
Evaluating FPGA-Based Convex
Optimization Methods for Onboard
Low-Thrust Trajectory Guidance

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Gonçalo Oliveira Pinho

Student ID: 10829623
Advisor: Dr. Alessandro Morselli
Co-advisors: Davide Perico, Gianfranco Di Domenico
Academic Year: 2022-23

i

Abstract

The present work is focused on deploying in an FPGA an onboard guidance algorithm
that employs convex approaches to minimum fuel space trajectory problems. An Earth
to Mars case with 100 nodes is considered using the interior point solver ECOS. The
Zedboard is the selected device.

First, an algorithm is developed to solve the problem. Next, a profile sequence is carried
out, from which two functions are elected to integrate the hardware. One is responsi-
ble for a numeric factorization of a sparse matrix. The other performs matrix-vector
multiplications. These are chosen due to their impact on the application execution time.

The original problem is reduced as a consequence of the limited memory resources of
the board. Therefore, depending on the workspace of variables the onboard guidance
algorithm presents, a device of appropriate resources shall be selected.

The results from the hardware implementation exhibit a decrease in performance efficiency
when compared to its software application. In fact, algorithms developed for software-
oriented systems might display nondeterministic and data-dependent behaviors that are
incompatible with FPGA optimization techniques. These, contrarily, require determinis-
tic and data-independent cycles to take advantage of the parallelism features of FPGAs.
In the ECOS case, significant changes must be made to the functions’ structure to ensure
compatibility with the concurrent procedures. Moreover, to fully exploit hardware perfor-
mance, a workaround is to deploy fitting sections of the algorithm that enclose multiple
successive operations with high execution time, instead of their separate implementation.
This mitigates the additional cycles for the transfer and address of data in the FPGA.

This thesis also highlights the need to apply single-floating point precision in the hardware
designs of interior point methods. This is a consequence of the vast dynamic range of
numbers these schemes comprehend. Finally, when correctly assembled, the performance
gap between the original software application and the FPGA implementation should scale
with the problem size.

Keywords: FPGA, Onboard Guidance, Convex Optimization, ECOS, Hardware

iii

Sommario

Il presente lavoro si concentra sull’implementazione in un FPGA di un algoritmo di guida
a bordo che utilizza approcci convessi ai problemi di traiettorie nello spazio a minimo
consumo di carburante. Viene considerato un caso Terra-Marte con 100 nodi utilizzando
il solutore de punto interno ECOS. Il dispositivo selezionato è la Zedboard. A seguito
dello svilupo de un algoritmo per risolvere il problema, è stata eseguita una sequenza di
scrematura, dalla quale sono stati selezionati due funzioni da integrare nell’hardware. Una
è responsabile della fattorizzazione di una matrice sparsa, l’altra esegue moltiplicazioni
matrice-vettore, entrambe scelte a causa del loro impatto sul tempo di esecuzione. Il
problema originale è stato ridotto a causa delle risorse limitate di memoria della scheda.
Pertanto, a seconda dello spazio di lavoro delle variabili presentato dall’algoritmo di guida
a bordo, viene selezionato un dispositivo con risorse adeguate.

I risultati dall’implementazione hardware mostrano una diminuzione dell’efficienza delle
prestazioni rispetto alla sua applicazione software. Infatti, gli algoritmi sviluppati per sis-
temi orientati al software potrebbero mostrare comportamenti non deterministici e dipen-
denti dai dati, che sono incompatibili con le tecniche di ottimizzazione FPGA. Queste
richiedono cicli deterministici e indipendenti dai dati per sfruttare la parallelizzazione
degli FPGA. Nel caso di ECOS, è necessario apportare modifiche significative alla strut-
tura delle funzioni per garantire la compatibilità con le procedure concorrenti. Inoltre,
per sfruttare appieno le prestazioni dell’hardware, una soluzione alternativa sarebbe im-
plementare sezioni dell’algoritmo che includono molteplici operazioni successive con un
alto tempo di esecuzione, invece di implementarle separatamente. Questo mitiga i cicli
aggiuntivi per il trasferimento e l’indirizzamento dei dati nell’FPGA.

Questa tesi sottolinea anche la necessità di applicare la precisione dei numeri a virgola mo-
bile singola nei progetti hardware dei metodi del punto interno. Questo è una conseguenza
della vasta gamma dinamica di numeri compresa in questi schemi. Infine, quando cor-
rettamente assemblata, la differenza di prestazioni tra l’applicazione software originale e
l’implementazione FPGA dovrebbe essere proporzionale alla dimensione del problema.

Parole chiave: FPGA, Guida a Bordo, Ottimizzazione Convessa, ECOS, Hardware

Acknowledgements

I want to thank my advisor Dr. Morselli for all the time, willingness, attention and help
devoted throughout the entire thesis. I also would like to thank both of my co-advisors,
Davide and Gianfranco, for all the guidance and corrections that made this work possible.
A special gratitude goes to Alessandra and Andrea who were also present throughout the
entire process. Particularly, I would like to thank Professor Topputo for allowing me
to work with his research group and for his precious insights and kindness during our
meetings over the past few months. Thanks to all the aforementioned people, I managed
to deepen my knowledge on such a diverse topic from what I was used to. In the end,
this experience made me realize how much I still have to learn.

Afterward, I would like to thank my parents José and Maria who never doubted me, or
my capacities and were always there by my side. Their simpler look at life helped me in
difficult times and made me a better human being. Without them and all their sacrifices,
none of this or who I am today would be possible. Then, I would also like to give a special
thanks to my brother Tomás for always being there for me. I will always remember our
conversations about sports, films, or music over the phone in these last months. I’ve been
learning so much from him and his different viewpoints on life.

A heartfelt thanks goes to Giorgia for all the support, time, and love given over this past
year. Always by my side, her caring and warm words have been a source of strength
and faith throughout this journey. Thanks for all the stupid, but in a way, beautiful
moments we have shared, allowing me to grow so much as a human with someone like
her. Hopefully, this is just the beginning chapter of "Our Adventure Book".

Thanks to all the friends that Italy has given me and that have become a pillar of my life.
Thanks for all the meals, nights, laughs, trips and, not to forget, debates over non-sense
topics which I will delightedly carry with me. Lastly, an enormous thanks goes to all my
friends throughout Portugal who always keep care and contact with me. Thanks for the
constant support and the memorable experiences from which I’ve gathered so much. You
all have made this an unforgettable one-of-a-kind university and life experience.

vii

Contents

Abstract i

Sommario iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Thesis Objective . 3
1.2 Thesis Structure . 4

2 Background 5
2.1 Astrodynamic models . 6

2.1.1 Problem Formulation . 6
2.2 Problem Transformation and Convexification 8
2.3 Sequential Convex Programming . 10

3 FPGA Overview 15
3.1 FPGA Definition . 15

3.1.1 FPGA Configuration . 18
3.1.2 The Logic Fabric . 19
3.1.3 DSP and BRAM . 20

3.2 Zynq Architecture . 21
3.2.1 Processing System and Programmable Logic 22
3.2.2 Processing System - Programmable Logic Interfaces 24
3.2.3 Zedboard . 28

3.3 Development Tools . 29
3.4 Development and Implementation of IP cores 30

3.4.1 Vitis HLS Deep Dive . 32

viii | Contents

3.4.2 IP Block Integration . 36
3.5 Fixed-Point Arithmetic . 37

4 Implementation 39
4.1 Sequential Convex Programming Algorithm 39

4.1.1 Deployment in the PS . 40
4.2 IP Cores Selection . 41

4.2.1 Profiling . 41
4.3 IP Design . 43

4.3.1 Functional Analysis . 43
4.3.2 Interfaces . 48
4.3.3 Optimization . 51
4.3.4 AXI DMA . 54

4.4 Board Memory Constraints . 56
4.4.1 Problem Size Reduction . 57

4.5 Arbitrary Precision Implementation . 59

5 Results 63
5.1 HLS Synthesis . 63
5.2 IP Cores Design Implementation . 64

5.2.1 AXI Timer . 68
5.3 Results Evaluation . 68

5.3.1 Numeric Factorization IP Core . 69
5.3.2 Matrix-Vector Multiplication IP Core 73

5.4 Remarks . 79

6 Conclusions and future developments 83
6.1 Conclusion . 83
6.2 Future Work . 85

Bibliography 87

A Appendix A 93
A.0.1 Zynq PS Interconnections . 93
A.0.2 Zedboard Booting and Programming Methods 95
A.0.3 Placement and Routing . 96

List of Figures 99

List of Tables 101

Nomenclature 103

1

1| Introduction

Over the past few years, the development of the space market has been towards the
miniaturization of satellites and their components, leading to a higher number of launches
as a benefit from the reduced costs [1]. Enhancing the level of autonomy and transferring
flight-related tasks, such as the guidance design onboard, to automated systems, is a
beneficial objective for future missions [2].

The system design of deep-space missions requires thrust actions to perform essential
operations such as orbit insertion, correction, maneuvers for trajectory adjustments, and
others. For small satellites, such as CubeSats, low-thrust technology is the typical propul-
sive subsystem of choice due to the high fuel efficiency it presents. However, the design
of a low-thrust optimal, or near-optimal, trajectory reveals itself a convoluted task when
paired with the need for fuel savings. These require high accuracy and computational
efficiency.

Figure 1.1: Illustrative interplanetary transfer [3].

In fact, when designing solution schemes of optimal control problems, three aspects are
taken into account: computational effort, reliability (capability of converging even when

2 1| Introduction

a poor initial guess is provided) and optimality (minimization of a defined objective func-
tion) [4]. For the case of autonomous satellites that utilize onboard guidance, the maxi-
mization of the available computational power is of extreme importance while preserving
the optimality of the problem. In fact, OnBoard Computer (OBC) systems have several
key resource constraints compared to ground computers. Specifically, low power con-
sumption, reduced memory capacity, resilience to space environment hazards, long-term
reliability, and low volume and weight are some of the vital limitations to consider.

Nowadays, algorithms developed for onboard applications take into consideration the lim-
ited number of resources available. Accordingly, to provide higher onboard computational
power, many research works have proposed dedicated hardware accelerators through Field
Programmable Gate Array (FPGA) implementations [5–8]. This approach combines soft-
ware and hardware dedicated implementations to optimize the onboard resources.

FPGA has been a topic of interest in the space market in recent years due to the ad-
vantages the technology presents [9, 10]. These programmable devices can be specifically
designed to integrate different functions and requirements an application imposes. The
capacity for onboard reconfiguration, even after deployment, presents a valuable asset for
mission objectives that might require in-flight adaptability [9]. With satellite lifetimes
expanding far beyond ten years, this has become a stringent requirement in recent times
[11]. Then, by limiting the function logic components to the necessary minimum, the
implemented hardware design presents minimum power consumption when compared to
other fixed-hardware solutions that may include unused components [12]. Afterward, FP-
GAs are parallel devices that exploit the simultaneous execution of multiple tasks. This
concurrency of actions provides higher computational throughput, enabling faster calcu-
lations while keeping the required level of accuracy [12]. To ensure reliable operations and
performance, radiation-hardened FPGAs, a subset of these devices, are precisely planned
to mitigate the harsh space environment effects [13]. Finally, due to the compact form
factor, they are suited equipment for space missions where size and weight are two crucial
constraints. The ability to support the integration of multiple dedicated functions into a
single device corroborates for the needed space efficiency [12].

Table 1.1 highlights the presence of some FPGA devices in state of the art market for OBC
and their Commercial-Off-The-Shelf (COTS) availability. The capacity of mitigating Sin-
gle Event Upsets (SEU) is also shown, an undesired behavior, further discussed in Chapter
3, derived from the interaction between the device and the harsh space environment.

1| Introduction 3

Manufacturer Product Processor Pedigree SEU mitigation Vehicle

Innoflight CFC-300 AMD-Xilinx Zynq-7020 Dual-core ARM
Cortex-A9

COTS No CubeSat

Xiphos Q8S AMD-Xilinx Zynq Ultrascale+ MPSOC
Quad-core ARM Cortex-A53

COTS No Nano, Micro, and
Small Satellites

KP Labs Antelope
onboard
computer

DPU – AMD Xilinx Zynq UltraScale+
MPSoC, Quad ARM Cortex-A53 CPU,

Dual ARM Cortex-R5

COTS Yes CubeSat

GomSpace Nanomind
A3200

Atmel AT32UC3C MCU COTS Yes CubeSat

Unibap iX10-100 Microchip PolarFire FPGA with RISC-V,
AMD V1605b (Ryzen) CPU and GPU

COTS Yes Nano, Micro, and
Small Satellites

Table 1.1: Sample of highly integrated onboard computing systems 1.

That said, the use of FPGAs for application acceleration purposes is not trivial. Indeed,
algorithm-level optimizations done in software implementations can, in some cases, inter-
fere with the hardware requirements. This bottleneck can impact the desired concurrency
of tasks. A regular and exemplary concern, in onboard applications, are arithmetic opera-
tions such as matrix multiplication or Cholesky factorization. When oriented for software
algorithms, software optimization techniques, such as storing formats, are employed to
achieve higher levels of computational efficiency. However, these often result in irregular
tasks or memory access patterns that interfere with the exigencies of FPGA optimization
schemes. Hardware-optimization processes involve a set of requirements to exploit the
application throughput maximization the technology can offer.

1.1. Thesis Objective

This thesis aims to investigate the different aspects to consider when deploying an au-
tonomous guidance algorithm based on convex optimization on a reconfigurable computing
hardware. To achieve such goal, the main research question this study seeks to resolve is:

What are the key challenges and practices in deploying onboard trajectory optimization
guidance algorithms on FPGA platforms?

As a case problem, an Earth to Mars minimum-fuel trajectory optimization is considered.
The choice of Mars comes from the renewed interest its exploration has been gaining in
recent times [14]. Specifically, an algorithm based on Sequential Convex Programming is
exploited to solve the problem. Afterward, the deployment of some of its core parts on
an FPGA is targeted.

1https://www.nasa.gov/wp-content/uploads/2023/05/2022-soa-full.pdf (last accessed:
November 1, 2023)

https://www.nasa.gov/wp-content/uploads/2023/05/2022-soa-full.pdf

4 1| Introduction

Moreover, this work explores the complexity of designing optimized hardware implemen-
tations through the use of high-level code languages such as C. This enables the user to
focus on optimization characteristics without deepening into lower-level code.

The proof for performance increase granted by the use of the technology in this field is
out of the scope of the thesis. Instead, the knowledge aroused from this study aims to
serve as an initial reference for future applications which, undoubtedly, will assist in the
procedures for maximizing computational efficiency of onboard guidance algorithms.

1.2. Thesis Structure

This work is organized as follows:

Chapter 2 presents an overview of the convex low-thrust trajectory optimization
problem under study and the convex-approach algorithm used to solve it. A brief
introduction to the models, assumptions, and mathematical passages used to trans-
form the original non-convex problem into a feasible convex state is done. The
chapter ends with a concise scheme of the algorithm to deploy on the board.

Chapter 3 introduces the necessary background information about FPGA. Specifi-
cally, the Zynq architecture and functionalities are discussed, going over the different
software tools used for hardware design.

Chapter 4 explores, in great detail, the sections of the algorithm selected for deploy-
ment in the FPGA. Reasoning behind the selection of functions and interfaces is also
presented. The optimization techniques and constraints encountered throughout the
development phase are reported.

Chapter 5 shows the results obtained from the deployment of multiple hardware
designs. After an in-depth examination and discussion of the workflow and methods
used, a set of requirements and valuable insights into the development of future
guidance algorithms in FPGA applications is provided.

Chapter 6 concludes the work, including some references for future works in this
field.

5

2| Background

An optimization problem has to be solved to compute the best achievable trajectory
among those feasible. Currently, the approaches taken to solve this optimal control prob-
lem can be divided into two main categories: indirect and direct methods [15].

Indirect methods use calculus variations and Pontryagin’s minimum principle to attain the
desired solution. To achieve it, lengthy mathematical derivations and good initial guesses
are required, making this method a not-so-valid option for onboard applications and
with the state-of-the-art techniques available [16]. Instead, direct methods do not require
the explicit derivation of optimality conditions. The trajectory is discretized into multiple
segments such that the continuous-time optimal control problem is converted into a finite-
parameter optimization problem, generally solved through Nonlinear Programming (NLP)
methods. A challenge occurs for trajectories characterized by low-thrust levels where
changes to the orbits may result in long-duration trajectories. In addition, large nonlinear
programs with high computational complexities most likely lead to calculations of low
accuracy [17]. Indeed, for highly nonlinear problems, the algorithm’s convergence can not
be guaranteed, making this method a poor choice from a robustness point of view [18].

As a result, in recent times, to solve this type of nonlinear optimal control problems char-
acterized by low-thrust trajectories, a subfield of optimization which targets the minimiza-
tion of convex functions over convex sets called convex optimization has seen extended
developments. Convex problems, due to their low complexity, feature the capability of
being solved employing polynomial-time algorithms, resulting in lower computational re-
quirements when compared to the classical methods described above and as explained
in [19]. For this approach, the original nonconvex problem has to be transformed into a
convex state through a set of techniques explained in Section 2.2.

This said, the present chapter states a low-thrust trajectory optimization problem and
the convex-approach algorithm used to solve it as in [20]. The goal is to have an overall
view of the problem, unveiling the models, hypotheses, and assumptions used. The main
steps and processes to transform the original problem into a solvable and feasible state
are presented. Lastly, the essence of the algorithm used is detailed.

6 2| Background

2.1. Astrodynamic models

Astrodynamic or orbital models are mathematical models used to study the motion of
an object in space. After defining the model to use and the initial state vector of the
object, it is possible to propagate its trajectory through time and space by sequentially
iterating the set of equations. Depending on the selected model, the object will be subject
to different types of perturbations and forces.

2.1.1. Problem Formulation

Figure 2.1: Two-body problem [21].

The present work focuses on solving a Space Trajectory Optimization (STO) problem
with minimal fuel consumption. In other words, the objective is to determine the ideal
path between the specified points which minimizes the propellant expenditure, keeping in
mind the need for high computational efficiency and accuracy of the results.

To start, the two-body problem scenario is the chosen dynamical model. It is a classical
problem, in orbital mechanics, around the interaction between two bodies due solely to
their mutual gravitational attraction. One body has a much larger mass when compared
to the second and, as a result, the motion of the first body is not affected by the second
one (an example could be a planet and a spacecraft, respectively). Due to the significant
masses and interactions between one another, the influence of other celestial bodies is
neglected [21].

Considering two-body dynamics, the equations of motion, in spherical coordinates, for the
continuous-time optimal control problem, after a simple normalization method is applied,
are presented in equation (2.1). Figure 2.2 illustrates the coordinate system.

2| Background 7

ṙ = vr,

θ̇ =
vθ

r cosϕ
,

ϕ̇ =
vϕ
r
,

v̇r =
v2θ
r

+
v2ϕ
r

− 1

r2
+

cT cosαr

m
,

v̇θ = −vrvθ
r

+
vθvϕ tanϕ

r
+

cT sinαr sinαϕθ

m
,

v̇ϕ = −vrvϕ
r

− v2θ tanϕ

r
+

cT sinαr cosαϕθ

m
,

ṁ = −cT

ve
,

(2.1)

where r is the radial distance from the central body to the spacecraft, θ the azimuth
angle in the xy-plane measured from the x-axis and ϕ the elevation angle measured from
the xy-plane. Taking into account the spherical coordinate system, vr, vθ and vϕ are,
respectively, the components of the velocity along the three axes. The mass of the space-
craft is represented by m. As for the control variables, the magnitude of the thrust is
denoted by T while αr and αϕθ are the thrust direction angles. The angle αr ∈ [0, π] is
defined between the thrust vector and the radial direction er whilst αϕθ ∈ [0, 2π] is the
angle in the eϕeθ-plane measured concerning the eϕ-axis. Finally, c = TmaxR0/(m0V

2
0),

where Tmax is the maximum thrust produced by the engines, R0 = 1 Astronomical Unit
(AU) and V0 =

√
µ/R0 (µ being the gravitational constant of the Sun) are distance and

velocity units, respectively, used to normalized the problem, m0 is the initial mass of the
spacecraft and ve is the exhaust velocity.

Figure 2.2: Three-dimensional spherical coordinates system [4].

8 2| Background

The set of equations defined in (2.1) can be represented in a state space formulation as
highlighted in equation (2.2).

ẋ = f(x,u), (2.2)

where x = [r; θ;ϕ; vr; vθ; vϕ;m] is the state vector of the spacecraft and u = [T ;αr;αϕθ] is
the control vector.

By defining a set of initial and final state conditions, control constraints (all before men-
tioned present in [4]) and taking into account the dynamics in (2.1), a general nonlinear
optimal control problem is formulated. The goal is to find the optimal control vector pro-
file that minimizes the propellant expenditure. In reality, it is the same as maximizing the
final vehicle mass J = −m(tf) while subject to the dynamics, constraints and conditions
stated.

However, the dynamics presented in (2.1) are highly nonlinear with, in addition, the state
and control variables also being coupled. This poses a nonlinear and nonconvex problem
which brings difficulty to the convergence of NLP algorithms.

Therefore, a series of relaxations have to be applied to the original minimum-fuel STO
problem to transform it into a convex one as in [4, 20]. These steps are presented in the
upcoming section.

2.2. Problem Transformation and Convexification

To reach a convex optimal control problem, three successive processes are done: change
of variables, relaxation of control constraints and linearization of dynamics. This section
will mainly show the results obtained from the mentioned processes and key aspects to
consider, while the full details and passages can be found in [4, 20].

To decouple the state and control variables, a change of variables is first introduced to
replace the mass m and thrust T in equation (2.1), defining z = lnm and τ = T/m, where
τr, τθ and τϕ are accordingly defined as:

τr = τ cosαr,

τθ = τ sinαr sinαϕθ,

τϕ = τ sinαr cosαϕθ.

(2.3)

This step requires the introduction of the constraint

2| Background 9

τ 2r + τ 2θ + τ 2ϕ = τ 2, (2.4)

which is nonconvex.

For this reason, a relaxation of the control constraint to a convex one is done by expanding
its feasible set, seen in equation (2.5).

τ 2r + τ 2θ + τ 2ϕ ≤ τ 2. (2.5)

The proof that the optimal control of the new defined problem lies on the boundary of
the original constraint surface defined by equation (2.4) is shown in [4, 14].

Lastly, the nonlinear dynamics are convexified through a successive small-disturbance-
based linearization method. The nonlinear term is linearly approximated with respect
to a certain state history x∗(t). This linearization results in equation (2.6b), where the
subscript (·)∗ denotes the reference trajectory. Alongside the linearization of dynamics,
a trust-region constraint is imposed with equation (2.6g), where R is the radius of the
trust region. This constraint keeps the solution close to the reference, and consequently,
assures that the linearization is valid [20].

Therefore, the original minimum-fuel STO nonconvex problem is transformed into the
convex form presented in equation (2.6), as formulated in [20].

minimise J0 =

∫ tf

t0

τ(t) dt,

s. t. ẋ = f(x∗) +A(x∗)(x− x∗) +Bu,

τ 2x + τ 2y + τ 2z ≤ τ 2,

0 ≤ τ ≤ Tmaxe
−z∗ [1− (z − z∗)],

xl ≤ x ≤ xu,

ul ≤ u ≤ uu,

∥x− x∗∥1 ≤ R,

x(t0) = [r(t0); θ(t0);ϕ(t0); vr(t0); vθ(t0); vϕ(t0); z(t0)],

x(tf) = [r(tf); θ(tf);ϕ(tf); vr(tf); vθ(tf); vϕ(tf)],

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6g)

(2.6h)

(2.6i)

with new state vector x = [r; θ;ϕ; vr; vθ; vϕ; z] and new control vector u = [τx; τy; τz; τ]. In
equation (2.6b), f represents the vector of the natural two-body dynamics, defined as

10 2| Background

f(x) =



vr

vθ/(r cosϕ)

vϕ/r

v2θ/r + v2ϕ/r − 1/r2

−vrvθ/r + vθvϕ tanϕ/r

−vrvϕ/r − v2θ tanϕ/r

0


, (2.7)

while A = ∂f/∂x is the jacobian matrix, and B is the control matrix, resultant of the
change of variables, where

B =

 03×4

c I3×3 03×1

01×3 − c/ve

 . (2.8)

Equation (2.6d) is a convexified control constraint where the upper bound is the result
of a first-order Taylor series expansion (more details in [4]). Both lower (·)l and upper
(·)u bounds of states and controls are given in equations (2.6e) and (2.6f). Lastly, the
initial x(t0) and final x(tf) conditions are defined in equations (2.6h) and (2.6i). As the
objective of the problem is to minimize the fuel, the condition z(tf) is left free.

All the values related to the problem under study can be found in Section 4.1.

Equation (2.6) represents the convex STO problem, which will be referred to as Convex
Problem (CXP) throughout this work.

2.3. Sequential Convex Programming

Directly solving the CXP defined in Section 2.2 does not correspond to solving the original
nonconvex minimum-fuel STO problem [20]. Instead, a successive approach that considers
a sequence of convex problems is established.

A Sequential Convex Programming (SCP) is a local optimization method where a sequence
of convex optimal control sub-problems defined by equation (2.6) is formed using the
solutions from the previous iteration. However, before exploring the different passages of
the SCP, some aspects have to be taken into account.

Each sub-problem, which is an expansion of the CXP defined before, is an infinite-
dimensional optimal control problem. To find its numerical solution, an arbitrary-order

2| Background 11

Gauss-Lobatto discretization scheme is used, exploiting a nonlinear interpolation of the
control variables (for more details, check [20, 22]). This discretization scheme is one
among many available, as discussed in [23].

This said, when nonlinear constraints are linearized about a reference solution, one may
encounter infeasible convex sub-problems even though the original problem is feasible.
This phenomenon is called artificial infeasibility [17]. To avoid it, the unconstrained
variables ν and η ≥ 0 are introduced in equations (2.6b) and (2.6d), resulting in

ẋ = f(x∗) +A(x∗)(x− x∗) +Bu+ ν, (2.9)

0 ≤ τ ≤ Tmaxe
−z∗ [1− (z − z∗)] + η. (2.10)

Although these terms maintain feasibility, they also result in constraint violations which,
when active, must be zero at the end of the optimization process so that the constrains are
satisfied. Therefore, we incorporate them in the objective function J0 in equation (2.6a)
with sufficiently large penalty parameters µi and λi

J = J0 +
∑
i∈ Ieq

µi ∥νi∥1 +
∑

i∈ Iineq

λi max(0, ηi), (2.11)

where Ieq and Iineq denote the set of equality and inequality constrains, respectively.

All these changes are translated into a new version of the minimum-fuel STO problem
defined in equation (2.12).

minimise J = J0 +
∑
i∈ Ieq

µi ∥νi∥1 +
∑

i∈ Iineq

λi max(0, ηi),

s. t. ẋ = f(x∗) +A(x∗)(x− x∗) +Bu+ ν,

τ 2x + τ 2y + τ 2z ≤ τ 2,

0 ≤ τ ≤ Tmaxe
−z∗ [1− (z − z∗)] + η,

xl ≤ x ≤ xu,

ul ≤ u ≤ uu,

∥x− x∗∥1 ≤ R,

x(t0) = [r(t0); θ(t0);ϕ(t0); vr(t0); vθ(t0); vϕ(t0); z(t0)],

x(tf) = [r(tf); θ(tf);ϕ(tf); vr(tf); vθ(tf); vϕ(tf)].

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

(2.12g)

(2.12h)

(2.12i)

12 2| Background

At this point, the SCP method can be applied, with the overall flow, illustrated in Figure
2.3, being:

1. Set k = 0. Using the initial and final state conditions defined in equations (2.6h)
and (2.6i), setting the time span and number of nodes of the problem, an initial
reference trajectory is generated;

2. For k ≥ 1, solve the optimal control problem defined in equation (2.12) using the
(k-1) trajectory as the reference one and adding a convergence technique imposed
through equation (2.13), where γ is a cauchy parameter selected based on the desired
level of convergence, further explained in [4, 24];

∥∥x− x(k−1)
∥∥
1
≤ γ

∥∥x(k−1) − x(k−2)
∥∥
1
, γ ∈ (0, 1) and k > 1. (2.13)

3. Check the convergence condition (2.14) where ε is a tolerance value for convergence
set at the beginning. If this condition is satisfied and the feasibility terms are also
zero or under a user-selected threshold, the solution has been found and it is stored.
Otherwise, retrieve to step 2, updating all the respective values and functions with
the new reference trajectory.

sup
t0≤t≤tf

∥∥x− x(k−1)
∥∥
1
≤ ε, k > 1. (2.14)

Notice that, for each k ≥ 1, the nonlinear optimal control sub-problem defined by equa-
tion (2.12) is characterized only by linear time-varying dynamics, affine equality con-
straints and second-order inequality constraints. For these reasons, each sub-problem can
be discretized into a Second-Order Cone Programming (SOCP) problem [4] which can
in turn be solved by an Interior Point Method (IPM). In this work, the embedded conic
solver (ECOS), an interior-point solver for SOCP, is used to solve each iteration [25].

2| Background 13

Figure 2.3: SCP method.

Additionally, the parameterized convex optimization problem shown in equation (2.12)
can be written in a discretized form as

minimise cT x

s. t. Ax = b

Gx ≤ h,

(2.15)

where x ∈ Rn is the optimization variable, An×n, Gn×n, b ∈ Rn and h ∈ Rn are, respec-
tively, equality and inequality constraints matrices and vectors given by the problem.

Writing the convex optimization problem defined in equation (2.12) in the mathematical
problem (2.15), such that is compliant with the restrictive standard form of IPM solvers,
such as ECOS, would be an arduous and time consuming task. Instead, CVXPY, an
open source Python-embedded modeling language for convex optimization problems, is
used [26]. This tool enables the problem to be expressed in a user friendly and natural
form, such as the one shown in equation (2.12), which is subsequently mapped to the
mathematical problem (2.15). This removes the need and time needed to formulate the
problem accordingly with the presented ECOS syntax [26]. However, by being written
in Python, the generated code would not be compatible with the coding language of
the device used in this work. For this reason, another tool called CVXPYgen, which
enables the generation of custom C code for a parameterized class of convex optimization
problems, is used [27]. This tool uses the Python formulated problem to generate a
respective C code version. In Section 2.3, the Pseudo-algorithm 4.1 constructed around

14 2| Background

the code attained from CVXPYgen is presented.

Finally, an important remark about a section of the application is made. The C code
version of ECOS essentially works with three main functions:

• Setup: responsible for allocating memory for ECOS and necessary initialization
processes before the solver can start;

• Solve: the core interior-pointer solver;

• Cleanup: frees memory that has been allocated in the Setup stage.

Both the Setup and Cleanup phases use dynamic memory processes such as malloc and
free [25]. These types of system calls which manage memory allocation are not supported
with FPGA implementations. In fact, to synthesize a hardware implementation, the
design must be fully self-contained through the use of static memory allocation schemes
[28]. Consequently, any function linked with either of these phases of ECOS can not be
implemented in the FPGA.

Contrarily, Solve only uses static memory allocation, therefore being a perfect fit for
this work [25]. In practice, all meaningful candidates to implement in the FPGA will be
associated with this step of the algorithm, as described in Section 4.2.1.

15

3| FPGA Overview

This chapter aims to give an overall background about FPGAs. In particular, it focus on
their architecture and main components, the configuration procedure, potential benefits
and current limitations. Moreover, the discussion considers their application in the space
domain.

A comprehensive look at Xilinx Zynq devices 1 and their characteristics follows, together
with the description of the evaluation board used in this work, the Zedboard 2. The
chapter evolves by presenting the software tools used and the possible framework for
IP cores development and deployment. Finally, the typical metrics and optimization
techniques developers target in their design process are, likewise, detailed.

3.1. FPGA Definition

An FPGA are integrated circuits intended for custom hardware implementation, being
reconfigurable for an infinite number of times. Depending on the specifications and re-
quirements of the application, the user can reconfigure the hardware accordingly to achieve
the desired results, even after the manufacturing process. Accordingly, a high flexibility
in the implementation is present [29].

To achieve such high versatility and adaptability, FPGAs consist of a web of blocks
connected by programmable logic, all of these explained in detail in Section 3.1.2.

With a shorter design time compared to other application-specific environments, the
FPGA achieves high-performance computation by exploiting parallel processing [30]. It
can be considered as a General Purpose Processor (GPP) combined with an Application-
Specific Integrated Circuit (ASIC), each technology being suited for different scenarios
depending on the needs and constraints, as seen in Figure 3.1.

1https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html (last accessed:
November 10, 2023)

2https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/
zedboard/ (last accessed: November 10, 2023)

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/

16 3| FPGA Overview

Figure 3.1: Applicable domain of different integrated circuits/processing units.

Due to their programmable nature, FPGAs are a popular choice for different markets and
applications such as Aerospace, Defence, Medical, Video and Image Processing, Industrial
and others [31].

Within the space sector, FPGAs are commonly used for navigation [32], earth observation
[6] or deep-space scenarios [33]. Notably, exemplary cases of past applications are onboard
processing such as image processing, filtering algorithms or remote sensing operations. By
exploiting the spatial and temporal parallelism that the technology offers, great improve-
ments in the performance of algorithms can be achieved, maximizing the computational
power available onboard [34]. In addition, when compared to discrete logic scenarios, FP-
GAs present reduced weight and volume due to the shortened number of devices required
to perform the same operations, increased reliability with reduced solder connections and,
last but not least, higher flexibility due to the capability of making design changes even
after the board layout is complete [10].

Radiation Protection

When working with these devices in space, special attention has to be given to the possi-
bility of occurrence of Single Event Upsets (SEU), non-destructive errors, such as transient
pulses in logic or support circuitry, that might lead to undesired effects in the integrated
circuit. These can range from loss or alteration of scientific data to, in extreme scenarios,
complete system shutdowns.

Cosmic rays and high-energy protons are two major cause of SEU.

Cosmic rays are high-energy particles, typically characterized by a heavy ion component,

3| FPGA Overview 17

originating from the Sun, outside the Solar System, and other galaxies. They can lead
to memory bit flip or transient when the ion particle transverses the device [35]. On
the other hand, high-energy protons are high-energy particles usually trapped in Earth’s
radiation belts or provided from solar flares. They potentially cause direct ionization SEU
when impacting the device, leading, once again, to undesired behaviors [36].

Of highlight, an ESA audit made on several FPGA designs included in the Rosetta mis-
sion propose countermeasures against two particular undesired SEU, the "bit-flip" and
"deadlock state", with more information about the radiation tests and results being avail-
able in [9]. Furtherwise, the vulnerability of an FPGA to SEU depends on the type of
configuration data storage technology used as Table 3.1 exhibits.

SRAM Flash Antifuse

Reconfigurable Yes Yes No

Immunity against SEU Low Medium to high Very high

Table 3.1: Configuration data storage technologies and characteristics [13, 37, 38].

The solution to these risks, and fitted for space applications, are space-graded boards
characterized by tolerance against the mentioned radiations. Even if at the moment the
availability of these types of devices is limited, the tendency is to grow as the space
economy expands [39].

Intellectual Property

Lastly, an important term that will be used extensively throughout this thesis is Intel-
lectual Property (IP) block or core. These are functional blocks of logic or data designed
for specific functionalities, typically integrated in bigger systems or devices. Figure 3.2
depicts a combination of IP cores to form a Video IP core subsystem (the composition of
multiple IP cores sets up a subsystem).

18 3| FPGA Overview

Figure 3.2: Example of an IP subsystem [12].

3.1.1. FPGA Configuration

The configuration of an FPGA is done through Register-Transfer Level (RTL) methods,
a representation of notations used to specify the sequence of micro-operations to perform
[12]. As RTL code is very low-level, the level of abstraction is raised using higher-level
Hardware Description Languages (HDL) such as Verilog or Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language (VHDL) [40]. These programming
languages describe the operation and structure of digital electronic circuits. The RTL
code is written at an HDL level which, through synthesis tools, gets translated to gate-
level description. These are standard cells (like NAND, OR, XOR gates, etc.) that map
the functionality specified in RTL. In conclusion, thanks to High-Level Synthesis (HLS)
tools, the process configuration of an FPGA, typically done with RTL, is eased. Further
details about this workflow and a coding method of a higher level of abstraction are
explored in Sections 3.3 and 3.4.1.

Once the design is synthesized, a binary file called Bitstream, which contains the config-
uration information for a particular FPGA, is generated. It contains all the data to be
transferred onto the configuration memory as well as the proper commands to control the
chip functionalities. It is responsible for the logic configuration and routing of the FPGA
to match the functionality developed at RTL.

To achieve such high versatility and adaptability, FPGAs consist of a web of blocks
connected by programmable logic, all of these about to be explained in more detail in the
following sections.

3| FPGA Overview 19

3.1.2. The Logic Fabric

An FPGA can be broken down into three main building blocks: Configurable Logic Blocks
(CLB), Input or Output Blocks (IOB) and Interconnections. A scheme of these elements
and their disposition can be seen in Figure 3.3.

Figure 3.3: The logic fabric and its elements [12].

CLB

CLB is a basic building block used to create logic operations, making up a large part of
the FPGA [12]. They are connected to other similar resources through programmable
interconnections. Each CLB contains two logic slices and is positioned next to a switch
matrix as in Figure 3.4.

A switch matrix provides a flexible routing facility to make connections. This is both
between elements within a CLB and between the CLB and other resources of the FPGA.

Logic slices are a sub-unit of a CLB which contains resources to implement combinatorial
and sequential logic circuits. They are composed of Lookup Tables (LUT) and Flip-Flops
(FF). LUT is a set of memory cells responsible for implementing small logic functions.
When combined, they can form larger logic functions, memories, or shift registers as
required. FF are simple circuit elements capable of implementing a 1-bit register, with
reset functionality.

20 3| FPGA Overview

The characteristics of the blocks and the amount available in each FPGA vary with the
device, with the specifications for the board used in this work being presented at Section
3.2.3.

Figure 3.4: Composition of a configurable logic block [12].

IOB

The IOB is a programmable unidirectional or bidirectional interface between the FPGA’s
internal logic and a package pin used to connect to external circuitry [12]. IOBs are
usually located around the perimeter of the device and are used to complete the matching
requirements for input or output signals under different electrical characteristics.

Interconnections

Lastly, the aforementioned array of programmable logic blocks are connected through a
network of programmable interconnects which, then, serve as the bridge responsible for
transferring signals across the device.

3.1.3. DSP and BRAM

In addition to the previously defined elements, modern FPGA architectures include two
useful components: Digital Signal Processor (DSP) and Block Random Access Memory
(BRAM).

DSP slices are dedicated elements used to improve the throughput and latency of arith-
metic operations. This block reduces the amount of CLBs that would be needed to produce
similar arithmetic computations, shortening the overall number of resources used. Specif-
ically, DSP48E1s [41], the ones present in the Zedboard, are dedicated silicon resources

3| FPGA Overview 21

used for high-speed arithmetic operations on signals with medium to long word lengths.
More details about DSP48E1s can be found in [41].

BRAM is useful for memory requirements such as storing data. In the Zynq-7000 series,
discussed later in Section 3.2, these blocks are capable of Random Access Memory (RAM),
Read Only Memory (ROM) and First In First Out (FIFO) buffers. Each block can
store up to 36Kb of information, with reshape capability for different data formats. The
alternative would be to combine multiple LUTs to reach a similar result, this being called
Distributed RAM. This approach has two main limitations, them being the higher number
of resources it requires and the implementation restriction to the routing delays between
the logic used, impacting the timing results. For further details about the Block RAM
check [42].

Finally, due to the operations these two resources perform, they often interact with one
another. To maximize timing throughput, they are integrated in proximity to each other
into the logic array. Figure 3.5 highlights the column arrangement that fulfills this requi-
site.

Figure 3.5: DSP and RAM blocks in the logic fabric [12].

3.2. Zynq Architecture

A System-on-Chip (SoC) is a single chip capable of implementing multiple system func-
tionalities instead of using multiple physical chips to achieve the same purpose. It presents
itself as a cheaper solution, with fast data transfer between the different elements present,

22 3| FPGA Overview

smaller physical size, low power consumption and reliable results [12]. Yet, current SoC
designs lack in the flexibility and modularity needed by certain markets and applications.
With SoC, the upgrade or replacement of a specific component would often require the
replacement of the entire chip.

This need for a more flexible solution led to Xilinx designing a SoC implemented on a pro-
grammable, reconfigurable instrument. Therefore, the Zynq device is an All-Programmable
System-on-Chip (APSoC) as it combines a dual-core ARM Cortex-A9 processor with the
traditional FPGA logic fabric discussed in the previous Section 3.1.2.

3.2.1. Processing System and Programmable Logic

All things considered, the architecture of a Zynq device can be split into two components:
a Processing System (PS) formed around the dual-core ARM Cortex-A9 processor, and
a Programmable Logic (PL), an FPGA. To better understand the architecture, a simple
diagram is displayed in Figure 3.6.

Figure 3.6: Simple scheme of the Zynq architecture.

PS

The PS part is responsible for running software routines or operating systems (for e.g.
Linux 3) or even both. Inside the PS, the Cortex-A9 processor is called the "hard pro-
cessor" as it physically exists as an optimized silicon element on the device, achieving
high performance. However, as an alternative, the Xilinx MicroBlaze is a "soft processor"

3https://www.linux.org/ (last accessed: November 11, 2023)

https://www.linux.org/

3| FPGA Overview 23

formed through a combination of elements of the programmable logic fabric, being equiv-
alent to an IP block design deployed on an FPGA. This processor has the advantage of
the flexibility it can offer depending on the implementation, despite not reaching the same
levels of performance when compared to a hard processor. The PS is further comprised
of a list of complex components described in depth in [43], also highlighted in Figure 3.7.

X-Ref Target - Figure 1-1

Figure 3.7: Zynq 7000 SoC overview [44].

PL

The PL part is responsible for the implementation of high-speed logic, arithmetic and
data flow subsystems, being associated with the hardware component. It behaves as a
typical FPGA, embedding all the elements and characteristics discussed in Section 3.1.

For the correct use of the device, the two parts are interfaced through the standard
Advance eXtensilbe Interface (AXI) connections. This can be seen in Figure 3.7. A more
detailed description and features of these connections is done in Section 3.2.2.

24 3| FPGA Overview

3.2.2. Processing System - Programmable Logic Interfaces

This section aims to list the different interfaces and interconnects available, the charac-
teristics of each and explain in detail the AMBA AXI protocol.

AXI Interconnects and Interfaces

The primary link between the PS and the PL is done through a set of nine, for the case
of Zynq-7000, available AXI interfaces.

Interface and interconnect are two different systems. Specifically, an interface is a "point-
to-point connection for passing data, addresses, and hand-shaking signals between master
and slave clients within the system" [12]. An interconnect, on the other hand, is "ef-
fectively a switch which manages and directs traffic between attached AXI interfaces"
[12].

Of relevance for this work and by convention, the term master is related to the one who
is in control of the bus and initiates transactions, while the slave responds.

This said, the different types of AXI interfaces available in the device, with a respective
schematic being shown in Figure 3.8, are [44]:

• Accelerator Coherent Port (ACP): a single asynchronous interface with a bus width
of 64 bits - used to achieve coherency access between the L2 cache and DDR memory
present in the PS and elements within the PL.

• General Purpose (GP) AXI: four general purpose communication asynchronous in-
terfaces with 32-bit data bus - suitable for low and medium rate communications.
The PS is the master of two ports while the PL is the master of the other two.

• High Performance (HP) Ports: four high-performance interfaces with data width of
either 32 or 64 bits - Each interface accommodates two FIFO buffers, supporting
burst read and write behaviors. A burst mode is characterized by higher data
throughput since the creation of a separate transaction for each data piece is avoided.
Therefore it is typically used for high-rate communications between the PL and PS,
the latter being always the master.

3| FPGA Overview 25

Figure 3.8: AXI interconnects and interfaces between the PS and PL [12].

A scheme of the interconnections of the Zynq PS is shown in Appendix A.0.1.

There are other types of connections (such as EMIO) that, for the scope of this work, are
not exploited, with additional info available at [44].

The AXI Standard

AXI is a protocol belonging to the ARM Advanced Microcontroller Bus Architecture
(AMBA), an open standard on-chip interconnect specification that allows the connection
and management of IP functional blocks. In particular, the AMBA AXI specification
defines the protocols optimized for FPGA implementation, targeting high-speed, high-
frequency systems designs 4.

Considering the current AXI4 standard available, three types of application-dependent
interfaces exist [45]:

• AXI4: a high-performance interface suited for memory-mapped links. It supports
bursts of up to 256 data transfer cycles per address.

• AXI4-Lite: a lightweight variant of the interface, used in simple low throughput
memory transactions. For this reason, it does not support burst data, only providing
a single data transfer per transaction.

4https://developer.arm.com/Architectures/AMBA (last accessed: September 20, 2023)

https://developer.arm.com/Architectures/AMBA

26 3| FPGA Overview

• AXI4-Stream: used for high-speed streaming data scenarios, supporting an unlim-
ited data burst size. In the need of bidirectional transfers, both peripherals must
be of type master or slave as the connection is from master to slave type only.

The AXI protocol establishes an interface between a single AXI master and AXI slave,
these two representing IP cores that exchange data with each other. However, thanks to
an IP block called AXI interconnect, several AXI masters can be connected to several
AXI slaves.

First, an in-depth analysis of the AXI4 and AXI4-Lite interfaces is done, as their flow
architecture is distinct from that of AXI4-Stream. The first two interfaces consist of
five different channels: Write Address Channel, Write Data Channel, Write Response
Channel, Read Address Channel and Read Data Channel.

Figure 3.9 shows the write architecture. First, the address and control data is passed from
the master to the slave, followed by a burst transfer of data. Lastly, the slave informs the
master that the write operation was successful or not. Additional information about the
different signals that compose a burst transaction can be found in [45].

Figure 3.9: Channel architecture of write [45].

On the other hand, Figure 3.10 describes the read transaction. In this case, the master
sends the address and control data to be written to the slave before a burst of read data
is sent from the latter.

3| FPGA Overview 27

Figure 3.10: Channel architecture of read [45].

These write and read flows are present in both AXI4 and AXI4-lite interfaces. To em-
phasize, as separate write and read channels are offered, the capability for bidirectional
transfers is supported.

Finally, the AXI4-Stream only has a single channel for the transmission of streaming data,
modeling the write data channel of AXI4. This makes it ideal for applications where the
concept of address is not required. It is composed of three different necessary signals:
TREADY, TVALID and TLAST. The transfer starts once the producer sends the TVALID signal
and the consumer responds by sending the TREADY signal. Then, the producer starts
sending TDATA until TLAST is asserted. This signal alerts for the last byte of the stream
[28]. Figure 3.11 highlights the explained behavior.

Figure 3.11: AXI4-Stream handshake [28].

This is the basic method to use an AXI4-Stream titled "AXI4-Stream without side-
channels". A second one called "AXI4-Stream with side-channels" is available, presenting
five additional control signals to be exploited. More information about the second method
is available at [28, 45].

These different protocols are utilized and discussed in Section 4.3.2.

28 3| FPGA Overview

3.2.3. Zedboard

Within this thesis, a low-cost Xilinx Zynq ZC7Z020-1CLG484 APSoC 5, also known as
Zedboard, development kit has been used. This board has already been used in other
computational experiments such as video processing [8], embedded systems [7], control
software [5], and others. Despite not being targeted as a space-graded or radiation-
tolerant device, it is aligned with the needs and experiments conducted in this work. In
fact, previously used by National Aeronautics and Space Administration (NASA) in an
experiment for ionosphere readings 6, the board, for the scope of this thesis, can be seen
as a starting point to measure the feasibility of the deployment of algorithms such as the
ones explored here.

The technical characteristics of the board are reported in Table 3.2. Based on the Artix-7
logic fabric, Table 3.3 highlights the resources available on the PL side.

Flash Memory
[Mbit]

DDR3 Memory
[MB]

Clock - PS
[MHz]

Clock - PL
[MHz]

Quantity 256 512 33.33 100

Table 3.2: Characteristics of the Zedboard.

Logic Slices DSP48E1s Block RAMs

Quantity 13300 220 140 (36 Kb each)

Table 3.3: Resources available in the PL.

Moreover, the peripheral interfaces are highlighted in Figure 3.12.

The board offers different programming, debugging and booting methods, with the full
list being available in Appendix A.0.2. In this work, JTAG-based procedures were used
as identified as the most convenient. This is due to the simple configuration (single cable
connection) and the real-time debugging capabilities it offers.

5Zedboard Datasheet (last accessed: September 21, 2023)
6NASA Team Miniaturizes Century-Old Technology for Use on CubeSats (last accessed: September

21, 2023)

https://www.avnet.com/wps/wcm/connect/onesite/a43adf00-158c-4614-b2c7-4a7f35b53f25/FY23_800_ZedBoard_Product_Brief_r2.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE.Z18_NA5A1I41L0ICD0ABNDMDDG0000-a43adf00-158c-4614-b2c7-4a7f35b53f25-oj5IUo.
https://www.nasa.gov/technology/nasa-team-miniaturizes-century-old-technology-for-use-on-cubesats/

3| FPGA Overview 29

Figure 3.12: Zedboard and the different interfaces [12].

3.3. Development Tools

From the vast number of design tools offered by Xilinx 7, of relevance for this work, and
that were used extensively, there are:

• Vivado: an integrated development graphical tool for creating the hardware system
part of the SoC design. Besides, it provides synthesis, implementation for plac-
ing and routing, RTL design using HDL and bitstream generation capability. In
addition, it enables the integration and packaging of other IPs, enhancing reusabil-
ity [46]. This tool is essential for translating the desired HDL functionalities into
gate-level descriptions.

• Vitis Integrated Design Environment (IDE): a software design used for the devel-
7https://www.xilinx.com/products/boards-and-kits.html (last accessed: November 11, 2023)

https://www.xilinx.com/products/boards-and-kits.html

30 3| FPGA Overview

opment of embedded software applications that target Xilinx embedded processors.
Based on the Eclipse platform, it includes driver support for all Xilinx IPs and GCC
library support for ARM extensions using C or C++ languages. Essentially, it is
responsible for the software aspect of the hardware design created and exported
from Vivado [47].

• Vitis HLS: used for creating, testing and managing IP which, later on, is included in
the hardware system. It is a design tool that synthesizes a C or C++ function into
RTL for implementation in the PL region of the Zynq. This method is particularly
powerful as it enables the creation of an optimized hardware subsystem from a high
level of abstraction (such as C or C++) without the need to meddle with RTL code
[28]. This particular tool will be subject to further discussion in Section 3.4.1 as it
comprises a set of functionalities of interest for the intent of this work.

Figure 3.13 presents a guiding summary of the functionality of each software, showing how
they are related and also the usual flow of an application development and deployment.

Figure 3.13: Fundamental diagram of the different software and their functionalities.

3.4. Development and Implementation of IP cores

After introducing in Section 3.1 what an IP core is, the present section presents the
different workflows available, reasoning also for the chosen method for this work. The set
of methods which enable the creation of IPs are:

• HDL: specialized programming languages that allow the user to have maximum
control over the functionality of his peripheral, as seen before. If the solution requires
tight hardware or timing constraints, this method is, usually, the best one [12]. The
biggest disadvantage is in the complexity of the coding which, consequently, leads
to a demanding process of development and testing, requiring a specialized user to
work with it.

• Vitis Model Composer: software tool, provided by Xilinx, that utilizes the Math-
works Simulink design platform for the generation of synthesisable HDL code which
can be integrated in hardware designs [48]. Specifically targeted for Digital Signal

3| FPGA Overview 31

Processing (DSP) applications, it presents the capability of simulating the design
before moving it into the hardware. The actual deployment is easily achieved, with
automatic test bench generation and verification being part of this process. Ca-
pable of receiving custom IP, it also offers a catalog of blocks for usual operations
frequently integrated into designs to achieve higher performances.

• HDL Coder 8: MATLAB add-on capable of generating synthesisable HDL code
from both MATLAB functions and Simulink models. It automatically analyzes the
function or model under analysis, converting it from floating-point to fixed-point,
an important concept discussed in Section 4.5.

• Vitis HLS: software tool, provided by Xilinx and presented in Section 3.3, capable
of synthesizing RTL implementations from C or C++ code. Being at a higher level
of abstraction when compared to the previous methods, it enables the developer to
focus on the functionality and performance of the algorithm to be deployed.

Considering the aforementioned characteristics, Vitis HLS has been the selected tool to
employ. Firstly, it is a robust solution capable of generating high-performance designs,
even when compared to RTL solutions. However, while both can present similar perfor-
mances, the development time is immensely different as seen by Figure 3.14. This enables
the user to focus on the IP core design and optimization, leading to improved hardware
designs and removing the need to think at low-level implementation code. Secondly, as
the algorithm presented in Section 2.3 is developed in C code, its compatibility with Vitis
HLS is granted. This promotes easy integration between the algorithm code to deploy in
the FPGA and the IP development tool.

8https://www.mathworks.com/products/hdl-coder.html (last accessed: November 11, 2023)

https://www.mathworks.com/products/hdl-coder.html

32 3| FPGA Overview

Figure 3.14: Design time vs application performance with RTL and Vitis HLS compiler
[28].

3.4.1. Vitis HLS Deep Dive

After selecting Vitis HLS as the chosen tool to generate the IP cores used in this work,
their selection and reasoning being explained in detail in Section 4.2, it is important to,
first, go over which aspects of the design should be optimized and how to do it. Then, an
overall view of the different steps to be made for the correct use of the software is done.
This will be useful in Section 4.3 to understand the reasoning behind certain decisions.

Primary aspects of the design

When considering the optimization of a design, the two most important metrics to be
highlighted are:

• Resource cost: the amount of hardware required by the application to perform the
desired functionality.

• Throughput: the rate at which the circuit can process data. Explicitly, the latency
(either in number of cycles or ns) required by the design.

A trade-off between these two has to be made, being up to the designer to choose which
one to prioritize depending on the specific application and requirements of his design.

Then, an important distinction between two aspects of any HLS design are: its interfaces
(how the IP core will communicate with the PS) and the functionality of the design itself
(the algorithm to be accelerated using the FPGA).

3| FPGA Overview 33

To control the aforementioned characteristics and the behavior of the HLS process, the
following two techniques are available:

• Pragmas: directives which guide the tool’s behavior over aspects of the RTL imple-
mentation, enabling the designer to dictate how certain sections of the code should
be treated to match the desired requirements. They also play a vital role in the
selection and customization of the interfaces to be used in the design, being further
explored in Section 4.3.2. All the different types of Pragmas available on Vitis HLS,
each tailored for specific optimizations, are listed in [28].

• Constraints: limits specified by the developer on some aspect of the design. These
can either be number of resources or timing restrictions, with the application pro-
viding a report that tells if the implementation meets the requirements of the bigger
system into which will be later integrated.

Optimization techniques

There are two paradigms when searching for optimization of IP core designs: Pipelining
and Data flow.

Pipelining is a common term in hardware designs referring to the minimization of the
critical path, the "longest combinatorial logic path between clocked elements" [12]. The
goal is to reduce the Initiation Interval (II), so the number of clock cycles between the
launch of successive operations within a function or loop, therefore increasing the system’s
throughput. This can be achieved by overlapping independent operations as seen in
Figure 3.15, where the II is reduced from 60 clock cycles to 20. Important to notice that
pipelining does not decrease the latency, so, the time required for one item to go through
the entire system. However, by decreasing the II between iterations, it does increase the
total latency, therefore resulting in a higher system throughput.

Figure 3.15: Pipelining example [28].

34 3| FPGA Overview

Dataflow (also known as dataflow pipelining) is a similar concept, yet, it targets the con-
currency between functions or loops. While pipelining explored an increase in the hard-
ware throughput through software operations overlap, dataflow targets the parallelization
of function and loops by, physically, increasing the number of dedicated resources. This
parallelization paradigm is one of the main advantages FPGAs can offer. Of course, this
process leads to an increment of resource costs. Also, a critical aspect of dataflow is the
data dependencies between operations. Figure 3.16 perfectly illustrates this by showing
that the 3 functions can not be parallelized to start at the same clock cycle but are,
indeed, delayed to comply with data dependencies.

Figure 3.16: Dataflow example [28].

The approaches presented before can be explored in Vitis HLS through the use of Pragmas,
such as Pragma HLS pipeline for pipeline purposes and Pragma HLS dataflow or Pragma
HLS unroll for dataflow intents, with many others being available at [28]. This topic is
further discussed in Section 4.3.3.

Design Flow

After a brief introduction about the different aspects to take into account during an HLS
design, as well as exploring two possible sources of optimizations, a general view of the
different steps for the correct use of the software tool is done in this section.

Figure 3.17 illustrates an overview of a typical design flow. There are four different main
stages: C Simulation, C Synthesis, C/RTL Cosimulation and Implementation.

3| FPGA Overview 35

Figure 3.17: Overview of the Vitis HLS workflow [12].

Setup

For simplicity purposes, let’s take, as an example, the development of a matrix multi-
plication IP core. The first step would be to develop the C or C++ function that takes
two input matrices, performs the multiplication and then retrieves as output the result.
This will be the target function we want to translate into RTL code and implement on
the FPGA. Specification on the type of interfaces to use is done at this level by the use
of Pragmas. After, a test bench file is written, this being a practical example that val-
idates the developed function by comparing its results against previously known results
(normally named Golden Reference). This validation, previous to any generation of RTL
code, guarantees the correct behavior of the C or C++ functions, decreasing subsequent
errors. In this example, this file would initialize two matrices with known values, call the
function we want to implement in the hardware and, lastly, compare its output with the
expected matrix result.

36 3| FPGA Overview

C simulation

After creating all the before mentioned files, the "C Simulation" step can be run. The
objective is to validate the logic of the source code to be implemented on the FPGA by
using the provided test bench file and golden data. If the results are correct, the test
bench returns a value of zero, otherwise, it returns any non-zero value [28].

C Synthesis

The next phase entitled "C Synthesis" analyzes and processes the C or C++ code, pre-
viously developed and validated, to create the equivalent RTL description of the circuit.
At the end, a Synthesis Report is generated, giving an estimate on the timing, perfor-
mance and number of resources of the design [28]. With this report, the user can have
a preliminary idea of the performance of the design and compare it with the established
requirements. If unsatisfied with the results, Pragmas and Constraints can be added
following the metrics to be achieved.

C/RTL Cosimulation

After producing the equivalent RTL model, its functionality is checked by comparing it
to the original C or C++ code through the "C/RTL Cosimulation". This process re-
uses the previously defined test bench file to supply inputs to the generated RTL design
and, subsequently, check if the produced outputs match the expected values (the golden
reference file). It is noteworthy to mention that this stage presents timing behaviors that
are more coherent and accurate with the actual performance the hardware will achieve,
allowing for a more detailed analysis of the metrics to be attained [28].

RTL Export

Finally, once the design has been validated and the implementation has been iterated to
achieve the required criteria, it is time to export it as an RTL IP core. This will, later
on, be integrated into a larger system, as explained in the next section. It is pertinent to
note that Vitis HLS supports both VHDL and Verilog as the HDL options to export the
design.

3.4.2. IP Block Integration

Now that the IP core has been developed and synthesized into a RTL, it needs to be
integrated into the system. This is the transition point between the Vitis HLS tool and

3| FPGA Overview 37

Vivado, as illustrated before in Figure 3.13.

The Vivado IP Integrator is a powerful feature within Vivado that enables the configu-
ration and integration of IP cores with larger system designs. By providing a graphical
and Tool Command Language (TCL) development environment, it offers an automated
development flow that automatically connects the fundamental IP interfaces needed to
grant the right integration of the IP core in the whole system [12].

The tool also provides features such as IP core configuration and customization or even
debugging capabilities, which will be of relevance for later stages of this work.

3.5. Fixed-Point Arithmetic

When working with FPGAs, the specification of the data type to use is an important
aspect that directly impacts the integrity and key metrics of the design. For numerical
data, under-specifying the word length can lead to accuracy compromises while over-
specifying can introduce unnecessary amounts of resources or sub-optimal maximum clock
frequencies. For optimal hardware designs, no more bits than the necessary ones should
be used. Additionally, FPGA designers employ fixed representations whenever possible
due to the speed reduction that floating-point deployments present in hardware [49]. For
this, an important distinction between floating-point and fixed-point precision is made.

Floating-point precision represents numbers through a fixed set of significant digits scaled
using an exponent in some fixed base. This representation is composed by a sign bit S,
several exponent bits E and several mantissa bits M. Figure 3.18 shows, as an example,
the particular floating-point representation of double and float types.

Figure 3.18: Floating-point representation example.

Moreover, every data type can represent a range of values, collected in Table 3.4 for the
three data types of relevance for this work.

38 3| FPGA Overview

Type Number of bits Range

int (IEEE 754 [50]) 32 -2,147,483,648 to 2,147,483,647

double (IEEE 754 [50]) 64 ± 2.225e−308 to ± 1.798e308

float (IEEE 754 [50]) 32 ± 1.175e−38 to ± 3.403e38

Table 3.4: Floating-point range for presented data types.

On the other side, fixed-point precision represents numbers through a fixed number of
digits before and after the radix point. This enables the choice of the exact quantity of
fixed and integer places to consider, following the application requirements, allowing for
arbitrary amounts of bits. For FPGAs, this conducts in fewer resources used to represent
numbers and perform operations. Its particular definition and implementation in Vitis
HLS is explained in Section 4.5.

Concerning the arithmetic operations, an element to recognize is the resultant amount of
bits certain operations produce. For example, the multiplication of two 18-bit numbers
gives a 36-bit results. If not handled correctly, this can lead to bit overflow scenarios.
Therefore, an important outlook to consider when developing an application with fixed-
point precision is the agreement of the number of bits of each data type with the operations
to be carried out.

A last regard is the performance difference certain operations between the two precision
types present. For floating-point, additional computation to handle the exponent and
mantissa part of a number is required. The wide range of magnitudes and variable pre-
cision available is counteracted by additional processing and storage operations. On the
other hand, fixed-point precision presents greater efficiency for certain operations since
they can directly operate with the same units [49].

A wise choice of bits for fixed cases, respecting the sizes required by the application, results
in higher quality hardware implementations characterized by fewer resources and better
performance while preserving accuracy. In [49], a study of the difference in performance
and resource usage for several arithmetic operations using both data types in FPGA
devices is presented.

39

4| Implementation

This chapter delves into the deployment of the SCP algorithm presented in Section 2.3.
First, the solution of the Earth to Mars minimum-fuel trajectory optimization problem
is presented. Subsequently, the deployment of the application in the PS of the Zedboard
and a profiling sequence is done. This stage conducts the functions or sections to target
the FPGA. An overview of the operations of each function is laid out. Following this, the
workflow for elaborating and implementing the selected IP cores into the whole system
is shown, discussing the reasoning for the interfaces used in this work. Due to memory
and resource constraints, a reduction of the original problem is justified and evaluated.
Lastly, a discussion about fixed-point arithmetic and its implementation for this work is
done.

4.1. Sequential Convex Programming Algorithm

For this work, a minimum-fuel STO problem between Earth and Mars is solved considering
the algorithm and concepts presented in Chapter 2. The set of conditions considered for
the problem, normalized and referred to 100 nodes, are:

xl = [0; 1; 0; −π; −10; −10; −10; ln (0.1)],

xu = [10; 10π; π; 10; 10; 10; 0],

ul = [−10; −10; −10],

uu = [10; 10; 10],

R = [1; 5π; 10π; 0.4; 0.4; 0.4; 10],

ε = [10−6; 10−4],

γ = 0.7,

x(t0) = [1; 0; 0; 0; 1; 0; 0],

x(tf) = [1.5236; 3.1415; 0.0322; 0; 0.8101; 0],

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

(4.1f)

(4.1g)

(4.1h)

(4.1i)

where the convergence variable ε is split into two values, the first one related to the

40 4| Implementation

first six components of the state, and the second one to the last component of the state.
Moreover, the engine technical data used can be found in [4].

The Pseudo-algorithm 4.1 presents a scheme and logic for the SCP algorithm constructed
around the code attained from CVXPYgen, being coherent with the concepts presented
in Section 2.3 and Figure 2.3.

Algorithm 4.1 Sequential Convex Programming Algorithm
1: Inputs: Initial and final state vector x(t0) and x(tf), initial and final time instants

t0 and tf , number of nodes N, convergence criteria ε, trust region R and cauchy
parameter γ

2:

3: Generate reference trajectory x(0) ▷ 3rd order polynomial
4: Set k = 1
5:

6: for (k < kmax) do
7: Solve Problem 2.12 to find y(k) =

{
x(k),u(k)

}
▷ ECOS

8: Check the convergence condition:
9: if sup

∥∥x(k) − x∗
∥∥
1
≤ ε then

10: Optimal solution found:
{
x(k),u(k)

}
11: Check minimum fuel mass: m(t0)−m(tf)

12: Check objective function: J
13: break
14: end if
15: Update reference trajectory x∗ = x(k)

16: Update cauchy parameter γ

17: end for

The solution to the problem, after running the C code of the Pseudo-algorithm 4.1 with
the conditions stated above, is displayed in Section 5.3.

4.1.1. Deployment in the PS

After developing, compiling and executing the C code algorithm for the problem under
study on a desktop computer, the next step is to deploy it in the PS of the Zedboard. Once
verified, a profiling technique can be applied to understand which functions to deploy in
the FPGA as Section 4.2 presents.

The deployment in the PS is straightforward with the use of Vitis, with only some small

4| Implementation 41

remarks to take into account. First, a conversion of the POSIX/UNIX routines present
in the original C implementation (such as CLOCK_MONOTONIC) to routines which are com-
patible with a bare metal implementation on the Zedboard is carried out. This leads to
the need to implement compatible timing mechanisms, a point explored in Section 5.2.1.
Similarly, ECOS includes a set of files which, despite not being used by the developed
algorithm, will cause conflicts in the compilation act ("multiple definition of main error"),
therefore being removed. Lastly, a correct linker script structure is needed to grant the
appropriate execution of the code. A linker script is a configuration file responsible for
specifying the memory layout and address mapping of the target device. It defines the
memory regions to be used and how the code and data are placed in memory. The user
should stipulate two fields [12]:

• Stack: area of computer’s memory which stores temporary variables declared, stored
and initialized during the runtime of a function.

• Heap size: section responsible for storing global variables.

If not correctly fixed, the program stack can continuously grow until a non-accessible
memory region is accessed (stack-overflow).

Following the correct setting of the problem, its deployment was done into the board
through the USB-JTAG programming mode. The results are, once again, presented in
Section 5.3.

4.2. IP Cores Selection

A benchmark of the algorithm was performed with the intent of identifying possible hard-
ware implementations through IP Cores. These aim the improvement of the application
throughput.

4.2.1. Profiling

In many embedded systems, the processing bandwidth or throughput of an application
is limited by the processor’s performance. Therefore, an application computational time
profiling was executed to identify its execution-time bottlenecks.

To not alter the program execution flow, the Vitis’ non-intrusive Target Communication
Framework (TCF) profiler has been adopted to sample the Program Counter through the
debug interface. However, when the stack trace is also enabled, the program execution
speed decreases due to the presence of code memory probing [47]. In this case, this is not

42 4| Implementation

a problem, as the interest is to identify the relative execution time and not the absolute
atomic one.

Having said that, Figure 4.1 shows the profiling information for the application under
study deployed in the PS as exhibited in Section 4.1.1. The first four columns provide,
respectively, the address for the function, its exclusive percentage, its inclusive percentage
and its name. The fifth and sixth columns provide the file where that function is located
and the corresponding line.

The important metrics to take into account are the % exclusive and % inclusive columns.
These are defined as [47]:

• % exclusive: the percentage of samples for that function only, excluding samples
of any child functions. A child function is a function executed within the current
function [47].

• % inclusive: the percentage of samples of a function, including samples collected
during the execution of any child functions [47].

As anticipated, the functions that consume the greatest execution time and, consequently,
impact the performance of the application, are all associated with ECOS processes. This
is expected since, from the Pseudo-algorithm 4.1, it is reasonable to assume the program
spends most of its time inside the interior point solver. Particularly, the Solve step of
ECOS highly impacts the execution time. This is because an STO problem heavily relies
on the execution of the chosen solver. Moreover, all of the candidates below work with
static memory allocation and are suited for possible FPGA implementations.

Figure 4.1: Total execution time percentage profiling for 100-nodes application.

4| Implementation 43

For this work, it was decided to optimize the functions with higher values of exclusive
percentage. This logic is because while a high inclusive percentage indicates that the
function executed for a long time, the sampling information of its child functions is also
included in it. This could mean that a lot of the processing activity may not result from
the function itself but, indeed, from its child functions. In contrast, functions with a high
exclusive percentage point out the operations, through the entire application, that took
the highest amounts of processing.

Analyzing Figure 4.1, the functions selected for IP core development, and subsequent
deployment in the PL, are kkt_factor and sparseMV.

kkt_factor is a perfect example of a function with a high inclusive percentage but a
low exclusive percentage. It contains ldl _numeric2 as its child function responsible
for all the processing. The first function serves essentially as a wrapper for the second
one. Thus, by implementing kkt_factor, the actual implementation and focus is on the
ldl_numeric2 function. Being the first function to be implemented and deployed as an
IP core in the board, its choice was uniquely due to the high execution time it takes over
the application.

Then, the sparseMV function was chosen for the simplicity of operations and arithmetic
it presents, providing a straightforward integration. This point is further discussed in
Section 4.5.

4.3. IP Design

4.3.1. Functional Analysis

The functions previously selected in Section 4.2.1 have to be analyzed in terms of inputs
and outputs, their data structures, and functionality. The aim is to produce IP cores that
could replicate the original purpose of each function in a hardware oriented environment.

As general remark, the minimum amount of inputs and outputs needed for the function
operation should be passed to the FPGA. Likewise, its performance should be maxi-
mized through, for example, the optimization techniques discussed in Section 3.4.1. This,
nonetheless, will not be possible due to aspects further discussed in Section 4.3.3.

As a common practice in C implementations, the C version of ECOS greatly explores the
use of pointers and structures throughout the code. As a result, in most cases, functions
used in the algorithm have pointers to their input or output variables. Instead, due to the
type of interfaces chosen for the IPs, a different approach, explained in detail in Section

44 4| Implementation

4.3.2, is considered. The upcoming paragraphs explain some of the critical elements taken
into account for each function.

Numeric Factorization Function

The purpose of kkt_factor is to compute the numeric factorization A = LDLT, with A

being a symmetric sparse matrix. It is a variant of the classical Cholesky decomposition
[51]. ECOS implements it through the LDL software package [52], a set of concise routines
for factorizing symmetric positive-definite sparse matrices.

Let Ax = b be a linear system with A symmetric and let PAPT = LDLT be a factor-
ization of matrix A, where P is a permutation matrix, L is a unit lower triangular matrix
and D is a block diagonal matrix. The solution to the original linear system can be
computed iteratively, at reduced computational cost, by the sequence of equations shown
in (4.2) which involve permutation, diagonal and lower triangular matrices.

Lu = Pb,

Dv = u,

LTw = v,

x = PTw,

(4.2)

where, u,v,w are intermediate vectors [53]. Therefore, the factorization process of matrix
A is a pivotal part in the execution of iterative solvers, such as ECOS, as it enables
computationally efficient and numerically stable operations [25, 54].

The Pseudo-algorithm 4.2 is a simplified version of the function operation, where lkk, dkk, akk
are, respectively, the kk entry of matrices L, D and A.

Algorithm 4.2 LDLT factorization of a n-by-n symmetric matrix A

1: Inputs : Matrix A and nonzero pattern of matrix L

2:

3: for (k = 0 to n) do
4: Find y by solving L1:k−1,1:k−1y = A1:k−1,k

5: Lk,1:k−1 = (D−1
1:k−1,1:k−1y)

T

6: lkk = 1
7: dkk = akk − Lk,1:k−1y

8: end for

In this case, the symmetric matrix to factorize is KKT, shown in equation (4.3), result

4| Implementation 45

of a composition of the SOCP matrices A and G, and a primal dual-scaling W [53]. All
passages and algebraic manipulations to obtain this matrix are demonstrated in [25].

KKT ≡

 0 AT GT

A 0 0

G 0 −W2

 . (4.3)

For clarity purposes, Listing 1 shows and contextualize the inputs and outputs of the
ldl_numeric2 mentioned. Some of the variables are strictly related to the nomenclature
used by the software package.

Listing 1 Inputs and outputs of ldl_numeric2 function
int kkt_factor(kkt* KKT, double eps, double delta) {

int nd;

nd = LDL_numeric2(
KKT->PKPt->n, // size of matrix PKPt
KKT->PKPt->jc, // index of elements in PKPt->pr which

// start a column of matrix PKPt, size n+1
KKT->PKPt->ir, // stores the row index of each entry of matrix

// PKPt, size lnz=Lp[n]
KKT->PKPt->pr, // input of size nz=Kjc[n]
KKT->Parent, // elimination tree, size n
KKT->Sign, // input, permuted sign vector for regularization,

// size n
eps, // value of inverse permutation vector
delta, // value of dynamic regularization
KKT->Lnz, // # of nonzeros below the diagonal of L, size n
KKT->L->jc, // index of elements in L->pr which start a

// column of matrix L, size n+1
KKT->L->ir, // stores the row index of each entry of matrix L,

// size lnz=Lp[n]
KKT->L->pr, // non-zero numerical values of matrix L,

// size lnz=Lp[n]
KKT->D, // diagonal matrix, size n
KKT->work1 // workspace, size n
KKT->Pattern // workspace, size n
KKT->Flag // workspace, size n

);

return nd == KKT->PKPt->n ? KKT_OK : KKT_PROBLEM;
};

46 4| Implementation

Moreover, the size of the inputs and outputs is reported in Table 4.1. The data is trans-
mitted through the interface described later in Section 4.3.2.

The LDL package works, throughout its different routines, with the n-by-n sparse matrix
A in a Compressed Column Storage (CCS) format described hereafter [55]. Considering
three different arrays Ax,Ai and Ap, exemplified in equation (4.4), Ax stores the non-
zero numerical values of matrix A, Ai stores the row indices of each entry and Ap stores
the index of the elements in Ax which start a column of matrix A. At the end of this
last array, the total number of non-zero values is added.

A =


8 0 0 19

0 44 0 0

0 0 30 15

23 0 6 2

 ,

Ax = [8, 23, 44, 30, 6, 19, 15, 2],

Ai = [0, 3, 1, 2, 3, 0, 2, 3],

Ap = [0, 2, 3, 5, 8].

(4.4)

This format, however, leads to algorithms characterized by non-fixed size iteration loops,
that is, the indices are not defined a priori. An example is appreciated through lines 7-9
and 13-15 of the Pseudo-algorithm 4.3. Moreover, kkt_factor presents while loops.

These cases of function loops with nondeterministic routines cause conflicts in the opti-
mization techniques and Vitis HLS synthesis and implementation tools to carry out. The
impact they have on the overall FPGA performance is analyzed in Section 4.3.3.

Matrix-Vector Multiplication Function

The sparseMV function performs the sparse matrix-vector multiplication operations pre-
sented in (4.5).

y = Ax, if a > 0 and newVector = 1,

y += Ax, if a > 0 and newVector = 0,

y = −Ax, if a < 0 and newVector = 1,

y −= Ax, if a < 0 and newVector = 0.

(4.5)

The Pseudo-algorithm 4.3 shows a simplified implementation of the operations above,
being coherent with the CCS format presented before.

4| Implementation 47

Algorithm 4.3 Sparse matrix-vector multiplication using CCS format
1: Inputs : Matrix A, vectors x and y and values newVector and add
2:

3: if newVector > 0 then
4: Set y = 0

5: end if
6:

7: if add > 0 then
8: for (j = 0 to n) do
9: for (i = Ap[j] to Ap[j+ 1]) do

10: y[Ai[i]] += Ax[i] × x[j]
11: end for
12: end for
13: else
14: for (j = 0 to n) do
15: for (i = Ap[j] to Ap[j+ 1]) do
16: y[Ai[i]] −= Ax[i] × x[j]
17: end for
18: end for
19: end if

Listing 2 points out the different inputs and output vector y of the function. The structure
spmat contains pointers to the arrays for the CCS format previously introduced. Once
again, the dimensions of all the different arrays to use were determined, as specified in
Table 4.2.

48 4| Implementation

Listing 2 Inputs and outputs of sparseMV function
void nd = sparseMV(

int* A->jc, // index of elements in A->pr which start

// a column of matrix A, size n+1

int* A->ir, // stores the row index of each entry of

// matrix A, size nnz

double* A->pr, // non-zero numerical values of matrix A,

// size nnz

int n, // size of matrix A

int m, // # of nonzeros below the diagonal of A

int nnz, // # of nonzeros on diagonal and upper

// triangular part of A

double* x, // input vector, size n

double* y, // output vector, size m

int add, // condition to add or subtract operation,

// size 1

int newVector, // condition to reset vector y, size 1

);

};

4.3.2. Interfaces

After carefully selecting the functions to implement as IP cores and understanding their
operations, a choice of which type of interfaces to use is made. The FPGA interacts with
the PS through the AXI Protocol and a set of ports, as explained in Section 3.2.2. In
general scenarios, the interfaces of an IP core are split into two components: control and
data signals. Control signals refer to typical IP core commands such as start, pause,

resume, reset and others. Data signals are responsible for the necessary exchange of
data between the PL and PS for the IP core operation.

Selection

Regarding control signals, the AXI4-Lite is the recommended choice since it is a lightweight
and simple interface to implement that, once used in Vitis HLS, produces an associated
set of C driver files when exporting the RTL. These files include a set of straightforward
functions and structures useful in the Vitis SW control of the IP core actions.

As for data signals, considering the available choices, AXI4 or AXI4-Stream, the second

4| Implementation 49

interface type is selected. While both interfaces present data burst capability, the AXI4-
Stream implementation requires less configuration on the Vitis HLS side, which, however,
introduces the setup of an additional IP core, as discussed in Section 4.3.4.

Data Structures Manipulation

Referencing to Section 4.3.1, a simplification of the input and output data structures was
required as, in their original form, they contain pointers to pointers. This construct is
not supported, as top-level interfaces, by Vitis HLS [43]. The inputs and outputs of the
IP cores have to be simple pointers to arrays. Consequently, the main structure should
be divided into separate arrays. However, this could lead to an excessive increase in
the number of pointers (and therefore buffer memory) involved in the PS-PL transfers.
Furthermore, Vitis HLS advises the avoidance of pointers in cases where multiple accesses
(read or write) are done [28].

Therefore, the data exchange between the PL and PS is done through Transmitters (TXs)
and Receivers (RXs) arrays, lowering to a minimum the quantity of inputs and outputs
each IP core presents. The exact method and details are described in the following section.

PS-PL Interface Implementation

First, an AXI4-Stream interface is specified through the Pragma HLS interface option.
It guarantees the interface implementation mimics the AXIS interface style mentioned in
Section 3.2.2. Moreover, Pragmas also enable the customization of the interface to use.
Specifically, the depth option was used to specify the maximum number of samples for
the test bench to process.

Secondly, each AXI4-Stream interface must have an associated data type. Since the
selected functions use integer and double data types arrays as inputs and outputs, a need
to create two distinct stream interfaces arose, as exemplified in Figure 4.2.

Thirdly, stream objects have to be incorporated into the C code by using the hls::stream
object definitions. More in detail, this datatype-dependent object encapsulates the re-
quirements of the streaming interface and, importantly, includes a set of useful function-
alities. Moreover, read and write methods allow to sequentially read and write elements
from and into the interface. Figure 4.2 presents a basic scheme of the methodology to
exchange data between the PS and PL. The way the streams are packed in the PS has to
be coherent with how they are unpacked in the PL and vice-versa.

As anticipated, and referring to Figure 4.2, the implementation of the AXI4-Stream re-

50 4| Implementation

quired the creation of four different arrays, two TXs and two RXs, each with an associated
data type (step 1). Each TX is sequentially loaded with all the data to pass to the PL
(step 2). Inevitably, for each function, this leads the need to find the size of the arrays the
pointers, used in the C application, are directing to. After the computation in the FPGA
is complete (step 4), the RXs unload the data, coherently, to the respective variables (step
6).

While the discussed workflow is applicable for both functions, sparseMV only needs one
RX since it only has a single output.

For reasons discussed in Section 4.3.4, when the last element of the transaction is written,
the TLAST signal, defined in the C code of the IP core, is set to high.

Figure 4.2: Scheme of stream use between PS and PL.

Finally, two AXI HP ports and one AXI GP port were selected, for the data and the
control signals, respectively.

The connection between the IP core, the AXI Direct Memory Access (DMA) block and
the Central Processing Unit (CPU) was done through the IP Integrator, discussed in
Section 3.4.2, in parallel with the Run Connection Automation option Vivado grants. Be-
sides providing the right link between the different components, it also creates additional
necessary connections for the operation of the whole system.

Section 5.2 presents and explores the integration of each IP core into the system, with
Figures 5.1 and 5.2 exhibiting the respective diagrams.

4| Implementation 51

4.3.3. Optimization

Referring to Figure 4.2, each one of the IP cores developed is characterized by the same
high-level operational flow:

1. Read from input streams and store;

2. Perform computations;

3. Write to the output stream.

To obtain a higher throughput, the optimization techniques detailed in Section 3.4.1 were
used. Therefore steps 1 and 3 were pipelined, using the Pragma HLS pipeline, to reduce its
II to the minimum. Hence their latency, in terms of cycles, was reduced to the respective
sizes of inputs and outputs to work with plus two additional cycles. These arise from the
faded operations present at the beginning and each of each for loop to optimize. Figure
4.3 exemplifies this condition with an input stream with 3 elements, summing up to a
total of 5 cycles, where READ and STORE are processes.

Figure 4.3: Example with input stream to demonstrate faded behavior.

Within step 2, parallelization was explored but not implemented due to the presence of
nondeterministic loops and nested data dependencies.

In fact, both functions revolve around multiplication loops which vary considering the
number of non-zero values a matrix row presents. This is a typical workflow explored
by compact matrix storage methods such as CCS [55]. As an example, let’s consider the
matrix A and its CCS format shown in equation (4.6), an input vector x ∈ R4 and an
output vector y ∈ R4.

52 4| Implementation

A =


1 2 3 4

0 1 0 0

4 5 0 5

0 0 0 0

 ,

Ax = [1, 4, 2, 1, 5, 3, 4, 5],

Ai = [0, 2, 0, 1, 2, 0, 0, 2],

Ap = [0, 2, 5, 6, 8].

(4.6)

Reasoning in the number of iterations for each multiplication:

• SW-oriented application: the Pseudo-algorithm 4.4 presents a process where, thanks
to the CCS format, the multiplication loop only utilizes the non-zero values stored
in vector Ax. Therefore, the for loop of line 4 is characterized, for each outer
iteration j, by 2, 3, 1, and 1 iterations, respectively, summing up for a total of 8
(the number of non-zero entries).

Algorithm 4.4 Software-oriented matrix-vector multiplication example
1: Inputs : Matrix A, vectors x and y

2:

3: for (j = 0 to 4) do
4: for (i = Ap[j] to Ap[j+ 1]) do
5: y[Ai[i]] = Ax[i] × x[j]
6: end for
7: end for

• Hardware-oriented application: a standard matrix-vector multiplication algorithm
is considered where all values of the matrix are used, both zero and non-zero. Con-
sequently, an n-by-n matrix multiplied by an n-by-1 vector leads to a for loop

composed of n-by-n iterations. For the presented example, this makes up to 16
iterations. Looking at Figure 4.4, in the left case, an arbitrary hardware design
is created to contain the 16 iterations. However, as exemplified in the right case
of Figure 4.4, parallelization can be explored through a Pragma HLS unroll opti-
mization of factor 4, resulting in distinct hardware blocks, each responsible for a
row. This process is possible as each row-wise operation is data-independent and
deterministic.

4| Implementation 53

Figure 4.4: Example for matrix-multiplication unroll.

The software-oriented application presents 8 iterations while the first implementation in
the hardware 16. However, as data-independent and deterministic operations are used,
a parallelization process can be done to combine multiple concurrent hardware instances
which, when combined, reduce the number of cycles from 16 to 4.

Nevertheless, when trying to implement this framework to the deployment of the Pseudo-
algorithm 4.4 in hardware, a problem arise in the for loop of line 4. At each outer iter-
ation j, depending on the number and disposition of non-zero entries the matrix presents,
the bounds of the loop change. Therefore, Vitis HLS creates a single arbitrary hardware
design which, to accommodate all operations, inevitably leads to a sequential workflow
(not exploring the concurrency capabilities).

To exemplify, using the matrix in equation (4.6), the bounds of the for loop of line 4 of
the Pseudo-algorithm 4.4 are 2 and 3 when j=0 and j=1, respectively. Vitis HLS creates
a single arbitrary hardware design to support the 2 iterations of j=0. Consequently, when
j=1, the hardware is not suited for the application. The hardware instance is called to
perform the first 2 iterations which, once done, is called again to perform the final 3rd
iteration.

This non-deterministic framework makes it not possible to explore the concurrency ad-
vantages that FPGAs present.

Additionally, if the computation of an iteration of the loop is dependent on previous
results, the concurrency and pipeline of the function are not possible. This is observed in

54 4| Implementation

the Pseudo-algorithm 4.2 where the computation of the kth row of L is processed after
the previous L-1 rows are set.

To conclude, cases of variable-bound loops with data dependencies affect the possible loop
unrolls or pipeline. As exemplified, a single arbitrary hardware instance is created such
that, to accommodate all operations, inefficient code sequences are performed. Therefore,
the concurrency advantage FPGAs present is not explored, leading to worse hardware
implementations.

Both functions under analysis have nondeterministic and data-dependent behaviors. There-
fore, problems in the synthesis report of each IP core are noticed, as discussed in Section
5.1.

Nonetheless, for the appropriate code sections of each, the Pragma HLS unroll was used
to allow certain operations to run simultaneously. Pipelining was also applied when
applicable.

4.3.4. AXI DMA

For this work, the AXI DMA IP block, shown in Figure 4.5, was used to transfer data
from DDR memory to the IP block and backward [56]. This is a mandatory block to
use when AXI4-Stream interfaces are implemented. Figure 4.6 depicts a simple design
scheme to highlight the role of this block, where in the place of the FIFO would be the IP
core to deploy. The benefit when using this block is the facilitated scheduling of memory
transactions, handling of address generation and burst formatting it grants, providing a
correct link between the PS and PL.

Figure 4.5: AXI DMA IP Core [56].

4| Implementation 55

It presents two operational modes: Simple and Scatter-Gather. For this work, the Simple
mode was used since, while fulfilling the requirements, presented an easier and lower-
cost implementation in terms of resources. The Scatter-Gather mode offers capacity for
offload data movement tasks from the CPU through an extra AXI bus, not presented in
the scheme. More information about this mode can be found in [56].

Back to the Simple mode, keeping as reference Figure 4.6, the PS-PL connection is im-
plemented by a set of AXI4 interfaces. The AXI-lite bus allows the processor to control
the AXI DMA actions (such as initiate, setup and monitor). Then, the AXI_MM2S
(Memory-Mapped to Streaming) reads data from external memory to the IP core while
the AXI_S2MM (Streaming to Memory-Mapped) transports data in the opposite di-
rection. This is a simplified overview of the entire cycle of operations and signals, with
complete details available at [56]. These last two channels enable a continuous data stream
between the PS and PL.

Figure 4.6: AXI DMA block scheme design example 1.

As referred, the DMA block expects any streaming IP connected to the write channel
(AXI_S2MM) to set the AXI TLAST signal when the transaction is complete. If not
properly set by the IP core, the block never completes the transfer, leading to application
stalling.

1https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/ (last ac-
cessed: November 1, 2023)

https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/

56 4| Implementation

4.4. Board Memory Constraints

The scheme presented in Figure 4.2 points out the need to store the data sent to the PL
in local variables. In the FPGA, once local arrays or variables are initialized, they are
stored in the BRAM resource introduced in Section 3.1.3.

In this work, when synthesizing the IP core responsible for the kkt_factor function, the
"C Synthesis" reported a resource usage of 457% of the BRAM concerning the amount
available, previously presented in Table 3.3. This was expected due to the high number
of nodes considered which, as a result, led to a vast workspace of variables.

Different solutions were considered:

• Replacing the hardware with one with more resources: the board of this work is
positioned as a development kit that targets the acquaintance of the main processes
and remarks of application development for FPGA devices. Therefore, the transition
to a board of higher resources should only be made after the knowledge and methods
to deploy the algorithms of interest for this study in the hardware are proven feasible.
Consequently, this procedure is not considered;

• Problem partition: sending packets of data and solving the sub-problem associated
with each packet, instead of sending all data and solving the entire problem. This
can be easily exemplified by thinking of an IP core responsible for image processing.
Rather than sending the entire image and processing it, it is split into multiple sub-
images which are sent, processed and retrieved sequentially, being put together at the
end. Thus, the FPGA only stores each sub-image at each instance as an alternative
to storing the entire image, which would require more memory resources. However,
this approach requires the original data to be broken down into independent packets
which are put back together at the end. This aspect was not trivial for functions
kkt_factor and sparseMV, hence being discarded;

• Problem size reduction: a reduction in the number of nodes to consider results in
a cutback of the problem size, being the selected procedure. Explained in detail in
the next Section 4.4.1, this approach pairs with the focus of this work which is to
learn the main challenges and processes in the deployment of STO algorithms in an
FPGA.

4| Implementation 57

4.4.1. Problem Size Reduction

A reduction in the number of nodes to consider leads to a reduction in the workspace of
variables to work with. Since less nodes are considered, the state history of the trajectory
is reduced. Recalling equations (2.6), it affects the quantity of vectors of natural two-
body dynamics f , jacobian matrices A and changed variable z to compute and store.
After some calculations, it was stipulated that the number of nodes that would generate
a workspace of variables whose size is compatible with the BRAM resources available by
the Zedboard was 5. Yet, simply reducing the number of nodes of the problem to solve
from 100 to 5 would lead to unrealistic solutions.

To keep the logic of the problem, it was decided to select a section with 5 nodes from the
trajectory solution of the original 100-nodes implementation as the new problem to solve.

Therefore, to set up this new 5-nodes implementation, illustrated in Figure 4.7, the fol-
lowing processes are considered:

1. Solve and retrieve the solution of the Earth to Mars minimum fuel STO problem
using 100 nodes. These are the black nodes of Figure 4.7;

2. Extract the first 5 nodes of the solution, the new segment to consider. These are
the red dots of Figure 4.7;

3. Set a new problem, considering the set of conditions from the 100-nodes problem, but
changing the final position to the retrieved 5th node position. Besides, appropriately
adjust the final time instant and set the number of nodes to 5.

Therefore, the set of conditions for the new 5-nodes problem to solve is identical to the ones
of equation (4.1), changing the final position to the retrieved 5th node as equation (4.7)
highlights and, once again, the number of nodes and final time instant to consider, despite
not shown.

x(tf) = [1.0012; 1.7773e−1; 5.3051e−5, 1.4287e−2; 1.0217; 1.0343e−3]. (4.7)

These are the required stages to properly set up the new problem. The algorithm of the
new problem to solve is identical to the Pseudo-algorithm 4.1. It is crucial to point out
that the solution that minimizes the fuel transfer for the new 5-node problem has to be
the same as the 1st and 5th nodes segment solution of the 100 nodes implementation.

58 4| Implementation

Figure 4.7: Simplified problem reduction approach.

The new solution computed with the reduced number of nodes is presented in Section
5.3 after deployment in the desktop and PS. Despite not being presented, the obtained
solution fulfills a trajectory and control profile that coincides with the first 5 nodes segment
and control profile of the 100 nodes solution.

From here, all the discussion and concepts introduced in Sections 4.2 and 4.3 are equally
applied to the newly defined problem.

Furthermore, a profiling of the new application was performed, highlighting no significant
changes with respect to the results previously presented in Figure 4.1. Therefore, the
selected functions to integrate the hardware are suitable with the new problem.

As foreseen, a drop in the size of the arrays required to transfer between the PL and the
PS is achieved as seen in Tables 4.1 and 4.2. Subsequently, this leads, as shown in Table
5.1, to IP core implementations whose synthesis report presents resource usages within
the available capabilities.

Case Input Stream
Integer

Input Stream
Double

Output Stream
Integer

Output Stream
Double

100 nodes 197695 97662 197696 97662

5 nodes 9886 4853 9887 4853

Table 4.1: Interface sizes of kkt_factor for both applications.

4| Implementation 59

Case Input Stream
Integer

Input Stream
Double

Output Stream
Double

100 nodes 18190 19592 1406

5 nodes 805 877 76

Table 4.2: Interface sizes of sparseMV for both applications.

4.5. Arbitrary Precision Implementation

Vitis HLS provides fixed-point arbitrary precision data types for C++. They follow the
structure shown in Figure 4.8, where W is the word length, I is the number of integer bits
and, consequently, B is the number of fractional bits such that W = I +B.

Figure 4.8: Fixed-point representation example [12].

For signed representation, the Most Significant Bit (MSB) bit is allocated while unsigned
representation does not require it. For calculations where two numbers with different
numbers of bits or precision are used, the binary point is automatically aligned [28].

Additionally, when defining a fixed point data type in Vitis HLS, the user must set the
quantization mode Q and overflow mode O to use. The quantization mode is responsible
for dictating the design behavior when greater precision to the one the store variable
supports is generated. The default mode truncates the number towards minus infinity.
The overflow mode, on the other hand, dictates the design behavior when the result of an
operation exceeds the maximum (or minimum in the case of negative numbers) possible
value supported by the store variable. The default mode wraps the values around in case
of overflow [28].

In Vitis HLS, an arbitrary precision fixed-point data type is defined through the syn-
tax ap_[u]fixed<W, I, Q, O>, the different fields referring to the previously defined
concepts.

Considering the notation defined above, the precision achieved by a fixed-point data type
is given by 2−B and the range is 2I−1, for signed implementations. Inversely, and in

60 4| Implementation

typical workflow cases, the precision and range to be defined are known. So, the number
of fractional and integer bits that correctly represent the required data type are given by
B = −log2(Precision) and I = log2(Range) + 1, respectively.

For the work here presented, it was decided to implement the sparseMV function with
both arithmetics to corroborate the expected resource and performance differences. This
function was selected as a prototype case for fixed-point sparse library implementation
due to the simpler list of operations and integration it presents. Consequently, an easier
implementation that still gathers remarks about the effects this approach has on problems
such as the ones of this thesis is done.

The function works with the two data types of Table 3.4. However, to compute the
required level of precision and range for the arbitrary data type to implement, one iteration
of the function was traced to calculate the highest and lowest number present. For the
problem under study, the two solution metrics are the minimized fuel mass and objective
function. Selecting the fuel mass as the priority, a precision of 10−9 was targeted despite
inevitable changes in this element being noted, as Section 5.3.2 exhibits.

Afterward, looking at the different sets of operations the function performs, the fixed-point
data types presented in Table 4.3 were defined. Considering the function performs matrix-
vector multiplication operations, as shown in equation (4.5), special care to double the
amount of bits of the output y was carried. The selected precision also presents two extra
decimal places to the one previously stated. This was done for precautionary reasons.

Table 4.4 highlights a second HW design where the precision is increased. The reasoning
for this choice is covered in Section 5.3.2.

Type W I B Range Precision

integer (input) 11 11 0 1024 1

double (input) 39 5 34 16 ≈ 5.82 × 10−11

double (output) 78 10 68 512 ≈ 3.39 × 10−21

Table 4.3: Range and precision of selected fixed-point representation for first design im-
plementation.

4| Implementation 61

Type W I B Range Precision

integer (input) 11 11 0 1024 1

double (input) 55 5 50 16 ≈ 8.88 × 10−16

double (output) 110 10 100 512 ≈ 7.89 × 10−31

Table 4.4: Range and precision of selected fixed-point representation for second design
implementation.

The type-casting operations between floating and fixed-point is done inside the IP core.
The impact of this procedure and the performance difference between the two approaches
is presented in Section 5.3.2. Furthermore, the effect the use of fixed-point precision has
on the algorithm convergence is also highlighted.

63

5| Results

This chapter presents and explores the results of the different design implementations
described in Chapter 4. Section 5.1 displays the estimated synthesis reports from the
developed IP cores, reasoning over the difference in resource usage. In particular, it also
highlights the resources’ influence of type-casting operations performed inside the IP core.
Section 5.2 exhibits the hardware designs and their actual synthesis reports. In Section
5.3, the solution for the 100 and 5-nodes problems is exposed. Afterward, the results from
the different hardware designs are disclosed and explained, going over the performance
difference between fixed and floating-point implementations. The impact of fixed-point
precision on the algorithm convergence is also uncovered, an aspect related to the range
of values ECOS uses and their numerical propagation. Finally, Section 5.4 introduces an
outline of the several remarks obtained from the development of this work.

5.1. HLS Synthesis

In Section 4.3 the two functions to implement as IP cores were introduced and detailed.
Afterward, a choice of interfaces and workflow for data transfer between PS and PL was
described. Table 5.1 features the estimated synthesis results from different configurations.
A resource utilization percentage is shown to simplify the overall consumption each IP
core retains from the resources available. The presented values are estimations of Vitis
HLS and require confirmation once the designs are deployed on the board. This aspect is
further discussed in Section 5.2.

Along this Chapter, the resource quantities reported to the sparseMV fixed-point imple-
mentation relate to the design settings of Table 4.3. Notice, nonetheless, that a higher
number of resources is required by the configuration of Table 4.4 naturally.

64 5| Results

IP Core BRAM DSP FF LUT

kkt_factor - floating-point 33 (23%) 14 (6%) 3875 (3%) 7677 (14%)

sparseMV - floating-point 11 (8%) 14 (6%) 2701 (2%) 3699 (6%)

sparseMV - fixed-point 10 (7%) 4 (1%) 3653 (3%) 5618 (11%)

Table 5.1: Estimated synthesis resource utilization for 5-nodes application.

The number of resources between both IP cores differs in some fields. A substantial
difference is noted in the BRAM block of kkt_factor. This is expected due to the
greater workspace of variables it presents.

Regarding the fixed-point implementation of the sparseMV IP core, it is seen that the
BRAM and DSP quantities are lower concerning the floating-point implementation. The
slight BRAM decrease is due to the reduced total number of data bits stored. The DSP
reduction is attributed to the more efficient arithmetic operations fixed-point implemen-
tations present.

However, the number of FF and LUT increases. This is a consequence of the type-
casting operations realized inside the IP core. In fact, by comparing the synthesis reports
provided by Vitis HLS for both implementations, it is possible to determine the quantity
of resources used for this procedure. By subtracting those from the amounts presented in
Table 5.1, only 2099 (4%) LUT and 1633 (1%) FF are obtained. This is a clear reduction
to the floating-point implementation.

This method of type-casting inside the IP core does not harm the performance of the
fixed-point employment. However, if resource usage is a constraint of the application,
type-casting operations should be performed in the PS.

Finally, Table 5.1 does not declare, for each function, the estimated number of latency
clock cycles. As discussed in Section 4.3.3, both cases possess nondeterministic sequences
such that the boundaries of the loops are data-dependent. Therefore, Vitis HLS can not
calculate the required number of cycles for the execution of these sections.

5.2. IP Cores Design Implementation

After exporting the implementations presented in Section 5.1 as RTL, their integration
in the system is done through Vivado.

As explained in Sections 5.3.1 and 5.3.2, the performance of each implementation is less

5| Results 65

efficient than the respective software-oriented application. For this reason, separate de-
signs for each IP core are created. Otherwise, their combination into a single design would
result in an even less efficient outcome.

Their integration in the system is, in either case, quite similar.

Figure 5.1 highlights the design scheme for the system including the kkt_factor IP core.
As discussed in Section 4.3.4, the connection between the IP core and PS is through
the AXI DMA blocks [56]. A dedicated block for each input and output stream pair is
used, therefore presenting both Read (M_AXIS_MM2S) and Write (S_AXIS_S2MM) channels.
Alternatively, an AXI MultiChannel DMA IP (MCDMA) core could be used. The Zynq
PS block [57] uses AXI3 Protocol while the DMA blocks use AXI4. Consequently, the
AXI Interconnect block [58] is used to automatically meet the necessary conversions.

The stream ports exhibited in Figure 5.1b are connected, through means of previously
mentioned blocks, to the HP ports seen in Figure 5.1c. The AXI-lite control port
s_axi_CONTROL_BUS is connected to the M_AXI_GP0.

Next, the AXI Timer block [59] is used, with Section 5.2.1 discussing the reasoning behind
its inclusion.

In the configuration of the AXI DMA blocks, the width of the buffer length register is
maximized to 26 bits. It enables the transfer of 67,108,863 bytes (≈ 63 MB) in a simple
transfer, enough for the requirements of this work.

Lastly, the Processor and PL Fabric clocks are set as 666.67 MHz for the CPU, 533.33 for
the DDR, and 100 MHz for the PL. The last frequency is coherent with the frequency set
in the Vitis HLS development of the IP cores.

66 5| Results

DDR

FIXED_IO

KKT_factor_0

Kkt_factor (Pre-Production)

s_axi_CONTROL_BUS

in_stream_int

in_stream_doub

out_stream_int

out_stream_doub

axi_dma

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_dma_1

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_mem_intercon

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_mem_intercon_1

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_timer_0

AXI Timer

S_AXI
processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

S_AXI_HP1_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

S_AXI_HP1

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

(a) Block Design Overview.

KKT_factor_0

Kkt_factor (Pre-Production)

s_axi_CONTROL_BUS

in_stream_int

in_stream_doub

out_stream_int

out_stream_doub

(b) kkt_factor IP Core.

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

S_AXI_HP1_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

S_AXI_HP1

(c) Zynq PS IP Core.

Figure 5.1: IP Core kkt_factor design integration.

Figure 5.2 shows the design scheme for the system including the sparseMV IP core. The
selection, specification, and connection of the different blocks is identical to the previous
discussion. Indeed, the Zynq PS block is configured in the same way as the previous case,
therefore not being enlarged in Figure 5.2.

A difference is noted in the axi_dma_1 block of Figure 5.2 which only presents a Read
Channel. As the IP core presents two input and one output streams, this specific DMA
block simply reads from DDR3. Coherently, the other presents both Read and Write
channels for the remaining streams.

5| Results 67

DDR

FIXED_IO

SparseMV_0

Sparsemv (Pre-Production)

s_axi_CONTROL_BUS

in_stream_int

in_stream_doub

out_stream_doub

axi_dma

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_dma_1

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXIS_MM2S

axi_mem_intercon

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axi_mem_intercon_1

AXI Interconnect

S00_AXI M00_AXI

axi_timer_0

AXI Timer

S_AXI

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

S_AXI_HP1_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

S_AXI_HP1

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

(a) Block Design Overview.

SparseMV_0

Sparsemv (Pre-Production)

s_axi_CONTROL_BUS

in_stream_int

in_stream_doub

out_stream_doub

(b) sparseMV IP Core.

Figure 5.2: IP Core sparseMV design integration.

After the connections are set, the synthesis and implementation steps are executed. There-
fore, the bitstream is generated. Vivado provides a full report with an overview of the
design resources used. An estimation of the total on-chip power is also given. Table 5.2
presents the respective values.

IP Core BRAM DSP FF LUT On-Chip Power [W]

kkt_factor - floating-point 48 (34%) 14 (6%) 18021 (17%) 12941 (24%) 1.888

sparseMV - floating-point 20 (14%) 14 (6%) 7299 (7%) 6202 (12%) 1.753

sparseMV - fixed-point 19 (13%) 4 (2%) 8446 (8%) 8311 (16%) 1.751

Table 5.2: Synthesis overview report for 5-nodes application.

As aforementioned, despite Table 5.1 revealing an estimation of the resources each IP core
implementation would take, Table 5.2 presents the actual resources used in the implemen-
tation of the whole design. As other blocks are included, an increase in most resource
quantities is verified for all cases, the only exception being the DSP.

The design implementation with the greatest amount of total resources produces the

68 5| Results

highest projected on-chip power consumption.

Lastly, the placement and routing of each design circuit on the FPGA is presented in
Appendix A.0.3.

5.2.1. AXI Timer

The design implementations discussed in Section 5.2 present the AXI Timer IP core
[59]. Being integrated into the Vivado IP Catalog, it is a 32 or 64-bit timer module
that interfaces to the AXI4-Lite interface. Along with other features, it supports two
programmable interval timers with event generation and capture capabilities. Figure 5.3
highlights the block.

Figure 5.3: AXI Timer IP Core [59].

Its introduction is to verify the performance of the different hardware designs in terms of
number of cycles. This is a common metric in the assessment of FPGAs. This workflow
is similar to a reference design file provided by Xilinx [60] where the same technique is
used.

Thanks to this block, the performance of the IP core is compared to the performance of
its software (SW) version, a matter discussed in Section 5.3.

5.3. Results Evaluation

The solution to the 5 and 100 nodes problems is presented in Tables 5.3 and 5.4 after
running the C application in the desktop and PS Zynq. The corresponding control vector
solution of the problem is also retrieved, despite not being shown here since it is not
relevant to this work’s overall intent.

5| Results 69

Device J (-) Fuel Mass (kg) Iterations k (-)

Desktop 1.6612199448795926 128.006623 3

PS of Zynq 1.6612199448795926 128.006623 3

Table 5.3: Earth-Mars 100-nodes problem solution.

Device J (-) Fuel Mass (kg) Iterations k (-)

Desktop 0.1778736542714191 15.064871 2

Zynq PS 0.1778736542714191 15.064871 2

Table 5.4: Reduced 5-nodes problem solution.

As expected, both cases show no difference in the results of the application, for the selected
decimal precision, once run in the desktop or the Zynq PS. While not the target of this
thesis, an element to consider is the increased computational time the application takes
to run on the PS when contrasted to the desktop. Specifically more noticeable in the 100-
node application, the desktop version takes 0.89 s while the PS of the Zynq takes 33.54
s to solve the problem. This is expected due to the computational power discrepancy a
desktop workstation offers when compared to the device under use.

These designs, however, do not employ any FPGA capabilities yet. In fact, for reasons
previously explained in Section 4.4.1, only the 5-node application explores hardware de-
signs, therefore being the treated case in the upcoming sections.

5.3.1. Numeric Factorization IP Core

After generating the bitstream of each design, the Vitis software code is developed to
program the FPGA.

The goal is to solve the 5-node problem presented in Section 4.4.1 using the kkt_factor

IP core to solve the factorization process presented in Section 4.3.1.

The correct integration of the developed HW logic in the code is eased thanks to the C
driver files generated after including the AXI4-Lite interface mentioned in Section 4.3.2.
The IP core and both AXI DMA blocks have to be set up. While these details are not
presented in this thesis, the methods used are similar to the ones exhibited in [60].

70 5| Results

To understand the performance and details of the implemented design, two distinct ver-
sions are used. To ease the discussion, they are defined as:

• SW version: the application which does not use any FPGA resource. This is the
original C application without any modifications to the code, whose results are
shown in Table 5.4;

• HW version: the application which explores a combination of SW and HW routines
by employing the kkt_factor IP core inside ECOS.

First, Table 5.5 displays the problem solution for the HW version, exhibiting, for conve-
nience, the reference SW version result of Table 5.4. Up to the displayed precision, it is
seen that the same results are achieved. This is expected since the IP core was designed
with the IEEE standard double floating-point precision, avoiding any loss of range or
precision in the FPGA.

Version J (-) Fuel Mass (kg) Iterations k (-)

HW kkt_factor 0.1778736542714191 15.064871 2

SW (reference) 0.1778736542714191 15.064871 2

Table 5.5: Reduced 5-nodes problem solution for HW version of kkt_factor design.

Secondly, to understand the FPGA performance of this design, a set of 1000 test runs for
each version is done. This reduces variability bias and provides more reliable metrics. For
each run, a reset of the problem is done and the number of cycles to solve it is acquainted.
The AXI Timer is used with the default frequency of 125 MHz. Figure 5.4a highlights
the SW version while Figure 5.4b the HW version. For meaningful results, both versions
are run in the "Release" build.

Referring to Figure 5.4a, the mean number of clock cycles the SW version takes to solve
the problem is 6.08383 × 107. Contrarily, looking at Figure 5.4b, the mean number of
clock cycles the HW version takes to solve the problem is 1.70228× 108. The HW version
presents a higher number of cycles.

In fact, for this work, the Acceleration Factor (AF) is defined in equation (5.1) as a metric
to compare the performance between the two versions.

AF =
Number of Clock Cycles for SW version
Number of Clock Cycles for HW version

. (5.1)

5| Results 71

Figure 5.5 presents the Cumulative Distribution Function (CDF) of the acceleration factor
for this design. Its mean value is 0.357.

0 100 200 300 400 500 600 700 800 900 1000

Test iteration [-]

60.78

60.8

60.82

60.84

60.86

60.88

60.9

N
u
m

b
er

 o
f

C
lo

ck
 C

y
cl

es
 [

1
0

6
]

SW

Mean SW

(a) Number of cycles to solve the problem using only SW functions.

0 100 200 300 400 500 600 700 800 900 1000

Test iteration [-]

170.1

170.15

170.2

170.25

170.3

170.35

N
u
m

b
er

 o
f

C
lo

ck
 C

y
cl

es
 [

1
0

6
]

HW

Mean HW

(b) Number of cycles to solve the problem combining SW and HW functions.

Figure 5.4: Performance of HW and SW versions for the kkt_factor implementation.

72 5| Results

0.357 0.3571 0.3572 0.3573 0.3574 0.3575 0.3576 0.3577 0.3578 0.3579

Acceleration Factor [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 [

-]

CDF AF

Mean AF

Figure 5.5: Cumulative distribution function of the acceleration factor for the kkt

_factor design.

From the results presented, the HW version is, approximately, three times slower than
the SW version. This outcome can be explained through the following reasons.

First, the number of cycles needed for the transfer of data, the address of the data to
the arrays, and the read and write operations from the streams are computed. All these
factors account for a total of 326494 clock cycles per use of the IP core. However, while
solving the problem, it is seen that kkt_factor is used 202 times. Combining these two
aspects, a total of 65951788 clock cycles is obtained. Subtracting it from the mean value
of clock cycles the HW takes, a new acceleration factor of 0.583 is attained.

Yet, calculating the number of cycles solely the transfer takes in a single cycle, the value
902 is achieved. Compared to the 326494 clock cycles presented above, it is negligible.
Therefore, it is concluded that a significant drop in the HW performance is caused by the
address of data and stream management. Referring to Figure 4.2 of Section 4.3.2, these
correspond to steps 2, 3, 5, and 6 of the scheme.

Even after the motives detailed above, an acceleration factor smaller than one is obtained.
Consequently, this means, for the same conditions, the LDLT factorization shown in the
Pseudo-algorithm 4.2 is more efficient in SW than the developed HW. This is a result of
factors such as:

• Use of floating-point precision: this results in less efficient performances, as referred
in Section 3.5.

5| Results 73

• Presence of nondeterministic and data-dependent loops: two effects which deprive
the use of pipeline or unroll optimizations, as described in Section 4.3.3. Inherently,
less efficient designs are obtained since concurrency capabilities are not explored.

• Frequency of the IP core: as stated in Section 4.2, the CPU is running at a much
higher frequency than the PL. One additional technique that can lead to more
efficient performances is the increase of the PL frequency. This increase must be
within the values that guarantee the hardware design timing constraints.

Notice, however, that increasing the IP core frequency is limited to the hardware timing
constraints resulting from the number of concurrency operations applied. The user can
target a faster clock with non-deterministic loops or a slower clock with deterministic
parallelizable loops to possibly achieve faster designs. Normally, the combination of both
is impractical.

Discussion

Despite, in the molds of this work, the matrix factorization process performing worse in
the FPGA, efficient throughput implementations are found in [61, 62]. These exploit block
partitions of matrices A, D, and L to enable matrix-matrix multiplications. Afterward,
concurrent operations are done such that, in the end, all matrices are assembled back.
Often called "right-looking" variants, these techniques enable better results.

Having said that, in [61] is proved that as the size of the matrix increases, the speed-
up factor decreases, despite being always favorable in the FPGA case. This behavior is
associated with the upper bound limit the performance of Cholesky factorizations display
as the problem size increases [63]. This limit could be a trade-off to keep in mind for
future implementations depending on the desired level of performance increase.

Alternatively, other efficient matrix factorization processes for FPGA implementations
can be explored. In [64], to achieve high throughput, a fixed-point LLT factorization
process is used to parallelize the diverse tasks. Yet, by changing the factorization method,
significant changes to ECOS would follow, an important factor to take into account.

5.3.2. Matrix-Vector Multiplication IP Core

The programming of the FPGA for this case is similar to the one previously discussed in
Section 5.3.1.

This time, the problem presented in Section 4.4.1 is solved using the sparseMV IP core
to perform the required matrix-vector multiplications. While also discussed, the intent of

74 5| Results

this implementation is not to strive for better performance efficiencies. It is, instead, to
understand the impact a fixed-point arithmetic can have in problems such as the one in
this work.

Once more, to ease the analysis, the terms "SW version" and "HW version" are used.
They are defined similarly as in Section 5.3.1, the only difference being that the HW
version refers, in this case, to the application that employs the sparseMV IP core.

As specified in Section 5.1, two distinct implementations of sparseMV are developed. The
results from each are analyzed separately below.

Floating-Point Precision

The solution of the HW version achieves the same results seen in Table 5.5. Once again,
as this IP core design uses double floating-point precision, no difference between the SW
and HW solutions is noted.

As in the previous case, a set of 1000 test runs is done. Figure 5.6 poses a mean number
of 8.43487 × 107 clock cycles for the HW version. Compared to the SW value presented
in Section 5.3.1, the HW version presents a higher number of clock cycles, resulting in an
acceleration factor whose mean value is 0.721.

0 100 200 300 400 500 600 700 800 900 1000

Test iteration [-]

84.2

84.25

84.3

84.35

84.4

84.45

84.5

N
u
m

b
er

 o
f

C
lo

ck
 C

y
cl

es
 [

1
0

6
]

HW

Mean HW

Figure 5.6: Performance of HW version for the sparseMV floating-point implementation.

5| Results 75

0.7195 0.72 0.7205 0.721 0.7215 0.722 0.7225

Acceleration Factor [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
b
ab

il
it

y
 [

-]
CDF AF

Mean AF

Figure 5.7: Cumulative distribution function of the acceleration factor for the sparseMV

floating-point design.

Analyzing the data, the HW version is, approximately, 1.4 times slower than the SW
version. While still a negative result, it is an improvement with respect to the previous
case. In fact, the operations and number of nondeterministic loops each IP core presents
are radically different, impacting each implementation diversely.

For this case, 6673 clock cycles per use are needed for data transfer, address of the
data, and read and write operations for the streams. As the function is used 1806 times
in a single run, a total of 12051438 clock cycles is obtained. Subtracting it from the
mean value of clock cycles the HW takes, a new acceleration factor of 0.842 is calculated.
Compared to the previous case, this presents a smaller relative performance increase. This
is expected as the workspace of variables this IP core uses is greatly reduced as Tables 4.1
and 4.2 highlight. Consequently, the impact operations such as data address and stream
management take in the implementation is reduced when compared to the previous case.

Similarly to the previous scenario, the data transfer only accounts for 340 clock cycles,
making for a negligible impact on the overall implementation.

These two IP core implementations corroborate the burst transfer of data benefit the
AXI4-Stream presents. In either example, the address of data and stream management
are relevant factors that greatly impact the performance.

As in the previous case, the poor performance the HW version achieves can be attributed
to the presence of nondeterministic loops and the use of floating-point precision. These

76 5| Results

two factors lead to less efficient hardware designs. Additionally, once again, an increase
in the IP core frequency, within values that respect the timing constraints, can also grant
performance increments.

Discussion

Generally, to achieve high throughput in sparse matrix-vector operations in FPGA de-
signs, data structure organization, and matrix partition into blocks are focal points to
target concurrency of operations. These require information on the sparsity structure of
the input matrix. For matrices with very irregular sparsity structures, very few improve-
ments are accomplished.

However, in [65], a design is developed to perform such operations without any informa-
tion on the sparsity structure of the matrix. For it, a Compressed Row Storage (CRS)
matrix storage format is used. This enables the parallel multiplication of each row of the
matrix with the vector, exploring concurrency for efficient performances. Nonetheless,
this approach would require, once more, an extensive number of changes to the ECOS
workflow. Instead, the focus for future implementations could be on other operations such
as Section 5.4 reports.

Fixed-Point Precision

Table 5.6 presents the solution to the problem for the fixed-point HW version using the
two configurations of Tables 4.3 and 4.4.

Regarding the first implemented design, it is possible to see a loss of precision in the
obtained results for both the objective function and fuel mass. When selecting a preci-
sion of 10−9 from an isolated iteration of the whole algorithm, all the decimal places that
are under this precision are lost. In other words, for the sample of data collected, while
the values above the selected precision are covered, a loss in decimal places is, regard-
less, undergone. This impacts subsequent computations, resulting in an overall loss of
precision.

In fact, despite the fixed-point IP core itself presenting higher efficiency, as proved below
by a test case in Section 5.3.2, its implementation in the whole design leads to a lower
acceleration factor concerning the reference floating-point implementation. This is strictly
related to the higher number of iterations required to reach the problem solution. ECOS
entails more iterations to solve the problem, resulting in a higher computational time
when compared to the floating-point implementation.

This effect can be seen in the increased number of calls for the function under study.

5| Results 77

Indeed, the 3021 calls taken are a significant rise from the floating-point case (1806).
Additionally, while the major factor for the performance decrease is the higher number of
iterations the IPM requires, the extra number of cycles the HW takes is also augmented
throughout the resolution of the problem, intensifying the performance decrease.

To express this hypothesis, a second fixed-point implementation with higher precision is
considered. A difference in the objective function, fuel mass, and number of iterations to
attain the solution is still displayed. The fuel mass of this design in specific is closer to
the reference value when compared to the first fixed-point implementation. Additionally,
the number of iterations demanded by the ECOS solver is lower, as seen by the number
of sparseMV function calls. Indeed, as expected, the acceleration factor improves when
compared to the previous case. Still, when compared to the floating-point implementation,
the less efficient performance can be attributed to the augmented number of calls.

Design J (-) Fuel Mass
(kg)

Iterations
k (-)

Number of calls
for sparseMV (-)

Acceleration
Factor (-)

HW sparseMV - fixed-point
(10−11 precision)

0.1778841011968801 15.064836 3 3021 0.526

HW sparseMV - fixed-point
(10−16 precision)

0.1778532160822693 15.064839 3 2585 0.589

SW (reference) 0.1778736542714191 15.064871 2 1806 -

Table 5.6: Solution, performance and details about the fixed-point implementations of
sparseMV designs compared to the SW version.

These implementations illustrate the challenge the precision selection of fixed-point arith-
metics can have in problems such as those of this work. A strict need for keeping all the
significant decimal places is mandatory to achieve more efficient performances.

Indeed, from [53], the author states a need for single floating-point precision to cover
the dynamic range of numbers arising from the IPM. The fixed-point precision is, ac-
cordingly, unadvised for problems that use ECOS. This is a common concern in FPGA
implementations of IPMs [66]. Actually, a fixed-point configuration that entails the range
and precision of a single-floating point could be done. It would, however, consume a high
number of resources, therefore not being a viable option.

Performance Comparison

To demonstrate the performance impact fixed-point arithmetics can have over floating-
point, a simple test case is built. This utilizes the example sparse symmetric positive-

78 5| Results

definite matrix A defined in [52].

The floating-point IP core presented in Section 5.3.2 is compared to the first fixed-point
IP core design whose settings are defined in Table 4.3. Table 5.7 shows the mean value
of each design over 1000 runs, considering also the sole sparseMV function in SW.

Design Number of clock cycles (-)

SW sparseMV 1263

HW sparseMV - floating-point 11181

HW sparseMV - fixed-point
(10−11 precision)

5680

Table 5.7: Performance comparison between floating-point and fixed-point sparseMV IP
core and its software routine.

The fixed-point implementation presents, almost, half of the number of cycles required
to execute the same operations in floating-point. Consider, although not shown, that
the results from the fixed-point design only comprehend up to 10−11 when it comes to
precision.

An advice when developing an IP core using both arithmetics is the latency in number
of cycles that the Co-Simulation report in Vitis HLS stipulates. This can be used as a
preliminary estimation for the discrepancy both designs might present.

Additionally, the results of Table 5.7 highlight the efficient operations the function of
the original code (SW version) achieves when comparing the number of cycles. In fact,
considering the workspace of variables of Table 4.2, at least, 1758 cycles are required to
write and read the data from the streams passed to the IP core. This value alone is
larger than the number of cycles needed for the SW to perform all the computations,
highlighting the gap between the SW and HW implementation of each function in this
work.

An approach that could diminish this disparity is the design of an IP core which in-
cludes multiple different functions, all accessed sequentially. This would attenuate the
impact that the transfer of data, data address, and stream management have in the sole
implementation of functions such as kkt_factor and sparseMV.

5| Results 79

5.4. Remarks

After presenting and discussing the results and discoveries from the different implemen-
tations, a synopsis is provided in this section. However, the following considerations are
made:

• IP cores selection: in Section 4.2.1, the selection method introduced in this work
is described. A key component deriving from the results is the recommendation of
opting for functions that present deterministic and data-independent characteristics
such that parallelism and pipeline operations can be explored. However, in [53],
a theoretical model for Model Predictive Control (MPC) problems demonstrates
the advantages of carrying out matrix-matrix multiplications and matrix forward
substitution in an FPGA. This observation can be seen in Figure 5.8, where the right
columns correspond to the microcontroller core and the left columns to the FPGA
acceleration for matrix-matrix multiplications and for matrix forward substitution.
Data transfers are not accounted. An interesting consideration for the development
of future applications that explore IPMs could be the combination of the conclusions
presented in Table 5.8 with IP core designs for the recommended operations.

• Size of the Problem: due to the characteristics of the IPM, larger speedups can be
expected for larger problems [53].

Figure 5.8: Predictions of computation times for PS for large MPC based on a theoretical
model [53].

80 5| Results

This said, Table 5.8 reports the main remarks to keep in mind for the FPGA deploy-
ment of future STO problems that explore interior point solvers (such as ECOS). While
some aspects are strictly related to the techniques used in this work, others can be ap-
plied to different onboard trajectory optimization guidance algorithms as they are general
considerations of FPGA scenarios.

Remark Overview

Data Transfer Using AXI4-Stream, the impact the transfer of data has on the IP
core performance is minimal thanks to burst capabilities.

Data Address and
Stream Manage-
ment

Considering the implementation workflow presented in Section 4.3.2,
the impact these two aspects have on the performance efficiency can
be significant. This depends on the size of the workspace of variables
to use. A bigger workspace of variables requires more data address
and stream management operations, leading to less efficient designs.

Refined IP Core
Selection (Perfor-
mance Prioritiza-
tion)

After profiling the application, the functions to convert into IP cores
shall be the ones with the highest exclusive percentage characterized
by deterministic and data-independent behaviors. Otherwise, if
these aspects are not present, a change in the function structure
and implementation must be done to reach such state. This enables
pipeline and unroll optimizations.

Additionally, to mitigate the effects of the previous two re-
marks, an HW design shall include multiple functions with high
exclusive percentages instead of creating multiple HW designs for
each.

Lastly, the sections of IPMs that fit the most for FPGA im-
plementations should be regular, but expensive, operations such as
matrix-matrix multiplication or matrix forward substitution [53].

Floating-point and
Fixed-point Preci-
sion

Fixed-point precision presents advantages from a performance and
resource usage point of view. However, for onboard guidance al-
gorithms that utilize interior point solvers such as ECOS, the data
type of related IP cores shall be, at least, single-floating point pre-
cision. This invalidates the use of fixed-point arithmetic for such
applications.

5| Results 81

Type-casting For applications that explore fixed-point precision, if resource usage
is a constraint of the development, type-casting operations shall be
performed in the PS.

Performance Opti-
mization

Pipeline and unroll optimizations should be applied to achieve more
efficient designs. Alternatively, the frequency of the design should be
increased up to the maximum value which still fulfills the hardware
design timing constraints.

Device Resources,
Problem Size and
Scale in Perfor-
mance

On one side, onboard guidance algorithms that utilize a high
number of nodes have, subsequently, a large workspace of variables.
This is a concern and limitation for FPGA implementations that
present limited resources (such as BRAM for example).

On the other side, for STO problems employing IPMs, the
performance gap between the FPGA and SW implementations
should scale with the problem size [53].

SW Oriented Ap-
plications

Applications targeted for SW environments might exhibit character-
istics that difficult the implementation into FPGAs (such as nonde-
terministic or data-dependent loops). Adapting a software algorithm
to exploit the parallelism offered by FPGAs might require significant
restructuring or redesigning of the algorithm.

Table 5.8: Overall remarks for the deployment of onboard guidance algorithms.

83

6| Conclusions and future

developments

6.1. Conclusion

In this work, an onboard guidance algorithm that explores convex approaches to minimum
fuel space trajectory problems has been deployed in an FPGA. ECOS was selected as the
interior point solver of the convex optimization problem.

An outline of the development and implementation of the algorithm into the hardware has
been done in Chapter 4. A profiling sequence of the original application was carried out.
The results led to the selection of two sub-routines to be implemented as IP cores. One
was a numeric factorization of a sparse matrix (kkt_factor) while the other performed
matrix-vector multiplication operations (sparseMV). A deep analysis of the functions to
implement as IP cores and their characteristics was compelled. Afterward, a particular
focus was attributed to the AXI4-Stream interface, its advantages, and design integration.

As the original problem utilized 100 nodes, a large workspace of variables resulted. Its
size was incompatible with the limited resources the board used in this work presents.
Therefore, a reduction of the problem size was carried out in Section 4.4.1. This scenario
was viable for this thesis as the focus was to learn the main challenges and processes in the
deployment of an STO algorithm in an FPGA. Other solutions could have been explored
such as problem partitioning or transitioning to a board with more resources.

Chapter 5 presented and explored the implementation of the various hardware designs in
comparison to the original software application. The results highlight a barrier between
the original algorithm developed for software-oriented systems and its integration into
hardware. Due to the ECOS environment, nondeterministic and data-dependent loops
were a development bottleneck. These prevented the use of optimization techniques that
exploit the parallelization and pipeline capabilities of FPGAs. A debate for alternative
procedures for the selected IP cores that counter this effect was performed at the end of
Sections 5.3.1 and 5.3.2. However, their integration into ECOS can be arduous due to how

84 6| Conclusions and future developments

convoluted the software-optimized solver is. Additionally, even after all the modifications,
the design might not present the desired level of performance efficiency.

However, a possible workaround for hardware designs would be to target algorithm sec-
tions that apply multiple sequential operations as opposed to their separate implementa-
tion. This mitigates the additional cycles the transfer and data address operations that
the FPGA workflow requires. Even so, these sections should be characterized by high
exclusive percentages with deterministic and data-independent loops.

In Section 5.3.2 an investigation was conducted to examine the impact of fixed-point
precision on interior point solvers utilized in onboard guidance algorithms. Floating-
point precision data types are necessary in IP core designs due to the wide range of
dynamic numbers used by the selected solver. Otherwise, even when using a meaningful
fixed-point configuration, a loss in precision occurs in comparison to floating-point. As a
consequence, achieving the solution requires a higher number of solver iterations, which
impacts performance efficiency.

Lastly, the gained knowledge can be utilized to present a satisfactory response to the
research question of this thesis, recalled hereafter.

Main Research question. What are the key challenges and practices in deploying
onboard trajectory optimization guidance algorithms on FPGA platforms?

Answer. In essence, deploying onboard guidance algorithms on FPGAs is an ambi-
tious task highly influenced by the board’s resources. Furthermore, the optimization and
structure presented by software-oriented applications pose a demanding transition into
hardware. The selection of IP cores shall target functions with grand significance in exe-
cution time that convey deterministic and data-independent behaviors. These enable the
parallelism and pipeline benefits FPGAs introduce. If the mentioned attributes are not
present, the function’s structure and implementation must be adapted. However, this can
lead to complicated algorithm redesign due to how intricate interior point solvers are. A
possible workaround is the selection of algorithm sections which encompass multiple se-
quential operations. Thus, the additional time for transfer and data address in the FPGA
is counteracted by its parallelism benefit. These sections should, nonetheless, display rel-
evance to the execution time and the before-mentioned attributes. Finally, for onboard
guidance algorithms that utilize interior point solvers, floating-point precision must be
employed in the IP core designs to cover the imposed range of computational accuracy.

6| Conclusions and future developments 85

6.2. Future Work

For future developments of onboard guidance algorithms that employ ECOS as the solver,
a possible approach could be to use the kkt_solve in the FPGA. It solves the permuted
KKT system and returns the unpermuted search directions. As reported in Figure 4.1, it
is a function characterized by a high inclusive percentage but a low exclusive percentage
in terms of execution time. This is due to the inclusion of several other functions which
themselves are responsible for a large part of the execution time. This fits the previous
scenario of an algorithm section with sequential operations of high impact.

The proposal would be to carefully analyze each function inside kkt_solve. As they
were developed for software-oriented systems, a significant amount of alterations would
be required. These should target, mainly, the data structure and organization such that
deterministic and data-independent loops are achieved. One approach, opposite to chang-
ing the entire ECOS formulation, would be to transfer the data to the FPGA, store it in
a structured manner that is compatible with efficient hardware implementations of the
functions under use, perform the computations, and, in the end, send it back to the PS
in a format consistent with the selected interior point solver. This would heavily reduce
the complexity of altering the entire ECOS structure while potentially augmenting the
performance efficiency.

Nonetheless, this possible algorithm section sustains several functions which, let alone,
would not be compatible with the resources available. The use of optimization techniques
to reinforce concurrency would exacerbate this constraint. Therefore, a different board
should be selected. The Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit 1 is a device
with a significant higher quantity of resources which could aid for the development of
problems such as the one discussed in this thesis.

1https://www.xilinx.com/products/boards-and-kits/zcu104.html (last accessed: November 18,
2023)

https://www.xilinx.com/products/boards-and-kits/zcu104.html

87

Bibliography

[1] Kirk Woellert, Pascale Ehrenfreund, Antonio J. Ricco, and Henry Hertzfeld. Cube-
sats: Cost-effective science and technology platforms for emerging and developing
nations. Advances in Space Research, 47:663–684, 2 2011. doi: 10.1016/j.asr.2010.
10.009.

[2] Runqi Chai, Antonios Tsourdos, Al Savvaris, Senchun Chai, and Yuanqing Xia.
Review of advanced guidance and control algorithms for space/aerospace vehicles.
Progress in Aerospace Sciences, 122:100696, 04 2021. doi: 10.1016/j.paerosci.2021.
100696.

[3] David Morante, Manuel Sanjurjo Rivo, and Manuel Soler. Multi-Objective Low-
Thrust Interplanetary Trajectory Optimization Based on Generalized Logarithmic
Spirals. Journal of Guidance, Control, and Dynamics, 42:1–15, 12 2018. doi: 10.
2514/1.G003702.

[4] Zhenbo Wang and Michael J. Grant. Minimum-Fuel Low-Thrust Transfers for Space-
craft: A Convex Approach. IEEE Transactions on Aerospace and Electronic Systems,
54(5):2274–2290, 2018. doi: 10.1109/TAES.2018.2812558.

[5] Long He, Fengxiang Wang, Junxiao Wang, and Jose Rodriguez. Zynq Imple-
mented Luenberger Disturbance Observer Based Predictive Control Scheme for
PMSM Drives. IEEE Transactions on Power Electronics, PP:1–1, 06 2019. doi:
10.1109/TPEL.2019.2920439.

[6] Antonio Lopes Filho and Roberto d’Amore. FPGA Implementation of the JPEG
XR for Onboard Earth-Observation Applications. J. Real-Time Image Process., 18:
2037–2048, 12 2021. doi: 10.1007/s11554-021-01078-y.

[7] Wajdi Farhat, Hassene Faiedh, Chokri Souani, and Kamel Besbes. Real-Time Em-
bedded System for Traffic Sign Recognition Based on ZedBoard. J. Real-Time Image
Process., 16:1813–1823, 10 2019. doi: 10.1007/s11554-017-0689-0.

[8] Apurva S. Deulkar and Neelima R. Kolhare. FPGA implementation of audio and
video processing based on Zedboard. In 2020 International Conference on Smart

88 | Bibliography

Innovations in Design, Environment, Management, Planning and Computing (IC-
SIDEMPC), pages 305–310, 2020. doi: 10.1109/ICSIDEMPC49020.2020.9299639.

[9] A. Fernández-León, A. Pouponnot and S. Habinc. ESA FPGA Task Force: Lessons
Learned, September 2002.

[10] Gaisler Research. Lessons Learned from FPGA Developments, September 2002. Ver-
sion 0.2.

[11] Gaisler Research. Suitability of reprogrammable FPGAs in space applications,
September 2002. Version 0.4.

[12] Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz, and Robert W. Stewart.
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-
7000 All Programmable Soc. Strathclyde Academic Media, 2014. ISBN 099297870X.

[13] Wang Jih-Jong, Cronquist Brian, McCollum John, Parker Wanida, Katz Rich,
Kleyner Igor, Day John H. Radiation Tolerant Antifuse FPGA. Technical report,
Actel Corp., NASA Goddard Space Flight Center and Orbital Sciences Corp., 1 2002.

[14] Behçet Açıkmeşe and S. Polen. Convex Programming Approach to Powered Descent
Guidance for Mars Landing. J. Guidance Control Dyn., 44:310–322, 01 2007. doi:
10.2514/1.27553.

[15] John T. Betts. Survey of Numerical Methods for Trajectory Optimization. Journal
of Guidance, Control, and Dynamics, 21(2):193–207, 1998. doi: 10.2514/2.4231.

[16] Binfeng Pan, Ping Lu, Xun Pan, and Yangyang Ma. Double-Homotopy Method for
Solving Optimal Control Problems. Journal of Guidance, Control, and Dynamics,
39:1–15, 06 2016. doi: 10.2514/1.G001553.

[17] Christian Hofmann and Francesco Topputo. Rapid Low-Thrust Trajectory Optimiza-
tion in Deep Space Based on Convex Programming. Journal of Guidance, Control,
and Dynamics, 44:1–10, 04 2021. doi: 10.2514/1.G005839.

[18] Jesús Gil-Fernández and Miguel Gomez-Tierno. Practical Method for Optimization of
Low-Thrust Transfers. Journal of Guidance, Control, and Dynamics, 33:1927–1931,
11 2010. doi: 10.2514/1.50739.

[19] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of Convex Optimization for Aerospace
Applications. Astrodynamics, 1:23–40, 02 2017. doi: 10.1007/s42064-017-0003-8.

[20] Andrea Carlo Morelli, Christian Hofmann, and Francesco Topputo. Robust Low-
Thrust Trajectory Optimization Using Convex Programming and a Homotopic Ap-

| Bibliography 89

proach. IEEE Transactions on Aerospace and Electronic Systems, 58(3):2103–2116,
11 2022. doi: 10.1109/TAES.2021.3128869.

[21] H.D. Curtis. Orbital Mechanics: For Engineering Students. Aerospace Engineering.
Elsevier Science, 2015. ISBN 9780080470542.

[22] Francesco Topputo and Chen Zhang. Survey of Direct Transcription for Low-Thrust
Space Trajectory Optimization with Applications. Abstract and Applied Analysis,
2014:1–15, 06 2014. doi: 10.1155/2014/851720.

[23] Christian Hofmann, Andrea C. Morelli, and Francesco Topputo. Performance Assess-
ment of Convex Low-Thrust Trajectory Optimization Methods. Journal of Spacecraft
and Rockets, 60(1):299–314, January 2023. doi: 10.2514/1.A35461.

[24] Nicholas Nurre and Ehsan Taheri. Comparison of Indirect and Convex-Based Meth-
ods for Low-Thrust Minimum-Fuel Trajectory Optimization. In 2022 AAS/AIAA
Astrodynamics Specialist Conference, 08 2022.

[25] Alexander Domahidi et al. ECOS: An SOCP solver for embedded systems. 2013
European Control Conference, ECC 2013, pages 3071–3076, 07 2013. doi: 10.23919/
ECC.2013.6669541.

[26] Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Modeling Lan-
guage for Convex Optimization. J. Mach. Learn. Res., 17(1):2909–2913, 1 2016. doi:
10.5555/2946645.3007036.

[27] Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo
Stellato, and Stephen Boyd. Embedded Code Generation with CVXPY. IEEE
Control Systems Letter, 6:2653–2658, 3 2022. doi: 10.48550/arXiv.2203.11419.

[28] Xilinx Inc. Vitis High-Level Synthesis User Guide, UG1399, May 2023. Version
2023.1.

[29] Juan J. Rodríguez-Andina, María D. Valdés-Peña, and María J. Moure. Advanced
Features and Industrial Applications of FPGAs — A Review. IEEE Transactions on
Industrial Informatics, 11(4):853–864, 2015. doi: 10.1109/TII.2015.2431223.

[30] Richard Halverson and Art Lew. FPGAs for expression level parallel processing.
Microprocessors and Microsystems, 19(9):533–540, 1995. doi: 10.1016/0141-9331(96)
89281-7.

[31] Shubham Gandhare and B. Karthikeyan. Survey on FPGA Architecture and Recent
Applications. In 2019 International Conference on Vision Towards Emerging Trends

90 | Bibliography

in Communication and Networking (ViTECoN), pages 1–4, 2019. doi: 10.1109/
ViTECoN.2019.8899550.

[32] George Lentaris, Ioannis Stratakos, Ioannis Stamoulias, Dimitrios Soudris, Manolis
Lourakis, and Xenophon Zabulis. High-Performance Vision-Based Navigation on
SoC FPGA for Spacecraft Proximity Operations. IEEE Transactions on Circuits
and Systems for Video Technology, 30(4):1188–1202, 2020. doi: 10.1109/TCSVT.
2019.2900802.

[33] MengFei Yang, Bo Liu, Jian Gong, HongJin Liu, HongKai Hu, YangYang Dong, Lei
Shi, YunFu Zhao, and ZhiFu Miao. Architecture design for reliable and reconfigurable
FPGA-based GNC computer for deep space exploration. Science China Technological
Sciences, 59:pages 289–300, 11 2015. doi: 10.1007/s11431-015-5936-7.

[34] Mohammad I. AlAli, Khaldoon M. Mhaidat, and Inad A. Aljarrah. Implementing
image processing algorithms in FPGA hardware. In 2013 IEEE Jordan Conference
on Applied Electrical Engineering and Computing Technologies (AEECT), pages 1–5,
2013. doi: 10.1109/AEECT.2013.6716446.

[35] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays on Computer Memories.
Science, 206(4420):776–788, 11 1979. doi: 10.1126/science.206.4420.776.

[36] T.C. May and M.H. Woods. Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions on Electron Devices, 26(1):2–9, 1 1979. doi: 10.1109/T-ED.1979.
19370.

[37] Heather Quinn, Paul Graham, Keith Morgan, Jim Krone, Michael Caffrey, and
Michael Wirthlin. An Introduction to Radiation-Induced Failure Modes and Related
Mitigation Methods For Xilinx SRAM FPGAs. pages 139–145, 01 2008.

[38] S. Azimi, L. Sterpone, B. Du, and L. Boragno. On the analysis of radiation-induced
Single Event Transients on SRAM-based FPGAs. Microelectronics Reliability, 88-90:
936–940, 9 2018. doi: 10.1016/j.microrel.2018.07.135.

[39] Fredrik Bruhn, Kjell Brunberg, John Hines, Lars Asplund, and Magnus Norgren.
Introducing radiation tolerant heterogeneous computers for small satellites. In 2015
IEEE Aerospace Conference, pages 1–10, 2015. doi: 10.1109/AERO.2015.7119158.

[40] P. Wilson. Design Recipes for FPGAs: Using Verilog and VHDL: Second Edition.
Newnes, 2015. ISBN 9780750668453.

[41] Xilinx Inc. 7 Series DSP48E1 Slice User Guide, UG479, March 2018. Version 1.10.

| Bibliography 91

[42] Xilinx Inc. 7 Series FPGAs Memory Resources, UG473, July 2019. Version 1.14.

[43] ARM. ARM Cortex-A9 MPCore, January 2016. Revision r4p1.

[44] Xilinx Inc. Zynq-7000 Technical Reference Manual, UG585, July 2018. Version
1.12.2.

[45] Xilinx Inc. Vivado Design Suite: AXI Reference Guide, UG1037, July 2017. Version
4.0.

[46] Xilinx Inc. Vivado Design Suite User Guide, UG893, April 2022. Version 2022.1.

[47] Xilinx Inc. Vitis Unified Software Platform Documentation, UG1400, April 2022.
Version 2022.1.

[48] Xilinx Inc. Vitis Model Composer User Guide, UG1483, May 2022. Version 2022.1.

[49] Don Lahiru Nirmal Hettiarachchi, Venkata Salini Priyamvada Davuluru, and Eric J.
Balster. Integer vs. Floating-Point Processing on Modern FPGA Technology. In 2020
10th Annual Computing and Communication Workshop and Conference (CCWC),
pages 0606–0612, 2020. doi: 10.1109/CCWC47524.2020.9031118.

[50] IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[51] Caroline N. Haddad. Cholesky Factorization, pages 374–377. Springer US, 2009.
ISBN 978-0-387-74759-0. doi: 10.1007/978-0-387-74759-0_67.

[52] Tim Davis. User Guide for LDL, a concise sparse Cholesky package, 6 2012.

[53] Alexander Domahidi. Methods and tools for embedded optimization and control. Doc-
toral thesis, ETH Zurich, 2013.

[54] L. Vandenberghe. The CVXOPT linear and quadratic cone program solvers, March
2010. Version 1.1.2.

[55] Iain S. Duff, Roger G. Grimes, and John Gregg Lewis. Sparse matrix test problems.
ACM Trans. Math. Softw., 15:1–14, 6 1982. doi: 10.1145/1057588.1057590.

[56] Xilinx Inc. AXI DMA LogiCORE IP Product Guide, PG021, April 2022. Version
7.1.

[57] Xilinx Inc. Processing System 7 LogiCORE IP Product Guide, PG082, May 2017.
Version 5.5.

92 6| BIBLIOGRAPHY

[58] Xilinx Inc. AXI Interconnect LogiCORE IP Product Guide, PG059, April 2017.
Version 2.1.

[59] Xilinx Inc. AXI Timer v2.0 Product Guide, PG079, October 2016. Version 2.0.

[60] Daniele Bagni, A. Di Fresco, J. Noguera, and F. M. Vallina. A Zynq Accelerator for
Floating Point Matrix Multiplication Designed with Vivado HLS. Technical report,
Xilinx Inc., 1 2016. XAPP1170 (v2.0).

[61] Depeng Yang, Junqing Sun, Junkyu Lee, Getao Liang, David Jenkins, Gregory Pe-
terson, and Husheng Li. Performance Comparison of Cholesky Decomposition on
GPUs and FPGAs. In Conference: Symposium on Application Accelerators in High
Performance Computing (SAAHPC), 07 2010.

[62] Depeng Yang, Gregory Peterson, Husheng Li, and Junqing Sun. An FPGA Im-
plementation for Solving Least Square Problem. In 17th IEEE Symposium on
Field Programmable Custom Computing Machines, pages 303–306, 01 2009. doi:
10.1109/FCCM.2009.47.

[63] Jakub Kurzak and Jack Dongarra. Implementing Linear Algebra Routines on Multi-
Core Processors with Pipelining and a Look Ahead. In Computer Science and Math-
ematics Division, Oak Ridge National Laboratory, volume 178, 06 2006. ISBN 978-
3-540-75754-2. doi: 10.1007/978-3-540-75755-9_18.

[64] Jun Luo, Qijun Huang, Sheng Chang, Xiaoying Song, and Yun Shang. High through-
put Cholesky decomposition based on FPGA. In 2013 6th International Congress
on Image and Signal Processing (CISP), volume 03, pages 1649–1653, 2013. doi:
10.1109/CISP.2013.6743941.

[65] Ling Zhuo and Viktor K. Prasanna. Sparse Matrix-Vector Multiplication on FP-
GAs. In Proceedings of the 2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, FPGA ’05, page 63–74. Association for Computing
Machinery, 2005. ISBN 1595930299. doi: 10.1145/1046192.1046202.

[66] Junyi Liu, Helfried Peyrl, Andreas Burg, and George A. Constantinides. FPGA
implementation of an interior point method for high-speed model predictive control.
In 2014 24th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, 2014. doi: 10.1109/FPL.2014.6927473.

[67] Avnet. ZedBoard (Zynq Evaluation and Development) Hardware User’s Guide, Jan-
uary 2014. Version 2.2.

93

A| Appendix A

A.0.1. Zynq PS Interconnections

Figure A.1 presents a more detailed scheme of the interconnections of the Zynq PS, also
showing some of the components and specifications referred in Section 3.2.2.

94 A| Appendix A

Figure A.1: Detailed diagram of interconnections [44].

A| Appendix A 95

A.0.2. Zedboard Booting and Programming Methods

The Zedboard presents a set of five configuration jumpers which the user can position to
select the desired method of booting/programming, them being:

• USB-JTAG: the default and simpler method of programming the Zedboard.

• Traditional JTAG: similar to the previous method but with a different cable.

• Quad-SPI flash memory: the flash memory (non-volatile) can be used to store con-
figuration data. This method removes the requirement for a wired connection to
program the device.

• SD card: can be used to program the device with files stored on the SD card. Once
again, no need for a wired connection for programming.

For more information about the jumpers configuration to select each programming method,
check [67].

96 A| Appendix A

A.0.3. Placement and Routing

The placement and routing circuit on the FPGA of each implementation is provided in
Figures A.2, A.3 and A.4.

Figure A.2: Design including kkt_factor IP core placing and routing circuit on FPGA.

A| Appendix A 97

Figure A.3: Design including sparseMV floating-point IP core placing and routing circuit
on FPGA.

98 A| Appendix A

Figure A.4: Design including sparseMV fixed-point IP core placing and routing circuit on
FPGA.

99

List of Figures

1.1 Illustrative interplanetary transfer [3]. 1

2.1 Two-body problem [21]. 6
2.2 Three-dimensional spherical coordinates system [4]. 7
2.3 SCP method. 13

3.1 Applicable domain of different integrated circuits/processing units. 16
3.2 Example of an IP subsystem [12]. 18
3.3 The logic fabric and its elements [12]. 19
3.4 Composition of a configurable logic block [12]. 20
3.5 DSP and RAM blocks in the logic fabric [12]. 21
3.6 Simple scheme of the Zynq architecture. 22
3.7 Zynq 7000 SoC overview [44]. 23
3.8 AXI interconnects and interfaces between the PS and PL [12]. 25
3.9 Channel architecture of write [45]. 26
3.10 Channel architecture of read [45]. 27
3.11 AXI4-Stream handshake [28]. 27
3.12 Zedboard and the different interfaces [12]. 29
3.13 Fundamental diagram of the different software and their functionalities. . . 30
3.14 Design time vs application performance with RTL and Vitis HLS compiler

[28]. 32
3.15 Pipelining example [28]. 33
3.16 Dataflow example [28]. 34
3.17 Overview of the Vitis HLS workflow [12]. 35
3.18 Floating-point representation example. 37

4.1 Total execution time percentage profiling for 100-nodes application. 42
4.2 Scheme of stream use between PS and PL. 50
4.3 Example with input stream to demonstrate faded behavior. 51
4.4 Example for matrix-multiplication unroll. 53
4.5 AXI DMA IP Core [56]. 54

100 | List of Figures

4.6 AXI DMA block scheme design example 55
4.7 Simplified problem reduction approach. 58
4.8 Fixed-point representation example [12]. 59

5.1 IP Core kkt_factor design integration. 66
5.2 IP Core sparseMV design integration. 67
5.3 AXI Timer IP Core [59]. 68
5.4 Performance of HW and SW versions for the kkt_factor implementation. 71
5.5 Cumulative distribution function of the acceleration factor for the kkt

_factor design. 72
5.6 Performance of HW version for the sparseMV floating-point implementation. 74
5.7 Cumulative distribution function of the acceleration factor for the sparseMV

floating-point design. 75
5.8 Predictions of computation times for PS for large MPC based on a theo-

retical model [53]. 79

A.1 Detailed diagram of interconnections [44]. 94
A.2 Design including kkt_factor IP core placing and routing circuit on FPGA. 96
A.3 Design including sparseMV floating-point IP core placing and routing cir-

cuit on FPGA. 97
A.4 Design including sparseMV fixed-point IP core placing and routing circuit

on FPGA. 98

101

List of Tables

1.1 Sample of highly integrated onboard computing systems 3

3.1 Configuration data storage technologies and characteristics [13, 37, 38]. . . 17
3.2 Characteristics of the Zedboard. 28
3.3 Resources available in the PL. 28
3.4 Floating-point range for presented data types. 38

4.1 Interface sizes of kkt_factor for both applications. 58
4.2 Interface sizes of sparseMV for both applications. 59
4.3 Range and precision of selected fixed-point representation for first design

implementation. 60
4.4 Range and precision of selected fixed-point representation for second design

implementation. 61

5.1 Estimated synthesis resource utilization for 5-nodes application. 64
5.2 Synthesis overview report for 5-nodes application. 67
5.3 Earth-Mars 100-nodes problem solution. 69
5.4 Reduced 5-nodes problem solution. 69
5.5 Reduced 5-nodes problem solution for HW version of kkt_factor design. . 70
5.6 Solution, performance and details about the fixed-point implementations

of sparseMV designs compared to the SW version. 77
5.7 Performance comparison between floating-point and fixed-point sparseMV

IP core and its software routine. 78
5.8 Overall remarks for the deployment of onboard guidance algorithms. 81

103

Nomenclature

ACP Accelerator Coherent Port

AMBA Advanced Microcontroller Bus Architecture

APSoC All-Programmable System-on-Chip

ASIC Application-Specific Integrated Circuit

AU Astronomical Unit

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CCS Compressed Column Storage

CDF Cumulative Distribution Function

CLB Configurable Logic Block

COTS Commercial-off-the-Shelf

CPU Central Processing Unit

CXP Convex Problem

DMA Direct Memory Access

DSP Digital Signal Processor

FF Flip-Flops

FIFO First In First Out

FPGA Field Programmable Gate Array

GP General Purpose

GPP General Purpose Processor

HDL Hardware Description Language

104 | Nomenclature

HLS High-Level Synthesis

HP High Performance

IDE Integrated Design Environment

II Initiation Interval

IOB Input/Output Blocks

IP Intellectual Property

LUT Lookup Table

MCDMA MultiChannel Direct Memory Access

MM2S Memory-Mapped to Streaming

MPC Model Predictive Control

MSB Most Significant Bit

NASA National Aeronautics and Space Administration

NLP Nonlinear Programming

OBC OnBoard Computer

PL Programmable Logic

PS Processing System

ROM Read Only Memory

RTL Register Transfer Level

S2MM Streaming to Memory-Mapped

SCP Sequential Convex Programming

SEU Single Event Upset

SoC System-on-Chip

SOCP Second-Order Cone Programming

STO Space Trajectory Optimization

TCF Target Communication Framework

TCL Tool Command Language

| List of Tables 105

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

	Abstract
	Sommario
	Acknowledgements
	Contents
	Introduction
	Thesis Objective
	Thesis Structure

	Background
	Astrodynamic models
	Problem Formulation

	Problem Transformation and Convexification
	Sequential Convex Programming

	FPGA Overview
	FPGA Definition
	FPGA Configuration
	The Logic Fabric
	DSP and BRAM

	Zynq Architecture
	Processing System and Programmable Logic
	Processing System - Programmable Logic Interfaces
	Zedboard

	Development Tools
	Development and Implementation of IP cores
	Vitis HLS Deep Dive
	IP Block Integration

	Fixed-Point Arithmetic

	Implementation
	Sequential Convex Programming Algorithm
	Deployment in the PS

	IP Cores Selection
	Profiling

	IP Design
	Functional Analysis
	Interfaces
	Optimization
	AXI DMA

	Board Memory Constraints
	Problem Size Reduction

	Arbitrary Precision Implementation

	Results
	HLS Synthesis
	IP Cores Design Implementation
	AXI Timer

	Results Evaluation
	Numeric Factorization IP Core
	Matrix-Vector Multiplication IP Core

	Remarks

	Conclusions and future developments
	Conclusion
	Future Work

	Bibliography
	Appendix A
	Zynq PS Interconnections
	Zedboard Booting and Programming Methods
	Placement and Routing

	List of Figures
	List of Tables
	Nomenclature

