
DYNUTOP: Dynamically Updat-
ing Topology Optimization Predic-
tion using Artificial Intelligence

Tesi di Laurea Magistrale in
Civil Engineering - Ingegneria Civile

Author: Gabriel Garayalde

Student ID: 942916
Advisors: Prof. Alberto Corigliano & Prof. Matteo Bruggi & Ing. Matteo
Torzoni
Academic Year: 2022-23





i

Abstract

Topology Optimization (TO) is a powerful tool in computational design that optimizes
the distribution of material within a specified domain to create structures that adhere to
prescribed design constraints. The resulting topology provides an efficient use of material,
leading to cost savings and lightweight structures, which is valuable for engineers. How-
ever, computing time remains a bottleneck, limiting its application in real engineering
contexts. To address this challenge, researchers are exploring the use of artificial intelli-
gence to accelerate the process. This thesis proposes a multi-stage machine learning model
that aims to predict an optimal topology in 2D or 3D, in a single shot without an initial
form-finding process. The proposed method utilizes a combination of machine learning
models to solve distinct parts of the TO problem, resulting in a near-instantaneous op-
timization. The thesis explores three problem cases, and the results are presented in an
interactive computer application that visualizes and updates the predicted topology in
real-time in response to user changes of the loading parameters. The proposed method
can generate mean average error accuracy of less than 0.035 for the density field for all
three test cases, with a predictive speed that is less than 0.5% that of a traditional TO
algorithm.

Keywords: Topology optimization, Machine learning, Autoencoder, data-
driven prediction





Abstract in lingua italiana

L’ottimizzazione topologica è un potente strumento di progettazione automatica, che cerca
la distribuzione ottimale di materiale all’interno di un dato dominio, in modo da minimiz-
zare una assegnata funzione obiettivo e rispettando i vincoli di progettazione prescritti.
La topologia risultante consente un efficiente uso del materiale, permettendo strutture
più leggere dal costo inferiore. Tuttavia, il tempo di calcolo necessario per questi stru-
menti è un collo di bottiglia, che ne limita l’applicazione in contesti ingegneristici reali.
Per affrontare questa sfida, la comunità scientifica sta esplorando l’utilizzo di algoritmi di
intelligneza artificiale. Questa tesi propone un modello di machine learning multi-stage
che mira a prevedere una topologia ottimale in 2D o 3D, in modo non iterativo e senza
un processo iniziale di ricerca della forma. Il metodo proposto utilizza una combinazione
di modelli di machine learning per risolvere parti distinte del problema di ottimizzazione
topologica, consentendo un’ottimizzazione quasi istantanea. La tesi esplora tre problemi
diversi, e i risultati sono presentati tramite un’applicazione informatica interattiva che
visualizza e aggiorna la topologia prevista in tempo reale, in risposta alle modifiche dei
parametri di carico da parte dell’utente. Il metodo produce risultati caratterizzati da un
errore medio inferiore al 0.035 per il campo di densità in tutti i casi di test considerati,
con una velocità predittiva inferiore allo 0,5% di un algoritmo di ottimizzazione topologica
tradizionale.

Parole chiave: Ottimizzazione topologica, Machine learning, Autoencoder,
predizione data-driven
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1| Introduction

Topology Optimization (TO) is a robust tool for computational design, capable of cre-
ating intricate and high-performance structures that adhere to a set of prescribed design
constraints for loads and boundary conditions. TO methods optimize the distribution of
material within a specified domain by redistributing it to areas where it is most effective
according to a chosen optimality criterion.

TO is widely used in aerospace, mechanical, and civil engineering to conceive designs that
satisfy specific performance criteria, such as minimizing compliance or maximizing thermal
conductivity [1] [2]. The resulting topology provides an efficient use of material within the
design domain, leading to cost savings and lightweight structures - all valuable features
for engineers. The field of TO has gained momentum for decades, with improvements
in hardware cost, computational algorithms, and additive manufacturing techniques all
contributing to its boom. Nevertheless, computing time remains a bottleneck, particularly
for larger domains and more complex problems, limiting its application in real engineering
contexts. To address this challenge, researchers are exploring the application of artificial
intelligence (AI) to engineer novel solutions capable of reducing computational times and
accelerating the TO process.

This thesis explores the combination of AI and TO to propose a multi-stage machine
learning (ML) model, which aims to predict an optimal topology in 2D or 3D, in a
single shot without an initial form-finding process. This proposed method would be near
instantaneous, and offer clear benefits over the traditional and computationally heavy
TO algorithms. The proposed multi-stage pipeline utilizes a combination of ML models
to solve distinct parts of the TO problem. First, a multi-layer perceptron (MLP) model
that takes as inputs the loading parameters for the specific problem and outputs the
corresponding latent space representation. Second, the ’decoder’ branch of an autoencoder
(AE) that takes as input this previously generated latent space representation and predicts
the optimized solution. The underlying hypothesis of this thesis, is that all the topologies
in a diverse dataset can be compressed into small latent space representations without
significant information loss. These topologies share enough structure and common features
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that can be encoded in a reduced vector representation.

In total three different problem cases will be investigated, a 2D Messerschmitt-Bölkow-
Blohm (MBB) beam, a 3D cantilever, and a 3D bridge case. Firstly, a training dataset will
be created for each of these problems using the popular ’top88’ and ’top3D125’ Matlab
codes [3] [4]. For each of the three cases, three different outputs to the optimization
problem are produced, the optimized density field (or the optimized topology), the Von
Mises stress field (VM) and the tension or compression (TorC) regions in the structure.

In summary, the proposed method offers clear advantages over the traditional TO meth-
ods by allowing the user to generate near optimal solutions almost instantaneously. This
can be especially important in the conceptual design phase of a project when it is im-
portant to investigate many iterations of the design problem quickly and accurately. The
possibility of predicting optimal topologies is a short time, allows the designer to gain an
understanding of how the problem responds to variations in the input loading parameters,
and make a more informed engineering decision.

The manuscript is organized as follows. In the following chapter, the most significant
historical developments in the TO field are reviewed, as well as the current state of the
art of AI and the combined field of AI and TO. In chapter 3, a theoretical background
to the TO formulation is provided. A complete explanation of the content of the dataset
adopted to train the multistage machine learning model is provided in chapter 4. The
proposed machine learning strategy is described in chapter 5. The obtained results are
presented in chapter 6, along with an interactive computer application that visualizes and
updates the predicted topology in real time, in response to user changes of the loading
parameters. Finally conclusions and discussion of the results are presented in 7.
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2| Literature Review

This chapter is devoted to review the most important historical advances in the TO field,
as well as the current state of the art techniques. The chapter is organized as follows:
the first section focuses on the literature review of TO, whilst the second section gives a
theoretical background to the TO formulation.

2.1. Topology Optimization

TO is a powerful computational design tool, capable of generating complex and high-
performance structural, optimized to comply with a set of given design constraints in terms
of loads and boundary conditions. In particular, TO techniques optimize the material
distribution within the specified domain, by redistributing it to areas where it is more
effective, in terms of a chosen optimality criterion. During this process, the material
distribution can take any feasible shape within the assigned domain; in this sense, TO
differs from size optimization, which instead deals with configurations established a priori.

TO has become popular in aerospace, mechanical and civil engineering, where engineers
can use TO methods to conceptualize designs that fulfil certain performance criteria, such
as minimizing the compliance or maximising thermal conductivity [1] [2]. The resulting
topology provides many advantages for a design engineer, as the effective use of mate-
rial within the design domain yields a lightweight structure that saves on material cost.
However, many traditional manufacturing processes have difficulty in producing these de-
signs, due to the the high complexity of the resulting geometries. For this reason, the
recent advances in additive manufacturing and three-dimensional (3D) printing - capable
of handling more complicated 3D geometries - have led to the creation of interesting and
practical structural shapes, thus setting a new standard of what could be the future of
manufacturing.

The earliest published work on optimization of structures was that by Australian Michell
[5], who in 1904 derived the optimality criteria for the layout of minimum compliance
trusses. In 1977, Prager and Rozvany [6] published their paper detailing the analytical
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optimization of the layout of trusses and grillages, termed ’optimal layout theory’. In
1981, Cheng and Olhoff [7] considered the optimization of ribs systems in solid plates,
further extending the research for the optimization of discrete elements and thus setting
the basis for the optimization of continua.

The seminal paper by Bendsoe and Kikuchi (1988) [8] introduced the concept of finite-
element based TO with the ’homogenization’ approach, and was further extended in 1992
by Bendsoe and Diaz [9] for multiple loading conditions, as well as by Suzuki and Kikuchi
(1991) [10] and Allaire et al. (1997) [11]. Almost contemporaneously, the landmark paper
by Bendsoe in 1989 [12] proposed another numerical method for topological optimization:
the Solid, Isotropic Microstructure with Penalty (SIMP) method, which has been further
developed by Rozvany et al. (1992) [13] and by Zhou and Rozvany (1991) [14]; over time,
the SIMP method has become a more popular optimization method than homogenization
methods, due to is simplicity and effectiveness.

Both homogenization methods and SIMP today represent the most common TO ap-
proaches, and are collectively considered as density based methods. Other numerical
methods, such as level-set methods (LSMs), offer different advantages, yet have not gained
as widespread popularity as density based methods. LSMs can handle complex geome-
tries, including holes and irregular shapes, by utilising a continuous representation of the
boundary (iso-contours of a level-set function). The level-set function can also be differ-
entiated analytically with respect to the design variables, which allows for the efficient
calculation of the sensitivities. These are two advantageous features that LSMs offer
over traditional density-based TO methods that can lead to more accurate and efficient
numerical models.

The following sections review density based methods, with particular attention devoted
to the SIMP method, as this is the method adopted in this thesis for dataset population
purposes.

2.1.1. History of SIMP method

First proposed in the late 1980s, the SIMP method is today generally recognized as the
most popular TO method, with many uses in research and commercial Finite Element
Analysis (FEA) software. The earliest mentions of FE-based topology optimization stem
from the work of Rossow and Taylor (1973) [15] who considered the optimal design of a
variable thickness sheet. The numerical formulation reduces to the unpenalized relation
described by ρ = s in Fig. 2.1. Here, ρ denotes the specific cost or density of an element
and s refers to the normalised stiffness value. Empty (white) and solid (black) elements
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will have values ρ = 0 and ρ = 1 respectively. However, the resulting solutions using the
unpenalized relation will feature mostly intermediate or grey elements 0 ≤ ρ ≤ 1. In TO,
the objective is generally to achieve a topology with near binary (black-white) solutions,
such that the topology has a clear and distinct form. The landmark paper by Bendsoe
in 1989 [12] introduced a SIMP-like method with penalization, under the names of direct
approach or artificial density method. This is illustrated in Fig. 2.1 by the curved dash-
dot relation ρ = s

1
p . This non-linear relation penalizes and suppresses intermediate values

of stiffnesses and steers the solution to a more black and white design.

Figure 2.1: Penalization relationship in the stiffness-density graph.

However, despite the simplicity of the SIMP approach, the homogenization method was
generally preferred in the research community during this time because it provided more
accurate and physically meaningful results, particularly for problems involving periodic
structures or composite materials.

In 1991 however, Rozvany and Zhou [16] proposed a physical justification for the power-law
relation used in the SIMP method, based on the allowance for fictitious manufacturing
costs for intermediate thicknesses of material. The specific cost ρ in Fig. 2.1 can thus
be interpreted as the specific cost per unit area of the plate, resulting from the sum
of the material and fabrication costs (see Fig. 2.2). Material costs are simply linearly
proportional to the thickness of the material. Fabrication costs can be instead interpreted
as the cost associated with "machining" down an element of initial thickness t0, and is
linearly proportional to the amount of material "machined down". We observe however,
that for an element of zero thickness the fabrication cost is zero, as there is no cost
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associated with cutting out empty elements. The superposition of these two graphs yields
a bi-linear relationship that can be approximated by the power law relation seen in Fig. 2.1.

Figure 2.2: Interpretation of the penalization parameter on the basis of fabrication costs.

Rozvany and Zhou [16] further presented a SIMP solution for the MBB beam, which
consists of a rectangular beam simply supported on both ends by pinned supports which
prevent horizontal movement. Their result, for one half of the MBB beam is shown in
Fig. 2.3(a), exhibiting a close approximation to the exact analytical solution presented by
Lewinski et al. (1994) [17], shown in Fig. 2.3(b). The latter, along with Zhou and Roz-
vany [14], presented the Continuum Optimality Criteria (COC) in the context of layout
optimization, extending the theory initially developed by W. Prager in the late seventies.
COC are iterative optimization techniques, yielding a necessary condition (which is also
sufficient in convex problems) for cost minimization. In 1992, Zhou and Rozvany [18] re-
formulated the COC methods in terms of discretized matrix methods, enabling to increase
the efficiency and effectiveness of the SIMP framework. This new method was termed
discretized continuum-type optimality criteria (DCOC), and was shown capable of han-
dling a variety of design constraints, such as stress constraints, multiple load conditions,
natural frequency constraints and temperature strains.
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Figure 2.3: a. A SIMP Solution the MBB beam problem presented by Rozvany and Zhou
(1991) b. the exact analytical truss solution presented by Lewinski et al. (1994).

The paper by Bendsoe and Sigmund (1999) [1] on material interpolation schemes led to
a wider acceptance of SIMP in the research community. This work presented physically
feasible microstructures that lent a physical justification to the power-law relation. Other
research activities, such as the 99-line MATLAB code for SIMP formulation [19] and the
web-based topology optimization program [20] have further increased the popularity of
the SIMP method. SIMPs popularity was especially cemented in the wider community
after the successful textbook Topology Optimization: Theory, Methods, and Applications
[21] written by Bendsoe and Sigmund in 2003.

Rozvany and Zhou (1994) [22] first described what would later become known as the ’con-
tinuation method’ [23], where a global optimum is found first for the unpenalized problem
ρ = 1, yielding a solution with intermediate grey densities; in successive iterations, the
penalization parameters is then slowly increased to yield more black-and-white densities,
and resulting in a final solution that is not far from the global optimum. Another fea-
ture that is common to modern SIMP methodologies is the filtering method, a highly
efficient but partially heuristic solution suggested by Sigmund in 1994 [24] in response to
the checkerboarding problem, an issue first noticed in relation to homogenization methods
[25] in 1993. The 2007 paper by Sigmund provides a more detailed examination of such
filtering methods [26].
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2.1.2. Modern research of SIMP method

The boom in modern educational research papers pertaining to density-based methods is
in large part due to the original paper published by Sigmund (2001) [19], which published
the educational 99-line topology optimization code ’top99’. Written in MATLAB, the
code can handle 2D compliance minimization problems, with extensions for multiple load
cases, passive elements and different boundary conditions. In 2010, Andreassen et al. [3]
improved the code, creating ’top88’, a shortened 88-line optimization code in which con-
siderable speed-ups were achieved by pre-allocating arrays and vectorizing loops. Optional
black-and-white projection filtering methods are also discussed and provided.

In 2012, Talischi et al. [27] published a general purpose mesh generator for polygonal
elements written in MATLAB which provides the input required for finite element and
optimization codes that use linear convex polygons. Polygonal discretizations have the
advantage of not being susceptible to numerical instabilities such as checkerboarding,
which otherwise affect lower order triangular and quadrilateral meshes. This polygonal
discretization method was then utilized in Talischi et. al [28], which provided the MAT-
LAB code ’Polytop’, a structural topology optimization tool that includes a general finite
element routine based on isoparametric polygonal elements (see Fig. 2.4). The advantage
of the latter is that, the finite element and sensitivity analysis routines are decoupled from
the optimization formulation and can thus be extended and modified independently.

Figure 2.4: MBB beam discretized into polygonal elements using ’Polytop’.

The 2D ’88-line’ and ’99-line’ codes were used as the basis by many authors to extend the
minimum compliance problem to 3D. In 2014, Liu and Tovar [29] published their work on
3D minimum compliance TO problems, with the efficient 169-line MATLAB code ’top3d’,
built upon the ’top88’ code. The paper also includes instructions to define multiple load
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cases, active and passive elements, heat conduction problems, as well as the capacity to
implement general non-linear programming strategies such as ’sequential quadratic pro-
gramming’ and ’method of moving asymptotes’ (MMA) [30]. Likewise, Lagaros et al.
(2018) [31] solved the 3D minimum compliance problem, and released their code imple-
mented in C language, also allowing to model the obtained results in SAP2000. Zeng
and Ma (2020) [32] presented an efficient gradient projection-based method for structural
topological optimization problems characterized by a nonlinear objective function. Their
code is similar in structure to ’Polytop’ [28], and includes benchmark problems such as
the MBB beam and the 3D cantilever. Chi et al. (2020) [33] proposed a 3D topology opti-
mization framework employing the virtual element method (VEM) [34], using polyhedral
discretization methods capable of handling arbitrary shapes.

For increasingly larger domains, the computational cost of numerical optimization routines
can be very high, and thus the efficiency of the code is of high significance. Amir et al.
(2014) [35] reduced the computational cost associated with the nested analysis problem,
by exploiting the specific characteristics of a multigrid preconditioned conjugate gradients
solver. The applicability of the proposed procedure is demonstrated on several 2D and
3D examples involving up to hundreds of thousands of degrees of freedom.

The research in parallel computing has also enabled the significant improvement in compu-
tational times for TO problems. Niels et al. (2014) [36] published an easy-to-use parallel
computing framework which solves the 3D minimum compliance problem on structured
grids, using standard FEM and filtering techniques; the resulting fully parallelized frame-
work is capable of handling more than a 100 million design variables. The latter has been
further extended by Zhang et al. (2021) [37] in ’TopADD’, a 2D and 3D integrated TO
parallel-computing framework developed to deal with arbitrary design domains. It can
seamlessly switch between 2D and 3D, and besides compliance minimisation, also allows
for compliant mechanisms and the heat conduction problem.

In 2020, Ferrari and Sigmund [4] published the MATLAB codes ’top99neo’ and ’top3D125’
for 2D and 3D topology optimization, respectively. Both codes showed considerable im-
provements in computational efficiency, with ’top99neo’ entailing a speed-up of about 2.55
to 5.5 times with respect to its ’top88’ predecessor [3], and ’top3D125’ showing a speed-up
of up to 1.9 times compared to the code of Amir et al (2014) [35]. In both cases, these
improvements are due to more efficient procedures for the assembly and implementation
of filters in the design update phase.
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2.1.3. Density-based codes for specialized problems

Many researchers have extended the standard density based codes to more complex and
specialised design problems, such as multiscale, multiple materials, buckling criteria and
stress constraints, amongst many others.

Multiscale problems refer to structures where a macroscale structure consists of a periodic
repetition of a local microstructure (see Fig. 2.5). Bone or bamboo are examples of strong,
yet lightweight multi-scale materials found in nature. With the rapid development of
additive manufacturing in recent years, there has been a growth in interest for optimizing
multiscale structures, to produce new materials with superior performance characteristics.
In 2015, Xia and Breitkopf [38], built on ’top88’ [3] a code that adopts an energy-based
homogenization approach, generating 2D microstructures with optimal material properties
such as maximum shear and bulk modulus.

Figure 2.5: Periodic repetition in the local microstructure of multiscale materials.

In the case of problems with multiple materials, Tavakoli and Mohseni (2014) [39] pre-
sented a new algorithm for the solution of multi-material TO problems. The proposed
method subdivides the multi-phase TO problem into a series of binary sub-problems,
which are solved sequentially using a binary phase TO solver. The algorithm is useful for
solving multi-material minimum structural and thermal compliance TO problems, based
on the classical optimality criteria method. Sanders et al. (2018) [40] published ’PolyTop’,
a MATLAB code built on top of ’PolyMat’ for compliance minimization on unstructured
polygonal FE meshes that can solve for many materials and volume constraints.

Ferrari et al. (2021) [41] developed a 250-line MATLAB code for topology optimization
with linearized buckling criteria. This code utilizes the efficiency improvements introduced
in ’top99neo’ [4] to speed up the buckling analysis, and included stiffness, volume, and
buckling load factors either as the objective function or as constraints.

Regarding TO with stress constraints, Giraldo-Londoño and Paulino (2021b) [42] devel-
oped ’PolyStress’, a MATLAB code built upon ’PolyTop’ [40] with local stress constraints
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handled by means of the Lagrangian method. The ’PolyStress’ code can account for both
linear and nonlinear material properties and is provided with a library of benchmark
problems. A 3D extension was proposed by Deng et al. (2021) [43], proposing a 146-line
MATLAB code for topology optimization with stress minimization. This work adopts the
adjoint method for the 3D sensitivity analysis of the p-norm global stress measure, and
MMA [30] as nonlinear optimization solver.

2.2. Artificial Intelligence and Machine Learning

Over the recent years, Artificial Intelligence (AI) has become an undeniable and unstop-
pable force that has both captivated and alarmed the scientific community. It has become
deeply embedded into the fabric of our every day lives, from our phones, cars or even email
spam filters. Recent examples such as ChatGPT, a large language AI model, or Dall-E-2,
an AI model that can create images from text, generate results that are incomprehensibly
accurate, and yet again raise the bar for what AI algorithms are capable of. This section
seeks to provide context around AI and machine learning (ML), from its origins to current
state of the art research that is pushing the boundaries of what is possible. The focus will
be mainly on ML algorithms for computer vision and image recognition, as these form
the basis of this thesis.

2.2.1. Origins of AI and ML

Artificial intelligence, contrary to popular belief, is not a new and emerging field, but
rather a field of study born in the 1950’s, when data scientists posed the question of
whether computers could be made to "automate intellectual tasks normally performed
by humans" [44]. AI is a general field, encompassing both ML and deep learning (DL),
but also encompassing areas which do not strictly involve ’learning’, such as early chess
programs with hard-coded explicit rules. The relationship between these fields is shown
in Fig. 2.6.
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Figure 2.6: Relationship between Artificial Intelligence, Machine learning and Deep learn-
ing. [44]

In 1990’s, with the advent of increasing computing capabilities at lower cost, and the
advances in software engineering, the field of ML began to experience a flourish of research.
Whereas traditional programming requires the user to program explicit hard-coded rules,
yielding the computation of an output answers for a given data set, ML completely reverts
this programming paradigm. The user inputs the data (such as photos of animals) and
the answers (the tag labeling the names of the animals in the photos first, and then the
ML model outputs the rules describing the underlying functional link (see Fig. 2.7). To
this aim, the ML model is trained on input and output pairs to learn a statistical structure
correlating the two. The user is not tasked with learning or guessing the rules between
the data a priori, but rather of setting up the algorithm that allows to automatically learn
these rules, often in the form of tunable parameters.

Figure 2.7: Difference between classical programming and machine learning [44].

An artificial neural network (ANN) is a popular type of ML algorithm. The term ’neural’
is a reference to the neurons and neural pathways in our brains. The most fundamental
building block of an ANN is a perceptron, shown in Fig. 2.8. A perceptron takes a
vector of input values, multiplies each input by a corresponding weight value, and sums
the weighted inputs. The resulting summation is then usually ruled by an activation
function; this is often called neuron in the ML community.
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Figure 2.8: A simplified diagram of a perceptron

Perceptrons are often arranged in layers to form a neural network (see Fig. 2.9), which is
called multi-layer perceptron model. Typically, when there are two or more hidden layers,
a neural network is said to become ’deep’. These deep learning models are capable of
learning increasingly complex representations of the input data. Deep learning is a sub-
field of machine learning, involving the learning of neural network models characterized
by a deep architecture.

Figure 2.9: A generic representation of a neural network.

2.2.2. Deep Supervised learning for computer vision

Machine learning has grown into a boundless field of immeasurable scope, with new sub-
fields and categories being added every day. However, the majority of cases can be roughly
divided into supervised and unsupervised learning paradigms. Supervised learning occurs
when the model learns a mapping between the input and the known target data, given a
dataset of examples. This is often the case of classification or regression problems; other
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common applications that typically fall under this category are character and speech
recognition. On the other hand, unsupervised learning learns from unlabeled data that
has not been classified or categorized, with the aim of discovering hidden patterns or
structure in the data

One of the earliest examples of pattern recognition research was published in 1959 by
Selfridge [45], who introduced a simplified multilayer model (termed ’Pandemonium’)
that tested many hypotheses on the input data. Each hypotheses received feedback based
on the correctness of their response, which allows the model to adjust the weights and
improve the general performance over time. This presented one of the earliest examples
of an error-driven learning mechanism and contains many parallels to the behaviour of
modern neural networks and machine learning techniques. How to properly train these
multilayer networks however was not fully understood until the 1970’s and 1980’s, when
back-propagation techniques and stochastic gradient descent became popular [46].

One particular deep feedforward network proved much easier to train, yet yielded higher
prediction accuracy for image detection and classification, was the convolutional neural
network (CNN) [47] [48]. CNNs are a type of neural network that contains convolutional
layers, which apply a set of filters to the input image. Each filter is convolved with the
image to produce a feature map, which captures different patterns or features present
in the image. CNNs have proved significantly more effective in image recognition tasks
compared with densely connected layers largely due to the fundamental differences in their
layer architecture. Dense layers are trained to recognise global patterns in the input space,
whereas convolutional layers learn local patterns and features. The network is capable of
distinguishing local patterns in the input space such as edges and textures, which in turn
combine to form higher-level features. We can think of images in terms of compositional
hierarchies; where high-level features are composed of lower-level features (see Fig. 2.10).

Figure 2.10: Example of CNN architecture for image classification.
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LeCun et al. (1990) [49] published the first paper on CNNs trained with backpropagation
for classifying low-resolution images of handwritten digits. Backpropogation is a technique
for training neural networks whereby the gradient of the loss function with respect to the
weights is calculated, and then this gradient information is used to update the weights
in the direction that minimizes the loss. This procedure is repeated multiple times until
the networks performance converges to a satisfactory level. Another paper published in
1998 by LeCun et al. [50], further showed how neural networks, and in particular CNNs,
are able to handle the recognition of complex interdependent outputs, such as sequences
of characters in a bank check. By the late 1990’s this system was responsible for reading
over 10% of all bank cheques in the United States.

Despite significant progresses in the fields of image recognition, such as face detection
[47], embryo cell detection and image segmentation [51] (image segmentation here refers
to the process of training algorithms to divide and identify different regions or objects
in an image), the success of CNNs in computer vision was still largely limited in the
early 2000’s due to, amongst other factors, insufficient hardware capabilities and still
evolving algorithmic models. In 2010 however, Leon Bottou [52], made an important
breakthrough by demonstrating the amazing performance of stochastic gradient descent
as an optimization algorithm. Another significant turning point occurred in 2012, with
the success of the ImageNet competition, which tasked teams to classify 1.2 million images
into 1000 different classes. The winning entry produced outstanding results, with errors
almost halved with respect to previous state of the art model [53]. This was largely due to
the use of GPUs for parallelizing the training process, the advent of the ReLU activation
function, and a newly-developed regularization method called ’dropout’. In particular, the
effectiveness of exploiting the non-linear ReLU activation function f(z) = max (z, 0) in
the hidden layers for the supervised training of deep neural networks was shown earlier in
2011 [54]. On the other hand, dropout regularization was another important innovation
introduced in 2014 by Srivastava et al. [55] to prevent overfitting of the training data
(when the model simply memorizes the training data, instead learning a possible model
behind them). Dropout works by randomly dropping out (i.e., setting to zero) a fraction
of the neurons in a layer during training. By doing this, dropout prevents the neurons
from co-adapting too much to each other, and forces the network to learn more robust
features that generalize well to new data.

Many innovative and improved CNN architectures were developed since the first ImageNet
competitions. CNNs have been made capable to match human performance or even out-
perform humans in many particular image recognition tasks [48]. For instance, a notable
contribution is the ResNet model proposed by He et al. in 2015 [56], a significantly deeper
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network, in which the layers are reformulated as residual blocks. Residual blocks exploit
an identity mapping of the input, to provide an extra path toward the terminal part of
the network by skipping some layers, which is then added to the outputs of the stacked
layers through an element-wise summation. The idea behind this strategy is that for the
trainable layers, it is easier to fit the result of the desired mapping, instead of the desired
underlying mapping directly. Accordingly, multiple residual blocks are usually exploited
within the same architecture to perform an iterative refinement of the output features,
with each block slightly improving the representation. This strategy has proven effective
in allowing for enhanced performance, without adding extra parameters or computational
complexity, when further improvements were no longer achievable through deeper archi-
tectures. The ResNet model achieved a 3.57 % error rate in the ImageNet classification
task, exceeding human performance, which stands at approximately 5% error. Image
classification tasks refer to the process of training an algorithm to recognize and catego-
rize images based on their content. The aim is to create a model that can automatically
assign images to specific classes or categories, for instance identifying whether an image
contains a dog or a cat. In 2017, Hu et al. [57] further reduced this error rate in the Ima-
geNet classification task down to 2.25 % with the development of squeeze-and-excitation
networks.

Given the CNN’s outstanding performance in image classification and segmentation, they
have been recently exploited in many successful applications in diverse fields. In 2015,
Rosenberg et al. proposed the U-Net [58], a specific type of CNN-based encoder-decoder
network, which concatenates representations from the the contracting path to the expand-
ing path (see Fig. 2.11). This was initially proposed in the context of biomedical image
segmentation, but more recently has also been generalized to the field of topology opti-
mization with great success. In the medical industry CNNs have been also used for the
classification of patients with Alzheimer’s disease (2020) [59], and the 3D segmentation
of the human brain (2020) [60]. In materials science, deep learning sees rapidly emerg-
ing applications spanning atomistic simulation, materials imaging and spectral analysis
(2022) [61].

Other pioneering machine learning techniques include batch normalization, which was
introduced in 2015 by Ioffe and Szegedy [62]. Batch normalization works by normalizing
the input data at each layer of the neural network, so that the data has a mean of zero and
a standard deviation of one. This helps to ensure that the input data to each layer is more
consistent, which can help to speed up training and improve the accuracy of the model [63].
Weight decay has become a standard tool for improving the generalization performance
of neural networks [64] and the accuracy of the model [53]. This regularization technique
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Figure 2.11: Example of a U-Net architecture.

affects the learning by scaling the weights of the model before they are updated in the
gradient direction. Such a shrinking effect implies that the model behavior will not change
much for similar inputs, thus avoiding learning local noise in the data.

2.3. Topology Optimization and Machine Learning

Topology optimization as a field has been gaining momentum for many decades; with
the lowering cost of hardware, improved computational algorithms and the advent of
additive manufacturing techniques all contributing to this boom. However, despite these
improvements, the bottleneck for many problems is still the computing time, which grows
exponentially for larger domains and complex problems, thus hampering the application
to real engineering design contexts. For this reason, many are looking towards the field
of AI and ML to engineer new and novel solutions capable of reducing the computational
times and speed up the topology optimization process. Publications in this new research
area fall into a few generalized categories depending on how ML is exploited within the
TO algorithms. The main branches are the following: accelerative, which utilises the TO
algorithm for a part of the optimization process; non-iterative (both fully data-driven and
physics-aided), which conversely aims to predict the optimal topology in one-shot without
an initial form finding process; and multistage, which utilises a combination of ML models
to solve distinct parts of the TO problem.
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2.3.1. Accelerative Methods

In 2017, Sosnoviks and Oseledets [65] proposed one of the first deep learning approaches
to 2D topology optimization by considering it as an image segmentation task using a deep
CNN (see Fig. 2.12). The final black-and-white topology is predicted by using as input
to the neural network two grayscale images: the density distribution and the gradient of
the densities, both attained after only a handful of iterations of the SIMP solver. This
method is coined as an accelerative method; the SIMP algorithm is utilised for a small
number of iterations, whilst the more time consuming refinement phase of the solver is
replaced with a deep learning model, greatly accelerating the task.

Figure 2.12: ML Architecture used in Sosnoviks and Oseledets work in 2017 [65].

Lin et al. (2018) [66] followed a similar approach, to greatly reduce the second refinement
stage of the SIMP solver. The work focused on 2D heat conduction problems, using
a CNN based AE (see Fig. 2.13). Kolliaris et al (2020.) [67] developed ’DLTOP’, a
novel accelerative method in which ’deep belief networks’ (DBN) are used for discovering
connections between the density values of each finite element of the domain along the first
iterations of SIMP approach with its final outcome. First, the intermediate optimization
result from the SIMP method serves as input to the DBN, which predicts an optimal
elements density, then the DBN-predicted topology is again refined through the SIMP
method. Banga et al. (2018) [68] extended these methods to 3D, by providing three types
of input into a 3D CNN: 3D density distribution of voxels after a number of intermediate
iterations, gradient of voxel densities, and forces and boundary conditions along the x, y,
and z directions. This yielded a 40% reduction in computational time, yet with a binary
and root mean square deviation accuracy of 96.2% and 79.7%, respectively. Senhora et
al. (2022) [69] proposed an accelerative deep learning model consisting of a CNN with
residual connections, characterized by a strong generalization capability of solving a wide
variety of problems with different geometries, boundary conditions, mesh sizes, volume
fractions and filter radius. The model uses a two-resolution approach, with inputs to
the deep learning model organized in a coarse and a fine mesh. The proposed model
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shows speed-ups of up to 30 times compared to traditional topology optimization, and is
demonstrated for both 2D and 3D compliance minimization problems.

Figure 2.13: ML Architecture used in Lin et al. [66].

2.3.2. Non-iterative, fully data-driven methods

Non-iterative optimization methods, as opposed to accelerative methods, predict an opti-
mal shape that satisfies the design conditions, without an iterative form finding process.

Abueidda et al. (2020) [70] proposed a CNN ResUnet that directly derives an optimized
2D geometry for assigned loading, boundary conditions, and volume fraction in the case of
(i) linear elasticity with small deformation (without nonlinear constraints), (ii) nonlinear
hyper-elasticity (neo-Hookean material) with geometric nonlinearity, and (iii) linear elas-
ticity with stress constraint, a nonlinear constraint. The ResUnet takes the advantages
of the U-Net architecture [58] and combines it with the effectiveness of residual learning.
Kollmann et al. (2020) [71] also utilised the ResUnet for the non-iterative prediction of
optimal 2D meta-materials. The volume fraction, filter radius, and design objective (e.g.
maximum bulk modulus, maximum shear modulus, or minimum Poisson’s ratio) were
used as inputs to the network. Zheng et al. (2021) [72] presented another method for
predicting 3D topologies, yielding good generalization ability for variable design domains
and different loading and boundary conditions. The boundary conditions, load condi-
tions, volume fraction and domain size are directly encoded onto an input tensor, and
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a U-Net encoder decoder architecture then predicts the corresponding optimal topology
(see Fig. 2.14).

Figure 2.14: U-Net Architecture used in Zheng et al. (2021) [72].

Zhang et al. (2021) [73] introduced a non-iterative topology optimization neural reparam-
eterization framework, whereby the objective function in the TO formulation is directly
used as the loss function to train the network. The update of the pseudo-density de-
sign variables in the conventional TO method is therefore transformed into the update
of the neural networks parameters, termed ’reparametrization’. Compared with existing
methods, this has proved effective to overcome the phenomenon of ’structural disconnec-
tions’. Rawat and Shen released a number of papers using generative adversarial networks
(GANs) to predict optimal topologies. In 2018 [74], they presented a paper in conditional
Wasserstein GANs (CWGANs) predict 2D topologies, and also map the generated shape
to the corresponding optimization condition behind it, such as volume fraction, penalty
and radius of the smoothing filter. In 2019 [75], extended this strategy to 3D problems, by
predicting 3D optimal topologies using a similar architecture of CWGANs. Herath and
Haputhanthri (2021) [76] also utilised a combined CNN and conditional GANs (cGAN)
framework to generate the optimal design, plot the Von Mises stress contours on the op-
timal design and predict the locations characterized by the maximum Von Mises stress
values.
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2.3.3. Non-iterative, Physics Aided Methods

A subset of non-iterative methods is that of non-iterative physics-aided methods, that in
contrast to the former, are also informed by the physics of the problem (either incorporated
as an additional term in the loss function to be minimized or in a principled formulation
of the input and target data tensors). A handful of these works require a first run of the
FEA algorithm to generate an initial field of interest, for instance in terms of displacement
or strain, however they are still considered non-iterative for the sake of simplicity. Zhang
et al. (2019) [77] utilised a U-net, whose input tensor contains information regarding the
final displacement, strain and volume fraction of the SIMP formulation (see Fig. 2.15).
The training set involved 80,000 images of cantilevers, yielding excellent performance
on unseen boundary conditions. Xiang et al. (2022) [78] proposed a similar approach
in 3D with 10 input tensors - consisting of displacements, longitudinal strains, shear
strains and volume fraction - into the neural network. The proposed method shows good
generalization capabilities, even in the case of stress minimization problems.

Figure 2.15: Input tensor fields used in the network proposed by Zhang et al. (2019) [77].

Yan et al. (2022) [79] proposed a framework that takes the principal stress field from
the first SIMP iteration as input tensor for a CNN based neural network. The authors
reported results of an acceptable level of accuracy for 2D topologies, even exploiting
training datasets of limited size. Nie et al. (2021) [80] proposed ’TopologyGAN’, a
framework that takes the strain energy density and Von Mises stress values obtained from
the FEA as the inputs for a GAN, along with the volume fraction, boundary conditions and
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load. In particular, the generator leverages on a hybrid architecture called U-SE-ResNet,
which is a U-Net with a SE-ResNet module in a downsampling-upsampling fashion.

Cang et al. (2018) [81] proposed a novel non-iterative method termed ’theory-driven’
learning (which differs from purely data-driven supervised learning), whereby an adaptive
sampling procedure is adopted rather than a batch-mode training method. The deviation
of the predicted solutions from the optimal solution is quantified and used to select the new
data points to sample in the learning process. Xiang et al. (2022) [82] introduced a non-
iterative U-Net based encoder decoder framework that computes the optimized topology
and the corresponding Von Mises stress for a stress-constrained problem. The p-norm
stress is adopted to measure the global stress level, and the MMA is used to generate a
training dataset for varying loading conditions and volume fractions. This strategy has
been also extended to 3D problems with negligible added computational cost. Jeong et
al. (2023) [83] proposed a physics-informed neural network-based topology optimization
scheme, where an energy-based deep learning model replaces the FEA to numerically
determine the displacement field. In this model, the governing physics equations are
embedded in the loss function of the neural network. The proposed approach has been also
extended to multiple loading conditions, passive domains and 3D linear elastic compliance
minimization

2.3.4. Multistage and Non-iterative methods

Other authors have approached the combination of topology optimization and machine
learning by means of a multistage non-iterative method, whereby two or more neural
networks are synergistically exploited to solve distinct parts of the TO problem; this often
results in a more complex architecture that can lead to a better accuracy. For instance, Yu
et al. (2018) [84] proposed a CNN-based encoder-decoder network, followed by a cGAN
serving as the second stage refinement (see Fig. 2.13). The training datasets consisted
in optimal topologies, respectively featuring low and high resolution. The CNN-based
encoder-decoder first predicts the low resolution image by taking as input the constraints
information and the load components along the x and y directions. The resulting image
is then upsampled to high resolution using the cGAN. Li et al. (2019) [85] applied a
similar architecture for conductive heat transfer problems, with heat sink position, heat
source position, and mass fraction coded into the input tensor. Rade et al. 2020 [86]
developed two approaches, density sequence and coupled density compliance sequence
models, both respectful of the underlying physics, as well as of the topological constraints
and of the result obtained with the SIMP topological optimization algorithm. In this case,
the training datasets were generated both for 2D and 3D problems, providing notable
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advantages compared to the baseline density-based approach in both cases.

Figure 2.16: Generator and discriminator GAN network taken from Yu et al. (2018) [84]

Behzadi and Ilies (2021) [87] introduced a non-iterative deep transfer learning method
based on CNNs. The proposed method uses low resolution datasets to train a source
network and a much smaller high resolution dataset to fine-tune a target network. This
multistage combination of networks is capable of leveraging the learned knowledge from
the source network and transfer it to the target network so that the latter requires a much
smaller number of training cases than an equivalent deep CNN to make predictions with
the same level of accuracy. Additionally, it is capable of handling high-resolution design
domains with good generalization capability.

2.3.5. Objective Function and Sensitivity Filter for Non-iterative
Methods

A significant portion of the computing time of TO algorithms is often devoted to evalu-
ating the objective function and the FEA-based sensitivity analysis. To this aim, deep
learning models can be applied in order to accelerate or replace these computationally
expensive operations. For instance, Lee et al. (2020) [88] used a CNN to predict the
compliance information by using low resolution density images as an input to the net-
work. The evaluation of optimality may thus be performed without having to run any
FEA code, resulting in a significant speed up. Kim et al. (2021) [89] exploited machine
learning algorithms to predict the continuous anisotropic effective material properties for
simultaneous design of the overall topology configuration and local fiber material layout
in functionally graded composite structures. The methodology is applied to both 2D and
3D test cases for the minimization of structural compliance and compared with bench-
mark cases that use the typical asymptotic homogenization design method. Takahashi et
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al. (2019) [90] created a predictive model for the sensitivity using a CNN on cantilever
examples. Chi et al. (2021) [91] proposes a similar method for mapping the design vari-
ables to their corresponding sensitivities. The latter also includes a novel online training
concept using data from earlier iterations of the TO procedure, and also in this case the
method is tested on 2D and 3D benchmarks.

2.3.6. Dimensionality Reduction-based approaches

Following a different perspective, other researchers have chosen to create more efficient
predictive models and reduce the associated computational burden by reducing the di-
mensionality of the design space. For instance, Guo et al. (2018) [92] presented a novel ap-
proach that uses an augmented variational autoencoder (VAE) leveraging on style transfer
[93] to encode 2D topologies into a lower-dimensional latent space, which is then decoded
back into 2D topologies (see Fig. 2.17). Moving the optimization process to the latent
space was shown to be successful with regards to: generating new designs, improving
solution quality, and adapting training data from related problems to construct a design
representation enabling a proper solution to the considered problem. Ulu et al. (2015) [94]
devised a projection-based mapping of optimal 2D topologies onto a lower dimensional
space using principal component analysis (PCA). Thus, optimal topologies for unseen
loading configurations can be predicted, by exploiting a ML model previously fitted on
the input loading configurations and the corresponding PCA interpolation coefficients.
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Figure 2.17: VAE with style transfer in Guo et al. (2018) [92].
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3| Topology Optimization

Formulation

This chapter presents the general formulation for the topology optimization problem, and
the solution algorithm based on the SIMP method. This will be adopted for dataset
generation purposes, as detailed in the next chapter. In particular, we adopt the 88-line
MATLAB code ’top88.m’ developed by Andreassen et al. (2010) [3] 1 for 2D problems,
whilst the extension to 3D is based on the 125-line code proposed in the paper by Ferrari
and Sigmund (2020) [4]. The following sections review the theoretical notions underlying
these two codes.

3.1. Topology optimization problem formulation in

2D

The focus of the following formulation is restricted to minimum compliance problems
with a statically applied load. The MATLAB code is divided into the main program, the
optimality criteria optimizer, mesh independency filter and the finite element code. Ex-
tensions to the problem such as multiple load conditions, and diverse boundary conditions
are considered in the next sections.

Fig 3.1 illustrates the basic input and output of the topology optimization algorithm.
The first step is to specify the domain, boundary conditions and loading conditions of
the problem. Subsequently parameters such as the volume fraction, filter radius and
sensitivity filtering can be adjusted to produce an output as shown. The aim of the
optimization problem is to find the optimal material distribution within a given domain
that satisfies the minimum compliance problem for a fixed constraint on the amount of
material, expressed as a fraction of the total design volume.

1the 88-line code was derived from the 99-line code first presented in 2001 by Sigmund [19]
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Figure 3.1: Example of the input and output of the topology optimization problem for
the 2D MBB

3.1.1. Modified SIMP approach

By adopting the SIMP approach, the user is first required to input the number of rectan-
gular finite element along the x and y directions, in which the design domain should be
discretized. Each finite element e is characterized by a density value xe that affect the
corresponding value of the Young’s Modulus Ee, as follows:

Ee(xe) = Emin + xpe(E0 − Emin), xe ∈ [0, 1], (3.1)

which corresponds to the modified SIMP approach, featuring a number of advantages
over its classical counterpart. Herein: Emin is the minimum value of stiffness to avoid
singularities in the stiffness matrix, E0 is the max value of stiffness, and the exponent p
is a penalization factor to ensure black-and-white solutions.

The mathematical formulation of the TO problem is given in the following set of equations:

min
x

: c(x) = UTKU =
N∑
e=1

Ee(xe)u
T
e k0ue,

subject to : V (x)/V0 = f,

KU = F ,

0 ≤ x ≤ 1.

(3.2)

The first line describes the objective function, the so-called structural compliance. It is
defined as the work of external loads at equilibrium, providing a measure of the overall
stiffness. The minimization problem is subject to a set of constraints on the optimization
variables, respectively in terms of prescribed volume fraction, global force-displacement
relationship, and admissibility of the element densities. Herein: adopting a regular mesh
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of finite elements, x is the vector of design variables (one per element); c is the compliance
to be minimized; U and F are the global displacement and force vectors, respectively; K
is the global stiffness matrix, assuming a linear elastic isotropic material; ue is the element
displacement vector; and k0 is the element stiffness matrix for an element of unit Young’s
Modulus; N refers to the number of elements within the discretized domain; f refers to
the prescribed volume fraction; V (x) and V0 refer to the volume of the placed material and
to the target design volume, respectively. The assumption of small displacement holds.

3.1.2. Optimality Criteria Method

To update the element density values over each iteration of the optimization problem, we
adopt the following standard optimality criteria method with heuristic updating strategy:

xnewe =


max(0, xe −m) if xeBη

e ≤ max(0, xe −m)

min(1, xe +m) if xeBη
e ≥ min(1, xe +m)

xeB
η
e otherwise

, (3.3)

where m is a suitable threshold on the iteration step, η (=1/2) is a numerical damping
coefficient, Be is derived from the optimality condition, as below:

Be =
− ∂c

∂xe

λ ∂V
∂xe

, (3.4)

with λ being a suitable Lagrangian multiplier value, selected using a bisection algorithm
whilst still satisfying the volume constraint.

Eq.(3.4) involves the sensitivities of the objective function c and the material volume
V with respect to the element densities xe, computed under the assumption that each
element has unit volume, as follows:

∂c

∂xe
=− pxp−1

e (E0 − Emin)u
T
e k0ue,

∂V

∂xe
=1.

(3.5)

3.1.3. Filtering

Another feature related to the adoption of the SIMP method is the filtering strategy; that
is, the application of sensitivity filter which involves a weighted average over different
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elements. This is a partially heuristic, yet efficient solution to the arising of undesired
checkerboard patterns (unphysical minima) and mesh dependence issues, first suggested
by Sigmund in 1994 [24]. Indeed, it ensures the existence of solutions to the optimization
problem by placing restrictions on the design. For the generation of the datasets in both
2D and 3D cases, the original sensitivity ∂c

∂xe
of the objective function obtained in Eq. 3.5

is modified as follows to obtained the filtered sensitivities ∂̂c
∂xe

:

∂̂c

∂xe
=

1

max(γ, xe)
∑

i∈Ne
Hei

∑
i∈Ne

Heixei
∂c

∂xe
. (3.6)

Herein: γ = 10−3 is a small positive term introduced to avoid division by zero. This
differs from the classical SIMP approach proposed by Sigmund [19], in which the density
variables xe cannot become zero, thus not requiring to define the γ term; Hei is the
weight factor for the i-th set of elements, for which the center-to-center distance to the
e-th element is smaller than the filter radius rmin; Hei is defined as:

Hei = max(0, rmin −∆(e, i)). (3.7)

For a more detailed analysis of filtering methods, the reader can refer to the 2007 paper
by Sigmund [26]. It must be remarked that the adoption of a filtering scheme implies
the arising of grey boundaries in the achieved optimal layouts. To get a crisp transition
between full material and void, projection schemes may be conveniently implemented, as
discussed in Guest et. al. (2004) [95].

3.2. Topology optimization: extension to 3D

As mentioned earlier, the generation of training datasets for 2D problems is carried out
by means of the popular ’top88’ optimization code [3]. The extension to 3D problems is
instead based on the ’125-line’ code, known as ’top3D125’, and released in 2020 by Ferrari
and Sigmund [4]. At the time of writing, this has proved the most efficient MATLAB im-
plementation to date, with speed-ups in the computing time of about 1.9 times compared
to the code of Amir et al. (2014) [35]. Both of these codes employ significantly more
efficient filter assembly and implementation procedures compared to the ’top88’ code, as
well as shortcuts in the design update step. One of the most useful improvements is the
’fsparse’ subroutine developed by Engblom and Lukarski (2016) [96], which improves over
the basic sparse assembly used in the original ’top88’ code through a better sorting of
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operations.

One of the other main differences employed in the 3D formulation, as opposed to the 2D
formulation, is the filtering of the densities (in the 2D formulation the filtering is applied
only to the sensitivities). The density filter transforms the original densities xe as follows:

x̃e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi, (3.8)

where the original densities xe are known as the design variables, and the filtered densities
x̃e are referred to as the physical densities. The filtering of the densities necessitates
a minor reformulation to the sensitivity equations. The sensitivities of the objection
function c and the material volume V with respect to the physical densities x̃e are still
given by Eq. 3.5, provided the variable xe is replaced with x̃e. The sensitivities with
respect to the design variables xj are obtained through use of the chain rule:

∂ψ

∂xj
=

∑
e∈Nj

∂ψ

∂x̃e

∂x̃e
∂xj

=
∑
e∈Nj

1∑
i∈Ne

Hei

Hje
∂ψ

∂x̃e
, (3.9)

where the function ψ represents either the objective function c or the volume V . The only
other minor modifications from the 2D formulation is the definition of the elemental stiff-
ness matrix Ks

e for the 8-node hexahedron, and the addition of the extra ’space-dimension’
in the necessary lines to account account for 3D. For full details about the problem for-
mulation for the ’top3D125’ refer to the article published by Ferrari and Sigmund 2020
[4].
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Dataset formulation

For both the 2D and 3D cases, it is necessary to create a robust and large enough dataset
to properly train the machine learning model. We define cases here to mean unique sets of
boundary conditions, which can be implemented by means of a suitable parametrization
of the MATLAB code. In particular, we consider case studies involving an MBB beam
as 2D example and a cantilever and a bridge as extension to 3D. To properly sample the
parametric input space (which accounts for the loading conditions, and also the boundary
conditions in the bridge case), a Latin hypercube sampling (LHS) strategy was employed.
LHS is a statistical method for generating a near-random sample of parameter values from
a multidimensional distribution and allows a uniform sampling of the full sample space.

4.1. 2D

For the 2D case, the original ’88-line’ MATLAB code has been modified to allow for the
generation of a dataset for our machine learning model.

The diagram in Fig 4.1 illustrates the connectivity of the finite elements for the 2D case.
The design domain is rectangular and discretized into square elements, with a width
nelx in the x-direction and a height nely in the y-direction of 4 and 3 respectively. The
total number of elements nel is 12 with 4 nodes per element. There are two degrees of
freedom (DOFs) per node, shown in red. The numbering of both the elements and nodes
is performed top to bottom column-wise and left to right, with the DOFs 2n− 1 and 2n

corresponding to the horizontal and vertical displacement of the node n respectively. The
sign convention for loads and displacements is taken to be positive up and positive right.

4.1.1. MBB

The MBB case was discretized in a domain with size nelx = 120 and nely = 40. The
volume fraction was prescribed as volfrac = 0.5, the penalization power penal = 3 and
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Figure 4.1: Numbering and connectivity for the 2D finite element formulation.

the filter radius r_min = 1.5.

The code is split into a main file ’Main_MBB.m’ which iteratively calls the function
’top88_MBB’ implementing the topology optimization procedure for each unique set of
loading parameters. Each topology optimization loop produces three outputs; a grey
scale optimal topology, a VM Stress map, and a TorC field. These are stored locally
in the variables topopt, VM and TorC respectively, and then ultimately exported to a
.csv file format once the optimization loop was completed for every load condition. A
basic flowchart of the data generation procedure is shown in Fig. 4.2. The two loading
parameters that are allowed to vary are the angle = θ, which controls the angle of the
force vector, measured anti-clockwise from the positive x-axis, and the nodeID which
controls the node number onto which the force vector is applied. As a constraint, the
force vector may be applied only on the nodes on the free surface boundary, shown in
Fig. 4.3.
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Figure 4.2: Flowchart of main program ’Main_MBB.m’ calling upon function
’top88_MBB’ to produce topologies for each load condition.

Figure 4.3: Allowable force vector positions in the MBB case.

Loading Parameters

The output of the topology optimization algorithm is not sensitive to the magnitude of the
loading vector, and thus a unit force vector F = 1 is utilized. The finite element analysis
step is performed in the linear elastic regime and it is therefore possible to exploit the
superposition of effects; the force vector can be decomposed into its x- and y-direction
components Fx and Fy, shown in Fig.4.4. This is necessary since our finite element code
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requires the acting loads to be specified in the same direction of the DOFs.

Figure 4.4: Decomposition of unit force vector in x- and y- components for use in the
MATLAB program.

Latin Hypercube Sampling (LHS)

LHS is a method that can be used to sample random numbers in which the samples are
evenly selected over a sample space. It is a a popular method of generating what are known
as controlled random samples since it can produce a highly diverse and representative data
set with a comparatively small amount of samples. For this method to be truly effective,
the variables must be independent. To illustrate in 2 dimensions refer to Fig. 4.4. The
sample space of each variable is subdivided into n evenly spaced regions. A random sample
is chosen by selecting a combination of two subregions across the two dimensions. For
the current case of the 2D MBB beam, the two independent variables are the angle and
node_ID. The quantity of n random samples generated is equal to the samples we desire
for our dataset. For this case we have created a dataset of n = 2500 topologies. A for

loop introduces each unique pair i of angle and node_ID at a time into our optimization
algorithm to produce data containing the corresponding optimized topology, Von Mises
(VM) stress and tension or compression (TorC) zones. This data is then stored along
with the corresponding loading parameters behind them, in view of the future training of
our ML model, as detailed in the next sections.
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Figure 4.5: Illustration of LHS sampling method in 2 dimensions

Von Mises Stress field and Tension or Compression Field

At each iteration of the optimization algorithm, the code performs a finite element analysis
to update the objective function. In this step, information about the local displacements
u is obtained, and then used to calculate the global compliance c. The FEA is the
most computationally demanding step, however, once this is performed and the local
displacements are obtained, it is computationally efficient to calculate additional useful
physical data about the problem, such as the principal stresses or normal and shear
stresses.

To calculate the VM stresses, we introduce the [3x8] internal compatibility matrix B for
a square element, and the plane stress constitutive matrix D, given by equations 4.1 and
4.2, respectively:

B =

−1/2 0 1/2 0 1/2 0 −1/2 0

0 −1/2 0 −1/2 0 1/2 0 1/2

−1/2 −1/2 −1/2 1/2 1/2 1/2 1/2 −1/2

 , (4.1)

D =
E

1− v2

1 v 0

v 1 0

0 0 1−v
2

 . (4.2)
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The stress vector for the element σe is then computed as:

σe =
[
σxx σyy τxy

]⊤
= DBue. (4.3)

The normal and shear stresses are then passed through the VM function to yield the VM
stress for each element, computed as follows:

σVM,e =
√

(σ2
xx + σ2

yy − σxxσyy + 3τ 2xy). (4.4)

regardless of whether the element is part of the topology or void space. In practice, a
VM stress field is obtained at every iteration of the FEA for the whole domain. This ’full
field’ of stresses, further referred to as the ’initial VM stress field’ is then saved at the
end of the optimization procedure, and stored as part of the training dataset. However,
this ’full field’ of stress is computed assuming the elastic modulus of the full material
everywhere, see Eq. 4.2. Clearly, this field has no physical meaning since any converged
optimal solution is characterized by two main region only: solid, with full elastic modulus,
and void, with nil elastic modulus. Visualising the VM stresses on the topology is achieved
by simply performing an element-wise multiplication between the ’full field’ of stress with
the obtained optimal topology. The void spaces in the optimal topology, characterized by
a zero density of material, do not contribute when multiplied with the VM stresses, and
those elements with a density field greater than 0 will retain a VM stress value scaled
proportionally to their density value. Such an interpolation allows reconstructing the
real stress field, further referred to as the ’final VM stress field’, in both void and solid
regions. No critical bias is introduced in the intermediate density regions encountered at
the boundary of the optimal layout. This discussion holds for 3D, as well.

Fig. 4.6 illustrates this concept. The initial VM stress field (left) is passed through
the optimal topology ’mask’ to yield a plot of the topology including the VM stresses
information.
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Figure 4.6: Element-wise multiplication between Von Mises stress field with the corre-
sponding optimal topology.

The TorC zones utilise a similar concept of passing a stress field through the optimal
topology ’masking’ layer. However, in this case, the considered stress field is characterized
by values normalized to range from -1 to 1, with negative and positive values representing
elements mainly in tension and compression, respectively. This kind of representation is
assumed to incorporate important information about the dominant principal stress acting
on each element during the optimization procedure.

To determine the dominant principal stresses on each element, the stress vector is first
rearranged into a [2x2] matrix as:

σ2x2 =

[
σxx τxy

τxy σyy

]
, (4.5)

which is then passed through the eig MATLAB function to compute its eigenvalues, one
positive and one negative, corresponding to the principal stresses:

σp = eig(σ2x2) =

[
σ1 0

0 σ2

]
. (4.6)

For each element, the dominant principal stress σTorC is finally selected to be the eigen-
value that is greatest in magnitude.

This field, when element-wise multiplied with the optimal topology, ’projects’ the tension
and compression information onto the optimal topology. If negative values can be rounded
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to -1, and positive values rounded to +1, a more distinct visual representation of the TorC
regions is shown. This is illustrated in Fig. 4.7 with tension shown in red, compression in
blue, and void space in white for two test cases (a) and (b).

Figure 4.7: Element-wise multiplication between σTorC stress field and the corresponding
optimal topology.

4.2. Extension to 3D

For the 3D case, the ’top3D125’ [4] MATLAB code has been modified to allow for the
generation of a dataset for our machine learning model. The two considered 3D case
studies involves a cantilever beam and a bridge.

The design domain is a prism discretized into cubic elements, with a total length nelx in
the x-direction, height nely in the y-direction, and width nelz in the z-direction. There
are three degrees of freedom (DOFs) already defined per node. The numbering of both the
element number and node numbers is performed first top to bottom column-wise (down
the y-axis) and then left to right along the x-axis), while moving along the z-axis. Fig.
4.8(a) shows the node (black) and DOF numbers (red) associated with the starting plane
z = 0, whilst Fig.4.8(b) shows the numbering for elements between z = 0 and z = 1. For
node n, the DOFs 3n − 2, 3n − 1 and 3n correspond to the x-, y- and z-displacements,
respectively. The sign convention for the loads and displacements matches the positive
sign conventions of the axes.
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Figure 4.8: (a) Nodes and DOFs numbering for z=0 (b) elements numbering for the
elements between z=0 and z=1.

The three dimensional isometric view of the domain is shown in Fig.4.9 (a) with the first
element (as per the numbering order) highlighted in blue. A detailed view of this first
element is reported in Fig.4.9 (b) showing the node numbers (black) and associated DOFs
(red).

Figure 4.9: (a) Isometric view of the design domain with element 1 highlighted in blue
(b) detailed view of element 1 showing node numbers and DOFs.



42 4| Matlab Implementation and Dataset formulation

4.2.1. 3D Cantilever

The 3D Cantilever case was discretized in a domain with size nelx = 24 and nely = 12

and nelz = 12. The volume fraction was prescribed as volfrac = 0.12, the penalization
power penal = 3 and the filter radius r_min =

√
3.

Like the 2D case, the code was split into a main file ’Main_3DCantilever.m’ which
called upon, internally, the function ’top3D125_3DCantilever’ which ran the topology
optimization procedure for each unique set of loading parameters. The same procedure is
followed for the 3D Bridge case. Each topology optimization loop produces the same three
outputs as the 2D case; a grey scale density field for the optimal topology, an initial VM
stress field, and an initial TorC stress field which was stored for every load combination.
The 3D cases follow the same basic flowchart of data generation as shown in Fig. 4.2. A
total of 2500 topologies were generated for the 3D cantilever training set.

Loading Parameters

For the 3D case, additional parameters are necessary to define the unique position and
direction of the force vector in a 3D space. Like the 2D case, the topology is invariant
to the magnitude of the vector and thus a unit force vector is taken for the calculations.
The position of the force vector origin is defined by three parameters; the x-, y- and z-
coordinate in space. Two additional parameters define the the direction of the unit vector;
the inclination and azimuth angle (see Fig. 4.10). These are independent angles that can
trace a unique point on the surface of a unit sphere, and are given by θ and φ for the
inclination angle and azimuth angle, respectively. Typically, a third parameter r, which
controls the radial distance is required, however for a unit vector this is kept equal to one.
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Figure 4.10: Spherical coordinate system: inclination θ, azimuth φ, and radius r.

Together, these 5 independent parameters (x, y, z, θ, φ) are necessary to define the
position and direction of the force vector. Within each optimization run, the θ, φ values
are decomposed into the Fx, Fy, Fz components, as follows:

Fx = F · sinθcosφ = sinθcosφ,

Fy = F · sinθsinφ = sinθsinφ,

Fz = F · cosθ = cosθ,

(4.7)

which are then exploited in the finite element procedure of the MATLAB code.

Von Mises Stress field and Tension or Compression Field

Like the 2D cases, the ’top3D125’ code can also generate the VM stresses and TorC zones,
by simply reformulating the problem into three dimensions.

To calculate the VM stresses, we introduce the [6x24] internal compatibility matrix B for
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a cubic element, and the constitutive matrix D given by:

D =
E

(1 + v)(1− 2v)



1− v v v 0 0 0

v 1− v v 0 0 0

v v 1− v 0 0 0

0 0 0 1−2v
2

0 0

0 0 0 0 1−2v
2

0

0 0 0 0 0 1−2v
2


. (4.8)

The product of these two and the vector of local displacements ue yields the stress vector
σe for the e-th element:

σe =
[
σxx σyy σzz τxy τxz τyz

]
= DBue. (4.9)

A procedure analogous to that adopted for the 2D case is used to map the VM stress field
onto the optimal topology also in the 3D case. First, a field of VM stresses is generated
for the full domain, regardless of the computed optimal topology. This is computed at
the element level as:

σVM,e =

√
1

2
((σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2 + 6 · (τ 2xy + τ 2xz + τ 2yz)). (4.10)

The resulting stress field is then normalized to take values between 0 and 1 for each unique
loading combination, whereby 0 represents a state of no stress, and the 1 represents the
greatest magnitude of VM stress. The optimal topology is finally adopted as a ’masking’
layer through which the VM stress field is passed. This is achieved by an element wise
multiplication; void spaces remain voids in the output, and regions with non-zero densities
assume a scaled value of the VM stress. This is illustrated in Fig.4.11 for the 3D cantilever.
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Figure 4.11: Projecting the Von Mises stresses onto the optimal topology using the mask-
ing procedure for two different cases (a) and (b).

As shown in Fig.4.11 (a), it can happen that the element containing the greatest mag-
nitude of VM stress (with a value of 1) in the initial VM stress field is not necessarily
projected onto the optimal topology, and is in fact element-wise multiplied with a void
space, rendering it null. As such, the element-wise multiplication yields a final VM stress
field with values that do not necessarily span between 0 and 1. In Fig. 4.11 (b) however,
the element with a VM stress of 1 is also an element with a physical density of 1 for the
optimal topology, for which the element-wise multiplication yields a topology containing
a VM stress of 1.

The TorC regions for the 3D case follow the same procedure and format as with the 2D
case; the values for each element are defined based on the dominant principal stress. First,
the [6x1] stress vector σe is rearranged as a [3x3] stress matrix:

σ3x3 =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (4.11)

which is then passed through the eig function in MATLAB to yield the following [3x3]
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matrix of principal stresses:

σp = eig(σ3x3) =

σ1 0 0

0 σ2 0

0 0 σ3

 . (4.12)

The element dominant principal stress is finally selected as the principal stresses of greatest
magnitude.

A TorC field σTorC is thus generated for the entire domain, which is eventually normalized
to lie between -1 and 1; again, negative values represent a dominant tensile principal stress
and positive values represent compressive principal stresses. This field is passed through
the optimal topology ’mask’ by means of an element wise multiplication, as shown in
Fig.4.12. Similarly to the VM stresses, the element containing the maximum compressive
or tensile principal stress value does not necessarily coincide with an element containing
a physical density in the optimal topology regime; thus the element-wise product does
not necessarily yield a map of values containing either a -1 or a 1. Nevertheless, this
representation still encodes the information about TorC zones.

Figure 4.12: Projecting the σTorC stresses onto the optimal topology using masking pro-
cedure for two different cases (a) and (b).
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4.2.2. 3D Bridge

The 3D Bridge case was discretized in a domain with size nelx = 60 and nely = 20

and nelz = 4. The volume fraction was prescribed as volfrac = 0.12, the penalization
power penal = 3 and the filter radius r_min =

√
3. The deck is constrained as full

material (density = 1) and has a unit thickness. The void region located below the deck
has a width of 30 units. The deck region, the void region, and the region in which the
topology is free to develop are highlighted in Fig. 4.13 in red, orange and grey, respectively.

Figure 4.13: 3D (half-)bridge domain: dimensions and solid, void, and allowable regions.

This domain represents one half of the bridge, with the x− y symmetry plane placed at
z = 0; the full bridge configuration can be easily recovered as shown in Fig. 4.14. In this
case, exploiting symmetry yields a considerable computational advantage when generating
the training dataset. A total of 2500 topologies were generated for the 3D bridge training
set.
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Figure 4.14: Mirroring the half-bridge domain to create the full bridge for different test
cases (a) and (b).

Loading Parameters

For the 3D bridge case, the parametric input space accounts for 4 parameters adopted
to produce unique topologies: two control the x-axis position of the acting loads and the
other two control the x-axis position of the supports (see Fig. 4.14).

Figure 4.15: 3D Bridge case: schematic representation of the 4 parameters adopted to
create unique topologies.

The acting loads are pointing vertically downward and have a unit magnitude applied on
the deck of the bridge. These can be applied on any node along the length (x-axis) of
bridge, and their positions are not in any way dependent on each other. The two supports
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can instead be placed anywhere in the two regions to the left and right of the void region,
and are also not dependent on each other.

VM Stress field and TorC Field

The 3D bridge stress formulation follows an identical procedure to that of the 3D can-
tilever. Fig. 4.16 illustrates the ’masking’ procedure used with the optimal topology and
the initial VM stress field to produced the final VM stress field for two different cases.

Figure 4.16: Projecting the VM stresses onto the optimal topology using the masking
procedure for two different cases (a) and (b).

The initial TorC field assumes normalized values ranging between -1 to 1, where values
between -1 and 0 represent a dominant tensile stress and values between 0 and 1 represent
a dominant compressive stress for each element. This is illustrated in Fig. 4.17.
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Figure 4.17: Projecting the σTorC stresses onto the optimal topology using the masking
procedure for two different cases (a) and (b).
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The traditional method of topology optimization, as outlined in chapter 3, takes unique
loading parameters as inputs and outputs the topology that best minimizes compliance
and satisfies the given volume and boundary constraints. The time taken to generate a
topology using this algorithm is dependent on the size of the domain, and the wait times
for larger domains can become impractically long. The proposed DL model, on the other
hand, aims to take the loading parameters as inputs, and output a topology of acceptable
accuracy in a fraction of the time.

Figure 5.1: Topology optimization approaches: (a) traditional methodology; (b) proposed
deep learning model pipeline.

Fig. 5.1 shows a comparison between the two methodologies. In Fig. 5.1 (b), the dataset
refers to the large set of topologies and loading parameters computed, as outlined in
chapter 4 for the specific case study (2D MBB, 3D cantilever, 3D bridge). These are
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saved and exploited during the training phase of the DL model in order to learn a possible
underlying mapping between the two. Although such a training phase will inevitably
require a significant amount of time, once trained, the DL model will be able to predict
a topology in a very short amount of time with a satisfactory level of accuracy. This
chapter details the adopted DL model, in terms of its architecture and the theoretical
notions behind of its conceptualization.

5.1. Proposed DL architecture

The proposed DL architecture can be classified as part of the subgroup of ML + TO
research termed non-iterative methods. Non-iterative optimization methods, as outlined
in Chapter 2, predict an optimal shape that satisfies the design conditions, without an
iterative form finding process. These directly predict the topology from the input loading
parameters almost in real-time. The proposed pipeline makes use of two important types
of deep learning architectures; a CNN based AE, and a MLP model.

The proposed DL framework is schematized in Fig. 5.2. The first two steps of the process
consist of training the two DL models, whilst the final testing step combines the trained
models to predict the optimal topology for a given set of loading parameters. In particular,
the three steps involve: first, an AE is trained to map optimal topologies into itself;
second, a MLP model is trained to map the input loading parameters onto the latent
space representation of the corresponding optimal topology, as provided by the encoding
branch of the trained AE; finally, the MLP model trained in step 2 and the decoding
branch of the AE trained in step 1 are synergistically exploited to create a DL pipeline
capable of predicting, almost in real-time, the correct topology for given a set of loading
parameters. These steps will be explained in more detail in the following sections.

It should be noted that the proposed deep learning pipeline has been coded in Python, a
popular scientific programming language. As such, training datasets and loading parame-
ters have been converted into NumPy arrays. NumPy is a library built specifically for use
in Python, which allows for large, multi-dimensional arrays and matrices, along with a
collection of high-level mathematical functions to operate on these arrays. The DL models
are instead implemented using TensorFlow, a free and open-source software library for
ML and AI. All the computations are performed using Google Colab, a cloud-based plat-
form that provides access to powerful CPUs, GPUs and pre-installed software libraries.
The virtual machine provided by Google Colab used 2 CPUs with x86-64 processors and
11 GB of RAM. Additionally, TensorFlow version 2.12.0 was run using Python version
3.9.16.
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Figure 5.2: Scheme of the proposed deep learning pipeline.

5.1.1. Step 1: Training the AE

AEs are an unsupervised learning technique in which neural networks are leveraged for
the task of representation learning. An input (typically an image), is passed through the
AE with the aim of reconstructing this input as the output. Such an identity mapping
is typically learned by imposing a bottleneck in the middle of AE architecture, such that
the original input is compressed into a lower dimensional space. This forces the AE to
learn efficient representations of the input data. This technique belongs to the non-linear
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dimensionality reduction strategies and is one of the most useful functions of AEs. In
other words, AEs learn to encode complex inputs into a latent space representation of a
much lower dimension, whilst minimising the loss of information content.

Step 1 of the DL pipeline consists of training the AE on the training dataset of topologies
generated as detailed in Chapter 4. Although the formulation varies slightly between 2D
and 3D cases, the basic concept is the same. The training dataset consists of topologies
that have been previously converted to NumPy tensors, with values for the pixel densities
normalised between 0 and 1. These topologies are passed through the encoding branch
(’encoder’) of the AE and compressed into a lower dimensional latent space representation.
Once encoded, these latent space representations are then passed through the decoding
branch (’decoder’) with the aim of reconstructing the original input topology. A basic
diagram illustrating this architecture is shown in Fig. 5.3.

Figure 5.3: Basic AE architecture consisting of encoding and decoding branches

The AE model is trained by minimizing the reconstruction error, which measures the
differences between our original input and the predicted output reconstruction. The
bottleneck that compresses the input data thus forms a critical element of the network
design; without the presence of an information bottleneck, the network could easily learn
to simply memorize a 1-for-1 mapping of the input values to the output values. Instead
the AE must learn efficient representations of the features of the input. All images can be
thought of as being made up of smaller local patterns, such as edges, textures and so on.
In a dataset that is composed of many images - in our case many images of topologies -
there are many local features that are common between them, such as the edge of a truss
diagonal, void space, or fully dense space. These shared attributes between the input
features mean there is structure in our data, and where there is structure, there is the
the potential to reduce the dimensionality and encode it into a lower dimensional latent
space representation.

The main reason AEs are so effective at detecting structured patterns and features from
an image or a dataset is due to the use of convolutional layers. Convolutional layers apply
small filters over the input image to detect and compute the presence of certain features,
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and eventually output a feature map, which shows the activation of such filters for a given
input (see Fig. 5.4). In the case of convolutional layers, the parameters that are optimized
during the training process turn out to be such convolutional filters.

Figure 5.4: An example of a response map produced by applying a 3x3 filter over an input
image (adapted from [97]).

Two key parameters define the convolutional operation:

• Size of the filters (or kernels) calculated and applied over the inputs - These are
typically 3×3 or 5×5 pixels in size for the 2D case;

• Depth of the output feature map (or number of channels) - These are referred to as
the number of filters exploited during the convolution. These can typically range
from 32 to over 256.

The second aspect that makes convolutional AEs so effective is the availability of the
MaxPooling and convolutional transpose layers. The MaxPooling operation works to
downsample the convolutional feature maps, reducing its size after every MaxPooling
layer. This is achieved by sliding a window over the feature maps with a particular stride
length, and taking the max value for each window. This produces an output that is
reduced in size by varying the size of the window or the stride length. In the case of a
2x2 window with a stride length of 2, the output is downsampled by a factor of 2. The
MaxPooling operation has two main benefits:

• Successive convolutional layers look at increasingly larger windows (in terms of
the fraction of the original input they cover) by downsampling the feature map.
This inherently creates spatial-filter hierarchies, where larger and larger features
are detected and processed as the sum of smaller features, see Fig. 5.5;

• Reduces the number of parameters to be tuned, by halving the size of the feature
map.
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Figure 5.5: The spatial hierarchy of features that forms the image of a cat. Smaller
textures and patterns combine to form larger recognisable details such as an ear, or a
nose, which combine into the higher level concept of "cat".[97]

The Convolutional transpose layer (or Conv2DTranspose) is a layer that, generally speak-
ing, combines a modified convolutional operation and upsampling layers into one. In
particular, instead of sliding the kernel over the input and performing element-wise multi-
plication and summation, a transposed convolutional layer slides the input over the kernel
and performs element-wise multiplication and summation. This results in an output that
is larger than the input, and the size of the output can be controlled by the stride and
padding parameters of the layer. This is used in the ’decoder’ branch of the AE to increase
the dimensionality of the latent space representation into the reconstructed image.

2D AE

A detailed diagram of the adopted AE architecture is shown in Fig. 5.6 below. The
’encoder’ architecture consists of convolutional layers followed by MaxPooling and batch
normalization layers. At the end of the encoding branch the 15x5x32 convolutional re-
sponse map is reshaped into a 2400x1 vector. This vector is subsequently passed through
a dense layer which yields a size 40 vector, which is the latent space representation of
the original input. The ’decoder’ branch reverses this process in order to reconstruct
the input. The 40-dimensional latent space vector is passed through a dense layer to
become a 2400x1 vector and then subsequently reshaped to yield a 15x5x32 layer. These
are then passed through a series of Convolutional Transpose, batch normalization and
convolutional layers.
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Figure 5.6: Adopted architecture of the AE for the 2D MBB.

In this architecture the kernel sizes are chosen as 3x3, and each convolutional layer fea-
tures a ReLU activation function. The two middle layers and the last layer feature a
sigmoid activation function, which maps its input to an output between 0 and 1. This
is particularly relevant to our problem since the reconstructed output topology contains
density values between 0 and 1. Additionally the sigmoid function is smooth and continu-
ously differentiable, which makes it suited to the gradient-based optimization algorithms
used in deep learning. The two activation functions are shown in Fig. 5.7 below.

Figure 5.7: Graphs of the ReLU and sigmoid activation functions.

It should be noted that if the AE is equipped with linear activation functions only, without
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exploiting non-linear activation functions as done here, the AE would collapse to the same
dimensionality reduction function provided by Principal Component Analysis (PCA).

The next key element of our network architecture is the loss function. A loss function
(or objective function) is a function that measures the difference between the predicted
and actual values of a model. The calculated quantity is a measure of the ’success’ of the
model, and the goal is to minimize the loss function by adjusting the model parameters.
In other words, the model is trained to find the parameter values that produce the lowest
possible loss. It is an optimization metric, and is a measure of how well the model fits the
training data. For the optimal topologies and the VM stresses the loss function selected
is the binary cross entropy loss function, given in Eq. 5.1:

Hp(q) = −
N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)). (5.1)

Herein: N is the number of data points (or in the case of a topology, the number of
elements), yi is the label for element i (1 for fully dense element and 0 for void element),
and p(yi) is the predicted probability of element i being 1. In an AE, the aim is to
reconstruct the input data as accurately as possible. Since the target density values can
take values between 0 and 1, a threshold is set, such that values above the threshold are
set to 1 and values below are set to 0. These rounded values are used for the yi labels
when performing the computation of the binary cross entropy loss function.

The way in which the gradient of the loss function will be used to update parameters is
specified by the ’optimizer’. Simply put, the loss function produces a loss score, and the
optimizer determines the direction in which to update the weights to further minimize the
loss score. The optimizer chosen for the optimal topologies and VM stresses is ’ADAM’,
which stands for Adaptive Moment Estimation. ADAM is a popular stochastic gradient
descent optimization algorithm which uses momentum of the gradients and an adaptive
learning rate to speed up convergence.

The last important element of the AE architecture is the accuracy metric. The accuracy
metric evaluates the ability of the model to make correct predictions and is a good mea-
sure of the overall performance of the model. For the optimal topologies and the VM
stresses, the accuracy metric chosen to monitor the training process is the mean absolute
error (MAE) (see Eq. 6.1). The MAE is a common metric in regression analysis which
measures the average magnitude of errors between predicted and actual values. The MAE
is calculated by taking the absolute value of the difference between the predicted ŷ and
actual y values and then taking the average of these absolute differences.
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MAE =
1

n

∑
|y − ŷ|. (5.2)

For the TorC zone dataset which consists of images with continuous values between -1 and
1 (where negative values represent tensile dominant principal stresses and positive values
represent compressive dominant principal stresses), the adopted architecture presents a
few modifications. In particular, the middle dense layers and last layer feature a linear
activation function (shown in Fig. 5.8) in place of a sigmoid one. This is because the
model must be capable of predicting values in the range between -1 and 1, for which the
sigmoid activation is not suited for.

Figure 5.8: Graph of the linear activation function.

The next modification is using a mean squared error (MSE) (see Eq. 5.3) as the loss
function to be minimized for training instead of binary cross entropy. The binary cross
entropy loss function is suited to a binary classification task between 0 and 1, which makes
it ill-suited for the TorC zones which consists of continuous values between -1 and 1. The
MSE loss function, however is well suited to this task as it always gives a positive quantity
in evaluating difference between the predicted and actual values of a model, regardless of
whether the predicted or actual values are positive or negative.

MSE =
1

n

∑
(y − ŷ)2. (5.3)

A summary of the 2D MBB AE architecture is given in the appendix.
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3D AE

A detailed diagram of the AE for the 3D cantilever case is shown in Fig. 5.9 below. The
architecture largely resembles that of the 2D MBB case, except the Convolution, MaxPool-
ing and convolutional transpose layers are applied in 3D rather than 2D. The dimensions
of the tensors at each layer must be in whole numbers, and thus the downsampling and
upsampling operations in the encoder and decoder branches introduce some inconsisten-
cies in the output shapes due to rounding. Due to this, a cropping layer is introduced to
trim the borders of the tensor and yield a tensor with the exact same dimensions as the
input tensor.

Similarly to the 2D case, a different AE model is employed for the TorC zone dataset,
compared to the optimal topologies and VM stresses datasets. This is because the TorC
zone dataset contains continuous values between -1 and 1, whereas the optimal topologies
and VM stress datasets contain values between 0 and 1. The AE model for the optimal
topologies and VM stress datasets utilizes a sigmoid activation function for the middle
dense layers and the output layer, and the loss function employed is binary cross entropy.
The AE model for the TorC dataset utilises a linear activation function for the middle
dense layers and the output layer, and the loss function employed is MSE. The optimizer
chosen for all cases was ADAM.

Figure 5.9: AE architecture for the 3D cantilever case.
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Likewise the, architecture for the 3D Bridge case is shown in Fig: 5.10. The only differ-
ences in the AEs between the 3D cantilever and the 3D bridge is the size of the layers.

Figure 5.10: AE architecture for the 3D bridge case.

A detailed table of the AE architecture for the 3D cantilever and bridge is given in the
appendix.

The final part of this first training step is to encode the training dataset into latent space
representations that can be used in the following step. This uses the encoding branch of
the autoencoder trained previously. This is step 1 (b) of Fig. 5.2, shown for clarity in
Fig. 5.11 below:

Figure 5.11: Encoding the training dataset using the encoder branch of the trained AE.
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5.1.2. Step 2: Training the MLP

The second step of the proposed deep learning pipeline consists of training the MLP model.
The MLP is a fully connected class of feedforward artificial neural network, which consists
of an input layer, hidden layers and an output layer. The input layer receives the input
data, which is a vector of the loading parameters introduced in chapter 4. The hidden
layers perform intermediate computations on the input data and learn complex relation-
ships between the input and output features. Finally the hidden layers are connected to
the 40-dimensional latent space representations that have been encoded in step 1(b). In
this way the model learns to predict the latent space representation that correspond the
input loading parameters. A generalised MLP architecture is shown in Fig. 5.12. The
following sections will summarize the details of the MLP architectures for the 2D and 3D
cases.

Figure 5.12: A generalised schematic of the MLP architecture.

2D MLP

The MLP model for the 2D MBB consists firstly of an input layer. As stated in chapter
4, the parametrized loading parameters that are being varied to create the dataset are
the the x- and y- coordinates of the applied load, and the angle of the load with respect
to the x-axis. These 3 loading parameters are normalized between 0 and 1. Normalizing
the data between 0 and 1 is a common data pre-processing step in machine learning
because it helps improve the training process and the performance of the model. One of
the reasons for this is that normalizing puts all the features on the same scale. Without
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normalization, features with larger values will have a disproportionately large influence on
the model. Normalization is achieved by dividing the loading parameter by its maximum
possible value before it is fed in the network; for the x- and y- coordinates they are divided
by 120 and 40 respectively, since this is the maximum size of the domain and thus the
largest value that it can assume, for the angle, it is divided by 90, since the units of
measurement being used is degrees. Only the first quadrant concerning the angles is of
interest, since for the MBB example, the topologies produced are ’quadrant invariant’,
that is, the topologies produced for the angles between 0 and 90 degrees are identical to
those produced by the second quadrant between 90 and 180 degrees, and so on and so
forth for the third and fourth quadrants.

These normalized loading parameters are introduced into the hidden layers. The hidden
layers consist of 2 dense layers, each of which is followed by a batch normalization layer.
All of these layers feature 720 neurons. The final layer is the output layer which features
40 neurons. In the training phase the target output layer is the 40-dimensional latent
space representation that has been encoded by the encoder branch of the AE in the first
step. In this way the MLP learns to create a mapping between the loading parameters
and the latent space representations that they produce.

Similarly to the AE, the MLP model used to train on the the TorC dataset, has slight
difference to the MLP model used to train on the optimal topologies and VM stress
dataset. For the optimal topologies and VM stress dataset, the activation functions used
for the hidden dense layers in the MLP is ReLU, whilst the activation function for the
output layer is sigmoid. This is to match the activation function used in the output of
the ’encoder’ branch of the AE, such that the output values fall in the same range. The
loss function used is binary cross entropy and the accuracy metric is MAE. For the TorC
dataset on the other hand the only differences are in the activation function for the output
layer, which is a linear activation function, and the loss function used, which is MSE.

A detailed table of the MLP architecture for the 2D MBB case is given in the appendix.

3D MLP

For the 3D datasets, the MLP model is almost identical to the 2D case. The only difference
is the size of the input layer, which changes with respect to the number of input loading
parameters used to create the dataset.

For the 3D cantilever case, the size of the input layer is 5, which takes the x-, y- and
z- coordinates, and azimuth and inclination angle (x, y, z, θ, φ). Just like the 2D case,
the loading parameters are first normalized between 0 and 1, which for the coordinates
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involves dividing by the maximum coordinate in the domain; 24, 12, 12 for the x-, y-, and
z- coordinates respectively. For the azimuth and inclination angle, these are divided by
the maximum angle allowed in the dataset, 360 and 180 degrees respectively.

For the 3D bridge case, the size of the input layer is 4; two of which correspond to the
location along the x-axis of the two acting loads on the bridge deck, whilst the remaining
two correspond to the x-axis location of the supports to the left and right of the central
void region. Again, these loading parameters must be normalized between 0 and 1; the
loads are divided by 60, which represents the length of the deck and maximum allowable
location of the load, whilst the values taken for each of the supports is divided by 15, as
this is the maximum allowable range in which the supports can assume a position.

Besides the loading parameters, the size and architecture of the MLP including activation
functions, loss function and accuracy metrics are identical to those used for the 2D case,
for the optimal topologies, VM stress and TorC datasets. A detailed summary is included
in the appendix.

5.1.3. Step 3: Test the combined deep learning pipeline

The third step consists of testing the combined AE and MLP models that have trained
in step 1 and step 2 (see Fig. 5.13). In this step, we utilise a test set of 500 images (and
their corresponding loading parameters) to test the accuracy of the proposed multi-stage
model.

Figure 5.13: Procedure for testing the proposed DL pipeline.

For this testing step, unseen loading parameters are introduced into the MLP trained in
step 2. This produces a predicted 40-dimensional latent space representation, which is
then introduced as the input to the decoder branch trained in step 1(a). This decoder
branch produces a predicted output, that will be either an optimal topology, VM stress
distribution, or TorC zone depending on the test case selected. The results of this testing
step are shown in chapter 6.
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To evaluate the similarity between the predicted structures and the optimal topologies
produced using the SIMP algorithm, three accuracy metrics are used: the binary accuracy
(BA) [65], the MAE and the root mean squared accuracy (RMS). The BA metric is given
by:

BA =
ω00 + ω11

n0 + n1

. (6.1)

Herein:, nl with l ∈ {0, 1}, is the total number of pixels of class l, and ωtp, with t ∈ {0, 1}
and p ∈ {0, 1}, is the total number of pixels of class t predicted to belong to class
p. Because the predicted structures contained pixel values within a continuum range
(between 0 and 1 for optimal topologies and VM stress, and between -1 and 1 for TorC
zones), a threshold function was utilised to binarize the predicted outputs.

xi,binary =

{
1, if xi > xthreshold

0, if xi < xthreshold
for i = 1, ..., n. (6.2)

Herein: xi is the input topology, xi,binary is the binarized output field, and xthreshold is the
binary threshold value: 0.5 for optimal topologies and VM stress, and 0 for TorC zones.
The MAE and RMS accuracy metrics are given as follows:

MAE =
1

n

n∑
i=1

|xi − x̂i| for i = 1, ..., n. (6.3)

RMS =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 for i = 1, ..., n. (6.4)

Where xi refers to the density value assumed by element i, x̂i refers to the predicted
density value assumed by element i, and n is the total number of elements. Additionally,



66 6| Results

qualitative assessment will also be done in the following section by visually comparing the
outputs.

6.1. 2D

6.1.1. 2D MBB

For the 2D MBB case, a testing set consisting of 500 topologies is generated and used
for evaluation. These topologies are generated using the SIMP algorithm with the same
LHS sampling strategy discussed in chapter 4. The three accuracy metrics; BA, MAE
and RMS are utilised to evaluate the accuracy of the optimal topologies, VM stress field,
and TorC zones predicted by the trained multi-stage neural network discussed in chapter
5.

The first quantitative evaluation of the benefit of the proposed method is the comparison
between the time taken to generate the optimal topology using the SIMP algorithm, and
the time taken to predict the optimal topology using the trained neural network. This is
shown below in table. 6.1.

Table 6.1: Comparison of average computational run-time between SIMP algorithm and
proposed methodology for the 2D MBB case.

SIMP Proposed Method:
Optimal Topology

Proposed Method:
Optimal topology
+ VM or TorC

Dataset creation - 8.10 hours 8.10 hours
Training DL model - 0.44 hours 0.88 hours
Average run-time
(in seconds)

12.00 s 0.08 s 0.16 s

The first key distinction between the SIMP algorithm and the proposed method, is that the
proposed method necessitates the creation of a training dataset to train the DL model.
The 2500 image dataset took 8.1 hours to create (refer to chapter 4 for details on the
formulation). The benefit of this method is that once the SIMP algorithm has calculated
the optimal topology, additional physical data about the problem, such as the VM stress
field, and principal stresses can be calculated at no extra computational cost. As such,
the dataset creation time for ’optimal topology + VM and TorC’ in table. 6.1 is also 8.1
hours. The second step of the proposed method is the training of the DL model, which
necessitates additional computational time. For the optimal topology only, the DL model
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can be trained in 0.44 hours. If however, the model is trained for both optimal topology
and one of either VM stresses or TorC datasets, an additional 0.44 hours of training time
is required, as an additional DL model is required for either the VM or TorC datasets.
These two preliminary steps; the dataset creation and the model training can be done
’offline’.

For testing, the proposed method takes a fraction of the time compared with the tra-
ditional SIMP method. To predict the optimal topology, the first step of the proposed
multistage pipeline takes on average 0.02 seconds. This is the MLP which takes as in-
put the loading parameters and returns as output the latent space representations. The
second part of the pipeline is the decoder branch, which takes as input the latent space
representations from the first part, and returns as output the predicted topology. This
second part takes on average 0.06 seconds. Used together, these two parts take on average
0.08 seconds. The proposed method takes on average 0.67% of the time it takes to run
an equivalent SIMP algorithm. To predict the final VM stress, or TorC zones mapped
onto the optimal topology it takes on average 0.16 seconds. This is twice as long because
the proposed model must be run twice, first to predict the optimal topology (0.08 sec-
onds) and second to predict either the full VM stress field, or TorC zones (0.08 seconds).
Together, the element-wise multiplication of these two fields produces the final output,
which is either the VM stresses, or TorC zones mapped onto the optimal topology. This
takes on average 1.33% of the time it takes to run an equivalent SIMP algorithm.

Fig. 6.1 shows six topologies from the testing dataset chosen to showcase a variety of
forms and results. The ’ground truth’ topology refers to that produced by the SIMP
algorithm, whilst the ’prediction’ topology refers to that predicted using the proposed
model. The location and direction of the acting force is specified below each test case and
is also overlaid on the diagram for clarity. The three accuracy metrics are reported for
each specific topology.
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Figure 6.1: Accuracy comparison of the ground truth and prediction for six optimal
topologies for the 2D MBB case.

Fig. 6.2 shows the results for the predicted VM stresses for the same six ground truth
topologies shown in Fig. 6.1. Each ’case’ is shown within its own border, within which
the top row represents the ground truth results generated using the SIMP algorithm, and
the bottom row represents the predictions generated by the DL model. The first column
presents the same optimal topologies as shown in Fig. 6.1. The second column shows the
stress field over the whole domain. The three accuracy metrics are shown underneath
for each test case. The third column is the final VM result; the projection of the VM
stress field onto the optimal topology via an element-wise multiplication between the two
matrices.

Fig. 6.3 shows the results for the predicted TorC zones, again for the same six ground
truth topologies shown in Fig. 6.1. The format is the same as that in Fig. 6.2, with the
addition of a fourth column; in which the dominant principal stress values on the final
TorC topology are ’binarized’; that is, made a fully tension or compression diagram for
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visual clarity.

The results for the accuracy metrics presented in table. 6.2 are averages taken over the
full testing dataset.

Table 6.2: Comparison of average BA, MAE and RMS accuracy metrics for the predicted
topologies when compared to the ground truth for the 2D MBB case.

Optimal Topologies Initial VM
stress field

Initial TorC
stress field

BA 96.46% 99.29% 95.26%
MAE 0.035 0.018 0.025
RMS 0.107 0.030 0.048
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Figure 6.2: Comparison between ground truth and predictions for VM stresses for the 2D
MBB case.
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Figure 6.3: Comparison between ground truth and predictions for TorC zones for the 2D
MBB case.
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6.2. 3D

For the 3D cantilever and 3D bridge cases, testing sets consisting of 500 topologies are
generated for each case and used for evaluation. These topologies are generated using the
SIMP algorithm with the same LHS sampling strategy discussed in chapter 4. Similarly
to the 2D case, the three accuracy metrics; BA, MAE and RMS are utilised to evaluate
the accuracy of the optimal topologies, VM stress field, and TorC zones predicted by the
trained multi-stage neural network discussed in chapter 5.

6.2.1. 3D cantilever

The first quantitative evaluation of the benefit of the proposed method is the comparison
between the time taken to generate the optimal topology using the SIMP algorithm, and
the time taken to predict the optimal topology using the trained neural network. This is
shown below in table. 6.3.

Table 6.3: Comparison of average computational run-time between SIMP algorithm and
proposed methodology for 3D cantilever.

SIMP Proposed Method:
Optimal Topology

Proposed Method:
Optimal topology
+ VM or TorC

Dataset creation - 27.72 hours 27.72 hours
Training DL model - 0.61 hours 1.22 hours
Average run-time
(in seconds)

39.91 s 0.13 s 0.26 s

As in the 2D case, the proposed method for the 3D case necessitates a training dataset
creation stage, and a DL model training stage. Both of these steps can again be done
’offline’. For the 3D cantilever, the 2500 image dataset took 27.72 hours to create (refer
to chapter 4 for details on the formulation). The VM stresses and principal stresses are
calculated at no extra computational cost and as such the the dataset creation time for
’optimal topology + VM and TorC’ in table. 6.3 is also 27.72 hours. For the optimal
topology only, the DL model can be trained in 0.61 hours. If however, the model is
trained for both optimal topology and one of either VM stresses or TorC datasets, an
additional 0.61 hours of training time is required, as an additional DL model is required
for either the VM or TorC datasets.

To predict the optimal topology for the 3D cantilever, the first step of the proposed
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multistage pipeline - the MLP which takes as input the loading parameters and returns
as output the latent space representations - takes on average 0.02 seconds. This takes
the same as the 2D MBB case since the model architecture is almost identical. The
second part of the pipeline is the decoder branch, which takes as input the latent space
representations from the first part, and returns as output the predicted topology. This
second part takes on average 0.11 seconds. This takes marginally longer than the 2D
MBB case, since the decoder branch uses 3D convolutional layers which are applied over
a slightly larger domain. Used together, these two parts take on average 0.13 seconds.
The proposed method takes on average 0.33% of of the time it takes to run an equivalent
SIMP algorithm. To predict the final VM stress, or TorC zones mapped onto the optimal
topology it takes on average 0.26 seconds. This is twice as long because, just as in the
2D case, the proposed model must be run twice, first to predict the optimal topology
(0.13 seconds) and second to predict either the full VM stress field, or TorC zones (0.13
seconds). Together, the element-wise multiplication of these two fields produces the final
output, which is either the VM stresses, or TorC zones mapped onto the optimal topology.
This takes on average 0.66% of the time it takes to run an equivalent SIMP algorithm.

Fig. 6.4 shows five topologies from the testing dataset chosen to showcase a variety of
forms and results. The ’ground truth’ topology refers to that produced by the SIMP
algorithm, whilst the ’prediction’ topology refers to that predicted using the proposed
model. The location and direction of the acting force is specified below each test case and
is also overlaid on the diagram for clarity. The three accuracy metrics are reported for
each specific topology.
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Figure 6.4: Accuracy comparison of the ground truth and prediction for six optimal
topologies for the 3D cantilever case.

Fig. 6.5 shows the results for the predicted VM stresses for the same five ground truth
topologies shown in Fig. 6.4. Each ’case’ is shown within its own border, within which
the top row represents the ground truth results generated using the SIMP algorithm, and
the bottom row represents the predictions generated by the DL model. The first column
presents the same optimal topologies as shown in Fig. 6.4. The second column shows the
stress field over the whole domain. The three accuracy metrics are shown underneath
for each test case. The third column is the final VM result; the projection of the VM
stress field onto the optimal topology via an element-wise multiplication between the two
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matrices. The fourth column displays the same topology as shown in column 3 but with
a normalization applied, such that the values lie in a continuum between 0 and 1.

Fig. 6.6 shows the results for the predicted TorC zones, again for the same five ground
truth topologies shown in Fig. 6.4. The format is the same as that in Fig. 6.5, with the
exception of the fourth column; in which the dominant principal stress values on the final
TorC topology are ’binarized’; that is, made a fully tension or compression diagram for
visual clarity.

The results for the accuracy metrics presented in table. 6.4 are averages taken over the
full testing dataset.

Table 6.4: Comparison of average BA, MAE and RMS accuracy metrics for the predicted
topologies when compared to the ground truth for the 3D cantilever case.

Optimal Topologies Initial VM
stress field

Initial TorC
stress field

BA 96.59% 97.22% 82.15%
MAE 0.032 0.054 0.090
RMS 0.082 0.078 0.133
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Figure 6.5: Comparison between ground truth and predictions for VM stresses for the 3D
cantilever case.
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Figure 6.6: Comparison between ground truth and predictions for TorC zones for the 3D
cantilever case.
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App

Although the traditional SIMP algorithm can provide very optimized solutions for struc-
tural problems, the long computation times, especially for increasingly larger domains,
has prevented it from developing into a serious and widespread design tool for structural
engineers. Design tools that can provide solutions with shorter computation times, and
allow an engineer to iterate over many potential solutions to get an understanding of how
the problem changes with respect to variations in the loading and boundary conditions
can save time and increase efficiency. In the following section an app is presented, whereby
the loading parameters for each 3D case (explained in detail in chapter 4 is parametrized
and controlled by the user. This app has been created using the Python package PyVista
[98]. PyVista is a Python library for 3D visualization and analysis of scientific datasets
such as meshes, point clouds, and volumetric data and provides a user-friendly interface
to generate 3D plots and interactive visualizations with advanced rendering capabilities.
In this app, the predicted topology changes in response to the chosen loading parameters,
and updates almost instantaneously as the loading parameters are updated. The loading
parameters are controlled using a sliding bar with a predefined range. The topology is
displayed within the window of the user interface as a 3D object. Fig. 6.7 shows three
screenshots of the app with randomly chosen loading parameters and predicted topologies.

Figure 6.7: PyVista render of three randomly predicted topologies for (a) optimal topology
(b) final VM stress and (c) final TorC stress.

The topology is highly interactive, and the user can click on the surface of the 3D cantilever
domain (displayed as a light grey box) to change the position of the loading vector. The
loading vector updates in real time, and the new loading parameters are passed through
the trained DL model to predict and display the new updated topology. The sliding bars
on the right control the inclination and azimuth angle. Likewise, these can be changed
by the user to update the displayed topology in real time. As seen in Fig. 6.7, the user
can toggle between displaying the optimal topology, final VM stress or final TorC stress.
Another additional feature is to control the cutoff level for the predicted optimal topology
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densities. With the cutoff, any element values that are below a predefined level are not
displayed. This can make it easier to visualise the ’core’ structural shape. An example
topology is shown in Fig. 6.8 with three different cut off points, 0.1, 0.2 and 0.4 for Fig. 6.8
(a), (b) and (c) respectively.

Figure 6.8: PyVista render of a predicted final VM stress for cutoff values (a) 0.1 (b) 0.2
and (c) 0.4.

Finally, PyVista provides the capability to add smoothing to the predicted mesh. This is
visualised in Fig. 6.9 for the predicted final TorC stress.

Figure 6.9: PyVista render of a predicted final TorC stress for smoothing values (a) 0.0
(b) 10.1 and (c) 50.9.

6.2.2. 3D bridge

The same quantitative and qualitative evaluations used for the 3D cantilever are used for
the 3D bridge. The comparison between the time taken to generate the optimal topology
using the SIMP algorithm, and the time taken to predict the optimal topology using the
trained neural network is shown below in table. 6.5.
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Table 6.5: Comparison of average computational run-time between SIMP algorithm and
proposed methodology for 3D bridge.

SIMP Proposed Method:
Optimal Topology

Proposed Method:
Optimal topology
+ VM or TorC

Dataset creation - 25.91 hours 25.91 hours
Training DL model - 0.61 hours 1.22 hours
Average run-time
(in seconds)

37.31 s 0.13 s 0.26 s

For the 3D bridge, the 2500 image dataset took 25.91 hours to create (refer to chapter 4
for details on the formulation). The VM stresses and principal stresses, are calculated at
no extra computational cost and as such the dataset creation time for ’optimal topology
+ VM and TorC’ in table. 6.5 is also 25.91 hours. For the optimal topology only, the
DL model can be trained in 0.61 hours, and if both optimal topology and one of either
VM stresses or TorC datasets, an additional 0.61 hours of training time is required, as an
additional DL model is required for either the VM or TorC datasets.

To predict the optimal topology for the 3D bridge, takes the DL model on average 0.13
seconds. This consists of the first part (MLP) which takes on average 0.02 seconds, and
the second part (decoder branch of the AE), which takes on average 0.11 seconds. The
proposed method takes on average 0.35% of of the time it takes to run an equivalent
SIMP algorithm. To predict the final VM stress, or TorC zones mapped onto the optimal
topology it takes on average 0.26 seconds. This takes on average 0.70% of the time it
takes to run an equivalent SIMP algorithm.

Fig. 6.10 shows five topologies from the testing dataset chosen to showcase a variety of
forms and results. The ’ground truth’ topology refers to that produced by the SIMP
algorithm, whilst the ’prediction’ topology refers to that predicted using the proposed
model. The location and direction of the acting force is specified below each test case and
is also overlaid on the diagram for clarity. The three accuracy metrics are reported for
each specific topology.
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Figure 6.10: Accuracy comparison of the ground truth and prediction for six optimal
topologies for the 3D bridge case.

Fig. 6.11 shows the results for the predicted VM stresses for the same five ground truth
topologies shown in Fig. 6.10. The format of this figure is similar to that shown in Fig. 6.4
for the 3D cantilever case. Fig. 6.12 shows the results for the predicted TorC zones, again
for the same five ground truth topologies shown in Fig. 6.10. The format is the same as
that in Fig. 6.12 for the 3D cantilever case.
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Figure 6.11: Comparison between ground truth and predictions for VM stresses for the
3D bridge case.
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Figure 6.12: Comparison between ground truth and predictions for TorC zones for the
3D bridge case.
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The results for the accuracy metrics presented in table. 6.6 are averages taken over the
full testing dataset.

Table 6.6: Comparison of average BA, MAE and RMS accuracy metrics for the predicted
topologies when compared to the ground truth for the 3D bridge case.

Optimal Topologies Initial VM
stress field

Initial TorC
stress field

BA 98.50% 98.27% 88.36%
MAE 0.015 0.037 0.047
RMS 0.051 0.057 0.078

App

The PyVista app has been created also for the 3D bridge case. The aim is the same;
the allow the user to dynamically change the loading parameters to experiment with the
different predicted outputs, and visualize and interact with the results in real time. The
3D bridge case however, utilizes different loading parameters, and the app was modified
to reflect this. the location of the two supports, and the location of the two vertical forces
on the deck are controlled by slider bars, see Fig. 6.13 for three randomly generated 3D
bridge topologies.

Figure 6.13: PyVista render of three randomly predicted topologies for (a) optimal topol-
ogy (b) final VM stress and (c) final TorC stress.

As for the 3D cantilever case the following Fig. 6.14 renders the same final predicted TorC
topology with with three different cut off points, 0.1, 0.2 and 0.4 for Fig. 6.14 (a), (b) and
(c) respectively.
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Figure 6.14: PyVista render of a predicted final VM stress for cutoff values (a) 0.1 (b)
0.2 and (c) 0.4.
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7| Conclusions and future

developments

This thesis proposes an efficient non-iterative multistage DL model that is capable of pre-
dicting a near optimal solution for the topology optimization problem in 2D and 3D. The
model consists of two parts; first, an multi-layer perceptron model that takes as inputs
the loading parameters for the specific problem case and outputs the corresponding latent
space representation. Second, the decoder branch of an autoencoder that takes as in-
put this previously generated latent space representation and predicts either the optimal
topology, the VM stress field, or the TorC field. Together, these two parts combine to
produce the final DL pipeline that is able to predict accurate solutions almost instanta-
neously. The final VM or TorC results, are an element-wise multiplication between the
predicted optimal topology and the either the predicted VM stress field or predicted TorC
field respectively. The predicted optimal topology thus acts as a masking layer, and the
predicted VM stress field or predicted TorC field will be mapped onto those elements with
a positive density value, whilst the elements with a null value will remain void spaces. A
total training set of 2,500 images was generated for all three problem cases. The training
time varied depending on the size of the domain for each case; for the 2D MBB, 3D
cantilever, and 3D bridge, the training time was 8.1 hours, 27.72 hours, and 25,91 hours,
respectively. Additionally, time was required to train the DL models, ranging from 0.44
hours to 0.66 hours for the 2D and 3D cases, respectively. The one key feature of the
proposed method is that it requires a large up front time investment to create the training
dataset and train the DL model. This training was all done ’offline’, that is, completed
before the model was deployed. Once the training was completed however, the prediction
times are near-instantaneous, and achieve near-optimal results when compared to the
traditional SIMP topology optimization algorithms.

Discussion. The proposed method offers clear advantages over the traditional SIMP
method by allowing the user to generate near optimal solutions almost instantaneously.
This permits the designer to investigate many design solutions, and gain an understanding
of how the problem responds to variations in the input loading parameters. To this end,
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an app was created with the aim of allowing the user to interact with the problem, such
that it updates dynamically on screen in response to user changes of the parametrized
loading parameters. In the conceptual design phase especially, when it is important to
investigate many iterations of the design problem quickly and accurately, this app can
provide instant feedback and facilitate the task of finding an effective solution. Screenshots
and explanations of this app are provided in chapter 6.

Interpretations of the three accuracy metrics are now discussed. Comparing the total
average scores for the predicted optimal topologies when compared to the ground truth,
the 3D bridge scored the highest (98.50%, 0.015, 0.051), followed by 3D cantilever (96.60%,
0.032, 0.082) and then the 2D MBB (96.46%, 0.035, 0.107), for the three accuracy metrics
(binary accuracy, mean absolute error, root mean square). A potential explanation for
the accuracy of these results is as follows:

• The 3D bridge dataset yields the highest scores for all three accuracy metrics despite
having the highest number of total elements within the domain (6 ∗ 20 ∗ 4 = 4800

equal with the 2D MBB). One explanation for this is the recurring structure within
the training dataset. The deck (with a total number of elements of 60∗1∗4 = 240) is
solid for every topology in the training dataset. The same occurs for the void space
under the deck (with a total number of elements of 30 ∗ 10 ∗ 4 = 1200), which con-
tains empty void elements for every topology in the training dataset. This provides
a recurring pattern that the machine learning model is able to learn accurately, and
translates this well to unseen but similar cases in the test set. Fig. 6.10 illustrates
this argument; the predicted topologies all show a fully dense deck layer, and an
empty void space despite the variation in loading and boundary conditions. Al-
though the 3D cantilever had less total elements in the domain (24∗12∗12 = 3456),
it produced lower test set scores for the optimal topology case, and this is in part
because all elements within the domain were allowed to vary, whereas the 3D bridge
case contained only 4800− 240− 1200 = 3360 elements which are free to vary.

• Another explanation for the success of the 3D bridge case with respect to the 3D
cantilever is the nature of the input loading parameters for each of the models. The
capacity of the DL model to learn the complex non-linear relationships between
input and outputs of the model can be complicated if small variations in the combi-
nations of the inputs lead to large variations in the outputs. For the 3D cantilever,
the inclination and azimuth angles of the loading vector varied between 180 and 360
degrees respectively. When considering these values had to be normalized between 0
and 1 to be introduced into the neural network, small changes in the decimal values
of these inputs, had large impacts in the outputs. For example, a change of 0.02 in
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the input of the azimuth angle translates to a change of 7.2 degrees, which can affect
the topology quite dramatically. The 3D cantilever model is thus quite sensitive to
changes input parameters and this could be a reason for the lower performance with
respect to the 3D cantilever.

• The 2D MBB performed the lowest for the three accuracy metrics for the optimal
topology. This result could be counter-intuitive; the 2D MBB topologies are in
2D, rather than 3D, and there are only 3 loading parameters as opposed to 4 or
5, both arguments suggesting a reduction in complexity in the training set, and
thus a simpler, easier model for the network to learn. One possible explanation for
this is due to the types of topologies produced in 2D compared to 3D. Observing
Fig. 6.1, the topologies for the 2D MBB are highly complex; the examples showcase
topologies made up of an intricate combination of large elements, and small, thin,
multi-directional connection elements. The fifth topology in Fig. 6.1 has very thin
and subtle elements in the bottom right corner. Likewise, the second topology
has many thin, multi-directional diagonal elements, which the model has difficulty
predicting. When compared to Fig. 6.4 and Fig. 6.10, the optimal topologies for
the 3D cases are composed of primarily larger, repeatable elements rather than a
complex combination of large and thin elements. Machine learning models are able
to train better when there are many repeatable patterns present in the dataset.
The results suggest that potentially, the high variety in the size and direction of the
patterns in the 2D MBB training dataset have meant it has achieved the lowest in
the accuracy scores with respect to the 3D examples.

Comparing the total average scores for the predicted initial VM stress field when compared
to the ground truth, the 2D MBB scored the highest (99.29%, 0.018, 0.030), followed by
3D bridge (98.27%, 96.32%, 94.28%) and then the 3D cantilever (97.22%, 0.054, 0.078),
for the three accuracy metrics (binary accuracy, mean absolute error, root mean square).
Some comments regarding these results are as follows:

• For this output, the model was tasked with predicting an initial VM stress field over
the whole domain. The 2D MBB performed the best out of all the test cases in this
task. The second and third columns in Fig. 6.1 show the high similarity between the
ground truth and the models predictions for the predicted initial VM stress field,
and the final VM stress field. Despite the apparent complexity in the stress fields,
the results indicate the model is able to learn structure within the VM stresses for
the training data for the 2D MBB. For the 3D cases however, the prediction accuracy
for the models decreased, and one explanation can be that the ’large, repeatable’
elements that were a feature for the optimal topologies is no longer present for the
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VM stress field. An inspection of Fig. 6.4 and Fig. 6.10 shows a full initial VM
stress field with abrupt and highly varying values. The higher the complexity in the
patterns, the more difficulty in the capacity for the neural network to learn structure
and commonality in the data.

• One limitation of the proposed model is that the VM stress is normalized between
0 and 1 for all of the topologies. It is meant to be read as a guide for the relative
difference in stress for a given load combination. It can give a designer an insight
into the most highly stressed regions relative to the whole topology, but should not
be considered an absolute measure of the stress, and the stresses between predicted
topologies should not be compared with each other in terms of absolute magnitude.

Comparing the total average scores for the predicted initial TorC stress field when com-
pared to the ground truth, the 2D MBB scored the highest (95.26%, 0.025, 0.048), followed
by 3D bridge (88.36%, 0.047, 0.078) and then the 3D cantilever (82.15%, 0.090, 0.133),
for the three accuracy metrics (binary accuracy, mean absolute error, root mean square).
Some comments regarding these results are as follows:

• The test cases rank in the same order for the TorC as for the VM stresses. How-
ever the TorC accuracy is observed to be lower for all the accuracy metrics when
compared with the VM stresses amongst all the test cases. One explanation for this
can be the difficulty in the DL model in learning negative values for the inputs and
outputs, which are present in the TorC dataset, and not present in the VM dataset.
For example, both the multi-layer perceptron model and the decoder branch of the
autoencoder contained linear activation functions for the TorC dataset, whilst VM
model contained sigmoid functions. Linear activation functions are suited for map-
ping inputs to both negative and positive inputs, whilst sigmoid activation functions
are useful for a non-linear mapping of inputs to an output between 0 and 1. This
non-linearity can be useful in learning more complex representations in the dataset,
and one potential explanation as to why the VM dataset performed better all round
when compared to the TorC dataset.

• One accuracy metric that is particularly suitable for the TorC dataset is the binary
accuracy metric. This is because, for the initial TorC stress field, it yields the
percentage of elements predicted correctly as either compression or tension with
respect to the total number of elements in the domain. The binarized final TorC
field visually illustrates this metric.

Limitations. The proposed method is capable of predicting almost instantaneous pre-
dictions of optimal topologies, VM and TorC stresses at a high degree of accuracy. One
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feature however, of trained DL models, is that they are only able to perform well on cases
they have seen during training because they rely on patterns and relationships in the data
that they have been exposed to. The types of loading parameters that are fed into the
model, as well as the types of topologies that are predicted as outputs are designated a
priori when creating the dataset and training the model. If for example the user wishes
to predict a 2D MBB topology with a different volume fraction, this would not be pos-
sible, as the volume fraction was not a variable parameter introduced into the training
dataset. This is an inherent feature of the models, they provide large benefits in terms
of near instant accurate predictions, but the user must be aware that the models have a
predefined mode of use.

Future work. The work contained in this thesis has opened up some exciting directions
for future work:

• Test cases with larger domains: The test cases proposed within this thesis are
of modest size and provide a solid proof of concept model for the proposed method.
However, for there to be a more real-world applicability to this technology, test cases
with larger domains could be explored.

• Different training dataset sampling strategy: The accuracy of the trained
model depends highly on the robustness of the dataset. The LHS sampling strategy
has proved effective in selecting a representative training dataset, however a future
direction could be to explore how the training data set could selected to achieve
higher accuracy results.

• Stress constraints: the topology optimization problem could be extended to in-
cluded stress constraints, that is, design the shape of the topology to limit the VM
stresses, as well as minimize compliance.
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Summary of 2D MBB encoder architecture.

Layer Output Shape Activation function Params

Input Layer (120, 40, 1) ReLU 0

Conv2D (120, 40, 128) ReLU 1280

Conv2D (120, 40, 128) ReLU 147584

MaxPooling2D (60, 20, 128) ReLU 0

BatchNormalization (60, 20, 128) ReLU 512

Conv2D (60, 20, 64) ReLU 73792

Conv2D (60, 20, 64) ReLU 36928

MaxPooling2D (30, 10, 64) ReLU 0

BatchNormalization (30, 10, 64) ReLU 256

Conv2D (30, 10, 32) ReLU 18464

Conv2D (30, 10, 32) ReLU 9248

MaxPooling2D (15, 5, 32) ReLU 0

BatchNormalization (15, 5, 32) ReLU 128

Conv2D (15, 5, 32) ReLU 9248

Conv2D (15, 5, 32) ReLU 9248

Reshape (2400) ReLU 0

Dense (40) Sigmoid (Linear*) 96040

Total - - 402728

Table A.1: 2D MBB encoder architecture.
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Summary of 2D MBB decoder architecture.

Layer Output Shape activation function Params

Input Layer (40) ReLU 0

Dense (2400) ReLU 1280

Reshape (15, 5, 32) ReLU 147584

BatchNormalization (15, 5, 32) ReLU 512

Conv2D (15, 5, 32) ReLU 73792

Conv2D (15, 5, 32) ReLU 36928

Conv2DTranspose (30, 10, 32) ReLU 0

BatchNormalization (30, 10, 32) ReLU 256

Conv2D (30, 10, 32) ReLU 18464

Conv2D (30, 10, 32) ReLU 9248

Conv2DTranspose (60, 20, 64) ReLU 0

BatchNormalization (60, 20, 64) ReLU 256

Conv2D (60, 20, 64) ReLU 18464

Conv2D (60, 20, 64) ReLU 9248

Conv2DTranspose (120, 40, 128) ReLU 0

BatchNormalization (120, 40, 128) ReLU 256

Conv2D (120, 40, 128) ReLU 18464

Conv2D (120, 40, 128) ReLU 9248

Conv2D (120, 40, 1) Sigmoid (Linear*) 9248

Total - - 608193

Table A.2: 2D MBB decoder architecture.



106 A| Appendix

Summary of 2D MBB autoencoder architecture.

Input Layer Output Shape Params

Input Layer (120, 40, 1) 0

Encoder (40) 402728

Decoder (120, 40, 1) 608193

Total - 1010921

Table A.3: 2D MBB autoencoder architecture.

Summary of 3D cantilever encoder architecture

Layer Output Shape Activation function Params

Input Layer (24, 12, 12, 1) ReLU 0

Conv3D (24, 12, 12, 128) ReLU 3584

Conv3D (24, 12, 12, 128) ReLU 442496

MaxPooling3D (12, 6, 6, 128) ReLU 0

BatchNormalization (12, 6, 6, 128) ReLU 512

Conv3D (12, 6, 6, 64) ReLU 221248

Conv3D (12, 6, 6, 64) ReLU 110656

MaxPooling3D (6, 3, 3, 64) ReLU 0

BatchNormalization (6, 3, 3, 64) ReLU 256

Conv3D (6, 3, 3, 32) ReLU 55328

Conv3D (6, 3, 3, 32) ReLU 27680

MaxPooling3D (3, 2, 2, 32) ReLU 0

BatchNormalization (3, 2, 2, 32) ReLU 128

Conv3D (3, 2, 2, 32) ReLU 27680

Conv3D (3, 2, 2, 32) ReLU 27680

Reshape (384) ReLU 0

Dense (40) Sigmoid 15400

Total - - 932648

Table A.4: 3D cantilever encoder architecture.
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Summary of 3D cantilever decoder architecture

Layer Output Shape Activation function Params

Input Layer (40) ReLU 0

Dense (384) ReLU 15744

Reshape (3, 2, 2, 32) ReLU 0

BatchNormalization (3, 2, 2, 32) ReLU 128

Conv3D (3, 2, 2, 32) ReLU 27680

Conv3D (3, 2, 2, 32) ReLU 27680

Conv3DTranspose (6, 4, 4, 32) ReLU 27680

BatchNormalization (6, 4, 4, 32) ReLU 128

Conv3D (6, 4, 4, 32) ReLU 27680

Conv3D (6, 4, 4, 32) ReLU 27680

Conv3DTranspose (12, 8, 8, 64) ReLU 55360

BatchNormalization (12, 8, 8, 64) ReLU 256

Conv3D (12, 8, 8, 64) ReLU 110656

Conv3D (12, 8, 8, 64) ReLU 110656

Conv3DTranspose (24, 16, 16, 128) ReLU 221312

BatchNormalization (24, 16, 16, 128) ReLU 512

Conv3D (24, 16, 16, 128) ReLU 442496

Conv3D (24, 16, 16, 128) ReLU 442496

Conv3D (24, 16, 16, 1) Sigmoid 3457

Cropping 3D (24, 12, 12, 1) - 0

Total - - 1541601

Table A.5: 3D cantilever decoder architecture.
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Summary of 3D Cantilever autoencoder architecture

Input Layer Output Shape Params

Input Layer (24, 12, 12, 1) 0

Encoder (40) 932648

Decoder (24, 12, 12, 1) 1541601

Total - 2474249

Table A.6: 3D cantilever autoencoder architecture.

Summary of 3D bridge encoder architecture.

Layer Output Shape Activation function Params

Input Layer (60, 20, 4, 1) ReLU 0

Conv3D (60, 20, 4, 128) ReLU 3584

Conv3D (60, 20, 4, 128) ReLU 442496

MaxPooling3D (30, 10, 2, 128) ReLU 0

BatchNormalization (30, 10, 2, 128) ReLU 512

Conv3D (30, 10, 2, 64) ReLU 221248

Conv3D (30, 10, 2, 64) ReLU 110656

MaxPooling3D (15, 5, 1, 64) ReLU 0

BatchNormalization (15, 5, 1, 64) ReLU 256

Conv3D (15, 5, 1, 32) ReLU 55328

Conv3D (15, 5, 1, 32) ReLU 27680

MaxPooling3D (8, 3, 1, 32) ReLU 0

BatchNormalization (8, 3, 1, 32) ReLU 128

Conv3D (8, 3, 1, 32) ReLU 27680

Conv3D (8, 3, 1, 32) ReLU 27680

Reshape (768) ReLU 0

Dense (40) Sigmoid 30760

Total - - 948008

Table A.7: 3D bridge encoder architecture.
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Summary of 3D bridge decoder architecture

Layer Output Shape Activation function Params

Input Layer (40) ReLU 0

Dense (768) ReLU 31488

Reshape (8, 3, 1, 32) ReLU 0

BatchNormalization (8, 3, 1, 32) ReLU 128

Conv3D (8, 3, 1, 32) ReLU 27680

Conv3D (8, 3, 1, 32) ReLU 27680

Conv3DTranspose (16, 6, 2, 32) ReLU 27680

BatchNormalization (16, 6, 2, 32) ReLU 128

Conv3D (16, 6, 2, 32) ReLU 27680

Conv3D (16, 6, 2, 32) ReLU 27680

Conv3DTranspose (32, 12, 4, 64) ReLU 55360

BatchNormalization (32, 12, 4, 64) ReLU 256

Conv3D (32, 12, 4, 64) ReLU 110656

Conv3D (32, 12, 4, 64) ReLU 110656

Conv3DTranspose (64, 24, 8, 128) ReLU 221312

BatchNormalization (64, 24, 8, 128) ReLU 512

Conv3D (64, 24, 8, 128) ReLU 442496

Conv3D (64, 24, 8, 128) ReLU 442496

Conv3D (64, 24, 8, 1) Sigmoid 3457

Cropping 3D (60, 20, 8, 1) - 0

Total - - 1557345

Table A.8: 3D bridge decoder architecture.
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Summary of 3D bridge autoencoder architecture.

Input Layer Output Shape Params

Input Layer (24, 12, 12, 1) 0

Encoder (40) 948008

Decoder (24, 12, 12, 1) 1557345

Total - 2505355

Table A.9: 3D bridge autoencoder architecture.
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