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Sommario

In un mondo in cui i Big Data e l’Intelligenza Artificiale sono sempre più impor-

tanti, la richiesta di potenza computazionale non è mai stata cos̀ı abbondante.

Per rispondere a tale richiesta, la ”computazione eterogenea” si propone con

un principio fondamentale: che ogni operazione venga calcolata dall’hardware

più adatto, ossia l’hardware che riesca a completare l’operazione nei tempi

più rapidi possibili e con la maggiore efficienza. Per quanto possa risultare

chiaro tale principio, esso è tutt’altro che semplice da realizzare, soprattutto

per quanto riguarda la progettazione del software che dovrebbe lavorare con

sistemi eterogenei. Decidere manualmente quali parti di codice debbano essere

eseguite su quali device richiede molto tempo e una conoscenza profonda delle

architetture dei singoli device. Per di più, il codice da produrre deve essere pen-

sato con una prospettiva di computazione parallela, cosa che si è storicamente

dimostrata essere difficile e controintuitiva per la mente umana. La questione

della sincronizzazione è altrettanto complicata quando si parla di componenti

di sistemi eterogenei, dato che essi hanno bisogno di comunicare tra di loro e

di accedere spesso ad una memoria condivisa. Nonostante gli sforzi di molte

imprese nel mondo per creare soluzioni che facilitino tali processi, abbiamo

ancora bisogno di poter utilizzare strumenti che ci permettano di lavorare in

maniera efficace nell’ambito dei sistemi eterogenei; strumenti che ci possano

permettere di astrarre dalla logica di basso livello delle diverse architetture, ma

che allo stesso tempo possano mantenere un livello sufficiente di espressività e

correttezza.

Definizione di sistema eterogeneo

Prima di procedere oltre, soffermiamoci su come definiamo un sistema eteroge-

neo: qualsiasi sistema computazionale che sia formato da componenti hardware



differenti può essere considerato un sistema eterogeneo. Tutti i nostri computer

portatili moderni, per esempio, appartengono alla categoria di sistemi etero-

genei, dato che contengono un processore (CPU) e una scheda grafica (GPU).

Entrami questi componenti sono costruiti per poter eseguire computazioni,

ma la loro architettura é largamente differente, e il codice pensato per poter

essere eseguito su uno non può essere direttamente eseguito sull’altro. Data

questa definizione, la computazione eterogenea è semplicemente l’atto di es-

eguire software capace di sfruttare la potenza computazionale di un intero

sistema di componenti eterogenee.

Applicazioni potenziali

Come abbiamo già accennato inizialmente, il nostro principale incentivo a con-

durre ricerca nel campo della computazione eterogenea è la performance: ogni

tipo di hardware è progettato per essere efficiente nel eseguire solamente una

frazione delle operazioni che troviamo nei software moderni, sicché la soluzione

migliore non può che essere quella di fare eseguire ogni operazione al compo-

nente hardware che può farlo nel minor tempo possibile. Oltrettuto, in buona

parte dei casi il componente hardware più veloce a completare una operazione

è allo stesso tempo quello più efficiente in termini di consumo energetico, cosa

che rendere ancora più conveniente questo tipo di approccio. Tra i settori in

cui possiamo sfruttare il vantaggio di questo tipo di potenza computazionale

troviamo:

� Intelligenza Artificiale (AI). Negli ultimi tempi, un grande interesse

è emerso per l’Edge-AI, ossia la pratica di posizionare l’hardware che

deve processare gli algoritmi AI vicino ai sensori che acquisiscono i dati,

riducendo cos̀ı consumi energetici e costi di comunicazione tra compo-

nenti. Data la natura distribuita di sistemi del genere, viene naturale

posizionare l’hardware più veloce nei punti più adatti [1][7].

� Machine Learning (ML). Considerata una sottocategoria

dell’Intelligenza Artificiale, il Machine Learning si basa sul training

di modelli, cosa che richiede un alto numero di iterazioni da eseguire su

grandi set di dati. Tali iterazioni consistono in numerose operazioni simili

tra di loro, che possono essere efficientemente calcolate dall’hardware
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più efficiente in ciò, risparmiando cos̀ı un grande quantitativo in tempo

una volta completate tutte le iterazioni [10].

� Reti Neurali (NN). Molti ambiti in cui la sicurezza è prioritaria,

come la guida autonoma per i veicoli o l’atterraggio guidato per i ve-

livoli sono basati sulle cosiddette reti neurali profonde (Deep Neural

Networks, DNN), le quali richiedono un grande quantitativo di potenza

computazionale, che può essere fornita attraverso l’uso di sistemi etero-

genei [16][3].

Obbiettivi della tesi

Date le numerose sfide e gli ostacoli che emergono nel lavorare con sistemi etero-

genei, abbiamo deciso con la nostra tesi di indagare su come potremmo con-

tribuire a risolvere alcuni di essi, soprattutto per quanto riguarda la creazione

di framework facili da utilizzare e ed efficaci nel scrivere software destinato a

sistemi eterogenei. Questo ci porta a ciò che vogliamo fare con la nostra tesi,

descrivibile in due fasi principali:

� Come prima cosa, analizzeremo una serie di framework e piattaforme che

possono essere considerate stato dell’arte nel campo della computazione

etereogenea, assieme ad alcuni altri strumenti che ci aiuteranno nello

sviluppo del progetto pratico.

� In secondo luogo, proveremo ad affrontare parte delle problematiche

riscontrate nella prima fase, attraverso lo sviluppo di un modesto pro-

getto, il cui scopo principale sarà quello di combinare gran parte di ciò

che avremo visto nella prima sezione in uno strumento di modellazione

che ci aiuterà a generare software per sistemi eterogenei.

Struttura della tesi

La tesi è suddivisa nei seguenti capitoli:

� Nel Capitolo 1, Introduzione, viene intrdotto il contesto, il soggetto

e gli obbiettivi della tesi.
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� Nel Capitolo 2, Stato dell’Arte, viene presentata una selezione

di framework e piattaforme all’avanguardia che interessano la nostra

ricerca.

� Nel Capitolo 3, Impostazione di ricerca del problema, vengono

presentate le principali sfide e problematiche che concernono il campo

della computazione eterogenea.

� Nel Capitolo 4, Progetto logico della soluzione del problema,

viene dettagliato il progretto delal tesi, che punta a risolvere parte delle

problematiche dell’ambito della computazione eterogenea.

� Nel Capitolo 5, Valutazione del progetto, viene giudicato il progetto

attraverso la riproduzione di un esempio pratico.

La tesi si conclude con il Capitolo 6, Conclusioni e lavori futuri, dove

vengono discussi i risultati ottenuti e presentati sviluppi futuri.
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Chapter 1

Introduction

”In a world with Big Data and diverse workloads, the need for compute

seems endless — and now with the influence of AI through new and merged

workloads, the need for compute may prove to be endless. The hunger for

compute has spurred an onslaught of product competing to help accelerate

our workloads – all helping usher in the era of Heterogeneous computing.”

James Reinders - ”The future of computing is heterogeneous, CPU and

friends”

As Big Data and Artificial Intelligence become more and more prominent,

the need for computing power and performance is as high as it ever was. To

that end, heterogeneous computing offers a way forward with a simple prin-

ciple: make each operation be calculated by the best hardware, that is, the

one that does it in the fastest and most efficient way. However, as simple

as it may seem, it is equally complex to put it in practice, and, chief among

the challenges, is programming the software that is able to take advantage of

heterogeneous systems. Manually deciding which piece of code has to run on

which piece of hardware is time-intensive and requires a deep understanding

of the underlying system. On top of that, the code needs to be designed with

a parallel-computing perspective, something that has proven to be extremely

hard and counterintuitive for the human mind. Synchronization is another

challenging aspect when dealing with heterogeneous devices, since they need

to communicate with each other and access some form of shared memory.

Despite the great effort that is put by numerous companies worldwide to de-

velop solutions that can facilitate this process, we are still lacking the tools



Introduction

that would enable us to work effectively within the heterogeneous computing

paradigm; tools that, at the same time, would be able to abstract from the

low-level logic of different architectures, but also maintain a sufficient amount

of expressiveness and correctness.

1.1 Definition of heterogeneous systems

Before we go further, let’s clarify on what we consider to be an heterogeneous

system: any computing system that is comprised of different hardware compo-

nents can be considered to be a heterogeneous system. All of our modern lap-

tops, for instance, belong to the category of heterogeneous systems, since they

are fitted with a Central Processing Unit (CPU) and a Graphical Processing

Unit (GPU). Both components are tasked to perform computations, yet their

architecture is vastly different, and code designed to run on one cannot be sim-

ply fed to other in a straightforward way. Given this definition, heterogeneous

computing is simply the act of executing software that can simultaneously take

advantage of the various hardware of an heterogeneous system.

1.2 Potential applications

As we hinted right at the beginning, our main incentive for research in the

field of heterogeneous computing is performance: each type of hardware is

designed to be efficient in executing only a fraction of the tasks that we need

to perform in our everyday software, so the optimal solution must be based on

running each task on the piece of hardware that can do it in the smallest time

possible. On top of that, it is often the case that the fastest device for running

a particular task consumes the least amount of power, which emboldens the

case for switching to a heterogeneous approach even more.

Many are the fields that could take advantage of this kind computational

power, such as:

� Artificial Intelligence (AI). Recently, there’s been much interest in

the concept of Edge-AI, which is the practice of putting the hardware

tasked to perform AI algorithms near the sensors that acquire the data,

thus reducing power consumption and data communication costs. Given
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1.3 Scope of the thesis

the distributed nature of this approach, it comes natural to put the most

fitting processing unit in the right spot [1][7].

� Machine Learning (ML). Machine learning, which is considered a sub-

set of AI, is all about training models, which requires an extensive num-

ber of iterations on large datasets. Numerous, similar operations can

effectively be calculated by the processing unit that gets the job done in

the least amount of time, potentially saving hours and hours on training

iterations [10].

� Neural Networks (NN). Many safety-critical fields, such as au-

tonomous driving for cars or guided landing for aircraft, are based on

Deep Neural Networks (DNN) and require a high amount of compu-

tational power, which can be provided with the use of heterogeneous

systems [16][3].

1.3 Scope of the thesis

Given the many challenges that still affect the world of heterogeneous com-

puting, we decided with our thesis to see if we could contribute to solving

some of them, especially when it comes to finding an effective and easy-to-

use framework for writing software destined for heterogeneous systems. This

brings us to what we aiming to do, which is twofold:

� First, we will analyze a number of frameworks and platforms that can be

considered to be state-of-the-art in the field of heterogeneous computing,

along with some other tools that will come in handy later on for our

subsequent project.

� Secondly, we will try to deal with part of the issues and limitations

encountered at first by developing a modest project, whose main goal

would be to combine much of what we studied in the first part into a

model-driven tool that would help us generate software meant to run on

heterogeneous systems.

3
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1.4 Structure of the thesis

The thesis is divided into the following chapters:

� Chapter 1, Introduction, introduces the context, subject and scope

of our thesis.

� Chapter 2, State of the art, presents a selection of state-of-the art

frameworks and platforms that pertain to our research.

� Chapter 3, Research problem setup, lays out the main challenges

and issues that characterize the field of heterogeneous computing.

� Chapter 4, Design of the problem solution, details the project

of the thesis, which aims at solving part of the discussed problem of

heterogeneous computing.

� Chapter 5, Project evaluation, describes the evaluation of the

project, which is conducted through a practical example.

The thesis is concluded with Chapter 6, Conclusions and Future Works,

where we discuss the obtained results and future developments.
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Chapter 2

State of the art

In this day-and-age, it’s hard not to be near a device with heterogeneous

components at any given time: laptops, workstations and even smartphones

are nowadays included with CPUs and GPUs. The ever-growing pervasiveness

of heterogeneous systems in our professional and private lives has led compa-

nies, developers and researchers to put great effort into working on modern

solutions that can help us design software for these systems. In this chap-

ter, we are going to analyze some of the leading technologies, including more

experimental solutions, that try to tackle the many challenges that can be

found when working with heterogeneous systems. In particular, our selected

projects will primarily focus on the relationship between CPUs and GPUs,

which are, arguably, the most common and historical duo that we can find

in our everyday-life computing machines. The introduction of GPUs, during

the Nineties, can indeed be seen as the first major attempt at improving the

computational power of machines with the use of an heterogeneous assortment

of processing units. On top of that, in recent years, developers have found

renewed interest in GPUs, which have shown great potential in working with

a number of tasks outside of the graphical area, promising to be crucial in

several general-purpose contexts. Considering the focus we’ve just described,

our selection of state-of-art subjects will comprise a set of solutions for working

with GPUs, with the addition of some tools for facilitating software develop-

ment that show potential compatibility with the former.

Below is a list of the state-of-the-art frameworks presented in this chapter:

� CUDA: a parallel computing platform and application programming
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interface (API) model created by Nvidia [8][5].

� SafeGPU: an experimental tool that facilitates the development of soft-

ware for general-purpose GPUs, using a design-by-contract methodology

[9].

� Tensorflow: an interface for expressing and executing machine learning

algorithms, released by Google [10].

� Flink: an open-source, unified stream-processing and batch-processing

framework developed by the Apache Software Foundation [4].

� StreamGen: an experimental program that helps to design streaming

applications via an UML-based modeling language [11].

2.1 An introduction to GPUs

A Graphical Processing Unit is a type of hardware that specializes in perform-

ing a very high number of simple, parallel calculations, like the ones that are

typically found when rendering graphics (images, videos, 3D models). As such,

they differ from CPUs by having thousands of Arithmetic Logic Units (ALUs,

the basic workers for calculations), compared to the general 4 to 8 units that

we commonly see in modern CPUs (Fig 2.1).

Figure 2.1: An architectural comparison between CPUs and GPUs. [12]

Despite the raw computational power, GPUs cannot handle the complex

and various tasks required to run modern Operative Systems and their sup-

ported programs, and need to be supervised by a CPU in order to render their
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2.2 CUDA

services properly. Developers can already benefit from a number of low-level

interfaces and APIs when writing code that wants to involve the GPU in their

computation, such as OpenGL or DirectX. Newer solutions like CUDA, which

we’ll see in a moment, are aiming to facilitate the interaction between CPUs

and GPUs not just for graphical tasks, but for more general range of tasks,

which could be effectively accelerated by the computational power of GPUs.

2.2 CUDA

The need for working with hardware of different architectures isn’t new: since

the introduction of the first Graphical Processing Units, software develop-

ers are required to take advantage of heterogeneous systems when program-

ming their code. Nowadays GPUs are very prominent in supporting graphical

software, but their usefulness doesn’t stop there: for a while now it has be-

come quite clear that this type of hardware can effectively be used for a wide

range of non-graphical applications. Nvidia Corporation, who rose as a GPU-

manufacturing company, is very well aware of such potential, and for some

years now has been working on an API that could help with this endeavor. Its

name is CUDA and its purpose is to allow software developers and engineers

to use modern Nvidia GPUs as General-Purpose GPUs [8]. A GPU is treated

as General-Purpose when it’s used for computations that would normally be

assigned to CPUs.

The most effective way of describing how the CUDA architecture operates is

through a basic example in CUDA C++ that adds the elements of two arrays

with a million elements each [5]. The example also shows how CUDA can easily

improve on the performance of simple tasks by applying small modifications

to the code.

7
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1 #include <iostream >

2 #include <math.h>

3

4 // function to add the elements of two arrays

5 void add(int n, float *x, float *y)

6 {

7 for (int i = 0; i < n; i++)

8 y[i] = x[i] + y[i];

9 }

10

11 int main(void)

12 {

13 int N = 1<<20; // 1M elements

14

15 float *x = new float[N];

16 float *y = new float[N];

17

18 // initialize x and y arrays on the host

19 for (int i = 0; i < N; i++) {

20 x[i] = 1.0f;

21 y[i] = 2.0f;

22 }

23

24 // Run operation on 1M elements on the CPU

25 add(N, x, y);

26

27 return 0;

28 }

Listing 2.1: standard vector addition without CUDA.

We start with the basic scenario: two vectors are generated and passed to

a classic add operation, so the CPU takes care of adding each pair of cells, one

pair at a time. If we want to involve the GPU in the computation, we need

to change the add function into a kernel, that is, a function that can be called

by the CPU and is then run on the GPU. We do this by adding the specifier

global to the function.

8



2.2 CUDA

1 // CUDA Kernel function to add the elements of two arrays on

the GPU

2 _global_

3 void add(int n, float *x, float *y)

4 {

5 for (int i = 0; i < n; i++)

6 y[i] = x[i] + y[i];

7 }

Listing 2.2: the specifier global is added.

The CUDA architecture provides a Unified Memory system between CPU

and GPU, which is an essential part in delegating work to the GPU. To allocate

data in unified memory we use cudaMallocManaged(), which returns a pointer

that we can access from host (CPU) code or device (GPU) code. At the end

of the task, memory is freed with cudaFree().

1 // Allocate Unified Memory -- accessible from CPU or GPU

2 float *x, *y;

3 cudaMallocManaged (&x, N*sizeof(float));

4 cudaMallocManaged (&y, N*sizeof(float));

5

6 ...

7

8 // Free memory

9 cudaFree(x);

10 cudaFree(y);

Listing 2.3: memory management in CUDA.

Last thing to do is to launch the kernel using a triple angle bracket syntax

<<< >>>, which specifies the number of thread blocks and the number of

threads per block that we want to deploy (more on that later).

9
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1 #include <iostream >

2 #include <math.h>

3 // Kernel function to add the elements of two arrays

4 __global__

5 void add(int n, float *x, float *y)

6 {

7 for (int i = 0; i < n; i++)

8 y[i] = x[i] + y[i];

9 }

10

11 int main(void)

12 {

13 int N = 1<<20;

14 float *x, *y;

15

16 // Allocate Unified Memory - accessible from CPU or GPU

17 cudaMallocManaged (&x, N*sizeof(float));

18 cudaMallocManaged (&y, N*sizeof(float));

19

20 // initialize x and y arrays on the host

21 for (int i = 0; i < N; i++) {

22 x[i] = 1.0f;

23 y[i] = 2.0f;

24 }

25

26 // Run kernel on 1M elements on the GPU

27 add <<<1, 1>>>(N, x, y);

28

29 // Wait for GPU to finish before accessing on host

30 cudaDeviceSynchronize ();

31

32 // Free memory

33 cudaFree(x);

34 cudaFree(y);

35

36 return 0;

37 }

Listing 2.4: vector addition run on GPU (one thread only).

10



2.2 CUDA

Using a GeForce GT 750M, it takes 411ms to run this version of the func-

tion. So far we used one thread, so the next logical step would be to use a

bunch of threads in order to speed up the process.

1 add <<<1, 256>>>(N, x, y);

By only changing the number of threads we won’t have the expected result,

since it will do the computation once per thread, rather than spreading it

across the parallel threads. To do it properly, we need to modify the kernel

by introducing some keywords: threadIdx.x contains the index of the current

thread within its block, and blockDim.x contains the number of threads in the

block. We need to modify the loop so that it iterates with the correct pacing.

1 _global__

2 void add(int n, float *x, float *y)

3 {

4 int index = threadIdx.x;

5 int stride = blockDim.x;

6 for (int i = index; i < n; i += stride)

7 y[i] = x[i] + y[i];

8 }

The task is completed by the same GPU in 3.2ms, which is a substantial

increase in speed, but we can still improve the efficiency by using more than one

thread block. CUDA GPUs are grouped into many parallel processors, called

Streaming Multiprocessors (or SM) and each SM can run multiple concurrent

thread blocks, which together make up what is known as the grid. The overall

system of threads and blocks is organized as follows:

11
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Figure 2.2: How threads are indexed in the CUDA grid.

The kernel has to be modified again to account for multiple blocks:

1 __global__

2 void add(int n, float *x, float *y)

3 {

4 int index = blockIdx.x * blockDim.x + threadIdx.x;

5 int stride = blockDim.x * gridDim.x;

6 for (int i = index; i < n; i += stride)

7 y[i] = x[i] + y[i];

8 }

To maximize the speed of computation we will use enough blocks so that

there will be one thread for each pair of cells that we want to sum up, which

is simply done by dividing the vector size with the threads of each block (and

round up the result).

1 int blockSize = 256;

2 int numBlocks = (N + blockSize - 1) / blockSize;

3 add <<<numBlocks , blockSize >>>(N, x, y);

To no surprise, the task is performed in the fastest speed of 0.68ms.

As shown through the example, simple changes to normal coding of functions

are required in order to involve the GPU in the computation, and basic vari-

ables allow to intelligently distribute the workload on the threads.

12



2.3 SafeGPU

2.3 SafeGPU

Although CUDA relieves the developer of some of the low-level technicalities

involved in the programming of parallel, gpu-runnable code, it still requires

the user to manually design kernels (and deal with memory allocation). This

problem is tackled by SafeGPU [9], a programming approach developed by

Alexey Kolesnichenko, that aims to make GPGPUs accessible through high-

level libraries for object-oriented languages, while maintaining the performance

benefits of lower-level code. To ensure the optimality and correctness of the

final code, SafeGPU operates on a design-by-contract methodology, which

derives from the Eiffel language: programs are built using preconditions,

post-conditions and invariants which specify the properties that should hold

before and after the execution of methods. Contract-checking generally adds

a big enough overhead to runtime computation that many developers prefer

using it for debug only, but SafeGPU solves the issue by making the GPU

itself run the checks on runtime. SafeGPU is still in early development and

features simple linear algebra optimizations to code.

The following snippet of code exemplifies how SafeGPU takes care of kernel

generation and allows contract-checking:

1 matrix_transpose_vector_mult (matrix: G_MATRIX[DOUBLE ]: vector:

G_VECTOR[DOUBLE ]): G_MATRIX[DOUBLE]

2 require

3 matrix.row = vector.count

4 do

5 Result := matrix.transpose.right_multiply (vector)

6 ensure

7 Result.rows = matrix.columns

8 Result.columns = 1

9 end

Listing 2.5: an operation on a matrix and a vector with SafeGPU

The method takes as input a matrix and a vector, transposes the ma-

trix, multiplies it with the vector and returns the resulting vector. The core

of the operation is done with the keyword .transpose concatenated with

.right multiply, but the construction of the relative kernels is delegated to

SafeGPU, which is also able to compose different kernels in case there’s room

13
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Figure 2.3: The architecture of SafeGPU.

for optimization. The correctness of the function is checked before and after

the operation: the require section states that the rows of the matrix have to

be the same length as the dimension of the vector, while the enusre section

makes sure that the result of the operation is a vector of appropriate size.

The integration of SafeGPU with CUDA is described in Figure 2.3: the pro-

grammer utilizes SafeGPU by writing code in Eiffel, which naturally interfaces

with C++ for initialization, data transfers and device synchronization (thanks

to its built-in mechanisms), then the resulting kernel is generated by the nvcc

compiler (the Nvidia compiler for CUDA) into a .ptx file, containing a CUDA

module that the library uses to launch the kernel.

Generation of kernels in SafeGPU is based on a deferred execution model:

instead of generating a kernel for each method and executing them one at a

time, kernels are added to a list of pending actions (one list for each different

collection) whose execution is triggered by specific calls. Once a trigger is

observed, an execution plan is generated in the form of a directed acyclic graph

(DAG), representing data and kernels in two different types of nodes, with

edges as the dependencies between them. The optimizer runs through the DAG

and merges nodes and dependencies wherever possible. For instance, in Figure

2.4 we see that the dot product method, which is composed of component-wise

multiplication of two vectors and summation of each element, is merged into

a single kernel from two starting kernels.

14
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Figure 2.4: Kernel optimization of the dot product method.

SafeGPU is an interesting approach to the challenge of making hetero-

geneous applications in a simplified and correct way, but at the same time

using the contract-based Eiffel language makes it significantly less versatile

than what can be normally achieved with more mainstream OO languages,

although there’s currently an effort to extend the API for C#.

2.4 Tensorflow

We can easily demonstrate how valuable GPUs can be outside of graphics

rendering by taking a look at the field of machine learning, whose massive

potential is only impaired by the amount of computation that asks to be pro-

vided with. Google Brain, a prominent research team at Google, released in

2015 and is currently working on Tensorflow [10], an API for expressing and

executing machine learning algorithms.

Similarly to SafeGPU, TensorFlow visualizes its workflow with a directed

graph, composed of several nodes and edges. Each node represents an op-

eration and can have multiple ingoing and outgoing edges, which represent the

flow of data in the form of arrays of elements called tensors. An example is

provided with Figure 2.5.

Tensorflow defines a Kernel as a particular implementation of an operation

that can run on a specific type of device, such as CPUs or GPUs. In order for

a Client to utilize Tensorflow and execute a graph, his application first has to

create a Session, then initialize an arbitrary number of Runs on such session,

with each run having a specified set of output nodes: the idea behind this
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Figure 2.5: An example of a Tensorflow graph.

Figure 2.6: An example of a Tensorflow application.

system is that different runs can traverse the graph through different nodes,

depending on the selected output nodes, although the typical use of Tensorflow

is done by executing millions of identical runs that propagate through the entire

graph (which is typical for training ML algorithms). Figure 2.6 shows the code

relative to the graph of Figure 2.5, including its execution through a session.

An important aspect of Tensorflow is how the execution of a graph is han-

dled in practice. In the simple case of single-device environment, the algorithm

only has to compute the order of execution of nodes, which is determined by

their dependencies: every node has a counter that tells how many nodes must

first be traversed to have the correct data as input, and when the counter

reaches 0 the node is added to a ”ready” queue. The creation of kernels for
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Figure 2.7: Cross-device communication in a Tensorflow graph.

the execution of a node is delegated to the device assigned to such node. In

case we want to run the graph on a multitude of devices, it’s imperative to

determine which node is assigned to which device, and how these devices com-

municate with each other. For the former task, the algorithm essentially uses

a greedy heuristic that examines the effects on the completion time by placing

the node on each possible device, then the device with lowest completion time

is selected. Once every node is assigned to a device, the graph is partitioned

into a set of sub-graphs, one per device. Every edge from one device to another

one is replaced with edges to go into either Sender or Receiver nodes, as shown

in Figure 2.7. This method not only allows to isolate the communication part

inside the Sender and Receiver implementations, but we also ensure that the

data is sent and allocated on memory only once per source-destination pair.

In case of a distributed system, communication is implemented with TCP or

RDMA protocols.

2.5 Flink

In the age of Internet, many modern-day applications require to deal with a

constant flow of data, which means that the throughput of a system is an

essential aspect for the correct functioning of an application. As such, stream-

ing applications can heavily benefit from the high computation power that

heterogeneous systems can offer. The Apache Software Foundation, among

a multitude of different programs, provides developers with Apache Flink,

an open-source, distributed stream-processing framework [4]. Flink excels at

working with many common cluster resource managers such as Hadoop YARN,
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Figure 2.8: An example of a Flink pipeline.

Apache Mesos, and Kubernetes, and is able to create stateful, fault-tolerant

applications that take advantage of parallelized processing.

Characteristics

The first basic concept of Flink is the distinction between bounded and un-

bounded streams of data: while a bounded stream, also called batch, has a

definite start and end, an unbounded stream never terminates and provides

data as it’s generated (possibly from physical sensors, user input etc.). Any

Flink application can be represented with a pipeline, where incoming data

enters the first segment of the pipeline called Source, is then processed and

transformed in each of the intermediate segments (called Transformations),

and eventually exits the pipeline through the rightmost segment called Sink.

Figure 2.8 shows an example of a Flink pipeline.

The execution of Flink applications, also called jobs, is supervised by the

Job Manager, which is responsible for scheduling tasks, recovery, coordina-

tion, and the overall bigger picture of a job. The Job Manager distributes

the workload on a number of Task Managers. Each Taskmanager can execute

many tasks on different threads, can communicate with each other (even re-

motely, through TCP connections) and has its own memory space. Figure 2.9

illustrates what was just described.

Practice

From a more operational perspective, Flink programs can be written in

common languages such as Java and Scala, and all share a number of

elements, which will be referenced below from Listing 2.6. The following
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Figure 2.9: Flink Execution Graph

piece of code is a Flink program that simply counts the number of words

typed by user in real time. First of all, the execution environment is the

common context (either local or remote) in which all applications operate,

allowing various tools for controlling the job execution and for interacting

with the external environment (line 5 to 6). The next common element is a

Flink source, from which data is taken into the pipeline. In this case, data

is received in the form of text from user input (line 11). Every meaningful

Flink application also applies some transformations to the received data (line

12 to 20) and usually makes use of the processed data through a Flink sink,

in this case a simple write to text (line 22 to 25). Finally every application

terminates by calling the appropriate method for executing the generated

environment (line 27).

1 public class StreamingWordCount {

2

3 public static void main(String [] args) throws Exception {

4

5 final StreamExecutionEnvironment env =

StreamExecutionEnvironment

6 .getExecutionEnvironment ();

7
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8 // uncomment the below if you want to set the default

parallelism for the project.

9 //env.setParallelism (1);

10

11 DataStream <String > text = env.socketTextStream("localhost",

9999);

12 DataStream <WordToken > tokens = text

13 .flatMap(new LineSplitter ())

14 .setParallelism (4);

15

16 DataStream <WordCount > counts = tokens

17 .keyBy("word")

18 .timeWindow(Time.seconds (3))

19 .apply(new WordCounter ())

20 .setParallelism (4);

21

22 counts

23 .keyBy("word")

24 .writeAsText("/home/utente/word -count -output.txt")

25 .setParallelism (1);

26

27 JobExecutionResult result = env.execute ();

28 System.out.println("EXECUTION TIME: " + result.

getNetRuntime(TimeUnit.SECONDS));

29

30 }

31 }

Listing 2.6: WordCount example on Flink with Java

2.5.1 Combining Flink and Tensorflow

Experimenting with Flink and Tensorflow is going to play a crucial role in the

making of the project, as we will explain in the following chapters. A potential

benefit of merging the two technologies would be to generate a Flink pipeline

capable of providing machine learning functionalities, which could be managed

by adapting Tensorflow methods (that utilize Tensorflow libraries) and calling

them during the execution of specific Flink transformations.
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Existing work

Before delving into the feasibility of coupling these two elements, we searched

for third-party solutions that already managed to do so. We found that the

most complete and polished solution was an open-source project developed by

Eron Wright called Flink-Tensorflow, presented during the annual conference

Flink Forward of 2017 [19]. Flink-Tensorflow is a library that facilitates the

use of machine-learning algorithms in Flink applications, and it comes with a

couple of examples. One of these examples consists in a Flink pipeline that

continuously receives images as input and recognizes them on the fly, using a

pre-trained machine-learning model. The model can be utilized by the program

thanks to a number of methods provided by the Tensorflow library. As noted by

the same developer during his presentation at the aforementioned conference,

the application’s biggest limit is that it doesn’t supervise the training of the

model required for the labeling operation, but it only manages to apply the

model to a series of inputs.

Limitations

This kind of limitation can be traced back to the nature of the two com-

ponents that we wanted to combine in the first place: while Tensorflow is

versatile enough to be able to provide its tools in an external environment,

a pipelined and automated framework like Flink is hardly suitable for the

training of machine-learning algorithms, since it is generally based on a series

of trials, errors and polishes that can only be really performed manually by

a human person. As a result, the only feasible level of compatibility we can

expect from Flink and Tensorflow is the sort that we can find in the example

that was just described: a Flink pipeline that uses a pre-trained model for

prediction and recognition purposes. Nevertheless, this kind of application

can still be interesting to investigate and potentially useful to develop. For a

better idea of the final result, Figure 2.10 show an example of an image being

recognized and labeled by this kind of application.
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Figure 2.10: An example of image recognition.

2.6 StreamGen

In order to fully appreciate what this thesis aims to achieve, it’s essential to

delve into our next and final element of the state of the art, which was devel-

oped as part of a professional doctorate by Michele Guerriero, from the Po-

litecnico di Milano. The application is called StreamGen and its main function

is to automate the generation of fully-functioning Flink (and Spark) applica-

tions, starting from an UML-based modeling system [11]. The aforementioned

functionality is divided into two main modules: StreamUML and StreamCGM.

StreamUML

StreamUML is a Domain-Specific Modeling Language (DSML) in the form of

a UML profile, that allows to design a streaming application by constructing

an appropriate UML Information Flow Diagram. The UML profile provides

the ontology through which a developer is able to create such diagrams. In

other words, it contains a series of stereotypes that can be arbitrarily combined.

Every stereotype is mapped onto a piece of code, so when a diagram is finished,

the resulting application will be generated depending on what stereotypes were

used.

StreamCGM

The second module, StreamCGM, is the code generator that takes care of

transforming the diagrams that were built with StreamUML into the actual

code, using a language called Acceleo. As previously hinted, every component

of a diagram is analyzed and converted into whatever code the generating

stereotype is bound to, but the conversion isn’t monolithic: for instance, during
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Figure 2.11: UML diagram of the WordCount example.

the code translation of a particular element of the UML diagram, the labeling

of variables is strictly related to where such element was positioned in the

graph, which inbound data is receiving and what parameters were specified by

the user during the diagram design phase.

Example

To show the system in practice, we can see how we arrive to the final code of the

WordCount example, which was conveniently presented in the Flink section

with listing 2.6. Let’s look at the UML diagram that originates the code with

figure 2.11: every part of the code (source, transformations and sink) is clearly

identified with the 4 nodes of the diagram, and the data, whose type is changed

with each transformation, is passed along the arrows. The yellow windows are

meant to show the parameters that are specified for each object and the two

elements in the bottom left corner are included to define the classes of datatype

that the data is transformed into during each transformation phase.

The complete Acceleo code in charge of converting the UML we just presented

can be hardly coalesced into a page, so we will only take a look at the part that

takes care of the first element of the diagram, the SocketSource. Figure 2.12

shows how the template of Acceleo code takes the information from the UML

diagram to generate the final code in Java: while the type ”String” and the
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Figure 2.12: An example of conversion from Acceleo to Java code.

name ”text” are extrapolated from the outgoing arrow of the Source element,

the host name and the port number are taken from the parameters specified

by the user in the object itself.

StreamUML and StreamCGM are designed in a way that allows them to be

easily extended, which will come in handy for the development of our thesis

project.

2.7 Conclusions on the state of the art

Each of the modern tools that we’ve just analyzed brings something to the

table that can help us in developing software for heterogeneous systems, yet,

as any cutting-edge technology, is bound to have a number of limitations. Let’s

summarize them:

� CUDA allows us to have great control on the distribution of workload in

a heterogeneous context, but still operates at a low level of abstraction:

kernels have to be manually constructed and memory must be explicitly

allocated. Moreover, it can only be utilized by Nvidia graphic cards.

Nevertheless, it is a good basis onto which develop higher-level tools and

libraries, as we’ve seen with SafeGPU and Tensorflow.

� A more experimental solution, such as SafeGPU, tries to automate the

process through the explicit use of contract-based semantics, which could

be considered a double-edged sword: the design-by-contract methodology

can give you a solid way to ensure the program’s correctness, but it can

become very expensive to maintain in larger projects, and can possibly
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be incapable of asserting the correctness of some instances (like loop ter-

minations). Either case, SafeGPU is in the early stages of development,

so the scope and the set of available functionalities is still limited.

� Tensorflow has a vast library of functions for all kinds of tasks: Text,

Images, Tabular, Video etc. On top of that, it’s easy to get started

with models based on neural networks, thanks to the graphical support

that Tensorflow provides ... but at the same time it has its own model

and terminology, so the learning curve is still quite significant, and the

current documentation is lacking when moving away from beginner-level

concepts.

� Flink’s pipelined approach to streaming applications is promising, yet,

being a relatively new technology, the API support is still limited and

there aren’t many open-source projects or community discussions. In

other words, Flink needs to be used and explored more thoroughly if we

really want to grasp its full potential and limitations.

� The core idea behind StreamGen is solid and sufficiently fleshed out: as

long as you stick with its UML profile, you can build a number of Flink

and Spark applications with ease by focusing on the modeling aspect.

Consequently, StreamGen biggest limitation depends entirely on the level

of expressiveness provided by its profile, which is so far relatively small.

The question then becomes: how easily could we expand such profile?

Will it be able to scale naturally or will it become harder to add more

and more stereotypes?

In other words, there’s still a long way to go if we want to comfortably

program robust and optimized heterogeneous applications with a high level of

abstraction, which clearly comes as no surprise: working with parallel, het-

erogeneous and distributed systems surely is going to be among the greatest

challenges and opportunities for the IT sector over the coming decades.
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Chapter 3

Research problem setup

After looking at some of the recent technologies in the field of heterogeneous

computing, it is clear that programming software meant to run on a set of

heterogeneous devices is fundamentally hard, and many are the challenges

that arise from doing so. This chapter describes what we believe are the most

important ones and, finally, introduces the scope of our practical project.

3.1 Parallelism

Heterogeneous systems are naturally fitted for working in a parallel manner:

the more devices that can work at their most suitable tasks simultaneously,

the less time that will be needed to finish all the tasks. Consequently, hetero-

geneous programming inherits the same problems that arise when designing

parallel applications.

Unintuitiveness

The first layer of difficulty that is introduced when switching to parallel appli-

cations, is that the vast majority of developers are used to think in a serial way.

The initial instinct is to start with a serial approach to a problem, then find

the independent operations, decouple them, and finally run them in parallel,

but the results are often unsatisfactory: the amount of parallelism may be

too low and the process can turn out to be more complicated than expected

[2]. This problem becomes even more grave when we move to the debugging
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phase: finding bugs in a parallel application is particularly hard since the order

of operations cannot be deterministically foreseen.

Non-determinism

The non-deterministic aspect of software parallelism also brings synchroniza-

tion problems: reading a piece of data before or after a scheduled write on it

completely changes the final result of the operations, which brings the need for

explicit synchronization mechanisms, such as locks. The problem with locks

is that it’s fairly easy to use them improperly, either by drastically reducing

the amount of parallelism that can be obtained or even by creating infamous

dead-lock situations.

Client-Server

How much and how easy we can exploit parallelism in applications strongly

depends on what kind of tasks need to be performed. If we analyze the matter

using a client-server metric, we can notice that server-based programs are

generally easy to parallelize, since they handle a vast number of independent

requests from different users, and they work with databases designed to support

concurrent access. Client-based programs, on the other hand, are characterized

by non-homogeneous code, fine-grained, complicated interactions and pointer-

based data structures. These types of programs are thus much more intricate in

terms of data dependency, which is the primary obstacle for parallel computing

[6].

Hard cap

Ultimately, the amount of parallelism that can be extracted, and the subse-

quent speedup will always be limited by the length of the longest series of tasks

that must be performed serially, as famously stated by Amdahl’s Law [18]. For

example, if a program needs 20 hours to complete using a single thread, but

a one-hour portion of the program cannot be parallelized, therefore only the

remaining 19 hours (p = 0.95) of execution time can be parallelized, then

regardless of how many threads are devoted to a parallelized execution of this

program, the minimum execution time cannot be less than one hour. Hence,
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the theoretical speedup is limited to at most 20 times the single thread perfor-

mance. Fig 3.1 shows the maximum potential speedup through parallelization

of a number of cases, varying in amount of parallelizable portion of code and

available processors.

Figure 3.1: Examples of potential speedup based on the parallelizable percent-

age of code and the available processors.

3.2 Concurrent Memory Access

Memory abstraction

For heterogeneous systems, when it comes to designing either the physical lay-

out of memory or the techniques for memory access, there’s really no definitive

answer for what the most optimal approach is. Any system that needs to read

from or write to a memory component requires some kind of memory abstrac-

tion. On a software level, typically, developers work in the context of a shared
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virtual memory, so the level of abstraction is managed and provided by the

operating system, but it’s hard to say if the approach of a single, flat address

space can be suitable for a heterogeneous system in which physical memory is

distributed between the devices. It may be more effective to let the developers

have some form of explicit influence on how memory is managed, which could

differ from layout to layout.

Latency

From a hardware perspective we know that the latency of global communi-

cation in a heterogeneous system can be prohibitively high: when multiple

processing units, such as CPUs and GPUs, are integrated together and share

the same memory through a common bus, memory access requests coming

from the GPU can heavily interfere with requests coming from the CPU cores,

leading to low system performance and starvation of CPU cores. Unfortu-

nately, state-of-the-art application-aware memory scheduling algorithms are

ineffective at solving this problem at low complexity due to the large amount

of GPU traffic [14][15].

3.3 Scope of the project

From what we’ve just seen, working with heterogeneous systems comes with

many challenges and, in order to tackle some of them, our project is going to

take advantage of what was already accomplished by the state of art. The de-

sired outcome of our project should consist in an extension of StreamGen that

would allow it to model and generate Flink applications with GPU-runnable,

machine-learning operations, which would be provided by the Tensorflow API.

3.3.1 Reasons of choice

The particular choice of combining these diverse and modern solutions into an

inclusive project stems from a number of reasons:

� We are seeking a way to facilitate the process of writing software for

heterogeneous systems, which is, as we previously demonstrated, difficult

by nature. StreamGen offers us an established framework for generating
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runnable code that is centered on an intuitive modeling system, and the

generated code is designed to be executed on a second, promising subject,

that is Flink.

� Flink is, at its core, a framework for building streaming and distributed

applications, the second quality of which is particularly relevant for our

intent. There indeed a substantial similarity between a distributed sys-

tem and a heterogeneous one, in that the former is naturally predisposed

to the latter: a system that is already able to coordinate between phys-

ically sparse and disjointed devices can very well do so even if those

devices are architecturally different (which is, arguably, the most com-

mon case in which you would want to work with distributed devices in

the first place)

� Tensorflow is an API for designing and executing machine learning algo-

rithms, which represent a very prominent approach in today’s software

solutions. On top of that, Tensorflow offers the feature to easily redis-

tribute the workload, for the training phase of ML models, to the devices

of our choice, be they CPUs or GPUs.

3.3.2 Requirements

The final result of our project should have the following features:

� The user should be able to model UML diagrams in the same way he

was able to with the original version of StreamGen, with the additional

capacity to choose from a number of new stereotypes that can introduce

machine-learning functionalities in the UML diagrams.

� Provided that the designed model was valid, the user should be able to

execute StreamGen’s code-generation task and obtain a working, Java-

code version of the model, ready to be executed on Flink.

3.3.3 Machine-learning features

Tensorflow provides the tools to facilitate the design of two major phases in

the machine-learning context:
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� Training phase: machine-learning algorithms build a model based on

available data in a process that is known as training. Models are gen-

erally represented by some type of neural network, composed of a series

nodes and edges. The training phase requires multiple iterations in which

the learning parameters (weights and biases) of the nodes are tuned in

order to improve the model. This phase is very demanding from a com-

putational standpoint, having to iterate many times with possibly huge

amounts of data, and one of the biggest features of Tensorflow, that is

utilizing GPUs, can have a huge impact on performance times, when

applied to this phase. As we saw in section 2.4, moving this phase in the

Flink environment has proven to be more difficult than expected, but we

still deem that this could be further investigated in future works.

� Execution phase: on the other hand, the execution of a model fares

much better in a Flink environment than its training part, and Tensorflow

is still able to take advantage of GPUs in this phase, even if it generally

less computationally demanding than the training phase. As a result,

we will focus our efforts on making sure that our modified version of

StreamGen will be able to generate Flink applications that support this

type of feature.

3.3.4 Relation between challenges and goals

In the first part of this chapter, we presented the main issues revolving around

designing heterogeneous systems, along with the relative software, and at first

reading it can be hard to identify the connection between these issues and

what we are trying to achieve. The challenges we described are particularly

impactful when working at a low level of abstraction: for instance, we saw

in Chapter 2 that even when utilizing the CUDA API, it is still necessary

to manage memory allocation and de-allocation. However, we can arguably

say that the two primary technologies that we are experimenting with, which

are Flink and Tensorflow (with StreamGen being the ”wrapper” of the two),

operate on a higher level of abstraction, as they already manage to alleviate

the user from dealing with these issues in part, yet they still present a number

of limitations and learning difficulties that we believe can be further improved
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upon with our practical project. As a result, we can reasonably say that these

issues are somehow touched by our efforts, even though indirectly.

33





Chapter 4

Design of the problem solution

This chapter provides a detailed description of how the thesis project was

developed. There are three major components that our project tries to weave

together:

� StreamGen: a modeling tool that converts UML representations into

working Flink applications.

� Flink: a streaming data-flow engine that executes programs in a data-

parallel and pipelined manner.

� Tensorflow: an API used for designing machine-learning applications,

which is highly compatible with heterogeneous environments.

The desired, final result of our project should be an extended version of

StreamGen, capable of generating Flink applications that incorporate machine-

learning functionalities, provided by the Tensorflow API.

The development of the project can be divided into two main parts:

� The first task is to experiment with Flink and Tensorflow. Depending on

the level of compatibility between these components, we need to come

up with working applications that can be run on Flink and make use of

some of the tools provided by Tensorflow.

� The second task is to design an effective extension of StreamGen, so

that the latter will able to generate Flink applications that also utilize

Tensorflow tools. The extended version of StreamGen should at least be

able to reproduce the working solutions developed in the first part, and

possibly a number of unrealized, similar applications.



Design of the problem solution

4.1 Working with Flink and Tensorflow

The part of experimentation between Flink and Tensorflow began with the

search for attempts in the sector to effectively combine the two into meaning-

ful applications, finding an interesting project, called Flink-Tensorflow, that

we described in 2.5.1. Inspired by what was accomplished by this project

and by the potential level of compatibility between Flink and Tensorflow, we

used the approach of modifying StreamGen so that it could accommodate the

modeling and the generation for this type of application. The first obstacle

that had to be cleared was that Flink-Tensorflow was developed with the Scala

language, while StreamGen was written in Java, so the example provided by

Flink-Tensorflow needed to be ported in Java first. Although the conversion

proved to be more challenging than expected, we were eventually able to re-

produce the same example in Java.

4.2 The extension of StreamGen: StreamGen-

Tensorflow

As described in previous chapters, StreamGen is composed of two main fea-

tures: a modeling tool that allows the developer to design applications through

UML diagrams and a generator module that automatically translates UML di-

agrams into fully-functioning code. Therefore, the desired extension of Stream-

Gen can be divided as well into two main tasks:

� An extension of StreamUML: each of the UML diagrams that are built

for modeling our Flink applications is an arbitrary composition of pre-

defined stereotypes that are stored in StreamGen’s UML profile. By

adding the right entries to the profile, we would be able to model Flink

applications that incorporate machine-learning functionalities.

� An update on StreamCGM: every stereotype from the UML profile is

mapped to a specific Java template in the code generator section. Adding

the templates for the new stereotypes is crucial for generating the final

code of the applications that were modeled with those stereotypes.

36



4.2 The extension of StreamGen: StreamGen-Tensorflow

4.2.1 UML profile extension

Premise

Before we present what we added to StreamUML, we need to provide a descrip-

tion of the main body to which we are applying our extension. StreamUML

can be seen as a dictionary of basic blocks that can be combined in whichever

way we choose to form the UML models of our desired applications. As such,

it provides a set of stereotypes for the most frequent components that can

be found in Flink and Spark streaming applications: sources from which data

arrives, transformations that modify the data, and sinks that write the final

data or pass them to external programs.

Figure 4.1: StreamUML’s stereotypes for transformations
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Figure 4.2: StreamUML’s stereotypes for sources

Profile Extension

Figure 4.1 captures the section of StreamUML that defines the various

types of applicable transformations: every specific instance of a transforma-

tion, be it FlatmapTransformation or WindowTransformation, are derived

from the general DataStreamTransformation, which in turn is derived from

StreamingOperator. We can also catch from figure 4.1 that transformations,

along with sources and sinks, represent the three different types of streaming

operators. Part of our extension of the profile can already be seen in the

figure: the stereotype FlinkTensorflowTransformation is in fact the new

stereotype that enables us to include Tensorflow functionalities in our final

Flink applications.

Similarly, figure 4.2 illustrates the set of defined sources: each applicable
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stereotype belongs to the family of DataSource, which again can be seen as be-

ing derived from the StreamingOperator type. In this case we introduced the

new stereotype FlinkBinaryFileSource, which is crucial for reading images

and loading them into the Flink pipeline.

Rationale

It’s important to describe the decision-making behind the addition of these

new stereotypes. After converting the example of Flink-Tensorflow in Java

(described in Section 4.1), it was time to create a UML graph that was able to

correctly model such application. Logically, it was best to take advantage, as

much as we could, of what was already made available with the pre-existing

stereotypes of StreamGen, and then come up with new stereotypes whenever

a particular aspect of the application could not be modeled otherwise. We

wanted to set up a pipeline that received incoming images, so we checked if

any of the available source stereotypes could handle that and found that no

one was able to. This kind of limitation wasn’t really coming from Stream-

Gen itself, but rather from Flink: the API’s list of pre-fabricated sources, as

of 2020, mainly covers the reading of inbound textual types of file, and not

much else. Nevertheless, it still provides a more generic Java interface that

could be adapted to create new types of custom sources, so we used that to

shape our own personalized source that was capable of reading images as an

array of generic bits and load them to the Flink pipeline; hence, the intro-

duction of FlinkBinaryFileSource. As for the transformation operator in

charge of feeding the image to the Tensorflow model and produce the desired

recognition, we clearly had to generate a whole new transformation opera-

tor (along with the relative stereotype in StreamGen), so we came up with

FlinkTensorflowTransformation. Finally, the results of the images being

recognized had to be written down and saved into a text file, so we were able

to take advantage of the pre-existing sink stereotype TextFileSink provided

by StreamGen.

Application

We can now take a look at the aforementioned example and see how old and

new stereotypes work together to create an application that receives a stream
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Figure 4.3: UML diagram of the streaming image recognition example

of images, and recognizes them in real time. Fig 4.3 shows the UML diagram

that models such example: as previously described, we can see that the pipeline

begins with the new stereotype for reading images (FlinkBinaryFileSource),

which are passed as arrays of bites to the new stereotype that takes care of

the recognition process (FlinkTensorflowTransformation), which in turn

delivers the results to the sink that prints them into a text file (TextFileSink).

You can notice that the whole pipeline is enclosed in a FlinkApplication

context, which tells the parser that the resulting application will need to be

implemented for working in a Flink environment (as opposed to, for instance,

a Spark environment, which is also supported by StreamGen).

4.2.2 Code generator logic update

Updating the logic that converts the stereotypes found in a model into Java

code is very straightforward: every new stereotype introduced in StreamUML

must be provided with an Acceleo template. In this context, a template is

a piece of pseudo-code that, depending on its relative stereotype in a UML

model, is turned into Java code during the conversion phase (section Stream-
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Gen in Chapter 2 provides an example of that). Since two new major stereo-

types, FlinkBinaryFileSource and FlinkTensorflowTransformation, were

introduced, we needed to add two main templates, one for each. The easiest

way of showing how these two new Acceleo templates operate is to present

the final code that is generated from the UML diagram from Figure 4.3, and

then see how each portion of code corresponds to its relative UML stereotype

and Acceleo template.

1 public static void main(String [] args) throws Exception {

2

3 StreamExecutionEnvironment env = StreamExecutionEnvironment

.getExecutionEnvironment ();

4

5 /*FLIK BINARY FILE SOURCE */

6 ImageInputFormat inputFormat = new ImageInputFormat ();

7 DataStreamSource <byte[]> imageBytes = env.readFile(

inputFormat , args[1], FileProcessingMode.

PROCESS_CONTINUOUSLY ,1000);

8

9 /* TENSORFLOW TRANSFORMATION */

10 TensorflowTools t = new TensorflowTools ();

11 byte[] graphDef = t.readAllBytesOrExit(Paths.get(args[0], "

tensorflow_inception_graph.pb"));

12 List <String > labels = t.readAllLinesOrExit(Paths.get(args

[0], "imagenet_comp_graph_label_strings.txt"));

13 DataStream <Tensor <Float >> tensor = imageBytes.map(new

MapFunction <byte[],Tensor <Float >>(){

14

15 @Override

16 public Tensor <Float > map(byte[] imageBytes) throws

Exception {

17 return t.constructAndExecuteGraphToNormalizeImage(

imageBytes);

18 }

19 }).setParallelism (2);

20

21 DataStream <float[]> probabilities = tensor.map(new

MapFunction <Tensor <Float >,float []>(){

22

23 @Override
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24 public float[] map(Tensor <Float > tensor) throws Exception

{

25 return t.executeInceptionGraph(graphDef , tensor);

26 }

27 }).setParallelism (2);

28

29 DataStream <String > result = probabilities.map(new

MapFunction <float[],String >(){

30

31 @Override

32 public String map(float[] probabilities) throws Exception

{

33 int[] bestIndexes = t.bestThreeProbabilities(

probabilities);

34 return new String(String.format("Most likely: %s\n",

labels.get(bestIndexes [0])));

35 }

36 });

37

38 /*TEXT FILE SINK*/

39 result

40 .writeAsText(args [1] + "\\ output \\ results.txt", FileSystem.

WriteMode.OVERWRITE)

41 .setParallelism (1);

42 env.execute ();

43

44 }

45

Listing 4.1: Final Java code of the image recognition example

Listing 4.1 contains the working Java code for the image recognition exam-

ple. The markers on line 5, 9 and 38 show how each portion of code corresponds

to a stereotype in the UML diagram of the same example. Let’s start by fo-

cusing on the code generated by the FlinkBinaryFileSource stereotype; we

can see from figure 4.4 how the parser generates the final code through the

Acceleo template: a new input format is created in order to read images that

are transferred to a specified folder as series of bytes. The template names

the new streaming source by looking at the label of the outgoing edge from

the stereotype in the UML diagram (which is called imageBytes in our case),

then extrapolates the path of the specified folder to monitor for incoming
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images again by looking at the stereotype from the diagram and searching for

the parameter pathToFolder (which is, in our case, args[1], since we want

to insert the path of the folder as a parameter when running the example

from command line). You can notice that the final portion of template code

(assigned to set the number of threads for the operation) didn’t trigger since

the parallelism, unless changed by parameter in the UML diagram, is set by

default to 1.

Figure 4.4: Conversion from the Acceleo source template to the final Java code

of FlinkBinaryFileSource

The second template introduced for FlinkTensorflowTransformation,

which is in charge of feeding the Tensorflow model with the images and output

a recognition, can be found in Figure 4.5. The template calls for a number of

methods that utilize the Tensorflow library in order to pre-process the image

bytes, feed them to the model, and generate an output label, which represent

the most likely object that resembles the images from a pre-existing database

of labeled images.
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Figure 4.5: The Acceleo template for FlinkTensorflowTransformation
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Chapter 5

Project evaluation

5.1 Goal of the evaluation

In the previous chapter we described the Tensorflow extension that we applied

to StreamGen by presenting a practical example of image recognition that

could be generated with it; in a similar fashion we are going to evaluate the

project by testing if and how the same extension is capable of generating a

different example.

Specifically, we are going to verify:

� Whether the new stereotypes introduced are sufficiently generic that they

can be used for generating different applications in the same context

of machine learning, without having to apply further updates to such

extension (such as the introduction of additional stereotypes).

� In case they aren’t generic enough, what needs to be added for the ex-

tension to generate different examples, and how much of these additions

can be utilized on multiple use cases.

� How much the system is scalable when being expanded with supplemen-

tary updates.

5.2 Application description

The example we are going to show originates from a project developed by three

research units from the Dipartimento di Elettronica, Informazione e Bioingeg-
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neria of Politecnico di Milano, called SnowWatch, which is part of the project

Sodalite (funded by European Union’s Horizon 2020 research and innovation

programme) [17][13].

SnowWatch is an application for deriving the amount of snow coverage of

mountains, by extrapolating the necessary data from public images of those

mountains. Part of the mechanism that manages to derive the relevant infor-

mation makes use of machine-learning algorithms; specifically, these algorithms

are used extract the skyline silhouette of a particular mountain depicted in a

photo, which is a critical information that the program will then need to use

for the snow coverage prediction. The process of skyline extraction is what

we are going to replicate with our StreamGen extension: when adapted to a

Flink environment, the resulting application should be able to receive incom-

ing images of mountains, extract their skylines, and then store them in new

image files all during a live execution (as with the image recognition example

previously described).

Figure 5.1 shows two instances of skyline extraction from the image of a moun-

tain.

Figure 5.1: UML diagram of the skyline extraction example
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5.3 Implementation

In Chapter 3, we explained the purpose and the behavior of the

FlinkTensorflowTransformation stereotype: the stereotype manages

the Tensorflow functionalities required to realize the image recognition

example we previously presented. As such, its relative Acceleo template calls

a number of common Tensorflow libraries, as well as a class that we created

to pre-process the image bytes so that they could be successfully fed to the

Tensorflow model. This kind of pre-processing, necessary for every piece of

data that needs to be interpreted by a model, is unique for each scenario:

our previous case of image recognition required a specific one, and for the

same reason we need to add an additional pre-processing algorithm for each

new case that we want to replicate. Consequently, we need to add a new

pre-processing class (designed for our newest example) and make sure that

the same Acceleo template is be able to call this class when its stereotype is

utilized in the UML model of the skyline extraction application.

Stereotype implementation

Figure 5.2 shows the UML diagram required to model the skyline extraction

application: as you can notice, the stereotype in charge of reading the inbound

images, FlinkBinaryFileSource, was fit to be used in the context of this new

example, and the stereotype for applying the Tensorflow functionalities is the

same one that we used in the image recognition example. However, a new

parameter had to be introduced to the latter stereotype, as we needed to define

what type of pre-processing algorithm had to be called for the purpose of the

current application (in our case selectedAlgorithm = skylineExtraction).

Acceleo template implementation

Unfortunately, we cannot show the source code of the updated template for pri-

vacy reasons related to the confidentiality of the SnowWatch project, but suffice

it to say that the Acceleo template was modified accordingly: the template

contains both the pre-processing algorithm for the image recognition example

and the one for the skyline extraction; either of which is selected through an

if statement connected to the parameter specified in the stereotype.
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Figure 5.2: UML diagram of the skyline extraction example

5.4 Evaluation

The results of our implementation of a different use case scenario bring us to

a number of considerations:

� It is clear that the stereotype that contains the Tensorflow functionalities,

which is at the core of our StreamGen extension, suffers from a

considerable generalization problem: since every machine-learning model

requires a different pre-processing algorithm (that sets up the correct in-

puts to be fed to the model), every application that makes use of an

unprecedented model will not be able to be expressed through Stream-

Gen, unless the stereotype itself is updated to take into account of the

new algorithms. On the other hand, the stereotype that manages the

reading of input files proved to be sufficiently generic.

� Although lacking in generalization capabilities, the system as a whole

shows a good level of scalability: the addition of new stereotypes to
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the pre-existing ontology represented by the UML profile was completed

without obstacles, as well as the update on the Tensorflow stereotype

for the second example. Moreover, the particular choice of enlarging the

Tensorflow stereotype (and its template) to accommodate for the latest

use case wasn’t the only option: as an alternative we could also have

decided to add a separate stereotype, so that each stereotype introduced

would have been in charge of managing each Tensorflow model execution.

� On a more technical note, the Acceleo template related to the Tensorflow

transformation stereotype stores the portion of code that builds the Flink

transformation, but not the actual classes that perform the required pre-

processing algorithms, as they would be too big to be directly stored by

the template itself. At the moment, those auxiliary classes need to be

manually provided to the final application after the code generation phase

is complete, but a future work would consist in packaging these classes

in a library section of the StreamGen project as a Jar file, requiring only

from the user to install these files to the local Operative System, before

using the Tensorflow functionalities of StreamGen (at which point they

would be automatically retrieved via a simple import reference in the

main class of the generated code).
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Chapter 6

Conclusions and Future Works

Summary

Our main research objective was to analyze the current technological frontier

in the field of heterogeneous programming and develop a solution that would

advance in some of its most notable challenges.

We discovered that there is plenty of frameworks, platforms and tools that are

designed to facilitate the user by elevating from the low level of abstraction that

is naturally required to operate with heterogeneous devices (with a particular

focus on GPU exploitation), but each of them has it own limitations, indicating

that there is still a big margin of potential improvement to be made.

With our developed project we tried to combine the strengths of what we

analyzed into a single solution, starting from an experimental modeling tool,

StreamGen, that was able to generate Flink applications from UML diagrams,

and expanding it with machine-learning capabilities provided by Tensorflow,

a popular API developed by the Google Brain Team.

We discussed the results of this experimentation, highlighting the biggest

design limitations that we encountered during the process, mainly the com-

patibility issues between a dataflow framework like Flink and the process of

machine-learning model training, and the low generalization capability of the

newly introduced stereotypes.

Future Works

Finally, we believe that there is a number of possible future developments to

be added to the project:
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� A more thorough investigation on whether the training features provided

by Tensorflow could be feasibly integrated within the pipelined approach

related to Flink, as the potential benefit in terms of GPU acceleration

could be substantial.

� Working on a way to refactor the Tensorflow transformation stereotype

in order to be more generalizable for different machine-learning models

and subsequent algorithms.

� A better organization of the dependency system behind our SteamGen-

Tensorflow extension, which still needs some manual, post-generation

adjustments.

The field of heterogeneous computing has immense potential, especially if we

consider the growing computational demands of Big Data and AI systems, and

we hope to have to contributed to its development.
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