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Abstract

Online advertising revenue grew to 124.6 billion dollars in 2019, showing
a 15.9% increase over the previous year. The opportunities provided by
this market attracted wide attention of the scientific community as well as
the industry that requires automatic tools to manage the main processes
involved in this market. For this purpose, Artificial Intelligence can play a
crucial role in providing techniques to support both publishers and advertis-
ers in their tasks. In this thesis, we study the Internet advertising campaign
optimization problem from the advertiser’ point-of-view. An advertising
campaign is composed of a set of sub-campaigns that differ for the ad (e.g.,
including text or images), target (e.g., keywords, age, interests), or channel
(e.g., search, social, display). In pay-per-click advertising, to get an ad im-
pressed, the advertisers take part in an auction carried out by the publisher,
in which they set a bid and a daily budget for each sub-campaign. The bid
represents the maximum amount of money the advertisers are willing to pay
for a click, whereas the daily budget is the maximum spend in a day for a
sub-campaign. The advertisers’ goal is to create a set of sub-campaigns and
for each of them set the bid/daily budget values that maximize the revenue
under budget or return-on-investment constraints. This optimization prob-
lem is particularly challenging, as it includes many intricate subproblems.
In this work, we study four different settings and we propose algorithms
specifically crafted for each of them.

First, we study the joint bid/budget optimization problem and we pro-
pose an online learning algorithm that combines Gaussian Processes esti-
mation with Combinatorial-bandit techniques to find the optimal bid/bud-
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get values. We define four variants of our method and we derive high prob-
ability regret bounds of the order of O(

√
T ), where T is the learning time

horizon.
Second, we introduce the novel framework of safe bid optimization

where the goal is to maximize the revenue while satisfying with high-
probability some budget and return-on-investment constraints. We propose
two algorithms, namely GCB and GCBsafe that differ on how they bal-
ance the revenue maximization and constraints violation. The first provides
a sublinear bound on the regret but rarely satisfies the ROI constraints. The
second keeps the probability of violating the constraints under a confidence
δ at the cost of a linear pseudo-regret bound.

Third, we study the problem of optimizing the target, the bids and the
budgets of an advertising campaign. We formulate it as a Learning from
Logged Bandit Feedback (LLBF) problem, and we propose an offline algo-
rithm that computes a tree expansion of the target space to learn the parti-
tion that maximizes the revenue.

Last, we study the problem of the sub-campaigns interdependence in the
advertising campaign optimization. We provide an algorithm that employes
Granger Causality to learn the campaign interdependence model from past
data, Gaussian Processes to predict the sub-campaigns performance, and a
dynamic programming procedure to compute the bid/daily budget alloca-
tion. Theoretical guarantees on the loss of the algorithm w.r.t. the clairvoy-
ant solution are also proven.

For all the problems mentioned above, we evaluate our approaches in
both synthetic and real-world scenarios showing their superiority if com-
pared with baselines and with the previous human campaign management.
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CHAPTER1
Introduction

In the last decades, the rise of the Internet has drastically changed our way
of life. Many of our daily activities like shopping, networking or entertain-
ment switched from real to online life, bringing us to spend always more
time on the Internet. According to recent analysis [1], the number of peo-
ple using the Internet is about 4.54 billion and the average Internet user
spends, each day, 6 hours and 43 minutes online. This extensive usage in-
volving different channels and devices makes the Internet a goldmine for
marketers that now have the opportunity to show advertisements quickly
and to a broad but specific audience. Thanks to these capabilities, in the
first quarter of 2020, despite the crisis due to the COVID-19 pandemic, the
advertising revenues grew to 31.4 billion dollars with an increase of 12%
from the previous year [27]. Accordingly, in the last two decades, online
advertising has been given wide attention by the scientific community and
by the industry that requires automatic tools to support publishers and ad-
vertisers in their tasks. In this thesis, we study the problem of optimizing
an Internet advertising campaign from the advertiser’ point of view.1 This
problem requires addressing multiple sub-problems and involves both cre-
ative and technical tasks. As the first step, advertisers have to select the

1This research has been funded by the Italian media agency Mediamatic.
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Chapter 1. Introduction

right target of their campaign by identifying the typology of users that are
more likely to be interested in their brand and products. For each target por-
tion, they have to create some sub-campaigns belonging to different adver-
tising channels (e.g., search, social, video). All these sub-campaigns have
distinct objectives that go through generating awareness about the brand to
inducing the user to complete a purchase. Still, all have the common goal
of maximizing the final advertiser revenue. Furthermore, for each of them,
advertisers have to create an ad choosing the most effective message and
format to promote their product for that specific target. Finally, they have
to adjust some variables impacting the economic management of the cam-
paign. For instance, in pay-per-click advertising, to get an ad impressed, the
advertisers take part in an auction carried out by the publisher, in which they
set, every day, a bid and a daily budget for each sub-campaign [46]. The
bid represents the maximum amount of money the advertisers are willing
to pay for a single click, whereas the daily budget is the maximum spent in
a day for a sub-campaign. If we consider that an advertiser has to manage
several campaigns, each of them composed of dozens of sub-campaigns,
the number of variables that an advertiser has to adjust on advertising plat-
forms every day becomes considerably large. As a consequence, effective
and efficient execution of these tasks is not feasible for humans and the
adoption of automatic tools is needed. For this purpose, Artificial Intelli-
gence (AI) can play a crucial role in providing techniques able to exploit
a huge amount of data to model users’ behavior and support marketers in
the optimization process. The goal of this thesis is to provide a set of AI
algorithms able to solve the main problems an advertiser has to face in the
advertising campaigns optimization. We focus on four different problems
that have the same general goal of maximizing the advertiser revenue but
exhibit different features.

In the first problem, we analyze the setting in which the advertiser has
to manage a fixed set of sub-campaigns and has to set for each of them a
bid/budget pair to maximize the revenue while satisfying an overall daily
budget constraint. We propose an algorithm, named AdComb, that ad-
dresses this problem in an online fashion. Our approach combines Gaus-
sian Processes estimation and a dynamic programming algorithm to predict
sub-campaigns performance and subsequently solve a combinatorial opti-
mization problem. We theoretically analyze the properties of our approach
and provide a sub-linear regret bound for four flavors of our method that
differ for the prediction model and exploration strategy they adopt. Then,
we empirically evaluate our approach in synthetic settings generated from
Yahoo! Webscope A3 dataset and in a real-world campaign showing its
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superiority compared to human management.
After that, we study the specific setting in which the advertiser has to op-

timize the bid to maximize the revenue and satisfy some spend and return-
on-investment constraints for all the advertising period. Furthermore, in
this setting, the advertiser is not allowed to limit the daily spend of a sub-
campaign by setting a daily budget on platforms. In particular, we show
that the problem of finding revenue-maximizing bids satisfying budget and
ROI constraints cannot be approximated within any factor unless P = NP.
However, we demonstrate that it is possible to design a pseudo-polynomial-
time algorithm to find an optimal solution for the problem. Furthermore, we
show that no online learning algorithm can violate the ROI constraints less
than a linear number of times while guaranteeing a sublinear pseudo-regret.
We propose the GCB algorithm that provides a sub-linear bound on the re-
gret but rarely satisfies the ROI constraints. Then, we propose the GCBsafe

algorithm to keep the probability of violating the ROI constraints under a
predefined confidence δ at the cost of a linear pseudo-regret bound. Fi-
nally, we experimentally evaluate the performances of GCB and GCBsafe

in terms of pseudo-regret/constraint-violation tradeoff, and we analyze the
algorithms’ sensitivity.

We also consider the problem in which the advertiser has to find the best
user targets (a.k.a. contexts) that a media agency can use in a given Internet
advertising campaign. We address it as an offline problem where the goal is
to find the optimal set of sub-campaigns and the associated bid/budget pairs
that maximize the revenue. More specifically, we formulate the problem of
target optimization as a Learning from Logged Bandit Feedback (LLBF)
problem and we propose the TargOpt algorithm, which uses a tree expan-
sion of the target space to learn the partition that efficiently maximizes the
campaign revenue. Furthermore, since the problem of finding the optimal
target is intrinsically exponential in the number of the features, we pro-
pose a tree-search method, called A-TargOpt, and two heuristics to drive
the tree expansion, aiming at providing an anytime solution. Finally, we
present empirical evidence, on both synthetically generated and real-world
data, that our algorithms provide a practical solution to find effective targets
for Internet advertising.

Last, we consider the challenging setting in which the sub-campaigns
are interdependent each other, i.e., the impressions and clicks generated by
a sub-campaign can affect the performance of other sub-campaigns directed
to the same users. We present an algorithm, called IDL, that, employ-
ing Granger Causality and Gaussian Processes, learns the sub-campaigns
interdependency model from past data, and returns an optimal stationary
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bid/daily budget allocation. Finally, We provide theoretical guarantees on
the loss of the algorithm w.r.t. the clairvoyant solution and we show some
empirical evidence of the superiority of the proposed algorithm in both re-
alistic and real-world settings when compared with approaches that do not
take into account these interdependency relationships.

Thesis Structure

In this section, we provide the structure of the thesis and we briefly describe
the content of each chapter.

Chapter 2. In this chapter, we provide an overview of the digital advertising
market. We firstly describe the mechanism and the main players involved in
this market. Then, we provide the main definitions and preliminary notions
of this thesis. We introduce the marketing funnel model that describes the
process to lead a user to complete a purchase. Then, we describe the goals
and peculiarities of the main advertising channels that can be exploited to
sponsor a product. Finally, we provide the main KPIs adopted to measure
the campaigns’ performance.

Chapter 3. In this chapter, we provide an overview of the main scientific
works related to the internet advertising optimization problem, focusing
on the bid optimization, budget optimization, and targeting optimization
problems.

Chapter 4. In this chapter, we firstly describe the main tasks that an adver-
tiser has to perform to manage an advertising campaign. Then, we provide
a general formulation of the advertising campaign optimization problem
that includes the sub-problems associated with the tasks mentioned above.

Chapter 5. In this chapter, we address the joint bid/budget optimization
problem. We firstly provide an online formulation of this problem and we
present a combinatorial bandit approach to address it. Then, we provide
a theoretical analysis and an exhaustive experimental analysis of our ap-
proach in both synthetic and real-world settings. A preliminary version of
the results is provided in [41], while an extended version including both
theoretical and empirical results is provided in [42].

Chapter 6. In this chapter, we address the online safe bid optimization with
return-on-investment constraints problem. We provide a risk-averse ap-
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1.1. Thesis Structure

proach that balances optimization of the revenue and risk in the ROI and
spend constraints violation. Then, we provide a theoretical analysis of both
the offline optimization procedure and the regret of the proposed approach.
The results of this work are under review and presented in [12].

Chapter 7. In this chapter, we address the target optimization problem. We
provide an algorithm that uses a tree expansion of the target space to learn
the partition that efficiently maximizes the campaign revenue. The results
of this work are published in [21].

Chapter 8. In this chapter, we study the problem of the interdependency
among sub-campaigns belonging to different advertising channels. We pro-
vide an algorithm that first detects the interdependency relationships among
sub-campaigns and then exploits them to find the optimal bids and budgets
that maximize the revenue. The results of this work are published in [40].

Chapter 9. Finally, in the last chapter, we provide the overall observations
and we point out possible future works of this research.
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CHAPTER2
Digital Advertising

In this chapter, we introduce the main definitions and basic concepts of
the advertising scenario involved in the problems we address in this thesis.
Firstly, we provide an overview of the Digital Advertising market present-
ing the main players and mechanisms. Secondly, we describe the main
tasks involved in the setup and management of an advertising campaign.
Then, we introduce the marketing funnel model that describes how the ad-
vertising campaigns can interact with each other to reach a common goal.
Finally, we provide an overview of the main advertising channels.

Overview

Digital Advertising is nowadays one of the main methods to sponsor a prod-
uct or a service. In the last decades, the revenue of the digital advertising
market increased exponentially while traditional advertising channels like
TV or newspapers have not shown a significant increase.

The success of this tool can be motivated by several reasons. Firstly,
fine-grained data collected for each user by third parties allow marketers
to target their advertisements to a broad but specific audience. Secondly,
for each of these users, they can create ads with different formats (e.g.,
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Chapter 2. Digital Advertising

video, banner, textual, etc.) that can be tailored to user features. Another
important feature introduced by Digital Advertising is the possibility to ex-
actly measure the performance of a campaign. This is a crucial issue for
marketers who have to understand which of the advertising investments are
profitable and which are not. Finally, advertising platforms allow low-level
management of the campaigns and to perform adjustments that are effective
in real-time. Since the growth of the opportunities offered by this market,
year by year, the digital advertising ecosystem is growing significantly in-
volving new players that make its structure more complex. However, from
these, we can identify the following three representative categories:

• Users are people surfing on the net that can potentially buy a prod-
uct or more generally perform an action (e.g., compile a form, or a
newsletter subscription).

• Advertisers aim at sponsoring or selling a product to users. Their
goal is to show messages only to potentially interested users that can
perform an action (e.g., buy a product) after clicking on an ad.

• Publishers (e.g., Google, Facebook, Amazon) are the intermediaries
of this market. While a user surfs on a web page, they allow advertis-
ers to show their ads on some slots. The choice of which ad to show
for each slot is performed by running auctions among advertisers. For
each of these auctions, an advertiser has to specify a bid value that
corresponds to the maximum price she is willing to pay for a user
click.

Campaign Setup and Management

The setup of an advertising campaign consists of creating a set of sub-
campaigns, each of which is associated with a specific target and with an
ad 1. More precisely, for each sub-campaign, advertisers have to specify
some features indicating the geographic area, the age, the interests, and
users’ information. If the campaign is promoted through a search engine
platform, they have to indicate a group of keywords that allow targeting
users by their intent. To get an ad impressed, an advertiser has to specify
a bid value indicating the maximum price she is willing to pay for a user
click and a daily budget indicating how much she is willing to spend on a
day. Once a user visits a web-page or performs a search query, the publisher
runs an auction among advertisers and retrieves all the ads that match that

1Though platforms allow associating multiple ads to the same sub-campaign, for the sake of simplicity, in
what follows, we assume that each sub-campaign is associated with a single ad.

8



2.3. Marketing Funnel Model

query. These ads are ranked according to a score computed as the product
of the bid and the ad click-through rate, while the payment is computed
depending on the auction mechanism.

Once an advertiser creates a sub-campaign, she has to set the payment
method to adopt. Advertising platforms usually provide different models,
such as pay-per-mille impressions (PPM), pay-per-click (PPC), and pay-
per-action (PPA). In PPM campaigns, advertisers are charged for impres-
sions. In PPC campaigns, advertisers are charged after a click, and in PPA
campaigns advertisers are charged after a user conversion. The PPC is the
most used method [46] and in the scenarios studied in this thesis we assume
the adoption of this model.

Finally, during the whole advertising period, the advertiser has to adjust
some economic variables that significantly affect the performance of the
sub-campaigns. Though new platforms allow regulating many economic
variables, here we focus on two key variables:

• Bid. The bid is the maximum price the advertiser is willing to pay
for a user’s click. A proper setting of this value is crucial to balance
return-on-investment and volumes that can be achieved over a sub-
campaign. Increasing the bid lead to win a high number of auctions
(high volumes) but also to increase the cost per click. Low bid val-
ues, instead, allow achieving a higher return-on-investment but lower
volumes.

• Daily budget. The daily budget is the maximum amount of money
that the advertiser is willing to spend on a day for a sub-campaign. A
proper setting of this value is crucial to optimally allocate the overall
budget over the sub-campaigns and satisfy campaign constraints.

Setting these two variables optimally requires to tune them jointly. If we
consider that an advertiser has usually to manage hundreds of sub-campaigns,
the space of possible bid/budget combinations is considerably large and
make this task hard to be performed by hand.

Marketing Funnel Model

The marketing funnel models the process that brings customers from the
awareness about the product to the purchase decision (see Figure 2.1). The
idea behind this model is that buyers have to be led to the purchase by
crossing different stages. Ideally, a marketer has to design an advertising
campaign able to guide the customers for all the following stages:
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Chapter 2. Digital Advertising

Figure 2.1: Marketing funnel model.

• Awareness. At this stage, the user becomes aware of the brand or
company. Potential customers are usually brought to this stage through
social or display campaigns that make the users familiar with the
brand.

• Interest. At this stage, the user starts to be interested in what the
company offers and she is aware of the product and services provided
by the company. Here, the content and the target of the advertising
starts to be more specific.

• Intention. At this stage, the user has already shown his intention of
buying. For instance, after a view of a demo or when the product is on
the shopping cart of an e-commerce website.

• Decision. This is the last stage of the marketing process. At this point,
the user has to be led to perform the purchase decision. Usually, the
sub-campaigns of this stage are the keyword-based or the retargeting
ones.

Advertising Channels

An advertising campaign usually operates on different marketing channels
each with a different goal. For instance, the same ad can be shown on a
search engine (e.g., on Google), on a social network (e.g., on Facebook) or
on a video (e.g., on YouTube). The so-called multi-channel advertising al-
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2.4. Advertising Channels

lows companies to be where customers are and to collect more precise and
complete information about their interests and their behavior. Moreover, in
such a way, companies allow users to generate conversions on the channel
they are comfortable with. The challenge of multi-channel advertising is
to create the right mix of sub-campaigns that operate at each level of the
marketing funnel and that influence each other improving the overall per-
formance. For instance, sponsoring a product on a social network to a broad
audience will increase the chance that one of the targeted users will search
that product on a search engine and then complete the purchase through
the search channel. As a consequence, sponsoring a product across mul-
tiple channels make the management of the campaign more complex. For
instance, the monitoring and the analysis of the performance become more
challenging since it is not always possible to measure the real contribution
of each sub-campaign on the overall performance. However, nowadays an
internet advertising campaign is usually designed by taking into account all
these issues and in such a way to exploit the opportunities provided by each
channel. We can distinguish three main advertising channels that usually
operate at different levels of the marketing funnel:

• Search. This advertising channel consists of showing advertisements
with the search engine results returned by a user query. The adver-
tisements have to be targeted to terms (a.k.a. keywords) such that they
are related to the user search and therefore more likely to be tailored to
her intent. This advertising channel allows advertisers to direct their
ads to users who intent to complete a purchase through their search
query. For this reason, the search sub-campaigns are ideally placed to
the last stage of the marketing funnel since they have a high chance to
lead the user to generate a conversion.

• Social. This advertising channel consists of showing ads on social
network pages or apps. The advertisement messages include posts,
videos, banners, and social networks pages. This method allows ad-
vertiser to target their ads to a very specific audience since data col-
lected by social networks allow inferring detailed information about
user interests and behavior. Social sub-campaigns are usually placed
at middle or high levels of the marketing funnel. The goal of these
campaigns, indeed, is usually to target users that can be potentially
interested in a product based on their behavior or interests.

• Display. This advertising channel consists in showing graphic ad-
vertisiments on web-pages through banners, images, videos, etc. The
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Chapter 2. Digital Advertising

goal of display advertising is usually to diffuse brand messages to in-
crease the awareness of users about a product or a company. For this
reason, these campaigns are usually placed on the top in the marketing
funnel though there are some exceptions. For instance, re-targeting
sub-campaigns, placed at the bottom levels of the marketing funnel,
usually consists of display ads that remind users to complete a pur-
chase.

Key Performance Indicators of an Advertising Campaign

Here, we introduce the main definitions and key performance indicators
commonly adopted to measure the campaigns’ performance.

• Impressions. An impression occurs when an advertisement message
is shown on a web page, i.e., each time the advertiser wins an auc-
tion. It is worth noting that the generation of an impression does not
necessarily imply that the user has seen the message. For this rea-
son, some platforms introduced the view event to guarantee that the
user has seen the message. The impressions generation is usually a
goal of display and social sub-campaigns and they have an impact on
brand awareness rather than leading users to complete a purchase. The
payment method of these campaigns is usually CPM (cost-per-mille
impressions).

• Clicks. Clicks occur each time a user clicks on an ad after an impres-
sion. This KPI is usually considered more relevant than impressions
since indicates more engagement of the user. The click generation is
usually performed by social and search sub-campaigns placed at the
medium and low levels of the marketing funnel. The payment method
adopted for these campaigns is usually pay-per-click (PPC).

• Conversions. A Conversion occurs when a user performs an action
after clicking the ad. For instance, a purchase or a newsletter sub-
scription can be considered conversions if they occur after clicking an
ad. It is worth mentioning that the delay between a click and a con-
version can be large (from 1 to 14 days), making the measurement of
the conversions affected by attribution issues. The generation of con-
versions is usually performed by search sub-campaigns that operate
at the low level of the marketing funnel. The most common payment
method for these sub-campaigns is pay-per-click (PPC) but also pay-
per-action (PPA) is often adopted.
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2.5. Key Performance Indicators of an Advertising Campaign

Figure 2.2: Schema of the optimization of an advertising campaign involving different
advertising channels.
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CHAPTER3
State of the Art

The internet advertising campaigns optimization problem has been widely
addressed in the scientific literature. In this chapter, we focus on works that
cover the following three main topics that are more related to the problems
we address in this work:

• Bid and budget optimization;

• Targeting optimization;

• Advertising channels interdependence.

Bid and Budget Optimization

The bid optimization and budget optimization are daily tasks that adver-
tisers have to perform with at least daily frequency and that have a strong
impact on the campaigns’ performance. For this reason, these two prob-
lems are largely addressed in the scientific literature. Some works address
both these two problems jointly ([66, 53]), while some other works address
the bid optimization ([37, 18, 62, 56, 58, 65, 34, 61, 64, 60, 32]) and budget
optimization separately ([28, 36, 5]).
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Zhang et al. [66] address for the first time the joint optimization of the
bid and the daily budget. They approach it as a constraint optimization
problem where they adopt a sequential quadratic programming algorithm
whose goal is maximizing the expected revenue. However, their approach
show some limitations to its applicability since it requires to fit ad ranking
models from data (e.g., the position of the ad for every display and click)
not always available to advertisers.

Thomaidou et al. [53] separate the optimization of the bid from that one
of the daily budget and use a genetic algorithm to optimize the budget and
subsequently applying some bidding strategies.

Geyik et al. [23] propose a budget optimization algorithm that allocates
the budget starting from the top-level to the low-level campaigns according
to their performance and their capability on spending the allocated bud-
get. Finally, they examine different attribution models and they show that
adopting a multi-touch attribution model leads to better performance.

Italia et al. [28] address the problem of optimizing the budget of adver-
tising campaigns for events. They propose an algorithm that exploits mod-
els to predict the behavior of different populations of users and a backward
induction algorithm to define the budget allocation.

Archak et al. [7] propose an algorithm for budget optimization that ex-
ploit an MDP that models the interaction among advertising individuals and
a LP algorithm to solve the optimization problem.

The bid optimization problem has been addressed with different ap-
proaches and in different settings. Online learning approaches with regret
guarantees are known only for the restricted cases with a single campaign
and a budget constraint over all the length of the campaign without temporal
deadlines. However, this last assumption rarely holds in real-world applica-
tions where, instead, results are expected by a given deadline. In particular,
Ding et al. [18] and Xia et al. [62] work on a finite number of bid values
and exploit a multi-armed bandit approach, whereas the approach proposed
in Trovò et al. [56] deals with a continuous space of values for the bid and
shows that assuring worst-case guarantees leads to the worsening of the
average-case performance.

Several works study this problem in a real-time setting, namely Real-
Time Bidding (RTB), where the advertiser exploits users’ information in
real-time to set a different bid for each auction. These techniques usually
take into account budget [58, 65, 34, 61], cost-per-click [64, 60] or cost-
per-action constraints [32].
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Targeting Optimization

In recent years, many platforms, especially the ones belonging to the dis-
play and social channels, increased the amount and the quality of the infor-
mation collected for each user. Since this new data availability and since
the interest of the advertising big players on exploiting these data, also
the scientific community put its effort into this topic and proposed several
approaches that exploit such fine-grained information to increase the cam-
paigns performance. However, it is worth to mention that while most of
these works assume to track the activity of every single user, in our work,
we assume that these punctual data are not always available to advertisers
and therefore we resort to aggregated data to face this problem.

The targeting optimization problem has been addressed, for the first
time, in [33] where authors propose a privacy-preserving approach that
exploits the search query and the landing page URL to understand the
short-term interests of a user in a certain topic and browsing information
to understand his long-term interests. They then exploit both information
to customize the advertisement content.

Other works concern the analysis and classification of users depending
on their behavior on social networks [45], online shopping [44], and search-
ing [6]. Provost et al. [45] propose a method to predict users’ interests by
observing the social networks pages they visit. Their approach leverages on
the idea that users that like the same social network pages are more likely
to buy the same products. Based on this assumption, they build a network
whose edges are affinity values updated each time two users visit the same
page.

Perlich et al. [44] adopt a multistage transfer learning approach to iden-
tify the users that are more likely to complete a purchase after a view of an
advertisement.

Yan et al. [63] propose an approach for assigning ads to users and in-
crease the CTR. Their method defines a segmentation of the users based on
behavioral targeting under the assumption that users with the same web-
browsing behavior also interact with advertisements similarly.

Other relevant related works concern the impact of timing ([10], [57])
(i.e., at which hour of the day an ad is displayed) on banner ads.

Bleier and Eisenbeiss [9] analyze how the performance varies depending
on the timing, ad personalization, and the user position in the funnel model.
They show that highly customized ads are more performing if shown to
users that visited the online store recently. Conversely, the performance of
these ads decreases as the time from the last visit increases.
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Cheng and Cantú-Paz [15] provide a method to predict the user click
probability by defining a parametric model whose features are divided in
two sets. The first set includes demographic information combined with
personal information (e.g., age, gender, status), while the second set in-
cludes information related to user browsing behavior.

Advertising Channels Interdependence

One of the more challenging problems that an advertiser has to address
during the setup of an advertising campaign is how to define a campaign
structure that involves all level of the marketing funnels and that exploit
the advertising channels’ potentialities. Indeed, different channels deeply
affect each other’s performance as Internet users regularly surf from one
to another. For this reason, this problem raised the interest of the market-
ing literature and many works studied how advertising channels influence
each other and how such interdependence can be exploited to increase the
performance.

For instance, Lewis and Nguyen [35] provide empirical evidence that
display advertising increases the search activity of the advertised brand for
some days after the display ads visualization. Interestingly, they also show
through an analysis conducted with Yahoo! Search data that display ads
also increase the search activity of the competitors.

Kireyev et al. [30] show a similar result between the display and search
advertising by using the Granger Causality test. The authors also show that
this interdependence usually induces delayed dynamics, e.g., an increase in
the display advertising impressions can lead to an increase in the conver-
sions of search ads with a delay of some days.

Howard and Sheth [26] analyze the effect of display advertising on a
user belonging to high and medium stages of the marketing funnel. More
particularly, they show that display advertisements shown to registered users
are more effective than the ones shown to users that previously visited the
site without creating an account. Finally, Dinner et al. [19] authors show
that online advertising can even affect the performance of (traditional) non-
online advertising and they highlight that ignoring these cross effects leads
to a miscalculation on the effectiveness of online advertising.
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CHAPTER4
Advertising Campaign Optimization

Problem

In this chapter, we define the goal of our work providing a general formu-
lation of the optimization problem we address in this research. Besides a
general description of the optimization problem, we introduce the particular
settings and sub-problems that will be analyzed in the following chapters
of this thesis.

Motivation

The optimization of an internet advertising campaign involves the execution
of multiple tasks. Firstly, an advertiser has to identify the more promis-
ing audience of the product or service to be sponsored and partition it in
different portions. For each of these portions, she has to create a set of
sub-campaigns, each with different ads, operating on different advertising
channels (e.g., Google, Facebook, banners etc.) and at different levels of
the marketing funnel. Finally, for each sub-campaign, at each day, she has
to set a daily budget and a bid to meet some business goals. Performing
these tasks optimally requires a continuous monitoring of the performance
and a frequent tuning of the variables. If we consider that an advertiser
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Figure 4.1: Example of campaign structure and set of variables that have to be optimized
by the advertiser. Each row corresponds to a sub-campaign while each column is
associated with a variable to optimize.

has to optimize several advertising campaigns at the same time, the number
of sub-campaigns that has to be managed every day becomes considerably
large. As a consequence, performing these tasks optimally and efficiently
is not feasible for human operators and automatic tools usually can solve
these problems only partially. Therefore, it is crucial to develop new auto-
matic systems able to solve thess tasks. The goal of this thesis is to provide
a set of AI algorithms that addresses the main advertisers’ problems and
can be adopted in automatic systems for internet advertising campaigns op-
timization.

Model

An Internet advertising campaign C := {C1, . . . , CN} is described by a set
of N sub-campaigns Cj , each of which is identified by a tuple of K fea-
tures Cj := (zj1, . . . , zjK), e.g., specifying the gender, age or the interests
of the users we target by the sub-campaign Cj . Each feature zij ⊆ Zi is
a nonempty set of values characterizing the sub-campaign, where Zi is the
set of the feasible values for the i-th feature. For instance, if the i-th feature
corresponds to the gender, with values M for male and F for female, we
have Zi = {M,F} as the set of feasible values, and, thus, the correspond-
ing feature can be zij = {M} if the sub-campaign Cj targets only male
users, zij = {F} if it targets only the female ones, and zij = {M,F} if
it targets both. Let Ω be the space in which the advertiser searches for the
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optimal configuration of sub-campaigns:

Ω ={C = {C1, . . . , CN} s.t. ∀zij ∈ Cj zij ⊆ Zi}

The advertiser, at the beginning of the advertising period, has to define the
optimal set of sub-campaigns C over all the possible sets in Ω.

Then, for every day t ∈ {1, . . . , T}, for each of the sub-campaigns
Cj ∈ C, the advertiser chooses a bid/daily budget pair aj,t = (xj,t, yj,t). The
bid xj,t takes values in a finite spaceX ⊂ R+ and is constrained to be in the
interval [xj,t, xj,t], where xj,t and xj,t ∈ R+ are the minimum and maximum
bid an advertiser can choose, respectively. Similarly, the daily budget yj,t
takes values in a finite and, for simplicity, evenly-spaced set Y ⊂ R+ and
is constrained to be in [y

j,t
, yj,t], where y

j,t
and yj,t ∈ R+ are the minimum

and maximum daily budget an advertiser can set, respectively. 1 By choos-
ing a specific bid/daily budget pair (xj,t, yj,t) for a day t and for each sub-
campaign Cj , an advertiser gets an expected cost for each sub-campaign
cj,t and an overall expected revenue of J (C, x1,t, ..., x|C|,t, y1,t, ...y|C|,t, ).

Optimization Problem

The goal of an advertiser is to define the optimal set of sub-campaigns C
and at every day t ∈ {1, . . . , T} choice the optimal set of values of the
bid and daily budget for every sub-campaign to maximize the cumulative
expected revenue. These values can be found by solving the following
optimization problem.

max
(xj,t,yj,t)∈X×Y,C

J (C, x1,t, . . . , x|C|,t, y1,t, . . . , y|C|,t, ) (4.1a)

s.t.
|C|∑
j=1

yj,t ≤ B (4.1b)

J (C, x1,t, . . . , x|C|,t, y1,t, . . . , y|C|,t, )∑|C|
j=1 cj,t(C, x1,t, . . . , x|C|,t, y1,t, . . . , y|C|,t, )

≤ λ (4.1c)

xj,t ≤ xj,t ≤ xj,t ∀j
(4.1d)

y
j,t
≤ yj,t ≤ yj,t ∀j

(4.1e)
1 The platforms allow different discretization for the bid and the daily budget. For instance, on the Facebook

platform, the daily budget discretization has a step of 1.00 Euro, while, on the Google Adwords platform, a step
of 0.01 Euro is allowed.
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The objective function stated in Equation (4.1a) is a general formula indi-
cating the revenue, that assumes different meanings depending on the spe-
cific context. Usually, this value can be modeled as the sum of the expected
number of clicks (or impressions) generated over all the sub-campaigns
weighted by the economic value of each click (or conversion). The con-
straint in Equation (4.1b) is a budget constraint, forcing one not to spend
more than the cumulative daily budget limit, 2 while the constraint in Equa-
tion 4.1c is a return-on-investment constraint, forcing to keep the ratio be-
tween the revenue and the cumulative spend to be larger than a threshold
value. Equations (4.1d) and (4.1e) force the variables to assume values
in the given ranges for bid and daily budget. In Table 4.1, we report the
notation of the variables and parameters of the general problem formula-
tion described above. For the sake of readability, in the next chapters, we
will recall this notation highlighting any variations that characterize each
specific setting.

Specific Settings and Sub-Problems

Starting from this general formulation we define the following specific
problems and, in Chapters 5-6-7-8, we address each of them.

• Online Joint Bid/Budget Optimization (Chapter 5). In this problem,
we consider the set of sub-campaigns C to be fixed a priori at the
beginning of the advertising period and we assume that all the sub-
campaigns are independent each other. In this framework, we address
the optimization problem in an online fashion where the goal is to find,
at each day t, the bid value xj,t and the budget value yj,t for each sub-
campaign Cj .

• Safe Online Bid Optimization with Return-on-Investment Con-
straints (Chapter 6). In this problem, we focus on the scenario in
which the daily budget is not a variable that can be set on platforms
by the advertiser to limit the daily spend (yj = +∞). Here, the goal is
to find, at each day t, the optimal bid xj,t for each sub-campaign that
maximizes the revenue while satisfying, with high probability, some
return-on-investment and spend constraints.

• Offline Targeting Optimization (Chapter 7). In this problem, we ad-
dress the targeting , bid and budget optimization in an off-line fashion.
The goal is to find a stationary policy that returns the optimal set of

2In some platforms where it is not possible to set a daily budget, this constraint can be replaced by a spend
constraint of the form

∑|C|
j=1 cj,t ≤ yt.
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Table 4.1: Notation

C , set of advertising campaigns
N , number of campaigns
Cj , j-th campaign
t , current day
T , time horizon
B , cumulative daily budget

xj,t , bid value for the j-th campaign at time t
yj,t , daily budget value for the j-th campaign at time t
zi,j , i-th feature value of the j-th sub-campaign

aj,t = (xj,t, yj,t) , bid/daily budget pair for the j-th campaign at time t
D , set of the possible bid/daily budget pairs for each campaign
X , space of the possible bid values
Y , space of the possible daily budget values
M , cardinality of D
Zi , set of feasible values for feature zi
vj , value per click of the j-th campaign

nj(.) , expected number of clicks
cj(.) , expected spend

sub-campaigns C, the bid value xj and the optimal budget value yj to
be set for all the advertising period.

• Offline joint bid/budget optimization with sub-campaigns inter-
dependcies (Chapter 8). In this problem, we consider the scenario in
which the performance of the sub-campaigns are interdependent from
each other, i.e., the bid and budget set on a sub-campaign can affect the
performance of other sub-campaigns that operates on the same target.
We approach this problem in an off-line fashion and we consider C to
be fixed a priori. The goal of this work is to include interdependence
relationships among sub-campaigns in the optimization problem and
exploits them to return a stationary policy that defines the set of bid
xj,t and budget values yj,t that maximize the revenue.
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CHAPTER5
Online Joint Bid/Budget Optimization

In this chapter, we address the joint bid/budget optimization problem where
the learner has to find, for each sub-campaign, the optimal bid/budget pair
that maximizes the revenue under an overall budget constraint. We formu-
late this problem as a combinatorial semi bandit problem [14], in which, at
every round and for each campaign, an advertiser chooses a pair of bid/daily
budget values and observes some information on the performance of the
campaign. We discretize the bid/daily budget space, and we formulate the
optimization problem as a special case of the Multiple-Choice Knapsack
problem [51], that we solve by dynamic programming in a fashion simi-
lar to the approximation scheme for the knapsack problem. We resort to
Gaussian Process (GP) regression models [48] to estimate the uncertain pa-
rameters of the optimization problem (e.g., number of clicks and value per
click), as the adoption of GPs requires mild assumptions on the regularity
of the functions we need to learn and allows one to capture the correlation
among the data thus mitigating the data scarcity issue.

We design four bandit techniques to balance exploration and exploita-
tion in the learning process, that return either samples or upper confidence
bounds of the stochastic variables estimated by the GPs to use in the opti-
mization problem. We show that our algorithms enjoy a regret that is upper
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bounded with high probability as O(
√
T ), where T is the learning time

horizon.
Finally, we experimentally evaluate the convergence of our algorithms to

the optimal (clairvoyant) solution and its empirical regret as the size of the
problem varies using a realistic simulator based on the Yahoo! Webscope
A3 dataset. Furthermore, we present the results of the adoption of our
algorithms in a real-world application over a period longer than one year,
with an average cumulative daily budget of about 1,000 Euros.

This chapter is structured as follows. In Section 5.1, we formulate our
problem as a combinatorial semi bandit. In Section 5.2, we describe our al-
gorithms, whereas, in Section 5.3, we provide their theoretical regret anal-
ysis. In Section 5.4, we present the experimental evaluation of the algo-
rithms. We report in the Appendix A.1 the proofs of our theoretical results.

Problem Formulation

Optimization Problem Formulation

An advertiser is provided with a collection ofN ∈ N advertising campaigns
C = {C1, . . . , CN}, where Cj is the j-th campaign, a finite time horizon of
T ∈ N days, and cumulative daily budget B an advertiser is willing to
spend at day t ∈ {1, . . . , T} over all the sub-campaigns. 1 For every day
t ∈ {1, . . . , T} and every sub-campaign Cj, j ∈ {1, . . . , N}, an advertiser
chooses a bid/daily budget pair aj,t = (xj,t, yj,t). The bid xj,t takes values
in a finite space X ⊂ R+ and is constrained to be in the interval [xj,t, xj,t],
where xj,t and xj,t ∈ R+ are the minimum and maximum bid an advertiser
can choose, respectively. Similarly, the daily budget yj,t takes values in a
finite and, for simplicity, evenly-spaced set Y ⊂ R+ and is constrained to
be in [y

j,t
, yj,t], where y

j,t
and yj,t ∈ R+ are the minimum and maximum

daily budget an advertiser can set, respectively. 2 By choosing a specific
bid/daily budget pair (xj,t, yj,t) for a day t on campaign Cj , an advertiser
gets an expected revenue of vj nj(xj,t, yj,t), where vj is the value per click
for campaign Cj and nj(xj,t, yj,t) is the corresponding expected number of
clicks. The goal of an advertiser at every day t ∈ {1, . . . , T} is the choice
of the values of the bid and daily budget for every campaign to maximize
the cumulative expected revenue. These values can be found by solving the

1 For the sake of presentation, from now on, we set one day as the unitary temporal step of our algorithms.
The application of our techniques to different time units is straightforward by opportunely scaling the variables
and parameters.

2 The platforms allow different discretization for the bid and the daily budget. For instance, on the Facebook
platform, the daily budget discretization has a step of 1.00 Euro, while, on the Google Adwords platform, a step
of 0.01 Euro is allowed.
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following optimization problem.

max
(xj,t,yj,t)∈X×Y

N∑
j=1

vj nj(xj,t, yj,t) (5.1a)

s.t.
N∑
j=1

yj,t ≤ B (5.1b)

xj,t ≤ xj,t ≤ xj,t ∀j (5.1c)

y
j,t
≤ yj,t ≤ yj,t ∀j (5.1d)

The objective function stated in Equation (6.1a) is the weighted sum of
the expected number of clicks nj generated by all the campaigns, where
the weights vj are the campaigns’ value per click. The constraint in Equa-
tion (5.1b) is a budget constraint, forcing one not to spend more than the
cumulative daily budget limit, while the constraints in Equations (5.1c)
and (5.1d) force the variables to assume values in the given ranges for bid
and daily budget. The above problem is a special case of the Multiple-
Choice Knapsack (MCK) [29], which is a variant of the knapsack problem
where the items are divided into classes and at most one item per class
can be chosen. In the problem above, a class corresponds to a campaign,
whereas an item corresponds to a pair of bid/daily budget values.

Each function nj(x, y) is fully described by |X| |Y | parameters. How-
ever, exploiting the structure of the problem, a much more concise repre-
sentation using only 2 |X| parameters can be provided. 3 We factorize the
dependency of the number of clicks on x and y as follows:

nj(x, y) := min
{
nsat
j (x), y esatj (x)

}
, (5.2)

where the functions nsat
j (x) and esatj (x) describe:

• the maximum number of clicks nsat
j : X → R+ that can be obtained

with a given bid x without any daily budget constraint (or, equiva-
lently, letting y → +∞);

• the number of clicks per unit of daily budget esatj : X → R+ with a
given bid x, under the assumption that the number of clicks depends
linearly on the daily budget when nj ≤ nsat

j .

The rationale is that the maximum number of clicks nsat
j (x) obtainable with

bid x is finite and depends on the number of auctions an advertiser can win
3 The reduction of the number of the parameters from |X| |Y | to 2 |X| does not affect the complexity of the

optimization problem, but it plays a crucial role when one needs to learn these parameters.
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when using bid x. More specifically, nsat
j (x) is monotonically increasing

in x, since the number of auctions won by an advertiser and the average
quality of the slots in which the ad is displayed monotonically increase in
x. Notably, the cost per click monotonically increases in x and, therefore,
esatj (x) monotonically reduces in x. Finally, fixed the value of x, the num-
ber of clicks increases linearly in the daily budget y, where the slope is
the number of clicks per unit of daily budget esatj (x), until the maximum
number of clicks nsat

j (x) obtainable with bid x is achieved. For the sake of
clarity, we report in Figure 5.1 an example of function nj for four values of
bid; the black dashed curve depicts maxx∈X{nj(x, y)} as the daily budget
y varies.
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Figure 5.1: An example of nj for four values of bid.

Learning Problem Formulation

In concrete scenarios, the functions nj(·, ·) and the parameters vj in the
optimization problem stated in Equations (6.1a)–(5.1d) are not a priori
known, but they need to be estimated online. Thus, an algorithm needs
to gather as much information as possible about these functions during the
operational life of the system, and, at the same time, not to lose too much
revenue in exploring suboptimal bid/daily budget allocations (a.k.a. explo-
ration/exploitation dilemma). Thus, our learning problem can be naturally
formulated in a sequential decision fashion [13] as a Combinatorial Semi
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Bandit problem (CSB) [14]. 4 In the CSB framework, at every round, the
learner chooses from a finite set of options, called arms, a subset of these,
called superarm, subject to some combinatorial constraints (e.g., knapsack
constraints). Subsequently, the learner observes the payoffs of every single
arm belonging to the chosen superarm and gets the corresponding reward.
In the optimization problem stated in Equations (6.1a)–(5.1d), each arm
corresponds to a bid/daily budget pair, each superarm corresponds to a col-
lection of pairs, one per campaign, and the constraints consist in satisfying
the overall daily budget constraint and the range constraints for the bid and
daily budget. The payoff of every arm is the revenue we obtain by setting a
bid/daily budget pair.

We denote with D = X × Y , where |D| = M , the finite space of
bid/daily budget pairs. The learning process proceeds as follows. Every
day t, an advertiser, called learner from hereafter, chooses a superarm S ∈
DN , where St := (a1,t, . . . ,aN,t) and the arm aj,t ∈ D is the bid/daily
budget pair we set for campaign Cj at day t. Such a superarm St must be
feasible according to the constraints in Equations (5.1b)-(5.1d). The choice
of superarm St leads to a revenue expressed in terms of clicks and value per
click. We denote the random variable corresponding to the number of clicks
of campaign Cj by Nj(xj,t, yj,t) and the random variable corresponding to
the value per click of campaign Cj by Vj . Thus, the revenue is a random
variable

∑
j VjNj(xj,t, yj,t). We denote with rµ(St) the expected value of

the revenue when we pull superarm St, and the vector µ of the expected
revenues of each arm of every campaign is:

µ := (v1n1(x1, y1), . . . , v1n1(xM , yM), vN−1nN−1(x1, y1), . . .

vN−1nN−1(xM , yM), vNnN(x1, y1), . . . , vNnN(xM , yM)).

From now on, we refer to the problem defined above as the Advertisement
Bid/ daily Budget Allocation (ABBA) problem.

A policy U solving our problem is an algorithm returning, each day
t ∈ {1, . . . , T}, a superarm St. Given a policy U, we define the expected
pseudo-regret over a time horizon of T as:

RT (U) := T r∗µ − E

[
T∑
t=1

rµ(St)

]
,

where r∗µ := rµ(S∗) is the expected value of the revenue provided by the
clairvoyant algorithm choosing the optimal superarm S∗ = (a∗1, . . .a

∗
N}Nj=1

4 Another approach solving this problem is to use a multistage method, e.g., backward induction, but, even for
problems with few campaigns and for only 2 stages, such technique would require a huge computational effort
that makes these methods an unfeasible solution in practice.
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Table 5.1: Notation

C , set of advertising campaigns
N , number of campaigns
Cj , j-th campaign
t , current day
T , time horizon
B , cumulative daily budget

xj,t , set of bid values for the j-th campaign at time t
yj,t , set of the daily budget values for the j-th campaign at time t

aj,t = (xj,t, yj,t) , set of the bid/daily budget pairs for the j-th campaign at time t
D , set of the possible bid/daily budget pairs for each campaign
X , space of the possible bid values
Y , space of the possible daily budget values
M , cardinality of D
St , tuple of bid/daily budget pairs (superarms) for the campaigns at

time t
vj , value per click of the j-th campaign

nj(xj,t, yj,t) , expected number of clicks given by a bid/daily budget pair
(xj,t, yj,t)

µ , vector of the expected revenues of each arm of every campaign
a∗j , optimal bid/budget pair for the j-th campaign
S∗ , optimal superarm for the set of campaigns C

rµ(St) , expected value of the revenue when we pull superarm St at
round t

r∗µ = rµ(S∗) , expected value of the revenue when we pull the optimal super-
arm St at round t

that is the solution to the problem in Equations (6.1a)-(5.1d), and the ex-
pectation E[·] is taken w.r.t. the stochasticity of the policy U. Our goal is
the design of algorithms minimizing the pseudo-regret RT (U). A recap of
the notation defined in this section and used from now on is provided in
Table 5.1.

Previous Results on Related Learning Problems

The Combinatorial Bandit framework is introduced in the seminal work [14],
in which the authors also propose an algorithm based on statistical upper
confidence bounds, namely CUCB. Under the assumption that the support
of the payoff functions is bounded on [0, 1], the CUCB algorithm provides a
regret O(log(T )). The CUCB does not exploit the potential correlation ex-
isting among the expected reward of the arms, which makes its application
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to our specific scenario unfeasible due to the long time needed for learn-
ing the parameters. Another work in the Combinatorial Bandit literature
related to our paper is the one presented in [50], in which the authors de-
sign an algorithm for a combinatorial semi-bandit problem with knapsack
constraints. Differently from our setting, in this scenario, every single arm
is assigned a specific budget that recedes every time the arm is pulled. The
process stops as soon as one of the arms runs out of its budget. Differently,
in our setting, we have a cumulative budget for every day, allowing the pull
of the arms for an arbitrary number of times. In the Combinatorial Ban-
dit literature, few works are known to exploit arm correlation to speed up
the learning process. The most significant result, provided by Degenne and
Perchet [16], describes an algorithm for the specific case of combinatorial
constraints in which we are allowed to pull a fixed number of arms at each
round.

Other works related to ours can be found in the (non-combinatorial)
MAB literature. More precisely, Srinivas et al. [52] propose the GP-UCB
algorithm that employs GPs in the basic stochastic MAB setting where, at
every round, only a single arm can be pulled. The pseudo-regret of the
GP-UCB algorithm is proved to be upper bounded with high probability as
Õ(
√
T ). These algorithms cannot be directly applied to our scenario where,

instead, we can pull a superarm subject to a set of constraints. Notably, we
extend the work in [52] to the more challenging combinatorial setting and
show that it has the same upper bound on the pseudo-regret Õ(

√
T ).

Proposed Method: the AdComb Algorithm

The Main Algorithm

Algorithm 1, named AdComB, provides the high-level pseudocode of our
method, and its scheme is reported in Figure 5.2. The input to the algorithm
is composed of: the discrete set of bid values X , the discrete set of daily
budget values Y , a model M(0)

j that, for each campaign Cj , captures the
prior knowledge of the learner about the function nj(·, ·) and the parameter
vj , a overall daily budget B, and a time horizon T . We distinguish three
phases that are repeated every day t ∈ {1. . . . , T}.

In the first phase (Lines 4–8), denoted with Estimation in Figure 5.2, the
algorithm learns, from the observations of days {1, . . . , t − 1}, the model
Mj of every campaign Cj . In particular, the modelMj provides a prob-
ability distribution over the average number of clicks nj(x, y) as the bid x
and the daily budget y vary and over the average value per click vj . The
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Algorithm 1 AdComB

1: Input: set X of bid values, set Y of daily budget values, prior model {M(0)
j }Nj=1,

overall daily budget B, time horizon T
2: for t ∈ {1, . . . , T} do
3: for j ∈ {1, . . . N} do
4: if t = 1 then
5: Mj ←M(0)

j

6: else
7: Get (ñj,t−1, c̃j,t−1, g̃j,t−1, ṽj,t−1)
8: Mj ← Update (Mj , (x̂j,t−1, ŷj,t−1, ñj,t−1, c̃j,t−1, g̃j,t−1, ṽj,t−1))

9: (n̂j(·, ·), v̂j)← Sampling (Mj , X, Y )

10: {(x̂j,t, ŷj,t)}Nj=1 ← Optimize
(
{n̂j(·, ·), v̂j , X, Y }Nj=1, yt

)
11: Pull (x̂1,t, ŷ1,t, . . . , x̂N,t, ŷN,t)

Advertising 
Platforms

Optimization
Bandit
Choice

Estimation

Spending
Plan

Figure 5.2: The information flow in the AdComB algorithm along with the three phases.

first day the algorithm is executed, no observation is available, and, thus,
the modelMj is based on the priorM(0)

j (Line 5). Conversely, during the
subsequent days, for every campaign Cj , the algorithm gets an observation
corresponding to day t− 1 (Line 7) composed of:

• (ñj,t−1) the actual number of clicks;

• (c̃j,t−1) the actual total daily cost of the campaign;

• (g̃j,t−1) the time when the daily budget yt−1 exhausted at t− 1, if so;

• (ṽj,t−1) the actual value per click;
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and, subsequently, updates the model of each campaign Mj using those
observations (Line 8).

In the second phase (Line 9), denoted with Bandit Choice in Figure 5.2,
the algorithm uses the model Mj just updated to infer an estimate of the
function nj(·, ·), for every value of bid and daily budget in X and Y , re-
spectively, and of the parameter vj . We denote these estimates with n̂j(·, ·)
and v̂j , respectively.

In the third phase (Lines 10–11), denoted with Optimization in Fig-
ure 5.2, the algorithm employs the estimates n̂j(·, ·) and v̂j in place of
nj(·, ·) and vj in the problem stated in Equations (6.1a)–(5.1d). Finally,
it solves the optimization problem returning the bid/daily budget allocation
for the next day t (Line 11).

In what follows, we provide a detailed description of the model Mj

and of the subroutines Update(·), Sampling(·), and Optimize(·) used in
Algorithm 1.

Model and Update Subroutine

As mentioned before, the Update subroutine generates an estimate of the
number of clicks nj(·, ·) and value per click vj using the previous observa-
tions. To avoid data scarcity issues and speed up the learning process, we
make mild assumptions on the function nj(·, ·), and we model it by resort-
ing to GPs [48]. These models, developed in the statistical learning field,
capture the correlation of the nearby points in the input space exploiting
kernel functions. Moreover, they provide a probability distribution over the
output space—in our case the number of clicks—for each point of the input
space—in our case the discretized space of bid/daily budget pairs—, thus
giving information both on the expected values of the quantities to estimate
and their uncertainty.

For the sake of presentation, we describe how we model the maximum
number of clicks nsat

j (·) with a GP regression model. The model directly
applies to the number of clicks per unit of daily budget esatj (·). Furthermore,
in some situations, the factorization introduced in Equation (5.2) may not
be exploited by a learning algorithm, as we discuss below. In these cases,
one can adopt a 2-dimensional GP to model nj(·, ·). The treatment of this
case, called unfactorized hereafter, is analogous to that of nsat

j (·), but, every
time the factorized model can be employed, its use is preferable due to the
curse of dimensionality [8]. In the following, we use AdComb-F to refer to
the algorithm when the factorized model is used, while we use AdComb-U
for the case in which we do not use the factorized model.
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We model nsat
j (·) for campaign Cj with a GP over the bid space X , i.e.,

using a collection of random variables having a joint Gaussian distribution.
Following the definition provided in [48], a GP is completely specified by
the mean m : X → R and covariance k : X × X → [0, 1] functions.
Hence, we denote the GP that models the maximum number of clicks in Cj
as follows:

nsat
j (x) := GP (m(x), k(x, ·)) ,∀x ∈ X.

More specifically, the correlation structure we use is given by a squared
exponential kernel:

k(x, x′) = exp

{
−(x− x′)2

2 l2

}
∀x, x′ ∈ X,

where l ∈ R+ is a length-scale parameter determining the smoothness of
the function. 5 Other common choices for the kernel can be found in [52].

According to GP model, at every day t, the predictive distribution cor-
responding to the maximum number of clicks nsat

j,t (x) on campaign Cj for
the bid x is estimated by N (µ̂j,t−1(x), σ̂2

j,t−1(x)) with:

µ̂j,t−1(x) = m(x) + k(x, x̂j,t−1)>Φ−1
(
ñsat
j,t−1 −mj,t−1

)
,

σ̂2
j,t−1(x) = k(x, x)− k(x, x̂j,t−1)> Φ−1 k(x, x̂j,t−1),

where x̂j,t−1 := (x̂j,1, . . . , x̂j,t−1)> is the observed bids vector, k(x, x̂j,t−1)
:= (k(x, x̂j,1), . . . , k(x, x̂j,t−1))> is the correlation value for the bid x w.r.t.
each element of the vector x̂j,t−1, mj,t−1 := (m(x̂j,1), . . . ,m(x̂j,t−1))> is
the vector of the prior for the input in x̂j,t−1, ñsat

j,t−1 :=
(
ñsat
j,1, . . . , ñ

sat
j,t−1

)>
is the vector of maximum number of clicks achieved the previous days,
[Φ]h,k := k(x̂j,h, x̂j,k) + λ is the Gram matrix built on the available data,
and λ is the variance of the realizations we use in the estimation process. 67

Note that the distribution of the maximum number of clicks at the first day
is N (m(x), k(x, x)) for each x ∈ X since no information from the data
can be used yet.

5If available, a priori information on the process can be employed to design a function m(x) over the input
space X which specifies the mean value. For instance, when information on the maximum number θ of clicks
achievable for any bid is available, one may use a linearly increasing function over the bid space as m(x) =

xθ
maxx′∈X x′ . If instead no a priori information is available, one can use a uninformative prior mean by setting

m(x) = 0, ∀x ∈ X .
6 From now on, we denote withN (µ, σ2) the Gaussian with mean µ and variance σ2.
7 The computation cost of the estimation can be dramatically reduced by using an alternative, but much more

involved, approach whereby the inverse of the Gram matrix Φ−1 is stored and updated iteratively at each day;
see [48] for details.
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The parameter ñsat
j,t is set equal to the observation c̃j,t when the daily

budget ŷj,t used for campaign Cj did not exhaust. When instead ŷj,t ex-
hausted, we have not a direct observation of ñsat

j,t , and, thus, we set ñsat
j,t as a

function of the time g̃j,t. For instance, if we assume a uniform distribution
of the clicks over the day, the value of ñsat

j,t has the following expression:

ñsat
j,t :=

24

g̃j,t
ñj,t,

where g̃j,t ∈ (0, 24] is expressed in hours. In general, this relationship can
be estimated from historical data coming from past advertising campaigns
of products belonging to the same category (e.g., toys, insurances, beauty
products). Conversely, if no information on how the clicks distribute over
the day is available, one has to rely on the unfactorized model for nj(·, ·).
Similar considerations hold for the estimation of the value per click vj . We
estimate vj , at day t, from the observations ṽj,t−1 := (ṽj,1, . . . , ṽj,t−1)>

of the previous days up to t − 1. We use a single Gaussian probability
distribution to model the value per click vj , thus, at every day t, given the
observations ṽj,t−1, we estimate its mean ν̂j,t and variance ψ̂2

j,t relying on
the Bayesian update of a prior N (0, ψ2

j ) [22], as follows:

ν̂j,t−1 :=
ψ2
j

∑t−1
h=1 ṽj,h

ξ + (t− 1)ψ2
j

,

ψ̂2
j,t−1 :=

ψ2
j ξ

ξ + (t− 1)ψ2
j

,

where ξ is the measurement noise variance. To summarize, the data needed
for updating the modelMj corresponding to campaign Cj at day t consists
of the following elements:

• the values per click ṽj,t−1,

• the chosen bids x̂j,t−1,

• the maximum number of achievable clicks ñsat
j,t−1,

• the number of clicks per unit of daily budget ẽsatj,t−1 :=
(
ñj,1
c̃j,1
, . . . ,

ñj,t−1

c̃j,t−1

)>
Sampling Subroutine

The Sampling subroutine aims at returning an estimate of the expected
number of clicks and the value per click to use in the optimization problem
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stated in Equations (6.1a)–(5.1d). The näive choice of using the expected
value computed fromMj may not provide any guarantee to minimize the
regret RT (U), as it is well known in the bandit literature. To guarantee
that our algorithm minimizes the cumulative expected regret, we compute
an estimation exploiting the information on the uncertainty provided by
model Mj . More precisely, the model Mj associated with campaign Cj
provides a probability distribution over the values of the function nj(·, ·)
and the values vj can assume. This is equivalent to say thatMj provides
a probability distribution over the possible instances of the optimization
problem in Equations (6.1a)–(5.1d). The Sampling subroutine generates,
fromMj , a single instance of the optimization problem, assigning a value
to nj(x, y) for every x ∈ X, y ∈ Y and vj .

We propose two different approaches for the sampling phase, namely
AdComB-UCB and AdComB-TS, taking inspiration from the GPUCB al-
gorithm [52], and the Thompson Sampling (TS) algorithm [54], respec-
tively. 8

The AdComB-UCB algorithm uses upper confidence bounds on the ex-
pected value of the posterior distributions to estimate nsat

j (x) and esatj (x).
More specifically, nsat

j (x) and esatj (x) are replaced in the optimization prob-
lem defined in Equation (6.1a)–(5.1d) by:

u
(n)
j,t−1(x) := µ̂j,t−1(x) +

√
b

(n)
j,t−1 σ̂j,t−1(x),

u
(e)
j,t−1(x) := η̂j,t−1(x) +

√
b

(e)
j,t−1 ŝj,t−1(x),

respectively, where η̂j,t−1(x) and ŝ2
j,t−1(x) are the mean and the variance

provided by the GP modeling esatj (·), respectively, b(n)
j,t−1 ∈ R+ and b(e)

j,t−1 ∈
R+ are non-negative sequences of values, which will be discussed later
on in Section 5.3. Properly setting the values of b(n)

i,t−1 and b(e)
i,t−1 leads us

to design optimistic bounds, that are necessary for the convergence of the
algorithm to the optimal solution. Similarly, for the value per click vj , we
use:

u
(v)
j,t−1 := ν̂j,t−1 +

√
b

(v)
j,t−1 ψ̂j,t−1,

where b(v)
j,t−1 ∈ R+ is a non-negative sequence of values.

Conversely, the AdComB-TS algorithm draws samples from the distri-
butions corresponding to nsat

j (x) and esatj (x) and, consequently, computes
the value of nj(x, y) to be used in the following optimization phase. More

8 For the sake of clarity, in what follows we describe the our sampling procedure for the AdComb-F version
of AdComb; the case for the unfactored model AdComb-U is analogous.
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formally, at a given day t and for every bid in x ∈ X , we replace nsat
j (x)

and esatj (x) in the optimization problem defined in Equation (6.1a)–(5.1d)
with:

θ
(n)
j,t−1(x) ∼ N (µ̂j,t−1(x), σ̂2

j,t−1(x)),

θ
(e)
j,t−1(x) ∼ N (η̂j,t−1(x), ŝ2

j,t−1(x)),

respectively. Similarly, for the value per click, we draw a sample θ(v)
j,t−1(x)

as follows:
θ

(v)
j,t−1 ∼ N (ν̂j,t−1, ψ̂

2
j,t−1).

Finally, given the values for nsat
j (x) and esatj (x) generated by one of the

two aforementioned methods, we compute nj(x, y) as prescribed by Equa-
tion (5.2) for each bid x ∈ X and for each daily budget y ∈ Y , and use
them in the following optimization procedure.

Optimize Subroutine

Finally, for every campaign Cj , we need to choose the best bid/daily budget
pair to set at day t. We resort to a modified version of the algorithm in [29]
used for the solution of the knapsack problem. Let us define the set of
the feasible bid and daily budgets for the round t and the campaign Cj as
Xj,t := X ∩ [xj,t, xj,t] and Yj,t := Y ∩ [y

j,t
, yj,t], respectively. At first, for

every value of daily budget y ∈ Yj,t, we define x∗j(y) ∈ Xj,t as the bid
maximizing the number of clicks, formally:

x∗j(y) := arg max
x∈Xj,t

nj(x, y).

The value x∗j(y) is easily found by enumeration. Then, for each value of
daily budget y ∈ Y , we define wj(y) as the value we expect to receive
by setting the daily budget of campaign Cj equal to y and the bid equal to
x∗j(y), formally:

wj(y) :=

{
vj nj(x

∗
j(y), y) y

j,t
≤ y ≤ yj,t

0 y < y
j,t
∨ y > yj,t

.

This allows one to remove the dependency of the optimization problem
defined in Equations (6.1a)–(5.1d) from x, letting variables y the only vari-
ables to deal with.

Finally, the optimization problem is solved in a dynamic programming
fashion. We use a matrix M(j, y) with j ∈ {1, . . . , N} and y ∈ Y . We
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fill iteratively the matrix as follows. Each row is initialized as M(j, y) = 0
for every j and y ∈ Y . For j = 1, we set M(1, y) = w1(y) for every
y ∈ Y , corresponding to the best budget assignment for every value of y if
the campaign Cj were the only campaign in the problem. For j > 1, we set
for every y ∈ Y :

M(j, y) = max
y′∈Y,y′≤y

{
M(j − 1, y′) + wj(y − y′)

}
.

That is, the value in each cell M(j, y) is found by scanning all the elements
M(j − 1, y′) for y′ ≤ y, taking the corresponding value, adding the value
given by assigning a budget of y − y′ to campaign Cj and, finally, taking
the maximum among all these combinations. At the end of the iterative
process, the optimal value of the optimization problem can be found in the
cell corresponding to maxy∈Y M(N, y). To find the optimal assignment of
daily budget, it is sufficient to store the partial best assignments of budget
in the cells of the matrix.

The complexity of the aforementioned algorithm is O(NH2), i.e., it is
linear in the number of campaigns N and quadratic in the number of dif-
ferent values of the budget H := |Y |, where | · | is the cardinality of a set.
WhenH is huge, the above algorithm may require a long time. In that case,
it is sufficient to reduce H by rounding the values of the budget as in the
FPTAS of the knapsack problem.

Regret Analysis

We provide a theoretical finite-time analysis of the regret RT (U) of the al-
gorithms proposed in the previous section. The derivation of the guarantees
of our algorithm exploits the results presented in [2].

Initially, we define the Maximum Information Gain, which we use to
bound the regret of the AdComb algorithm. Let us start defining the In-
formation Gain of a set of samples drawn from a GP according to [52] as
follows: [Information Gain] Given a realization of a GP f(·) and a vec-
tor of noisy observations y(x) = (y(x1), . . . , y(xt))

> over the input points
x = (x1, . . . , xt)

> for the function f(·), the Information Gain of the set of
samples (x,y(x)) is defined as:

IG(y(x) | f) :=
1

2
log

∣∣∣∣I +
Φ

λ

∣∣∣∣ ,
where I is the identity matrix of order t, λ is the noise variance of the real-
izations and [Φ]ij := k(xi, xj) is the Gram matrix of the vector computed
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on the inputs x. Using the previous definition, we define the Maximum
Information Gain, as follows. [Maximum Information Gain] Given a real-
ization of a GP f(·), the Maximum Information Gain of a generic set of t
noisy observations y(x) from the function f(·) is defined as:

γt(f) := max
x∈Xt

IG(y(x) | f),

where X is the input space.
For the sake of presentation, we report our regret analysis separately for

the case in which the model of nj(·, ·) is unfactorized (Section 5.3.1) and
the case in which it is factorized (Section 5.3.2).

Unfactorized Model

We show that the worst-case pseudo-regret of the AdComb algorithm when
using the unfactorized model is upper bounded as follows.

Theorem 1. Let us consider an ABBA problem over T rounds where the
functions nj(x, y) is the realization of a GP. Using the AdComb-U-UCB
algorithm with the following upper bounds for the number of clicks and of
value per click:

û
(n)
j,t−1(x, y) := µ̂j,t−1(x, y) +

√
bt σ̂j,t−1(x, y),

û
(v)
j,t−1 := ν̂j,t−1 +

√
b′t ψ̂

2
j,t−1,

respectively, with bt := 2 log
(
π2NMt2

3δ

)
and b′t := 2 log

(
π2Nt2

3δ

)
. For every

δ ∈ (0, 1), the following holds with probability at least 1− δ:

RT (U) ≤
{

8TNbT

[
v2

max

log
(
1 + 1

λ

) N∑
j=1

γT (nj)

+ξ(nmax + 2
√
b′tσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]} 1
2

,

where, λ and ξ are variances of the measurement noise of the click functions
nj(·) and of the value per click vj , respectively, vmax := maxj∈{1,...,N} vj is
the maximum expected value per click, nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y)
is the maximum expected number of click we might obtain on average over
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all the campaigns Cj , and σ2 := k(a,a) ≥ σ̂2
j,t(a) for each j, t and a.

Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN
N∑
j=1

γT (nj)

 ,

where the notation Õ(·) disregards the logarithmic factors.

Theorem 2. Let us consider an ABBA problem over T rounds where the
functions nj(x, y) is the realization of a GP. Using the AdComb-U-TS
algorithm, for every δ ∈ (0, 1), the following holds with probability at least
1− δ:

RT (U) ≤
{

8TN

[
v2

max

log
(
1 + 1

λ

)bT N∑
j=1

γT (nj)

+ξb′T (nmax +
√
bTσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,

where bt := 8 log
(

2NMt2

3δ

)
, b′t := 8 log

(
2Nt2

3δ

)
, λ and ξ are variances of

the measurement noise of the click functions nj(·) and of the value per click
vj , respectively, vmax := maxj∈{1,...,N} vj is the maximum expected value
per click, nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maximum expected
number of click we might obtain on average over all the campaigns Cj , and
σ2 := k(a,a) ≥ σ̂2

j,t(a) for each j, t and a.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN

N∑
j=1

γT (nj)

 .

Factorized Model

We show that the worst-case pseudo-regret of the AdComb algorithm when
using the factorized model is upper bounded as follows.

Theorem 3. Let us consider an ABBA problem over T rounds where the
functions nsat

j (x) and esatj (x) are the realization of GPs. Using the AdComb-
F-UCB algorithm with the following upper bounds for the number of clicks,
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the number of clicks per unit of budget, and the value per click, respectively:

u
(n)
j,t−1(x) := µ̂j,t−1(x) +

√
btσ̂j,t−1(x),

u
(e)
j,t−1(x) := η̂j,t−1(x) +

√
btŝj,t−1(x),

u
(v)
j,t−1 := ˆνj,t−1 +

√
b′tψ̂j,t−1,

with bt = 2 log
(
π2NMt2

2δ

)
and b′t := 2 log

(
π2Nt2

2δ

)
. For every δ ∈ (0, 1),

the following holds with probability at least 1− δ:

RT (U) ≤
{
TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
j=1

γT (ej)

+c̄3b
′
T

(
2symax

√
bT + 2σ

√
bT + nsat

max

)2
N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,

where c̄1 := 12v2
max

log(1+ 1
λ)

, c̄2 := 12v2
maxy

2
max

log(1+ 1
λ′ )

, and c̄3 := 12ξ, ξ, λ and λ′ are

the variance of the value per click, measurement noise on the maximum
number of clicks and number of clicks per unit of daily budget, respectively,
vmax := maxj∈{1,...,N} vj is the maximum expected value per click, nmax :=
maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maximum expected number of click we
might obtain on average over all the campaigns Cj , ymax := maxy∈Y y is
the maximum budget one can allocate on a campaign, and σ2 := k(x, x) ≥
σ̂2
j,t(x), s2 := k′(x, x) ≥ ŝ2

j,t(x) for each j, t and x.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN
N∑
j=1

[γT (nj) + γT (ej)]

 .

Theorem 4. Let us consider an ABBA problem over T rounds where the
functions nsat

j (x) and esatj (x) are the realization of GPs. Using the AdComb-
F-TS algorithm, for every δ ∈ (0, 1), the following holds with probability
at least 1− δ:

RT (U) ≤
{
TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
j=1

γT (ej)

+c̄3b
′
T

(
2symax

√
bT + 2σ

√
bT + nsat

max

)2
N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,
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where bt = 2 log
(
π2NMt2

2δ

)
, b′t := 2 log

(
π2Nt2

2δ

)
, c̄1 := 48v2

max

log(1+ 1
λ)

, c̄2 :=

48v2
maxy

2
max

log(1+ 1
λ′ )

, and c̄3 := 12ξ, ξ, λ and λ′ are the variance of the value per

click, measurement noise on the maximum number of clicks and number of
clicks per unit of daily budget, respectively, vmax := maxj∈{1,...,N} vj is the
maximum expected value per click, nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y)
is the maximum expected number of click we might obtain on average over
all the campaigns Cj , ymax := maxy∈Y y is the maximum budget one can
allocate on a campaign, and σ2 := k(x, x) ≥ σ̂2

j,t(x), s2 := k′(x, x) ≥
ŝ2
j,t(x) for each j, t and x.

Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN
N∑
j=1

[γT (nj) + γT (ej)]

 .

The upper bounds provided by Theorems 1–4 are expressed in terms of
the maximum information gain γT (·) one might obtain selecting T sam-
ples from the GPs defined in Section 5.2.2. The problem of bounding
γT (f) for a generic GP f has been already addressed by [52], where the
authors present the bounds for the squared exponential kernel γT (f) =
O((log T )d+1), where d is the dimension of the input space of the GP (d = 2
for AdComb-U, and d = 1 for AdComb-F). Notice that, thanks to the pre-
vious result our AdComb algorithm suffers from a sublinear pseudo-regret
since the terms γT (nj) and γT (ej) are bounded by O((log T )d+1), and the
bound in Theorems 1–4 is then O(N

√
T (log T )d+1)).

Experimental Evaluation

This section is structured as follows. In Section 5.4.1, we experimentally
evaluate the convergence to the optimal solution and the empirical regrets
of our algorithms in synthetic settings. In Section 5.4.2, we present the
results of the adoption of our algorithms in a real-world setting.

Evaluation in Synthetic Settings

We evaluate our algorithms in synthetic settings generated as follows. In
every setting, there is a single advertiser optimizing a set of N campaigns
by our algorithms, and, for every campaign Cj , there are other δj−1 adver-
tisers whose behavior is, instead, stochastic. At day t, every campaign Cj
can be involved in a set AUj,t of auctions, whose number |AUj,t| is drawn
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Table 5.2: Parameters of the synthetic settings.

C1 C2 C3 C4

µj 1000 1500 1500 1250
σj 50 50 50 50
γj 5 5 5 5
δj 7 7 7 7
µ(b) 0.5 0.33 0.4 0.39
σ(b) 0.1 0.07 0.1 0.51
p(obs)(1) 0.9 0.9 0.9 0.9
p(obs)(2) 0.7 0.8 0.7 0.8
p(obs)(3) 0.6 0.7 0.6 0.6
p(obs)(4) 0.4 0.6 0.4 0.5
p(obs)(5) 0.2 0.5 0.3 0.3
p
(cl)
j 0.5 0.3 0.4 0.4

p
(co)
j 0.05 0.05 0.04 0.05

from a Gaussian probability distribution N (µ
(s)
j , (σ

(s)
j )2) with mean µ

(s)
j

and standard deviation σ(s)
j and subsequently rounded to the nearest inte-

ger. We denote, for campaign Cj , the click and conversion probabilities of
the advertiser using our algorithms with p(cl)

j and p(co)
j , respectively. These

probabilities are the same for all the auctions in which Cj is involved. We
assign a tuple of parameters µ(b), (σ(b))2 to every other advertiser before the
beginning of the experiment, and, at every auction, the bids bh are drawn
from a Gaussian distribution N (µ(b), (σ(b))2), being µ(b) and σ(b) the mean
and standard deviation parameters of the bid distribution, respectively. Sim-
ilarly, the click probabilities ρh are uniformly sampled in the interval [0, 1]
at every auction.

The auction mechanism we use is the Vickrey-Clarke-Groves [38] and
the number of available slots is γj , with γj ≤ δj . Once the optimal al-
location is found, we simulate a user who may or may not click the ad,
and generate a click and/or a conversion according to probabilities p(cl)

j and
p

(co)
j , respectively. After the click, the daily budget of the advertiser us-

ing our algorithms is reduced as prescribed by the Vickrey-Clarke-Groves
mechanism.

Experiment #1

This experiment aims at showing that the algorithms, which do not suffi-
ciently explore the space of the arms, may not converge to the (clairvoy-
ant) optimal solution. We use a setting with N = 4 different campaigns.
The parameters describing the setting are provided in Table 5.2. Further-
more, in Figure 5.3, we report, for each campaign Cj , the best instanta-
neous revenue vj maxx nj(x, y) as the daily budget allocated to the single
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campaign varies (this is done maximizing the performance over the feasi-
ble bid values x ∈ X). The peculiarity of this setting is the similarity of
the performance of campaigns C1 and C4. Indeed, this similarity makes
the identification of the optimal solution hard. We set the following limits
for every t ≤ T where T = 200 days and for every campaign Cj: cu-
mulative budget yt = 500, minimum and maximum bid values xj,t = 0,
and xj,t = 2, respectively, minimum and maximum daily budget values
y
j,t

= 0, yj,t = 500, respectively. Furthermore, we use an evenly spaced
discretization of |X| = 10 bids and |Y | = 10 budgets over the aforemen-
tioned intervals. We assume a uniform distribution of the clicks and con-
versions over the day (see Section 5.2).

We compare the experimental results of our algorithms (AdComb-U-
UCB, AdComb-U-TS AdComb-F-UCB, and AdComb-F-TS) to iden-
tify the modeling and/or exploration strategies providing the best perfor-
mance. 9 Furthermore, we introduce a baseline represented by the algo-
rithm AdComb-F-MEAN, which is a “pure exploration” version of Ad-
Comb-F such that, at every round t, the posterior expected value of the
number of clicks for each bid/daily budget pair is given in input to the
optimization procedure. In the GPs used by all the algorithms, we adopt
a squared exponential kernel, whose hyper-parameters are chosen as pre-
scribed by the GP literature, see [48] for details, and we started from an
uninformative zero-mean prior.

In this experiment, in addition to the cumulative pseudo-regret Rt(U),
we also evaluate the expected value of the revenue rµ(St). Obviously, in
the case of the cumulative pseudo-regret, the performance improves as the
cumulative pseudo-regret reduces, and, conversely, in the case of the rev-
enue, the performance improves as it increases. The experimental results
are averaged over 100 independent executions of the algorithms.

In Figure 5.4a, we report the average instantaneous reward rµ(St) of
our algorithms, while, in Figure 5.4b, we report their average cumulative
pseudo-regret Rt(U). The reward provided by all the algorithms but Ad-
Comb-F-MEAN converges to the optimal reward provided by a clairvoyant
algorithm and presents a slightly varying reward even at the end of the time
horizon due the variance of the GP used to choose the daily budget alloca-
tion over time. This variance is larger at the beginning of the process, thus
incentivising exploration, and it decreases as the number of observations in-

9Notice that a straightforward extension of the algorithm proposed in [14], i.e., designing a version accounting
for Gaussian distribution, would require 100 days to have a single sample for each different bid/daily budget pair.
Indeed, it would purely explore the space of arms without any form of exploitation for t ≤ 100. Therefore, we
omit the comparison that would not provide any meaningful insight to the problem.
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Figure 5.3: Expected value of vj maxx nj(x, y) used in Experiment #1 for each cam-
paign and for each value of the daily budget. Violet dots corresponds to the expected
value of the number of conversions associated to the optimal daily budget allocation.

creases, allowing the algorithms to reach the (clairvoyant) optimal reward
asymptotically. Although all our algorithms converge to the (clairvoyant)
optimal solution, the AdComb-F-TS algorithm provides the smallest cu-
mulative pseudo-regret for every t ≥ 30. AdComb-F-UCB has perfor-
mance slightly worse than that of AdComb-F-TS. The AdComb-F-MEAN
algorithm provides the best performance for t ≤ 30, but it is not capable to
achieve the (clairvoyant) optimal solution. As a result, for larger values of t,
the performance of AdComb-F-MEAN decreases achieving, at t = 200, a
regret significantly larger than that one provided by AdComb-F-TS. This is
because AdComb-F-MEAN does not explore the arms space properly and,
as a consequence, in some of the 100 independent runs, it gets stuck in a
suboptimal solution of the optimization problem. Conversely, AdComb-F-
TS and AdComb-F-UCB, thanks to their exploration incentives, converge
to the optimal solution asymptotically in all the runs. We have a similar
behavior of the algorithms is a situation in which the performance of the
algorithms are rather different and the observations are very noisy. Finally,
we observe that AdComb-U-UCB and AdComb-U-TS suffer from a much
larger regret than that one of their factorized counterparts—more than 100%
at t = 200—and this is mainly accumulated over the first half of the time
horizon.

In real-world settings, it may be usual dealing with scenarios in which
multiple campaigns have similar performance, or they have different perfor-
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Figure 5.4: Results for Experiment #1: revenue (a), and cumulative pseudo-regret (b).
The black horizontal line in (a) is the optimal reward of the clairvoyant algorithm r∗µ.
The shaded regions in (b) represent the 95% confidence intervals of the mean.

mance and the observations are very noisy. In those situations, AdComb-
F-MEAN might get stuck in a suboptimal solution, thus providing a small
expected revenue w.r.t. a clairvoyant algorithm. Conversely, both the unfac-
torized and the factorized versions of our algorithms might still be a viable
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solution since they have proven to converge to the optimum asymptotically.
For this reason, we do not recommend the adoption of the AdComb-F-
MEAN algorithm in practice and we omit its evaluation in the following
experimental activities.

Experiment #2

This experiment aims at evaluating how the size of the discretization of the
bid space (in terms of |X|) and daily budget space (in terms of |Y |) used in
our algorithms affect their performance. Indeed, if, on the one hand, an in-
crease in the number of the available bid/daily budget pairs corresponds to
an increase of the expected revenue of the clairvoyant solution, on the other
hand, a larger arms space results in larger exploration costs. We investigate
how the impact on the exploration cost is mitigated by the correlation be-
tween arms that allows one to gain information over all the arms space once
one arm is pulled.

In this experiment, we adopt the same setting used in Experiment #1
(see Table 5.2) with different granularities of discretization in the bid space
X or daily budget space Y . In particular, we study two settings over a time
horizon of T = 50 rounds. In the first setting, the number of values of the
bid space is |X| ∈ {5, 10, 20, 40, 80}, while the number of daily budget
values is |Y | = 10. In the second setting, the number of values of the daily
budget space is |Y | ∈ {5, 10, 20, 40, 80}, while the number of bid values
is |X| = 10. These discretizations are such that every space with a larger
number of values includes the space with a smaller number of values. For
instance, a set with 40 values strictly includes the one with 20 values.

We compare AdComb-U-TS and AdComb-F-TS in terms of both cu-
mulative expected revenue (over time) PT (U) :=

∑T
t=1 rµ(St) and the fol-

lowing performance index:

V (X, Y ) =
PT (U)

T r∗µ
,

where both the algorithms selecting St and the clairvoyant algorithm se-
lecting S∗ (corresponding to r∗µ) are run on the space X × Y . 10 Basi-
cally, V (X, Y ) ∈ [0, 1] is a ratio returning, given a space of arms X × Y ,
the efficiency of a learning algorithm with respect to the optimal solution
achievable with that arm space. The normalization with respect to the op-
timal solution achievable with a given arm space mitigates the fact that,
enlarging the arms space, the optimal revenue may increase.

10 The results for AdComb-U-UCB and AdComb-F-UCB are omitted since they are in line with the ones we
present and do not provide any further insight.
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Figure 5.5: Results for Experiment #2: performance of the AdComb-F-TS and
AdComb-U-TS algorithms as |X| varies: (a) cumulative expected revenue, (b)
V (X,Y ) index.

In Figure 5.5a, we show the value of PT (U) for our algorithms and of
the optimal solution (denoted with Opt) as the bid space granularity |X|
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Figure 5.6: Results for Experiment #2: performance of the AdComb-F-TS and
AdComb-U-TS algorithms as |Y | varies: (a) cumulative expected revenue, (b)
V (X,Y ) index.

varies. It is worth noting that the increase in the clairvoyant optimal re-
ward for |X| ≥ 10 is negligible. The cumulative revenue provided by the
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AdComb-F-TS algorithm is decreasing for |X| > 40. However, the loss
w.r.t. the revenue gained when |X| = 80 is about 3%. The AdComb-U-
TS algorithm has a similar behavior. This result shows that the cost due to
the exploration of a larger space of arms is larger than the increase of the
optimal achievable reward, and it suggests, in practice, the adoption of a
discretization of the bid space with about |X| = 40 evenly-spaced values.
In Figure 5.5b, we show the values of V (X, Y ) achieved by the AdComb-
U-TS and AdComb-F-TS algorithms. In this case, for both algorithms,
the value of V (X, Y ) decreases as |X| increases. This is because the algo-
rithms pays a larger exploration cost. However, the empirical increase in
inefficiency is only logarithmic in |X|. This result shows that the perfor-
mance of the algorithms is robust to an increase of the number of possible
bids.

In Figure 5.6a, we show the value PT (U) of our algorithms and of the
optimal solution as |Y | varies. The results are similar to those obtained
above when |X| varies. The only peculiarity, in this case, concerns the per-
formance of the AdComb-F-TS algorithm. Despite the theoretical analysis
provides a logarithmic dependency of the regret from |Y |, the empirical re-
sults seem to suggest that the values of V (X, Y ) are approximately constant
as |Y | varies. This empirical result does not hold for the AdComb-U-TS
algorithm, whose performance are significantly affected by the number of
daily budget intervals. Intuitively, this is because, in the factorized model,
the daily budget is not an input to the GPs we use, thus, it does not affect
the exploration of the algorithm. Conversely, in AdComb-U-TS, the daily
budget values constitute a part of the input to the GPs, and, therefore, an
increase of the number of the daily budget values results in a larger regret
since the algorithm needs to explore a wider space of arms.

In conclusion, the use of a more fine-grained bid/daily budget space to
explore provides less revenue overall, but with a mild decrease in terms
of performance, allowing, in practical cases, to use a large discretization
space.

Experiment #3

This experiment aims at evaluating the performance of our algorithms with
random realistic settings generated by exploiting Yahoo! Webscope A3
dataset. More specifically, we consider N = 4 campaigns whose param-
eters µj , σj , γj , δj are those reported in Table 5.2. The values of the pa-
rameters µ(b), σ(b), p(obs)(δ), p(cl)

j are, instead, generated according to dis-
tributions estimated from the auctions of the Yahoo! Webscope A3 dataset.
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We set a constant cumulative daily budget Bt = 100 over a time horizon of
T = 100 days, with limits y

j,t
= 0, yj,t = 100, xj,t = 0, and xj,t = 1 for

every t ≤ T,Cj . Furthermore, we use an evenly spaced discretization of
|X| = 10 values of bid and |Y | = 10 values of daily budget. We generate
10 different scenarios, for each of them, we run 100 independent experi-
ments over the same scenarios and averaged over them. Given a setting and
an algorithm, we denote with β the percentage of runs in which the given
algorithm has the best performance in terms of cumulative reward in the
given setting.

In Table B.3, we report, for every algorithm and every setting, the aver-
age cumulative regret RT , its standard deviation σRT , and β. In almost all
the settings, the best algorithm is AdComb-F-TS. Furthermore, AdComb-
F-TS outperforms the other algorithms in more than the 70% of the runs
in all settings. However, it is worth to note that in settings 1 − 5 − 6, for
t ≤ 25, AdComb-F-UCB outperforms the other algorithms in more than
11%, 73%, 7% of the cases, respectively. This provides evidence that only
in some specific scenarios AdComb-F-UCB provides a viable solution to
the ads optimization problem. Conversely, AdComb-U-TS and AdComb-
U-UCB achieve lower performance than AdComb-F-TS and AdComb-F-
UCB algorithms in all runs. For this reason, in the real-world setting, we
adopt the AdComb-F-TS algorithm.

Evaluation in a Real-world Setting

We adopted the AdComB-F-TS algorithm to advertise in Italy a set of cam-
paigns for a loan product of a large international company. The goal was
the maximization of the number of the leads. Due to reasons of industrial
secrecy, we cannot disclose the name of the product and the name of the
company. The campaigns started July 1st 2017 and were active up to De-
cember 31st 2019. In our discussion, we report the results corresponding
to the first 365 days of the experiment, grouped by weeks as the behavior
of the users can be slightly different during the days of a single week and
some campaigns were active only some specific days of the week. During
these 365 days, the set of campaigns changed over time, some being added,
others being discarded or changed, due to business needs such as, e.g., the
creation of new graphical logos, messages, or new user profiles to target.
In particular, the total number of campaigns used is 29, while, initially, the
campaigns were 8. The activation/deactivation of the campaigns in time
and their actual costs per week are depicted in Figure 5.7. After 365 days,
the previously active campaigns were completely discarded and a new set
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AdComb-F-TS AdComb-F-UCB AdComb-U-TS AdComb-U-UCB
RT σRT β RT σRT β RT σRT β RT σRT β

Setting 1 t = 25 73 13 89% 104Â 21 11% 287 24 0% 264 23 0%
t = 50 111 22 97% 169 24 3% 377 28 0% 345 30 0%
t = 100 170 37 99% 279 29 1% 485 35 0% 444 36 0%

Setting 2 t = 25 66 16 98% 125 15 2% 255 21 0% 263 21 0%
t = 50 93 21 98% 155 18 2% 327 26 0% 340 24 0%
t = 100 132 31 92% 194 22 8% 415 28 0% 424 30 0%

Setting 3 t = 25 75 15 100% 132 18 0% 319 31 0% 316 30 0%
t = 50 103 21 100% 182 20 0% 421 37 0% 397 32 0%
t = 100 145 32 100% 261 24 0% 533 42 0% 488 40 0%

Setting 4 t = 25 67 15 100% 130 29 0% 334 27 0% 306 26 0%
t = 50 103 19 100% 196 38 0% 414 31 0% 395 29 0%
t = 100 164 29 100% 297 55 0% 512 38 0% 499 35 0%

Setting 5 t = 25 112 18 27% 99 12 73% 345 30 0% 321 25 0%
t = 50 157 22 83% 180 13 17% 479 39 0% 457 30 0%
t = 100 222 24 100% 331 14 0% 648 62 0% 627 36 0%

Setting 6 t = 25 100 15 93% 99 9 7% 272 20 0% 287 24 0%
t = 50 140 19 100% 180 13 0% 370 32 0% 391 28 0%
t = 100 221 32 100% 331 20 0% 480 37 0% 507 34 0%

Setting 7 t = 25 100 15 98% 142 14 2% 336 24 0% 344 28 0%
t = 50 145 19 94% 184 13 6% 453 34 0% 456 33 0%
t = 100 220 30 83% 250 14 17% 595 43 0% 587 37 0%

Setting 8 t = 25 90 14 98% 144 22 2% 296 30 0% 278 24 0%
t = 50 128 17 99% 220 21 1% 386 30 0% 363 28 0%
t = 100 181 20 100% 303 27 0% 495 35 0% 466 34 0%

Setting 9 t = 25 89 17 90% 127 21 10% 334 23 0% 329 26 0%
t = 50 119 23 91% 162 24 9% 417 28 0% 421 34 0%
t = 100 165 33 88% 224 32 12% 510 36 0% 519 40 0%

Setting 10 t = 25 91 20 100% 197 10 7% 331 25 0% 302 29 0%
t = 50 138 23 100% 248 16 0% 424 31 0% 402 39 0%
t = 100 214 35 100% 333 22 0% 537 38 0% 518 44 0%

Table 5.3: Results for Experiment #3: performance of algorithms AdComb-F-TS,
AdComb-F-UCB, AdComb-U-TS, AdComb-U-UCB with 10 different random set-
tings at round t ∈ {25, 50, 100}.

52



5.4. Experimental Evaluation

of campaigns was used.
The campaigns were optimized by human specialists from week 0 to

week 5th and by our algorithm from week 6th on. In addition, the cumulative
daily budget was changed at weeks 6th and 29th due to business reasons of
the company, as follows:

• 200 Euros per day from week 0th to week 5th;

• 1, 100 Euros per day from week 6th to week 28th (the increase in the
daily budget was motivated to obtain more leads);

• 700 Euros per day from week 29th on (the decrease in the daily budget
was motivated to reduce the cost per lead).

The algorithm was implemented in Python 2.7.12 and executed on Ubuntu
16.04.1 LTS with an Intel(R) Xeon(R) CPU E5-2620 v3 2.40GHz. We
used a discretization of the bid and daily budget space such that |X| = 100
and |Y | = 500. Furthermore, the estimates are based on the data collected
in the last 20 weeks, thus using a sliding window of 140 days, to discard ob-
servations that were considered excessively old by human specialists. The
algorithm ran at midnight, collecting the observations of the day before,
updating the models, computing the next values bid/daily budget to use,
and, finally, setting these values on the corresponding platforms. The total
computing time of the algorithm per execution was shorter than 5 minutes.

The cost per lead and the actual costs per week are reported in Fig-
ures 5.8 and 5.9, respectively. The cost per lead dramatically reduced
thanks to the activation of algorithm at the 6th week, from an average of
about 120 Euros per lead to about 65 Euros per lead. Furthermore, the
algorithm spent about 4 weeks to reduce the cost per lead from about 65
Euros (at the 6th week) to about 50 Euros (at the 10th week). The algorithm
exhibited a rather explorative behavior until the 15th week due to the need
to collect samples, whereas, from the 16th week to the 26th week, the al-
gorithm presented a rather stable behavior. Notably, even if the algorithm
was rather explorative up to the 15th week, the performance in these weeks
was evaluated rather stable by the human specialists. The oscillations from
the 15th week to the 28th week were due to seasonability effects and the
campaigns of the competitors. More precisely, the human specialists con-
firmed that from the 12th week (beginning of September, corresponding to
the conclusion of the summer holidays in Italy) to the 18th week (middle of
October), the users are usually less interested to make loans. This behavior
leaded to an increase of the cost per lead. A similar effect was observed
from the 22th week to the 27th week (corresponding to the period from the
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Figure 5.7: Actual costs for the campaigns. A cost of 0 Euros means that the campaign is
not active.
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Figure 5.8: Cost per lead across weeks.

beginning of December to the middle of January). At the 29th week, the
reduction of the daily budget pushed the algorithms to explore better the
values of the functions to learn for smaller values of the daily budget. This
task required 4 weeks, in which the cost per lead reduced from about 65
Euros to about 35 Euros.

The actual cost per week, differently from the cost per lead, was subject
to prominent oscillations. These oscillations were due to seasonal effects
and the possibility of overspending on the platform (i.e., even if the plat-
forms allow the introduction of daily budget constraints, these constraints
can be violated by the platforms). The evaluation of the performance of our
algorithm was very positive for the company, as to motivate its adoption for
other sets of campaigns.
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Figure 5.9: Actual costs across weeks.
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CHAPTER6
Safe Online Bid Optimization with
Return-on-Investment Constraints

Bid optimization is one of the main tasks that advertisers have to face to
control campaigns performance. Usually, they have to set this value to bal-
ance the tradeoff between achieving high volumes, maximizing the sales
of the products to advertise, and high profitability, maximizing the Return-
On-Investment (ROI). However, this problem has been studied in different
scenarios and from different point of views. Here, we focus on a specific
scenario characterized by two peculiarities. Firstly, we consider a setting
in which the spend of a sub-campaign is not limited by the daily budget.
This is typical of some platforms (e.g., Google Hotels1 and other hotel ad-
vertising platforms) that do not allow to set a daily budget to limit the daily
spend of a sub-campaign. Secondly, we focus on the scenario in which the
advertiser has to satisfy some ROI constraints not only at the end but for
the whole advertising period. This is a common requirement that media-
agencies have to satisfy to meet the their customers’ goals.

In this chapter, we propose a novel formulation of the Internet campaign
optimization with ROI constraints, and present an online learning algorithm

1https://www.google.com/travel/hotels
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Constraints

for safe bidding optimization, called GCBsafethat satisfies the constraints
with high probability.

We initiate the investigation of combinatorial learning algorithms for
bidding in advertising scenarios with budget and ROI constraints when
Gaussian Processes (GPs) are used to model the problem’s parameters.
In particular, we show that the optimization problem with ROI and bud-
get constraints cannot be approximated within any strictly positive factor
unless P = NP when the values of all the parameters are known. How-
ever, when dealing with a bids’ discretized space as it happens in practice,
the problem admits a pseudo-polynomial time algorithm based on dynamic
programming, computing the optimal solution. Remarkably, we prove that
no online learning algorithm violates the ROI constraint less than a linear
number of times while guaranteeing sublinear pseudo-regret. We show that
we can obtain sublinear pseudo-regret adopting the GCB algorithm, a spe-
cific version of the combinatorial bandit algorithm proposed by [3]. How-
ever, it violates the ROI constraints during the learning process and at con-
vergence. Then, we propose GCBsafe, a novel algorithm that guarantees
the satisfaction of the ROI constraints with high probability, but provides
linear pseudo-regret. We experimentally evaluate the performances of the
GCB and GCBsafe algorithms, showing the tradeoff between pseudo-regret
and constraint-violation, and, finally, we analyze the GCBsafe sensitivity.

Problem Formulation

We are given an advertising campaign C = {C1, . . . , CN}, where Cj is the
j-th sub-campaign, and a finite time horizon of T ∈ N days.2 For each
day t ∈ {1, . . . , T} and for every sub-campaign Cj , the advertiser needs
to specify the bid xj,t ∈ Xj , where Xj ⊂ R+ is a finite set of bids we
can set in sub-campaign Cj . The goal is, for every day t ∈ {1, . . . , T},
to find the values of bids that maximizes the overall cumulative expected
revenue while keeping the overall ROI above a fixed value λ∗ ∈ R+ and
the overall budget below a daily value yt ∈ R+. This setting is modeled as

2 In this work, as common in the literature on ad allocation optimization, we refer to a sub-campaign as a
single ad or a group of homogeneous ads requiring to set the same bid.
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a constrained optimization problem at a day t, as follows:

max
xj,t∈Xj

N∑
j=1

vj nj(xj,t) (6.1a)

s.t.

∑N
j=1 vj nj(xj,t)∑N
j=1 cj(xj,t)

≥ λ∗ (6.1b)

N∑
j=1

cj(xj,t) ≤ y (6.1c)

where nj(xj,t) and coj(xj,t) are the expected number of clicks and the ex-
pected cost given the bid xj,t for sub-campaign Cj , respectively, and vj is
the value per click for sub-campaign Cj . Moreover, Constraint (6.1b) is
the ROI constraint, forcing the revenue to be at least λ∗ times the incurred
costs, and Constraint (6.1c) keeps the daily spend under a predefined over-
all budget yt.3

In our setting, the available options consist in the different values of the
bid xj,t ∈ Xj satisfying the combinatorial constraints of the optimization
problem, while nj(·) and cj(·) are unknown functions, defined on the feasi-
ble region of the variables, that we need to estimate within the time horizon
T .4 A learning policy U solving such a problem is an algorithm returning,
for each day t, a set of bid {x̂j,t}Nj=1. The policy U can only use estimates of
the unknown number-of-click and cost functions built during the learning
process. Therefore, the returned solutions may not be optimal and/or vio-
late Constraints (6.1b) and (6.1c) computed on the true functions.5 We are
interested in evaluating learning policies U in terms of both loss of revenue
(a.k.a. pseudo-regret) and violation of those constraints. The pseudo-regret
and safety of a learning policy U are defined as follows: [Learning policy
pseudo-regret] Given a learning policy U, we define the pseudo-regret as:

RT (U) := T G∗ − E

[
T∑
t=1

N∑
j=1

vj nj(x̂j,t)

]
,

where G∗ :=
∑N

j=1 vj nj(x
∗
j) is the expected value provided by a clairvoy-

ant algorithm, the set of bid
{
x∗j
}N
j=1

is the optimal clairvoyant solution to

3 In economic literature, it is also used an alternative definition of ROI:
∑N
j=1[vj nj(xj,t)−coj(xj,t)]∑N

j=1 coj(xj,t)
. To

capture this case, it is sufficient to substitute the right hand of Constraint (6.1b) with λ∗ + 1.
4 Here, we assume the value per click vj is known. In the case one needs its estimates, refer to [41] for details.
5 Some platforms allow the advertisers to set a daily budget constraint. If this feature is allowed, Con-

straint (6.1c) is always satisfied, and no safety requirement for that constraint is necessary.
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Algorithm 2 Meta-algorithm

1: Input: sets Xj of bid values, ROI threshold λ∗

2: Initialize the GPs for the number of clicks and costs
3: for t ∈ {1, . . . , T} do
4: for j ∈ {1, . . . , N} do
5: for x ∈ Xj do
6: Compute n̂j,t(x) and σ̂nj,t(x) using the GP on the number of clicks
7: Compute ĉj,t(x) and σ̂cj,t(x) using the GP on costs

8: Compute µ using the GPs estimates
9: Run the Opt(µ, λ∗) procedure to get a solution {x̂j,t}Nj=1

10: Set the prescribed allocation during day t
11: Get revenue
12: Update the GPs using the new information ñj,t(x̂j,t) and c̃j,t(x̂j,t)

the problem in Equations (6.1a)–(6.1c), and the expectation E[·] is taken
w.r.t. the stochasticity of the learning policy U.

[η-safe learning policy] Given η ∈ (0, 1), a learning policy U is η-safe
if {x̂j,t}Nj=1, i.e., the allocations it selects during the days t ∈ {1, . . . , T},
violate the Constraints (6.1b) and (6.1c) with probability less than η or,
formally:

T∑
t=1

P

(∑N
j=1 vj nj(x̂j,t)∑N
j=1 coj(x̂j,t)

< λ∗ ∨
N∑
j=1

cj(x̂j,t) > yt

)
≤ η.

Hence, our goal is the design of algorithms minimizing the pseudo-
regret RT (U) while selecting each day t bids {x̂j,t}Nj=1 which are feasible
solution to the problem in Equations (6.1a)–(6.1c).

Proposed Method: the GCBsafe Algorithm

Meta-algorithm

We provide the pseudo-code of our meta-algorithm in Algorithm 2. It
solves the optimization problem stated in the previous section in an online
fashion. Algorithm 2 is based on three components: Gaussian Processes
(GPs) [48] to model the parameters whose values are unknown, an esti-
mation subroutine to generate estimates of the parameters from the GPs,
and an optimization subroutine to solve the optimization problem given the
estimates.

In particular, GPs are used to model the functions nj(·) and cj(·) describ-
ing the number of clicks and the costs, respectively. The application of GPs
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to model these functions provide several advantages w.r.t. other regression
techniques. More precisely, GPs provide an estimate on the entire bid do-
mainXj relying on a finite set of samples. For every bid value x ∈ Xj , they
return a probability distribution over the functions’ possible values, which
is an uncertainty measure of the estimates. GPs use the noisy realization
of the number of clicks ñj,h(x̂j,h) collected from each sub-campaign Cj for
each past day h ∈ {1, . . . , t−1} to generate n̂j,t−1(x) and σ̂nj,t−1(x), i.e., the
estimates for the expected value and the standard deviation of the number of
clicks, respectively, for each bid x ∈ Xj . The same holds for the GPs used
to model the cost functions cj(·), that provides, ĉj,t−1(x) and σ̂cj,t−1(x), i.e.,
the estimates for the expected value and the standard deviation of the costs
for sub-campaign Cj , respectively, using the noisy realizations of the cost
function c̃j,h(x̂j,h), with h ∈ {1, . . . , t − 1}. Details on the initialization
and adoption of the GPs are provided by Rasmussen and Williams [48].
The estimation subroutine returns the vector µ composed of the estimates
generated from the GPs. In the following sections, we provide two subrou-
tines to compute µ, and we analyze their impact in terms of pseudo-regret
and safety. Then, the vector µ is given in input to the optimization subrou-
tine, called Opt(µ, λ∗), that solves the problems stated in Equations (6.1a)–
(6.1c) and returns the bid strategy {x̂j,t}Nj=1 to play the next day t. Finally,
once the strategy has been applied, the stochastic realization of the number
of clicks ñj,t(x̂j,t) and costs c̃j,t(x̂j,t) are observed and provided to the GPs
to update the models used for the next day t+ 1.

For the sake of presentation, we first present the Opt(µ, λ∗) subroutine
and, then, we describe some estimation subroutines.

Optimization Subroutine

At first, we show that, even if all the values of the parameters of the opti-
mization problem are known, the optimal solution cannot be approximated
in polynomial time within any strictly positive factor, unless P = NP. We
reduce from the NP-hard problem SUBSET-SUM. Given a set S of integers
ui ∈ N and an integer z ∈ N+, SUBSET-SUM requires to decide whether
there is a set S∗ ⊆ S with

∑
i∈S∗ ui = z.

Theorem 5 (Inapproximability of the optimization problem). For any ρ ∈
(0, 1], there is no polynomial-time algorithm returning a ρ-approximation
to the problem in Equations (6.1a)–(6.1c), unless P = NP.

It is well known that SUBSET-SUM is a weakly NP-hard problem and,
therefore, there is an algorithm whose running time is polynomial in the di-
mension of the problem and the magnitudes of the data involved rather than
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Algorithm 3 Opt(µ, λ∗) subroutine

1: Input: sets Xj of bid values, set Y of cumulative cost values, set R of revenue values,
vector µ, ROI threshold λ∗

2: Initialize M empty matrix with dimension |Y | × |R|
3: Initialize xy,r = xy,rnext = [ ], ∀y ∈ Y, r ∈ R
4: A(y, r) =

⋃ {x ∈ X1| c1(x) ≤ y ∧ w1(x) ≥ r} ∀y ∈ Y, r ∈ R
5: xy,r = arg maxx∈S w1(x) ∀y ∈ Y, r ∈ R
6: M(y, r) = maxx∈S w1(x) ∀y ∈ Y, r ∈ R
7: for j ∈ {2, . . . N} do
8: for y ∈ Y do
9: for r ∈ R do

10: Update A(y, r) according to Equation (6.2)
11: xy,rnext = arg maxs∈S(y,r)

∑j
i=1 wi(si)

12: M(y, r) = maxs∈S(y,r)
∑j
i=1 wi(si)

13: xy,r = xy,λnext

14: Select (y∗, r∗) according to Equation (6.3)
15: Output: xy

∗,r∗

the base-two logarithms of their magnitudes. The same can be showed for
our problem. Indeed, we can design a pseudo-polynomial-time algorithm
to find the optimal solution in polynomial time w.r.t. the number of possible
values of revenues and costs. In real-world settings, the values of revenue
and cost are in limited ranges and rounded to the nearest cent, allowing the
problem to be solved in a reasonable time. From now on, we assume that
the discretization of the ranges of the values of the daily cost Y and revenue
R is evenly spaced.

The pseudo-code of the Opt(µ, λ∗) subroutine solving the problem in
Equations (6.1a)–(6.1c) with a dynamic programming approach, is pro-
vided in Algorithm 3. It takes as input the set of the possible bid values
Xj for each sub-campaign Cj , the set of the possible cumulative cost val-
ues Y , the set of the possible revenue values R, a ROI threshold λ∗, and a
vector of parameters characterizing the specific instance of the optimization
problem:

µ :=
[
w1(x1), . . . , wN(x|XN |), w1(x1), . . . ,

wN(x|XN |),−c1(x1), . . . ,−cN(x|XN |)
]
,

where wj(xj) := vj nj(xj) denotes the revenue for a sub-campaign Cj . We
use h and h to denote potentially different estimated values of a generic
function h used by the learning algorithms in the next sections. In partic-
ular, if the functions are known beforehand, then it holds h = h = h for
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both h = wj and h = cj . For the sake of clarity, wj(x) is used in the eval-
uation of the revenue of a solution, while wj(x) and cj(x) are used in the
constraints. Notice that we do not need to check the budget constraint as
long as the condition max(Y ) = yt does not allow solutions with unfeasi-
ble cumulated costs. At first, the subroutine initializes a matrix M in which
it stores the optimal solution for each combination of values in y ∈ Y and
in r ∈ R, and initializes the vectors xy,r = xy,rnext = [ ], ∀y ∈ Y, r ∈ R
(Lines 2–3). Then, the subroutine generates the set A(y, r) of bids for sub-
campaign C1 (Line 4). More precisely, the set A(y, r) contains only the
bids x that induce the overall costs to be lower than y and the overall rev-
enue to be higher than r. The bid in A(y, r) that maximizes the revenue
calculated with parameters wj is included in the vector xy,r, while the cor-
responding revenue is stored in the matrix M . Then, the subroutine iterates
over sub-campaigns Cj with j ∈ {2, . . . , N}, over all the values y ∈ Y ,
and over all the values r ∈ R (Lines 10–12). At each iteration, the sub-
routine, for every pair (y, r), stores in xy,r the optimal set of bids for sub-
campaigns C1, . . . , Cj that maximizes the objective function and stores the
corresponding optimum value in M(y, r). At every j-th iteration, the com-
putation of the optimal bids is performed by evaluating a set of candidate
solutions A(y, r) computed as follows:

S(y, r) :=
⋃{

s = [xy′,r′ , x] s.t. y′ + cj(x) ≤ y ∧

r′ + wj(x) ≥ r ∧ x ∈ Xj ∧ y′ ∈ Y ∧ r′ ∈ R
}
. (6.2)

This set is built by combining the optimal bids xy′,r′ computed at the (j−1)-
th iteration with one of the bids x ∈ Xj available for the j-th sub-campaign,
s.t. these combinations satisfy the ROI and budget constraints. Then, the
subroutine assigns the element of A(y, r) that maximizes the revenue to
xy,rnext and the corresponding revenue to M(y, r). At the end, the subroutine
computes the optimal pair (y∗, r∗) as follows:

(y∗, r∗) =
{
y ∈ Y, r ∈ R s.t.

r

y
≥ λ∗ ∧

M(y, r) ≥M(y′, r′) ∀y′ ∈ Y, ∀r′ ∈ R
}
, (6.3)

as well as the corresponding set of bids xy∗,r∗ , containing one bid for each
sub-campaign. We can state the following:

Theorem 6 (Optimality). Subroutine Opt(µ, λ∗) using wj(x) = wj(x) =
vj nj(x) and cj(x) = cj(x) for each j ∈ {1, . . . , N} returns the optimal
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solution to the problem in Equations (6.1a)–(6.1c) when the values of rev-
enues and costs are in R and Y , respectively.

The above algorithm is exact. Thus, according to [14], it corresponds to
an (α, β)-approximation oracle with α = β = 1.

Estimation Subroutine

In this section, we first provide an impossibility result and, subsequently,
two estimation subroutines.

Impossibility Result We show that no online learning algorithm can provide
a sublinear pseudo-regret while guaranteeing to be safe with high probabil-
ity. For simplicity, our result is based on the violation of the budget con-
straint (i.e., Constraint (6.1c)), but it can be extended to the ROI constraint
(i.e., Constraint (6.1b)).

Theorem 7 (Pseudo-regret/safety tradeoff). For every ε > 0 and time hori-
zon T , there is no algorithm with pseudo-regret smaller than T (1/2 − ε)
that violates the constraint on the budget less than T (1/2 − ε) times in
expectation.

In the following, we provide two estimation subroutine, the former pro-
viding sublinear pseudo-regret, the latter guaranteeing safety with high
probability.

Guaranteeing Sublinear Pseudo-regret: GCB [3] provide a combinatorial ban-
dit algorithm in which the reward is modeled by a single GP. The extension
of the GCB algorithm to the case in which multiple parameters of the op-
timization problem are modeled by independent GPs is direct. To guaran-
tee a sublinear pseudo-regret, we need that a few assumptions are satisfied.
More specifically, we need Lipschitz continuity assumption between the pa-
rameter vector µ and the value returned by the objective function in Equa-
tion (6.1a), and a monotonicity property, stating that the value of the objec-
tive function increases as the values of the elements in µ increase. While
it is easy to show that Lipschitz continuity holds with constant Λ = N
(number of sub-campaigns), the monotonicity property holds by definition
of µ, as the increase of one value of wj(x) would increase the value of the
objective function, and the increase of the values of wj(x) or cj(x) would
enlarge the feasibility region of the problem, thus not excluding optimal
solutions.
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Furthermore, we need that, given δ ∈ (0, 1), wj(x) and wj(x) are statis-
tical upper bounds for the actual values nj(x) and that cj(x) are statistical
lower bounds for the actual values cj(x) holding for all x ∈ Xj and for all
j ∈ {1, . . . , N} with probability at least 1− δ for t ∈ {1, . . . , T}. This last
requirement is satisfied if we define:

wj(x)=wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
, (6.4)

cj(x) := ĉj,t−1(x)−
√
bt−1σ̂

c
j,t−1(x), (6.5)

where bt := 2 ln
(

12NTt2

δπ2

)
is an uncertainty term used to guarantee the con-

fidence level required by GCB.6 The pseudo-code of the GCB algorithm
is the one in Algorithm 2 when using the above wj(x), wj(x), and cj(x)
for the vector of parameters µ. It guarantees sublinear pseudo-regret as
follows:

Theorem 8 (GCB pesudo-regret). Given δ ∈ (0, 1), the GCB algorithm
applied to the problem in Equations (6.1a)–(6.1c), with probability at least
1− δ, suffers from a pseudo-regret of:

RT (GCB ) ≤

√√√√ 16TN3bt
ln(1 + σ2)

N∑
j=1

γj,T ,

where σ ∈ R+ and γj,T ∈ R+ are the noise standard deviation and the max-
imum information gain of a generic set of T samples for the GP modeling
the number of clicks of sub-campaign Cj , respectively.

On the other hand, the GCB algorithm is not safe.

Theorem 9 (GCB safety). Given δ ∈ (0, 1), the probability that for at
least a t ∈ {1, . . . , T} the allocation returned by the GCB algorithm ap-
plied to the problem in Equations (6.1a)–(6.1c) violates at least one of the
constraints is at least 1− δ

2NT
.

Guaranteeing Safety: GCBsafe We propose GCBsafe, a variant of the GCB
algorithm relying on different bounds in µ. More specifically, we employ
optimistic estimates for the parameters used in the objective function and

6 For the sake of simplicity, we assume that the values of the bounds correspond to values in R and Y ,
respectively. If the bound values for wj(x) are not in the set R, we need to round them up to the nearest value
belonging to R. Instead, if cj(x) are not in the set Y , a rounding down should be performed to the nearest value
in Y .
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pessimistic estimates for the parameters used in the constraints. Formally,
in GCBsafe, the estimates are chosen as follows:

wj(x) := vj

[
n̂j,t−1(x) +

√
bt−1σ̂

n
j,t−1(x)

]
,

wj(x) := vj

[
n̂j,t−1(x)−

√
bt−1σ̂

n
j,t−1(x)

]
,

cj(x) := ĉj,t−1(x) +
√
bt−1σ̂

c
j,t−1(x).

Furthermore, GCBsafe needs a default set of bids
{
xd
j,t

}N
j=1

, that is known
a priori to be feasible for the problem in Equations (6.1a)–(6.1c) with the
actual values of the parameters.7 The pseudo-code of GCBsafe is provided
in Algorithm 2 with the above definition of the parameters of vector µ,
except that it returns {x̂j,t}Nj=1 =

{
xd
j,t

}N
j=1

if the optimization problem
does not admit any feasible solution with the current estimates.

It is easy to check that the probability with which the bounds wj(x) and
cj(x) are larger than their true values is smaller than δπ2

6NTt2
in both cases.

This result does not allow the adoption of Theorem 1 by [3] to bound the
pseudo-regret. However, this choice of the estimates allows us to show the
following:

Theorem 10 (GCBsafe safety). Given δ ∈ (0, 1), the GCBsafe algorithm
applied to the problem in Equations (6.1a)–(6.1c) is δ-safe.

The safety property comes at the cost that the GCBsafe algorithm may
suffer from a much larger pseudo-regret than GCB. More specifically, we
show the following:

Theorem 11 (GCBsafe pseudo-regret). Given δ ∈ (0, 1), the GCBsafe al-
gorithm applied to the problem in Equations (6.1a)–(6.1c) problem suffers
from a pseudo-regret Rt(GCBsafe) = O(T ).

Experimental Evaluation

We compare the GCB algorithm with GCBsafe in a synthetic setting in
terms of revenue and safety.

Experiment #1 We simulate N = 5 sub-campaigns, with |X| = 201 bid
values evenly spaced in [0, 2], |Y | = 101 cost values evenly spaced in
[0, 100], and |R| = 151 revenue values evenly spaced in [0, 1200]. For

7 A trivial default feasible bid allocation is
{
xd
j,t = 0

}N
j=1

.
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a generic sub-campaign Cj , we generate the number of clicks using the
function ñj(x) := βj(1−e−x/δj)+ξrj and the cost c̃j(x) = αj(1−e−x/γj)+
ξcj , where αj ∈ R+ and βj ∈ R+ represent the maximum achievable cost
and revenue for sub-campaign Cj in a single day, δj ∈ R+ and γj ∈ R+

characterize how fast the two functions reach a saturation point, and ξrj and
ξcj are noise terms drawn from aN (0, 1) Gaussian distribution.8 We assume
a unitary value for the clicks, i.e., vj = 1 for each j ∈ {1, . . . , N}. The
values of the parameters of cost and revenue functions of the sub-campaigns
are specified in Table B.1 reported in the Supplementary Material. We set a
constant daily budget yt = 100 for every t, and λ∗ = 10 in ROI constraint,
and a time horizon T = 60. The peculiarity of this setting is that, at the
optimal solution, the budget constraint is active, while the ROI constraint
is not (see Experiment #3 for a setting where the ROI constraint is active at
the optimal solution).

For both GCB and GCBsafe, we use GPs with a squared exponential
kernel of the form k(x, x′) := σ2

f exp
{
− (x−x′)2

l

}
for each x ∈ Xj , where

the parameters σf ∈ R+ and l ∈ R+ are estimated from observed data as
indicated by the GP literature, see [48] for details. The confidence for the
two algorithms is set to δ = 0.2.

We evaluate the algorithms in terms of:

• daily revenue: Pt(U) :=
∑N

j=1 vjnj(x̂j,t, ŷj,t);

• daily ROI: ROIt(U) :=
∑N
j=1 vj nj(x̂j,t)∑N
j=1 coj(x̂j,t)

;

• daily spend: St(U) :=
∑N

j=1 cj(x̂j,t).

We show the results obtained over 100 independent runs of the two algo-
rithms.

In Figure B.7, for the daily revenue, ROI, and spend achieved by GCB
and GCBsafe at every t, we show the 50th percentile (i.e., the median) with
solid lines and the 90th and 10th percentiles with dashed lines surrounding
the semi-transparent area. While GCB achieves larger values of revenue,
it violates the budget constraint over the entire time horizon and the ROI
constraint in the first 7 days in more than 50% of the experiments. This
happens because, in the optimal solution, the ROI constraint is not active,
while the budget constraint is. Conversely, GCBsafe satisfies the budget and
ROI constraints over the time horizon for more than 90% of the executions,
and has a slower convergence to the optimum revenue. If we focus on

8 These functions are customarily used in the advertising literature, e.g., by [31].
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the median revenue, GCBsafe has similar behaviour to the GCB algorithm
for t > 15. This makes GCBsafe a good choice even in terms of overall
revenue.

However, it is worth to notice that, in the 10% of the executions, GCBsafe

does not converge to the optimum before the end of the learning period.
These results confirm the theoretical analysis showing that limiting the ex-
ploration to safe regions can lead the algorithm to get stuck in local optima.

Experiment #2 In real-world scenarios, the business goals in terms of vol-
umes/profitability tradeoff are often blurred, and sometimes can be desir-
able to slightly violate the constraints (usually, the ROI constraint) in fa-
vor of a significant volumes increase. However, analyzing and acquiring
information about these tradeoff curves requires exploring volumes oppor-
tunities by relaxing the constraints. In this experiment, we show how our
approach can be adjusted to address this problem in practice. We use the
same setting of Experiment #1, except for the input we pass to the GCBsafe

algorithm. More precisely, we relax the ROI constraint by multiplying λ∗

by a value εx ∈ {1.00, 0.95, 0.90, 0.85}, and we run 4 instances of GCBsafe

each associated to a different εx value. As a result, except for the first in-
stance, we allow GCBsafe to violate the ROI constraint, but, with high
probability, the violation is bounded by at most 5%, 10%, 15% of λ∗, re-
spectively. Instead, we do not introduce any tolerance for the daily budget
constraint yt, as it happens in practice.

In Figure 6.2, we show the median values, on 100 independent runs,
of the performance in terms of daily revenue, ROI, and spend of GCBsafe

for every value of εx.9 The results show that, in practice, allowing a small
tolerance in the ROI constraint violation, we can improve the exploration
and, therefore, lead to faster convergence. We note that if we set a value of
εx ≤ 0.95, we achieve significantly better performance in the first learning
steps (t < 20) still maintaining a robust behavior in terms of constraints vi-
olation. Most importantly, a small tolerance leads only to a violation of the
ROI constraint in the early learning stages, but the behavior at convergence
is the same obtained without any tolerance.

Experiment #3 We study a setting in which the ROI constraint is active
at the optimal solution, i.e., λ∗ = λopt and the budget constraint is not.
This means that at the optimal solution, the advertiser would have an extra
budget to spend, but she does not, otherwise, the ROI constraint would be

9 Quantiles for these quantities have been omitted for visualization purposes. For the sake of completeness,
they are provided in the Supplementary Material.
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violated. The experimental setting is the same used in Experiments #1 and
#2, except that we set a ROI constraint λ∗ = 10 and a budget constraint
y(t) = 300. The optimal daily spend is yopt = 161. In Figure 6.3, we show
the median values of the daily revenue, ROI, and spend of GCB, GCBsafe,
GCBsafe(εx = 0.95). We notice that also in this setting, GCB violates
the ROI constraint for the entire time horizon, and the budget constraint in
t = 6 and t = 7, however, it achieves revenue values larger than the opti-
mum. Conversely, GCBsafe always satisfies both the constraints, but it does
not perform a sufficient exploration to converge quickly to the optimal solu-
tion. However, as also suggested by the results obtained in Experiment #2,
it is sufficient to allow a tolerance in the ROI constraint violation by slightly
perturbing the input value λ∗ (εx = 0.95, corresponding to a violation of
the constraint by at most 5%) to make GCBsafe capable of approaching the
optimal solution while satisfying both constraints for every t ∈ {0, . . . , T}.
This suggests that, in real-world applications, GCBsafe with a given toler-
ance may represent the best solution, providing guarantees on the violation
of the constraints while returning empirically high values of revenue.
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Figure 6.1: Results of Experiment #1: daily revenue (a), ROI (b), and spend (c) obtained
by GCB and GCBsafe. Dash-dotted lines correspond to the optimum values for the
revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.
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Figure 6.2: Results of Experiment #2: Median values of the daily revenue (a), ROI (b)
and spend (c) obtained by GCBsafe with different values of εx.
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Figure 6.3: Results of Experiment #3: Median values of the daily revenue (a), ROI (b)
and spend (c) obtained by GCB, GCBsafe, and GCBsafe(εx = 0.95).
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CHAPTER7
Off-line Targeting Optimization

A key to success of Internet advertising is the possibility of targeting very
the ads to the users very accurately, thanks to a huge amount of data on
the users’ behavior available to the advertisement platforms [47]. However,
such amount of data makes the problem of finding the best targeting un-
feasible for humans, thus needing automatic methods. To this purpose, in
this chapter, we develop an automatic method to find the best user targets
that a media agency can adopt to boost the performance of an advertising
campaign. While the creation of the ads is usually left to marketing experts,
we focus on the joint task of selecting a suitable target for an advertising
campaign and, at the same time, optimizing the bid/budget pairs of each
sub-campaign. Such a problem is addressed in literature as Learning from
Logged Bandit Feedback (LLBF). Nonetheless, our problem presents two
peculiarities: first, the data about users, which are available to the media
agencies, are aggregated (i.e., the behavior of a single user cannot be per-
fectly tracked); second, the problem of jointly optimizing bid and budget in
a campaign is combinatorial. In the present work, we formulate the problem
of target optimization as an LLBF problem, and we propose the TargOpt
algorithm, which uses a tree expansion of the target space to learn the par-
tition providing the maximum number of conversions efficiently. In doing
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Chapter 7. Off-line Targeting Optimization

so, we use a risk-averse approach. Furthermore, since the problem of find-
ing the optimal target is intrinsically exponential in the number of the fea-
tures, any algorithm may require exponential time. To cope with this issue,
we propose a tree-search method, called A-TargOpt and two heuristics to
drive the tree expansion, aiming at providing an anytime solution. Finally,
we provide empirical evidence, on both synthetically generated and real-
world data, that our algorithms provide an effective solution to find optimal
targets for Internet advertising.

Problem Formulation

An Internet advertising campaign C := {C1, . . . , CN} is described by a set
of N sub-campaigns Cj , each of which is identified by a tuple of K fea-
tures Cj := (z1j, . . . , zKj), e.g., specifying the gender, age or the interests
of the users we target by the sub-campaign Cj . Each feature zij ⊆ Zi is
a nonempty set of values characterising the sub-campaign, where Zi is the
set of the feasible values for the i-th feature. For instance, if the i-th feature
corresponds to the gender, with values M for male and F for female, we
have Zi = {M,F} as the set of feasible values, and, thus, the correspond-
ing feature can be zij = {M} if the sub-campaign Cj targets only male
users, zij = {F} if it targets only the female ones, and zij = {M,F} if it
targets both. We assume that the sub-campaigns are targeting different sets
of users. This implies that, for each pair of sub-campaigns in C, these are
disjoint, formally:

Definition 1. Two sub-campaigns Cj and Ck are disjoint (Cj ∩ Ck = ∅) if
it exists an index i ∈ {1, . . . , K} s.t. zij ∩ zik = ∅.

To optimally set the target of the advertising campaign C, we are pro-
vided with a set of logged bandit feedbacks generated by the application
of an unknown decision policy U over a time horizon of length T . At a
generic round t ∈ {1, . . . , T}, the policy U selects a bid/budget pair for
each sub-campaign Cj ∈ C.1 Consider the following definitions:

Definition 2. A sub-campaign Cj is called atomic if |zij| = 1 for each
i ∈ {1, . . . K}, i.e., in which each feature has a single element.

1We do not make any assumption on the policy U, except that it should provide feedback about all the possible
bid/budget pairs and all the sub-campaigns Cj ∈ C we want to analyse for target optimization. For instance,
a policy U which never allocates budget on a specific sub-campaign Cĵ over the whole time horizon does not
allow the optimization of the target for Cĵ .
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Definition 3. Given two sub-campaigns Cj and Ck we say that Cj is in-
cluded in or equal to Ck (Cj ⊆ Ck) if:

zij ⊆ zik ∀i ∈ {1, . . . , K}.

We assume to have, at each round t during which the policy U0 runs, the
following information on every atomic sub-campaign Cj such that there is
Cj ∈ C with Cj ⊆ Cj:

• x̃t(Cj) is the bid which has been selected;

• c̃t(Cj) is the amount of budget spent;

• ñt(Cj) is the number of clicks obtained;

• ṽt(Cj) is a cumulative revenue obtained by the conversions.

Finally, there exists a function n(Cj, x, y) returning the average number
of clicks for a generic sub-campaign Cj obtained when setting bid x and
budget y and a parameter v(Cj) denoting the average value per click of
sub-campaign Cj .

The problem of jointly optimizing the values of the bid and daily budget
for each sub-campaign of a given advertising campaign C has already been
addressed in Chapter 5, where we cast such a problem as a MCK prob-
lem [29]. More formally, the problem aims at finding a bid/budget pair
(x(Cj), y(Cj)) for each sub-campaign Cj such that:

J∗(C) = max
{(x(Cj),y(Cj))}Ni=1

J(C)

s.t.
N∑
i=1

y(Cj) ≤ B

x(Cj) ≤ x(Cj) ≤ x(Cj) ∀i ∈ {1, . . . N}
y(Cj) ≤ y(Cj) ≤ y(Cj) ∀i ∈ {1, . . . N}

where

J(C) :=
N∑
i=1

v(Cj)n(Cj, x(Cj), y(Cj))

is the revenue generated by the advertising campaign in a single day, B
is the cumulative daily budget spent for all the sub-campaigns in a day,
x(Cj) and x(Cj) are the minimum and maximum bid values available for
the sub-campaign Cj , y(Cj) and y(Cj) are the minimum and maximum
daily budget values that can be allocated to the sub-campaign Cj .
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The optimization problem described above cannot control the structure
of the campaign C. This means that campaign C keeps to be unchanged
during the whole time horizon. Conversely, in the present work, we face the
problem of changing the configuration of the sub-campaigns to maximize
the expected objective function J∗(C). The space Ω in which we search for
the optimal configuration of sub-campaigns is:

Ω ={C = {C1, . . . , CN} s.t. ∀i, j, i 6= j Cj ∩ Cj = ∅},
i.e., the space of all the advertising campaigns whose sub-campaigns are
disjoint. The optimization problem we study is:

C∗ := arg max
C∈Ω

J∗(C).

To fulfill this goal we will make use of the information over the time horizon
T provided by the policy U0.

Proposed Method: The TargOpt Algorithm

In this section, we describe an algorithm that, given a set of bids and bud-
gets and a cumulative budget B, finds an advertising campaign C∗ which
maximizes the expected revenue. This will be done by an exploration of
the space Ω over a specifically designed tree and the use of a novel algo-
rithm, called Target Optimization (TargOpt) able to work on it. In the
case the space of all the possible feasible solutions is extremely large (due
to a high number of features), a complete exploration of the space Ω is gen-
erally unfeasible. Therefore, we also provide a tree search algorithm, called
Any-time Target Optimization (A-TargOpt), and effective heuristics able
to efficiently visit the space Ω.

Number of Click Function Approximation

At first, we discretize of the bid/budget space. For the sake of concision
and without loss of generality, we adopt the same discretization grid over
the bid/budget space for all the atomic sub-campaigns C. Specifically, we
have x(s) = x > 0, x(s) = x, y(s) = y > 0 and y(s) = B, and we use a
uniform grid over the bid/budget space X ×B as follows:

X =

{
x+

h

Nx

(x− x)

}Nx
h=0

,

B =

{
y +

h

Ny

(y − y)

}Ny
h=0

,
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7.2. Proposed Method: The TargOpt Algorithm

where Nx ∈ N+ and Ny ∈ N+ determine the granularity of the discretiza-
tion for the bid and budget, respectively. Furthermore, we use lower bounds
on the number of clicks in place of the empirical average value. Indeed, the
maximization of the empirical average is not a suitable criterion to design a
policy [49], since it might be arbitrarily far from the actual expected value.
Instead, lower bounds take into account the uncertainty that affects the ac-
tual value, providing a risk-averse policies that minimize the probability of
realizing a very low revenue or even a loss.

We compute the lower bounds n(Cj, x, y) and v(Cj) for the number of
clicks n(Cj, x, y) and the click values vi(Cj), respectively, with a given
confidence δ, for each bid/budget pair in X × B as follows. Let us focus
on the number of clicks. Given a sub-campaign Cj , we compute a func-
tion n(Cj, x, y, δ) that, for each element (x, y) ∈ X × B, returns a lower
bound holding with probability δ on the number of clicks n(Cj, x, y). This
task is solved by the algorithm proposed in [41], where the estimation of
the number of clicks is performed by means of Gaussian Processes [48].
More specifically, the number of clicks n(Cj, x, y) corresponding to a spe-
cific bid/budget pair (x, y) ∈ X × B is modeled as a Gaussian distribu-
tion, whose parameters, mean µ(Cj, x, y) and variance σ2(Cj, x, y), are es-
timated relying on historical observations (x̃t(Cj), c̃t(Cj), ñt(Cj))

T
t=1.2 The

lower bound on the number of clicks is computed as:

n(Cj, x, y) := µ̂(Cj, x, y)− zδσ̂(Cj, x, y),

where µ̂(Cj, x, y) is the estimates for the mean, σ̂(Cj, x, y) is the estimates
of the standard deviation and zδ the quantile of order δ of the standard
Gaussian distribution. The same methodology can be applied to estimate
a lower bound v(Cj) on the value v(Cj) of sub-campaign Cj resorting to
the sequence of samples (vt(ci))

T
t=1. See [41] for details. We underline that

the procedure to obtain lower bounds we describe above can be substituted
by any other suitable procedure. For instance, one can adopt a procedure
using only historical data on a specific bid/budget pair (x, y) to estimate the
lower bound n(Cj, x, y) employing, e.g., the Hoeffding bound [59].

Moreover, we remove the dependency of our optimization problem on
the bid x by finding the best bid for every campaign Cj and every value of
the daily budget y. We denote by n(Cj, y) the lower bound on the number
of clicks of campaignCj when the daily budget is y and the best bid is used,
formally:

n(Cj, y) := max
x∈X

n(Cj, x, y).

2In this section, we summarize the procedure to estimate the number of clicks, and we refer to [41] for
technical details.
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In the next section, we denote the function returning the (lower bounds of
the) revenue generated by a sub-campaign Cj with:

P (Cj, y) := v(Cj)n(Cj, y). (7.1)

Tree Construction and Optimization

Let us define two operators working with campaigns and sub-campaigns
used in what follows.

Definition 4. Given a campaign Ci ∈ M and a sub-campaign Cj we say
that Ci is included in Cj (Ci ⊆ Cj) if:

∀Ck ∈ Ci Ck ⊆ Cj.

Definition 5. Given a sub-campaignCj and a feature index f ∈ {1, . . . , K},
the partition operator D := d(Cj, f) returns the set D of all the possi-
ble campaigns that can be generated by partitioning the sub-campaign Cj
w.r.t. the feature xfj . Formally, D := {C1, . . . , Cpart(xfj)} s.t. each Ci ⊆ Cj
and ∀Ck ∈ Ci xhi = xhj,∀h 6= f , where part(xfj) is the number of parti-
tions of the set xfj .

For instance, given a sub-campaign Cj = {{M,F}, {Y,A}}—where
the features are gender (M for male, F for female) and age (Y for young,
A for adult)—and index f = 1, the partition operator d(Cj, f) returns
D = {{C1, C2}, {C3}}, where C1 = ({M}, {Y,A}), C2 = ({F}, {Y,A}),
and C3 = ({M,F}, {Y,A}). This means that D is composed of two cam-
paigns, the first composed, in its turn, of two sub-campaigns, the second
composed of a single sub-campaign.

We use the tree T := (E ,O), composed of two different sets of nodes:
an even level nodes set E := {Ei}, in which each node Ei corresponds
to a different campaign, and an odd level nodes set O := {Oj}, in which
each node Oj corresponds to a sub-campaign which is a child to some even
node Ei. Each level of the tree corresponds to a single feature. The even
levels nodes Ei := (Ci, Childi, fi,Ji, Argi) and odd levels nodes Oj :=
(Cj, Childj, fj,Jj, Argj) are defined as tuples in which:

• Ci is a campaign;

• Cj is a sub-campaign;

• Childi and Childj are the sets of the children nodes;

• fi, fj ∈ {0, . . . , K} are feature indexes indicating the level of the node
and, at the same time, which feature has been selected;
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Figure 7.1: An example of a tree representing a completely expanded advertising cam-
paign, in which the original campaign C had two subcampaigns C1 = ({M}, {Y,A})
andC2 = ({F}, {Y,A}), where the subcampaigns are defined by gender (M for Male,
F for Female) and age (Y for Young, A for Adult).

• Ji := (Ji(y))y∈B,Jj = (Jj(y))y∈B, is the vector of the lower bound
of the revenues for each y ∈ B (initially empty, which is used in the
optimization procedure);

• Argi, Argj ∈ MNy is a vector of campaigns (initially empty, which
is used in the optimization procedure).

The root of the tree T is the node E0 = (C, Child0, 0,J0, Arg0), where
C := {C1, . . . , CN} is the original advertising campaign, Cj ∈ C are its
sub-campaigns, and the set of children nodes Child0 is composed of odd
nodes Oj = (Cj, Childj, 0,Jj, Argj). Given a non-atomic sub-campaign
Cj , the set of the children Childj of a generic odd node Oj = (Cj, Childj,
fj,Jj, Argj) is composed of even nodes Ei = (Ci, Childi, fj +1,Ji, Argi)
s.t. the campaign Ci is in D = d(Cj, fj). Instead, if Cj is atomic, Childj
is empty, meaning that Oj is a leaf. Given a campaign Ci, the set of the
children Childi of a generic even node Ei = (Ci, Childi, fi,
Ji, Argi) is composed of odd nodes Oj = (Cj, Childj, fi,Jj, Argj) in
which Cj is one of the sub-campaigns contained in Ci. The construction of
the tree T consists in the successive expansion of the root node E0 until no
odd node can be expanded further.

In Figure 7.1, we show an example of a fully expanded tree T , gener-
ated starting from the campaign C = {C1, C2}, with C1 = ({M}, {Y,A})
and C2 = ({F}, {Y,A}). The root of the tree E0 (even rectangular node)
corresponds to the original campaign C, and its children nodes O1 and
O2 (circular odd nodes) corresponds to the sub-campaigns C1 and C2, re-
spectively. The next level contains the nodes representing all the possi-
ble campaigns and sub-campaigns that can be generated by partitioning
the target of the sub-campaigns C1 for O1 and C2 for O2. More specif-
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ically, nodes O3 and O4 correspond to sub-campaign C3 = ({M}, {Y })
and C4 = ({M}, {A}), respectively, node E1 corresponds to campaign
C1 = {C3, C4}; node O5 corresponds to sub-campaign C5 = C1 and E2

corresponds to campaign C2 = {C5}; nodes O6 and O7 correspond to sub-
campaign C6 = ({F}, {Y }) and C7 = ({F}, {A}), respectively and node
E3 corresponds to campaign C3 = {C6, C7}; node O8 corresponds to sub-
campaign C8 = C2 and E4 corresponds to campaign C4 = {C8}.

Algorithm 4 TargOpt Algorithm

1: Input: tree T = (E ,O)
2: Output: campaign C∗
3: l← K
4: while l ≥ 0 do
5: for all Oj ∈ O | fj = l do
6: Jnew, Argnew ← OddNodeUpdate(Oj)
7: Oj ← (Cj , Childj , fj ,Jnew, Argnew)

8: for all Ei ∈ E | fi = l do
9: J ′new, Arg

′
new ← EvenNodeUpdate(Ei)

10: Ei ← (Ci, Childi, fi,J ′new, Arg′new)

11: l← l − 1

12: C∗ ← Arg0(B)
13: return C∗

We describe TargOpt algorithm to find the campaign maximizing the
revenue. The algorithm traverses the tree from the leaves to the root and
computes the lower bound of the revenue for each campaign in T . The
pseudocode of the TargOpt algorithm is presented in Algorithm 4. It takes
as input a tree T = (E ,O) and it returns the optimal campaign C∗. The
algorithm starts from the lowermost level of the tree (l = K) and applies
the procedure OddNodeUpdate(Oj), detailed in what follows, for all the
odd nodes Oj s.t. fj = l (Line 6). This procedure fills the vector Jnew with
the revenues corresponding to each budget y ∈ B and the corresponding
campaign Argnew, i.e., a vector containing campaigns which provides the
revenues in Jnew. The nodes are then updated to include this new informa-
tion (Line 7). After that, these results are used to update the even nodes Ei
s.t. fi = l with the subroutine EvenNodeUpdate(Ei) (Line 9), detailed in
what follows. The subroutine aggregates the revenues Jj provided by the
childrenOj ∈ Childi, executing a variation of the MCK solving algorithm.
Indeed, it provides the vector of the lower bounds on the revenue J ′new and
the vector of the campaigns Arg′new corresponding to those revenues for
each budget y ∈ B. After that, the algorithm updates each analysed even

80



7.2. Proposed Method: The TargOpt Algorithm

node Ej (Line 10). The procedure moves to the upper level (l ← l − 1)
and iterates until it reaches the root (l = 0), where it returns the campaign
Arg0(B), contained in the root node E0, corresponding to the optimal rev-
enue J0(B) given a total budget of B.

Algorithm 5 EvenNodeUpdate Subroutine

1: Input: even node Ei
2: Output: vector of the lower bounds of the revenues Jnew, vector of the campaigns
Argnew

3: Jnew ← 0
4: for y ∈ B do
5: Argnew(y)← ∅
6: for Oj ∈ Childi do
7: Jold ← Jnew
8: Argold ← Argnew
9: for y ∈ B do

10: y∗ = arg max
y′∈B,y′≤y

[Jold(y
′) + Jj(y − y′)]

11: Jnew(y) = Jold(y
∗) + Jj(y − y∗)]

12: if y∗ = 0 then
13: Argnew(y) = Argj(y)
14: else
15: if y∗ = y then
16: Argnew(y) = Argold(y)
17: else
18: Argnew(y)← Argold(y) ∪Argj(y)

19: return Jnew, Argnew

The pseudocode of the subroutine EvenNodeUpdate(Ei) is presented
in Algorithm 5. It is a variation of the dynamic-programming algorithm
used to solve the MCK problem [29] specifically crafted for our scenario.
Given an even nodeEi it computes the vector of the optimal lower bound of
the revenue Jnew corresponding to each budget y ∈ B and the correspond-
ing vector of campaigns Argnew. At first, it sets null revenue and empty
optimal campaign for all the budgets y ∈ B (Lines 3-5). Then, it analyses
each odd node Oj in the set of children Childi and evaluates for each bud-
get y ∈ B whether the lower bound of the revenue Jj(y) provided by the
campaign Cj in the child Oj is better than any other one computed so far,
or whether there exists an allocation of budgets over more than one sub-
campaign that can perform better (Line 10). Then, it stores in Argnew(y)
the set of sub-campaigns which is providing the largest lower bound on
the revenue Jj(y) for the budget y (Lines 12-18). Once this process is re-
peated for all the nodes Oj ∈ Childi, the subroutine returns the vector of
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the largest lower bound on the revenue Jnew and the vector of the corre-
sponding campaigns Argnew (Line 19).

Algorithm 6 OddNodeUpdate Subroutine

1: Input: odd node Oj
2: Output: vector of the lower bounds of the revenues Jnew, vector of the campaigns
Argnew

3: if Childj = ∅ then
4: for y ∈ B do
5: Jnew(y)← P (Cj , y)
6: Argnew(y)← sj

7: else
8: for y ∈ B do
9: i∗ ← arg maxi|Ei∈Childj Ji(y)

10: Jnew(y)← J∗i (y)
11: Argnew(y)← Argi∗(y)

12: return Jnew, Argnew

The subroutine OddNodeUpdate is provided in Algorithm 6. It re-
quires as input an odd node Oj . If Oj does not have any child, the sub-
routine fills each element of the vector of the lower bounds of the revenue
Jnew(y) using the function P (Cj, y) defined in Equation (8.4) (Lines 3-6).
Conversely, if the set of the childrenChildj is not empty , the vector Jnew is
computed by choosing for each y ∈ B the maximum value of the revenue
Ji(y) among the even nodes Ei ∈ Childj (Lines 8-11). The subroutine
also stores the campaign vector Argnew, whose elements are the one pro-
viding the revenues in the vector Jnew. At last, it returns the vector of the
lower bound of the revenue Jnew and the vector of the campaigns Argnew
(Line 12).

Approximated Algorithm for Large Feature Space

In the case the feature space is such thatK � 1, the expansion of the tree T
up to the atomic sub-campaigns might be computationally expensive, since
the number of the odd nodes scales as O(2|Z|K), where |Z| := mini |Zi|
is the minimum cardinality of the sub-campaign features. To perform the
target optimization also when the execution of the TargOpt algorithm is
unfeasible, we design a variation of the TargOpt algorithm that, starting
from a tree composed only by the root node E0, iteratively expands the
nodes in a classical tree-search fashion.

The pseudocode of our algorithm, called A-TargOpt, is presented in
Algorithm 7. It takes as input a campaign C and a maximum number of odd
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Algorithm 7 A-TargOpt Algorithm

1: Input: campaign C, maximum number of nodes to expand Nmax.
2: Output: best campaign discovered C∗
3: O ← {(Ci, ∅, 0, ∅, ∅)}Ni=1

4: E ← {(C, {O1, . . . ON}, 0, ∅, ∅)}
5: C∗ ← TargOpt((E ,O))
6: while |O| < Nmax do
7: L ← {Ok ∈ O |Childk = ∅}
8: Select Oi ← H(L)
9: D ← d(Ci, fi + 1)

10: Childi ← ∅
11: for C ∈ D do
12: Child← ∅
13: for Ĉ ∈ C do
14: O ← (Ĉ, ∅, fi + 1, ∅, ∅)
15: Child← O ∪O
16: O ← O ∪ Child
17: E ← (C, Child, fj + 1, ∅, ∅)
18: Childi ← Childi ∪ E
19: E ← E ∪ E
20: O ← O \Oi
21: Oi = (Ci, Childi, fi, ∅, ∅)
22: O ← O ∪Oi
23: C∗ = TargOpt((E ,O))

24: return C∗

nodes Nmax ∈ N to expand.3 At first, the algorithm initializes the tree with
an odd node for each sub-campaign in C (Line 3) and a single even node
E0 for the original campaign (Line 4). In the case the expansion is already
too computationally expensive for the available budget (|O| > Nmax), it
executes the TargOpt algorithm on T to provide a tentative solution C∗
(Line 5). At each iteration, it expands the more promising nodes according
to a strategy function H(L), which takes a set of odd leaf nodes L, i.e., the
odd nodes Ok ∈ O s.t. Childk = ∅, and returns a single odd node Oi ∈ L
which will be expanded. Here, we propose two different strategies H(·) we
adopt to select the more promising node to be expanded:

• Breadth-First Search (BFS), which in our specific setting consists in
expanding one of the nodes with the largest target, i.e., Oi ∈ L s.t.
@Ok ∈ L s.t. fk < fi;

• Optimistic Search (OS), which expands the nodes with the maximum
3We limit the number of the odd nodes since they are the most computationally expensive, being those that

execute the algorithm solving the MCK problem.
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average revenue or, formally, Oi ∈ L s.t. i = arg maxh

∑
y∈B Jh(y)

Ny
.

Once an odd node Oi has been chosen (Line 8), the algorithm uses the
partition operator D = d(Cj, fi) to expand the sub-campaign Cj (Line 9).
Moreover, it generates and adds inChildj all the even nodesE = (C, Child
, fj + 1, ∅, ∅) corresponding to campaigns in D (Lines 17-18) and it adds to
the child set Child each node E all the odd nodes O corresponding to the
sub-campaign ŝ ∈ C̄ (Lines 13-15). Finally, the algorithm adds to the tree
T the newly generated node and its children (Lines 19-22), and executes
the TargOpt algorithm on the updated version of the tree. These operations
are repeated until the tree T has at most Nmax odd nodes.

Experimental Evaluation

We experimentally evaluate our algorithm on both real-world and synthetic
problems. At first, we show the improvement provided by the TargOpt
algorithm on a real-world advertising problem and, after that, we evaluate
the performance of the A-TargOpt algorithm in a synthetically generated
environment.

Evaluation in a Real-world Setting

Experimental Setting. We evaluate the TargOpt algorithm on a real-
world dataset, provided by the company MediaMatic [39]. The database
corresponds to an advertising campaign for a financial product, whose name
is omitted for privacy reasons.4 The original campaign C is composed of
N = 8 sub-campaigns. The dataset we use for the experiments consists
of the data recorded from 01/09/17 to 08/11/17, for a total of T = 69
days. The (single) feature z1j that we analyze in this experiment is the
hour of the day the ad is displayed to users. More specifically, for this fea-
ture, we consider a set of |Z1| = 8 values corresponding to 3-hours-long
time slots (0.00 a.m.-3.00 a.m., 3.01 a.m.-6.00 a.m., etc.). A finer granular-
ity would make the optimization problem intractable. Since a preliminary
analysis suggests that the behaviour of users is different during weekdays
and weekends, e.g., the total volumes of the search are significantly differ-
ent between the twos, we separate the gathered data to apply the TargOpt
algorithm independently to the two scenarios. The policy used for the col-
lection of the data is the AdComb algorithm [41], where we set a budget
B = 1100, while we discretize the bid space evenly in (x, x) = (0.1, 5)

4To fulfill the NDA we have with the media agency, some of the values reported in what follows of the
experiment have been scaled, given that the transformation we applied does not change the conclusion we draw.
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Figure 7.2: Revenue of the TargOpt on the real-world dataset for the weekdays.

with |X| = 50 values, and the budget space evenly in (y, y) = (2, 1100)

with |B| = 550 possible budgets. We use the same discretization of the
bid/budget space also while executing the TargOpt algorithm. We com-
pare the optimal campaign C∗, resulting from the execution of the TargOpt
algorithm, with the one provided by the original campaign C. The perfor-
mance index we use to evaluate the performance of the two campaigns is
the lower bound on the revenue J0(B), where we assume a unitary value
for the conversion.

Results. The results of the experiments are presented in Figure 7.2 for the
weekdays and Figure 7.3 for the weekends. In both the cases, the TargOpt
algorithm provides a significant improvement over the original campaign
C∗, i.e., about 13% more conversions during the weekdays and about 30%
during the weekend. This improvement does not reduce as the budget in-
vested per day B increases. In the weekend scenario, the revenue for cam-
paign C is almost constant for B ≥ 230 (J0(B) ≈ 9). This phenomenon
is due to the fact that, as we increase the total daily budget, part of what
is spent is targeting sub-campaigns in which no conversion occurs, there-
fore even by increasing the budget we do not have any further conversion.
This issue is partially overcome with the use of a more fine-grained tar-
geting provided by the campaign C∗, whose performance are bounded to
J0(B) ≈ 12 for B ≥ 260. We suppose that an even finer-grained targeting,
e.g., using 1-hour-long slots, could further improve the performance of the
optimal advertising campaign.
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Evaluation in a Synthetically Generated Setting

Experimental Setting. In this experiment, we compare the performance
of the proposed exploration strategies for the A-TargOpt algorithm in a
synthetically generated setting. The original campaign C = {C0} is com-
posed of a single sub-campaign C0 having K = 3 features, each of which
has cardinality 3. Given an advertising period of T = 100 days, we generate
for each day t ∈ {1, . . . , T} and for each atomic sub-campaign Cj ⊆ C0,
the daily observations about the selected bid x̃t(Cj), selected budget ỹt(Cj),
number of clicks ñt(Cj) and revenue per click ṽt(Cj), in the following
way. For each atomic campaign Cj , the policy U selects a budget yt(Cj)
uniformly over B = {0, . . . , 100}, with |B| = 10, and keeps the bid
xt(Cj) = c constant during the period and the sub-campaigns. This pro-
vides an average number of 10 observations for each sub-campaign and
each budget. For each sub-campaign Cj and for each day t, the daily num-
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Figure 7.3: Revenue of the TargOpt on the real-world dataset for the weekends.

ber of clicks is computed as ñt(Cj) :=
c̃t(Cj)

cpct(Cj)
, where the cost per click

cpct(Cj) is extracted from N (0.5, 0.1) and N (µ, σ) is the Gaussian distri-
bution with mean µ and standard deviation σ. We generate the cumulative
value obtained by the conversions vt(Cj) as vt(Cj) := cr(Cj)nt(Cj) where
the conversion rate cr(Cj) for an atomic sub-campaign Cj is extracted from
0.5B(0.5), being B(µ) the Bernoulli distribution of parameter µ. This cu-
mulative value modeling exemplifies the case in which, on average, half
of the atomic sub-campaigns is not profitable at all. From the data corre-
sponding to each atomic sub-campaign Cj we estimate the lower bound on
the number of clicks n(Ci, y) as described in Section 7.2.1. Moreover, the
lower bound on the number of clicks n(Cj, y) corresponding for the non-
atomic sub-campaign Cj is computed by aggregating the observations of
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Figure 7.4: Revenue obtained by the BFS, OP and RS heuristics by setting a different
number of maximum nodes to expand Nmax. 95% confidence interval are represented
as error bars.

those atomic sub-campaigns s.t. Cj ⊆ Ci and computing the lower bound
as in Section 7.2.1.5

In the execution of the A-TargOpt algorithm, we set a total budget to
spend of B = 100 and a number of budget Ny = 10. As for performance
index, we use the lower bound of the revenue J0(B) obtained at the end
of the procedure. We compare the performance of our two heuristics with
a baseline, called Random Strategy (RS), which expands the node by se-
lecting at random from the leaf nodes. We average the results over 200
independent runs.
Results. The results of the synthetically generated setting are provided
in Figure 7.4. It is possible to see that for 200 ≤ Nmax ≤ 700 there is
statistical evidence that the BFS and OS heuristics are performing better
than the RS one. Conversely, with a few nodes (Nmax < 200) or when the
tree is almost completely expanded (Nmax > 700) there is no significant
difference among the performance of the three heuristics. This suggests
that our two heuristics provide an advantage when the problem allows the
expansion of a considerable portion of the tree, while if we explore only a
few nodes, a random exploration might be valid as well.

In general, looking at the average performance, one should follow the
OS heuristic when expanding the nodes, since it is always providing the
largest revenue on average. Nonetheless, the heuristic BFS provides solu-
tions which are more compact than OS since the BFS heuristic builds the
sub-campaigns trying to keep their targets as the large as possible. There-

5The aggregation of the data as performed in this experiment is correct under the assumption that all the
atomic sub-campaigns Cj interacted with the same number of users, thus they contributes to the data of sub-
campaigns Cj in the same way.
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fore, if the marketing experts require a limited number of sub-campaigns,
e.g., to perform further business analysis on the advertising campaign, the
BFS heuristic is to be preferred, while, if we are more concerned about the
revenue, we should rely on the OS heuristic when expanding the tree T .
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CHAPTER8
Dealing with Interdependencies in Online

Advertising Campaigns Optimization

The sub-campaigns interdependence is customarily exploited by experts in
the field, e.g., setting up sub-campaigns (called assist) not providing direct
conversions but increasing the number of conversions on the search en-
gine channel. Besides, capturing the interdependence can provide a direct
method for comparing and optimizing the performance of sub-campaigns
on different channels. Indeed, sub-campaigns on different channels need
to be evaluated using different performance metrics, and how to combine
them is still an open issue. For instance, display and social ads provide very
few conversions compared to search ads but allow search ads to generate a
larger number of conversions, and therefore an optimization method based
only on the number of conversions might not provide optimal allocations.
The same holds in the search channel for branding and no-branding sub-
campaigns. Although this problem is central in advertising, to the best of
our knowledge, no model in the economic literature captures such interde-
pendence.

We design an algorithm based on both learning and optimization tech-
niques that can be adopted for the optimization of real-world Internet adver-
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tising campaigns and that, exploiting sub-campaigns interdependence, out-
performs the algorithms known so far. To do that, we provide a novel model
that, on one side, is expressive enough to capture the interdependences and,
on the other side, is simple enough to require few data for its estimation.1

From of the proposed model, we design a data-driven algorithm, called
IDL, which consists of two phases: the Interdependence Graph Learning
Phase and the Estimation and Optimization Phase. In the former phase, the
IDL algorithm learns the sub-campaigns interdependence structure (repre-
sented as a graph), identifying the pairs of sub-campaigns with the most
significant interdependences by applying the Granger Causality test. This
is crucial since the number of pairs of interdependent sub-campaigns dra-
matically increases the amount of data required to have accurate estimates
of the model parameters. In the latter phase, the IDL algorithm computes
the optimal joint bid/daily budget allocation exploiting Gaussian Process
modeling [48] and an ad hoc dynamic programming procedure. In par-
ticular, Gaussian Processes exploit some form of functional regularity to
describe the relationships among the problem parameters, without forcing
them belong to a specific family of curves.

Finally, we show that neglecting the sub-campaigns interdependence can
lead to massive losses even in simple and common scenarios and we theo-
retically bound the loss of our algorithm. Furthermore, we experimentally
evaluate its performance in both realistic and real-world settings, showing
the superiority of its performance compared to the previous approaches that
neglect the sub-campaigns interdependence.

Problem Formulation

Model

Assume to have an Internet advertising campaign C = {C1, . . . , CN}, with
N ∈ N, whereCj is the j-th sub-campaign. At day t, we are asked to set for
each sub-campaignCj a bid xj,t ∈ [xj, xj], and a daily budget yj,t ∈ [y

j
, yj],

subject to that the daily cumulative budget of all the sub-campaigns cannot
exceed B ∈ R+. At day t + 1, we get a report on the performance of
the campaign C at the previous day t, which specifies, for every Cj , the
tuple (q̃j,t, ñj,t, c̃oj,t, c̃j,t), where q̃j,t denotes the number of impressions, ñj,t
denotes the number of received clicks, c̃oj,t denotes the cumulate value of

1Due to learning, a sophisticated model may provide poor performance. This is because an excessively
complex model could need a large amount of data for the training and collecting such data could require a long
time, even longer than the time horizon considered in the optimization process.
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ñ2,t

q̃1,t
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Figure 8.1: Graphs representing the interdependences of real-world Internet advertising
sub-campaigns inferred by Granger Causality test from real data. The numbers on
the edges are the p-values (in terms of %) of the Granger Causality test; display ads
are depicted in blue, social ads in yellow, and search ads in orange (for branding
sub-campaigns) and red (for other search sub-campaigns). The second dataset graph
refers to interdependence among impressions ñj,t of different sub-campaigns Cj .

the conversions, and c̃j,t denotes the amount of money spent for it.2

As aforementioned, both experts in the field of Internet advertising and
studies in the Internet economic field, e.g., [30] and [25], demonstrate that
impressions, clicks, and conversions of a sub-campaign might be influenced
by the same kind of quantities of the other sub-campaigns. We extend
the previous studies on the sub-campaigns interdependence, applying the
Granger Causality test [24, 55] to two real-world Internet advertising cam-
paigns optimized by an Italian web media agency using the AdComb-TS

2We recall that the money spent in one day for a sub-campaign may be different from the daily budget
previously allocated.
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algorithm (see Chapter 5). The algorithm, being online, produces policies
explorative enough to make the test significant.

At first, we test for Granger causality the data collected for 8 months
(from 1/1/2018 to 1/8/2018) from an Internet advertising campaign for a
financial service of an insurance company: data correspond toN = 12 sub-
campaigns, on Google AdWords (search), Facebook (social), and Google
display with a cumulative budget of Y = 600 Euros. The results obtained
from the Granger Causality test are shown in Figure 8.1, where the most
significant elements of (q̃j,t, ñj,t, c̃oj,t, c̃j,t) are represented as nodes of dif-
ferent colors according to their specific channel (as detailed in the caption
of the figure) and the detected interdependences (with a p-value less than
5%) are represented as directed edges. In particular, Figure 8.1a shows the
results when all the sub-campaigns data are aggregated, while Figure 8.1b
focuses on a specific subset of sub-campaigns who share the same targeting
(retired people). These results confirm the presence of the interdependence
between display and search advertising as previously observed in the liter-
ature. They also show that social and search advertising are interdependent
and that the interdependences may be targeting specific. Moreover, the in-
terdependence between clicks and impressions of the social channels and
the impressions of the search one in this specific scenario seems to be more
relevant than others, since they appear in both graphs. Furthermore, the
Granger Causality test detects that interdependence dynamics between sub-
campaigns are delayed up to 2 days. At second, we test for Granger causal-
ity the data collected for 3 months (from 20/7/2018 to 20/10/2018) from
an Internet advertising campaign of a different financial product of the same
company with about Y = 1100 Euros. There are N = 14 sub-campaigns
belonging to social and search advertising channels. The resulting graph is
depicted in Figure 8.1c (with a p-value less than 5%). As in the previous
dataset, many sub-campaigns are subject to interdependence. In particular,
in this case, the interdependence phenomenon is only among impressions,
suggesting that these can be the most significant in practice. Moreover,
differently from the previous case, we distinguish search sub-campaigns
into two subclasses which are at different depths in the marketing funnel:
branding (orange nodes) or no-branding (red nodes). Finally, the delay of
the interdependence dynamics is up to 3.

Optimization Problem

We provide our optimization problem capturing the sub-campaigns inter-
dependence. For the sake of presentation, we focus on the interdependence
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between the impressions of different sub-campaigns.3 Our goal is the max-
imization of the revenue earned each day from an Internet advertising cam-
paign subject to a cumulative budget constraint. Formally, given a cam-
paign C and a cumulative daily budget of B, we aim to find, at day t, the
value of bid xj,t and the value of daily budget yj,t for every sub-campaign
Cj that maximise the revenue by solving the following optimization prob-
lem:

max
xj,t,yj,t

N∑
j=1

vj rj qj(xj,t, yj,t, uj,t) (8.1a)

s.t.
N∑
j=1

yj,t ≤ B (8.1b)

xj ≤ xj,t ≤ xj ∀j (8.1c)

y
j
≤ yj,t ≤ yj ∀j (8.1d)

where qj(xj,t, yj,t, uj,t) is the expected number of impressions given bid xj,t,
daily budget yj,t, and influence index uj,t, representing the influence of other
sub-campaigns towards Cj and computed by using the number of impres-
sions of those sub-campaigns that are interdependent with sub-campaign
Cj (see below); rj and vj are the click-trough rate and the value per click
for the sub-campaign Cj , respectively, and, therefore, vj rj qj(xj,t, yj,t, uj,t)
is the revenue provided by sub-campaign Cj .4 We denote with (x∗,y∗,u∗)
the optimal solution to the optimization problem.

To model the sub-campaigns interdependence, we define:

Definition 6. Given an advertising campaign C, an interdependence graph
G := (C, D) is a graph in which the adjacency matrix D = {dij}, D ∈
{0, 1}N×N has elements dij = 1 iff the sub-campaign Ci influences the
performance of the sub-campaign Cj .

We assume that the graph G is a Directed Acyclic Graph (DAG), i.e.,
there are no dependency cycles among the sub-campaigns. This assumption
is supported by the model of the marketing funnel, in which the majority
of the users flows from the top to the bottom, and different advertising
channels are positioned at different levels of the funnel. Without loss of

3The use of such quantities is also supported by the experimental results of Section 8.1, where the interdepen-
dence among impressions is the most significant. However, different models, e.g., including the interdependence
between the clicks and the conversions, are straightforward extensions of what is proposed in this section.

4The optimization problem in Equations (8.1a)–(8.1d) reduces to the one proposed in Chapter 5 when there
is no interdependence, i.e., if qj(xj,t, yj,t, uj,t) = qj(xj,t, yj,t), for every Cj .
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generality, we assume that the order over the indices of the sub-campaigns
is one of the topological orders induced by G. Given the interdependence
graph G, a formal definition of the influence index uj,t is:

uj,t :=
1

K

j−1∑
i=1

t−K∑
h=t−1

dij qi(xi,h, yi,h, ui,h), (8.2)

where K is a maximum lag order, meaning that users are influenced by
ads at most for K consecutive days. Notice that the first sub-campaign C1,
being influenced by no other sub-campaign, has u1,t = 0 since the first
summation in Equation (8.2) is over an empty set. The above definition
of uj,t is based on the assumption that the increase in the number of im-
pressions provided by a user coming from any sub-campaign influences the
number of impressions of Cj in the same way. While this assumption might
seem simplistic, it is necessary to keep at a pace the complexity of training
the model. Indeed, a more complex model, e.g., where there is a differ-
ent influence index for every pair of sub-campaigns, might be an option,
but this would require an excessively large amount of data for the training
of the model, which is not a viable option within the time horizon of the
optimization process.

The optimization problem in Equations (8.1a)-(8.1d) can be solved us-
ing dynamic programming techniques, once all its parameters are known.
However, the advertiser does not know the function qj(·, ·, ·) that returns
the number of impressions for sub-campaign Cj , as well as its click-trough
rate rj and its value per click vj . Therefore, we resort to learning tech-
niques to produce estimates of these parameters relying on historical data.
We assume to have a dataset Z := {zj,t} of τ samples that provides, for
each day t ∈ {1, . . . , τ} and each sub-campaign Cj with j ∈ {1, . . . , N},
the following values: zj,t := (x̃j,t, ỹj,t, q̃j,t, ñj,t, c̃oj,t, c̃j,t). This is a tuple
with the used bid x̃j,t and daily budget ỹj,t, the received impressions q̃j,t,
clicks ñj,t, values of the conversions c̃oj,t, and costs c̃j,t. We require that
the data collected up to day τ to be exploratory enough to properly model
the sub-campaigns interdependences.

Proposed Method: The IDL Algorithm

The pseudo-code of the IDL algorithm is provided in Algorithm 8. It re-
quires a dataset Z and two confidence levels αADF ∈ (0, 1) and αGC ∈
(0, 1) in input. The first phase of the algorithm (Lines 1–8) is called In-
terdependence Graph Learning Phase and is devoted to learning the inter-
dependence graph of the sub-campaigns. The output of this phase is an

94



8.2. Proposed Method: The IDL Algorithm

Algorithm 8 IDL

Input: dataset Z, confidence αADF , confidence αGC
Output: optimal bid/budget/new user allocation (x̂∗, ŷ∗, û∗)

� Interdependence Graph Learning Phase
1: for j ∈ {1, . . . , N} do
2: adfj ← ADF(q̃j , αADF )

3: dmax ← maxj{adfj}
4: P̂ ← 0
5: for j ∈ {1, . . . , N} do
6: for i ∈ {j + 1, . . . , N} do
7: p̂i,j ← GCT (q, i, j)

8: D̂ ← DAG(P̂ , αGC)

� Estimation and Optimization Phase
9: for j ∈ {1, . . . , N} do

10: q̂j(·, ·, ·)← GP(Z, D̂, j)

11: v̂j ← 1
τ

∑τ
h=1

c̃oj,t
ñj,t

12: ŵj ← 1
τ

∑τ
h=1

ñj,t
q̃j,t

13: (x̂∗, ŷ∗, û∗)← OPT(q̂, v̂, ŵ, D̂)

14: return (x̂∗, ŷ∗, û∗)

estimate D̂ of the actual adjacency matrix D. The second phase of the
algorithm (Lines 9–13) is called Estimation and Optimization Phase and
is devoted to the estimation of the parameters for each sub-campaign Cj
(i.e., q̂j(·, ·, ·), v̂j, ŵj), using Gaussian Process [48] modeling, and solving
the optimization problem in Equations (8.1a)-(8.1d), once the parameters
have been replaced with their estimates. The outputs of this phase are
(x̂∗, ŷ∗, û∗), i.e., the optimal bid, daily budget, and influence index for
each sub-campaign.

Interdependence Graph Learning Phase

The task of learning D̂ is obtained by resorting to the Granger Causal-
ity test [24]. This test has been used in many different fields to infer the
structure among datastreams, e.g., sensor networks by [4] and economics
by [11]. While in its original formulation the test assumes that the analysed
time series are stationary, we rely on a generalization of this test, proposed
by [55], which is suitable for integrated and cointegrated time series.

The basic idea of this approach is to estimate a Vector AutoRegressive
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model of order KGR + dmax for the vector (q̃1,t, . . . , q̃N,t), where dmax ∈ N
is the maximum integration order of the time series that we analyse and
KGR ∈ N is a lag order which is estimated from the data.5 The use of
KGR+dmax lags ensures that the test statistic used in the Granger Causality
test for stationary time series has the same asymptotic distribution of the
stationary case and, therefore, statistically valid conclusions can be drawn.
More specifically, to test if the impressions of the campaign Ci influence
the impressions of the campaign Cj , we estimate the parameters ajlm, for
each m ∈ {1, . . . , KGR + dmax}, of the model:

q̃j,t =
N∑
l=1

KGR+dmax∑
m=1

ajlm q̃l,t−m ∀h ∈ {1, . . . , N}

and we test for the hypothesis:

H0 : ∀m ∈ {1, . . . , KGr} ajim = 0,

H1 : ∃m ∈ {1, . . . , KGr} | ajim 6= 0.

The complete description of this procedure is provided by [55]. The test
states that if we reject H0 there is evidence, with confidence αGC , that the
impressions from Ci are influencing those of Cj .

The IDL algorithm works as follows. For each sub-campaign, we esti-
mate dmax performing the Augmented Dickey Fuller test ADF(q̃j , αADF )
on the time series q̃j := (q̃j,t, . . . , q̃j,τ ) with confidence αADF (Lines 1–
3), and inferring the time series order adfj , and, finally, we perform the
Granger Causality test on each pair of sub-campaigns (Lines 5–7). The re-
sult of this procedure is a matrix P̂ containing the p-values of the pairwise
tests, which is used to generate a valid estimate of the adjacency matrix
D̂ ∈ {0, 1}N×N . This operation is performed by DAG(P̂ , αGC) (Line 8)
by selecting the largest subset S of the p-values p̂ij < 2αGC

N(N−1)
s.t. the ma-

trix D̂ := {dij = 1 iff pij ∈ S} to correspond to a DAG.6 This procedure
ensures an overall confidence αGC on the Granger Causality test, thanks to
the Bonferroni correction for multiple tests, and it avoids that the presence
of false positives in the detection of interdependences. Indeed, the edges
generated by false positive detections might provide adjacency matrices D̂
whose corresponding graph presents cycles, which would compromise the
execution of the following optimization procedure.

5dmax can be estimated using the Augmented Dickey Fuller test [17], which requires a confidence level
αADF ∈ (0, 1), while KGR can be estimated from the dataset Z by standard techniques, see [43] for details.

6An adjacency matrix D̂ identifies a DAG if and only if a depth-first search of the corresponding graph yields
no back edges.
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Algorithm 9 OPT(q̂, v̂, ŵ, D̂)

Input: estimated adjacency matrix D̂, estimated models q̂j(·, ·, ·), ŵj , v̂j , discretiza-
tion of the total budget {b1, . . . , bB}
Output: optimal bid/budget allocation (x̂∗, ŷ∗, û∗)

1: for i ∈ {1, . . . , B} do
2: Π1,i,1 ← (bi 0N−1)
3: L1,i,1 ← v̂1 ŵ1 q̂1(χ1, bi, 0)

4: M1,i,1 ← q̂1(χ1, bi, 0) d̂1

5: for j ∈ {2, . . . , N} do
6: for i ∈ {1, . . . , B} do
7: c← 1
8: for k ∈ {1, . . . , i} do
9: m = |{Πj−1,k,h}h|

10: for h ∈ {1, . . . ,m} do
11: l← q̂j(χj , bi − bk,Mj−1,k,h(j))
12: Π̄c ← (0j−1 (bi − bk) 0N−j) + Πj−1,k,h
13: L̄c ← v̂j ŵj l + Lj−1,k,h
14: M̄c ← l d̂j +Mj−1,k,h
15: c← c+ 1

16: c← 1
17: for h ∈ {1, . . . , |{Ltc}c|} do
18: if @k | L̄h < L̄k ∧ ∀p ∈ {j + 1, . . . , N}|M̄h(p) < M̄k(p) then
19: Πj,i,c ← Π̄h

20: Lj,i,c ← L̄h
21: Mj,i,c ← M̄h

22: c← c+ 1

23: for j ∈ {1, . . . , N} do
24: ŷ∗j ← maxi ΠN,i,1(j)
25: û∗j computed as in Equation (8.3)
26: x̂∗j = x∗j (ŷ

∗
j , û
∗
j )

27: return (x̂∗, ŷ∗, û∗)

Estimation and Optimization Phase

The second phase of the IDL algorithm exploits predictive models to esti-
mate unknown functions and quantities in the optimization problem defined
in Equations (8.1a)-(8.1d), and solves it in a dynamic programming fashion
with an ad hoc procedure.7

We use Gaussian Processes (GPs) to compute, for each sub-campaign

7For the sake of presentation in what follows we assume that the number of impressions is monotonically in-
creasing in the influence index. A version of the optimization procedure able to handle general cases is discussed
in the final part of this section.
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Cj , the function q̂j(x, y, u) estimating the expected number of impressions
qj(x, y, u), given the chosen bid x, the allocated budget y, and the influence
index u generated by the sub-campaigns influencing the sub-campaign Cj
(Line 10). The estimate r̂j of the click-through rate rj and the estimate v̂j
of the value per click vj are the average ratios between the number of clicks
and the number of impressions and between the number of conversions
and the number of clicks, respectively (Lines 9-12). Finally, the estimated
influence index is computed as follows:

ûj,t :=
1

KGR

j−1∑
i=1

t−KGR∑
h=t−1

d̂ij q̂i(xi,h, yi,h, ûi,h), (8.3)

where we useKGR, obtained from the Granger Causality test, as an estimate
of the actual lag K.

The optimization procedure is an extension of the optimization algo-
rithm in Chapter 5, to handle also campaigns in which the revenue given
by a budget allocated to a sub-campaign depends on the budget allocated to
other sub-campaigns. The OPT algorithm, presented in Algorithm 9, takes
in input the estimates of the adjacency matrix D̂, the number of impressions
function q̂j(·, ·, ·), the click-trough rate r̂j , the value per click v̂j , and a set of
available daily budget values {b1, . . . , bB}, which are, for simplicity, evenly
spaced in the range [0, B].

The OPT algorithm uses three structures Π, L, and M defined as fol-
lows: Πj,i,h is a vector that specifies a partial budget allocation with cumula-
tive budget of bi among the sub-campaigns C1, . . . , Cj; Lj,i,h is the revenue
provided by the partial budget allocation Πj,i,h; Mj,i,h is a vector that spec-
ifies the value of the influence index of the sub-campaigns Cj+1, . . . , CN
provided by the sub-campaignsC1, . . . , Cj when the partial allocation Πj,i,h

is used. The third index h in the structures mentioned above is necessary
since the algorithm may need to store multiple partial budget allocations
for each j and i. More precisely, the set {Πj,i,h}h contains Pareto-efficient
partial budget allocations, where the optimality criteria are the revenue and
the influence indices of campaigns Cj+1, . . . , CN . For instance, given two
partial budget allocations Πj,i,h1 and Πj,i,h2 , where the former has high rev-
enue and a small number of impressions and the latter vice versa, it is not
possible to decide which one is the optimal before evaluating their influence
on the sub-campaigns Cj+1, . . . , CN and therefore we need to store both.

At first, the algorithm initializes the values of the structures for j =
1 (Lines 1–4), corresponding to the allocations of the partial budget to
the sub-campaign C1. For each budget bi, we allocate it to C1, formally,
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Π1,i,1 = (bi,0N−1), where 0N−1 denotes a null vector of size N − 1. The
sub-campaign C1, being the first in the topological ordering induced by
D̂, is not subject to any interdependence from other sub-campaigns. There-
fore, the computation of the revenue {L1,i,1}i and the influence index vector
{M1,i,1}i is performed using the previously estimated models.8 The vector
M1,i,1 is computed as M1,i,1 = n1(χ1, bi, 0) d̂1, where d̂i is the i-th row of
the adjacency matrix D̂. This means that M1,i,1(j), i.e., the j-th element
of M1,i,1, is equal to n1(χ1, bi, 0) if the sub-campaign C1 influences the
campaign Cj and zero otherwise.

For all the j ∈ {2, . . . , N}, the algorithm computes the elements of
the three structures Π, L, and M using the values previously computed
at the j − 1-th step, in a dynamic programming fashion (Lines 5–22).
For each daily budget bi and for each daily budget bk ≤ bi, we compute
the revenue and the influence index provided by the allocation of a daily
budget of bi − bk to the sub-campaign Cj and the remaining daily bud-
get of bk to the sub-campaigns C1, . . . , Cj−1. We do this by enumerat-
ing all the Pareto-efficient partial allocations Πj−1,k,1,Πj−1,k,2, . . . of the
first j − 1 sub-campaigns, then allocating daily budget bi − bk to the sub-
campaign Cj and, finally, we evaluate the total revenue M̄c and the in-
fluence indices vector L̄c provided by the partial allocations obtained, de-
noted with Π̄c (Lines 9–15).9 After that, the algorithm discards all the
candidate partial allocations which are Pareto dominated (Lines 16-22);
see [20] for details on Pareto efficiency and dominance.10 Finally, the
algorithm returns the optimal allocation (Lines 23–27): the optimal bud-
gets ŷ∗j are the elements of maxi ΠN,i,1(j); the optimal influence indices
û∗j are computed using Equation (8.3); the optimal bids ŷ∗j are computed
using the impressions models n̂j(·, ·, ·). The complexity of the OPT algo-

rithm is O
(∑

j B
∑
i d̂ij+2

)
≤ O

(
N B2 Bmaxj

∑
i d̂ij

)
and strictly depends

on the maximum indegree of the interdependence graph corresponding to
D̂. The complexity reduces to that one of the algorithm proposed by [41]
when the sub-campaigns are not interdependent. Notice that capturing only
the pairs of sub-campaigns with the most significant interdependence is
a crucial issue from a computational point of view since, taking into ac-

8We define χj as the bid that maximise the number of impressions given a budget y and a influence index u,
or, formally, χj := χj(y, u) = arg maxx q̂j(x, y, u).

9In the pseudo-code, we denoted the number of Pareto optimal allocations at the j − 1-th row with a budget
of bi with |{Πj−1,i,h}h|.

10Notice that the inequality in Line 18 is designed for settings in which the number of impressions is mono-
tonically increasing in the influence index. However, removing the condition in Line 18, the proposed method
also applies to problems without such a monotonicity assumption. This comes at at the cost of storing a larger
number of partial allocations in {Πj,i,h}h.
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count all the possible pairs of sub-campaigns, the complexity is bounded
by NB2BN+1−1

B−1
, which is intractable when N is large as it happens in real-

world applications.

Theoretical Properties

We analyse the properties of our problem and those of the IDL algorithm.
Initially, we analyse the suboptimality of any algorithm ignoring the sub-
campaigns interdependencies w.r.t. our algorithm, i.e., when the learner
uses an adjacency matrix D̂ = 0, and the real one D is non-null. The fol-
lowing theorem shows that ignoring the sub-campaigns interdependences
might be arbitrarily suboptimal.

Theorem 12. Given the problem of optimizing an advertising campaign
C, employing a model n̂j(x, y) for the number of impressions that ignores
the sub-campaigns interdependence may result in an arbitrary large loss in
terms of revenue, defined as:

Rt =
N∑
j=1

vj rj qj(xj,t, yj,t, uj,t). (8.4)

Proof. Consider a campaign C with N = 2 sub-campaigns, adjacency ma-

trix D =

(
0 1

0 0

)
, click-through rates w1 = w2 = 1, values per click

v1 = 0 and v2 = 1, lag K = 1, and impression functions identified by two
GPs having the following mean value:

n1(x1,t, y1,t, u1,t) = H y1,t,

n2(x2,t, y2,t, u2,t) = Υu2,t y2,t = Υn1(x1,t−1, y1,t−1, u1,t−1) y2,t,

where Υ ∈ [0, 1], H ∈ R+. Moreover, assume to have a total budget of
B and to sample the solution space uniformly during training. Asymptot-
ically (when we have an infinite number of samples or τ → ∞), a model
that provides a stationary allocation and knows the sub-campaign interde-
pendencies would compute the revenue:

Rt =
N∑
j=1

vj rj qj(xj,t, yj,t, uj,t) = Υn1(x1, y1, u1) y2

= ΥH y1 y2 = ΥH (B − y2) y2,
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where we drop the temporal indices since the proposed solution is station-
ary and y1 + y2 = B. The budget allocation maximizing the revenue is
y2 = B

2
, with a revenue Rt = ΥH B

2

4
.

On the other hand, a model ignoring the sub-campaigns interdependence
estimates the impressions of the sub-campaign C2 as:

ñ2(x2,t, y2,t) =

∫ HB

0

n2(x2,t, y2,t, u)du

=

∫ HB

0

Υu y2,tdu =
ΥH2B

2

2
y2,t,

and the revenue one maximises becomes:

R̃t =
N∑
j=1

vj rj qj(xj,t, yj,t, uj,t) = ñ2(x2,t, y2,t) =
ΥH2B

2

2
y2.

The budget allocation maximising R̃t is y2 = B, with a real revenue Rt =

0. Hence, the difference of revenue of the two algorithms is ΥH B
2

4
− 0,

which is arbitrarily large as H goes to∞.

When the model is flexible enough to model the actual process properly,
we can bound its error, formally, defined as follows:

Definition 7. Given a dataset Z, the total (estimation) error is:

Eτ :=
N∑
j=1

[
vjrjqj(x

∗
j , y
∗
j , u

∗
j)− v̂j r̂j q̂j(x̂∗j , ŷ∗j , û∗j)

]
,

where the tuples (x̂∗j , ŷ
∗
j , û

∗
j) are elements of the output (x̂∗, ŷ∗, û∗) of the

IDL algorithm using the estimates of the parameters, and (x∗j , y
∗
j , u

∗
j) are

elements of the output of the IDL algorithm using the real parameters.

We can show the following:

Theorem 13. When the expected number of impressions nj(·, ·, ·) of every
sub-campaign Cj is distributed as a Gaussian Process, the total error be-
tween the real revenue and the estimated one using the output of the IDL
algorithm is upper bounded, with a probability of at least 1− δ, as follows:

Eτ ≤ 2Nv(max)

√
1

2τ
log

6N

δ

(
q̂(max) + σ̂(max)

τ

√
2log

3N

δ

)

+Nv(max) σ̂(max)
τ

√
2 log

3N

2δ
,
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where q̂(max) := maxj max(x,y,u) q̂j(x, y, u) is the maximum number of es-
timated expected impressions over all the sub-campaigns,
σ̂

(max)
τ := maxj max(x,y,u) σ̂j,τ (x, y, u) is the maximum estimated standard

deviation, and v(max) is the maximum value per click.

We remark that [48] show that, in a generic GP, σ̂(max)
τ → 0 as τ →∞.

Therefore, the total error Eτ decreases as the number of samples τ in the
training set Z increases.

Proof. Since estimates for click-through rate r̂j and value per click v̂j are
sum of i.i.d. random variables with finite support [0, 1] and [0, v(max)], re-
spectively, we can apply the Hoeffding’s bound [59] and state that, with a
probability of at least 1− δ:

rj − r̂j ≤
√

1

2τ
log

1

δ
, (8.5)

vj − v̂j ≤ v(max)

√
1

2τ
log

1

δ
, (8.6)

where τ is the number of samples we use to compute the estimates. By
assumption, the number of impressions are generated by a GP and we have
that for each input (x, y, u) in the GP domain qj(x,y,u)−q̂j(x,y,u)

σ̂j,τ (x,y,u)
∼ N (0, 1),

where σ̂j,τ (x, y, u) is the standard deviation computed by the GP at the
point (x, y, u) by relying on τ samples in the training set Z. This implies
that, with a probability of at least 1− δ, it holds:

qj(x, y, u) ≤ q̂j(x, y, u) + σ̂j,τ (x, y, u)

√
2 log

1

2δ
, (8.7)

where the last inequality is due to the fact that, for a Gaussian random
variable X ∼ N (0, 1), it holds ∀ x > 0, P(X > x) ≤ 1

2
e−

x2

2 .

Let us focus on Eτ . If we sum and subtract from it the following quan-
tities: r̂jvjqj(x∗j , y

∗
j , u

∗
j), r̂j v̂jqj(x∗j , y

∗
j , u

∗
j), and r̂j v̂j q̂j(x∗j , y

∗
j , u

∗
j) for each
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j ∈ {1, . . . , N}, the total error can be decomposed as:

Eτ =
N∑
j=1

(
(rj − r̂j)vjqj(x∗j , y∗j , u∗j)︸ ︷︷ ︸

E1j

+ r̂j(vj − v̂j)qj(x∗j , y∗j , u∗j)︸ ︷︷ ︸
E2j

+

r̂j v̂j[qj(x
∗
j , y
∗
j , u

∗
j)− q̂j(x∗j , y∗j , u∗j)]︸ ︷︷ ︸
E3j

)
+

N∑
j=1

r̂j v̂j q̂j(x
∗
j , y
∗
j , u

∗
j)−

N∑
j=1

r̂j v̂j q̂j(x̂
∗
j , ŷ
∗
j , û

∗
j)︸ ︷︷ ︸

E4

.

If we focus on E1j , with probability at least 1− δ, it holds:

E1j = (rj − r̂j) vj qj(x∗j , y∗j , u∗j)

≤ v(max)

√
1

2τ
log

2

δ

(
q̂j(x

∗
j , y
∗
j , u

∗
j) + σ̂j,τ (x

∗
j , y
∗
j , u

∗
j)

√
2 log

1

δ

)

≤ v(max)

√
2

τ
log

2

δ

(
q̂

(max)
j + σ̂

(max)
j,τ

√
2 log

1

δ

)
,

by relying on the inequalities in Equations (8.5) and (8.7), using a union
bound over these two events, then defining q̂(max)

j := max(x,y,u) q̂j(x, y, u)

and σ̂(max)
j,τ := max(x,y,u) σ̂j,τ (x, y, u), and finally since vj ≤ v(max).

Similarly, we derive the following bound holding with probability at
least 1− δ for E2j:

E2j ≤ v(max)

√
1

2τ
log

2

δ

(
q̂

(max)
j + σ̂

(max)
j,τ

√
2 log

1

δ

)
,

by relying on the inequality in Equation (8.6), and the fact that rj ≤ 1.
Let us focus on E3j . Using the inequality in Equation (8.7), we have

that with probability at least 1− δ:

E3j = r̂j v̂j [qj(x
∗
j , y
∗
j , u

∗
j)− q̂j(x∗j , y∗j , u∗j)]

≤ v(max) σ̂j,τ (x
∗
j , y
∗
j , u

∗
j)

√
2 log

1

2δ
≤ v(max) σ̂

(max)
j,τ

√
2 log

1

2δ
,

where we used r̂j ≤ 1, and v̂j ≤ v(max).
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Finally, let us focus on E4. The vector (x̂∗, ŷ∗, û∗) is the optimal solu-
tion of the optimization problem stated in Equations (8.1a)-(8.1d). There-
fore, by definition, we have that for each (x,y,u) satisfying the constraints
in Equations (8.1a)-(8.1d) the following holds:

N∑
j=1

r̂j v̂j q̂j(xj, yj, uj)−
N∑
j=1

r̂j v̂j q̂j(x̂
∗
j , ŷ
∗
j , û

∗
j) ≤ 0,

which holds also for (x∗,y∗,u∗) and, therefore, E4 is negative.
Recalling that q̂(max) := maxj q̂

(max)
j and σ̂

(max)
τ := maxj σ̂

(max)
j,τ , it

holds, with probability at least 1− δ:

Eτ =
N∑
j=1

(E1j + E2j + E3j) + E4

≤ 2Nv(max)

√
1

2τ
log

6N

δ

(
q̂(max) + σ̂(max)

τ

√
2 log

3N

δ

)
+

Nv(max) σ̂(max)
τ

√
2 log

3N

2δ
,

which concludes the proof.

Our analysis has, so far, focused on the static properties of our problem.
However, the scenario we are studying is a dynamical system due to the
potentially delayed effects induced by the sub-campaigns interdependence.
Therefore, it is crucial to show that, whenever a stationary allocation is
used, the dynamics always reach a steady state in finite time and how their
length is upper bounded. In this context, a steady state allocation provides
a constant number of impressions for each sub-campaign for at least K
consecutive days. We can show the following:

Theorem 14. Using the stationary allocation (x̂∗, ŷ∗, û∗) we reach a steady
state after at most K Γ + 1 days, where K is the maximum lag of the influ-
ence index uj,t and Γ is the length of the longest path of the graph G.

The above theorem states that the more complex the process (e.g., pre-
senting a cascade of interdependences), the more we have to wait to com-
pletely remove the effects of a suboptimal allocation.

Proof. Consider an adjacency matrix D̂ and assume that the lag K is the
same for all the performance indices uj,t. Moreover, consider the sub-
campaigns Ci1 , . . . , CiΓ that make up the longest path on the graph G. To
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achieve the steady state revenue provided by the allocation (x̂∗iΓ , ŷ
∗
iΓ
, û∗iΓ),

an algorithm needs that all the incoming-neighbour sub-campaigns have
reached the optimal allocation for K consecutive days, so as to provide
exactly û∗iΓ as influence index. In particular, this also happens for the sub-
campaign CiΓ .

By induction, this reasoning can be applied for all nodes Cih in the
longest path up to Ci2 . Therefore, every time we traverse a node, we re-
quire K days to conclude the transient for that node, for a total of K Γ
days. Instead, the node Ci1 , being at the beginning of the longest path, has
no incoming neighbours and, therefore, the allocation prescribed by the op-
timal solution is (x̂∗iΓ , ŷ

∗
iΓ
, 0). This implies that the allocation is achieved

on the same day that the stationary allocation is used, leading to a total
number of K Γ + 1 days to reach the desired allocation on the longest path
Ci1 , . . . , CiΓ .

The same reasoning can be replicated on any other path, but since their
length is shorter or equal to the longest one, the maximum number of days
required to reach the allocation (x̂∗, ŷ∗, û∗) takes no longer than K Γ + 1
days.

Experimental Evaluation

We experimentally evaluate the IDL algorithm in a real-world setting and
in a synthetic setting, generated by using a realistic simulator. We compare
the revenue Rt produced by IDL and AdComB-Mean (an off-line version
of the algorithm proposed in Chapter 5 neglecting any sub-campaign inter-
dependence).

Evaaluation in a Real-world Setting

In this experiment, we rely on the data of the second campaign described
in Section 8.1 to train our model. We recall that the length of the dataset is
τ = 93 days (from 20/7/2018 to 20/10/2018), the advertising campaign is
composed of N = 14 sub-campaigns belonging to both social and search
advertising channels. The corresponding estimated interdependence graph
is provided in Figure 8.1c. From 21/10/2018 to 4/11/2018 (15 days), the
campaign optimization has been performed by the IDL algorithm.

When comparing the policies produced by IDL with those produced by
AdComB-Mean (the off-line version of AdComB-TS), the former poli-
cies appear more suitable then the latter ones, as a more significant portion
of the budget is allocated to social sub-campaigns and branding search sub-
campaigns. The interdependence suggested by the Granger Causality Test
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Figure 8.2: GPs estimation of the number of impressions q̂6(1, 2000, u) depending on the
influence index u.

are confirmed by estimations provided by the GPs. Indeed, in Figure 8.2,
we show the expected value of the prediction provided by GPs of the num-
ber of impressions for the sub-campaign C6 with a bid value of x = 1 (i.e.,
one of the most frequent choice during the training set) and y = 2000 (i.e., a
budget large enough to capture all the available user for this sub-campaign).
The number of impressions increases as the value of the influence index
increases, suggesting that a positive correlation between C2 and C3 impres-
sions, and C6 ones exist. However, since in a real setting we cannot exclude
the presence of negative interdependence, to compute the optimal allocation
with the IDL algorithm, we remove the condition in Line 18 of Algorithm 9,
to be able to provide the optimal allocation even if generic interdependence
among sub-campaigns are present. In Figure 8.3, we show the expected
revenue given by optimal policies computed by AdComB-Mean and IDL
for different values of the total budget Y . In this scenario, the exploita-
tion of the sub-campaigns interdependence can lead to a potential revenue
increase up to 13%.

In the 15 days of campaign optimization performed by the IDL algo-
rithm, the number of daily conversions increased by 11% w.r.t. the average
of the previous 30 days (the result is compatible with our prediction, given
that AdComB-TS/Mean provide very close performance). Although this
is a promising result, there is no statistical significance that the IDL algo-
rithm outperforms in practice AdComB-TS/Mean. Due to the impossibil-
ity to directly compare the performance of the two algorithms online (e.g.,
by using an A/B testing system), we resort to a realistic synthetic environ-
ment.
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Figure 8.3: Comparison of the expected revenue Rt given by the AdComB-Mean and
IDL algorithms.
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Figure 8.4: Interdependence graph G for the two synthetic experimental settings.

Evaluation in Synthetic Settings

We evaluate the performance of the IDL algorithm in two synthetic settings,
generated by a realistic simulator, comparing the revenue Rt produced by
the following algorithms: IDL, DA-IDL (Dependency Aware-IDL), a varia-
tion of the IDL algorithm a priori knowing the dependency matrix D, and
AdComB-Mean.

Synthetic Data Generation The synthetic settings are generated as follows.
At day t, each sub-campaign Cj is characterized by the set of the users

Sj,t = sj,t ∪
(⋃

i 6=j sij,t

)
that could potentially visualize the ad of the sub-

campaign Cj . More precisely, we distinguish the set of the users sj,t, that
would visualize the ad of Cj without having previously visualized the ads
of the other interdependent sub-campaigns, from the set of the users sij,t,
that would visualize the ad of Cj only after having visualized the ad of
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Ci. Notice that sij,t is non-empty only if the sub-campaigns Ci and Cj are
interdependent and, more precisely, if dij 6= 0.

The number of users |sj,t| is sampled from N (µj, σ
2
j ), i.e., a Gaussian

distribution with mean µj and variance σ2
j . Each user in sj,t is characterized

by a click probability p(cl)
j and a conversion probability p(co)

j specific for the
sub-campaign Cj . Conversely, the number of users |sij,t| is modeled trough
a linear combination of the number of daily impressions qi,t−1, . . . , qi,t−K
(whose generation is described in what follows), where K represents the
maximum delay in the interdependence dynamics. Formally, we have that

sij,t := p
(res)
ij

K∑
k=1

βk ni,t−k, where βk ∈ [0, 1] are randomly sampled coeffi-

cients and p(res)
ij is the probability that a user having visualized ad of Ci is

a potential user that may visualize Cj . Each user in sij,t is characterized by
a click probability p(cl)

ij and a conversion probability p(co)
ij .

At each day t, setting the bid/budget pairs on each sub-campaign allows
the advertiser to take part to Aj ≤ |Sj,t| auctions based on the Vickrey-
Clarke-Groves mechanism [38], in which γj available ad slots are allocated
to a subset of δj advertisers (γj ≤ δj). More specifically, each advertiser
submits her bid bh and those with the first γj highest values bh ρh are al-
located in the γj slots, where ρh is the probability that h-th ad is clicked
given it has been observed. The bids bh of the other ads participating in
the auctions are drawn from a truncated Normal distribution N (µ(b), σ(b)),
and the click probabilities ρh are uniformly sampled in [0, 1]. In the case
the advertiser wins the m-th auction, the ad gets an impression (qm,j,t = 1,
otherwise qm,j,t = 0). The ad is allocated in a the l-th slot, the ad can be
visualized by an user Sj,t according to the probability of being observed
p(obs)(l). After the impression, the user can click on the ad and generate a
conversion according to the click p(cl)

j and conversion p(co)
j probabilities if

the user belongs to sj,t, and according to the click p(cl)
ij and conversion p(co)

ij

probabilities if the user belongs to sij,t. A click on the ad of Cj provided
by the user corresponding to the m-th auction is denoted by nm,j,t = 1
(nm,j,t = 0 otherwise), and imposes a payment of CPCm,j,t, as specified
by the VCG auction (see [38] for details). The auctions are generated un-
til the daily budget yj,t allocated on the sub-campaign Cj is totally spent,
i.e., the total number of auctions Aj is s.t.

∑Aj
m=1 CPCm,j,t = yj,t or until

Aj = |Sj,t|. Finally, in the case a click happen, the m-th user may con-
vert (com,j,t = 1) or not (com,j,t = 0). The daily impressions, the daily
clicks, the daily conversions (assuming unitary value per conversion), and
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Table 8.1: Parameters of the synthetic settings.

Setting 1 Setting 2
C1 C2 C3 C4 C1 C2 C3 C4 C5

µj 5000 5000 200 1300 10000 10000 10000 700 500
σj 10 10 10 10 10 10 10 5 2
γ2j 5 5 3 3 5 5 5 3 4
δj 5 6 4 5 5 5 6 4 5
µ(b) 0.89 1.19 1.59 1.59 0.10 0.10 0.10 1.0 1.5
σ(b) 0.32 0.12 0.2 0.2 0.032 0.032 0.012 0.2 0.2
p(obs)(1) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
p(obs)(2) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
p(obs)(3) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
p(obs)(4) 0.6 0.6 - - 0.6 0.6 0.6 - 0.65
p(obs)(5) 0.5 0.5 - - 0.5 0.5 0.5 - -
p
(cl)
j 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.3 0.4
p
(co)
j 0.001 0.05 0.2 0.2 0.001 0.001 0.011 0.06 0.3

the daily costs are computed as qj,t =
∑Aj

m=1 qm,j,t, nj,t =
∑Aj

m=1 nm,j,t,
coj,t =

∑Aj
m=1 com,j,t, respectively.

We report in Table 8.1 the values of the main parameters used in the two
synthetic settings in which we test our algorithm.

Experiment #1 There are N = 4 sub-campaigns, with delayed dynamics
of K = 5 days, whose interdependence graph is shown in Figure 8.4a.
The longest path of the interdependence graph G is Γ = 1. C1 and C2

are on the display advertising channel and are targeted to a wide range
of daily users, thus generating a large number of daily auctions, but their
conversion probability is low. C3 and C4 are on the search advertising
channel, generating a small number of daily auctions, but their conversion
probability is high.

We use B = 500 and B = 10 daily budget values evenly spaced in
the range [0, 500]. The GPs used to estimate the impressions model of the
sub-campaigns adopt a squared exponential kernel in which the kernel pa-
rameters are chosen as recommended by [48]. We evaluate the performance
of the algorithms with different numbers of samples τ ∈ {60, 80, 100} in
the training set Z. In the first τ days, a uniformly random allocation is used
to collect data and, after that, the algorithms compute the optimal solution
based on their estimates and then set it. In Figure 8.5a, we report the av-
erage (over 100 repetitions) revenue Rt produced by the algorithms with a
training of τ = 100 samples. From t = 100 on, the optimal stationary solu-
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tion is used. The average revenue of each algorithm peaks at t = 101 and,
for t > 101, decreases by converging to a steady state within K Γ + 1 = 6
days. The peak is generated by the presence of a large number of resid-
ual users who have observed display ads during training and who, after
t = 100, observe search ads. These residual users decrease for t > 101
until they reach a steady state. Thus, (temporary) peaks may be achieved
with non-stationary policies.

The DA-IDL algorithm exhibits the best performance, exploiting the a
priori knowledge of the adjacency graph D. The gap between the revenue
produced by the IDL and DA-IDL algorithms, due to the estimation error in-
troduced on D̂, is sufficiently small, showing that the Granger Causality test
used by the IDL algorithm works well in practice. Instead, the revenue pro-
duced by the AdComB-Mean algorithm, neglecting the interdependence
among sub-campaigns, is much smaller than that produced by the other
two algorithms. This is due to the very different budget allocations chosen
by the three algorithms: the IDL and DA-IDL algorithms optimally balance
the budget on all the sub-campaigns, while the AdComB-Mean algorithm
greedily invests the budget only in the search sub-campaigns C3 and C4.
Interestingly, the performance of the AdComB-Mean algorithm is quite
similar to that of the uniformly random allocation used during training.

In Figure 8.5b, we report the average revenue Rt at the steady-state (av-
eraged over the 100 independent repetitions and over t ∈ {106, . . . , 120})
and the 95% confidence intervals as the number of samples τ used for train-
ing increases. All algorithms always perform better than the uniformly ran-
dom allocation. The performance of both the IDL and DA-IDL algorithms
is significantly better than the one provided by AdComB-Mean (confi-
dence intervals do not overlap). The use of more training samples provides
an improvement in terms of steady-state revenue for the IDL and DA-IDL
algorithms. On the other hand, the performance of the AdComB-Mean
algorithm does not benefit from having more samples, which is probably
due to the presence of a model bias induced by the fact that it neglects the
sub-campaign interdependence.

Experiment #2 There are N = 5 sub-campaigns, whose interdependence
graph is shown in Figure 8.4b. The longest path of the interdependence
graph G is Γ = 2. C1, C2, and C3 are display sub-campaigns directed to
a wide audience and have a low cost per impression, but a low conversion
rate. C4 is a social sub-campaign, whose number of impressions is influ-
enced by the influence index of the display sub-campaigns. Finally, C5 is a
search sub-campaign, whose impressions depend on the influence index of
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C1 and C4. The interdependence among the sub-campaigns occurs within
K = 3 days and is modeled as in Setting 1. We set a cumulative budget
of B = 500 and the budget discretization from the interval [0, 500] with
B = 100. The number of samples for training is τ ∈ {100, 150, 200}.

In Figure 8.5c, we report the average (over 100 repetitions and over t ∈
{107, . . . , 120}) revenue of the algorithms. The performance of AdComB-
Mean is worse than the one of the uniformly random allocation and gets
worse as τ increases. This is an empirical confirmation of the statement
of Theorem 12, showing that a solution that is optimal without interdepen-
dence might perform arbitrarily bad. Conversely, the performance of IDL
and DA-IDL are significantly larger than that of the uniformly random allo-
cation and increase as the number of samples increases.

Final Remarks Results obtained in synthetic settings show that this model,
relying on a training time which is reasonable for the application, provides
a significant improvement in terms of revenue of an Internet advertising
campaign. Experts in the marketing field confirmed the feasibility of what
proposed in terms of learning time. Conversely, adopting more complex
models would most likely result unaffordable in most of the cases, since
accurate estimations would require a larger training set and, therefore, ex-
cessively long learning periods in real-world scenarios.
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Figure 8.5: Results for the Settings 1 and 2. (a) Revenue Rt over time for the Setting
1. (b) Revenue Rt in steady state conditions for different training sizes τ in Setting 1.
(c) Revenue Rt in steady state conditions for different training sizes τ in Setting 2. In
(b) and (c), the revenue of the random allocation is reported with a dotted magenta
line and the vertical lines represent the 95% confidence intervals for the algorithms
revenue. 112



CHAPTER9
Conclusions and Future Research

Internet advertising campaigns optimization is a challenging problem in-
volving different tasks and sub-problems that can not be efficiently ad-
dressed by human agents. The optimization of these tasks is of paramount
importance for companies and media agencies that need automatic tools to
support marketers in campaigns management and increase their revenue. In
this thesis, we presented a set of algorithms addressing the most important
problems involved in the internet advertising optimization. First, we fo-
cused on the joint optimization of the bid and the budget of a set of adver-
tising campaigns. We presented the AdComB algorithm, a method capable
of choosing the values of the bid and the daily budget of a set of Internet
advertising sub-campaigns to maximize, in an online fashion, the revenue
under a budget constraint. The algorithm exploits Gaussian Processes to es-
timate the campaigns performance, combinatorial bandit techniques to ad-
dress the exploration/exploitation dilemma in the bid/daily budget choice,
and a dynamic programming procedure to solve the allocation optimiza-
tion problem. We propose four flavors of our approach: AdComB-U-UCB
which uses an unfactorized model for the bid/daily budget space and con-
fidence bounds for exploration, AdComB-U-TS which uses an unfactor-
ized model and sampling as exploration strategy, AdComB-F-UCB which
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uses a factorized model and upper confidence bounds, and AdComB-F-TS
which uses a factorized model and sampling for exploration. We theoret-
ically analyze our algorithms and we provide high probability bounds on
the regret of Õ(

√
T ), where T is the time horizon of the learning process.

Our experimental results, on both synthetic settings and real-world settings,
show that our algorithms tackle the problem properly, outperforming other
naive algorithms based on existing solutions and the human expert.

As future work, we plan to design an algorithm for the adaptive dis-
cretization of the bid and budget space, depending on the complexity of the
setting and the time horizon T . Furthermore, while in the present work we
assume that the environment, including the users and the other advertisers,
is stationary over time, we will investigate non-stationary environments,
e.g., including seasonalities and sudden changes in the market and in the
competitors strategies.

In the second part of the thesis, we addressed the bid optimization prob-
lem and we proposed a novel framework that introduces the concept of
safety for the algorithms choosing the bid allocation each day. More specif-
ically, our approach aims at satisfying, with high probability, some daily
ROI and spend constraints fixed by the business units of the companies.
We model this setting as a constrained optimization problem. Furthermore,
we proved that such a problem is inapproximable within any strict factor,
unless P = NP, but it admits an exact pseudo-polynomial-time algorithm.
Most interestingly, we demonstrated that no online learning algorithms can
provide sublinear pseudo-regret while guaranteeing to be safe. We showed
that the adaption of the GCB algorithm provides a sublinear pseudo-regret;
however, it may violate the constraints a linear number of times. Thus, we
design GCBsafe, a new algorithm that guarantees safety at the cost of a
loss in terms of revenue. Finally, we evaluate the empirical performance
of the two algorithms on synthetically generated advertising problems. Re-
markably, GCBsafe provides good performance in terms of safety, while
suffering from a small loss w.r.t. GCB in terms of cumulative revenue.

As future works, an interesting open research direction is to explore how
to define a less strict safety property, allowing the algorithm to overcome
the impossibility result we showed. A new concept of safety may allow
the constraints to hold only in expectation over the time horizon. Another
option is to let the constraints change during the learning process, e.g., be-
come stricter over time. In the third part of this thesis, we addressed the
targeting optimization problem. We designed a new method to define the
optimal target of an advertising campaign, which exploits the information
gathered from past interactions between a set of users and the advertising
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campaign to estimate the performance of all the possible sub-campaigns in
the target space and select the campaign providing maximum revenue. We
propose the TargOpt algorithm, which follows the risk-averse framework,
to solve the optimization problem to explore the target space completely.
Moreover, in the case the dimension of the target space is too large, we
provided the A-TargOpt algorithm, which allows to iteratively expand the
space we analyse, and two different heuristics to effectively explore the
target space, thus providing an anytime version of the TargOpt algorithm.
Finally, we showed on both synthetically generated and real-world datasets
that the proposed algorithms increase the revenue gained from the advertis-
ing campaign.

An interesting future work is the study of a criterion to decide what
is the optimal number of days T after which we run one of the proposed
algorithms. Another challenging extension of this work is the inclusion of
the target optimization procedure in an online learning framework.

In the last part of this thesis, we formalized, for the first time, the prob-
lem of optimizing an Internet advertising campaign with sub-campaigns
interdependence. We presented the IDL algorithm that, given a set of past
observations, models these interdependences and returns an optimal alloca-
tion of the bid/daily budget on the sub-campaigns maximizing the revenue.
We analysed the properties of the IDL algorithm both theoretically, provid-
ing a bound on the total error, and empirically, showing that it provides
revenues on synthetic datasets significantly better than other approaches
that do not exploit sub-campaigns interdependencies.

In the future, we will extend IDL to an online framework, and we will
extend the interdependency analysis, including other advertising channels.
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APPENDIXA
Online Bid/Budget Optimization

Proofs

[From [52]] Given the realization of a GP f(·), the estimates of the mean µ̂t−1(x) and variance
σ̂2
t−1(x) for the input x belonging to the input space X , for each b ∈ R+ the following condition

holds:
P
(
|f(x)− µ̂t−1(x)| ≥

√
b σ̂t−1(x)

)
≤ e−

b
2 ,

for each x ∈ X .

Proof. Be r ∼ N (0, 1) and c ∈ R+, we have:

P[r > c] =
1√
2π
e−

c2

2

∫ ∞
c

e−
(r−c)2

2
−c(r−c) dr ≤ e−

c2

2 P[r > 0] =
1

2
e−

c2

2 ,

since e−c(r−c) ≤ 1 for r ≥ c. For the symmetry of the Gaussian distribution, we have:

P[|r| > c] ≤ e−
c2

2 .

Applying the above result to r =
f(x)−µ̂t−1(x)

σ̂t−1(x)
and c =

√
b concludes the proof.

Theorem 1. Let us consider an ABBA problem over T rounds where the functions nj(x, y) is the
realization of a GP. Using the AdComb-U-UCB algorithm with the following upper bounds for the
number of clicks and of value per click:

û
(n)
j,t−1(x, y) := µ̂j,t−1(x, y) +

√
bt σ̂j,t−1(x, y),

û
(v)
j,t−1 := ν̂j,t−1 +

√
b′t ψ̂

2
j,t−1,
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respectively, with bt := 2 log
(
π2NMt2

3δ

)
and b′t := 2 log

(
π2Nt2

3δ

)
. For every δ ∈ (0, 1), the

following holds with probability at least 1− δ:

RT (U) ≤

{
8TNbT

[
v2

max

log
(
1 + 1

λ

) N∑
j=1

γT (nj)

+ξ(nmax + 2
√
b′tσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]} 1
2

,

where, λ and ξ are variances of the measurement noise of the click functions nj(·) and of the value
per click vj , respectively, vmax := maxj∈{1,...,N} vj is the maximum expected value per click,
nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maximum expected number of click we might
obtain on average over all the campaigns Cj , and σ2 := k(a,a) ≥ σ̂2

j,t(a) for each j, t and a.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN

N∑
j=1

γT (nj)

 ,

where the notation Õ(·) disregards the logarithmic factors.

Proof. In AdComb-U-UCB, we assume the number of clicks nj(x, y) = nj(a) of a campaign Cj
be the realization of a GP over the space D of the bid/daily budget pairs a = (x, y). Using the
selected input aj,h and the corresponding observations ñj,h = ñj,h(aj,h) for each h ∈ {1, . . . , t−
1}, the GP provides the estimates of the mean µ̂j,t−1(a) and variance σ̂2

j,t−1(a) for each a ∈ D.
The sampling phase is based on the upper bounds on the number of clicks and on the value per click,
formally:

u
(n)
j,t−1(a) := µ̂j,t−1(a) +

√
bt σ̂j,t−1(a), (A.1)

u
(v)
j.t−1 := ν̂j,t−1 +

√
b′t ψ̂j,t−1. (A.2)

Applying Lemma A.1 to Equation (A.1) for a generic arm a and b = bt we have:

P
[
|nj(a)− µj,t−1(a)| >

√
btσ̂j,t−1(a)

]
≤ e−

bt
2 .

In the execution of the AdComb-U-UCB algorithm, after t− 1 rounds, each arm can be chosen
a number of times from 0 to t− 1. Applying the union bound over the rounds (t ∈ {1, . . . , T}), the
campaigns (j ∈ {1, . . . , N}) and the available arms in each campaign D (a ∈ D), and exploiting
Lemma (A.1), we obtain:

P

 ⋃
t∈{1,...,T}

⋃
j∈{1,...,N}

⋃
a∈D

(
|nj(a)− µ̂j,t−1(a)| >

√
bt σ̂j,t−1(a)

)
≤

T∑
t=1

N∑
j=1

Me−
bt
2 .

Thus, choosing bt = 2 log
(
π2NMt2

3δ

)
, we obtain:

T∑
t=1

N∑
j=1

Me−
bt
2 =

N∑
j=1

T∑
t=1

M
3δ

π2NMt2
≤ δ

2

1

N

N∑
j=1

(
6

π2

∞∑
t=1

1

t2

)
=
δ

2
.
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Similarly, using Lemma A.1, we have:

P
[
|vj − ν̂j,t−1| >

√
b′t ψ̂j,t−1

]
≤ e−

b′t
2 ,

which holds for each j ∈ {1, . . . , N}. Choosing b′t = 2 log
(
π2Nt2

3δ

)
and applying an union bound

we have:

P

 ⋃
t∈{1,...,T}

⋃
j∈{1,...,N}

(
|vj − ν̂j,t−1| >

√
b′t ψ̂j,t−1

)
≤

N∑
j=1

T∑
t=1

e−
bt
2 =

N∑
j=1

T∑
t=1

3δ

π2Nt2
≤ δ

2
.

Therefore, the event that at least one of the upper bounds over the number of clicks and the value per
click does not hold has probability less than δ.

Assume to be in the event that all the previous bounds hold. The instantaneous pseudo-regret
regt at round t satisfies the following inequality:

regt = r∗µ − rµ(St) ≤ r∗µ − rµ̄t(St) + rµ̄t(St)− rµ(St),

where µ̄t := (u
(v)
1,t−1u

(n)
1,t−1(a1), . . . , u

(v)
N,t−1u

(n)
N,t−1(aM )) is the vector composed of all the upper

bounds of the different arms (of dimension NM ). Let us recall that, given a generic superarm S, if
all the elements of a vector µ are larger than the ones of µ′ the following holds:

rµ(S) ≥ rµ′(S).

Let us focus on the term rµ̄t(St). The following inequality holds:

rµ̄t(St) ≥ r∗µ̄t ≥ rµ̄t(S
∗
µ) ≥ rµ(S∗µ) = r∗µ, (A.3)

where S∗µ ∈ arg maxS∈S(rµ(S)) is the super-arm providing the optimum expected reward when
the expected rewards are µ. Thus, we have:

regt ≤ rµ̄t(St)− rµ(St)

≤ rµ̄t(St)− rµt(St) + rµt(St)− rµ(St),

where µt := (η̂1,t−1µ̂1,t−1(a1), . . . , η̂N,t−1µ̂N,t−1(aM )) is the vector composed of the estimated
average payoffs for each arm a ∈ D.

A bound the terms (rµ̄t(St) − rµt(St)) is provided by the definition of the upper confidence
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bounds:

rµ̄t(St)− rµt(St) =

N∑
j=1

[
u

(v)
j,t−1u

(n)
j,t−1(aj,t)− ν̂j,t−1µ̂j,t−1(aj,t)

]

=

N∑
j=1

[
ν̂j,t−1

√
bt σ̂j,t−1(aj,t) + µ̂j,t−1(aj,t)

√
b′t ψ̂j,t−1 +

√
bt σ̂j,t−1(aj,t)

√
b′t ψ̂j,t−1

]

≤
N∑
j=1

{[
vj +

√
b′t ψ̂j,t−1

]√
bt σ̂j,t−1(aj,t)

+
[
nj(aj,t) +

√
bt σ̂j,t−1(aj,t)

]√
b′t ψ̂j,t−1 +

√
bt σ̂j,t−1(aj,t)

√
b′t φ̂j,t−1

}
≤

N∑
j=1

[
vmax

√
bt max
a∈D

σ̂j,t−1(a) + nmax

√
b′t ψ̂j,t−1 + 3

√
btb′t ψ̂j,t−1 max

a∈D
σ̂j,t−1(a)

]

≤ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) + nmax

√
bt

N∑
j=1

ψ̂j,t−1 + 3
√
btb′t

N∑
j=1

ψ̂j,t−1 max
a∈D

σ̂j,t−1(a)

≤ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) + (nmax

√
bt + 3

√
btb′tσ)

N∑
j=1

ψ̂j,t−1,

where aj,t is the arm chosen for campaign Cj in the superarm St, vmax := maxj∈{1,...,N} vj is the
maximum expected value per click, nmax := maxj,a nj(a) is the maximum expected number of
clicks for any campaign. In the above derivation we used that σ2

j,t(a) ≤ k(a,a) =: σ2 for each j,
t and a.

Let us focus on the term (rµt(St)− rµ(St)):

rµt(St)− rµ(St) =

N∑
j=1

[ν̂j,t−1µ̂j,t−1(aj,t)− vjnj(aj,t)]

=
N∑
j=1

[ν̂j,t−1µ̂j,t−1(aj,t)− ν̂j,t−1nj(aj,t) + ν̂j,t−1nj(aj,t)− vjnj(aj,t)]

≤
N∑
j=1

[
(vj +

√
b′t ψ̂j,t−1)(µ̂j,t−1(aj,t)− nj(aj,t)) + nj(aj,t)(ν̂j,t−1 − vj)

]

≤
N∑
j=1

(vmax +
√
b′tψ̂j,t−1)

√
bt max
a∈D

σ̂j,t−1(a) + nmax

√
b′t

N∑
j=1

ψ̂j,t−1

≤ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) + (nmax

√
bt +

√
btb′tσ)

N∑
j=1

ψ̂j,t−1,

where we used arguments similar to the ones considered in the previous derivation.
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Overall, summing up the two terms, we have:

regt ≤ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) + (nmax

√
bt + 3

√
btb′tσ)

N∑
j=1

ψ̂j,t−1

+ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) + (nmax

√
bt +

√
btb′tσ)

N∑
j=1

ψ̂j,t−1

= 2
√
bt

[
vmax

N∑
j=1

max
a∈D

σ̂j,t−1(a) + (nmax + 2
√
b′tσ)

N∑
j=1

ψ̂j,t−1

]
.

We need now to upper bound σ̂i,t−1(a) and ψ̂j,t−1. Recall that, thanks to Lemma 5.3 in [52],
under the Gaussian assumption we can express the information gain provided by the observations
nt−1 = (ñj,1, . . . , ñj,t−1) corresponding to the sequence of arms (aj,1, . . . ,aj,t−1) as:

IG(nt−1 |nj) =
1

2

t−1∑
h=1

log

(
1 +

σ̂2
j,h(aj,h)

λ

)
.

Since bh is non-decreasing in h, we can write:

σ2
j,h(aj,h) = λ

[
σ̂2
j,h(aj,h)

λ

]
≤

log

(
1 +

σ̂2
j,h(aj,h)

λ

)
log
(
1 + 1

λ

) , (A.4)

since s2 ≤ log (1+s2)

λ log(1+ 1
λ )

for all s ∈ [0, 1
λ

], and
σ̂2
j,h(aj,h)

λ
≤ k(aj,h,aj,h)

λ
≤ 1

λ
.

Using the definition of ψ̂j,t−1 we have:

t−1∑
h=1

ψ̂2
j,t−1 =

t−1∑
h=1

ψ2
j ξ

ξ + (h− 1)ψ2
j

≤ ξ log

(
ξ

ψ2
j

+ t

)
.

Since Equation (A.4) holds for any a ∈ D, then it also holds for the arm amax maximizing the
variance σ2

j,h(aj,h) in nj defined over D. Thus, using the Cauchy-Schwarz inequality, we obtain:
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R2
T (U) ≤ T

T∑
t=1

reg2
t

≤ 4TbT

T∑
t=1

2v2
max

(
N∑
j=1

max
a∈Dj

σj,t−1(a)

)2

+ 2(nmax + 2
√
b′tσ)2

(
N∑
j=1

ψ̂j,t−1

)2


≤ 8TbT

{
T∑
t=1

[
v2

maxN

N∑
j=1

max
a∈D

σ̂2
j,t−1(a)

]
+

T∑
t=1

[
(nmax + 2

√
b′tσ)2N

N∑
j=1

ψ̂2
j,t−1

]}

≤ 8TNbT

{
v2

max

N∑
j=1

T∑
t=1

max
a∈D

log

(
1 +

σ̂2
i,n−1(a)

λ

)
log
(
1 + 1

λ

)


+ (nmax + 2
√
b′tσ)2

N∑
j=1

T∑
t=1

ψ̂2
j,t−1

}

≤ 8TNbT

{
v2

max

log
(
1 + 1

λ

) N∑
j=1

T∑
t=1

max
a∈D

log

(
1 +

σ̂2
i,n−1(a)

λ

)
︸ ︷︷ ︸

=γT (nj)

+ ξ(nmax + 2
√
b′tσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)}

≤ 8TNbT

[
v2

max

log
(
1 + 1

λ

) N∑
j=1

γT (nj) + ξ(nmax + 2
√
b′tσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]
.

We conclude the proof by taking the square root on both the r.h.s. and the l.h.s. of the last inequality.

Theorem 2. Let us consider an ABBA problem over T rounds where the functions nj(x, y) is the
realization of a GP. Using the AdComb-U-TS algorithm, for every δ ∈ (0, 1), the following holds
with probability at least 1− δ:

RT (U) ≤

{
8TN

[
v2

max

log
(
1 + 1

λ

) bT N∑
j=1

γT (nj)

+ξb′T (nmax +
√
bTσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,

where bt := 8 log
(

2NMt2

3δ

)
, b′t := 8 log

(
2Nt2

3δ

)
, λ and ξ are variances of the measurement noise

of the click functions nj(·) and of the value per click vj , respectively, vmax := maxj∈{1,...,N} vj
is the maximum expected value per click, nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maxi-
mum expected number of click we might obtain on average over all the campaigns Cj , and σ2 :=
k(a,a) ≥ σ̂2

j,t(a) for each j, t and a.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN

N∑
j=1

γT (nj)

 .
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Proof. Recall that in AdComb-2D-TS we assume the number of clicks nj(x, y) = nj(a) of a
campaign Cj is the realization of a GP over the space D of the bid/budget pairs a = (x, y).
Using the selected input aj,h and corresponding observations ñj,h = ñj,h(aj,h) for each h ∈
{1, . . . , t−1} the GP provides us with the estimates of the mean µ̂j,t−1(a) and variance σ̂2

j,t−1(a)
for each a ∈ D. The sampling phase generates the following two values for the number of
clicks and on the value per click, formally, for each campaign Cj , a sample θ(n)

j,t−1(a) is extracted

from N (µ̂j,t−1(a), σ̂2
j,t−1(a)) for the number of clicks, and a sample θ(v)

j,t−1 is extracted from
N (ν̂j,t−1, ψ̂j,t−1).

Let us focus on θ(n)
j,t−1(a). Since Lemma A.1 also applies to univariate Gaussian distributions,

it holds for θ(n)
j,t−1(a), for a generic arm a, and, formally, we have:

P
[
|θ(n)
j,t−1(a)− µ̂j,t−1(a)| >

√
btσ̂j,t−1(a)

]
≤ e−

bt
2 ,

for each bt > 0. By relying on the triangle inequality, fora each a ∈ D we have:

P
[
|θ(n)
j,t−1(a)− nj(a)| >

√
btσ̂j,t−1(a)

]
≤ P

[
|θ(n)
j,t−1(a)− µ̂j,t−1(a)|+ |µ̂j,t−1(a)− nj(a)| >

√
btσ̂j,t−1(a)

]
≤ P

[
|θ(n)
j,t−1(a)− µ̂j,t−1(a)| > 1

2

√
btσ̂j,t−1(a)

]
+ P

[
|µ̂j,t−1(a)− nj(a)| > 1

2

√
btσ̂j,t−1(a)

]
≤ 2e−

bt
8 .

Similarly to what done in the proof of Theorem 1, setting bt := 8 log
(

2NMt2

3δ

)
, applying the

union bound over the rounds, the subsets D, the number of times the arms are chosen in D, and the
available arms, we have that the following holds with probability at least 1− δ

2
:

|θ(n)
j,h−1(a)− nj(a)| <

√
bhσ̂j,h−1(a),

for all a ∈ Dj , j ∈ {1, . . . N} and h ∈ {1, . . . , t}.
The same reasoning can be carried out with θ(v)

j,t−1 setting b′t := 8 log
(

2Nt2

3δ

)
, so that the

following bound:
|θ(v)
j,t−1 − vj | <

√
b′tψ̂j,t−1,

holds for each j ∈ {1, . . . , N} and h ∈ {1, . . . , t}with probability at least 1− δ
2

. Therefore, jointly,
the bounds over the number of clicks and on the value per click hold with probability at least 1− δ.

Let us assume that all previous bounds hold. Consider the instantaneous pseudo-regret regt at
round t:

regt = r∗µ − rµ(St)

= r∗µ − rθt(S
∗
µ) + rθt(S

∗
µ)− rθt(St) + rθt(St)− rµ(St)

≤ |rµ(S∗µ)− rθt(S
∗
µ)|+ |rθt(St)− rµ(St)|,

where θt := (θ
(v)
1,t−1θ

(n)
1,t−1(a1), . . . , θ

(v)
N,t−1θ

(n)
N,t−1(aM )) is the vector of the drawn payoffs for

the turn t and rθt(S
∗
µ) − rθt(St) ≤ 0 for the fact that the chosen arm St maximize the reward

assuming an expected reward over the arms of θt.
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Let us focus on the term |rµ(S)− rθt(S)| on a generic superarm S = (a1, . . .aN ):

|rµ(S)− rθt(S)| =
N∑
j=1

|vjnj(aj)− θ(v)
j,t−1θ

(n)
j,t−1(aj)|

=

N∑
j=1

|vjnj(aj)− θ(v)
j,t−1nj(aj)|+ |θ

(v)
j,t−1nj(aj)− θ

(v)
j,t−1θ

(n)
j,t−1(aj)|

=
N∑
j=1

[
nmax

√
b′tψ̂j,t−1 + θ

(v)
j,t−1

√
btσ̂j,t−1(aj)

]

= nmax

√
b′t

N∑
j=1

ψ̂j,t−1 +

N∑
j=1

(
vj +

√
b′tψ̂j,t−1

)√
btσ̂j,t−1(aj)

= nmax

√
b′t

N∑
j=1

ψ̂j,t−1 + vmax

√
bt

N∑
j=1

σ̂j,t−1(aj) +
√
btb′tσ

N∑
j=1

ψ̂j,t−1

≤ vmax

√
bt

N∑
j=1

max
a∈D

σ̂j,t−1(a) +
√
b′t(nmax +

√
btσ)

N∑
j=1

ψ̂j,t−1,

and, therefore, the instantaneous regret regt is bounded by twice the quantity we derived.
The cumulative regret becomes:

R2
T (U) ≤ T

T∑
t=1

reg2
t

≤ 4T

T∑
t=1

2v2
maxbt

(
N∑
j=1

max
a∈Dj

σj,t−1(a)

)2

+ 2b′t(nmax +
√
btσ)2

(
N∑
j=1

ψ̂j,t−1

)2


≤ 8T

{
bT

T∑
t=1

[
v2

maxN

N∑
j=1

max
a∈D

σ̂2
j,t−1(a)

]
+ b′T

T∑
t=1

[
(nmax +

√
btσ)2N

N∑
j=1

ψ̂2
j,t−1

]}

≤ 8TN

[
v2

max

log
(
1 + 1

λ

) bT N∑
j=1

γT (nj) + ξb′T (nmax +
√
bTσ)2

N∑
j=1

log

(
ξ

ψ2
j

+ T

)]
.

We conclude the proof by taking the square root on both the r.h.s. and the l.h.s. of the last inequality.

Theorem 3. Let us consider an ABBA problem over T rounds where the functions nsat
j (x) and

esatj (x) are the realization of GPs. Using the AdComb-F-UCB algorithm with the following upper
bounds for the number of clicks, the number of clicks per unit of budget, and the value per click,
respectively:

u
(n)
j,t−1(x) := µ̂j,t−1(x) +

√
btσ̂j,t−1(x),

u
(e)
j,t−1(x) := η̂j,t−1(x) +

√
btŝj,t−1(x),

u
(v)
j,t−1 := ˆνj,t−1 +

√
b′tψ̂j,t−1,

with bt = 2 log
(
π2NMt2

2δ

)
and b′t := 2 log

(
π2Nt2

2δ

)
. For every δ ∈ (0, 1), the following holds
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with probability at least 1− δ:

RT (U) ≤

{
TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
j=1

γT (ej)

+c̄3b
′
T

(
2symax

√
bT + 2σ

√
bT + nsat

max

)2
N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,

where c̄1 :=
12v2max

log(1+ 1
λ )

, c̄2 :=
12v2maxy

2
max

log(1+ 1
λ′ )

, and c̄3 := 12ξ, ξ, λ and λ′ are the variance of the

value per click, measurement noise on the maximum number of clicks and number of clicks per unit
of daily budget, respectively, vmax := maxj∈{1,...,N} vj is the maximum expected value per click,
nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maximum expected number of click we might
obtain on average over all the campaigns Cj , ymax := maxy∈Y y is the maximum budget one can
allocate on a campaign, and σ2 := k(x, x) ≥ σ̂2

j,t(x), s2 := k′(x, x) ≥ ŝ2
j,t(x) for each j, t and

x.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN

N∑
j=1

[γT (nj) + γT (ej)]

 .

Proof. At first notice that Lemma A.1 can be applied to the quantities of maximum number of
clicks, maximum cost and value per click. This allows, setting bt := 2 log

(
π2NMt2

2δ

)
and b′t :=

2 log
(
π2Nt2

2δ

)
, that the following bounds for each arm x and each round t hold at the same time:

|nsat
j (x)− µ̂j,t−1(x)| ≤

√
btσ̂j,t−1(x),

|esatj (x)− η̂j,t−1(x)| ≤
√
btŝj,t−1(x),

|vj − ν̂j,t−1| ≤
√
b′tψ̂j,t−1,

with probability at least 1 − δ, since each one of the above events holds with probability at least
1− δ

3
.

Assume that the previous bounds hold and consider the following quantity:∣∣min
{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ . (A.5)

If we are able to provide a bound for this quantity, then following the proof of Theorem 1 it is
possible to provide a bound on the regret of the AdComb-F-UCB algorithm.

Depending on the values of y, esatj (x) and η̂j,t−1(x) we can distinguish the following 4 cases:
Case 1: if ycsatj (x) > nsat

j (x) ∧ yη̂j,t−1(x) > µ̂j,t−1(x) the quantity in Equation A.5 becomes:∣∣min
{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ (A.6)

≤ |nsat
j (x)− µ̂j,t−1(x)| ≤

√
btσ̂j,t−1(x). (A.7)

Case 2 ycsatj (x) < nsat
j (x) ∧ yη̂j,t−1(x) < µ̂j,t−1(x) the quantity in Equation A.5 becomes:∣∣min

{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ (A.8)

= y
∣∣esatj (x)− η̂j,t−1(x)

∣∣ ≤ ymax

√
btŝj,t−1(x). (A.9)
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Case 3:
nsat
j (x)

esatj (x)
< y <

µ̂j,t−1(x)

η̂j,t−1(x)
the quantity in Equation A.5 becomes:

∣∣min
{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ (A.10)

=
∣∣nsat
j (x)− yη̂j,t−1(x)

∣∣ (A.11)

≤ y
∣∣esatj (x)− η̂j,t−1(x)

∣∣ ≤ ymax

√
btŝj,t−1(x), (A.12)

where we used that nsat
j (x) ≤ yesatj (x).

Case 4: µ̂j,t−1(x)

η̂j,t−1(x)
< y <

nsat
j (x)

esatj (x)
the quantity in Equation A.5 becomes:

∣∣min
{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ (A.13)

=
∣∣yesatj (x)− µ̂j,t−1(x)

∣∣ (A.14)

≤ |nsat
j (x)− µ̂j,t−1(x)| ≤

√
btσ̂j,t−1(x), (A.15)

where we used that nsat
j (x) ≥ yesatj (x).

Overall we have that:∣∣min
{
nsat
j (x), yesatj (x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣ (A.16)

≤
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x)) . (A.17)

Similarly to what has been provided above, let us focus on the quantity:∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂1,t−1(x)}

∣∣∣ , (A.18)

which can be bounded by looking at the same 4 different cases.
Case 1: if yu(e)

j,t−1(x) > u
(n)
j,t−1(x) ∧ yη̂j,t−1(x) > µ̂j,t−1(x) the quantity in Equation A.18

becomes by definition:∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂1,t−1(x)}

∣∣∣ (A.19)

= |u(n)
j,t−1(x)− µ̂j,t−1(x)| =

√
btσ̂j,t−1(x). (A.20)

Case 2 yu(e)
j,t−1(x) < u

(n)
j,t−1(x) ∧ yη̂j,t−1(x) < µ̂j,t−1(x) the quantity in Equation A.18 becomes:∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂j,t−1(x)}

∣∣∣ (A.21)

= y
∣∣∣u(e)
j,t−1(x)− η̂1,t−1(x)

∣∣∣ (A.22)

≤ ymax

√
btŝj,t−1(x). (A.23)

Case 3:
u
(n)
j,t−1(x)

u
(e)
j,t−1(x)

< y <
µ̂j,t−1(x)

η̂j,t−1(x)
the quantity in Equation A.18 becomes:

∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂1,t−1(x)}

∣∣∣ (A.24)

=
∣∣∣u(n)
j,t−1(x)− yη̂j,t−1(x)

∣∣∣ (A.25)

≤ y
∣∣∣u(e)
j,t−1(x)− η̂j,t−1(x)

∣∣∣ (A.26)

≤ ymax

√
btŝj,t−1(x). (A.27)
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Case 4: µ̂j,t−1(x)

η̂j,t−1(x)
< y <

u
(n)
j,t−1(x)

u
(e)
j,t−1(x)

the quantity in Equation A.18 becomes:

∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂1,t−1(x)}

∣∣∣ (A.28)

=
∣∣∣yu(e)

j,t−1(x)− µ̂j,t−1(x)
∣∣∣ (A.29)

≤
∣∣∣u(n)
j,t−1(x)− µ̂j,t−1(x)

∣∣∣ =
√
btσ̂j,t−1(x). (A.30)

Overall we have the bound:

∣∣∣min
{
u

(n)
j,t−1(x), yu

(e)
j,t−1(x)

}
−min {µ̂j,t−1(x), yη̂1,t−1(x)}

∣∣∣ (A.31)

≤
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x)) . (A.32)

Since the definition of per round regret regt is the same as the one in Theorem 1, defining:

µ̄t :=

(
u

(v)
1,t−1 min

{
u

(n)
1,t−1(x1), y1u

(e)
1,t−1(x1)

}
, . . . ,

u
(v)
N,t−1 min

{
u

(n)
N,t−1(xM ), yMu

(e)
N,t−1(xM )

})
,

µt :=

(
ν̂1,t−1 min {µ̂1,t−1(x1), y1η̂1,t−1(x1)} , . . . ,

ν̂N,t−1 min {µ̂N,t−1(xM ), yM η̂N,t−1(xM )}

)

µ :=

(
v1 min

{
nsat

1 (x1), y1c
sat
1 (x1)

}
, . . . ,

vN min
{
nsat
N (xM ), yMc

sat
N (xM )

})
,

we have:

regt ≤ rµ̄t(St)− rµ(St)

≤ rµ̄t(St)− rµt(St) + rµt(St)− rµ(St),

A bound the terms (rµ̄t(St) − rµt(St)) is provided by the definition of the upper confidence
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bounds:

rµ̄t(St)− rµt(St)

=

N∑
j=1

[
u

(v)
j,t−1 min

{
u

(n)
j,t−1(xj,t), yj,tu

(e)
j,t−1(xj,t)

}
− ν̂j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)}

]

=

N∑
j=1

[
u

(v)
j,t−1 min

{
u

(n)
j,t−1(xj,t), yj,tu

(e)
j,t−1(xj,t)

}
− u(v)

j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)}

+u
(v)
j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)} − ν̂j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)}

]
≤

N∑
j=1

{[
vmax + 2

√
b′tψ̂j,t−1

] (
min

{
u

(n)
j,t−1(xj,t), yj,tu

(e)
j,t−1(xj,t)

}
−min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)}

)
+ (u

(v)
j,t−1 − ν̂j,t−1)

[
nsat

max +
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x))

]}

≤
N∑
j=1

{[
vmax + 2

√
b′tψ̂j,t−1

]√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x))

+
(
nsat

max +
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x))

)√
b′tψ̂j,t−1

}
= vmax ymax

√
bt

N∑
j=1

ŝj,t−1(x) + vmax

√
bt

N∑
j=1

σ̂j,t−1(x) + 2
√
btb′t(symax + σ)

N∑
j=1

ψ̂j,t−1

+ nsat
max

√
b′t

N∑
j=1

ψ̂j,t−1 + symax

√
btb′t

N∑
j=1

ψ̂j,t−1 + σ
√
btb′t

N∑
j=1

ψ̂j,t−1

= vmax ymax

√
bt

N∑
j=1

ŝj,t−1(x) + vmax

√
bt

N∑
j=1

σ̂j,t−1(x) +

(
3symax

√
btb′t

+ nsat
max

√
b′t + 3σ

√
btb′t

) N∑
j=1

ψ̂j,t−1,

where vmax := maxNj=1 vj is the maximum expected value per click, nmax := maxj,x nj(x) is the
maximum number of clicks for any campaign, and we have σ̂j,t(x) ≤ σ and ŝj,t(x) ≤ s for each j,
t, and x.
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Let us focus on the term (rµt(St)− rµ(St)):

rµt(St)− rµ(St)

=

N∑
j=1

[
ν̂j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)} − vj min

{
nsat
j (xj,t), yj,te

sat
j (xj,t)

}]
=

N∑
j=1

[
ν̂j,t−1 min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)} − ν̂j,t−1 min

{
nsat
j (xj,t), yj,te

sat
j (xj,t)

}
+ν̂j,t−1 min

{
nsat
j (xj,t), yj,te

sat
j (xj,t)

}
− vj min

{
nsat
j (xj,t), yj,te

sat
j (xj,t)

}]
≤

N∑
j=1

{[
vmax +

√
btψ̂j,t−1

] (
min {µ̂j,t−1(xj,t), yj,tη̂j,t−1(xj,t)}

−min
{
nsat
j (xj,t), yj,te

sat
j (xj,t)

})
+ (ν̂j,t−1 − vj,t−1)nsat

max

}
≤

N∑
j=1

{[
vmax +

√
b′tψ̂j,t−1

]√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x)) + nsat

max

√
b′tψ̂j,t−1

}

= vmax ymax

√
bt

N∑
j=1

ŝj,t−1(x) + vmax

√
bt

N∑
j=1

σ̂j,t−1(x)

+ (
√
btb′tσ + symax

√
btb′t + nsat

max

√
b′t)

N∑
j=1

ψ̂j,t−1

where we used arguments similar to the ones we considered in the previous derivation.

Summing up we have:

regt ≤ 2vmax

√
bt

N∑
j=1

σ̂j,t−1(x) + 2vmax ymax

√
bt

N∑
j=1

ŝj,t−1(x)

+
√
b′t

(
4symax

√
bt + 4σ

√
bt + 2nsat

max

) N∑
j=1

ψ̂j,t−1,
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Using arguments similar to what has been used in Theorem 1 we have:

R2
T (U) ≤ T

T∑
t=1

reg2
t

= T

T∑
t=1

[
2vmax

√
bt

N∑
j=1

σ̂j,t−1(x) + 2vmax ymax

√
bt

N∑
j=1

ŝj,t−1(x)

+
√
b′t

(
4symax

√
bt + 4σ

√
Bt + 2nsat

max

) N∑
j=1

ψ̂j,t−1

]2

≤ T

[
12v2

maxbTN

N∑
j=1

T∑
t=1

max
x

σ̂2
j,t−1(x) + 12v2

max y
2
maxbTN

N∑
j=1

T∑
t=1

max
x

ŝ2
j,t−1(x)

+3b′TN
(

4symax

√
bT + 4σ

√
bT + 2nsat

max

)2
N∑
j=1

T∑
t=1

ψ̂2
j,t−1

]2

TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
j=1

γT (ej)

+c̄3b
′
T

(
2symax

√
bT + 2σ

√
bT + nsat

max

)2
N∑
j=1

log

(
ξ

ψ2
j

+ T

)]
,

where we defined c̄1 :=
12v2max

log(1+ 1
λ )

, c̄2 :=
12v2maxy

2
max

log(1+ 1
λ′ )

, and c̄3 := 12ξ, where λ and λ′ are the

variance of the measurement noise on the maximum number of clicks and number of clicks per unit
of daily budget. Taking the square root of both right and left hand side of this inequality concludes
the proof.

Theorem 4. Let us consider an ABBA problem over T rounds where the functions nsat
j (x) and

esatj (x) are the realization of GPs. Using the AdComb-F-TS algorithm, for every δ ∈ (0, 1), the
following holds with probability at least 1− δ:

RT (U) ≤

{
TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
j=1

γT (ej)

+c̄3b
′
T

(
2symax

√
bT + 2σ

√
bT + nsat

max

)2
N∑
j=1

log

(
ξ

ψ2
j

+ T

)]}1/2

,

where bt = 2 log
(
π2NMt2

2δ

)
, b′t := 2 log

(
π2Nt2

2δ

)
, c̄1 :=

48v2max

log(1+ 1
λ )

, c̄2 :=
48v2maxy

2
max

log(1+ 1
λ′ )

, and

c̄3 := 12ξ, ξ, λ and λ′ are the variance of the value per click, measurement noise on the maximum
number of clicks and number of clicks per unit of daily budget, respectively, vmax := maxj∈{1,...,N} vj
is the maximum expected value per click, nmax := maxx∈X,y∈Y,j∈{1,...,N} nj(x, y) is the maxi-
mum expected number of click we might obtain on average over all the campaigns Cj , ymax :=
maxy∈Y y is the maximum budget one can allocate on a campaign, and σ2 := k(x, x) ≥ σ̂2

j,t(x),
s2 := k′(x, x) ≥ ŝ2

j,t(x) for each j, t and x.
Equivalently, with probability at least 1− δ, it holds:

RT (U) = Õ

√√√√TN

N∑
j=1

[γT (nj) + γT (ej)]

 .
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Proof. We recall that the decision we take are based on samples drawn from these distributions:

θ
(n)
j,t−1(x) ∼ N (µ̂j,t−1(x), σ̂2

j,t−1(x)),

θ
(e)
j,t−1(x) ∼ N (η̂j,t−1(x), ŝ2

j,t−1(x)),

θ
(v)
j,t−1 ∼ N (ν̂j,t−1, ψ̂

2
j,t−1).

Ad we derived in the proof of Theorem 2, by extracting samples from the predictive distributions
of the GP we have that:

P
[
|θ(n)
j,t (x)− nsat

j (x)| >
√
btσ̂j,t−1(x)

]
≤ 2e−

bt
8 ,

P
[
|θ(e)
j,t (x)− esatj (x)| >

√
btŝj,t−1(x)

]
≤ 2e−

bt
8 ,

P
[
|θ(v)
j,t − vj | >

√
b′tψ̂j,t−1

]
≤ 2e−

b′t
8 ,

and, therefore, setting bt := 8 log
(

2NMt2

2δ

)
and b′t := 8 log

(
2Nt2

2δ

)
we have that the bounds over

the rounds t, the different GPs j and the different arms x holds together with probability greater than
1− δ.

Using arguments similar to what has been used in Theorem 3, we obtain the following bound
for a generic bid/budget pair (x, y):

|min{nsat
j (x), yesatj (x)} −min{θ(n)

j,t (xj), yjθ
(e)
j,t (xj)}|

≤ |min{nsat
j (x), yesatj (x)} −min {µ̂j,t−1(x), yη̂1,t−1(x)} |

+ |min {µ̂j,t−1(x), yη̂1,t−1(x)} −min{θ(n)
j,t (xj), yjθ

(e)
j,t (xj)}|

≤ 2
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x)) .

As in Theorem 2, the instantaneous pseudo-regret regt at round t is bounded as follows:

regt ≤ |rµ(S∗µ)− rθt(S
∗
µ)|+ |rθt(St)− rµ(St)|,

where µ us defined as in Theorem 3 and

θt := (θ
(v)
1,t min{θ(n)

1,t (x1),y1θ
(e)
1,t (x1)}, . . . ,

θ
(v)
N,t min{θ(n)

N,t(xM ), yMθ
(e)
1,t (xM )}

is the vector of the drawn payoffs for the turn t and rθt(S
∗
µ) − rθt(St) ≤ 0 for the fact that the

chosen arm St maximize the reward assuming an expected reward over the arms of θt.
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Let us focus on bounding the quantity |rµ(S)− rθt(S)| on a generic superarm S:

|rµ(S)− rθt(S)| =

=

N∑
j=1

[
vj min{nsat

j (xj), yje
sat
j (xj)} − θ(v)

j,t min{θ(n)
j,t (xj), yjθ

(e)
j,t (xj)}

]

=
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+vj min{θ(n)
j,t (xj), yjθ

(e)
j,t (xj)} − θ(v)

j,t min{θ(n)
j,t (xj), yjθ

(e)
j,t (xj)}

]
≤
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[
2vmax

√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x))

+
√
b′tψ̂j,t−1

(
nsat

max + 2
√
bt (ymaxŝj,t−1(x) + σ̂j,t−1(x))

)]
≤ 2vmaxymax

√
bt

N∑
j=1

ŝj,t−1(x) + 2vmax

√
bt

N∑
j=1

σ̂j,t−1(x)+

+
√
b′t(n

sat
max + 2symax

√
bt + 2σ

√
bt)

N∑
j=1

ψ̂j,t−1)

Thus, the the instantaneous pseudo-regret regt at round t is bounded as follows:

regt ≤ 4vmaxymax

√
bt

N∑
j=1

ŝj,t−1(x) + 4vmax

√
bt

N∑
j=1

σ̂j,t−1(x)+

+ 2
√
b′t(n

sat
max + 2symax

√
bt + 2σ

√
bt)

N∑
j=1

ψ̂j,t−1)

Defining the constants c̄1 :=
48v2max

log(1+ 1
λ )

, c̄2 :=
48v2maxy

2
max

log(1+ 1
λ′ )

, and c̄3 := 12ξ we have a cumulative

regret of:

R2
T (U) ≤ T

T∑
t=1

reg2
t

TN

[
c̄1bT

N∑
j=1

γT (nj) + c̄2bT

N∑
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γT (ej)

+c̄3b
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(
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√
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log

(
ξ

ψ2
j

+ T
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,

and taking the square root of both the left and right hand side of the inequality concludes the proof.

146



APPENDIXB
Safe Online Bid Optimization

Proofs

Theorem 5 (Inapproximability of the optimization problem). For any ρ ∈ (0, 1], there is no
polynomial-time algorithm returning a ρ-approximation to the problem in Equations (6.1a)–(6.1c),
unless P = NP.

Proof. We restrict to the instances of SUBSET-SUM such that z ≤
∑
i∈S ui. Solving these in-

stances is trivially NP-hard, as any instance with z >
∑
i∈S ui is not satisfiable and we can decide

it in polynomial time. Given an instance of SUBSET-SUM, let l =
∑
i∈S ui+1

ρ
. Assume that for

every sub-campaign Cj , the available bids are {0, 1}. Furthermore, there is a sub-campaign C0 with
v0 = 1 and such that: c0(x) = 2l + z and n0(x) = l if x = 1, and c0(x) = 0 and n0(x) = 0 if
x = 0. For every i ∈ S, we have a sub-campaign Ci with vi = 1 and such that: ci(x) = ui and
ni(x) = ui if x = 1, and ci(x) = 0 and ni(x) = 0 if x = 0. Set the daily budget yt = 2(z + l)
and the ROI limit λ = 1

2
.

We show that, if SUBSET-SUM is satisfiable, then the corresponding instance of our problem
admits a solution with a revenue larger than l, while, if SUBSET-SUM is not satisfiable, the maxi-
mum revenue is at most ρ l−1. Thus, any approximation algorithm guaranteeing a ρ approximation
factor would decide whether an instance of SUBSET-SUM is satisfiable.

If. Suppose SUBSET-SUM is satisfied by the set S∗ ⊆ S and that the solution assigns xi = 1
if i ∈ S∗ and xi = 0 otherwise, and it assigns x0 = 1. The total revenue is l + z ≥ l and
the constraints are satisfied. In particular, the sum of the costs is 2l + z + z = 2(l + z), while
ROI = l+z

2l+2z
= 1

2
.

Only if. Assume by contradiction that the instance of our problem admits a solution with a
revenue strictly larger than ρ l−1 and that SUBSET-SUM is not satisfiable. Then, it is easy to see that
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we need x0 = 1 for campaign C0 as the maximum achievable revenue is
∑
i∈S ui = ρ l − 1 when

x0 = 0. Thus, since x0 = 1, the budget constraint forces
∑
i∈S:xi=1 ci(xi) ≤ z, thus implying∑

i∈S:xi=1 ui ≤ z. By the satisfaction of the ROI constraint, i.e.,
∑
i∈S:xi=1 ui+l∑

i∈S:xi=1 ui+2l+z
≥ 1

2
, it must

hold
∑
i∈S:xi=1 ui ≥ z. Therefore, the set S∗ = {i ∈ S : xi = 1} is a solution to SUBSET-SUM,

thus reaching a contradiction.

Theorem 6 (Optimality). Subroutine Opt(µ, λ∗) using wj(x) = wj(x) = vj nj(x) and cj(x) =
cj(x) for each j ∈ {1, . . . , N} returns the optimal solution to the problem in Equations (6.1a)–
(6.1c) when the values of revenues and costs are in R and Y , respectively.

Proof. Since all the possible values for the revenues and costs are accounted in the subroutine, the
elements in S(y, r) satisfy the two inequalities in Equation (6.2) with the equal sign. Therefore,
all the elements in S(y, r) would contribute to the computation of the final value of the ROI and
budget constraints, i.e., the ones after evaluating all the N sub-campaings, with the same values for
revenue and costs, being their overall revenue equal to r and their overall cost equal to y. Notice
that we do not have to discuss the violation of Constraint (6.1c) as long as we choose max(Y ) =
yt. The maximum operator in Line 12 excludes only solutions with the same pairs of revenue
and costs and a lower revenue, therefore, the subroutine excludes only dominated solutions. The
same reasoning holds also for the sub-campaign C1 analysed by the algorithm. Finally, after all the
dominated allocations have been discarded, the solution is selected by Equation (6.3), i.e., among all
the solutions satisfying the ROI constraints the one with the largest revenue is selected.

Theorem 7 (Pseudo-regret/safety tradeoff). For every ε > 0 and time horizon T , there is no algo-
rithm with pseudo-regret smaller than T (1/2−ε) that violates the constraint on the budget less than
T (1/2− ε) times in expectation.

Proof. As a first step, we show that an algorithm that satisfies the two conditions of the theorem
can be used to distinguish between N (1, 1) and N (1 + δ, 1) with arbitrary good probability using
a number of samples independent from δ. Consider two instances of the bid optimization problem.
Both instances have a single sub-campaign with x ∈ {0, 1}, c(0) = 0, r(0) = 0, r(1) = 1, B = 1.
The first instance has cost c1(1) = N (1, 1), while the second has c2(1) = N (1 + δ, 1). In the first
setting, the algorithm must choose x = 1 at least T (1/2 + ε) times in expectation otherwise the
pseudo-regret would be strictly greater than T (1/2 − ε), while in the second setting the algorithm
must choose x = 1 at most than T (1/2 − ε) times in expectation otherwise the constraint on the
budget would be violated strictly more than T (1/2 − ε) times. Standard concentration inequalities
implies that for each γ > 0, there exists a n(ε, γ) such that, given n(ε, γ) executions of the learning
algorithm, in the first setting x = 1 is played strictly more that Tn(ε, γ)/2 times, while in the second
setting strictly less than Tn(ε, γ)/2 times. This implies that the learning algorithm can distinguish
with arbitrary good success probability (independent of δ) between the two settings using (at most)
n(ε, γ)T samples from one of the normal distributions. However, the Kullback-Leibler divergence
between the two normal distributions is KL(N (1, 1),N (1 + δ, 1)) = δ2/2 and each algorithm
needs at least Ω(1/δ2) samples to distinguish between the two distributions with arbitrary good
probability. Since δ can be arbitrary small, we have a contradiction. Thus, such an algorithm is not
possible.

Theorem 8 (GCB pesudo-regret). Given δ ∈ (0, 1), the GCB algorithm applied to the problem in
Equations (6.1a)–(6.1c), with probability at least 1− δ, suffers from a pseudo-regret of:

RT (GCB ) ≤

√√√√ 16TN3bt
ln(1 + σ2)

N∑
j=1

γj,T ,
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where σ ∈ R+ and γj,T ∈ R+ are the noise standard deviation and the maximum information
gain of a generic set of T samples for the GP modeling the number of clicks of sub-campaign Cj ,
respectively.

Proof. The bounds in Equations (6.4) and (6.5) guarantee that the probability that there is at least a
triple (j, x, t) with j ∈ N , x ∈ Xj , t ∈ {1, . . . , T} such that the actual value of vjnj(x) is larger
than the upper bound wj,t−1(x) = wj,t−1(x) or the actual value of cj(x) is smaller than the lower
bound cj,t−1(x) is less than δ/2 (see [3] for details). This implies, using a union bound, that the
values in µ used in the oracle Opt(µ, λ∗) are statistical (optimistical) bounds for the true values
with probability at least 1− δ, as required by GCB. Then, the proof follows by applying Theorem 1
by [3] to our setting, using that Opt(µ, λ∗) subroutine is an (α, β)-approximation algorithm with
α = 1 and β = 1.

Theorem 9 (GCB safety). Given δ ∈ (0, 1), the probability that for at least a t ∈ {1, . . . , T}
the allocation returned by the GCB algorithm applied to the problem in Equations (6.1a)–(6.1c)
violates at least one of the constraints is at least 1− δ

2NT
.

Proof. Let us focus on a specific day t. Consider the case in which Constraints (6.1b) and (6.1c) are
active, and, therefore, the left side equals the right side:

∑N
j=1 wj(xj,t)− λ

∗∑N
j=1 coj(xj,t) = 0

and
∑N
j=1 coj(xj,t) = yt. For the sake of simplicity we focus on the costs coj(xj,t), but similar

arguments also applies to the revenueswj(xj,t). A necessary condition for which the two constraints
are valid also for the real revenue and costs is that for at least one of the cost it holds cj(xj,t) ≤
cj(xj,t). Indeed, if the opposite holds, i.e., cj(xj,t) > cj(xj,t) for each j ∈ {1, . . . , N} and
xj,t ∈ Xj , the budget constraint we would be violated by the allocation since

∑N
j=1 coj(xj,t) >∑N

j=1 coj(xj,t) = yt. Since the event cj(xj,t) ≤ cj(xj,t) occurs with probability at most δπ2

12NTt2
,

over the t ∈ N the probability that the constraints are not violated is at most δ
2NT

.

Theorem 10 (GCBsafe safety). Given δ ∈ (0, 1), the GCBsafe algorithm applied to the problem
in Equations (6.1a)–(6.1c) is δ-safe.

Proof. Let us focus on a specific day t. Constraints (6.1b) and (6.1c) are satisfied by the solution
of Opt(µ, λ∗) for the properties of the optimization procedure. Thanks to the specific construction
of the upper bounds we have that cj(xj,t) ≤ cj(xj,t) and nj(xj,t) ≥ nj(xj,t), each holding with

probability at least 1− δπ2

12NTt2
. As a consequence, we have:∑N

j=1 vj nj(xj,t)∑N
j=1 coj(xj,t)

>

∑N
j=1 vj nj(xj,t)∑N
j=1 coj(xj,t)

≥ λ∗

and
N∑
j=1

cj(xj,t) <

N∑
j=1

cj(xj,t) ≤ yt.

Using a union bound on the probability that at least one of these bounds is violated, and summing
up over the time horizon T and over the number of samples of each GP over the days provides that
the probability that the constraints are violated is at most δ. This concludes the proof.

Theorem 11 (GCBsafe pseudo-regret). Given δ ∈ (0, 1), the GCBsafe algorithm applied to the
problem in Equations (6.1a)–(6.1c) problem suffers from a pseudo-regret Rt(GCBsafe) = O(T ).

Proof. The optimal solution has at least one of the constraints which is active, i.e., it has the left hand
side equal to the right hand side. Assume that the optimal clairvoyant solution

{
x∗j
}N
j=1

to the opti-
mization problem has a value of the ROI equal to λ∗. We showed in the proof of Theorem 10 that for
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any allocation, with probability at least 1− δπ2

6NTt2
, it holds that

∑N
j=1 vj nj(xj,t)∑N
j=1 coj(xj,t)

>
∑N
j=1 vj nj(xj,t)∑N
j=1 coj(xj,t)

.

This is true also for the optimal clairvoyant solution
{
x∗j
}N
j=1

, for which λ∗ =
∑N
j=1 vj nj(x

∗)∑N
j=1 coj(x∗)

>∑N
j=1 vj nj(x

∗)∑N
j=1 coj(x∗)

, implying that the values used in the ROI constraint make this allocation not feasible

for the Opt(µ, λ∗) procedure. As shown before, this happens with probability at least 1 − δπ2

6NTt2

at day t, and 1 − δ over the time horizon T . To conclude, with probability 1 − δ, not depending
on the time horizon T , we will not choose the optimal arm during the time horizon and, therefore,
the regret of the algorithm cannot be sublinear. Notice that the same line of proof is also holding in
the case the budget constraint is active, therefore, the previous result holds for each instance of the
problem in Equations (6.1a)–(6.1c).
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Additional Experiments

Parameters from Experiment #1
Table B.1 specifies the values of the parameters of cost and number-of-click functions of the sub-
campaigns simulated in Experiment #1 and Experiment #2.

Table B.1: Parameters of the synthetic settings used in Experiment #1 and Experiment #2.

C1 C2 C3 C4 C5

βj 60 77 75 65 70
δj 0.41 0.48 0.43 0.47 0.40
αj 497 565 573 503 536
γj 0.65 0.62 0.67 0.68 0.69
σf GP revenue 0.669 0.499 0.761 0.619 0.582
l GP revenue 0.425 0.469 0.471 0.483 0.386
σf GP cost 0.311 0.443 0.316 0.349 0.418
l GP cost 0.76 0.719 0.562 0.722 0.727

Additional Figures Experiment #2
We report here the figures showing the 90% and 10% of the quantities analysed in the experimental
section for Experiment #2.
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Figure B.1: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by GCBsafe. Dash-dotted lines correspond to the optimum values for the revenue and
ROI, while dashed lines correspond to the values of the ROI and budget constraints.
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Figure B.2: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(εx = 0.95). Dash-dotted lines correspond to the optimum values
for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.
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Figure B.3: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(εx = 0.90). Dash-dotted lines correspond to the optimum values
for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.
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Figure B.4: Results of Experiment #2: daily revenue (a), ROI (b), and spend (c) obtained
by and GCBsafe(εx = 0.85). Dash-dotted lines correspond to the optimum values
for the revenue and ROI, while dashed lines correspond to the values of the ROI and
budget constraints.

155



Appendix B. Safe Online Bid Optimization

Additional Figures Experiment #3
We report here the figures showing the 90% and 10% of the quantities analysed in the experimental
section for Experiment #3.
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Figure B.5: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained
by GCB in Experiment 3. Dash-dotted lines correspond to the optimum values for the
revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.
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Figure B.6: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained
by GCBsafein Experiment 3. Dash-dotted lines correspond to the optimum values for
the revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.
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Figure B.7: Results of Experiment #3: daily revenue (a), ROI (b), and spend (c) obtained
by GCB(εx = 0.95). Dash-dotted lines correspond to the optimum values for the
revenue and ROI, while dashed lines correspond to the values of the ROI and budget
constraints.

159



Appendix B. Safe Online Bid Optimization

Experiment #4
In this experiment we extend the results of Experiment #1 and Experiment #2 to other settings. We
simulate N = 5 sub-campaigns, with |X| = 201 bid values evenly spaced in [0, 2], |Y | = 101 cost
values evenly spaced in [0, 100], and |R| evenly spaced revenue values depending on the setting.
We set a constant daily budget yt = 100 for every t.

We build 10 scenarios that differ in the parameters defining the cost and revenue functions,
and in the ROI parameter λ∗. Recall that the number-of-click functions coincides with the revenue
functions since vj = 1 for each j ∈ {1, . . . , N}. Parameters αj ∈ N+ and βj ∈ N+ are sampled
from discrete uniform distributions U{50, 100} and U{400, 700}, respectively. Parameters γj and
δj are sampled from the continuous uniform distributions U [0.2, 1.1). Finally, parameters λ∗ are
chosen so that the ROI constraint would be an active constraint for the original problem. Table B.2
summarize the values of such parameters.

Results Table B.3 reports the performances of algorithms GCB, GCBsafe, GCBsafe(εx = 0.95)
and GCBsafe(εx = 0.90). In particular, E[CRt=t̂] is the cumulative revenue until day t̂ averaged on
the number of simulations, while σCRt=t̂ and it=t̂th p. are the corresponding standard deviation and ith
percentile, respectively. These results are reported w.r.t. two different time instant: t = bT

2
c = 28,

i.e., at half of the period, and t = T = 57, i.e., at the end of the time horizon. Finally, SROI and
Sbudget denotes the total number of days in which the ROI and the budget constraints were violated,
respectively. In the last two columns we report the percentage of days on which the ROI and the
budget constraint were violated, i.e., SROI

T
and Sbudget

T
, respectively, averaged by the number of

simulations. We performed 100 independent runs for each setting and each algorithm.
The results are in line with what have been observed in the main paper, showing that the GCBsafe

algorithm and its εx = 0.95 variant are able not to violate the constraints with high probability,
while GCB shows the worst performance in terms of constraints violations. In terms of cumulative
revenue, the algorithms providing the largest values are the ones violating the constraint, while
the algorithm showing the largest revenue while satisfying the problem constraints is GCBsafe with
εx = 0.95. These results corroborates the idea that the relaxing the constraints for a small percentage
(e.g., 5%) provides a good tradeoff between revenue maximization and constraint satisfaction in most
of the cases.
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B.2. Additional Experiments

Table B.2: Parameters characterizing the 10 different settings in Experiment #4.

C1 C2 C3 C4 C5 λ∗

Setting 1 βj 530 417 548 571 550 10.0
δj 0.356 0.689 0.299 0.570 0.245
αj 83 97 72 100 96
γj 0.939 0.856 0.484 0.661 0.246

Setting 2 βj 597 682 698 456 444 14.0
δj 0.202 0.520 0.367 0.393 0.689
αj 83 98 56 60 51
γj 0.224 0.849 0.726 0.559 0.783

Setting 3 βj 570 514 426 469 548 10.5
δj 0.217 0.638 0.694 0.391 0.345
αj 97 78 53 80 82
γj 0.225 0.680 1.051 0.412 0.918

Setting 4 βj 487 494 467 684 494 12.0
δj 0.348 0.424 0.326 0.722 0.265
αj 62 79 76 69 99
γj 0.460 1.021 0.515 0.894 1.056

Setting 5 βj 525 643 455 440 600 14.0
δj 0.258 0.607 0.390 0.740 0.388
αj 52 87 68 99 94
γj 0.723 0.834 1.054 1.071 0.943

Setting 6 βj 617 518 547 567 576 11.0
δj 0.844 0.677 0.866 0.252 0.247
αj 71 53 87 98 59
γj 0.875 0.841 1.070 0.631 0.288

Setting 7 βj 409 592 628 613 513 11.5
δj 0.507 0.230 0.571 0.359 0.307
αj 77 78 91 50 71
γj 0.810 0.246 0.774 0.516 0.379

Setting 8 βj 602 605 618 505 588 13.0
δj 0.326 0.265 0.201 0.219 0.291
αj 67 80 99 77 99
γj 0.671 0.775 0.440 0.310 0.405

Setting 9 βj 486 684 547 419 453 13.0
δj 0.418 0.330 0.529 0.729 0.679
αj 53 82 58 96 100
γj 0.618 0.863 0.669 0.866 0.831

Setting 10 βj 617 520 422 559 457 14.0
δj 0.205 0.539 0.217 0.490 0.224
αj 51 86 93 61 84
γj 1.0493 0.779 0.233 0.578 0.562
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Appendix B. Safe Online Bid Optimization

Table B.3: Performances of the GCB, GCBsafe, GCBsafe (εx = 0.95),
algsafe (εx = 0.90) algorithms in the 10 different settings in Experiment #4.
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