒗 turbulence intensity factor, Eurocode 1991-1.4 - 
𝒄𝒄𝒆𝒆 wind profile coefficient, Eurocode 1991-1.4 - 

𝒄𝒄𝒔𝒔 ∙ 𝒄𝒄𝒓𝒓 structural factor, Eurocode 1991-1.4 - 
𝒄𝒄𝒆𝒆 force coefficient, Eurocode 1991-1.4 - 
𝒄𝒄𝒆𝒆𝟎𝟎 force coefficient without end-flow, Eurocode 1991-1.4 - 
𝝋𝝋𝝀𝝀 end-flow factor, Eurocode 1991-1.4 - 
𝑹𝑹𝒆𝒆 Reynold's number, Eurocode 1991-1.4 - 
𝝂𝝂 kinematic viscosity, Eurocode 1991-1.4 m2/s 
𝝋𝝋 section solidity, Eurocode 1991-1.4 - 
𝝀𝝀𝒔𝒔𝒕𝒕𝑷𝑷 structure section slenderness, Eurocode 1991-1.4 - 
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𝝀𝝀𝒄𝒄𝑷𝑷𝒏𝒏𝒓𝒓 wire section slenderness, Eurocode 1991-1.4 - 
𝑲𝑲𝜽𝜽,𝑲𝑲𝜽𝜽+𝟗𝟗𝟎𝟎,𝑲𝑲𝑪𝑪,𝑲𝑲𝟐𝟐 wind incidence factors, Eurocode 1993-3.1 - 
𝒄𝒄𝒆𝒆𝑪𝑪, 𝒄𝒄𝒆𝒆𝟐𝟐 force coefficients, Eurocode 1993-3.1 - 
𝝑𝝑 wind incidence angle, Eurocode 1993-3.1 rad 

𝜼𝜼𝑪𝑪,𝜼𝜼𝟐𝟐 shielding factors, Eurocode 1993-3.1 - 
𝑸𝑸𝒘𝒘𝒄𝒄 wind force on wires, EN50341 N 
𝒄𝒄𝒄𝒄 wire drag factor, EN50341 - 
𝑮𝑮𝒄𝒄 wire structural factor, EN50341 - 
𝑪𝑪𝑫𝑫 L-section drag coefficient - 
𝑭𝑭𝑫𝑫 L-section drag force N 
𝑪𝑪𝑳𝑳 L-section lift coefficient - 
𝑭𝑭𝑳𝑳 L-section lift force N 
𝑨𝑨𝒏𝒏𝑷𝑷𝒆𝒆 L-section nominal area mm2 

𝑻𝑻𝑯𝑯 horizontal wire tension component N 
𝑻𝑻𝑽𝑽 vertical wire tension component N 
𝜶𝜶𝒆𝒆 imperfection parameter, Eurocode 1993-3.1 - 
m number of members in the bracing system - 
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