
POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONICS INFORMATICS AND BIOENGINEERING

DOCTORAL PROGRAMME IN INFORMATION TECNOLOGY

AUGMENTING TRADERS WITH LEARNING

MACHINES

Doctoral Dissertation of:
Edoardo Vittori

Supervisor:
Prof. Marcello Restelli

Tutor:
Prof. Nicola Gatti

2021 – Cycle XXXIV

Abstract

The financial markets are comprised of several participants with diverse roles and objec-
tives. Asset management firms optimize the portfolios of pension funds, institutions and
private individuals; market makers offer liquidity by continuously pricing and hedging their
risks; proprietary traders invest their own capital with sophisticated methodologies. The
approaches adopted by these actors are either manual or expert systems that rely on the
experience of traders, and thus are subject to human bias and error.

This dissertation proposes innovative techniques to address the limitations of the current
trading strategies. Specifically, we explore the use of algorithms capable of autonomously
learning the aforementioned sequential decision-making processes. The development of
these algorithms entails a careful reproduction of realistic environments, as well as the
observance of trading objectives, i.e., maximizing returns while maintaining a low risk
profile and minimizing costs. These algorithms all share a common core structure, that is
making a trading decision conditional on the current state of the financial markets.

Our main theoretical and algorithmic contributions include the extension of the online
learning field, as we introduce transaction costs and conservativeness in online portfolio
optimization, and the enhancement of Monte Carlo Tree Search algorithms to account for
the stochasticity and high noise typical of the financial markets. In terms of experimental
contributions, we apply Reinforcement Learning to learn profitable quantitative trading
strategies and option hedging approaches superior to the standard Black & Scholes hedge.
We also find that Reinforcement Learning combined with Mean Field Games enables the
development of competitive bond market making strategies. Finally, we demonstrate that
dynamic optimal execution methods can be learned through Thompson Sampling with
Reinforcement Learning.

The use of such advanced techniques in a production environment may allow the
achievement of a competitive advantage that will translate into economical benefits.

I

Acknowledgements

This work would not have been possible without the precious contributions of several people.

First of all, I would like to thank Marcello, who guided me throughout this journey.

I would like to thank my colleagues of the XVA Management desk, Michele, Marco,
Francesco and Simone, who were always eager and ready to help out.

I’m grateful for the support of Andrea, who made the executive Ph.D. formula possible
and who has been a mentor to me.

Working with the other Ph.D. students at Politecnico has been extremely valuable.
Thank you Lorenzo, Luca, Pierre and Amarildo. I hope we will continue working together.

I appreciate the hours spent with Francesco and Martino, co-authors in several papers.
Their expertise helped achieve important results.

I’m grateful for my family that is always close to me, ready to support, encourage and
help out in every possible way.

A special thanks to my girlfriend Barbara, who read and checked the thesis in its entirety.
She is always there for me, cheering me on.

I also appreciate invaluable feedback of the reviewers, Prof. Guéant and Prof. Kolm.

Finally, I would like to thank all those who helped me in the attempt to transform the
technologies presented in this thesis into a entrepreneurial project. I hope this dream will
soon become a reality.

III

Contents

List of Figures X

List of Tables XI

List of Algorithms XIII

List of Acronyms XV

List of Symbols XX

1 Introduction 1
1.1 Reinforcement Learning for the Financial Markets 2
1.2 Reinforcement Learning . 3
1.3 Original Contributions . 4

1.3.1 Online Portfolio Optimization 4
1.3.2 Quantitative Trading . 5
1.3.3 Market Making . 5
1.3.4 Hedging . 5
1.3.5 Optimal Execution . 6

1.4 Overview of the Dissertation . 6

I Intro to Financial Markets and Reinforcement Learning 9

2 Financial Markets Fundamentals 11
2.1 Introduction to Financial Markets . 12

2.1.1 Trading Venues . 13
2.1.2 Regulation . 15

2.2 Financial Instruments . 15

V

Contents

2.2.1 Cash Instruments . 16
2.2.2 ETFs and Futures . 16
2.2.3 Equity Options . 17
2.2.4 CDS and CDS Index Options 18
2.2.5 Asset Classes . 20

2.3 Market Players . 20
2.3.1 Asset Managers . 22
2.3.2 Quantitative Hedge Funds . 23
2.3.3 Options Market Makers . 24
2.3.4 Bond Dealers . 26

2.4 Algorithmic Trading . 27
2.4.1 Transaction Costs and Market Impact 27
2.4.2 Limit Order Books . 28
2.4.3 Optimal Execution . 30

3 Introduction to Reinforcement Learning 33
3.1 Markov Decision Process . 33
3.2 Value Functions and Bellman Equations 35
3.3 Learning the MDP . 37

3.3.1 Reinforcement Learning . 37
3.3.2 Online Planning . 38
3.3.3 Online Learning . 39

4 Data Preparation and Testing 43
4.1 Data Types . 44
4.2 Data Collection . 45
4.3 Data Simulation . 48

4.3.1 Stochastic Differential Equations 48
4.3.2 Multi-agent Market Simulation 50

4.4 Data Processing . 50
4.5 Performance Metrics . 51
4.6 Testing . 53

II Learning the Financial Markets with RL 55

5 Online Portfolio Optimization 57
5.1 Online Portfolio Optimization with Transaction Costs 58

5.1.1 Background on OPO with Transaction Costs 58
5.1.2 Formulating Transaction Costs in OPO 59
5.1.3 Online Gradient Descent with Momentum 60
5.1.4 Comparison with State-of-the-art OPO algorithms 62
5.1.5 Experimental Results . 64

5.2 Online Portfolio Optimization with a Benchmark 69
5.2.1 Background on Conservative OCO 70
5.2.2 Formulating Conservativeness in OCO 70
5.2.3 The Conservative Projection Algorithm 71

VI

Contents

5.2.4 Experimental Results . 75
5.3 Chapter Summary . 76

6 Quantitative Trading with FQI and MCTS 79
6.1 Background on RL for Trading . 80
6.2 Learning to Trade with FQI . 81

6.2.1 Fitted Q Iteration . 81
6.2.2 Persistent Actions . 82
6.2.3 Using FQI for FX Trading . 83
6.2.4 Experimental Results . 85

6.3 Trading with MCTS . 89
6.3.1 The Open Loop Q-Learning UCT Algorithm 90
6.3.2 Nearest Neighbor Generative Model 92
6.3.3 Experimental Results . 93

6.4 Chapter Summary . 96

7 Dealer Markets: a Mean-Field RL Approach 97
7.1 Background on Dealer Markets and MFGs 98
7.2 Modelling Dealer Markets as a Stochastic Game 100
7.3 Learning Equilibrium via General MFGs 103
7.4 Experimental Results . 106

7.4.1 Experimental Setting . 106
7.4.2 Equilibrium Policy . 107
7.4.3 Exploitability Study . 108
7.4.4 Market Simulation Study . 109

7.5 Chapter Summary . 114

8 Hedging Options with Risk-Averse RL 115
8.1 Background on RL for Hedging . 116
8.2 Risk Aversion in RL with TRVO . 117
8.3 Equity Option Hedging with RL . 119

8.3.1 Experimental Results . 120
8.4 Credit Index Option Hedging with RL 127

8.4.1 Experimental Results . 128
8.5 Chapter Summary . 134

9 Optimal Execution with RL 135
9.1 Background on Optimal Execution with RL 136
9.2 Optimal Execution with FQI and Thompson Sampling 137

9.2.1 Using FQI and TS for Optimal Execution 138
9.3 Experimental Results . 139
9.4 Chapter Summary . 143

10 Conclusions 145

Bibliography 149

Appendix 163

VII

Contents

A Proofs and Additional Material 163
A.1 Proof for Chapter 3 . 163
A.2 Proofs for Section 5.1 . 164
A.3 Proofs and Additional Material for Section 5.2 166

A.3.1 Baseline Approaches . 169
A.4 Additional Material for Chapter 7 . 175

A.4.1 Q-learning for GMFG . 175
A.5 Proof for Chapter 8 . 176

B Additional Financial Material and ML Tools 177
B.1 Additional Material on Financial Instruments 177

B.1.1 Stocks . 177
B.1.2 Bonds . 178
B.1.3 Forwards . 178
B.1.4 Futures . 178
B.1.5 Equity Options . 179
B.1.6 Credit Default Swaps . 180
B.1.7 Interest Rate Swaps . 180
B.1.8 Sensitivities . 181

B.2 Almgren-Chriss for Optimal Execution 181
B.3 Additional Material for Data Simulation 183

B.3.1 Econometric Models . 183
B.4 Regression through Random Forests and Neural Networks 183

B.4.1 Decision Trees . 184
B.4.2 Random Forests and Extra Trees 185
B.4.3 Neural Networks . 186

C DVA Hedging with RL 189
C.1 CVA and DVA . 189

C.1.1 Banks and the Corporate Derivatives Business 192
C.2 DVA hedging with RL . 193

C.2.1 Price and Dividend Processes 194
C.2.2 Collateral and Cash Accounts 195
C.2.3 Gain and P&L . 197
C.2.4 DVA Hedging as an MDP . 197
C.2.5 Experimental Approach . 198

VIII

List of Figures

1.1 Map of Part II. 7

2.1 Example of limit order book of the EuroStoxx 50 futures. 13
2.2 Example of MD2C platform. 14
2.3 Graphical representation of LOB (Briola et al., 2021). 28

3.1 MDP representation. 34
3.2 Online learning representation. 40

4.1 LOB levels. 45
4.2 SNRFIN mid credit spread and bid-ask spread. 47

5.1 Wealth of a specific run. 65
5.2 Average annualized percentage wealth. 67
5.3 Average variation of the portfolio. 68
5.4 Graphical representation of CP algorithm. 73
5.5 Wealth and wealth budget. 76

6.1 Graphical representation of two FX pairs model. 84
6.2 Wealth on single currency pair EURUSD. 86
6.3 Average results on test set. 87
6.4 Comparison of difference persistence levels. 87
6.5 Visualization of trades on test set. 88
6.6 Visual representation of the nearest neighbor generative model. 93
6.7 Annualized average P&L with no transaction costs. 94
6.8 Annualized average P&L with transaction costs. 95

7.1 Equilibrium policy πW for the FQI2 agents. 108
7.2 Average dollar reward lt. 111

IX

List of Figures

7.3 Box-plot of the distribution. 112
7.4 Mean-std plot. 113

8.1 P&L distribution without transaction costs. 121
8.2 Single scenario, no costs. 121
8.3 Hedging costs and volatility. 122
8.4 Hedging costs representation. 122
8.5 Single scenario, with costs. 123
8.6 Efficient frontier on P&L / reward volatility space. 123
8.7 Efficient frontier P&L / P&L volatility space. 124
8.8 P&L distribution with transaction costs. 125
8.9 Single scenario, no costs. 129
8.10 Single scenario, with costs. 130
8.11 Efficient frontier P&L / P&L volatility space with GBM market. 131
8.12 P&L distribution with transaction costs. 131
8.13 Efficient frontier P&L / P&L volatility space with Heston market. 132
8.14 Test on real data, third quarter 2020. 133

9.1 Price process and volume dynamics. 140
9.2 Return low liquidity, low volatility scenario. 141
9.3 Return high liquidity, high volatility scenario. 141
9.4 TS iterations in low volatility, low liquidity scenario. 142
9.5 TS iterations in high volatility, high liquidity scenario. 142

A.1 NYSE assets used. 166

B.1 Evolution of SX7E mid price. 179
B.2 Almgren-Chriss execution trajectories. 183
B.3 Composition scheme of a neuron. 187
B.4 Scheme of a fully connected NN . 188

X

List of Tables

4.1 Summary of the instruments considered in this dissertation. 46
4.2 Datasets used in the experimental campaign of Chapter 5. 48

5.1 Comparison of regret and computational complexity 62

6.1 Average results of best models. 86

7.1 Performance in exploitative setting. 109
7.2 Mean dollar reward L for Mt = 2. Larger is better. 110
7.3 Mean dollar reward L for Mt = 4. Larger is better. 110
7.4 Mean Sharpe ratio S for Mt = 2. Larger is better. 111
7.5 Mean Sharpe ratio S for Mt = 4. Larger is better. 111
7.6 Average reward R for Mt = 2. Larger is better. 112
7.7 Average reward R for Mt = 4. Larger is better. 113

8.1 Results on modified option characteristics. 126
8.2 Summary of performance of the RL agent 133

C.1 Notation for the DVA problem. 194

XI

List of Algorithms

1 Online Learning . 40

2 OGDM in OPO with Transaction Costs 61
3 Conservative Projection Algorithm . 73

4 Fitted Q Iteration Algorithm . 81
5 Q-Learning Open Loop Planning . 92

6 Model Free GMFG . 104
7 FQI for GMFG . 105

8 Trust Region Volatility Optimization . 119

9 Thompson Sampling . 138
10 Thompson Sampling and FQI for optimal execution 139

11 Conservative Switching . 170
12 RD-1D . 172
13 RD-1D-Guess . 173
14 RD-ND-Guess . 173
15 CRDG . 173
16 Q-learning for GMFG . 175

XIII

List of Acronyms

ADMM Alternating Direction Method of Multipliers 63

AUM Assets Under Management . 21

B&H Buy and Hold . 87

B&S Black and Scholes . 17

BBG Bloomberg . 14

bps Basis Points . 16

CDA Continuous Double Auction . 13

CDS Credit Default Swaps . 14

CET Central European Time . 51

CME Chicago Mercantiles Exchange 17

COCO Conservative Online Convex Optimization 69

CP Conservative Projection . 5

CRDG Constrained Reward Doubling Guess 75

CRP Constant Rebalancing Portfolio . 57

CS Conservative Switching . 75

DQN Deep Q Network . 80

DVA Debt Valuation Adjustment . 6

ETFs Exchange Traded Funds . 13

XV

List of Acronyms

FQI Fitted Q Iteration . 5

FX Foreign eXchange . 12

GBM Geometric Brownian Motion . 17

GMFGs General Mean Field Games . 100

HFs Hedge Funds . 21

HFT High Frequency Trading . 1

IPO Initial Public Offering . 12

IRS Interest Rate Swaps . 14

LGD Loss Given Default . 18

LOB Limit Order Book . 13

MAB Multi Armed Bandit . 41

MCTS Monte Carlo Tree Search . 5

MD2C Multi-Dealer-to-Client . 14

MDP Markov Decision Process . 3

MFGs Mean Field Games . 5

ML Machine Learning . 1

MPT Modern Portfolio Theory . 4

MTFs Multilateral Trading Facilities . 14

MtM Mark-to-Market . 16

NNs Neural Networks . 38

NYSE New York Stock Exchange . 17

OCO Online Convex Optimization . 41

OGD Online Gradient Descent . 5

OGDM Online Gradient Descent with Momentum 5

OLU Online Lazy Updates . 58

ONS Online Newton Step . 58

OPO Online Portfolio Optimization . 4

OTC Over The Counter . 14

P&L Profit and Loss . 3

XVI

List of Acronyms

PE Private Equity . 21

PPO Proximal Policy Optimization . 109

PW Progressive Widening . 90

QL-OL Q-Learning Open-Loop . 93

RFQ Request For Quotes . 2

RL Reinforcement Learning . 2

S&H Sell and Hold . 87

SDEs Stochastic Differential Equations 44

SL Supervised Learning . 2

SNRFIN Markit iTraxx Europe Senior Financial index 18

SX7E EURO STOXX Banks Index Futures 47

TRPO Trust Region Policy Optimization 115

TRVO Trust Region Volatility Optimization 115

TS Thompson Sampling . 41

TWAP Time Weighted Average Price 30

UCP Universal Portfolios with Costs . 58

UCB1 Upper Confidence Bound . 39

UCT Upper Confidence Tree . 39

VC Venture Capital . 21

VIX Chicago Board Options Exchange Volatility Index 47

VWAP Volume Weighted Average Price 135

XVII

List of Symbols and Notation

Markov Decision Processes and Online Learning

S state space
A action space
P transition model
R reward model
r reward function
µ0 initial state distribution
γ discount factor
π policy
µ initial state distribution
τ trajectory
Gτ return of a trajectory
Vπ state value function of policy π
Qπ action value function of policy π
Jπ expected return of policy π
f(at, yt) loss function
Lt cumulative loss function
RT regret

Option Portfolio Optimization

at portfolio allocation
∆M−1 (M − 1)-simplex in RM
yt price relatives
Wt wealth
W̃t wealth including costs

XIX

List of Acronyms

Quantitative Trading

Pt asset mid price
at portfolio position
bid-ask bid ask spread

Dealer Markets

Pt,buy buy limit order price
Pt,sell sell limit order price
Pt asset mid price
vt trade size
zt current inventory
ϕ(z) inventory penalty

Option Hedging

St underlying price
Ct B&S call option price
Pt B&S put option price
rf risk free rate
σ volatility
τ(t, T) year fraction between two dates
K strike price
AS(t) annuity
PS(t, θ) survival probability
Payt payer option price
Upft CDS Upfront

Optimal Execution

X number of shares to execute
T total execution time
N + 1 number of execution timesteps
Pt mid price
Qkask volume of outstanding limit orders at k-th best ask
TDk

h total depth: cumulative sum of volume over multiple price levels
vimb volume imbalance
Zimb price imbalance

XX

CHAPTER1
Introduction

Trading robots are starting to dominate the financial markets (Gunia, 2019; Economist,
2019). Many quantitative funds, such as Renaissance Technologies (Keh, 2018) and
Two Sigma, are managing capital via computerized trading strategies. Market making
desks in top dealers are now mostly comprised of computer scientists who build software in
collaboration with traders. These trading algorithms are, in most cases, expert systems, built
by highly qualified individuals with a deep knowledge of the financial markets. Often times,
the algorithms’ objective is not to anticipate the markets, but to be faster than everyone
else. Thus, it becomes necessary to delegate trading to computers with a low-latency
infrastructure and colocated servers. This is exactly the functioning of High Frequency
Trading (HFT) firms such as Optiver.

There are other usages of advanced algorithms, for example in the asset management
world, the exploitation of Machine Learning (ML) to analyze enormous quantities of data,
which would be out of reach even for an army of analysts. The analyses resulting from
this approach, now referred to as quantamental (Tadoori, 2020), aid the asset managers in
taking the investment decisions. Thus, to summarize, current technologies are used either
to support the decision-making of traders or to systematize the traders’ strategies to act in
high frequency.

Recent ML technologies have demonstrated the capabilities of learning decision making
tasks at such a level that they surpassed even the world champion in the field, for example
in the game of Go (Silver et al., 2016). From this inspiring success stems the question if
these technologies can rival humans also in the financial markets domain. The objective of
this dissertation is to address this question by applying the same successful technologies

1

Chapter 1. Introduction

to the main decision making processes of the financial markets arena, namely, portfolio
optimization, proprietary trading, market making, hedging, and optimal execution. These
areas all share a common decision making core structure, that is making a trading decision
conditional on the current status of the financial markets. Nonetheless, they differ in terms
of the objective, which can be, for instance, to maximize profit, minimize risk, reduce
transaction costs, maximize the number of transactions or a combination of the above.

Reinforcement Learning (RL) (Sutton and Barto, 1998) algorithms are the enabler for
such an endeavor. RL is one of the main paradigms of ML, together with Supervised Learn-
ing (SL) (Bishop, 2006), which is based on the problems of classification and regression,
and Unsupervised Learning (Rokach and Maimon, 2005), which focuses on finding patterns
in unlabelled data, e.g., clustering and feature extraction. RL enables learning a policy
to optimize an objective by interacting with an environment, and can be applied in many
different contexts such as games (Silver et al., 2016), robotic control (Meyes et al., 2017)
and autonomous driving (Wang et al., 2018). Amongst the many players that interact in
the markets, this dissertation concentrates on quantitative traders, portfolio managers, and
market makers.1 For each player, we analyze how to create an autonomous agent that
independently learns how to replicate the main tasks required by these players.

1.1 Reinforcement Learning for the Financial Markets

The work of a trader can be modeled as a sequential decision-making process, acting on the
financial markets by observing the information available and taking an investment decision.
The available information can be of any type. The most relevant is the price of the assets
considered for the investment, but it may also include related assets, the latest economic
and political news, and fiscal and economic policies.

Currently, many traders like to follow a manual “instinctive” approach to trading.
However, even traders with great experience may be subject to biases (Feng and Seasholes,
2005) and errors, underperforming due to human related limits. All these factors can be
avoided through the use of systematic, hard coded trading strategies, which replicate the
behavior of the traders. Furthermore, well designed learning algorithms can surpass the
trading strategies of human traders by identifying trends and patterns unrecognizable to
humans, thanks to the processing capabilities of computers. Devising such algorithms –
one of the objectives of this dissertation – holds immense economic value, as it may enable
the possibility of obtaining positive performance with low risk.

Designing quantitative trading strategies is not the only topic of this dissertation, as we
also analyse other financial tasks such as portfolio optimization, market making, hedging,
and optimal execution. In particular, market makers play an extremely important role as
they are entitled by national regulators to generate liquidity, enabling the well-functioning
and stability of the markets. Market making is a high frequency job, since it is necessary
to monitor the price in a continuous fashion and for certain assets, also answer to Request
For Quotes (RFQ). Thus, market makers, if not using automation software, are one of
the financial players most impacted by biases or other human factors, as the high number
of rapid decisions required makes any small distraction potentially impactful. In this
dissertation, we propose to implement RL algorithms to learn market making, hedging and
optimal execution strategies. The widespread adoption of such algorithms could eliminate

1All these different market players, may be generally referred to as traders.

2

1.2. Reinforcement Learning

human limitations and increase the efficiency of financial institutions and, thus, of financial
markets.

1.2 Reinforcement Learning

In nature, both a baby who learns to walk and a dog that learns to sit adopt the same
approach, i.e., learning by trial and error. RL derives inspiration from biology: it lets
an agent interact with an environment and provides it with a reward that conveys the
effectiveness of its actions. By maximizing the rewards, the agent learns autonomously
the optimal way to reach its objective. RL is an extremely generic approach that can, in
principle, solve any sequential decision-making process, such as robot control, and playing
games.

A sequential decision-making process can be labelled as a Markov Decision Process
(MDP) (Puterman, 2014), defined as an agent interacting with an environment. The
environment describes the world the agent can interact with. Moreover, the agent can
make decisions, referred to as actions, and for these decisions receives a feedback from
the environment, the reward. The action will cause a change in the environment with a
certain probability, or transition probability. The information of the current condition of
the environment is shown to the agent through the state. We often broadly refer to RL, even
though it is more correct to distinguish between RL, online planning, and online learning.
The differences between these approaches are outlined in the dissertation. However, it
is important to recall that they all have the same objective of learning sequential-making
decision processes.

Why Reinforcement Learning? The task of any market participant can be described as
a sequential decision-making process, where the state is the current market information, the
action is the investment or trade, and the reward, in general, is how well the trade performed,
i.e., the Profit and Loss (P&L) of the investment.

The adoption of RL techniques allows to solve sequential decision-making processes
by learning the optimal policy that not only optimizes the immediate gain, but also plans
the best strategies to handle future market dynamics. Furthermore, most RL algorithms can
learn directly from market data, without making any assumptions on the dynamics of the
financial assets. In RL this property is referred to as model-free.

Why not Supervised Learning? SL algorithms are conventionally used with the objective
of solving classification or regression problems by optimizing the loss of labelled examples.
These techniques have achieved impressive results in tasks such as image recognition (Lu
and Weng, 2007) and natural language processing (Chowdhury, 2003). SL is used for
several scopes in the financial context, these include building signals, forecasting volatility,
classifying clients, and rapidly analyzing large quantities of data such as balance sheets,
income statements, and financial ratios to provide an aid in stock picking (quantamental).
The application of SL to the topics covered in this dissertation would provide limited value,
since SL could be used only to predict what the market will do next, but would not be
able to advise how to behave optimally. Contrarily, RL learns trading strategies that both
maximize the immediate reward and plan ahead to design the path that optimizes the gain

3

Chapter 1. Introduction

over the entire trading period. Hence, it naturally appears as the optimal paradigm for the
scope of this dissertation.

1.3 Original Contributions

This dissertation has the objective of illustrating and deep-diving in several applications
of RL to the financial markets. Many of the problems considered, including portfolio
optimization, hedging, and optimal execution, have previously been tackled from a financial
mathematics perspective. In these scenarios, in the majority of cases, the market dynamics
are given a stochastic characterization and the goal is to find an analytical solution that
optimizes a utility function. The solutions could serve as guidance for traders, but the
unrealistic assumptions required by these models, such as continuous time trading when
pricing derivatives or the backward looking market characterization when optimizing
portfolios, leave them unusable in practice. This dissertation explores and proposes an
alternative approach for crafting trading, portfolio optimization, hedging, market making,
and optimal execution strategies suitable for deployment in a production environment. In
fact, in this work, when defining the financial environment, the focus is not on characterizing
the dynamics of the assets, but on accurately modeling the characteristics of the financial
instruments and the trading frictions. The proposed algorithms will deliver several benefits,
including the following:

• management of portfolios with market exposure but with a low risk profile;

• achievement of profitable and low risk quantitative trading strategies with no correla-
tion to market movements;

• achievement of profitable, low risk real-time pricing strategies also capable of an-
swering to RFQs in the market making context;

• reduction of market risks, specifically in the case of the inventory risk of market
makers;

• reduction of execution costs, a useful tool when managing portfolios, trading, and
hedging.

The use of the proposed approaches would also have a positive impact in terms of process
automation, which, in turn, leads to reduction of operational risk and associated costs.

The paragraph below presents a brief description of the different financial problems
covered in this dissertation, emphasizing the contributions to the state-of-the-art. These
topics are examined fully by means of dedicated chapters in the dissertation, namely
Chapters 5, 6, 7, 8, and 9.

1.3.1 Online Portfolio Optimization
Online Portfolio Optimization (OPO) (Li and Hoi, 2014) is an intrinsically different ap-
proach from the currently well-known Modern Portfolio Theory (MPT) (Markowitz, 1952).
Differently from MPT, it does not give a statistical characterization to the assets, but
assumes the market is adversarial and gives regret guarantees of converging to the or-
acle. This dissertation proposes two main contributions to the OPO framework, in the

4

1.3. Original Contributions

form of two novel algorithms. The first is the Online Gradient Descent with Momentum
(OGDM) algorithm (Vittori et al., 2020a), a modified version of Online Gradient Descent
(OGD) (Zinkevich, 2003), with the aim of dealing with transaction costs in the OPO frame-
work. This algorithm is supported by a theoretical analysis of the total regret (regret in the
presence of costs) and an empirical comparison with state-of-the-art OPO algorithms. The
second is the Conservative Projection (CP) algorithm (Bernasconi de Luca et al., 2021),
which gives theoretical guarantees of performing worse than a known benchmark with low
probability, a typical requirement in the asset management world. These topics are covered
in depth in Chapter 5.

1.3.2 Quantitative Trading
Most of the existing trading algorithms are expert systems, where experienced traders with
computer scientists write hard coded rules to exploit arbitrages or implement trading ideas
coming from the trader’s experience. These trading algorithms can be crafted in different
ways, from high (milliseconds) to low (minutes or hours) frequencies. In either case, they
are designed to systematize the strategy of the trader. In this dissertation, we focus instead
on trading strategies self-learnt by the RL algorithm, initially testing the use of Fitted Q
Iteration (FQI) (Ernst et al., 2005), following Riva et al. (2021), and then Monte Carlo
Tree Search (MCTS) (Kocsis and Szepesvári, 2006), following Vittori et al. (2021) to
learn a realistic trading strategy. The methodology and the experimental results achieved,
extensively elaborated in Chapter 6, are the main contributions to this theme.

1.3.3 Market Making
Market makers play a fundamental role in the financial markets, providing liquidity and
thus stability. Nonetheless, as all market participants, market makers too have the objective
of achieving a profit while minimizing risk. In this dissertation, we describe the market
maker problem as an N -player stochastic game of which we want to find the equilibrium.
To solve this game and find the equilibrium, we apply Mean Field Games (MFGs) (Huang
et al., 2006) where each player is an RL agent.

Specifically, for the first time, we model the dealer market environment as a multi-agent
game and solve it using model-free RL on discrete-time MFGs (Gomes et al., 2010). The
proposed approach is extremely flexible, as the equilibrium is learned by self-play for any
model that governs the exogenous stochasticity of the problem, e.g., the price of the asset or
the arrival times of the RFQs. We analyse the behavior of this approach with an extensive
experimental campaign, where different trading agents compete against each other, as
outlined in Chapter 7. Finally, we draw important conclusions from the experiments,
shedding light on the inner working of dealer markets.

1.3.4 Hedging
An options market maker habitually prices simultaneously a large number of options and
hedges the risk caused by the greeks (e.g., delta and vega). In this thesis, we focus on
hedging the first order risk caused by the underlying, referred to as the delta risk. To hedge
the delta risk, the market maker is often aided by an automatic software that hedges the
delta of each new trade and periodically (every few hours), hedges the delta risk of the entire

5

Chapter 1. Introduction

portfolio of options to keep it delta neutral. Trading the underlying asset creates transaction
costs that can be relevant, depending on the liquidity of the underlying instrument. There
are three main methods to optimize these costs: by optimizing the execution (and blindly
following the delta hedge), by optimizing the hedging policy, or a combination of the two.
In the hedging stream of this dissertation (see Chapter 8), we focus on optimizing the
hedging policy using a risk-averse policy search algorithm. We analyze the case of equity
option hedging, following Vittori et al. (2020b), and credit index option hedging.

Additionally, this dissertation also considers the Debt Valuation Adjustment (DVA)
hedging problem (see Appendix C). DVA hedging is related to option hedging but is
characterized by a higher degree of complexity, as DVA is a hybrid risk that depends
on multiple risk drivers and cannot be hedged by means of a single highly correlated
instrument.

Hedging with RL is illustrated in Chapter 8, the contribution is mainly methodological
and experimental.

1.3.5 Optimal Execution

Financial institutions often find themselves having to execute such large orders that they
cause the price of the instrument to move in a direction that increases the cost of the
transaction. There are various techniques used to minimize this market impact, which
generally consist in splitting the large order into smaller ones. One of the difficulties when
studying this problem is that in a historical simulation it is not possible to reproduce the
effect of the trade if not by making assumptions on the market impact. Thus, we tackle this
problem by using the multi-agent market simulator ABIDES (Byrd et al., 2019) to train and
test our approach. Another problem is the non-stationarity of the market. We propose an
online approach to adapt in rapidly changing market conditions. The methodological and
experimental contribution focuses on using RL to learn an optimal execution algorithm as
described in Chapter 9.

1.4 Overview of the Dissertation

The dissertation is organized in two parts. In the first part, (Chapters 2 through 4) we
layout the financial knowledge and RL fundamentals that prepare the reader to understand
problems analyzed in the second part (Chapter 5 through 9).

Part I: Financial markets and RL Fundamentals

Part I is divided in three introductory chapters:

• Chapter 2 defines the key mechanisms driving the financial markets and describes
the main financial instruments taken into consideration in this dissertation. This
chapter also addresses the major players in the financial markets, with a focus on
asset managers, quantitative traders, and market makers.

• Chapter 3 is devoted to an introduction to the algorithms considered, initially defining
MDPs, and then giving an overview on RL, online planning, and online learning.

6

1.4. Overview of the Dissertation

S
am

e
ob

je
ct

iv
e

Hedging

Learning to manage the
delta risk of equity options
and credit options with risk
averse RL Ch. 8

Managing transaction costs
and beating a benchmark in
the online portfolio
optimization framework

Portfolio
Optimization

Learning to minimize trading
costs in a dynamic market by
using FQI combined with
Thompson Sampling

Optimal Execution
EXECUTE
TRADE

Ch. 9

Learning the equilibrium
pricing policy of bond
dealers using FQI combined
with Mean Field Games

Market Making

Ch. 7

Quantitative
Trading
Learning a profitable, low
risk and market neutral
trading strategy using FQI
and using MCTS Ch. 6

Ch. 5

Figure 1.1: Map of Part II.

• Chapter 4 goes through the practical steps undertaken to achieve our results, thus
comprehensively explaining the approach followed to collect and process the data,
test and evaluate the learnt models.

Part II: Learning the Financial Markets through RL

Part II represents the core of the dissertation and contains the original contributions and
experimental results. The reader can refer to Figure 1.1 as support to navigate Part II.

• Chapter 5 analyzes the Portfolio Optimization problem through the OPO framework
and is composed of two main sections. The first section focuses on introducing
transaction costs in the OPO framework and is based on published work by Vittori
et al. (2020a). The second section centers on portfolio optimization with a benchmark:
the typical asset management task of beating a specific market index. This section is
based on published work in Bernasconi de Luca et al. (2021).

• Chapter 6 analyzes the Quantitative Trading problem, training an agent to go long,
short or stay flat on foreign exchange data. This chapter is composed of two main
parts. The first part uses the FQI algorithm and is based on the paper by Riva et al.
(2021). The second part of the chapter uses MCTS and is based on the paper by
Vittori et al. (2021).

7

Chapter 1. Introduction

• Chapter 7 emphasizes the bond market making problem, introducing a novel method,
using MFGs and RL, to find the optimal price quoting strategy. This is a novel
contribution that will be submitted for publication.

• Chapter 8 analyzes the hedging problem, assessing two different approaches in
separate sections. The first section analyzes the equity option hedging problem based
on the work by Vittori et al. (2020b). The second section concentrates on the credit
option hedging problem, a novel contribution that will be submitted for publication.
A third hedging problem, namely DVA hedging, can be found in Appendix C.

• Chapter 9 treats the optimal execution problem using the multi-agent market simulator
ABIDES and analyzing how, through the use of FQI, it is possible to minimize the
market impact of a trade. This is a novel contribution that will be submitted for
publication.

Reading Part II As depicted in Figure 1.1, the topics described in the five chapters of
Part II are strongly connected and comprehend the main money management techniques.
Portfolio management and quantitative trading are studied in different streams of literature,
but they are becoming continuously more intertwined as they follow the same objective of
obtaining a positive return on invested capital. Furthermore, when managing a portfolio
or implementing a trading or hedging strategy, it is beneficial to use an optimal execution
approach to reduce trading costs.

A market maker’s main task is to continuously price an asset both on the bid and ask
sides, which is the topic tackled in Chapter 7 for the case of bonds. When accumulating
inventory, market makers are exposed to market risk. In the case of bonds this means
using bond futures to hedge against interest rate risk, whereas in the case of options market
making, this means hedging the delta risk using the underlying (Chapter 8). This results
in the fact that a market maker is always dealing at the same time with both the pricing
and the hedging problems. Moreover, some specialist firms continuously price an asset
while also taking a market position with trading strategies, hedging unwanted risks and
optimizing the execution.

All the proofs of theorems and lemmas can be found in the Appendix A. Finally,
Chapter 10 is dedicated to the conclusions of the dissertation.

8

Part I

Intro to Financial Markets and
Reinforcement Learning

9

CHAPTER2
Financial Markets Fundamentals

Although the adoption of RL to model players in the financial markets has only started
recently, its use is extremely intuitive: market players take decisions in a sequential form,
observing the current information available and using it to decide which trade they should
execute to maximize their objective. This idea drives the entire dissertation. However, to
create autonomous agents that are suitable for application in the real markets, it is necessary
to model with great detail the simulators employed to train and test the algorithms. Thus, a
solid understanding of the financial assets used and of the objectives of the market players
is required.

This chapter serves as a guide to the reader, introducing and explaining in detail the
financial vocabulary and primary concepts that help understand the problems addressed in
Part II. For the reader interested in expanding the topics of this chapter, we recommend to
refer to financial text books, such as Hull (2003).

Chapter outline This chapter is composed of four main sections. Section 2.1 provides
a general overview of the financial markets. Section 2.2 covers the financial instruments
embraced in the dissertation, whereas Section 2.3 describes the major players that interact
in the markets. Finally, Section 2.4 introduces algorithmic trading.

11

Chapter 2. Financial Markets Fundamentals

2.1 Introduction to Financial Markets

Financial Markets (also referred to simply as “market” or “markets”) generally denote the
collection of marketplaces where the exchange of financial securities occurs. Their main
function is to connect investors looking for returns with companies or entities looking for
financing; thus, they are the key enabler of the functioning of a capitalist society. Financial
markets can be subdivided depending on the location and the assets exchanged, but, in
general, they can be thought of a single place where everything is interconnected. For
example, a news on a specific European company can influence the price of an option on an
index that contains that company and is traded in the US.

There are three main types of financial instruments (also referred to as financial “assets”)
that are exchanged in the markets: stocks, bonds, and derivatives. Stocks represent partial
ownership of a company, whereas bonds are a debt instrument, similar to loans but with
the possibility of being traded as small units of the total amount. Finally, derivatives are
complex instruments, whose price depends on that of a simpler instrument (referred to as
"underlying"). Financial instruments are described in greater detail in Section 2.2.

Lastly, there are the asset classes, which include equity, fixed income, credit, Foreign
eXchange (FX), and commodities. Equity includes stocks and equity derivatives, and simi-
larly fixed income and credit include bonds and derivatives. FX refers to the global market
place for currencies and is exchanged either spot, or through derivatives. A commodity
represents a basic good used in commerce, such as corn, gold or oil. Also commodities can
be exchanged using different types of financial derivatives. Asset classes are described in
greater detail in Section 2.2.5. The following paragraphs illustrate how financial assets are
created and exchanged.

Primary vs Secondary Market In general, financial assets, before being exchanged
on the markets must be originated, i.e., created. Hence, we now introduce a distinction
between two types of markets, namely, the primary market, where assets are originated,
and the secondary market, where assets are exchanged.

Primary markets differ depending on the instrument in consideration. In the case of
stocks, new shares are issued through an Initial Public Offering (IPO), while new bonds or
derivatives are created through an issuance. An origination is usually carried out with the
support of investment banks behaving as financial advisors and aiding in finding buyers
for the new instrument. An IPO is a long process that allows a private company, owned
from by a relatively small number of investors, to become public, so that anyone can buy a
share and participate in the ownership of the company. Bond issuance has a similar, but
more streamlined process that involves investment banks with the Debt Capital Markets
unit. Finally, derivatives’ origination stands out as the most agile process, and is handled by
the Capital Markets Structuring unit.

Once a financial asset has been originated, it can then start trading on the secondary
market. In the case of stocks, the secondary market is the so-called stock market, such
as the New York Stock Exchange, NASDAQ, London Stock Exchange, and many others.
In the case of bonds, secondary markets are also called dealer markets (detailed in the
following section).

Lastly, in the case of derivatives, the sale of an existing derivative to another counterparty
is referred to as novation. For some standardized derivatives such as futures there is also a

12

2.1. Introduction to Financial Markets

Figure 2.1: Example of limit order book of the EuroStoxx 50 futures.

liquid market. In this case, there is no distinction between primary and secondary markets,
as a new contract is created every time a trade happens and a position is closed through an
offsetting trade, not by novation.

2.1.1 Trading Venues
Regulated Exchanges Exchanges are marketplaces where stocks, Exchange Traded
Funds (ETFs), commodities, and some derivatives, most commonly futures and options,
are traded. In exchanges, buyers submit their bids and sellers submit their asks, creating a
Continuous Double Auction (CDA) process. The submitted orders are also known as limit
orders and the collection of all outstanding limit orders is referred to as the Limit Order
Book (LOB) (see Figure 2.1), which we define as follows.

Definition 2.1 (Limit Order Book). A limit order book is a record of all the currently
outstanding limit orders.

Definition 2.2 (Bid-Ask Spread). The best bid price is the highest price of all limit
purchase orders and the best ask price is the lowest price of all sell orders. The bid-ask
spread is calculated as the difference between the best ask and best bid price (we refer to it
as bid-ask or bid-ask spread).

As is illustrated in Section 2.4.1, half of the bid-ask spread is considered as the trans-
action cost, when the entire trade can be absorbed by the volume present in the first level
of the LOB. To trade on an exchange, it is necessary to either be an exchange member by
purchasing a membership or, otherwise, to go through a broker. The regulated exchanges
that have just been described are known as lit as it is possible to see the LOB for each
asset as in Figure 2.1. There are also venues, referred to as Dark Pools, in which the LOB
is hidden. The regulatory environment has caused a fragmentation of liquidity, in fact, a
single asset can be traded both on multiple lit exchanges and dark pools as well as other
venues.2 To minimize execution costs it may be beneficial to split the order between the
different venues, this is commonly labelled as smart routing.

2https://fragmentation.fidessa.com/.

13

https://fragmentation.fidessa.com/.

Chapter 2. Financial Markets Fundamentals

Figure 2.2: Example of MD2C platform for the Itraxx Senior Financial Index.

Over The Counter Bonds and derivatives such as Interest Rate Swaps (IRS) and Credit
Default Swaps (CDS) (see Section 2.2) are not traded on regulated exchanges but on dealer
markets. These types of financial instruments are identified as Over The Counter (OTC)
assets. We define OTC derivatives as:

Definition 2.3 (OTC Derivative). An OTC derivative is a financial contract that does not
trade on a regulated exchange, and that can be tailored to each party’s needs.

Derivatives are primarily used to manage exposure to the underlying financial risk.
Trades of OTC instruments take place via recorded phone, through qualified chats (such
as the Bloomberg (BBG) chat) or via Multilateral Trading Facilities (MTFs) also called
Multi-Dealer-to-Client (MD2C) platforms, such as the Bloomberg Derivatives landing
page (see Figure 2.2), the Bloomberg Fixed Income Trading, Tradeweb, or MarketAxess,
that substitute traditional voice negotiations. While via chat and phone derivatives can be
customized to fit the investor’s needs, those traded on MD2C platforms are standardized.
There are OTC markets in essentially every asset class, what is described in this thesis
refers to OTC credit markets.

Differently from stock exchanges, where each participant can submit a limit order, two
distinct types of actors play a role in OTC trading: the dealers (also called market makers,
see Section 2.3), and the clients. Dealers continuously quote bid and ask prices. Figure 2.2
displays an example where various dealers, mostly investment banks, show their bid and ask
prices and the size for which these prices hold. The dealer can exhibit two types of quotes:
a firm quote, that means that it is the final price that can be executed, and an indicative
quote, that instead means that it is an approximate price potentially subject to slight changes
when the trader receives a Request For Quote (RFQ). Following the reception of the RFQ,
the dealer communicates the firm quote. The second type of players, i.e., clients, are all
the other market participants who are not dealers in this instrument. If clients want to
trade, they must pick the dealer they want to trade with, basing their decision on the best
price displayed. Thanks to the MD2C platforms, clients can easily ask a quote to multiple
dealers, incentivizing each dealer to quote the best price, since they do not know who
the competitors are and what price they will show. A feature of MD2C platforms is the

14

2.2. Financial Instruments

limited visibility of the firm price of dealers to the client only, which implies that a market
maker receives as feedback only the acceptance/rejection of her offer. Moreover, contrarily
from the regulated exchanges where all the players are anonymous, clients trading OTC
instruments know the identity of the dealer. In Chapter 7 we propose an approach using RL
to optimize the RFQ pricing of dealers.

Brokers Brokers help the matching of demand and offer and may stand between the
market participants and the exchanges or the dealers. The most well-known brokers are
probably the large online brokerage firms providing market access to retail investors, such
as Fidelity, Charles Swab, Interactive Brokers and TD Ameritrade. Most investment
banks act as brokers for asset management firms, pension funds and other players without
exchange memberships, thus providing mostly execution services. For OTC instruments,
there are even inter-dealer brokers, that act as a mini-exchange through which dealers can
anonymously trade with other dealers to offload positions (see Equation (2.25)), helping to
smooth the market.

2.1.2 Regulation
Since the financial crises in the first decade of the century, the financial world has become
heavily regulated. In the US, for example, the Dodd Franck Act, established in 2010, en-
forced a strict monitoring and control of the financial stability of the US markets, obligating
banks higher reserve requirements.3 Among the many provisions, it expanded the power of
the Securities and Exchange Commission and introduced the Volker Rule, which prohibits
banks from using their accounts for proprietary trading, protecting consumers who deposit
their savings within these banks.

In Europe, two main regulations oversee the financial world, the Basel Accords and
MiFID. The former regulate the leverage ratios and capital requirements that banks need to
abide by.4 Capital requirements aim to respond to the necessity to handle periods of financial
distress. In particular, these requirements are generally defined as a percentage of the total
risk weighted assets of the bank, i.e., the amount of the bank’s investments weighted by a
coefficient defined by the regulatory authorities. The latter, MiFID, is a European regulation
focusing on increasing trading transparency, fairness, and standardization of regulatory
disclosures.5 Initially MiFID applied mostly to stocks, but has later expanded, with MiFID
II, to introduce increased regulation on OTC instruments and tighten restrictions on dark
pools.

2.2 Financial Instruments

To appropriately train and test an RL agent it is fundamental to model the environment
correctly, and thus, in this case, the financial instruments. In this section, we focus on
describing the main financial instruments considered, delving in detail on those used in the
applications of Chapters 5, 6, 7, 8, and 9. For more details on the financial instruments, the
reader can refer to Appendix B.1.

3https://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm.
4https://www.bis.org/bcbs/basel3.htm.
5https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir.

15

https://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm
https://www.bis.org/bcbs/basel3.htm
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir

Chapter 2. Financial Markets Fundamentals

There are two main kinds of financial assets, the “simple” assets, also referred to as
cash, which include stocks, bonds, and FX spot, and derivative instruments, whose price
derives from one or more underlying assets. For instance, derivatives encompass futures,
options, and swaps.

The size of a derivative is usually referred to as notional, the sensitivity represents how
much the value of the derivative will change because of a movement of the underlying
instrument. Generally, the sensitivity is defined as the derivative of the instrument relative
to the underlying and it is calculated considering how much the underlying price moves
percentage wise, or by how many Basis Points (bps) it moves, where 1 bp = 0.01%. In
general, the value of a derivative is referred to as the fair value or Mark-to-Market (MtM).
Depending on the type of derivative instrument, the contract may be opened without any
cash exchange, by posting an initial margin, by paying an upfront or by paying a premium,
but it is not necessary to pay the entire value of the notional. This characteristic can be
referred to as being unfunded. Cash instruments are funded, since it is necessary to exchange
the entire value of the instrument to obtain ownership.

2.2.1 Cash Instruments
Stocks Stocks are the most popular type of financial asset. They represent the ownership
of a corporation and a single unit is referred to as a share. In this dissertation, we consider
stocks when tackling online portfolio optimization in Chapter 5.

Bonds Bonds are debt instruments, similar to loans but shared among many different
owners instead of a single entity. Bonds are OTC instruments, so they are generally traded
on MTFs, even though some brokers also let retail clients trade them. In general, bonds
are not very liquid, they exhibit very low volatility, have high transaction costs and are
normally considered long term investments. In Chapter 7 we consider the problem of a
bond dealer, specifically how to learn an optimal pricing and RFQ response policy.

2.2.2 ETFs and Futures
ETFs An ETF is an instrument that typically reproduces a known index, but can be traded
on the stock market just like if it were a stock. ETFs have recently gained a lot of popularity
because they give investors the opportunity to take exposure to a market index at a low
price without resorting to futures or having to manually replicate the index by buying all
the stocks that it contains.

Definition 2.4 (Market index). A market index is a collection of financial assets, commonly
stocks. The returns of the market index are calculated as a weighted average of the returns
of the constituents.

It is possible to apply several weighting methods to calculate the indexes, the most com-
mon include market-cap weighting, revenue-weighting, float-weighting, and fundamental-
weighting. As an example, one of the most famous indexes at a global level is the S&P 500
index, that is the market-capitalization-weighted index of the 500 largest publicly-traded
companies in the U.S. The most renowned ETF that replicates this index is the SPY ETF.
Similarly to stocks, also ETFs are considered when tackling online portfolio optimization
in Chapter 5.

16

2.2. Financial Instruments

Futures Futures and forwards represent an agreement to buy or sell an asset for a certain
price at a certain future time (whereas spot contract consist in an agreement to make a
trade today). The payoff of a long position in a futures/forward contract is ST −K where
K is the agreed upon price and ST is the spot price of the asset at maturity. Forwards
are OTC instruments, while futures actively traded on regulated exchanges, such as the
Chicago Mercantiles Exchange (CME), Eurex, and Euronext. Typical futures have as
underlying bonds (e.g., BTP, Bund), equity indexes (e.g., S&P 500 index), FX spot prices,
and commodity spot prices (crude oil, natural gas, and many others). Depending on the type
of futures, or on the counterparty agreement, the settlement can be either physical or cash.
A physical settlement occurs when the underlying instrument has to be delivered, while a
cash settlement means that only the monetary value is exchanged. In this dissertation, we
assume all futures considered to be cash settled. Futures contracts can easily be shorted,
so are compatible with the quantitative trading approach described in Chapter 6. Also, in
Chapter 8, the underlying of equity options can be a futures contract.

2.2.3 Equity Options
Equity options are traded on exchanges like the American Stock Exchange (AMEX), the
Chicago Board Options Exchange (CBOE), the New York Stock Exchange (NYSE), and
several others. There are many types of options, for the sake of this dissertation, we focus
on vanilla European options. These are contracts that offer the buyer the right to buy (call
option) or sell (put option) a certain quantity of the underlying asset at a predefined price at
a certain future time. Although not discussed in this work, there are more complex types of
options such as American, Bermudan, as well as others. In the case of equity options, the
underlying asset is in general a stock or an equity index .

In this section we describe the Black and Scholes (B&S) (Black and Scholes, 1973)
pricing framework, the benchmark considered in this paper. The B&S model is used to
convert option prices into implied volatilities. This framework entails the modelling of
two elements, the underlying and the deriving option price. In the B&S framework, the
underlying behaves as Geometric Brownian Motion (GBM) (see Section 4.3.1 for more
details). Let St be the underlying price at time t, rf the risk-free rate (we assume it to be 0
compatibly with current market conditions), σ the volatility, T the time of maturity, τ(t, T)
the Time To Maturity (TTM) expressed as year fraction, K the strike price. The B&S call
price C and put price P are:

C(t, St) = Φ(dt)St − Φ(et)Ke
−rfτ(t,T), (2.1)

P (t, St) = Φ(−et)Ke−rfτ(t,T) − Φ(−dt)St,

dt =
1

σ
√
τ(t, T)

[
log

(
St
K

)
+

(
rf +

σ2

2

)
τ(t, T)

]
,

et = dt − σ
√
τ(t, T),

where Φ is the cumulative distribution function of the standard normal distribution. We
introduce

∂C(t, St)

∂S
= Φ(dt), (2.2)

which is known as the option delta and for our position (a long call of unitary notional)
is bounded between 0 and 1. In particular when τ(t, T) is relatively small and St

K ≪ 1,

17

Chapter 2. Financial Markets Fundamentals

∂C(t,St)
∂S → 0 and C(t, St) → 0; instead if St

K ≫ 1, ∂C(t,St)
∂S → 1 and C(t, St) → St. We

consider equity options in Section 8.3, from the point of view of an options market maker,
but focusing on optimizing the hedge of the underlying instrument.

2.2.4 CDS and CDS Index Options
Credit Default Swap A CDS is a financial derivative or contract that allows an investor
to swap or offset her credit risk with that of another investor. To swap the risk of default,
the lender buys a CDS from another investor who agrees to reimburse the lender in the case
the borrower defaults. Most CDS will require an ongoing premium payment to maintain
the contract, which is like an insurance policy. Similarly to a stock index, a CDS index is a
weighted average of a number of single name CDS. In this dissertation, we concentrate on
the Markit iTraxx Europe Senior Financial index (SNRFIN), which represents a basket of
credit default swaps on 30 European financial institutions (banks and insurances), equally
weighted, with standardized maturities, coupons and payment dates, but other CDS indexes
or even single name CDS behave similarly.

Each CDS index has a premium leg and a protection leg, where the protection leg
pays in case of a credit event. Since the premium leg has a standardized 1% coupon, the
two legs are unbalanced by an amount that is exchanged at inception as a premium and
is referred to as upfront. Even though the upfront amount is precisely the price of the
derivative, the market does not quote it directly. Rather, following the standard single name
CDS convention, what is traded is the running coupon of a par (i.e., upfront equal to zero)
CDS. The relation between the traded credit spread St (not to be confused with the bid-ask
spread) and the upfront, assuming the latter to be received by the protection buyer from the
protection seller, is:

Upf(t, St) = (1%− St)AS(t) + 1%τ(tacc, t), (2.3)

where t is the evaluation date, τ(tacc, t) is the year fraction, tacc the coupon date immedi-
ately before t, and AS(t) the annuity at time t.6 The latter quantity is defined as:

AS(t) =
∑

t+<{ti}≤tn
τ(max(ti−1, t), ti)

PS(t, ti−1) + PS(t, ti)

2
, (2.4)

where t+ = t + 1 day, {ti} is the strip of index coupon dates, tn is the index maturity,
PS(t, θ) the survival probability between the present time t, and any future time θ, given
the current credit spread S = St (notice that AS(t) does not depend on St directly but
through PS(t)).7 The survival probability can be approximated as in Jarrow and Turnbull
(1995):

PS(t, θ) = e−Stτ(t,θ)LGD−1

, (2.5)

with Loss Given Default (LGD) usually set to 60% by convention. Making trading decisions
based on the credit spread is convenient as the upfront amount has jumps at the coupon
dates due to τ(tacc, t), while the credit spread maintains a smoother behavior. We consider
the SNRFIN in Chapter 8.4, where it is used as underlying to hedge SNRFIN options, and
in Appendix C, where it is one of the underlyings used in the DVA hedging problem.

6In the computation of the accrual term the year fraction is modified adding an extra day.
7Notice that if t is the day before a coupon date, this coupon is excluded from the strip.

18

2.2. Financial Instruments

Credit Index Options In this section, we consider options on CDS indexes. A receiver
option gives the buyer the possibility of selling protection on the index at the expiry date at
a credit spread equal to the strike. Conversely, a payer option gives the buyer the choice of
buying protection at the expiry date at a credit spread equal to the strike. Upon exercise in
case of a payer (receiver) option, the option seller (buyer) physically delivers the underlying
CDS index. In terms of the strike K and the traded credit spread ST at expiry, the payoff at
expiry is:

max((STAS(T)−KAK(T)), 0), (2.6)
max((KAK(T)− STAS(T)), 0), (2.7)

respectively for a payer (Pay) and a receiver (Rec) option and where AK(T) is the same
expression as AS(T) that considers St = K in PS(t). In this work, for simplicity we
consider the payoff:

max((ST −K)AS(T), 0), (2.8)
max((K − ST)AS(T), 0), (2.9)

which allows a treatment à la B&S on St, since the payoff of Equation (2.8) can be seen as
a call on the underlying St.8

Similarly to Section 2.3.3, considering an option traded at time t with expiry T and
strike K:

Pay(t, St) = [Φ(dt)St(T)− Φ(et)K]AS(T), (2.10)
Rec(t, St) = [Φ(−et)K − Φ(−dt)St(T)]AS(T),

dt =
1

σ
√
τ(t, T)

[
log

(
St(T)

K

)
+

(
σ2

2

)
τ(t, T)

]
,

et = dt − σ
√
τ(t, T),

where St(T) is the forward value of St, σ is the volatility, τ(t, T) the year fraction and
we assumed the risk-free rate to be 0.9 An adjustment of the forward credit spread St(T)
is necessary since the buyer of a payer (receiver) index option receives (pays) protection
substantially from trading time t and not from expiry T , the option price needs to be adjusted
consequently to consider any losses due to the default before T . Under our assumption of
zero interest rates, the adjusted forward St(T) is:

St(T) = St + LGD(1− PS(t, T))
1

AS(T)
. (2.11)

We can define the payer option delta as:

Nh(t) =

(
∂PS(t, T)

∂S

)(
∂ Upf(t, St)

∂S

)−1

. (2.12)

These types of options are only traded by financial institutions and are extremely illiquid.
Their prices can be obtained by the dealers via selected channels, for example the Bloomberg
chat. We consider in Chapter 8.4 the problem of dealers who need to hedge the risk
generated by offering liquidity for these options.

8We focus on this simplification since the extension to the payoff of Equation (2.6) and (2.7), which is trivial
from a numerical/RL perspective, complicates the analytical treatment in a way beyond our interest.

9We consider an ACT/365 convention; T for the annuity is the settlement date, T for dt, et is the expiry date.

19

Chapter 2. Financial Markets Fundamentals

2.2.5 Asset Classes
To conclude this section on financial instruments, we would like to point out a subdivision in
terms of asset classes. As a general rule, an asset class is defined in terms of its underlying
risk driver and contains all the financial instruments that depend on that risk driver. While
there is in general a strong correlation within an asset class, there is very little or negative
correlation between different asset classes. The following paragraphs list and describe the
most common asset classes.

Equity Equity is the most common and well known asset class. It consists of stocks and
its derivatives such as futures, options, ETFs, equity swaps. Equity swaps behave similarly
to IRS (see Appendix B.1.7) but the underlying risk is equity. The Equity realm includes
also private companies so private equity deals, SPACS, IPOs, and equity capital markets.

Fixed income Fixed income is based on securities that pay fixed interest rates, thus it
includes interest rate swaps, government bonds, and bond futures.

Credit Credit consists of the credit risk of a company. Instruments encompass corporate
bonds and CDS.

Foreign Exchange FX can be traded either spot (also referred to as cash) or with futures,
forwards, options, and Cross Currency Swaps (CCS). The FX market is one of the largest
markets, with trillions of USD being exchanged every day (Debnath, 2019). We concentrate
on FX cash trading and consider it in Chapter 6 to learn a quantitative trading strategy. FX
cash markets are dealer markets and for the main currency pairs (e.g., EURUSD, USDGBP,
etc.) they are extremely liquid. As an example, the EURUSD FX rate is currently around
1.2 (One can obtain 1.2 USD with 1 EUR) and bid-ask spread is in general 2 × 10−5 or
20 pips. When considering FX rates, we use a capitalized three letter symbol for each
currency.

Commodities Commodities refers to physical goods such as grains, wheat, gold, copper,
natural gas, and many others. These goods are mainly exchanged via futures or forwards,
or also commodity swaps. When trading these instruments, it is important to remember to
cash settle the trade, otherwise the physical good will be delivered to the trader on the day
of expiry.

2.3 Market Players

In the previous section, we described the main financial instruments used to model the
RL environment. Other crucial information for this purpose is understanding the different
market players and their objectives, i.e., how to calculate their rewards and how they interact
with the markets to better specify the state information necessary. Market participants can
be generally divided into three main categories: financial institutions building their business
on the financial markets, non-financial companies that access the markets either to raise
capital, by issuing equity or debt (bonds), or to reduce a risk, and, finally private individuals,
who, through the use of increasingly popular online brokerage accounts, gain access to

20

2.3. Market Players

the financial markets. In particular, non-financial companies can also be referred to as
hedgers, and comprehend those that buy derivatives to mitigate a risk. Let us consider now
an example. An airline company might want to mitigate the risk from a possible increase
in fuel cost, and, therefore, purchase a forward on the fuel price to fix the price it will
pay in the future. In this case, the airline company is acting as a hedger. The category
of private individuals has been rapidly increasing in importance, thanks to the arrival of
discount online brokerage firms such as Robinhood. Thanks to these low costs accounts
and the influence of social media, specifically Reddit forums, private individual traders
have been causing unprecedented effects in the financial markets (a renowned example is
the GameStop case).10

Among the financial institutions, which are the focus of this dissertation, we can further
distinguish in directional and non-directional ones. The former group encompasses players
such as asset managers, pension funds, mutual funds, and most hedge funds, that have a
“directional” view and invest hoping the market will then realize it. The other category
contains market makers, brokers, proprietary trading shops and high frequency traders
that want to make a profit by remaining market neutral. Banks can be considered as
exhaustive market players in the sense that their internal structure includes the majority
of the other typical players. Indeed, banks can have internal market makers, proprietary
traders (outside of the US), and, most of them, also an asset management arm. On top
of these functions, many banks can also count a retail arm, i.e., provide several services
such as savings accounts to private individuals. More details on banks and the corporate
derivatives business can be found in Appendix C.1.1.

Directional The amount of assets managed by funds and private investors is currently
more than 103 trillion USD, a quantity comparable to the global GDP.11 There are several
different types of directional players, perhaps the most renowned are asset managers, others
include Private Equity (PE) firms, Venture Capital (VC) firms, and Hedge Funds (HFs).

PEs, VCs and HFs are also referred to as alternative investments and are sought for
by investors who prefer a more aggressive type of return profile. These types of funds are
accessible only to accredited investors, as they use riskier investment tactics than asset
managers thanks to a more relaxed regulation, aiming at potential superior returns. In
general, these funds ask for a fee on the Assets Under Management (AUM), and, in some
cases (mostly PE and HFs) also a percentage (10% to 20%) on the capital gains.

Non-directional Non-directional market players are a structural type of market player, in
the sense that they help the markets to function correctly. Among non-directional players,
we focus on the role of market makers, who have the role of providing liquidity, and thus
are continuously quoting both bid and ask prices, making a profit on the bid-ask spread.
Specifically, their objective is to make a margin by buying at the bid and selling at the ask
price, while mitigating the market risk associated to holding a large inventory of the traded
instrument. Their business model is focused on the maximization of transaction volume.
Some market makers may keep a non-flat inventory if they have a strong directional view,
thus risking an adverse market movement that may easily wipe out the gains obtained.

10https://www.bbc.com/news/technology-56357526.
11https://www.bcg.com/publications/2021/global-asset-management-industry-report.

21

https://www.bbc.com/news/technology-56357526
https://www.bcg.com/publications/2021/global-asset-management-industry-report

Chapter 2. Financial Markets Fundamentals

Therefore, in general, it is crucial to keep a zero inventory or hedge the risks so to avoid
being subject to the market movements.

Market makers exist for most financial instruments and may behave differently de-
pending on the type of financial instrument they are working with. In this dissertation we
focus on market makers of equity options, credit options, and bonds. Generally, market
makers are found in banks, given their role as financial intermediaries, but are now present
also in proprietary trading firms that have found the possibility of profiting in this space,
examples of such firms are Optiver, IMC, Susquehanna, DRW, and ADG. These firms have
joined since the 1930s, contributing in tightening the competition. Such fierce competition
has forced different players to improve the speed of access to the markets by means of
sophisticated colocated servers and state-of-the-art fiber connections. The use of high speed
infrastructure has also given these firms the title of high frequency traders.

2.3.1 Asset Managers

Asset management firms, such as Blackrock, Vanguard Group, Fidelity Investments, State
Street Group and many others, are firms that allocate the savings of institutions and private
individuals in the financial markets. Their objective is managing the funds of a client
by optimizing the trade-off between risk and returns depending on risk aversion of the
client. The biggest clients of asset management firms are usually pension funds, insurance
companies, endowments and high net worth individuals. Asset management is typically a
very prudent type of investment, with a time horizon of 5 to 10 years, and makes use of
liquid assets.

Conventionally, the investment process can be divided in two steps, namely asset
selection, i.e., choosing of the most promising subset of available financial assets to invest
in, and asset allocation, i.e., deciding how much to invest in each asset (Grinold and
Kahn, 2000). Asset allocation is traditionally decided based on Modern Portfolio Theory
(MPT), which is a stream of literature concentrated on balancing risk and returns, started
by Markowitz (1952); Sharpe (1963), it has now evolved to techniques such as Equal Risk
Contributions (Roncalli, 2013) and Maximum Diversification (Choueifaty and Coignard,
2008). There are two main assumptions underlying MPT: the first is that we are considering
a single-period portfolio, i.e., the allocation is kept constant for the investment horizon,
and the second is that assets behave stochastically according to a certain drift, volatility,
and correlation structure. Merton (1969) was the first to consider a multi-period portfolio,
though he maintained the backward looking assumption on the dynamics of the instruments.
In Chapter 5, we explore a third approach, which considers a multi-period portfolio and
assumes the market is an adversary, without giving any dynamic characterization to the
assets. In practice, an asset manager can achieve two different objectives, i.e., an absolute
return objective maximizing the total amount of wealth, and a benchmark objective, that
is beating a specified market index. In Chapter 5.2, we cover how it is possible to obtain
an algorithm that gives theoretical guarantees of performing no worse than the pre-defined
benchmark strategy with a high probability. We now formally define the task of an asset
manager for the scope of this dissertation.

Definition 2.5 (Asset Management). Given a set of M ∈ N different assets, multi-period
portfolio optimization is a sequential decision process in which at each (discrete) round
t ∈ {1, . . . , T} over an investment horizon T ∈ N, an investor decides the portfolio

22

2.3. Market Players

allocation, i.e., the proportion of the total budget to invest in each of the assets, to maximize
her wealth. The portfolio allocation is represented by the vector at ∈ ∆M−1, where ∆M−1

is the (M − 1)-simplex in RM and each element aj,t of at is the proportion of the asset j
contained in the portfolio at round t.

The sequence a1:T = (a1, . . . ,aT) represents the investment strategy over T rounds
with at = (a1,t, . . . , aM,t).12 As common in the OPO framework Li and Hoi (2014), let us
define the price relatives, yt = (y1,t, . . . , yM,t) as yj,t =

Pj,t+1

Pj,t
, where Pj,t is the price of

asset j at round t, and the price relatives sequence as y1:T = (y1, . . . ,yT). The percentage
profit in one time-step obtained by the asset manager can be defined as:

ρt+1 = ⟨at,yt⟩, (2.13)

where ⟨·, ·⟩ is the dot product. The cumulative wealth WT (a1:T ,y1:T) at round T , for an
investment strategy a1:T and a sequence of price relatives y1:T , is defined as:

WT (a1:T ,y1:T) =

T∏
t=1

⟨at,yt⟩, (2.14)

The objective of any asset manager is to maximize wealth, keeping a low risk. The problem
with multi-period portfolio optimization is that transaction costs can become quite relevant
and penalize the overall performance. Adjusting the previous expression by adding costs
gives:

W̃T (a1:T ,y1:T) =

T∏
t=1

⟨at,ytαt⟩, (2.15)

where αt is implicitly determined by the solution of the following equation (known in
finance as turnover):

αt = 1− γ||a′t−1 − atαt||1, (2.16)

where αt is the proportion of residual wealth after the transaction fees, γ is the transaction
rate, which is equal for buying and selling and fixed throughout the investment horizon,
at is the new portfolio and a′t−1 = at−1⊗yt−1

⟨at−1,yt−1⟩ is the portfolio composition before it is
updated but after the market movement yt−1.13 It is important to notice that in the portfolio
optimization problem, we are assuming that we are re-investing the gains (and losses),
which is also why the costs in Equation 2.16 are implicitly defined. In Section 5.1 we
portray how to account for these costs.

2.3.2 Quantitative Hedge Funds
Hedge funds invest through a variety of strategies, including those analyzing macroe-
conomic trends and invest according to the movements of interest rates, FX rates, the
statements of central bankers, etc., and those that are event driven and speculate on com-
panies that are in financial distress. Other hedge fund examples, more relevant from our

12The time duration of a step is discretionary and may be defined as a few hours, days, weeks, or months.
Commonly, a daily discretization is considered when using OPO techniques.

13With a⊗ b we denote the element-wise product between the two vectors a and b.

23

Chapter 2. Financial Markets Fundamentals

perspective, are systematic investors, who base their strategies on specific rules that deter-
mine market entry and exit points. The more technologically advanced systematic investors
are also referred to as quantitative investors, as they create strategies using mathematical
and statistical modeling. Renaissance Technologies, created by the mathematician Jim
Simons, is one of the most famous and successful quantitative hedge funds in the industry.
In Chapter 6, we delineate how, using RL, it is possible to find a profitable intra-day
quantitative trading strategy. Below is the formal definition of the task of such a hedge fund
manager, as considered in this dissertation.

Definition 2.6 (Trading). Given an asset to trade, trading can be defined as a sequential
decision process in which at each (discrete) round t ∈ {1, . . . , T} over a trading horizon
T ∈ N, a trader decides whether to go long, short or stay flat with respect to the asset to
maximize her wealth. The trader’s position is represented by the action at ∈ {−1, 0, 1}.

The profit in one time-step of the trader can be defined as:

rt+1 = at(Pt+1 − Pt)︸ ︷︷ ︸
market movement

− bid-ask
2

|at − at−1|︸ ︷︷ ︸
transaction costs

, (2.17)

where a is the action which represents also the current portfolio, Pt is the price of the asset
at time t and bid-ask is the bid-ask spread used to calculate the transaction costs. The first
part of the reward consists in the gain (loss) derived from the current portfolio and the
market movements, while the second one corresponds to the transaction costs originating
when changing allocation. The expression of the transaction costs is simplified with respect
to Equation 2.16, as we are not assuming the investment of the gains or losses, but we are
keeping a constant action size. In this formulation we are not considering the market impact
of a trade, i.e., the trade does not cause the price of the asset to move in an adverse manner,
but only proportional transaction costs.

While allocating a fixed amount of money could seem to be a limiting assumption, this
is indeed sufficient when our goal is to maximize the expected return. To be more specific,
if we believe the price of some asset is about to increase, then there is no reason to buy only
a fraction of the asset. Thus, to conclude, the role of the hedge fund manager is to choose
at each time-step which portfolio to hold, to maximize his cumulated wealth.

2.3.3 Options Market Makers
As we saw in Section 2.2.3 and Section 2.2.4, options are subject to several risk drivers,
the most relevant is the underlying risk or delta. In the following paragraphs, we introduce
firstly the equity options market maker and then the credit options market maker. The main
distinction between the two is that, in the equity case, we are considering listed options
whose underlying is also traded on an exchange, in the credit case, instead, we are in a
dealer market scenario.

Equity Options Market Makers A single market maker often prices all the options
present on a single underlying. To appropriately manage all these options (that have
different strikes and maturities), she may be aided by an automatic software capable of
hedging the delta risk, allowing the trader to concentrate on the other risks. The software

24

2.3. Market Players

hedges the delta at each new operation and every so often or with the input of the trader,
it hedges the delta generated by the entire portfolio of options. This can create quite
relevant transaction costs, depending also on the liquidity of the underlying instrument.
There are three main methods of optimizing the costs, either by optimizing the execution,
trading reducing the portfolio turnover by means of smaller trades, or a combination of
the two. Optimal execution is a general requirement when trading, we cover this topic in
Section 2.4.3 and in Chapter 9. The reduction of portfolio turnover in hedging is tackled
from a RL point of view in Chapter 8.

To formally define the role of an equity options market maker, let us recall the notation
of Section 2.2.3.

Definition 2.7 (Option Hedging). Given an option with the respective underlying instru-
ment, hedging the delta risk of the option can be defined as a sequential decision process in
which at each (discrete) round t ∈ {1, . . . , T} over the life of the option T ∈ N, a trader
decides how much to hold of the underlying instrument to minimize the price swings caused
by the option. The hedge can be represented by the action at ∈ [0, 1].

A trader who has a long position in a call option will endure, for a time-lag of k, a P&L
swing of Ct+k − Ct. A delta hedge is a strategy to limit this profit movement by buying or
selling a certain quantity of the underlying, call this function a(∂C(t,St)

∂S , E), which depends
on the delta and the trader’s experience E ; we refer to it as just at for ease of notation and
because it represents the trader’s action. Thus, the profit in one time-step of a trader who
bought a call option and is hedging the delta risk can be defined as:

rt+1 = Ct+1 − Ct︸ ︷︷ ︸
option variation

− at · (St+1 − St)︸ ︷︷ ︸
market movement

− c(at − at−1)︸ ︷︷ ︸
transact. costs

. (2.18)

where c(at − at−1) are the transaction costs caused by trading the underlying hedging
instrument, which we define in Equation 2.23. Now, assume that we replicate the delta
exactly, so at =

∂C(t,St)
∂S and there is no experience into play, then the B&S model assures

a zero profit in continuous time and in the absence of transaction costs (c(at − at−1) = 0).
With k > 0 and costs > 0, at =

∂C(t,St)
∂S ceases to be the optimal solution. It is important

to notice that this information (St, Ct,
∂C(t,St)
∂S) is always available from the market or

through simple calculations deriving from market information. Several approaches have
been proposed to extend the B&S model to account for transaction costs, starting with
Leland (1985) and more recently Guéant and Pu (2017) which uses stochastic optimal
control. In Chapter 8, we illustrate how the use of RL powers an efficent solution.

Credit Options Market Makers In the credit index options case, the scenario is fairly
similar to what was described above and we can still refer to Definition 2.7. Using the same
notation of Section 2.2.4, the profit in one time-step of a trader long a payer option and
holding at in the hedging portfolio is:

rt+1 = Payt+1 − Payt︸ ︷︷ ︸
option variation

− at · (Upft+1 − Upft)︸ ︷︷ ︸
market variation

− c(at − at−1)︸ ︷︷ ︸
transac. costs

. (2.19)

The trading costs can be defined as in Equation (2.24). Similarly to before, the B&S
model assures a zero profit when we are in continuous time, at = Nh(t), Nh(t) defined in

25

Chapter 2. Financial Markets Fundamentals

Equation (2.12) and there are no transaction costs (c(at − at−1)) = 0). In Section 8.4 we
illustrate how the use of RL can be used to improve the solution.

2.3.4 Bond Dealers
Bond dealers are also referred to as market makers. A single dealer is usually continuously
displaying both bid and ask quotes on a number of bonds, often specializing in a specific
typology such as European government, high yield, investment grade, etc. In the MD2C
platforms considered in this work, the clients see the indicative quotes of the dealers, and
send a RFQ requesting the firm quotes to multiple dealers. This process creates a direct
competition among the dealers, who want to satisfy the clients requests while keeping the
inventory as small as possible. The clients’ requests are answered by dealers, who show a
firm price the client can execute.

As we have seen in Section 2.1.2, the high reserve requirements for banks imply keeping
the inventory as small as possible. These reforms have impacted the market making process,
by increasing the penalty of holding an inventory, which thus has become less profitable for
the dealers. This lower profitability has forced some banks to exit the sector and others to
reduce costs by automating the process of quoting prices. The lower liquidity of certain
assets also paved the way for other financial entities, such as proprietary trading shops (e.g.,
XTX Markets), to enter the market making space using proprietary quoting algorithms.

A common market-making strategy that can be executed easily by a human operator
requires looking at the average market spread and offering a lower ask in case of a positive
inventory, and, vice versa, offering a higher bid in case of a negative inventory. Conversely,
more advanced strategies use a hard coded pricing strategy for RFQs of small sizes, and
direct to human traders the most relevant orders. We define the role of the market maker as
considered in this dissertation.

Definition 2.8 (Market Making). Considering a specific bond, market making can be
defined as a sequential decision process in which at each (discrete) round t ∈ {1, . . . , T}
the dealer updates her bid and ask prices Pt,buy, Pt,sell, to maximize P&L while minimizing
inventory.

The profit of a dealer can be divided in three parts: the gain in having bought (resp. sold)
lower (resp. higher) than the mid (see Equation (2.25)), called spread P&L; the profit/loss
given by the change in the market price, defined as inventory P&L and a penalty of holding
inventory. Formally, the reward for each market maker is defined following Guéant and
Manziuk (2019):

rt+1 = vt(Pt,h − Pt)︸ ︷︷ ︸
spread P&L

+ zt−1(Pt − Pt−1)︸ ︷︷ ︸
inventory P&L

− ϕ(zt)︸ ︷︷ ︸
inventory penalty

, (2.20)

where ϕ : R → R+ is a function encoding the penalty of owning a net inventory, Pt,h is
the price of the market maker with h ∈ {buy, sell}, Pt is the mid price, vt is the size of the
trade and zt is the inventory. The penalty approximates the cost of capital requirements
mentioned in Section 2.1.2 plus the risk-aversion of the dealer who wants to avoid market
swings. The P&L is similar to Equation (2.20), but without the inventory penalization term,
so:

P&Lt+1 = vt(Pt,h − Pt) + zt−1(Pt − Pt−1). (2.21)

26

2.4. Algorithmic Trading

To summarize, the role of the dealer, is to price the “optimal” firm bid and ask prices,
based on the current market information and his internal inventory, to optimize the reward
function Equation (2.20). In Chapter 7, we describe how to use RL and Mean Field Games
to optimally price and answer the RFQs.

2.4 Algorithmic Trading

Algorithmic trading is defined by Article 4(1)(39) of MiFID II (see Section 2.1.2) as
“trading in financial instruments where a computer algorithm automatically determines
individual parameters of orders such as whether to initiate the order, the timing, price
or quantity of the order or how to manage the order after its submission, with limited or
no human intervention [...]”. In this section, we initially define trading/transaction costs,
provide further details on the functioning of LOBs and then introduce the optimal execution
problem.

2.4.1 Transaction Costs and Market Impact
Transaction costs are a fundamental concept, and can degrade the performance of a trading,
portfolio optimization, or hedging strategy, in terms of both profits and risk, especially as
the trading frequency and / or the sizes of the trades increase. The most common definition
of transaction costs in practice is half of the bid-ask spread. This type of proportional
transaction costs (in contrast with fixed costs) has been present in literature for a long
time (Loeb, 1983; Bertsimas and Lo, 1998; Soner and Touzi, 2013). Specifically, given a
trade of size n, we consider transaction costs as:

c(n) =
bid-ask

2
· |n|, (2.22)

this means we are assuming that all of the trade can be absorbed by the best bid or the best
ask. We refer to bid-ask

2 also as mid-ask or mid-bid spread. If the best bid or best ask cannot
absorb the entire trade, then it is necessary to consider market impact. To approximately
model a market impact, it is possible to consider the formulation as in Kolm and Ritter
(2019):

c(n) =
bid-ask

2
· (|n|+ 0.01n2), (2.23)

There are more sophisticated methods of modelling market impact as illustrated in Section
2.4.3, and through the use of agent based simulators such as ABIDES defined in Section
4.3.2.

Furthermore, as seen in Equation (2.16), when considering a self-financing portfolio, i.e.,
a portfolio in which there is no exogenous infusion or withdrawal of money, the proportion
of the remaining performance is an implicit equation defined as:

αt = 1− γ||a′t−1 − atαt||1,

and, thus, the transaction costs are (1− αt)⟨at,yt⟩.
Transaction costs play an important role throughout the whole dissertation, and, in

particular, the aim is to minimize them. Given a trading action, there are two main ways of
minimizing transaction costs, either by optimizing the execution through optimal execution

27

Chapter 2. Financial Markets Fundamentals

Figure 2.3: Graphical representation of LOB (Briola et al., 2021).

algorithms and smart routing procedures, or by reducing the portfolio turnover by means of
smaller trades. These two approaches can also be adopted simultaneously. We analyze the
former approach in Chapter 9 and the latter in Sections 5.1, 8.3 and 8.4.

Simulating market impact is a daunting task, especially on historical data. In this case,
the only possible solution is to simulate a temporary impact that falls back to the historical
time series. To tackle this problem, we decided to use ABIDES (Byrd et al., 2019), an
advanced agent based market simulator, which models the interactions between market
players and re-creates the order book. In Section 4.3.2 we explain the salient features of
this simulator.

Trading Costs in OTC Instruments For OTC instruments, trading costs are defined
in a more streamlined manner, as there is no real concept of market impact. To explain
this further, we take as an example the CDS index defined in Section 2.2.4. The way in
which applicable bid and ask quotes are built ensures that notionals up to hundreds of
millions of the index can be traded without market impact. Thus, we can discard execution-
related issues, assume that the trading costs can be computed from the bid-ask spreads (see
Figure 4.2), and define the costs as:

c(N) = N
∣∣∣∣Upft

(
St ±

bid-ask
2

)
− Upft(St)

∣∣∣∣ , (2.24)

where the + (−) sign should be considered when buying (selling) protection, and N is the
notional.

2.4.2 Limit Order Books
LOBs are the record of all the currently outstanding limit orders (see Definition 2.1). In
Figure 2.3 we can see some of the mechanisms of LOBs, partly mentioned in Section 2.1.1.

28

2.4. Algorithmic Trading

In LOBs, price increments are discrete and the minimum increment is referred to as tick
size. Each order is comprised of a price and a size. The combination of all the orders for a
certain price is referred to as volume for which we use the letter Q.

An important concept in this field is that of liquidity. Liquidity can be defined as the
total volume of all limit orders, the more limit orders are placed on the exchange and the
more liquid the trading venue is. The concept of market impact is strongly related to that
of liquidity, as, the more liquid a financial instrument is, the smaller the market impact.
Cash is regarded as the most liquid instrument, as it can be immediately converted to any
other financial instrument. On the opposite side, very illiquid financial instruments are for
example real estate.

LOB Order Types When trading on a LOB, it is possible to employ different types of
orders, listed below, that can be used to execute a trade:

• The limit order is the most adopted, and entails specifying the price at which we
want to execute the trade. Such trade can execute only at this price or at a more
advantageous one. There is no guarantee that the trade will happen, as the limit price
may be never reached. These orders are executed considering a price-time priority,
also known as First-In-First-Out (FIFO).

• The market order is the simplest typology, and consists in a request to carry out the
order immediately at the best price available in the market. To be more specific, a
market purchase (sell) order is matched with limit sell (buy) orders starting with the
best ask price. This type of order is used throughout the dissertation.

• The stop-loss order is used to close a position if the market moves in an unfavorable
direction. If the asset reaches the stop price, the order is transformed into a market
order, thus, it may execute at a less favourable price than the stop price.

• Finally, there are other types of orders, such as fill-or-kill orders, which must be
executed immediately on receipt or not at all. Or more complex orders, like icebergs,
that break up a large order into several smaller orders.

LOB features In algorithmic trading, it is popular to use signals deriving from specific
features, including the following:

• Volume imbalance: it describes the difference between the existing order volume on
the bid and ask price levels. We consider this feature till the third level of the order
book. It can be defined as:

vkimb =
Qkask −Qkbid

Qkask +Qkbid
for k ∈ {1, ..., 3},

where Qkask (Qkbid) is the volume of outstanding limit orders at the k-th best ask (bid)
price level.

• Total depth: it corresponds to the cumulative sum of the volume over multiple price
levels. We consider this feature until the third level of the LOB:

TDk
h =

k∑
j=1

Qjh for k ∈ {1, 2, 3}, h ∈ {bid, ask}.

29

Chapter 2. Financial Markets Fundamentals

• Rolling volatility: the standard deviation of a window of the returns of the asset.

• Mid price: it is the midpoint between the best bid and best ask prices:

Pmid =
Pbest ask + Pbest bid

2
. (2.25)

• Price imbalance: it consists in the step-wise scaled imbalance between demand and
supply. We consider this feature only for the first three levels of the LOB:

Zimb =
(P ask
j − P ask

j−1)− (P bid
j − P bid

j−1)

(P ask
j − P ask

j−1) + (P bid
j − P bid

j−1)
. for j ∈ {2, 3},

2.4.3 Optimal Execution
A single asset can be exchanged on multiple venues, both lit and dark. If we are considering
a particularly large trade, to minimize market impact and, thus, the transaction fees incurred,
it is convenient to divide up the order over multiple venues. In the lit venues, it is also
possible to take further enhancements, always geared towards the objective of minimizing
market impact, this is referred to as optimal execution.

Optimizing trade execution is one of the most important aspects when dealing with the
financial markets. Once a specific trade has been decided, optimizing the execution means
paying the least amount of trading costs possible. This is necessary when the order in
consideration is greater than what is present in the first levels of the order book. To optimize
the execution of a trade, direct access to the market is required. Thus, this task is usually
performed by advanced market players such as banks or brokers that need to execute large
client orders, as well as market makers. Indeed, the latter are continuously hedging the
risk deriving from having an inventory, and minimizing the trading costs when hedging is
fundamental to have a profitable strategy. Asset managers and proprietary traders are also
very careful to optimize execution so that the performance is not depleted by the transaction
costs.

Definition 2.9 (Optimal Execution). The optimal execution problem consists in executing
a trade ofX shares in a maximum amount of time T and number of time-stepsN+1. It is a
sequential decision process in which, at each discrete time-step tk = kτ for k ∈ {0, ..., N}
where τ = T

N , the trader decides the quantity to execute to minimize the difference between
the arrival price and the actual execution price.14

A trading trajectory is defined as a list {x0, ..., xN}, where xk is the number of units
held at time tk. Clearly, x0 = X and liquidation at time T requires xN = 0. Equivalently,
it is possible to specify a “trade list” {n1, ..., nN}, where nk = xk−1 − xk is the number
of units sold between times tk−1 and tk.

TWAP A baseline execution model, commonly used in practice, is the Time Weighted
Average Price (TWAP) where a trade of size X is executed in sizes of nt = X/N . The
arithmetic average of prices collected yields the TWAP price:

TWAP =
X

N

N∑
k=0

Pk, (2.26)

14In literature there is often also a risk component to minimize (see Appendix B.2).

30

2.4. Algorithmic Trading

where Pk is the (average) at which each trade was executed through a market order sent at
time tk.

Another baseline present in literature is the Almgren and Chriss (2001), which is
described in Appendix B.2. Optimal execution will be analyzed using RL in Chapter 9.

31

CHAPTER3
Introduction to Reinforcement Learning

After having covered the main financial instruments and the market participants of interest,
in this chapter we focus on introducing the algorithms or family of algorithms used in this
work. This chapter helps the reader gain the fundamentals on RL, necessary to understand
the following chapters.

The previous chapter highlighted that most market players take trading decisions in a
sequential manner, basing their decisions on the currently available information. Once the
market participants have executed the trade, they can observe how well decisions perform
by monitoring the P&L. This sequential decision making can be modelled as a Markov
Decision Process (MDP) (Puterman, 2014).

Chapter outline In this chapter, we firstly introduce RL and outline basic concepts and
then briefly anticipate the algorithms that are at the core of the following chapters.

3.1 Markov Decision Process

Markov Decision Processes refers to the fact that the system obeys the Markov property,
that is transitions only depend on the most recent state and action.

Definition 3.1 (Markov Decision Process). A discrete-time MDP is defined as a 6-tuple
M = ⟨S,A,P,R, γ, µ⟩, where:

• S is a non-empty measurable space called state space;

33

Chapter 3. Introduction to Reinforcement Learning

Reward
P&L

State
Market prices

Agent

Environment

Action
Portfolio position

Figure 3.1: Graphical representation of the interaction between the agent and the environ-
ment.

• A is a non-empty measurable space called action space;

• P : S × A → P (S × R) is the transition model that assigns to each state-action
pair (s, a) the probability measure P(·|s, a) of the next state;

• R : S × A × S → R is a bounded reward model, which assigns for every triple
(s, a, s′) a probability measure R(·|s, a, s′);

• γ ∈ [0, 1) is the discount factor, used to weight future rewards;

• µ is the initial state distribution, from which the starting state is sampled.

State The state s ∈ S usually contains all the information the agent perceives from the
environment. In the context of this dissertation, it encompasses market information such as
a window of the latest prices of the financial instruments, and may also include also some
internal agent information such as the current portfolio position. In all the environments
considered, the state space is continuous.

Action The action a ∈ A represents how the agent interacts with the environment. In the
considered applications, it usually represents the position to hold or the trade to make, and
in the dealer scenario the action represents the price. In this dissertation, we consider both
discrete and continuous action spaces.

Reward Function The reward function is the expected reward received when performing
action a ∈ A in state s ∈ S and arriving in state s′ ∈ S: r(s, a, s′) =

∫
R rR(dr|s, a, s′).

We can define the reward indipendently from the next state s′ by computing an expectation
over the next state r(s, a) =

∫
S P(ds′|s, a)r(s, a, s′). In this work it mainly represents the

P&L, in the dealers case also considering a penalty. In the optimal execution framework
instead, it measures the distance between two prices.

Environment dynamics P(s′|s, a) describes the probability of reaching state s′ given
that we are in state s and take action a. The environment dynamics fulfill the Markov
Property, which means that state transitions depend only on the most recent state and action
and not on previous history. The environment dynamics, in this thesis, are given mainly by
the asset prices.

34

3.2. Value Functions and Bellman Equations

MDP Interaction Considering Figure 3.1 and the previous definitions, it is possible to
better understand the interaction between the agent and the environment. At time-step t = 0,
the agent samples the initial state s0 ∼ µ. Then, for each following decision step t ∈ N, the
agent selects an action at ∈ A, from a policy π(·|s), that interacts with the environment.
Given this action, the environment transitions to the next state st+1 ∼ P(·|st, at) and
provides the agent with the reward rt+1 ∼ R(·|st, at, st+1). In this dissertation, we restrict
our applications to finite horizon MDPs a.k.a. episodic MDPs for which there is a terminal
state from which no other states can be reached and all actions provide zero reward.

Remark 3.1. Focusing on the applications of interest in this thesis, in most cases the state
can be divided into two parts s = (sm, si), where sm are the market prices and si are the
agent’s internal information. We can then assume that the transition probability can be
split into two independent parts P(s′|s, a) = P(s′i|si, a)P(s′m|sm, a), where P(s′i|si, a)
is deterministic and P(s′m|sm, a) does not depend on the agent’s action. Thus we can
conclude that:

P(s′|s, a) = P(s′m|sm). (3.1)

A similar reasoning can also be followed for the reward functions. We have already seen
some potential reward formulations, for example Equations (2.17), (2.18), and (2.20). We
can notice that the reward can be easily split into two independent parts, the first given by
the market movement and the second given by the transaction costs:

r(s, a) = r(sm, a) + r(si, a). (3.2)

3.2 Value Functions and Bellman Equations

Provided that, in all the assessed applications in this dissertation, the objective of the
agent is to reach a yearly (if not shorter) objective, we consider finite horizon problems in
which future rewards are exponentially discounted with γ. Let us define a trajectory τ as a
sequence of states, actions, and rewards:

τ := (s0, a0, r1, s1, a1, r1, ..., sT , aT , rT+1).

We then define the discounted sum of the rewards of a trajectory as the returns:

Gτ =

T∑
t=0

γtrt+1. (3.3)

Each trajectory is generated by following a policy: π(·|s) : S → A, a mathematical
formalization of the strategy the agent plays to select the action at each time-step. Given
that both the policy and the transition probability may be stochastic, we are interested in
the expected value of the return given all the possible trajectories, also known as the value
function.

Definition 3.2 (State Value Function or V-Function). Let M be an MDP and π a policy.
For every state s ∈ S , the state value fuction Vπ : S → R is defined as the expected return
starting from state s and following policy π

Vπ(s) := Eπ

[
T∑
t=0

γtrt+1

∣∣∣s0 = s

]
, (3.4)

35

Chapter 3. Introduction to Reinforcement Learning

which can be recursively determined by the following Bellman equation (Bellman, 1966):

Vπ(s) = E
a∼π(·|s)

[
r(s, a) + γ E

s′∼P(·|s,a)

[
Vπ(s

′)
]]
.

Similarly, if we consider starting from a specific state and taking a specific action, we
can define the state-action value function.

Definition 3.3 (State-Action Value Function or Q-Function). Let M be an MDP and
π a policy. For every state-action pair (s, a) ∈ S × A, the state-action value fuction
Qπ : S ×A → R is defined as the expected return starting from state s, playing action a
and following policy π

Qπ(s, a) := Eπ

[
T∑
t=0

γtrt+1|s0 = s, a0 = a

]
, (3.5)

which can be recursively defined by the following Bellman equation (Bellman, 1966):

Qπ(s, a) = r(s, a) + γ E
s′∼P(·|s,a)
a′∼π(·|s′)

[
Qπ(s

′, a′)
]
. (3.6)

Finally, the objective we are interested in achieving in risk neutral RL is the maximiza-
tion of the value function, given an initial state distribution.

Definition 3.4 (Objective Function or J-Function). Let M be an MDP and π a policy.
Given the initial state distribution µ the objective function Jπ : S → R we want to
maximize, is defined as the expected return starting from state s0 and following policy π:

Jπ := (1− γ) Eπ
s0∼µ

[
T∑
t=0

γtrt

]
, (3.7)

≡(1− γ)

∫
S
µ(s)Vπ(s)ds.

It may be useful to express Jπ in dual form as:

Jπ :=

∫
S
dµ,π(s)

∫
A
π(a|s)r(s, a) da ds,

≡ E
s∼dµ,π

a∼π(·|s)

[r(s, a)] .

Where dµ,π is the (discounted) state-occupancy measure induced by π:

dµ,π(s) := (1− γ)

∫
S

µ(s0)

T∑
t=0

γtpπ(s0
t−→ s) ds0,

where pπ(s0
t−→ s) is the probability of reaching state s in t steps starting from s0 following

policy π.

36

3.3. Learning the MDP

To conclude this section, we would like to focus again on the applications object of
this dissertation, with the purpose of showing that if we do not include transaction costs
in the reward formulation, maximizing the Q-function is equivalent to maximizing the
immediate reward. Specifically, following ideas from factor MDPs (Koller and Parr, 1999),
and recalling Equations (3.1) and (3.2), we can consider our MDP as divided into two
independent parts.

Lemma 3.1. In the applications considered in this dissertation, let s = (sm, si), where
sm are the market prices and si are the agent’s internal information, assuming P(s′i|si, a)
is deterministic, P(s′m|sm, a) = P(s′m|sm) i.e., it does not depend on the agent’s actions
and r(s, a) = r(sm, a) + r(si, a) then:

Qπ(s, a) = r(sm, a) + r(si, a) + γ E
s′m∼P(·|sm)

a′∼π(·|s′)

[
Qπ(s

′, a′)
]
.

Futhermore, assuming no transaction costs, then we can exclude si from the state, thus
s = sm, r(si, a) = 0 and we obtain:

argmax
a

Q(s, a) = argmax
a

r(sm, a).

3.3 Learning the MDP

To solve the MDPs, we resort to several approaches, which can broadly be referred to
as RL, even though it is more precise to distinguish between RL, online planning, and
online learning. In this section, we outline a preliminary description of four main classes of
algorithms considered in this work: value based and policy search algorithms belonging to
the RL category, MCTS as an online planning algorithm and online learning algorithms
including expert learning and multi-armed bandits.

3.3.1 Reinforcement Learning
Value based and policy search algorithms can be generally classified as Batch RL, where
there is a training procedure based on a database of offline data. As RL algorithms are
model-free, the data can be generated by any type of model, or it is real data collected
through experience. After the training procedure, which can take from hours, to days or
weeks, depending also on the available computational power, a general policy is learnt.
This policy can then be used in real-time in a production environment to take the investment
decisions. The drawback is that this policy is stationary, so if the market changes behavior
drastically, compared to what is present in the training dataset, it is necessary to stop the
algorithm (ideally with an automatic procedure) and re-train the policy with the new data.

Value based algorithms

In RL, the objective is to learn the optimal policy by direct interaction with the environment.
There are several RL algorithms, we dwell on two of the main categories, namely value
based and policy search algorithms. Value based algorithms focus on learning the state-
action value function (Equation 3.5) for each state and action, by using the Bellman

37

Chapter 3. Introduction to Reinforcement Learning

equation (Equation 3.6) in an iterative manner. The most known algorithm of this kind is
Q-learning (Watkins, 1989), that uses the following update equation:

Qt (s, a) = (1− α)Qt (s, a) + α
(
r(s, a) + γmax

a′
Qt (s

′, a′)
)
. (3.8)

The main drawback of this approach is that it does not scale well for large state and
action spaces, so it is not ideal for the environments considered in this thesis, i.e. continuous
state MDPs. To mitigate this problem, there are methods that discretize the state and action
spaces, then fit a regressor to interpolate. Examples of such algorithms are Fitted Q Iteration
(FQI) (Ernst et al., 2005), defined in Section 6.2.1 and Deep Q Learning (DQN) (Mnih
et al., 2013). Typical regressors are extra trees (see Appendix B.4.2) or Neural Networks
(NNs) (see Appendix B.4.3). We discuss in Chapters 6, 7 and 9 the use of FQI in the quant
trading, market making and optimal execution scenarios, respectively.

Policy Search algorithms

Policy search algorithms embrace a different approach, and instead of learning the value
function, they learn directly the optimal policy. The policy is parametric (usually a NN, see
Appendix B.4.3) and by moving through the policy space, usually through gradient descent,
it is possible to find the policy that maximizes the objective (Equation 3.7). Basic policy
search algorithms are REINFORCE (Williams, 1992), GPOMDP (Baxter and Bartlett,
2001), and are based on the policy gradient theorem:

∇Jπ = E
s∼dµ,π

a∼πθ(·|s)

[
∇ log πθ(a|s)Qπθ

(s, a)

]
,

where πθ is the parametrized policy.
There exist also more sophisticated algorithms, which have achieved promising experi-

mental results, such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017). In
Chapter 8, we assess the use of a risk aversion version of TRPO, namely TRVO (Bisi et al.,
2020b), to study risk management in hedging problems.

3.3.2 Online Planning

Online planning, which includes MCTS (Kocsis and Szepesvári, 2006) and Dynamic Pro-
gramming (Efroni et al., 2020), is an online, model-based type of algorithm. Hence, there
is no offline training procedure because the algorithm learns a local policy as new infor-
mation is received, by planning with a generative model of the environment. Strong links
between learning and planning methods have been observed and analyzed by researchers
in recent years as paradigms solve similar problems. The key difference is the source of
experience: whether it comes from real interaction with the environment (in learning) or
from a generative model (in planning) (Vodopivec et al., 2017).

MCTS algorithms have achieved great results in games such as AlphaGo (Silver et al.,
2016), where the state space is extremely large and it is challenging to learn a general policy
with policy search or value based approaches.

38

3.3. Learning the MDP

Monte Carlo Tree Search

MCTS consists in planning interleaved with acting. Planning is performed using a gener-
ative model of the future, which can be for example “traditional” stochastic differential
equations (see Section 4.3.1). This local planning procedure, depending on the time neces-
sary (thus computational power and budget), can cause a delay between the reception of new
information and the decision, ranging from a few seconds to a few minutes. The positive
aspect is that, if the market changes behavior drastically, it is only necessary to update the
generative model (it can be done online) and the algorithm can continue working in any
scenario, thus making MCTS more adaptable in non-stationary scenarios. The original
MCTS algorithm is Upper Confidence Tree (UCT) (Kocsis and Szepesvári, 2006).

The MCTS family of algorithms combines tree search algorithms with Monte Carlo
sampling to iteratively build a search tree of possible future scenarios, which is in turn
used to build an estimator of the optimal value of each action in the current state of the
environment. These algorithms are characterized by 4 phases:

1. Selection: Starting from the root of the planning tree, a tree policy is iteratively
applied until an unexpanded (a node with unvisited children) node is reached.

2. Expansion: One or more the successors of the reached node are added to the tree. A
common best practice is to add only the first newly visited node.

3. Simulation: A Monte Carlo simulation (rollout) is started from the expanded node
to provide an initial estimate of the nodes’ value.

4. Backpropagation: The values of the states visited during the tree traversal and
the simulation are backpropagated up the tree until the root, updating the relevant
statistics.

UCT applies as tree policy the well-known Multi-Armed Bandit (MAB) algorithm, Upper
Confidence Bound (UCB1) (Auer et al., 2002), described in Equation (3.10).

UCT is suitable for deterministic states and discrete actions, and thus, to be compatible
with the trading environment, it is necessary to extend it to stochastic states. In Section 6.3,
we examine how UCT was modified to be compatible with the trading problem.

3.3.3 Online Learning

The online learning category, just like online planning, has no training phase. The main
difference with the previously described categories lies in the fact that there is no transition
probability from one state to the next, in fact we are always in the same state and we
only want to optimize for the next action. Online learning algorithms usually have low
computational complexity, thus the investment choice is in quasi real-time.

In online learning, an agent (also referred to as learner) has to guess the outcome yt ∈ Y
based on the past sequence y1, y2, ..., yt−1 of events that occurred in the outcome space
Y , at each time-step the agent will play at, that is an element of the prediction space (also
known as decision space) A and the environment will choose a loss function f(at, yt) by
determining the outcome yt. Formally, online learning can be defined as:

39

Chapter 3. Introduction to Reinforcement Learning

Algorithm 1: Online Learning
1 Initialize: decision space A, outcome space Y , loss function f : A× Y → R
2 set L0 = 0 for t ∈ RN do
3 The agent chooses an element of the decision space at ∈ A
4 The environment chooses yt ∈ Y and then determines the loss function f(·, yt)
5 The agent incurs in a loss f(at, yt)
6 The agent updates its cumulative losses Lt = Lt−1 + f(at, yt)

Figure 3.2: Online learning with Expert Advice as an Agent-Environment interaction.

Definition 3.5 (Online Learning). Let Y be the outcome space, A the prediction space,
and f : A× Y → R is a loss function, an online game is the sequential game played by
the forecaster and the environment, described in Algorithm 1.

The following sections describe two specific characterizations of online learning,
namely, online learning with expert advice, and multi-armed bandits.

Online Learning with Expert Advice

In online learning with expert advice, a.k.a expert learning (Cesa-Bianchi and Lugosi,
2006), we refer to the environment as adversarial since no stochastic characterization is
given to the outcome sequence yt and the analysis of the regret is conducted assuming
a worst case scenario. Since the adversary knows the prediction at before deciding the
outcome yt, the design of an algorithm that tries to minimize the loss is a hopeless task and
so we have to set an easier objective. In fact, the adversary can always choose the outcome
yt that maximizes the loss f(at, yt) regardless of the decision at ∈ A taken by the learner.
Let us now consider, on top of the agent also a set E of other, expert, players. At each step
in the prediction game, every expert e ∈ E predicts an element ae,t ∈ A and incurs in a loss
f(ae,t, yt) (see Figure 3.2). The goal of the learner is to obtain small losses with respect to
the best expert in the class E . This concept can be expressed by using regret. Formally, the

40

3.3. Learning the MDP

regret Re,T for the agent with respect to the expert e ∈ E is defined as:

Re,T =

T∑
t=1

[ft(at, yt)− ft(ae,t, yt)] ,

The regret observed by the agent with respect to the entire class of experts E is defined as:

RT = sup
e∈E

Re,T =

T∑
t=1

ft(at, yt)− inf
e∈E

T∑
t=1

ft(ae,t, yt). (3.9)

The task of the agent is to find a sequence at to obtain small regret RT with respect
to any sequence of outcomes y1, y2, ..., yT chosen by the environment. Specifically, we
aim at achieving sublinear regret Rt = o(T), meaning that the per-round regret RT /T will
asymptotically vanish:

RT = o(T) =⇒ lim
T→∞

RT
T

= 0.

In the case of uncountable experts, expert learning also “coincides” with Online Convex
Optimization (OCO) (Zinkevich, 2003). As we will see in Chapter 5, expert learning and
OCO can be used to describe the OPO framework.

Multi-Armed Bandits

The Multi Armed Bandit (MAB) framework is also an online learning framework, it differs
from expert learning as we do not have full feedback, i.e., we can only calculate the reward
(in the MAB setting it is common to refer to rewards instead of losses) for the action taken
by agent. The actions are also referred to as arms. In MAB, if we want to have information
about an arm, we need to try it, this makes the problem intrinsically more difficult than the
full feedback one, namely, expert learning. Regret is defined as for the expert learning case:

RT =

T∑
t=1

[ft(at, yt)− ft(a
∗, yt)] ,

with the difference that we are considering an oracle a∗ as there is no concept of “experts”.
To keep the regret limited, it is important to balance between exploration and exploitation.
One of the most well known MAB algorithm is (UCB1) (Auer et al., 2002). Given a
finite number of arms K, at iteration n, UCB1 chooses the action that maximizes a high
probability upper bound of the value of the actions according to:

an = argmax
i=1..K

Xi + C

√
2 log n

Ti
, (3.10)

where C is a constant that regulates the exploration-exploitation trade-off, Ti is the number
of times action i has been played up to time n− 1 and Xi is the average payoff observed
from arm i.

UCB1 is a frequentist approach, there are also Bayesian approaches such as Thompson
Sampling (TS) (Thompson, 1933), used in Chapter 9.

41

CHAPTER4
Data Preparation and Testing

In Chapter 2 we learnt about the main financial market participants and gained an overview
of the main financial instruments. To appropriately model the mentioned market participants
using RL algorithms, it is necessary to establish a pipeline that starts with downloading and
pre-processing historical data or simulating data, to train the RL algorithm, and ends with
testing. Testing is generally conducted on historical, out-of-sample data (backtesting) but
should also be run on real-time market data.

There is no optimal size for the training set on which to train the algorithms but, as a
general rule, it would be preferable to have tens, if not hundreds of thousands of data points.
Although we live in a big data era, such an extensive dataset is not easily available in the
financial market setting. Indeed, value investors, for instance, re-balance their portfolios
quarterly, at the release of the financial statements of the relevant companies. This scarcity
of data holds true also if we consider the historical price daily time series, which means
one price-point per day, as even on a period of 20 years, with 250 trading days per year, we
only collect 5000 data points, which are hardly enough and well below the ideal amount.
Another fundamental aspect is data quality. In general, data quality worsens with less liquid
instruments. For these reasons, it is more common to consider highly liquid exchange
traded instruments; however, with a well designed data pre-processing approach, also other
assets may be considered.

This chapter guides the reader through the data collection process carried out for the
applications in the following chapters.

43

Chapter 4. Data Preparation and Testing

Chapter Outline

This chapter is divided into five sections. In the first section, we describe the various
types of LOB or OTC data that can be collected. Then, in Section 4.2, we define the
data collection effort completed for the analyses of this dissertation. In Section 4.3, we
present some data generation models: classic Stochastic Differential Equations (SDEs) and
a multi-agent market simulator. In Section 4.4 we delineate the data cleaning approach
undertaken. We then present the main performance metrics considered in Section 4.5 and
end the chapter by illustrating the framing of the testing stage in Section 4.6.

4.1 Data Types

Data can have several frequencies. As anticipated in the previous section, most companies
tend to release financial statements quarterly. This data is generally public for listed
companies and can be collected by anyone, going several years in the past.

Daily data of closing asset prices is also very popular in the financial markets. For
liquid exchange traded instruments and major indexes, daily prices can also be easily found
online. Daily price data can generally be downloaded for the past 20 to 30 years and
consists of one price point per day at closing.

Intraday prices, usually snapshots of the price with a constant time interval, are, instead,
harder to find in public resources. Through the Bloomberg terminal, it is possible to
download historical intraday data going back a few months for most exchange traded
instruments.

More frequent and complex than the types of data we have seen so far is tick-by-tick data,
i.e. the record of each transaction. There is thus a variable data frequency depending on the
number of transactions, so keeping track of the timestamps is fundamental. Tick-by-tick is
in general not available publicly except for FX data, accessible through HistData.15 It is
possible to download tick-by-tick data through the Bloomberg terminal, but with a very
limited history, or through some online brokerage accounts upon registration.

While tick-by-tick is the highest frequency type of price data, it is possible to download
further information than just the price, for example, LOB data. Even harder can be finding
OTC data, we analyse and compare multiple data types in the following section.

LOB data

LOBs (see Section 2.4.2) record all the limit orders currently active, which means that,
given a specific price, it is possible to see the order volume, which summarizes the current
number and size of the orders. Three levels of order book information can be analyzed:

• level I means the best bid and best ask prices and respective volumes;

• level II represents the order book with 5 to 10 price and volume levels for both the
bid and the ask side;

• level III contains all the price and volume levels, and it is possible to distinguish
individual orders, even if in an anonymous form.

15http://www.histdata.com/.

44

http://www.histdata.com/

4.2. Data Collection

Figure 4.1: Graphical representation of the three limit order book levels.

LOB level II and III data is available for purchase directly from exchanges or from spe-
cialized market data vendors like BMLL.16 In our analyses, we considered LOB level II
data for optimal execution in Chapter 9. Given the difficulties in collecting the data and the
static nature of the data – making it not so appropriate to study market impact – we decided
to use the multi-agent market simulator ABIDES (Byrd et al., 2019), which is capable of
reproducing a level II LOB data. ABIDES is described further in Section 4.3.2.

OTC data

In Section 2.1.1, we have seen how OTC data differs from regulated exchanges, and
specifically that OTC instruments are used mostly by financial institutions. This makes
OTC data extremely challenging, if not impossible, to find from public sources. In our case,
a Bloomberg license was necessary to download most of the OTC data.

In dealer market scenarios, that is the majority of the cases when talking about OTC
instruments, there are two interesting types of data: on the one hand, there are the quotes
of the dealers, and, on the other hand, the RFQs of the clients. Specifically, while, as just
mentioned above, dealers’ quotes are available in Bloomberg, RFQs are individual and
depend on the dealer in consideration. Larger dealers will certainly have a larger RFQ
influx given their larger set of clients. To our knowledge, only Fermanian et al. (2016)
analyzed and calibrated a distribution to dataset of RFQs received by BNP Paribas for a
selection of corporate bonds.

4.2 Data Collection

This section describes the data collection process pursued for the experiments of this
dissertation. Data sources include the Bloomberg terminal and online sources.

A data license for the Bloomberg terminal enabled intraday market data collection,
by taking a periodic real-time snapshot of the market. For many of the instruments, the
collection through this license started on the 29th of May 2017 with snapshots from
Bloomberg every 5 minutes starting at 9:30am and ending at 5:25pm. These instruments

16https://bmlltech.com/.

45

https://bmlltech.com/

Chapter 4. Data Preparation and Testing

Instrument Downloaded features Frequency Processed features

SNRFIN credit spread, upfront, coupon, sensitivity 5 min time to roll
Intesa CDS credit spread levels of the entire curve 5 min time to roll
BTP futures price, sensitivity, yield, LTD 5 min time to roll
Bund futures price, sensitivity, yield, LTD 5 min time to roll
SX7E futures price, sensitivity, LTD 5 min time to roll
VIX index price 5 min
V2X index price 5 min
EURUSD spot price tbt
USDGBP spot price tbt
SPY ETF price daily
BNDX ETF price daily
DAX ETF price daily
VXX ETF price daily

Table 4.1: Summary of the instruments considered in this dissertation.

can be recognized in Table 4.1 as they have a “5 min” frequency. Finally, tick-by-tick
(tbt) FX data was downloaded from HistData.com. The data is specified in Table 4.1,
which includes also the processed features. Once this data is downloaded and stored on
an offline database, it must then be extracted, parsed to create a CSV and cleaned. In
the following paragraphs, we describe with more detail the characteristics of the main
instruments considered.

CDS Single Name and Indexes For CDS and CDS indexes, which includes SNRFIN
and Intesa CDS, yearly maturities are quoted on the markets: 1 year, 2 years, 3 years,
4 years, 5 years, 7 years, 10 years, 15 years, 20 years, and 30 years. We downloaded
the 5Y maturity with a 5 minute frequency, specifically the bid and ask credit spreads of
several dealers (about 20). Dealers contribute continuously a bid and an ask credit spread
for a given notional, ranging from C10mln (million) to up to C400mln, with most of
the contributions ranging between C50mln and C200mln. Trading times are not strictly
regulated but generally go between 8am CET and 6pm CET. Each contributor has a typical
bid-ask spread, which depends on the market conditions and on the level of the index credit
spread. Figure 4.2 shows the mid credit spread and bid-ask spreads of the downloaded
SNRFIN data, on a one-year time horizon, considering intra-day data with 30-minute
time-steps. The market quote published by the dealers can be applied by the clients, but
acceptance from the dealer is not always certain: some dealers ensure that the quote will
be always confirmed, some retain the right to review it. Moreover, dealers can also decide
to publish bid and ask credit spreads that cannot be executed at all. These features make
it difficult to define an order book for OTC traded objects. It is often even difficult to
ascertain the applicable credit spread, from the downloaded data. Section 4.4 explains the
approach taken to process the dataset. It is possible to calculate the upfront, as we saw in
Section 2.2.4, or download it from Bloomberg together with the sensitivity, coupon, and
coupon date.

For maturities other than 5Y, which tend to have a very low liquidity, usually only the

46

4.2. Data Collection

07-2020 09-2020 11-2020 01-2021 03-2021 05-2021

5
0

6
0

7
0

8
0

9
0

m
id

cr
ed

it
sp

re
ad

(b
ps

)

0
1

2
3

bi
d-

as
k

sp
re

ad
(b

ps
)

mid (LHS)
bid-ask (RHS)

Figure 4.2: The evolution of the SNRFIN 5y mid credit spread (left axis) and bid-ask spread
(right axis) from mid 2020 to mid 2021.

end of day value is available.

Futures Futures are described in Section 2.2.2. BTP and Bund futures have a physical
delivery, while the EURO STOXX Banks Index Futures (SX7E) is cash settled. They all
have liquidity concentrated on four maturities, which are typically on the eighth day of
March, June, September, and December. Of the bond instruments, we also downloaded
other information like the yield, to calculate the BTP-Bund spread (difference in yield).
These instruments are described in further detail in Appendix B.1.4 and used in Appendix C.

VIX and V2X Indexes and ETF The Chicago Board Options Exchange Volatility Index
(VIX) and the EURO STOXX 50 Volatility Index VSTOXX (V2X) are two volatility indices.
The ETF version of the VIX was used for a portfolio optimization exercise (see Chapter 5),
while the indices are used as a feature to the agent in Appendix C. They represent the
market’s expectation of 30 day forward looking volatility and provide a measure of market
risk and investors’ sentiments. In the case of the VIX, the price derives from S&P 500
index options, whereas in the case of V2X, from the EURO STOXX 50 index options.

FX Data: EURUSD & USDGBP FX data is used extensively in Chapter 6 to learn
a quantitative trading strategy. FX tick-by-tick data was downloaded from the website
HistData.com with bid and ask for the EURUSD and USDGBP FX pairs from 2017 to
2020.

Corona Dataset The Corona dataset, used in Section 5.1, was designed using data coming
from the recent Covid-19 crisis period to analyze the behavior of the OPO algorithms in
times of high volatility (Chapter 5). This dataset contains the ETFs of Table 4.1: the SPY
ETF, the Vanguard Bond Index Fund (BNDX ETF), the Global X DAX Germany ETF and
the iPath Series B S&P 500 VIX Short-Term Futures ETN (VXX).

47

Chapter 4. Data Preparation and Testing

Datasets
Name Market Year Span Days Assets
NYSE New York Stock Exchange 1962 - 1984 5651 36
TSE Toronto Stock Exchange 1994 - 1998 1258 88

SP500 Standard Poor’s 500 1998 - 2003 1276 25
Corona Global 2019 - 2020 280 4

Table 4.2: Datasets used in the experimental campaign of Chapter 5.

Benchmark Data For the portfolio optimization analyses of Section 5.1, a pre-defined
dataset was used, shown in Table 4.2. Specifically, the NYSE, SP500, and TSE datasets are
well-known benchmarks and are used in several research papers on portfolio optimization
to provide the daily prices for a fixed set of asset.17

S&P 500 Index Components For the portfolio optimization with benchmark analyses
of Section 5.2, we used a public dataset of 502 stocks, which make the S&P 500 index,
collected with minute frequency from 2017/09/11 to 2018/02/16 for a total of 43148
points.18

4.3 Data Simulation

Although downloading real data is clearly preferable, the difficulties in finding high fre-
quency data make it necessary to explore also data generation methods. While for learning
quantitative trading strategies (Chapter 6) and portfolio optimization (Chapter 5), historical
data is fundamental, for other approaches, for example hedging (Chapter 8), using simu-
lated data might be a good way to create a proof of concept or initialize the policy. We
now briefly describe classical approaches using stochastic differential equations (SDEs),
while an example of an econometric model can be found in Appendix B.3.1. Examples
of advanced ML approaches include Quant Gans (Wiese et al., 2020) and The Market
Generator (Kondratyev and Christian, 2019). These topics are extremely vast, we only
describe what is necessary to understand how they were applied in this dissertation and
eventually how they can be used for other projects.

4.3.1 Stochastic Differential Equations
For applications in the dealer markets framework (see Chapter 7) and the option hedging
framework (see Chapter 8), we concentrated on the use of SDEs to simulate the price process
of the financial instruments. We also initially tested the quantitative trading approaches on
simulated data before using real data.

While potentially it is possible to make an educated guess for the SDE parameters that
seem to have a “good behavior”, it is optimal to calibrate the SDE to the real data. Even
though it is necessary to have real data for the calibration, differently to ML approaches,
only a few data points are required. Once we have decided the SDE parameters, then it is
possible to generate Monte Carlo trajectories that can be used to train the RL algorithm. The

17These datasets are available at http://www.cs.technion.ac.il/~rani/portfolios/.
18This dataset is available at https://www.kaggle.com/nickdl/snp-500-intraday-data.

48

http://www.cs.technion.ac.il/~rani/portfolios/
https://www.kaggle.com/nickdl/snp-500-intraday-data

4.3. Data Simulation

trajectories can be generated using the Euler-Maruyama scheme, or by using the analytic
solution when available.

Geometric Brownian Motion Let St be the price of the underlying asset at time t, then
a GBM process is defined as:

dSt = µStdt+ σStdWt,

where Wt is Brownian motion, µ the drift (in general, we assume it to be 0 throughout
without loss of generality) and σ the volatility. This process is simple and effective, but a
constant volatility is a strong assumption in finance. For an initial value S0, the SDE has
the analytic solution:

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
,

where: Wt is the Wiener process, thus Wt+u −Wt ∼ N (0, u) = N (0, 1)×√
u, N being

the normal distribution.
If we assume that the price of the asset behaves as a GBM, then the log returns x1, ..., xn

form normal iid random variables. We can thus compute the parameters that maximize the
log likelihood as: m̂ =

∑n
i=1 xi/n and v̂ =

∑n
i=1(xi − m̂)2/n, with which we can find

estimated parameters of the GBM: µ̂ = (m̂− 1
2 v̂)

1
∆t and σ̂2 = v̂

∆t .

Vasicek Model The Vasicek model is normally used in finance to describe the evolution
of interest rates. It is a process with mean reversion and follows the stochastic differential
equation:

dSt = a(µ− St)dt+ σdWt,

where a is the speed of mean reversion, µ the long term mean level and σ is the volatility.
It is possible to find the maximum likelihood parameters by calculating:

b̂ =
n
∑n
i=1 xixi−1 −

∑n
i=1 xi

∑n
i=1 xi−1

n
∑n
i=1 x

2
i−1 − (

∑n
i=1 xi−1)2

,

µ̂ =

∑n
i=1[x1 − b̂xi−1]

n(1− b̂)
,

σ̂2 =
1

n

∑[
xi − b̂xi−1 − θ̂(1− b̂)

]2
/

√
(b̂2 − 1)∆t

2 log b̂
,

â = − log(b̂)/∆t.

Heston Model The Heston model can be intuitively thought of as a GBM but with a
process for the volatility. The volatility ν behaves like a Cox-Ingersoll-Ross (CIR) model,
which is an extension of the Vasicek model:

dS(t) =
√
ν(t)S(t) dWS(t), (4.1)

dν(t) = κ (θ − ν(t)) dt+ ξ
√
ν(t)dW ν(t), (4.2)

where κ the speed on mean reversion, θ the long run variance, i.e., limt→∞ E[ν(t)] = θ, ξ
is the volatility of the volatility. The Weiner processes WS and W ν may be correlated.

49

Chapter 4. Data Preparation and Testing

4.3.2 Multi-agent Market Simulation
The method of agent-based financial markets simulators is radically different from the
previously described ones. The focus0 is not on trying to reproduce a realistic price
process, or predict future price movements, but on simulating the interactions between
market participants in order to reproduce a limit order book. We considered the simulator
ABIDES (Byrd et al., 2019), of which the main advertised characteristics are:

• Support for continuous double-auction trading at the same nanosecond time resolution
of real markets such as NASDAQ;

• Variable electronic network latency and agent computation delays;

• Requirement that all agents intercommunicate solely by means of standardized
message protocols;

• Easy implementation of complex agents through a full-featured hierarchy of base
agent classes.

The price process is described by a “fundamental value”, which can be a historical
time series or a process – in our case, a Vasicek model (described in Section 4.3.1). This
exogenous price series is to be interpreted as the global consensus value for the asset under
consideration, coming from the aggregation of all accessible news and information. Once
the characteristics of the fundamental are defined, it is possible to create an arbitrary number
of market players, with definable characteristics. The interactions of the market players
create an order book and cause variations to the real price process from the fundamental
value. The main types of traders we considered are the following:

• Zero intelligence traders a.k.a noise traders, who trade randomly;

• Value investors, who create a future projection of the price of the traded asset, and
buy if the current price is below (or sell it if is above) their projection;

• Momentum traders, who go long (short) as the price of the asset is increasing
(decreasing) following heuristic rules.

The combination of a different number of these traders and changes in the characteristics of
the fundamental price can result in different behaviors of the limit order book. ABIDES is
used in Chapter 9 to study optimal execution.

4.4 Data Processing

Once the data has been downloaded, or simulated, it is necessary to process it, to make it
compatible with the RL algorithm (for example with FQI, see Section 6.2.1), or to create
additional relevant financial features as described for example in Section 2.4.2, at times
used only as state variables, other times necessary to calculate the reward. The most useful
features are then chosen through a feature selection procedure. Finally, it is fundamental
to normalize the data, to avoid biases to the policy. Especially when working with neural
networks, the objective is to make sure that all the features are of similar size, so no feature
overshadows the others.

50

4.5. Performance Metrics

Processing CDS data

As described in Section 4.2, the starting point is a dataset containing the most recent bid and
ask credit spreads quoted by all the dealers (about 20 in the dataset) every 5 minutes, during
the most liquid trading hours (9:30am CET and 5:30pm CET), as specified in Table 4.1.
To use this data, it is necessary to discard credit spreads that are most likely typos, not
executable or technological problems. Thus, for each time-step and for both the bid and
ask we consider the mean and standard deviation of the credit spreads of all dealers and
discard from the set the ones that differ from the mean by more than two standard deviations.
Considering the processed data, we define as applicable bid the average of the remaining
bid credit spreads, and as applicable ask the average of the remaining ask credit spreads.
Finally, we obtain the mid credit spread as the average of the applicable bid and applicable
ask, and the bid-ask spread as the difference between them. Figure 4.2 shows an extract of
the cleaned data.

Feature Selection

Feature selection is a fundamental process to reduce the number of variables in the state
space. This can help to make the training process quicker, and also enhance the results,
especially when using value based approaches. Feature selection can be performed with
different approaches, in this dissertation we use extra tree regressors (see Appendix B.4.2).
Specifically, we create a dataset of experience using a random policy, we then train extra
tree regressors on the supervised problem where state and action are the input and the
reward is the output. From the trained extra trees, we then extract the impurity-based feature
importance, selecting the features with the highest relevance. Feature selection is applied
in Chapter 6 and 9. For the sake of completeness, it is also popular to conduct feature
selection by means of well-known libraries, such as SHAP (Lundberg and Lee, 2017).

4.5 Performance Metrics

Performance metrics can be distinguished between those typical in a financial setting and
those more relevant in a RL setting, even though in many cases they overlap.

Financial The main financial performance metrics considered in this dissertation are
listed below:

• Profit & Loss. P&L represents the monetary gains of the strategy and can be calcu-
lated in slightly different manners. Equations (2.13), (2.17), (2.18) and (2.21) are
examples of P&L formulations.

• Cumulated P&L, or wealth. Wealth has two main formulations. The first, when
re-investing the gains/losses as in Equation (2.13), it is calculated as:

WT =

T∏
t=1

ρt.

Typically, performance is expressed in an annualized fashion, for ease of comparison:

WA = (1 +WT)
250/tw − 1, (4.3)

51

Chapter 4. Data Preparation and Testing

where tw is the time period in which the wealth was generated, and 250 is the number
of trading days in a year.

The second formulation, when considering a fixed action size, and without re-
investing gains/losses as in Equation (2.17), the cumulated P&L becomes a sum:

WT =

T∑
t=1

rt.

In this case, the annualized wealth is

WA =WT
250

tw
. (4.4)

• P&L variance. Once we have collected a number of successive daily P&L (the wealth
of one day), defined as {rdt }t∈[1,T], it is possible to calculate the daily variance as:

v(rdt) =
1

T

T∑
t=1

(rdt − r̂d)2,

where r̂d is the average daily P&L, and T is the number of days. The variance can
be annualized as vA = 250 · v.

• Volatility. The volatility is defined as the standard deviation so

vol =
√
v(rdt).

Similarly, the annualized vol: volA =
√
250 · vol.

• Sharpe ratio. The Sharpe ratio, usually considered in an annualized fashion, is
defined as:

sr =
WA − rf

volA
, (4.5)

where, rf is the risk-free rate i.e., what an investor would gain by leaving her money
in a savings account for the investment period – at the time of writing, it is generally
0% in Europe and around 1% in the United States.

• Maximum Drawdown (MDD). The maximum drawdown is a measure of risk defined
as the maximum observed loss from a peak performance to the trough, before a new
peak is attained, formally

MDD =
Trough Value − Peak Value

Peak Value
. (4.6)

• Implementation shortfall. The Implementation Shortfall (IS) is a measure of market
impact, and was defined in Section 2.4.3. We will use this performance metric in
Chapter 9 on optimal execution:

IS = XParrival −
N∑
k=1

nkPk, (4.7)

where X is the total size to execute, nk is the size traded at price Pk, at each time k.

52

4.6. Testing

Reinforcement Learning The main RL performance metrics considered in this disserta-
tion, recalling the notation from Section 3, are described in the following paragraph:

• Regret. The regret of an online algorithm U, also defined in Section 3.3.3, can be
generically expressed as:

RT (U) =

T∑
t=1

[ft(at)− ft(a
∗)] . (4.8)

where at is the prediction of the agent, a∗ is the prediction of the best expert, and ft
is the loss function.

• Returns. The returns obtained by following a trajectory τ are defined as in Equa-
tion (3.3):

Gτ =

T∑
t=0

γtrt+1.

If the reward is the P&L, the return roughly coincides with the wealth (depending on
γ).

• Return variance. The return variance, defined in (Tamar and Mannor, 2013) is
expressed as:

σ2
π := Eπ

s0∼µ

[(
Gτ −

Jπ
1− γ

)2
]
, (4.9)

where Jπ is defined in Equation (3.7).

• Reward volatility. The reward volatility a.k.a reward variance, defined in (Bisi et al.,
2020b) is expressed as:

ν2π := E
s∼dµ,π

a∼π(·|s)

[
(r(s, a)− Jπ)

2
]
, (4.10)

= (1− γ) Eπ
s0∼µ

[
T∑
t=0

γt (r(st, at)− Jπ)
2

]
. (4.11)

The reward volatility is the variance of the immediate rewards, and is comparable to
the financial variance v(rdt). It is common to label the standard deviation as volatility,
we use the name reward volatility in continuity with the original name given in the
paper.

4.6 Testing

Once we have defined the dataset and calculated the relevant features as described in the
previous sections, it is necessary to optimize the policy on the training set and then test the
performance on out-of-sample data. Assuming that the hyper-parameters have already been
tuned, there are several levels of “stochasticity” that need to be analyzed:

53

Chapter 4. Data Preparation and Testing

• training with a different seed may produce a different policy, so it is necessary to
train multiple times and test the different policy on the same test set, calculating
confidence intervals;

• the policy itself may be stochastic, so it is necessary to test the same policy on the
same test set multiple times and calculate confidence intervals;

• a single test set is not sufficient, it is necessary to test how the policy behaves on
different out of sample realizations.

Backtesting Backtesting is a common term used in financial settings to indicate a test on
historical data, whereas testing may also refer to a real-time paper money environment or a
real-time real money framework. In this dissertation we only backtested our policies.

When creating a backtesting framework, it is important to be as realistic as possible.
Thus, in this dissertation we considered transaction costs for this purpose. The concept of
transaction costs can also be made even more realistic by adding the possibility of market
impact, when trading on regulated exchanges, as described in Section 2.4.1. Considering
market impact on historical data is a challenging task, which can only be conducted by
modeling a transitory impact. In most of the examples examined in this dissertation, we
assume that the trading size is small enough so that it causes negligible market impact.
To study this impact in an optimal execution setting we decided to use the agent-based
financial simulation library ABIDES.

Delay is another way to render the framework more realistic, as the price of an asset can
change from the time when the price is observed to the time when the trade is executed. For
this reason, it is important to consider algorithms with good computational properties to
add as little delay as possible. From this point of view, batch RL algorithms, introduced in
Section 3.3, are optimal, as once the policy is trained, obtaining the new action is extremely
quick. On the other hand, online approaches, especially MCTS, need to be appropriately
tuned and configured to reduce the search time. It is important also to optimize the rest of
the pipeline, like the order management system that executes the order.

Paper Money After backtesting the learnt policy, the correct approach would be to test
on a paper money account. Such account is made available by several online brokerages,
like Interactive Brokers, or trading websites such as Quantconnect.19 The APIs of these
accounts enable the algorithm to send orders, while the online brokerage account keeps
track of the P&L. Although the use of paper money accounts integrates transaction costs
and delay, even in this case, it is not possible to model market impact.

Real Money The ideal way to test an algorithm is through a brokerage account with
real money. However, this entails a long procedure and is only possible when trading as a
financial institution. Indeed, given the trading frequency of this dissertation, it is clear that,
in order for the algorithm to be profitable, it is necessary to have very low trading costs,
only achievable through a privileged market access. Moreover, installing these types of
autonomous algorithms in a production environment requires both lengthy evaluations from
internal risk management and compliance functions and a reliable infrastructure connecting
the agent with the markets.

19https://www.interactivebrokers.com/en/home.php, https://www.quantconnect.com.

54

https://www.interactivebrokers.com/en/home.php
https://www.quantconnect.com

Part II

Learning the Financial Markets
with RL

55

CHAPTER5
Online Portfolio Optimization

The portfolio optimization task is a problem faced by asset managers, as described in
Section 2.3.1 and in Definition 2.5. Started by Markowitz (1952) for single period portfolios,
it was then extended by Merton (1969) to a continuous-time optimal control problem.
Contrarily to the approach presented in this chapter, the Merton problem is based on the
fact that assets behave with a specified dynamic, usually a GBM. Under this assumption
and considering a stock and a risk-free asset, where the objective of the investor is to
maximize the terminal wealth under a power utility function, there is a closed-form solution
that suggests the optimal portfolio allocation based on the variance and the returns of the
assets. In general, following the Merton approach, the objective is to find the analytic
solution of an optimal control problem that defines an inter-temporal portfolio allocation.
Our approach is related to Merton’s, but with the relevant difference that it does not make
explicit distributional assumptions on the assets’ dynamics.

We focus on the OPO framework, which derives from the online learning literature (see
Definition 3.5), specifically, the expert learning framework, anticipated in Section 3.3.3.
Many algorithms from the expert learning literature have been applied to the OPO frame-
work since they provide both strong theoretical guarantees in the adversarial setting and
good empirical results. The most interesting ones have been described in detail by Li and
Hoi (2014) and by Dochow (2016). The objective in the OPO framework is to define an
algorithm capable of minimizing regret with respect to the optimal Constant Rebalancing
Portfolio (CRP). The CRP is defined as the portfolio which keeps constant weights and
obtains the maximum performance at the end of the investment period.

The first part of this chapter sheds light on the negative impact of transaction costs on

57

Chapter 5. Online Portfolio Optimization

the trading strategy and how to reduce it, the second focuses on the asset manager’s problem
of beating a benchmark. OPO algorithms could be used together with an optimal execution
approach, such as that presented in Chapter 9 to reduce costs, increasing performance.

Chapter outline This chapter is divided into two parts, Section 5.1 focuses on dealing
with transaction costs in the OPO framework and Section 5.2 deals with the typical asset
management task of beating a specific market index (see Definition 2.4), i.e., to perform
better than the chosen index and, concurrently, maximize the collected wealth. Both
sections begin with the state-of-the-art, followed by the section-specific context, that is
regret including transaction costs in the first case, and the conservative constraint in the
second. Afterwards, we introduce our approach and a novel algorithm (respecively OGDM
in Section 5.1.3 and CP in Section 5.2.3), which satisfy the new requirements, concluding
each section with the experimental results.

5.1 Online Portfolio Optimization with Transaction Costs

The OPO framework has been largely studied but it is rarely used in a production framework.
One of the reasons may be that the assumptions of OPO appear as too unrealistic, like
the non-existence of transaction costs. Thus, this section focuses on extending the OPO
framework and the definition of regret to include transaction costs, largely ignored in
the OPO literature, by using the total regret, and proposes an algorithm Online Gradient
Descent with Momentum (OGDM) that achieves a total regret order of O(

√
T).

5.1.1 Background on OPO with Transaction Costs
This section provides an overview of the state-of-the-art on OPO algorithms and previous
attempts to account for transaction costs. Universal Portfolios with Costs (UCP) Blum and
Kalai (1999) and Online Lazy Updates (OLU) (Das et al., 2013) are the algorithms closest
to this work, and are discussed in depth in Section 5.1.4. Notably, the Online Newton Step
(ONS) (Agarwal et al., 2006; Hazan et al., 2007) algorithm has been shown to provide good
performance in terms of regret on the wealth when empirically tested, as well as feasible
computational complexity. There are also heuristic algorithms designed to solve the OPO
problem, e.g.,, Anticor (Borodin et al., 2004), PAMR (Li et al., 2012), OLMAR (Li et al.,
2015), and MRTC (Yang et al., 2018b), which outperform the algorithms described above
in terms of empirical performance. Remarkably, none of the above algorithms provide
guarantees on the total regret.

In addition, Li et al. (2018a) extend both traditional and heuristic algorithms including
an additional term to the optimization function to handle transaction costs, but only provide
an empirical analysis and no type of regret guarantees. Moreover, what is presented
by Ito et al. (2018) is related to the objective of controlling transaction costs. Indeed, the
assumption that the portfolio is composed of a small set of assets indirectly addresses such
a problem. However, the authors do not present theoretical guarantees on the potential costs
incurred by such an algorithm.

The problem of dealing with transaction costs has also been tackled in sequential
decision-making settings similar to the OPO one, i.e., in the expert learning and MAB
fields (Cesa-Bianchi et al., 2013; Trovò et al., 2016) and the Metrical Task Systems (MTS)

58

5.1. Online Portfolio Optimization with Transaction Costs

literature (Li et al., 2018b; Lin et al., 2012; Goel et al., 2019). In the expert and MAB
literature the problem has been analyzed either purely theoretically by Cesa-Bianchi et al.
(2013) or under the bandit feedback by Trovò et al. (2016), which is not realistic in our
financial application. In the MTS literature, the notion of regret has been extended to
include the cost of changing the prediction of the algorithm over time, but the framework
allows the learner to know the future realizations of the environment, i.e., the price of the
assets for the next day, which is unreasonable in our application.

Finally, the algorithm we propose for dealing with online optimization is inspired by
the effectiveness of the momentum technique by Polyak (1964). The momentum term
smooths the estimation of the gradient and it has been used successfully in the optimization
of complex non-linear functions, such as Neural Networks (Qian, 1999; Sutskever et al.,
2013).

5.1.2 Formulating Transaction Costs in OPO
Definition 2.5 illustrates the asset manager’s task. Recalling the notation of Section 2.3.1,
at := (a1,t, . . . , aM,t) is the portfolio allocation and yt := (y1,t, . . . , yM,t) are the price
relatives. The wealth is defined in Equation (2.14), and extended to include transaction
costs in Equation (2.15). As common in the portfolio allocation literature (Agarwal et al.,
2006), we assume the price of the assets does not change too much during two consecutive
rounds, or, formally:

Assumption 5.1. There exist two finite constants ϵl, ϵu ∈ R+ s.t. the price relatives yj,t ∈
[ϵl, ϵu], with 0 < ϵl ≤ ϵu < +∞, for each round t ∈ {1, . . . , T} and each asset j ∈
{1, . . . ,M}.

It is necessary to characterize the loss function to calculate regret as generically defined
in Equation (4.8). In the OPO setting, the log loss is commonly used:

ft(at) := − log(⟨at,yt⟩). (5.1)

Furthermore, it is imperative to define the experts. In the OPO framework, they are
CRPs, or, in other words, portfolios that keep the investment strategy a1:T constant for all
t ∈ {1, . . . , T}. Thus, the best expert is naturally the best CRP:

a∗ = a∗t = argmax
a∈∆M−1

T∏
i=1

⟨a,yi⟩.

Hence, we are in a context with an infinite number of experts.
The regret on the wealth RT (U) at round T is the difference between the cumulative

losses of the best CRP and those of the algorithm U, formally, recalling Equation (4.8):

RT (U) =

T∑
t=1

ft(at)−
T∑
t=1

ft(a
∗)

≡
T∑
t=1

− log(⟨at,yt⟩)−
T∑
t=1

− log(⟨a∗,yt⟩)

= log(WT (a
∗
1:T , t1:T))− log(WT (a1:T , t1:T)),

59

Chapter 5. Online Portfolio Optimization

Regret on the Costs Equations (2.16) and (2.15) respectively define the transaction costs
as an implicit formulation and the wealth considering those costs. To find a regret expression
that includes costs, it is necessary to find an approximate but explicit cost formulation. If
we assume that the price relatives yt are small, we have that a′t−1 ≈ at−1 and αtat ≈ at,
where a′t−1 = at−1⊗yt−1

⟨at−1,yt−1⟩ and αt = 1− γ||a′t−1 − atαt||1. Therefore, the proportion of
remaining wealth becomes αt = 1− γ||at−1 − at||1. Using the above approximations and
considering α1 = 1, the wealth W̃T (a1:T ,y1:T) can be transformed as follows:

log(W̃T (a1:T ,y1:T)) = log

(
T∏
t=1

⟨at,ytαt⟩
)

(5.2)

≈ log(WT (a1:T ,y1:T)) + log

(
T∏
t=2

αt

)
(5.3)

≈ log(WT (a1:T ,y1:T))−
T∑
t=2

γ||at − at−1||1, (5.4)

where we used a first term expansion log(1 − y) ∼ −y to get Equation (5.4), given that
the transaction rate is γ ≪ 1. Using the second term of Equation (5.4), we define the
proportional costs CT (U) incurred by an algorithm U during the investment horizon of T ,
as is done in Das et al. (2013):

CT (U) := γ

T−1∑
t=1

||at+1 − at||1. (5.5)

The total regret RCT (U), i.e., the regret computed considering the transaction costs, is
defined as:

RCT (U) = RT (U) + CT (U).

The financial interpretation is that regret on the costs consists in the (approximated) turnover
gap and it decreases the final wealth of the investor. While total regret is the combination of
the regret coming from the suboptimal choice of the portfolio and the one from the turnover,
i.e., the wealth gap considering transaction costs. Notice that the best CRP investment
strategy a∗1:T generates no costs under this model, therefore the costs CT (U) also represent
the regret on the costs of the algorithm U due to the transaction fees paid over the investment
horizon T .

5.1.3 Online Gradient Descent with Momentum
The main novelty, presented in Vittori et al. (2020a), is the Online Gradient Descent with
Momentum (OGDM) algorithm, which is an extension of the well-known OGD algorithm.
The definition of the OGDM update rule for a generic convex loss function ft(at) over a
generic convex set X is the following:

at+1 = ΠX

(
at − ηt∇ft(at)−

λt
2
(at − at−1)

)
, (5.6)

60

5.1. Online Portfolio Optimization with Transaction Costs

Algorithm 2: OGDM in OPO with Transaction Costs
1 Initialize: learning rate sequence {η1, . . . , ηT }, momentum parameter sequence
{λ1, . . . , λT }

2 Set a1,a2 ← 1
M
1

3 for t ∈ {2, . . . , T} do
4 Select at+1 ← Π∆M−1

(
at + ηt

yt
⟨yt,at⟩ −

λt
2
(at − at−1)

)
5 Observe yt+1 from the market
6 Get wealth log(⟨yt+1,at+1⟩)− γ||at+1 − at||1

where ΠX(y) := argmin
x∈X

||y − x||22 is the standard projection of the vector y onto X ,

ηt > 0 is the learning rate at round t, λt is a parameter controlling the momentum influence
at round t, and ∇(·) denotes the gradient operator. Recalling that in the OPO framework
the function to be minimized is the loss ft(at) = − log(⟨at,yt⟩), the portfolio update rule
becomes:

at+1 = Π∆M−1

(
at + ηt

yt
⟨at,yt⟩

− λt
2
(at − at−1)

)
. (5.7)

The pseudo-code corresponding to the OGDM algorithm in the OPO framework,
including transaction costs, is presented in Algorithm 2. The algorithm starts with a
portfolio a1 of weights equally allocated among the M available assets (Line 2). Then, for
each round t ∈ {1, . . . , T} it rebalances the assets according to Equation (5.7) (Line 4), it
observes the market outcomes yt+1 (Line 5), and gains a per-round wealth, including costs,
of log(⟨yt+1,at+1⟩)− γ||at+1 − at||1 (Line 6).

Regret Analysis

We now present the main result on the total regret of the OGDM algorithm.

Theorem 5.1. The OGDM algorithm with ηt =
Kη√
t
, and λt = Kλ

t , for each value of
Kη,Kλ ∈ R+, has a total regret of:

RCT ≤
[
D2

Kη

(
1

2
+Kλ

)
+KηG̃

(
2γ

√
M + G̃

)]√
T , (5.8)

where D = sup
a,y∈X

||a− y||2, and G̃ = sup
a∈X

||∇ft(a)||2 + DKλ

2Kη
.

If we assume that the price of the assets does not change too much during two consecu-
tive rounds, as stated in Assumption 5.1, we have:

Corollary 5.1. If Assumption 5.1 holds, the OGDM algorithm ηt =
Kη√
t
, and λt = Kλ

t ,
for each Kη > 0 and Kλ > 0, has total regret of:

RCT (OGDM) ≤
√
T

[
K2
λ + 4Kλ + 2

2Kη
+KηM

ϵu
ϵl

(
ϵu
ϵl

+ 2γ

)
+
√
2

(
ϵu
ϵl

+ 2γ

)
Kλ

√
M

]
.

Using the previous bound we can optimize the regret bound with respect to the parame-
ters Kη and Kλ as follows:

61

Chapter 5. Online Portfolio Optimization

Corollary 5.2. If Assumption 5.1 holds, the OGDM algorithm with λt = 0 and with

ηt =
1√
t

[
Mϵu
ϵl

(
ϵu
ϵl

+ 2γ
)]−1/2

, has a total regret of:

RCT (OGDM) ≤ 2

√
Mϵu
ϵl

(
ϵu
ϵl

+ 2γ

)
T . (5.9)

Notice that the OGDM with the previous choice of the bound corresponds to the OGD
algorithm with a learning rate of ηt = Kη/

√
t. Indeed, this is consistent with the fact

that RT (OGD) = O(
√
T) for a generic convex function ft(x), as shown by (Belmega

et al., 2018). Even if this is the choice that minimizes the upper bound on the total regret,
it might be suboptimal in practice. In the experimental section we analyze the empirical
performance of choices of Kλ ̸= 0.

Finally, knowing the time horizon T in advance from the starting of the investment
period we have:

Corollary 5.3. If Assumption 5.1 holds, the OGDM algorithm with λt = 0 and with

ηt =
1√
T

[
Mϵu
ϵl

(
ϵu
2ϵl

+ γ
)]−1/2

(which results in a constant ηt), has a total regret of:

RCT (OGDM) ≤ 2

√
Mϵu
ϵl

(
ϵu
2ϵl

+ γ

)
T .

This result provides a slightly improved constant in the bound over the any-time bound
given by Corollary 5.2. In the next sections, we compare the theoretical guarantees of
OGDM in terms of computational complexity and total regret with OLU and UCP, the only
algorithms that provide upper bounds to total regret.

5.1.4 Comparison with State-of-the-art OPO algorithms
Discussion on the Per-round Computational Complexity In this section we explore the
theoretical results of OGDM in comparison to the existing literature with respect to regret
bounds and computational complexity, summarized in Table 5.1.20

OGDM UCP OLU ONS
RT O(

√
T) O(log T) O(

√
T) O(log T)

RCT O(
√
T) O(log T) O(T) -

Complexity Θ(M) Θ(TM) Θ(M) Θ(M2)

Table 5.1: Theoretical results, in terms of regret and computational complexity, for the
analysed algorithms.

Regarding the computational complexity of the OGDM algorithm, at each round t, it
evaluates a scalar product, a division and two vector subtractions (see Line 4, Algorithm 2),
which require a number of operations linearly proportional to the number of assets M . It
also performs a projection onto the simplex, which can be computed in linear time with

20We report the regret bounds and complexity also for the ONS algorithm for sake of completeness.

62

5.1. Online Portfolio Optimization with Transaction Costs

the number of assets M (see (Duchi et al., 2008) for details). Therefore, the total expected
computational cost per round is Θ(M). Note that, since the learning rate ηt is decreasing
over time, the projection operation is less likely to be required as we proceed with the
investment process, decreasing the per-step computational effort. Conversely, the technique
used in literature to implement the UCP strategy requires a number of operations per round
of Θ(TM) (Kalai and Vempala, 2002), which does not scale well for large horizons T , or
settings where the number of assets M is large.

Das et al. (2013) propose to use the Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011) to implement the update rule of OLU. Although in terms of
computational complexity it has the same properties of OGDM, the OLU algorithm is more
computationally costly (in terms of constants) than the OGDM update, since it consists of
solving a problem with linear complexity in M multiple times until ADMM converges, but
still provides a feasible solution in terms of computational effort. To conclude, UCP is a
solution suitable only for problems with a small number of assets M and a short investment
horizon T . Conversely, OGDM and OLU can handle data streams that come at higher
frequencies, e.g.,, the ones required by some specific financial applications (Abernethy and
Kale, 2013).

Discussion on the Total Regret Bounds As discussed above, the OLU algorithm is
the only algorithm competing with OGDM, in terms of per-round computational com-
plexity. OLU can be interpreted as an instance of Composite Objective Mirror Descent
(COMID) (Duchi et al., 2010), whose update is the following:

at+1 = argmin
a∈∆M−1

{η⟨∇ft(at),a⟩+ η r(a) + dψ(a,at)} ,

where r(a) is a regularization term of the loss function ft(a), and dψ(a,y) is a Bregman
divergence (Banerjee et al., 2005) generated by the convex function ψ(a). Specifically,
the OLU algorithm uses as regularizer r(a) := ||a − at||1 and divergence dψ(a,y) :=
1
2 ||a− y||22.

Assuming to know a priori the time horizon T and under Assumption 5.1, the authors
of OLU provide the following guarantee (Das, 2014):

Theorem 5.2. If Assumption 5.1 holds, the OLU algorithm with η = K√
T

, ∀K ∈ R+ has a
total regret of:

RCT (OLU) ≤
(

1

K
+
MKϵ2u
2ϵ2l

)√
T + 2γT. (5.10)

Notice that the OLU algorithm achieves a regret of O(
√
T) only if the transaction

rate γ ∝ 1√
T

, i.e., if the transaction rate decreases over time. We can observe that the
first term of the r.h.s. of Equation (5.10) corresponds to the regret on the wealth. Instead,
if we focus on the second term of the r.h.s. of Equation (5.10) and we assume that γ is
constant over the investment horizon T , we would have a total regret of the order of O(T)
for the OLU algorithm. This does not happen to OGDM, which, under these assumptions,
provides a total regret of the order of O(

√
T). Conversely, if we assume γ ∝ 1√

T
as in (Das

et al., 2013), the last term in Equation (5.9) would have constant regret on the costs, i.e.,
CT (OGDM) ≤ 2ϵuM

ϵl
= O(1), compared to an order of O(

√
T) obtained by OLU, which

makes OGDM strictly better than OLU in terms of total regret bound.

63

Chapter 5. Online Portfolio Optimization

5.1.5 Experimental Results
In this section we analyze the empirical performance of the OGDM algorithm and the two
algorithms from the OPO literature that provide guarantees on total regret: UCP (Blum and
Kalai, 1999), and OLU (Das et al., 2013).21 Furthermore, we compare OGDM with OGD,
to evaluate the empirical improvement provided by the momentum, and with ONS (Agarwal
et al., 2006), which has theoretical guarantees and is known to provide the best empirical
results for the regret on the wealth RT (U).

To compare the algorithms, we used four different datasets, summarized in Section 4.2,
specifically the Corona dataset and the Benchmark data (the latter represented in Table 4.2).
The experiments on each of the above datasets consist in the execution of the analyzed
algorithms on portfolios selected by randomly drawing 5 different assets from the datasets.

For comparison purposes, we set the same ηt for OGD and OGDM as prescribed by
Corollary 5.2, with ϵl = 0.8 and ϵu = 1.2, for which Assumption 5.1 holds for all the
datasets. Instead, to tune the Kλ for the sequence λt in Corollary 5.1 for OGDM and the
parameters required by the other algorithms (OLU, ONS, and UCP), we divided the datasets
into a validation and testing set of equal size, we optimized the parameters on the former
one and evaluated the performance of the algorithms on the latter one. All algorithms have
been initialized with a1 = 1

M 1.
As performance indexes to compare the algorithms we used:

• the wealth with costs:

WC
T (a1:T ,y1:T) =WT (a1:T ,y1:T)− γ

T∑
t=1

||at − at−1||1;

• the annualized wealth with costs WC
A as defined in Equation (4.4);

• the average variation of the portfolio per-round:

Vt(U) :=
Ct(U)

γt
,

where Vt(U) is defined so that it is independent from the parameter γ.

Experiments without transaction costs

In this first experimental section, we test the performance of the OGDM algorithm in a
situation where transaction costs are absent (γ = 0). Specifically, we present two different
experiments that allow us to draw conclusions on the behavior of the different algorithms
in two radically different market scenarios.

Figure 5.1 (a) and 5.1 (b) show the evolution of the total wealth WC
t (U) of the different

algorithms over the investment horizon in a specific run, on the Corona dataset and on
the NYSE dataset, respectively. In these experiments OGDM obtains a cumulative wealth
and Sharpe ratio larger than any other algorithm analyzed, suggesting that it can obtain

21We used a naïve version of UCP since the classic implementation would have taken an unfeasible amount of
time for the experiments. More specifically, we discretized the simplex with 104 points and used the corresponding
CRPs to approximate the integrals used by UCP.

64

5.1. Online Portfolio Optimization with Transaction Costs

04-2019 07-2019 10-2019 01-2020 04-2020

1
1
.2

1
.4

1
.6

1
.8

t
(a)

W
C t
(U

)

Corona
SR OGDM : 1.79
SR OGD : 1.21
SR UCP : 1.679

SR OLU : 0.15
SR ONS : 1.1

1962 1966 1970 1974 1978 1982

0
1
0

2
0

3
0

4
0

t
(b)

W
C t
(U

)

NYSE OGDM
OGD
UCP
OLU
ONS

SR OGDM : 5.93
SR OGD : 5.4
SR UCP : 4.68

SR OLU : 6.13
SR ONS : 4.08

1962 1966 1970 1974 1978 1982

0
5

1
0

1
5

2
0

t
(c)

W
C t
(U

)

NYSE

SR OGDM : 2.11
SR OGD : 1.92
SR UCP : 1.82

SR OLU : 0.58
SR ONS : 0.62

Figure 5.1: Wealth WC
T (U) of a specific run, on the Corona dataset (a), on 5 stocks of the

NYSE (see Figure A.1) for γ = 0 (b), and γ = 0.01 (c). Sharpe Ratio (SR) is calculated
with a risk-free rate of 0% for (a) and 14% for (b) and (c).

65

Chapter 5. Online Portfolio Optimization

the best performance even in the absence of costs. Comparing the two figures we notice
that, while in Figure 5.1 (b) all tested algorithms have a generally positive trend in terms
of wealth WC

t (U) over time, in Figure 5.1 (a) OGDM, OGD, and UCP are able to provide
significantly better performance in the last part of the time horizon (220 ≤ t ≤ 250). The
superior behavior is also seen by observing the Sharpe ratio. This performance is due to
the presence of the VIX in the investment universe, which had an impressive gain during
the initial phased of the Covid-19 spread. Instead, if we look at the periods of general
market stability (the entire time horizon of Figure 5.1 (b) and the period in 1 ≤ t ≤ 220
of Figure 5.1 (a)), there is no clear outstanding algorithm among the ones we analyzed.
It is curious to notice how OGDM, OGD, and UCP show similar behaviors, while OLU
and ONS are different from the first three, but similar to each other. Overall, the OGDM
algorithm is capable of obtaining a performance comparable to the ones present in the
literature in both settings.

Experiments with transaction costs

In the second set of experiments, we ran the algorithms on the NYSE, SP500, and TSE
datasets and evaluated the performance of the algorithms in settings with different values
of the transaction cost rate γ ∈ {0, 0.0005, 0.001, 0.003, 0.006, 0.01, 0.02, 0.04}. We
evaluated the different algorithms in terms of annualized percentage wealth (considering
costs) WC

A (see Equation (4.3)) and average variation of the portfolio per round Vt(U).22

The 95% confidence intervals for the analyzed quantities have been computed with statistical
bootstrapping and appear as semi-transparent areas.

Figure 5.1 (c) provides the results of a setting with γ = 0.01 for the same set of assets
shown in Figure 5.1 (b). This example shows that OGDM is essentially overlapping with
OGD, but achieves a slightly better performance which results in a marginally better Sharpe
ratio.

In Figure 5.2, we present the results for the average WC
A on three datasets: NYSE,

SP500, and TSE. Without transaction costs (γ = 0), all the analyzed algorithms obtain
consistently aWC

A between around 10% and 15%. In this setting, ONS is the algorithm with
the largest average WC

A , but as we increase the transaction costs rate, it is the algorithm that
suffers the most, along with OLU. The performance of UCP deteriorates as the transaction
cost rate increases, but its loss is limited compared to the ones of ONS and OLU, always
providing a wealth WC

A (UCP) > 0. OGDM and OGD outperform the other algorithms
when the transaction rate is γ ≥ 0.01. While showing similar behavior for the SP500
dataset, in the other two experiments the OGDM is able to outperform OGD obtaining
almost the same WC

A as in the setting with no costs, even when γ = 0.04. Conversely,
OGD, not using an explicit term for costs in its optimization procedure, has a slight decrease
in terms of wealth as costs increase.

In Figure 5.3, we present the results in terms of average variation of the portfolio per
round Vt(U) for three datasets: NYSE, SP500, and TSE. The worst performing algorithm is
OLU since, as expected from the theory (see Section 5.1.4), its variation of the portfolio per
round, which is proportional to the transaction costs, is approximately constant. The second
worst performer is ONS, which, even though starting with a larger variation than OLU and

22We also run experiments with transaction costs on the Corona dataset, and the results are not presented here
as they are in line with the ones presented for the other datasets.

66

5.1. Online Portfolio Optimization with Transaction Costs

0
0
.0
5

0
.1

0
.1
5

0
.2

A
(W

C T
)

NYSE

0
0
.0
5

0
.1

0
.1
5

0
.2

A
(W

C T
)

SP500 OGDM
OGD
UCP
OLU
ONS

0 0.001 0.006 0.04

0
0
.0
5

0
.1

0
.1
5

0
.2

γ

A
(W

C T
)

TSE

Figure 5.2: Average annualized percentage wealth with 95% confidence intervals computed
on the wealth WC

T (a1:T ,y1:T).

67

Chapter 5. Online Portfolio Optimization

1 1,500 3,000 4,500

0
.0
0
1

0
.0
1

V
t
(U

)
NYSE

300 600 900 1,200

0
.0
0
1

0
.0
1

V
t
(U

)

SP500 OGDM
OGD
UcP
OLU
ONS

300 600 900 1,200

0
.0
0
1

0
.0
1

t

V
t
(U

)

TSE

Figure 5.3: Average variation of the portfolio Vt(U) incurred on a varying time horizon t.

68

5.2. Online Portfolio Optimization with a Benchmark

not having any theoretical guarantee, is likely to have a sublinear variation per round that
decreases over time, but at a slower pace than the remaining three algorithms. Comparing
OGDM, OGD, and UCP, we can see that they all have a variation of the portfolio per round
that decreases over time. Out of these three, UCP is the one with the worst performance.
Finally, comparing OGDM and OGD, the respective behavior varies between the three
datasets, and it seems that OGDM is slightly better at minimizing the costs as time increases.
This is expected given the previous results, in which OGDM seems to provide a larger WC

A

by keeping costs low. Thus, this result suggests that OGDM performs well not just because
it is good at handling transaction costs, but also because it has a superior investment strategy.
To conclude, the experiments confirm the theoretical properties discussed in Section 5.1.3
and suggest that OGDM is the best algorithm to use in the presence of large (γ > 0.01)
transaction costs.

Interpreting the Results It is not straightforward to relate the obtained strategies with
traditional strategies used in finance. OGDM has somewhat trend following behavior as
it increases the weights of the assets which have better performance. It is also important
to notice that since the control quantity are the weights of the portfolio, keeping constant
weights, for example in the case of a CRP, means selling assets which increase in value and
buying assets which increase, thus relating to mean-reverting strategies.

5.2 Online Portfolio Optimization with a Benchmark

While many asset managers aim at obtaining the best possible performance, the majority
compare their gains with a benchmark. A benchmark is usually a market index (see
Definition 2.4), for example the S&P 500 index, and the objective of the asset manager is
to invest in a subset of the components of the index or to use a different weighting than the
index, to outperform the index itself. To study this problem from the OPO perspective, we
introduce Conservative Online Convex Optimization (COCO) framework.

COCO is a novel approach, deriving from the Online Convex Optimization (OCO) field,
in which the learner has to perform online asymptotically as well as the best-fixed decision
in hindsight while satisfying a conservativeness constraint, i.e., during the operational life
of the system it has to perform no worse than a given fixed strategy. Learning an optimal
strategy while satisfying a conservativeness constraint during the exploration phase is of
paramount importance in multiple domains, here we concentrate on the asset management
problem.

The idea of learning while guaranteeing the performance of a fixed and known policy
has also been studied in RL (Garcelon et al., 2020a) and MAB (Wu et al., 2016) (see also
Section 3.3.3 for an intro to MAB). To solve this problem, we extend the techniques from
the OCO literature, and propose a meta-algorithm, namely Conservative Projection (CP),
which extends any online learning algorithm to satisfy the requirements of the COCO
framework. Thanks to the use of a pseudo-loss and a projection in a so-called conservative
ball, the proposed CP algorithm provides anytime guarantees with respect to a fixed default
strategy.

69

Chapter 5. Online Portfolio Optimization

5.2.1 Background on Conservative OCO

Problems closely related to those of conservativeness have been commonly addressed by
safe RL techniques. In García and Fernández (2015), the authors provide a comprehensive
overview of the different definitions of safety in RL. The most common assumption is to
have access to a safe policy, and the goal is to improve that policy monotonically throughout
the learning process. The seminal paper for this setting is Kakade and Langford (2002),
which proposes a conservative policy iteration algorithm with monotonic improvement
guarantees for mixtures of greedy policies. This approach is generalized to stationary
and stochastic policies in Pirotta et al. (2013); Schulman et al. (2015). Building on the
former, in Papini et al. (2017); Pirotta et al. (2015); Papini et al. (2019) the authors have
designed monotonically improving policy gradient algorithms for Gaussian, Lipschitz, and,
recently, smoothing policies. This setting differs substantially from ours as the underlying
environment is assumed to be stochastic. We analyze this setting more accurately in
Chapter 8, where we propose a risk-averse and safe RL algorithm to address the hedging
problem.

In the bandit setting, the authors of Lattimore (2015) analyzed the same concept of
conservativeness, characterizing the Pareto regret frontier in the stochastic case, i.e., a
surface determined by the admissible regret bounds for each arm. Following these seminal
works, the interest of the MAB community in conservative exploration has grown in recent
years, starting with the work presented in Wu et al. (2016), where the authors modified
the UCB1 algorithm (Auer et al., 2002; Auer and Ortner, 2010) to guarantee the safety
constraint. Later, the idea was applied to contextual linear bandits in Kazerouni et al.
(2016) and improved in Garcelon et al. (2020b), as well as to GPUCB, as presented in Sui
et al. (2015, 2018). We inherit the concept of safety as conservatism from these works
on stochastic bandit feedback and apply it to the context of adversarial full-information
feedback.

In the expert learning literature, a work similar to ours is Sani et al. (2014). In this article
the authors design a strategy, named (A,B)-prod, that provides regret guarantees with
respect to the regret of two generic strategies A and B. However, their conservativeness
definition is not comparable to ours, since it does not hold all the time. The question of
bounding the regret not only to the best action but also to other strategies is addressed
in Hutter and Poland (2005); Koolen (2013), in which the authors proved, for the full
information setting, that there exists an algorithm that guarantees a regret of O(

√
T), with a

specific constant for each expert. In particular, the main focus of the paper is to characterise
the admissible vectors {pk}k∈K guaranteeing a regret RkT ≤ pk with respect to each expert
k. Even if these works cover a more general theoretical framework than ours, i.e., multi-
objective regret minimization, the algorithms therein do not guarantee that their loss is
strictly smaller than that of a given expert, and, therefore, their results cannot be compared
with ours.

5.2.2 Formulating Conservativeness in OCO

The problem is formulated starting from a generic OCO framework (Shalev-Shwartz et al.,
2011) in which a learning agent, at each round t, has to select a parameter θt ∈ Θ,
representing a strategy, where Θ ⊂ Rd is a closed and convex set of a finite d dimensional

70

5.2. Online Portfolio Optimization with a Benchmark

Euclidean space.23 At each round t, the agent receives a loss ft(θt) where ft : Θ → [εl, εu]
is a convex and differentiable function, and εl, εu are the minimum and maximum value of
the function ft(·), respectively, and 0 ≤ εl < εu.24 The objective of the learning agent U is
to minimize the regret RT (U) over a given time horizon T ∈ N.

In the COCO setting, we are interested in those algorithms U for which the regretRT (U)
is bounded by a sublinear function of the time horizon T , and, at the same time, perform
throughout the optimization at least as well as an established default parameter θ̃ ∈ Θ,
selected at the beginning of the learning process. While the former requirement represents
the so-called no-regret property of an algorithm (Cesa-Bianchi and Lugosi, 2006), the latter
one is formally defined as follows:

Definition 5.1 (Conservativeness in Online Learning). An online algorithm U is said to
be conservative if it satisfies the following conservativeness constraint for each t ∈ [T]:

Lt ≤ (1 + α)L̃t, (5.11)

where α > 0 is the conservativeness level required by the problem, and L̃t :=
t∑

k=1

fk(θ̃) is

the cumulative loss of the default parameter θ̃ over t rounds.25,26

From now on, we refer to the quantity Zt(U) := (1 + α)L̃t − Lt as the budget of the
algorithm U, i.e., the advantage in terms of loss accumulated by U over time with respect to
the one provided by a constant choice of the default parameter θ̃. We also assume that there
exists µ > εl s.t. L̃t ≥ µt, which imply that the fixed strategy θ̃ is sub-optimal.

We remark that, in this work, we require the constraint in Equation (5.11) to be satisfied
at each round t ∈ [T]. Indeed, any online learning algorithm U providing a regret of

Rt(U) ≤ ξ
√
t is guaranteed to satisfy the above constraint for t >

(
ξ
αµ

)2
, instead we

require that it holds for each t ∈ [T].27 Therefore, satisfying the condition imposed by our
constraint requires the design of ad-hoc algorithms. Conversely, the design of algorithms
with a higher grade of conservativeness, i.e., α ≤ 0, is not a viable option due to the
following:

Theorem 5.3. In the OCO setting, there is no algorithm U which obtains Lt ≤ L̃t, unless
θt = θ̃ for all t ∈ [T].

In other words, it is impossible to guarantee that an algorithm does strictly better than
or equal to a given default parameter θ̃ over the entire time horizon T , unless one always
plays the default parameter.

5.2.3 The Conservative Projection Algorithm
We begin this section by characterizing a set of parameters in the parameter space Θ
that guarantees that their choice implies the conservativeness of an algorithm at round t.

23We will consider a generic OCO setting and then focus on OPO in Section 5.2.4.
24As a remark on the notation, in the OCO literature, loss functions are written as ft(θt) ≡ f(θt, yt), dropping

the explicit dependence on the outcome yt.
25The conservativeness constraint in Equation (5.11) is expressed in terms of losses, as commonly done in the

OCO framework.
26We denote with [T] the set {1, . . . , T}.
27This comes from the fact that Lt − L̃t ≤ Rt(U) and ξ

√
t ≤ αµt holds for t >

(
ξ
αµ

)2
.

71

Chapter 5. Online Portfolio Optimization

Then, we select a specific parameter from this set, thus defining the CP algorithm, and,
subsequently, we show it is conservative and has sublinear bounds for the regret.

The Conservative Ball

Let us define the following:

Definition 5.2 (Conservative Ball). A conservative ball B(θ̃, ωt) ∈ Rd is a d-dimensional
ball centered in θ̃ with radius:

ωt :=

1−(Lt−1− (1 + α)L̃t−1− αεl
DG

+ 1

)+
D, (5.12)

where D := sup
x,y∈Θ

||x − y||2 is a bound on the diameter of the parameter space Θ,

G := sup
x∈Θ

||∇ft(x)||2 is the upper bound on the norm of the gradient of the loss ft(·), || · ||2
denotes the L2 norm of a vector, and (a)+ denotes the maximum between the quantity a
and zero.

From now on, we refer to this ball as the conservative ball (also depicted in Figure 5.4)
since this choice of ωt implies that playing any of the parameters θ ∈ B(θ̃, ωt) at round t
guarantees that the accrued budget Zt(U) does not become negative. Formally:

Theorem 5.4. Let B(θ̃, ωt) be the conservative ball defined in Equation (5.12) and assume
that Equation (5.11) is satisfied at round t− 1. Then, each parameter θ ∈ B(θ̃, ωt) ∩Θ
satisfies Equation (5.11) at round t.

Notice that the projection of a generic parameter zt on the ballB(θ̃, ωt) can be computed
analytically and efficiently. Indeed, the projection operation on the conservative ball satisfies
the following:

θt = ΠB(θ̃,ωt)
(zt) = βtθ̃ + (1− βt)zt, (5.13)

where

βt =

{
1− ωt

||zt−θ̃||2
zt /∈ B(θ̃, ωt)

0 zt ∈ B(θ̃, ωt)
. (5.14)

In what follows, we choose zt as the parameter provided by a generic OCO algorithm at
round t.

Description of the CP Algorithm

Theorem 5.4 provides a way to choose a sequence of parameters over time, for which the
conservativeness constraint is satisfied. The CP algorithm uses this result by choosing, at
each round t, the parameter θt in the ball B(θ̃, ωt) as close as possible to the prediction
zt provided by the OCO algorithm fed using the pseudo-loss function gt−1(zt−1) :=
(1− βt−1)ft−1(zt−1), i.e., it selects a convex combination of the default parameter θ̃ and
zt. The intuition behind this choice is that we want to choose θt as close as possible to the
no-regret prediction zt of the OCO algorithm that is guaranteed to have sublinear regret.
Furthermore, we show that this algorithm increases the radius ωt over time, and therefore, in

72

5.2. Online Portfolio Optimization with a Benchmark

zt−1

zt

Θ

B(θ̃, wt)

θ̃

θt

Figure 5.4: Graphical representation of CP algorithm. In green the conservative ball
B(θ̃, ωt), and in red the parameter set Θ. The CP algorithm selects the parameter θt
for round t by projecting the parameter zt, selected by A, on the conservative ball.

Algorithm 3: Conservative Projection Algorithm
1 Initialize: online learning algorithm A, conservativeness level α > 0, default parameter

θ̃ ∈ Θ
2 Set L̃0 ← 0, L0 ← 0, and β0 ← 1
3 for t ∈ [T] do
4 Get point zt from A applied to loss gt−1(zt−1)
5 Compute ωt as in Equation (5.12)
6 Select θt = ΠB(θ̃,ωt)

(zt)

7 Suffer loss ft(θt)
8 Observe ft(zt) and ft(θ̃)
9 Set gt(zt)← (1− βt)ft(zt)

finite-time, the conservative ball includes the parameter zt, allowing CP to have a sublinear
regret. Finally, we remark that the CP algorithm is designed so that as the distance of the
default parameter θ̃ to the optimal one increases, the value of the radius ωt increases, which,
in turn, decreases the cost of guaranteeing conservativeness.

The pseudo-code of the CP algorithm is presented in Algorithm 3, and its visual repre-
sentation is depicted in Figure 5.4. The algorithm requires as input a generic online learning
algorithm A, which selects the parameter zt to play at each round t, a conservativeness level
α > 0, and the default parameter θ̃ ∈ Θ. At first, we set the initial value of the cumulative
losses L0 = 0, that of the default parameter L̃0 = 0 (Line 2), and we set the parameter
β0 = 1. Afterwards, at each round t, zt is chosen by the algorithm A by considering the
pseudo-loss gt(x) (Line 4). Thanks to a projection operation (Line 6), which projects zt
into the conservative ball B(θ̃, ωt), the resulting parameter θt satisfies the conservativeness
constraint in Equation (5.11). Finally, the algorithm suffers the loss ft(θt), and observes
ft(zt) and ft(θ̃), i.e., the loss of the algorithm A and the default parameter θ̃, respectively
(Lines 8-9).

Notice that, from a computational point of view, the CP algorithm has a small computa-
tional overhead with respect to the original online learning algorithm A, i.e., an overhead

73

Chapter 5. Online Portfolio Optimization

proportional to d, due to the additional projection on the conservative ball and the evaluation
of the losses ft(θt), and ft(θ̃).

Analysis of the CP Algorithm

In this section, we prove that the CP algorithm has the desired conservativeness property
and maintains the sublinear regret of the subroutine algorithm A. Since the CP algorithm
selects a parameter θt inside the conservative ball B(θ̃, ωt), a straightforward corollary of
Theorem 5.4 guarantees that the conservativeness constraint is satisfied. Formally:

Corollary 5.4. The CP algorithm applied to a generic online learning algorithm A is
conservative.

Once we established the conservativeness of our approach, we need to prove that the
CP algorithm has sublinear regret. Intuitively, we need to show that the radius ωt grows
over time, and eventually includes the entire space Θ, so that from a specific round we are
allowed to follow the no-regret choice zt. Formally, we show the following:

Theorem 5.5. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤ ξ
√
T .

The CP algorithm using A as subroutine has the following regret bound:

RT (CP) ≤ ξ
√
T + τDG, (5.15)

for any T > τ , where:

τ =
2αµ(DG+ αµ) + ξ

(√
ξ2 + 4αµ(DG+ αµ) + ξ

)
2α2µ2

. (5.16)

A regret of order O(
√
T) is tight in general OCO problems (Abernethy et al., 2008), but

there exists specific settings in which a O(log T) regret can be achieved, e.g.,, in the case
of H-strongly convex losses or in the case of exp-concave losses (Hazan et al., 2007). In
such settings, the CP algorithm guarantees O(log T) regret together with the conservative
constraint, formally:

Theorem 5.6. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤
ρ log(T). The CP algorithm using A as subroutine has the following regret bound:

RT (CP) ≤ ρ log(T) + τDG, (5.17)

for any T > τ , where:

τ :=
αe2µ(DG+ αµ) + 2ρ

(√
αe2µ(DG+ αµ) + ρ2 + ρ

)
e2α2µ2

. (5.18)

Notice that for Theorem 5.5 and 5.6 we have that τ ∝ 1/µ, meaning that for default
parameters θ̃ with smaller accrued losses with respect to the optimum θ̄ (and hence smaller
µ), theCP algorithm is required to wait longer to play the action prescribed by the no-regret
strategy A. Moreover, the bound shows a dependence τ ∝ 1/α, meaning that a tighter
conservative constraint makes the problem more challenging for the CP algorithm.

74

5.2. Online Portfolio Optimization with a Benchmark

5.2.4 Experimental Results

In this section we present the experimental results of the CP algorithm applied to the
OPO framework.28 We compare our performances to OGD (Zinkevich, 2003), the non-
conservative version of the proposed algorithm, the Conservative Switching (CS) algorithm,
a naive conservative baseline, and the Constrained Reward Doubling Guess (CRDG). CS is
a budget-first algorithm we designed. This algorithm plays the fixed default action until
enough budget has been accrued, then it plays the no regret strategy. We describe CS
and provide its theoretical properties in Appendix A.3.1. As for CP, in CS we consider
OGD as subroutine and, thus, refer to it as CS-OGD. CRDG is a conservative baseline
obtained by combining the Reward Doubling Guess algorithm (Streeter and McMahan,
2012), originally designed for unconstrained online optimization setting, with the Constraint
Set Reduction procedure presented in Cutkosky and Orabona (2018). We provide also its
detailed pseudo-code and a discussion on its theoretical properties in Appendix A.3.1.

In the experimental setting, we consider the portfolio allocation a instead of the param-
eter θ, recalling the definition of wealth Wt(U) of Equation (2.14) and the negative log loss
function of Equation (5.1). We consider Assumption 5.1 from Section 5.1.2, which states
that yj,t ∈ [ϵl, ϵu]

d ∀j ∈ {1, . . . ,M}, where ϵl = e−εl and ϵu = e−εu .
In this setting, the default parameter ã ∈ ∆M−1 represents the index that an investor

wants to outperform over the entire time horizon T . The conservativeness constraint
formulation is defined as follows:

Wt(U) ≥ (1− κ)W̃t ∀t ∈ [T], (5.19)

where W̃t the wealth gained by playing ã over t steps, and κ ∈ (0, 1) represents the
conservativeness level in this context.

Notice that the log-loss used in the OPO case is not positive, therefore, the use of
CP-OGD algorithm requires to shift the loss to positive values, i.e., using the following loss
function:

ft(at) = − log(⟨at,yt⟩) + εl. (5.20)

Results

We used a public dataset containing the components of the S&P described in Section 4.2. We
selected 100 random stocks among the stocks that had a one-time-step return of maximum
±4% and chose uniformly from them the default strategy θ̃. The conservative level κ has
been set to κ = 0.2, the diameter in this setting is D =

√
2 and the gradient is bounded by

G = εu
εl

, where εl = 0 and εu = log(ϵu)− log(ϵl) since we used the shifted loss defined
in Equation (5.20). We used ηt = K√

t
, with K = D√

2G
, as learning rate for all the analysed

algorithms. This choice for K minimizes the theoretical bound on the regret of the OGD
algorithm.

We evaluated the algorithms in terms of wealth W (U) and in terms of wealth budget,
defined as:

Pt(U) =Wt(U)− (1− κ)W̃t.

28While an extensive experimental campaign was carried out in Bernasconi de Luca et al. (2021), in this thesis
we concentrate on the results obtained in the OPO setting.

75

Chapter 5. Online Portfolio Optimization

0 1 2 3 4

·104

1

1.2

1.4

t
(a)

W
t
(U

)

0 1 2 3 4

·104

0

0.2

t
(b)

P
t
(U

)

CP-OGD CS-OGD CRDG OGD

Figure 5.5: Results on a specific run: (a) wealth Wt(U), (b) wealth budget Pt(U).

The results of the experiment are presented in Figure 5.5. In Figure 5.5 (a) we can see
that wealth of the investment strategy proposed by the CP-OGD and CS-OGD algorithms
outperforms the OGD algorithm. This suggests that in some cases the information given
by the default strategy can greatly help the performance. Moreover, the budget of the
OGD algorithm presented in Figure 5.5 (b), does not satisfy the budget constraint of
Equation (5.19), while the CP-OGD and CS-OGD satisfy the constraint ∀t ∈ [T]. This
confirms the theoretical results provided. CRDG also performs well, but slightly worse
than CP-OGD and CS-OGD.

Interpreting the Results It is not straightforward to interpret the resulting investment
strategy in financial terms. In fact, the strategy has a mixed behavior caused by the
combination of the subroutine algorithm and the CP algorithm. In this experimental section,
OGD is the subroutine algorithm, which generates a trading strategy which can be related to
trend following strategies, as we saw also in Section 5.1.5. The CP algorithm instead forces
the portfolio weights to be close to the index weights, adjusting the constraint depending
on how well the OGD strategy is behaving compared to the index. This means that the CP
algorithm also has a trend following behavior, where the trend is not set by the individual
assets but by the two strategies: the default index and the subroutine algorithm.

5.3 Chapter Summary

In this chapter we analyzed the Online Portfolio Optimization framework. Section 5.1
focused on controlling transaction costs and Section 5.2 focused on the problem of conser-
vative optimization.

Transaction Costs in OPO In Section 5.1, we started by defining the framework and
introducing total regret, a regret formulation that includes transaction costs. We then
introduced a novel algorithm, namely OGDM, to control, theoretically and empirically, the

76

5.3. Chapter Summary

costs. We proved that OGDM is capable of achieving a total regret of O(
√
T). Moreover, we

verified the analytical results through an extensive experimental campaign. The experiments
demonstrated the superior behavior of OGDM in the presence of costs with respect to state-
of-the-art OPO algorithms, and OGDM’s adherence with the proved theoretical guarantees.

Future developments could be to extend the bound on the transaction costs to a wider
class of algorithms, e.g.,, the ones derived from Online Mirror Descent (OMD). Furthermore,
it would be interesting to extend the transaction cost model to include liquidity constraints
and market impact, combining with the optimal execution approach of Chapter 9.

Beating a Known Benchmark In Section 5.2, we started by formulating the conserva-
tiveness constraint, which denotes the maximum “distance” with respect to the benchmark
in consideration. In order to comply with this constraint, we proposed the CP algorithm,
a “wrapper” that can be applied to any existing OCO algorithm. We proved that CP main-
tains the same regret order of the OCO algorithm it uses as subroutine while satisfying
the conservativeness property. Finally, we confirmed the theoretical results through the
experiments on the OPO framework, comparing with state-of-the-art algorithms.

An interesting direction is whether the assumption that the default strategy θ̃ is fixed
can be relaxed to include specific classes of time-varying strategies.

77

CHAPTER6
Quantitative Trading with FQI and MCTS

The quantitative traders introduced in Section 2.3.2 try to find patterns, trends, and inef-
ficiencies in the price process of a large number of instruments by using statistical tools.
These potential arbitrages are usually very small and last for a limited amount of time, thus
it is necessary to have a systematic approach and use leverage. The resulting gain process
has no correlation with the general market movements. This is different from the portfolio
optimization techniques seen in Chapter 5, where the objective is to have exposure to the
general market, but to perform better than the latter by changing the portfolio weights.
While having a clear distinction in this thesis, practitioners often mix the two approaches to
diversify their investing strategies.

Given the aggressive and frequent actions (long, short, flat) we consider in the quan-
titative trading approach of this chapter, carefully modeling transaction costs becomes of
fundamental importance. Thus, recalling Lemma 3.1, RL or online planning techniques
are more appropriate in this scenario compared to the online learning approaches of the
previous chapter. This chapter addresses the negative impact of transaction costs on the
trading strategy. The approach adopted could be used together with an optimal execution
approach, such as that presented in Chapter 9 to reduce costs.

The use of RL in trading has received increasingly more attention for its goal being well
aligned with trading objectives (Fischer, 2018; Meng and Khushi, 2019; Bacoyannis et al.,
2018). The first applications to trading using recurrent RL have shown promising results
(Moody and Saffell, 2001; Gold, 2003). Later works have confirmed this encouraging
direction in a variety of contexts, including high frequency trading using order book
information (Briola et al., 2021) with Proximal Policy Optimization (Schulman et al., 2017)

79

Chapter 6. Quantitative Trading with FQI and MCTS

or stock trading using OHLCV (open, high, low, close, and volume) data (Théate and Ernst,
2021) with Deep Q Network (DQN) (Mnih et al., 2013).

In this chapter, we focus initially on the use of FQI to learn a quantitative trading strategy
considering the FX pairs EURUSD and GBPUSD. Then, in Section 6.3, we propose the
use of online planning, specifically MCTS, to trade the EURUSD pair.

Chapter outline The chapter begins with an overview of the state-of-the-art regarding
trading using RL. It is then divided in two parts, Section 6.2 starts by describing FQI, focus-
ing on its use to learn a quantitative trading strategy with two correlated Foreign eXchange
(FX) pairs in Section 6.2.3. The experimental campaign is described in Section 6.2.4,
where we focus on hyper-parameter tuning and changing the persistence of the actions to
optimize performance. Section 6.3 starts by defining the Open Loop extension that allows
MCTS to work in problems with stochastic state transitions. In Section 6.3.1 we describe
the algorithm used to tackle the trading problem, including the novel generative model,
followed by the experimental results.

6.1 Background on RL for Trading

There is growing literature that experiments the use of RL for trading, while, to our
knowledge this is the first attempt in using MCTS. We concentrate on the papers that
address topics similar to what is presented in this work, starting with articles on FX trading,
then on multi asset-trading.

RL for FX Trading Popular approaches to FX trading include recurrent RL considering
several currency pairs (Gold, 2003), Q-learning for GBPUSD (Dempster et al., 2001), DQN
on EURUSD and USDJPY (Sornmayura, 2019), DQN on EURUSD (Carapuço et al., 2018),
FQI on EURUSD (Bisi et al., 2020a), and DQN on 12 currency pairs (individually) (Huang,
2018). RL for FX trading is extremely promising, as highlighted by Sornmayura (2019)
whose agent outperforms an experienced trader when considering the EURUSD pair.

RL for Multi-asset Trading. To the best of our knowledge, using RL to trade simul-
taneously more than one currency pair has not been evaluated on FX. Considering other
asset classes, Jiang et al. (2017) applied Deep Deterministic Policy Gradient (Lillicrap
et al., 2015) using past price information to manage a portfolio of 12 crypto-currencies
with a trading frequency of 30 minutes. Adopting an approach similar to Jiang et al. (2017),
Alonso and Srivastava (2020) considered the daily re-balancing of 24 US listed stocks.
Other works on multi-asset investment include Jangmin et al. (2006), whose algorithm
learns a meta-policy with Q-learning to select, among a set of traders, which trader’s
allocation proposition to follow. Hongyang et al. (2020) examined the daily trading of 30
stocks included in the Dow Jones. Interestingly, the authors consider an ensemble approach
and select for the next testing period the algorithm that obtained the best Sharpe ratio in the
previous periods.

80

6.2. Learning to Trade with FQI

6.2 Learning to Trade with FQI

FQI is a value based, batch and off-policy RL algorithm as mentioned in Section 3.3.1.
Starting from the notations and definitions of Chapter 3, we describe the Fitted Q Iteration
algorithm defined by Ernst et al. (2005) and then explain how it can be used to learn a
quantitative trading policy in Section 6.2.3.

6.2.1 Fitted Q Iteration

Recalling the Bellman equation for the Q-function (Equation 3.6), we can define the
Bellman operator Tπ associated to a policy π as:

(T πQ)(s, a) = r(s, a) + γ E
s′∼P(·|s,a)
a′∼π(·|s′)

[
Q(s′, a′)

]
.

The Q-function and the Bellman operator are linked in that Qπ is a fixed point of T π.
Notably, the result holds also for the optimal policy π∗ that gives the fixed point of the
optimal Bellman operator T ∗:

(T ∗Q)(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
. (6.1)

By the Banach-Caccioppoli fixed point Theorem (Banach, 1922), with γ ∈ [0, 1) and a
finite or infinite horizon, we can thus obtain Q∗ = Qπ (where Q∗ = Qπ∗) starting from
any Q-function by recursively applying the optimal Bellman operator. In this chapter, we
are in a receding horizon case with a finite number of FQI iterations, thus the undiscounted
setting also holds. (Chang and Marcus, 2003).

FQI (Ernst et al., 2005) uses the optimal Bellman operator and Supervised Learning
techniques to generalize the knowledge obtained from the training samples, extending
the information to unseen samples in the state and action space. To train using FQI, it
is necessary to create a dataset D of 4-tuples (s, a, r, s′) containing a state s, an action
a, the resulting reward r(s, a, s′), and next state s′. It is preferable to span as much of
the state-action space as possible to minimize the interpolation task. This dataset can be
created before beginning the training and can be used without updates, since FQI is an
offline algorithm.

Algorithm 4: Fitted Q Iteration Algorithm

1 Initialize: Q̂0(s, a)← 0 ∀s ∈ S, a ∈ A, number of iterations J , inverse temperature
parameter τ and load dataset D

2 for j ∈ [J] do

3 Q̂j+1 = argmin
f∈F

∑
s,a,r,s′∈D

(
f(s, a)− r − γmax

a∈A
Q̂j(s

′, a)

)2

4 Extract π(s) = exp(τQ̂J (s,·))∑
a∈A

exp(τQ̂J (s,a))
∀s ∈ S

5 Return π

81

Chapter 6. Quantitative Trading with FQI and MCTS

Indeed, the goal of the FQI algorithm is to approximate the Q-functionQ(s, a) by means
of a regressor Q̂(s, a) that exploits the dataset D.29 FQI is described in Algorithm 4 where,
starting in Line 1, we initialize for each state s ∈ S and action a ∈ A the approximated
state-action function Q̂0(s, a) to zero, we initialize τ the inverse temperature parameter
to be used in a Boltzmann distribution and load the dataset. Subsequently, the algorithm
solves a regression problem having as target r+γmax

a∈A
Q̂j(s

′, a) (Line 3), i.e., the currently

available estimate of the value of the action a in state s. Depending on the computational
complexity required by this step and the characteristics of the environment, one might select
a different regressor, e.g., Support Vector Machines or Neural Networks - see Antos et al.
(2007) for details. Finally, we extract the policy from the approximate Q-function in Line 4.

Two conflicting phenomena appear when training FQI. On the one hand, the higher the
number of iterations, the more future outcomes are taken into account in the computation
of the approximate Q-function, as at each iteration,the horizon considered increases by
one step. On the other hand, the regression of the Q-function introduces errors, which
are increased through the iterations, preventing the Q-function from converging. Thus, a
trade-off is usually observed in the number of iterations.

6.2.2 Persistent Actions
Due to the diversity of market participants and investment strategies (Mantegna and Stanley,
1999; Bouchaud and Potters, 2003), it is reasonable to consider that the market is built upon
different time scales. This property is comprehended inside the Adaptive Market Hypothesis
(AMH) (Lo, 2019; Di Matteo et al., 2003), which extends the Efficient Market Hypothesis
(EMH) to add the possibility that investors adapt their investment decisions based on new
information. The EMH states that asset prices reflect all the currently available information,
and thus investors and so the markets are rational. Instead the AMH states that the EMH
may not always be true, as investors can become irrational in response to heightened market
volatility. The AMH is often tested through the lens of multifractal analysis (Lopes and
Betrouni, 2009) to study the scaling laws of financial time series. If a timeseries exhibits a
multifractal behavior, then it does not have a characteristic scale. This implies that whatever
the trading horizon, the scaled opportunities will be the same. In particular, experiments
suggest that such is the case for the FX markets (Corazza and Malliaris, 2002; Garcin,
2019).

In the field of RL for trading, the study of the impact of the trading time scale has not
been a primary focus. Most works do not consider changing the frequency of interaction
with the environment even though the variety of time scales across papers ranges from
high-frequency to daily to even longer periods. We note, however, that Pendharkar and
Cusatis (2018) compares quarterly, semi-annual, and annual frequencies and finds the latter
to offer the best performance. This can be partly explained because the hyper-parameters
have been tuned for the annual frequency, yet the author also suggests that it could be
due to the different probability distribution of the returns, which would favor riskier but
more profitable assets. Some previous works highlight the effect of assumptions on trading
frequency, such as transaction costs (Elder, 2008), or the agent’s risk aversion (Bisi et al.,
2020a). In these works, the authors do not change the trading frequency, but the agent
learns by itself to act with a lower frequency.

29The typical regressor is extra trees, see Appendix B.4.2 for details.

82

6.2. Learning to Trade with FQI

In RL, continuous time control problems are typically addressed by means of time
discretization inducing a certain control frequency. On the one hand, a higher control
frequency, especially in trading and finance, gives the agent more control opportunities;
on the other hand, it shows several drawbacks, such as an increase in sample complexity
due to the reduced effects of the single actions. Moreover, as specified in Section 6.2.1, an
increasing number of FQI iterations leads to a larger planning horizon and a propagation of
regression errors. Hence, there is a trade-off between the possibility to detect immediate
opportunities and the learning capabilities. Metelli et al. (2020) introduces the idea of
action persistence, which consists in the repetition of each individual action for a number
of consecutive steps. Given a discrete-time MDP with initial state distribution µ, M =
⟨S,A,P,R, γ, µ⟩ modeled at the highest possible control frequency, the persistence can be
seen as an environmental parameter k that can be configured to generate a family of related
decision processes Mk = ⟨S,A,Pk,Rk, γ

k, µ⟩ in which, whenever an action is issued,
the resulting transition lasts for k time steps, with all the one-step rewards collected (with
discount) in the new distribution Rk. In the following sections we analyze, experimentally,
the effect of changing the action persistence on the performance of the trading strategy.

6.2.3 Using FQI for FX Trading

In this section, we focus on defining the task in the case of a single FX currency pair, adding
details to what is described in Definition 2.6, and afterwards extend to trading with two
currency pairs.

One Currency Pair FX Trading In the FX market, it is important to define a domestic or
base currency and a foreign currency, keeping in mind that we aim at maximizing the profits
obtained in the domestic currency. Two options are then viable: trading a fixed quantity of
the foreign currency for a variable amount of the domestic, or, vice versa, trading a variable
amount of foreign currency for some fixed amount of the base one. We are interested in
the second case since, from a financial point of view, this allows an easier characterization
of the risk. We assume our base currency is USD. With this formulation, it is possible to
see that this corresponds to treating the base currency as an asset, where in place of the
price we have the instantaneous exchange rate. As a result, rewards are expressed in the
foreign currency. However, to have an effective evaluation of the agent’s performance, it is
desirable to express the returns in the same currency. Thus, we convert on a daily basis the
collected rewards in the domestic currency. While considering transaction costs, following
Equation (2.22), we assume there is no market impact. The considered episodes are one
business day long, with 1-minute time-steps, hence, we use the undiscounted setting (i.e.
we set γ = 1). Thus, to summarize, the MDP is defined as:

• State The state contains a window of the last M observed prices. In our experiments,
the decisions are taken every minute, so we use a window of 60 prices, i.e., an hour
of observations. This window is used to incorporate market trends in the state, as
including only the current price would make the state non-Markovian. Since we
consider trading in a finite horizon of length H , we include in the state also the
current time-step t ∈ [0, H] and the portfolio position at−1 ∈ {−1, 0, 1} of the
previous time-step.

83

Chapter 6. Quantitative Trading with FQI and MCTS

• Action We consider a discrete action space where the action at time t, at is the
portfolio position the agent will hold, so −1 indicates buying 1 USD and selling the
equivalent amount of EUR and buying the equivalent amount of USD, 0 indicates not
holding any exposure, +1 indicates selling 1 USD and buying the equivalent amount
of EUR. Each action is characterized by the same size of unitary amount.

• Reward Given the current portfolio position at−1, the action taken at, and the prices,
the reward is defined as Equation (2.17):

rt+1 = at(Pt+1 − Pt)︸ ︷︷ ︸
market movement

− bid-ask
2

|at − at−1|︸ ︷︷ ︸
transaction costs

.

GBPUSD

EURUSD

lon
g

lon
g

sh
or
t

sh
or
t

Figure 6.1: Graphical representation of two FX pairs model. USD is considered as
domestic currency. The dots (including the origin) represent the possible portfolio
positions. To switch from a long position in the GBPUSD pair to a long position in the
EURUSD pair, the agent needs to pay twice the transaction fees, both for closing one
position and opening the new one (blue path).

Two Currency Pairs FX Trading We consider two currency pairs EURUSD and GB-
PUSD (thus three currencies), with the same domestic currency (USD). To simplify the
model and reduce the size of the action space, we do not allow positions involving simulta-
neous allocations on different foreign currencies (see Figure 6.1). This is not restrictive
since we are pursuing a risk-neutral objective. In practice, this means that it is only possible
to be long/short with respect to to one pair at each time-step. Therefore, we allow the
agent to take 5 possible positions that correspond to being long (or short) with respect to
each of the foreign currencies, or to being flat with respect to both, as shown in Figure 6.1.
The agent can switch from a currency pair to the other one in just one step. However,
this transition is considered as the composition of two operations: the transition to the flat
allocation, and from flat to the final position. Consequently, such operations involve twice
the transaction costs. The state has the same features as described above but includes also
the prices of the additional currency pair. We expect the three-currency scenario to be more
profitable since the agent, at each time-step, has more instruments to choose amongst, and
hence, it may exploit additional trading opportunities.

In this section, we describe the results achieved both in a multi-currency and single-
currency framework. We consider real data from EURUSD and USDGBP pairs from 2017

84

6.2. Learning to Trade with FQI

to 2020 downloaded from HistData.com (as described in Section 4.2). A fixed $100K
allocation was considered and a fixed bid-ask spread of $2 · 10−5. Performances are shown
as percentages of the invested amount and annualized.

Dataset Generation

As explained in Section 6.2.1, the FQI training set is composed of a series of tuples, each of
which contains the current state, the action of the agent, the resulting next state, and reward.
To build the dataset, starting from the collected market prices spanning over 24 hours, we
filtered the data to focus on the European trading time window (from 8:00am to 6:00pm
CET).30 We then added the 60 consecutive price variations and time of the day to each state.
Finally, we associated to each pair (s, s′) all the possible portfolio-action configurations
and the correspondent rewards, computed using Equation 2.17.

Model Selection

To select the best FQI model, it is necessary to tune both the hyper-parameters related to
the extra tree regressors (see Appendix B.4.2 for details on extra trees) and the ones that
characterize the general training algorithm.

Based on our experience and following what is suggested in Geurts et al. (2006), given
a reasonable number of trees that guarantee a good trade-off between high computational
time and low variance of the estimation, only the min-split has to be tuned to regulate the
model complexity. Typically, the higher the min-split threshold is, the simpler is the trained
model, because trees are forced to use a greater number of samples to perform a split, and
hence complicated patterns are excluded. However, a low min-split threshold allows for
more complex models, although it also increases the risk of overfitting the training data.

The training algorithm, instead, is characterized only by the number of iterations. As
the number of iterations grows, the optimized horizon increases, allowing the model to
learn longer-term patterns. Nevertheless, as mentioned in Section 6.2.1, iterating the Q-
function approximation procedure leads to the propagation of the noise contained in the
data. Therefore, we have to deal with the trade-off between extending the optimization
horizon and propagating approximation errors through iterations.

6.2.4 Experimental Results
We analyze the impact of the persistence by testing three different sampling frequencies:
1-minute, 5-minute, and 10-minute. For each frequency, we trained a model using two
different min-split thresholds and 10 FQI iterations. Moreover, to take into account the
randomness of extra trees regressors, we performed 2 different training and validation
runs for each set of hyperparameters. We trained on data from the years 2017 and 2018,
validated using 2019, to select the best min-split and iteration number, and tested on 2020.
An example of this validation procedure is shown in Figure 6.2 for the EURUSD case for
each considered persistence. The procedure gives 7 FQI iterations as the optimal choice
for the 1-minute persistence, consisting thus in an optimization horizon of 7 minutes. In

30This choice is motivated by the fact that two out of the three considered currencies are European, and that this
is the time with the highest traded volumes; the remaining time has been excluded for the lower trading volumes,
to make the approach more consistent and robust.

85

Chapter 6. Quantitative Trading with FQI and MCTS

Figure 6.2: Annualized percentage P&L on single currency pair EURUSD on validation
set. Each figure has a different persistence (1-minute, 5-minute, and 10-minute). The
performance, averaged over two seeds, is reported for each FQI iteration, and for two
different values of the min-split parameter (45k and 60k). The selected models are
highlighted with a red dot. Performances are reported as annualized percentages with
respect to the invested amount.

Pers MS Ite P&L (%) Sharpe ratio MDD (%)

E
U

R 1 45k 7 −1.45± 1.16 −0.22 9.28
5 60k 1 6.91 ± 2.63 1.34 4.83
10 45k 6 1.65± 1.99 0.27 6.16

G
B

P 1 45k 1 −11.30± 3.05 −1.37 14.89
5 45k 2 14.29 ± 4.65 1.93 7.66
10 45k 9 6.43± 1.57 0.63 10.54

B
ot

h 1 75k 3 −10.12± 3.64 −1.45 15.63
5 60k 1 14.83 ± 7.34 2.02 7.96
10 75k 7 3.00± 3.40 0.33 11.07

Table 6.1: Annualized percentage P&L on testing set of the selected models averaged over
5 runs with the corresponding standard deviation. The measures are P&L, Sharpe ratio,
and MDD (defined in Section 4.5) as a percentage of the allocation. min-split=MS and
iteration=Ite.

the 5-minute persistence case the optimal choice is 1 iteration, signifying a horizon of 5
minutes. Finally, in the 10-minute persistence, the optimal iteration gives an optimization
horizon of 60 minutes.

Results

Table 6.1 represents the performance on the testing set (year 2020) of the models that
obtained the best performance in the validation set, where Figure 6.2 exemplifies validation
in the EURUSD case. To interpret the results of Table 6.1, it is useful to look at the
Sharpe ratio: in general, a Sharpe ratio greater than 1 is acceptable to investors, thus, in
this case, it corresponds to the strategies with a persistence of 5 minutes. Models trained
with a persistence of 1-minute are characterized by worse performance both in terms of

86

6.2. Learning to Trade with FQI

Figure 6.3: Percentage P&L on testing set of the selected models averaged over 5 runs with
confidence intervals. Buy and Hold (B&H), Sell and Hold (S&H), Trend Following (TF)
and Mean Reverting (MR) baselines are included in the single asset case. Performances
are reported as percentages of the invested amount.

Figure 6.4: Percentage P&L on testing set of the selected models averaged over 5 runs
with confidence intervals. Divided in terms of persistence. Performances are reported
as percentages of the invested amount.

cumulated yearly P&L and Sharpe ratio. The same models of Table 6.1 are shown in
Figure 6.3 where we see the cumulated P&L through time. This figure also includes four
benchmark strategies: Buy and Hold (B&H), Sell and Hold (S&H), trend following, and
mean reverting. B&H and S&H are passive strategies that consist in keeping a constant
position, respectively, long or short. The trend following strategy goes long (at = 1) when
the 50 minute moving average crosses above the 200 minute moving average and goes short
(at = −1) when it crosses below. The mean reverting strategy does the opposite, going
short when the 50 minute moving average crosses above the 200 minute moving average
and going long when it crosses below. Both the FQI strategies and the benchmark strategies
trade between 8:00am and 6:00pm CET, closing any position at the end of the trading day.

Figure 6.4 also contains the same models of Table 6.1, but subdivided for the three
persistence values when trading multi-currency with respect to trading only one FX pair.
We can see that the 5-minute persistence three-currency model guarantees the highest

87

Chapter 6. Quantitative Trading with FQI and MCTS

Figure 6.5: Visualization of trades on test set in the multi-currency scenario, 10-minute
persistence, FQI iteration 5, and min-split 75k. Each row corresponds to a different
business day, with the time of day on the columns.

cumulative returns at the end of the 2020, even if it does not consistently outperform the
single FX pair models through the whole year. Again, the poor performances of the models
with persistence equal to 1-minute can be explained by the worse signal-to-noise ratio that
is present using the base interaction frequency. A higher persistence gives computational
advantages, in fact, for the same number of iterations, the optimization horizon becomes
longer as the persistence increases. Moreover, we also noticed that the mean time per
iteration decreases with the persistence, even if the sample size of the FQI training set is the
same. By inspecting the resulting models, we found out that the regression trees obtained
with persistence 1-minute are characterized by almost double the number of nodes and
leaves with respect to the ones with higher persistence. This may be due to the impact of
the noise embedded in the data, which increases with higher frequencies.

We can analyze the learnt policy by considering Figure 6.5, which shows the policy of
the best agent with persistence 10-minutes on the test set in the multi-currency scenario.
Observing the patterns (vertical stripes of the same color in the allocation heatmaps), it
is possible to see that the agent tends to go long with respect to USDGBP during the first
hour of most days, then it changes the portfolio allocation moving to a short position with
respect to EURUSD and keeps it until 10:00am. Some of these patterns may be associated
with particular events and/or actions of financial institutions that are repeated each trading
day e.g., when American traders enter the FX market around 2:00pm the agent usually
changes its position with respect to EURUSD from long to short.

Finally, it is worth noting that the performances of all the models, both in the two-
currencies setting and in the three-currencies one, are strongly affected by multiple draw-
downs registered between March and May 2020, which might be related to the high
volatility and unpredictability of the FX market due to the spread of the Covid-19 pandemic.
The impact of the pandemic can also be observed by looking at the portfolio allocations
displayed in Figure 6.5, where one can easily notice how the solid temporal patterns learned
by agent do not hold during the whole month of March, when the pandemic exploded
at global level. Nevertheless, higher persistence models were able to recover from the
drawdown, ending up with a positive cumulated return.

88

6.3. Trading with MCTS

Interpreting the Results To better understand the trading strategy obtained, it is inter-
esting to focus on Figure 6.5. From this figure, it is clear that there is a daily recurrence,
which hints that there is a strong dependence on the time feature in the state. Nevertheless,
the change in behavior seen in March and May 2020 suggests that time is not the only
feature of interest, but market behavior influences the policy as well. This observation is
enforced from the fact that the patterns are not so well defined even during the other months
of the year. The trends observed are probably given by recurrent behaviors of large financial
institutions which repeat the same action each day at the same time, thus causing a small
but recurring price change.

It is also interesting to see that the same action is generally held for a longer period of
time than the 10 minutes time-step, this is the effect of the transaction costs, in fact from
other experiments, with lower cost the agent tends to trade very frequently, while as we
increase transaction costs the frequency decreases until it completely stops trading. This
means that the algorithm learns to estimate if the trade is convenient given the transaction
cost.

6.3 Trading with MCTS

In this section, we present an alternative approach to learning a trading strategy, specifically
by using MCTS instead of FQI. As we have seen in Section 6.2, batch RL algorithms such
as FQI optimize the policy by creating a fixed dataset of experience. This means that, in the
continuously changing world of financial markets, batch RL algorithms suffer from the non-
stationarity of the price processes, requiring to update the policy. Instead, as specified in
Section 3.3.2, online planning algorithms use a 1-step model of the environment to construct
a search-tree that evaluates the different available actions. This makes online planning more
robust to non-stationary environments, since when the environment changes, it suffices to
update the generative models used during the search – in general it is less expensive than
updating the policy maintained by RL algorithms. For these reasons, we believe online
planning offers greater flexibility when dealing with the continuously changing market
environment. Indeed, it allows to easily handle changes in the volatility, in the bid ask
spread, and in market impact.

The MCTS algorithm proposed is a variant of UCT (Lecarpentier et al., 2018), the
latter described in Section 3.3.2. UCT has been originally designed for application in finite
sequential decision-making models: the state transition model is deterministic and the
action space is discrete and finite. As we have seen, in the trading context, the state space
is continuous with stochastic state transitions i.e. given a state-action pair, there is high
uncertainty about the possible next state. To deal with the stochastic states, we propose
an open-loop variant of UCT. Furthermore, we propose a novel backup procedure for the
MCTS algorithms, which uses Q-Learning Temporal Difference (TD) (Sutton and Barto,
2018) updates to address the high variance of the returns observed in the nodes of the
search-tree. We propose a novel generative model that uses past observations of the assets
of interest to generate possible future realizations of the market to be employed during
planning to search for the optimal trading strategy. Finally, we perform an evaluation of the
proposed algorithm and generative model on real financial data.

89

Chapter 6. Quantitative Trading with FQI and MCTS

6.3.1 The Open Loop Q-Learning UCT Algorithm
In this section, we present the planning algorithm used in this work. To tackle the continuous
state space with stochastic transitions, we resort to an open-loop approach that looks for
the optimal sequence of actions to apply to the environment. Even though the planning
phase is conducted in an open-loop fashion, only the first action identified by the planning
procedure is applied, since, in our online framework, planning is interleaved with acting in
the environment. The alternative to an open-loop setting is the application of Progressive
Widening (PW) (Couetoux, 2013) to the state space, but this comes with higher memory
costs as well as a higher planning budget needed to represent the (approximate) full search
tree.

Open Loop Planning The open-loop planning approach is adopted in problems with
continuous state spaces and stochastic transition models since the true search tree is infinite.
In this setting, the problem consists in finding the optimal sequence of actions to be
employed at the root state of the tree, without considering the states visited during the
search, transforming the infinite search tree of the original problem into a finite tree with
branch factor equal to the number of actions. Thus, it is necessary to adapt the definitions of
Section 3.2 to the open loop setting. Formally, given a starting state s ∈ S and a sequence of
actions of length m: τ = (a1, . . . , am), ai ∈ A, i = 1, . . . ,m, we define the open-loop
value of the sequence τ starting from state s as the discounted sum of the rewards collected
executing the complete sequence τ starting from state s:

VOL(s, τ) = Eπ

[
m∑
t=1

γtrt+1

∣∣∣s0 = s, at ∈ τ

]
.

The sequence length m can be infinite when γ < 1. The optimal open-loop value function
is the maximizer over the possible sequences τ ∈ Am: V ∗

OL(s) = maxτ∈Am VOL(s, τ).
Similarly, we define the optimal open-loop state-action value function for each state-
action pair (s, a) ∈ S × A as the maximizer of the open-loop value over all the possible
sequences of actions starting with a, τa ∈

{
(a, τ)

∣∣∣τ = a1, . . . , am−1

}
: Q∗

OL(s, a) =

maxτa VOL(s, τa).

Defining Nodes We denote by Nd,i the i-th node at depth d for i ∈ N and d = 1, . . . , D.
The root node N0,0 contains a single state, s0 ∈ S, from which we want to perform
planning. Each node Nd,i, with d > 0, represents the collection of states which can be
reached by a defined sequence of actions that starts from the root of the tree and is of
length d. Specifically, given a node Nd,i and the sequence of actions that identifies it
τd,i = (a1,i, . . . , ad,i), the possible states observed in the node Nd,i represent the state
distributions induced by executing τd,i starting from the root state s0.

We define the open-loop state value function of a node Nd,i as:

V∗ (Nd,i) = E
s∼P(·|s0,τd,i)

[V ∗
OL(s)] ,

and the state-action value function as:

Q∗ (Nd,i, a) = E
s∼P(·|s0,τd,i)

[Q∗
OL(s, a)] ,

90

6.3. Trading with MCTS

= E
s∼P(·|s0,τd,i)

[r(s, a)] + γV∗ (Nd+1,j) ,

The goal of our proposed planner is to estimate the optimal open-loop action values at the
root node by applying a UCT-like selection policy that selects, in each node, the action that
maximizes the upper bound of the Q values according to UCB1 of Equation (3.10).

Q-Learning Backup Operator Our second change of the base UCT algorithm is the
backup operator employed in the back-propagation phase. During the tree expansion,
exploitation, and exploration is interleaved thanks to the selection rule of UCB1 (see
Equation (3.10)), meaning that the values observed in each node come from very different
policies. Also, in the simulation phase, a suboptimal rollout policy is employed to give
an initial evaluation of each node. This rollout policy is clearly suboptimal (if we had an
optimal policy for the rollout we would not need to perform planning) adding further noisy
samples being backed-up. Both of these factors make the backup values observed extremely
noisy, which is a further problem in our financial settings. For these reasons, instead of the
plain Monte Carlo updates, that average the return values observed in each node in the tree,
we employ a Temporal Difference update, based on the Q-Learning update rule, which,
similarly to Equation (3.8), is defined as follows:

Qt (Nd,i, a) = (1− αt)Qt (Nd,i, a) + αt

(
rt + γmax

a′
Qt (Nd+1,j , a

′)
)
,

where rt is the reward observed in the current search pass at node Nd,i and αt is the learning
rate employed, which constitutes an added hyperparameter of our planner.

Q-Learning Open Loop Planning We present the pseudocode of our planner in Algo-
rithm 5. This planner is devised to be employed in each decision interval with a given
planning budget, specified as the environment transition samples from the model. At each
search iteration, we perform the selection phase, plain UCB1, until a leaf of the tree is
reached (described in Lines 7 through 13). We then perform a rollout from the leaf in Line
4. The specific rollout policies employed in both scenarios are described in the following
sections. The rollout gives us an initial estimate of the node value. Next, we recursively
employ Q-learning updates up the tree, updating the node action values and node counts in
the BACKUP procedure in Lines 14 through 26. This means that the initial noisy back-up
value given by the rollout, even though it is stored in the leaf node, might not make its way
up to the root, since at each node we employ the max operator to define the target value, as
shown in the BACKUP procedure. If all the children of a node have not been explored yet,
for the Q-learning update of Equation 6.2, we apply the max operator only to the visited
nodes, disregarding the unexplored actions. The BESTCHILD procedure (Line 6) has not
been described since it depends on the action space of the specific problem. The selection
is based on UCB1.

Remark 6.1. It is worth noting that, while in general the open-loop setting comes with a
loss of performance compared to the closed-loop setting, this is not issue in the trading task.
This is due to the fact that the market is not influenced by our actions. The state space is
composed of features relative to the market (the price history) and features related to the
agent (the agent’s current position). While the market features follow stochastic transitions,
they are not influenced by the agent’s actions (see Lemma 3.1). The only features influenced

91

Chapter 6. Quantitative Trading with FQI and MCTS

Algorithm 5: Q-Learning Open Loop Planning
1 Initialize: root nodeN0,0 from state s0, budget B
2 while within computational budget B do
3 Nd,i, s← TREEPOLICY(N0,0)
4 V (Nd,i)← ROLLOUT(Nd,i, s)
5 BACKUP(Nd,i)

6 return BESTCHILD(N0,0)

7 Procedure TREEPOLICY(N)
8 whileN not terminal do
9 ifN not fully expanded then

10 Return EXPAND(N)

11 else
12 N ← BESTCHILD(N , Cp)

13 returnN
14 Procedure BACKUP(N , V)
15 C′(N) denotes explored children nodes ofN
16 N ′ ← parent ofN
17 N .n← N .n+ 1
18 whileN ′ is not null do
19 ifN is leaf then
20 ∆← V

21 else
22 ∆← maxa′∈C′(N) Q(N , a′)

23 Q(N ′, a)← Q(N ′, a) + α(N ′.r + γ∆−Q(N ′, a))
24 N ′.n← N ′.n+ 1
25 N ← N ′

26 N ′ ← parent ofN

by the agent are its own positions regarding the underlying assets that follow deterministic
transitions. Trading forms a special case of Factored MDPs (Degris and Sigaud, 2013),
where the state transitions consist in two independent clusters of features. This means that
the agent can effectively react to the differences in the features that it can control, also in
the open-loop setting.

6.3.2 Nearest Neighbor Generative Model
A key element when applying MCTS, apart from the specific planning algorithm is also
the generative model used to generate the simulations during the planning phase. A first
alternative is to use classical models such as a GBM or a Vasicek (see Section 4.3), or
econometric models such as ARIMA (see Section B.3.1), with parameters calibrated to
fit the real data. In this section, we propose a novel technique to generate Monte Carlo
simulations during the planning phase, based on a Nearest Neighbors (Bishop, 2006)
framework, to retrieve, from the historical data available, price sequences that are “similar”
to the current price window in the state.

92

6.3. Trading with MCTS

Figure 6.6: Visual representation of the nearest neighbor generative model.

Formally, we consider the time series of historical prices of the asset, (p1, p2, . . . , pT)
where T is the length of the time series. At time t, we observe the window of the
last M prices of the asset, (pt−M , . . . , pt−1). Since the length of the dataset T might
cover multiple years, and the price of the asset might have changed substantially in
these years we consider, instead of the series of prices, the series of price variations,
D = (δ1, δ2, . . . , δT) where δj =

pj−pj−1

pj−1
. Our goal is to find the “closest neighbors” of

the windowwt = (δt−M , δt−M+1, . . . , δt−1) in the partial datasetDt = (δ1, δ2, . . . , δt−1),
that is the historical data before time t. By finding the nearest neighbors of wt, we can use
the continuation of the windows as simulations during the rollout.

Specifically, given a rollout length N , we aim to retrieve the K nearest neighbors of
wt (relative to a distance measure d), {wti}K1 , where M < ti < t−N is the time index
of the ith neighbor. We split the time series Dt in overlapping windows of length M ,
generating the dataset X , where each row of the dataset is a window of length M (same
as the state window), where X0 = (δ1, . . . , δM), X1 = (δ2, . . . , δM+1) and the last row
Xt−N = (δt−N−M , . . . , δt−N). Note that, the last price in the dataset X , is the price
at time t − N , meaning that the last price of the corresponding rollout simulation is the
last time-step. Before starting the planning phase, we search in the dataset X , for the K
nearest neighbors of the current window wt. The K neighbors give K possible future
continuations of the price variations, which are used during planning. Figure 6.6 shows a
visual representation of the nearest neighbor model. This generative model is quite flexible
and can be rapidly updated with new data, simply by including new data points in the
dataset.

6.3.3 Experimental Results
In this section, we present an experimental campaign evaluating the MCTS approach in the
trading problem. We use as planner QL-OL UCT described in Section 6.3.1. As a generative
model, we use the nearest neighbor approach illustrated in the previous section, thus the
number of neighbors K becomes a hyper-parameter of our approach. At the beginning of
each planning iteration, we sample one of these neighbors to use as a trajectory for the next

93

Chapter 6. Quantitative Trading with FQI and MCTS

0 1000 2000 3000
Budget

100

50

0

50

100

150

P&
L

(%
)

K=100

0 250 500 750 1000
Neighbors

B=1200

Figure 6.7: Annualized average P&L with no transaction costs, as a function of the search
budget and the numbers of neighbors. Average over 50 runs, 95% confidence intervals.

rollout.
We concentrated our experiments on the EURUSD FX pair. We used the same dataset

as Section 6.2 with the exchange rate from 2017 to 2019. In each episode, we sample a
random date from the year 2019 and begin a trading episode for the next H minutes, where
the horizon H is set to 200 in our episodes. We repeat this 50 times and present as result
average return together with the 95 % confidence intervals.

For each episode, we use as dataset for the nearest neighbors model the series of prices
from 1st of January 2017 to the current date. For the generative model, we considered as
neighbors only the prices in a window of 3 hours centered at the current hour of the day,
meaning that if we are currently trading at 10:00, we consider only windows from 9:00 to
11:59. This yields better results compared to considering all the possible windows, since
there appears to be some correlation in the return windows depending on the hour of the
day. Furthermore, this decreases the computational costs of retrieving the neighbors.

At each time-step, we perform a tree search, using QL-OL UCT with planning budget
B and by sampling K neighbors. Both B and K represent hyper-parameters.

During planning, we decrease the decision frequency, meaning that every action chosen
during the simulation phase (tree search) is repeated C times in the environment, before
allowing to chose another action. This is similar to the idea of persistence introduced
in Section 6.2.2. The increased persistence during planning has the effect of increasing
the planning horizon, without increasing the planning cost, as frequent changes of the
position are often non-optimal, especially under the presence of transaction costs. In all
our experiments we use C = 5. Moreover, the maximum tree-depth has been set to 5, to
allow for fast tree-search construction with a low budget because of the quasi-real time
requirements of the application. This essentially means that the tree-search algorithm
optimizes the return over the next 25 minutes given a tree depth of 5, where each level
represents 5 minutes of transactions.

Results In Figure 6.7 we evaluate our approach in a setting without transaction costs.
This enables to assess whether the nearest neighbour model is able to accurately predict
future trends in the market. A fixed $100K allocation was considered and, similarly to
Section 6.2.4, the performances are shown as percentages of the invested amount: P&L
(%). The difference with respect to the FQI case, is that we averaged over 50, 200-minute

94

6.3. Trading with MCTS

0 2000 4000 6000 8000 10000 12000
Budget

250

200

150

100

50

0

P&
L

(%
)

Figure 6.8: Annualized average P&L with transaction costs as a function of the search
budget, K = 100. Average over 50 runs, 95% confidence intervals.

episodes and annualized, instead of testing for an entire year (given the computational
difficulties of running the algorithm for such an extended amount of data).

On the left of Figure 6.7 we present the annualized percentage P&L as a function of
the planning budget B, measured as transitions sampled from the forward model. In this
experiment, we fix the number of neighbors K = 100. For very low budgets, of 100 and
200 transitions, corresponding to 20 and 40 future observed trajectories, the agent comes at
a loss. Starting from the still low budget of 400, the agent achieves a profit. As we increase
the budget, the returns improve (as we would expect). Moreover, on the right of Figure 6.7
we show the dependence of the returns on the number of neighbors K, while fixing the
planning budget B = 1200 samples. Similarly to the previous experiments, a low number
of neighbors yields a really low performance, as the trajectories seen during the simulation
do not accurately reflect the true future trajectories, and so the planning agent “overfits”
these simulations. As the number of neighbors surpasses 100, the agent becomes profitable,
and the return improves slightly with the increase in neighbors.

Next, we evaluate our approach in the more realistic scenario of trading with transaction
costs. We set the constant bid-ask spread of Equation 2.17 to $2 · 10−5 as in Section 6.2.
Figure 6.8 shows the results of this experiment, where we vary the search budget and fix
the number of neighbors to 100.

While, similarly to the previous case, for low budget values, the agent performs at a
loss, when increasing the budget, even further than the previous case, the agents converges
to a policy of not trading and ensuring 0 profit (and loss). This probably happens because
the search horizon is shorter than the true horizon of the interaction, making it inconvenient
to trade with transaction costs because there is not enough time to observe the benefits
of paying these costs. However, increasing the horizon search comes with increased
computational demand for taking each decision. Nonetheless, even for budgets of 3000
samples during the search (that allow for near real-time response), the agent does not suffer
losses.

In future works, we aim to tackle the problem of mismatching horizons during search
and interaction, with the aim of increasing the search horizon without suffering costs in
the response time. Potentially, to do so, we would like to explore more intelligent rollout
policies that focus the tree construction in the relevant parts.

95

Chapter 6. Quantitative Trading with FQI and MCTS

6.4 Chapter Summary

In this chapter we proposed two methodologies to create a quantitative trading strategy:
using FQI and using MCTS.

FX Trading with FQI Section 6.2 is mostly experimental, and after initially defining FQI,
the focus is on defining the MDP to model the environment realistically. We considered
and compared two different scenarios, a multi-currency framework with EURUSD and
USDGBP, and a single currency framework considering the FX pairs individually. On top
of the FQI parameters like min-split and number of training iterations, we also considered
persistence, namely how long an action lasts. We focused on three persistence values: 1-
minute, 5-minute, and 10-minute. To summarize the experimental results, we can conclude
that a 1-minute persistence is probably too short and thus the high signal to noise ratio
makes it challenging for the agent to learn a profitable strategy. Out of the remaining
persistences, the 5-minute achieves a superior performance on our tests both in terms of
performance and Sharpe ratio. Finally, the multi-currency setting surpasses the single
currency cases, this is expected as it may exploit additional trading opportunities.

This can be the starting point for several possible future research directions. First of all,
in this chapter, the three-currency framework is modelled as a portfolio with two assets:
when the agent chooses to change asset, it is forced to pay twice the transaction costs. We
could take into account the missing pair of the triplet to reduce the costs. Secondly, we
could consider real transaction costs, that is a bid-ask spread that depends on the market
conditions, taking also into account market impact and thus optimizing execution as in
Chapter 9.

FX trading with MCTS Section 6.3 proposed, for the first time, the use of MCTS for
trading. Initially, we focused on modifying the standard UCT algorithm, considering open
loop planning to handle the continuous state space and stochastic transition model. We also
reduced the noise of the backups by introducing a Q-learning backup operator. The resulting
algorithm was coined QL-OL UCT. We then applied QL-OL UCT to the trading setting,
where we adopted a novel generative model using historical data and a clustering approach.
In the experimental section, we tested the algorithm on the EURUSD FX pair, concentrating
on optimizing parameters such as the search budget and the number of neighbors to use
in the generative model. While we managed to consistently achieve profit, even for small
planning budgets without considering transactions costs, adding these costs causes the
agents to decide not to trade. Further work is necessary to improve the performance also
compared to the FQI approach.

In future works, we plan to examine alternate generative models and tree-search pro-
cedures to allow the agent to achieve a profit also with the addition of transaction costs.
Furthermore, we aspire to extend Alphazero (Silver et al., 2017), which has achieved
astonishing experimental results, to be compatible with stochastic states and thus also the
trading environment.

96

CHAPTER7
Dealer Markets: a Mean-Field RL Approach

In this chapter we consider the dynamic pricing and RFQ response tasks of bond market
makers, described in Section 2.3.4. The goal of this chapter is to explore a method to design
autonomous market makers that exploit RL techniques to learn effective market making
strategies even in the presence of strategic dealers.

A common market making strategy easily executed requires looking at the average
market spread, e.g., the CBBT bid-ask spread, and offering a lower ask in case of a positive
inventory, or, vice versa, offering a higher bid in case of a negative inventory.31 The arrival
time and characteristics of each RFQ depend on a variety of factors; among others, the
general market sentiment, the specific asset in each asset class considered, and the time of
day. Nonetheless, even with complete knowledge of the future RFQs, the definition of a
strategy to perform the market maker’s task in an optimal way is a rather complex problem.
Indeed, the rewards obtained by each market maker depend not only on her actions, but
also on the actions of all the other market makers involved in the exchange. This mutual
dependence among market makers requires to model this environment in a game theory
setting, where multiple rational players are competing to maximize their gain over time.

However, the naïve formulation of such a framework using a classical game-theoretical
fashion results in a computationally intractable N -player stochastic game. In this work,
we propose the use of the Mean Field Games (MFGs) framework, defined by Huang
et al. (2006) to model the dealer market framework and find an approximate solution to

31The Composite Bloomberg Bond Trader (CBBT) is a weighted average of dealer-contributed prices that
indicates where you can reasonably expect to find transaction opportunities on Bloomberg’s Fixed Income Trading
platform.

97

Chapter 7. Dealer Markets: a Mean-Field RL Approach

the original problem. Indeed, this approach is capable of approximating an N -player
stochastic game in an efficient way, and offers theoretical guarantees on the convergence
to an equilibrium. The idea of using MFGs to solve such a problem has been inspired by
the works of Iyer et al. (2014); Balseiro et al. (2015), which have shown promising results
in modeling and solving other auction type problems. In fact, the proposed formulation is
of crucial importance for practical applications, since the existing approaches in literature
assume the availability of data on the behaviour of the other dealers, which is commonly
private information and not disclosed to competitors.

Motivated by the fact that finding an analytical solution to MFGs in general cases is
an open problem, we propose the application of the numerical techniques of multi-agent
RL to find a suitable approximate solution to this game. Specifically, for the first time, we
model the dealer market environment as a multi-agent game, and solve it using model-free
discrete-time Mean-Field RL (Gomes et al., 2010).

In this chapter, we focus on the role of dealers as liquidity providers, although market
making is a broader concept and can be combined with other goals.32 For instance,
specialized trading firms may combine market making with quantitative trading aiming to
increase the deriving profits, while at the same time using hedging strategies to manage
unwanted risks and optimizing execution to reduce transaction fees.

Chapter outline The chapter is structured in four main sections. In Section 7.1, we
describe and comment on the existing approaches that model the market maker paradigm,
focusing on the ones using an RL approach. Then, we outline the works that define
the theory of MFGs. In Section 7.2, we specify how the market making problem can
be modeled as a stochastic game, highlighting the most relevant modeling assumptions
required. In Section 7.3, we describe the approach we develop to solve the market making
game and, finally, in Section 7.4, we provide an experimental evaluation both in the case
of a market with a strategic adversarial opponent, and in that of a market populated by
different configurations of dealers, commonly used in literature.

7.1 Background on Dealer Markets and MFGs

The proposed framework unifies two different streams of literature: the former focusing on
modeling dealer markets, and the latter on model-free MFGs. To the best of our knowledge,
our work is the first to use MFGs to model the dealer market scenario. In the subsequent
paragraphs, we provide a description of the existing literature on these two topics starting
with the existing market making approaches, and focusing on those that either model MD2C
platforms (see Section 2.1.1) or use RL approaches to solve them. In the following section,
we describe the current literature on MFGs, focusing on works regarding a model-free
approach.

Dealer Markets

The most common market making approach is that by Avellaneda and Stoikov (2008),
which revived old papers by Ho and Stoll (1981, 1983). After this seminal paper, several
other works have been proposed, to cite a few: Cartea et al. (2014); Guéant et al. (2013);

32Even if dealers are specific for OTC trading, in this chapter we refer to them also as market makers.

98

7.1. Background on Dealer Markets and MFGs

Guéant (2016, 2017); Guéant and Manziuk (2019). The most important assumptions are that
market prices are given by stochastic processes exogenous to the market maker’s behavior,
commonly a GBM (see Section 4.3.1), and that the outcome of an auction depends on a
stochastic process that is assumed to model the behaviour of other market participants. Out
of the mentioned works, the most similar to our approach is by Guéant and Manziuk (2019),
who use a deep RL approach, i.e., a model-based actor-critic-like algorithm to find the
optimal solution in discrete time. Nonetheless, even in this work, the probability of winning
the RFQ, and thus the other player’s behaviour, is modeled as a stochastic process. Indeed,
all the above-mentioned works are making the rather strong assumption that the market
makers are behaving stochastically, even if in reality dealers are capable of adapting over
time to the strategy of the other market makers. Conversely, our approach models multiple
competing market makers as opponents in a game, therefore not requiring any assumption
on the behaviour of the other market makers.

Modeling multiple competing market makers can be naturally cast in a multi-agent
formulation, which provides a model closer to reality. Indeed, multi-agent modeling of the
markets has been already used to describe the behavior of the CDA process, as, for example,
in Darley et al. (2000); Das (2005, 2008), to simulate data in Byrd et al. (2019), and to
analyze the liquidity in the dealer market framework in Bank et al. (2021). However, the
only work that uses a multi-agent approach to model market makers in a MD2C platform is
by Ganesh et al. (2019), which considers M competing market maker agents. Out of all the
mentioned papers, this last one is most closely related to our work, as it also applies RL
techniques to optimize agent’s payoff in a multi-agent framework. However, differently
from our approach, the other market makers are hard-coded and fixed, and thus cannot
behave in an adversarial way. This approach entails the risk that the proposed solution
might suffer from large losses when deployed in a real-world setting, competing against
real market makers that differ in behaviour compared to what was hypothesized during
training. As a matter of fact, one would prefer to have an agent that learns a policy that
works against all possible behaviours of the other players.

Finally, there are other approaches that consider RL in a market making scenario, but
focusing on the CDA auction process, which is inherently different from the MD2C markets.
These include Chan and Shelton (2001); Lim and Gorse (2018); Spooner et al. (2018);
Spooner and Savani (2020)

Mean Field Games

The notion of MFGs was inspired by economic literature, studying topics related to the
financial markets (Aumann, 1964). MFGs are designed to learn an approximate Nash equi-
librium in stochastic games with a large number of identical agents, where the equilibrium
is expressed as a policy/state measure pair. Specifically, under the given state measure, the
policy should be optimal and when the agent applies this policy, the resulting agent state
distribution is the same as the state measure. In such a framework, all players are identical,
anonymous, and have symmetric interest. Thus, the learning problem can be reduced
to characterizing the optimal interactions between a reference player and the population,
which in turn behaves as the reference player. In this context, with continuous-time inter-
actions, the Nash equilibrium is commonly computed providing the solution of a coupled
system of dynamical equations where the first equation models the forward dynamics of the
population distribution, and the second one consists in the dynamic programming equation

99

Chapter 7. Dealer Markets: a Mean-Field RL Approach

of a reference player.
This framework has been introduced by Huang et al. (2006); Lasry and Lions (2007),

who showed the existence of approximate Nash equilibrium in continuous-time MFGs.
Following, several different models of continuous time MFGs have been proposed, to cite a
few: Huang et al. (2007); Huang (2010) consider linear-quadratic games, Saldi et al. (2019,
2020); Tembine et al. (2013) consider risk sensitive MFGs, while Moon and Başar (2016)
study games with Markov jumps. Other works focus on finding numerical approximations to
efficiently solve the system of dynamical equations using finite difference methods (Achdou
and Capuzzo-Dolcetta, 2010; Achdou et al., 2012), semi-lagrangian schemes (Carlini and
Silva, 2014, 2015), primal-dual methods (Briceño-Arias et al., 2018, 2019), neural network
approximations (Carmona and Laurière, 2019; Fouque and Zhang, 2020; Ruthotto et al.,
2020), generative adversarial networks (Cao et al., 2020; Lin et al., 2020), and fictitious
play schemes (Robinson, 1951; Cardaliaguet and Hadikhanloo, 2017; Perrin et al., 2020).
An overview of MFGs can be found in the survey by Gomes et al. (2014), or in the books
by Fudenberg et al. (1998); Bensoussan et al. (2013).

Conversely, discrete-time MFGs, as required by the dealer market scenario, have not
been studied as much. Gomes et al. (2010); Adlakha et al. (2015); Saldi et al. (2019)
establish the existence of mean-field equilibrium without proposing algorithms capable
of converging to the equilibrium. The problem of finding a solution, i.e., an equilibrium,
in the discrete-time MFGs setting, has been successfully tackled by using RL algorithms.
For instance, Fu et al. (2019) develop an actor-critic algorithm learning the equilibrium for
mean field control, Carmona et al. (2019a) establish the convergence of a policy gradient
algorithm, Carmona et al. (2019b); Anahtarcı et al. (2019) elaborate the convergence of
Q-learning for deterministic systems. Finally, Yang et al. (2018a,c) apply classical RL
algorithms to compute the mean field equilibrium. Among the aforementioned works, of
particular relevance for this paper is that by Anahtarcı et al. (2019), which proposes the
use of Q-learning and Fitted Q iteration (FQI). They give convergence guarantees with
Q-learning, approximation error bounds with FQI, and analyze also the approximate case
of a finite number of players.

In the classical MFG framework used in the previously cited works, the rewards and
the dynamics for each player are known. Specifically, they depend only on the state/action
pair of the player, and the population state distribution. Conversely, in the market making
problem, the reward and the dynamic for each player depend also on the actions of all the
other players. Therefore, the more inclusive framework of General Mean Field Games
(GMFGs) by Guo et al. (2019, 2020) is required to handle this additional complexity
faced by the market making scenario. Notice that, the analyses provided in the mentioned
works are merely theoretical, and do not provide any constructive solution to finding an
equilibrium. Moreover, they are general formulations of GMFG, while the application of
this framework to the problem of dealer markets, to the best of our knowledge, has not been
explored before.

7.2 Modelling Dealer Markets as a Stochastic Game

Let {Ft}t be the natural filtration generated by the market information available up to time
t. The market maker is in charge of an asset whose price Pt is an Ft-adapted process. At
each time t ∈ N, a client can submit an RFQ to the MD2C platform, specifying the size

100

7.2. Modelling Dealer Markets as a Stochastic Game

vt (that is Ft-adapted), where its sign specifies the side of the trade (positive or negative
to manifest the intention to acquire or sell an asset, respectively). The MD2C platform is
available to a large number N of market makers, even though at each time t only a number
Mt < N (possibly stochastic and Ft-adapted), a.k.a. market thickness (Iyer et al., 2014),
will respond to the RFQ. The objective of the market makers is illustrated in Definition 2.8.
Each market maker i responds to the RFQ by showing the client the prices (P it,buy, P

i
t,sell),

that characterize the firm price at which the client can buy or sell the asset when market
maker i is selected for the trade. We assume that the spreads published by the market
maker are a function of the size of the trade vt communicated by the client. The selected
market maker i will buy from the client at price P it,buy(vt) and will sell to the client at price
P it,sell(vt). Given the quotes from all the Mt market makers that answered the RFQ at time
t, the client will select the market maker i∗ giving the best quote for the placed RFQ, i.e.,
the smallest spread in the direction indicated by the RFQ. We denote with zit the inventory
of dealer i at time t.

N-player Stochastic Games Let us define a discrete-time N -player Markovian stochastic
game. This model is an extension of MDPs defined in Section 3.1, in which the transition
probabilities depend on the aggregated action of all players, and the reward depends on
the state of all the players. At every time t ∈ [N], each agent is in state sit ∈ Si, and
chooses an action ait ∈ Ai.33 Define SN := S1 × . . . × SN as the set of possible joint
states and AN := A1 × . . . × AN as the set of possible joint actions performed by
players. Given the current joint state st := (s1t , . . . , s

N
t) ∈ SN , and current joint action

at = (a1t , . . . , a
N
t) ∈ AN , each player i ∈ [N] receives a reward specified by the reward

function ri : SN ×Ai → R. Moreover, the current state sit of each player evolves in the
next state sit+1 according to the transition function:

sit+1 ∼ P(·|sit,at) ∀i ∈ N . (7.1)

Similarly to the case of MDPs, the policy πi(st) of an agent i is a function that maps
a state st to a distribution over the action space ∆(Ai), formally πi : SN → ∆(Ai). We
denote with π−i the policies of all players but the i-th one, so that π = (πi, π−i). The
expected cumulative reward of agent i following a generic policy sequence π is:

J iπ := E
at∼π(st),

sit+1∼P(·|sit,at)

[
+∞∑
t=1

γtri(st, a
i
t)
∣∣∣s0 = s

]
. (7.2)

When the policy π−i of the other agents is fixed, the objective of each agent i ∈ [N] is to
solve the following stochastic optimization problem:

πi = argmax
π

V(π,π−i), (7.3)

where V iπ := Es∼ξ[J iπ(s)], for an initial state distribution ξ.
Notice that, the modeling provided by N -player stochastic games is able to describe

the dealer markets problem. In what follows we show the correspondence between the two.

33Given W ∈ N, with [W] we denote the set {1, . . . ,W}.

101

Chapter 7. Dealer Markets: a Mean-Field RL Approach

Reward The reward for each market maker i is defined as in Equation 2.20:

rit = vt(P
i
t,h(vt)− Pt)Ii=i∗︸ ︷︷ ︸

spread P&L

+ zit−1(Pt − Pt−1)︸ ︷︷ ︸
inventory P&L

− ϕ(zit)︸ ︷︷ ︸
inventory penalty

, (7.4)

where we are also considering the dependence of P it,h(vt) on the trade size vt. This
definition of the reward is common in literature (Guéant and Manziuk, 2019; Avellaneda
and Stoikov, 2008; Cartea et al., 2015; Guéant, 2017), where the risk-aversion of a market
maker is encoded implicitly in the function ϕ(·). Notice that it is possible to add an explicit
penalization for the variation of the rewards over time, by making the reward rit dependent
on the variability of the past inventory.

Actions The action space Ai for dealer i is given by the prices (P it,buy(v), P
i
t,sell(v)).

Here, we choose to follow a modeling approach similar to the one proposed by Ganesh
et al. (2019). Defining the action space Ai = [−ϵ, ϵ]2 for all i ∈ N , with ϵ > 0, the pricing
function is defined as follows:

P it,h(v) = P̃t,h(v)(1 + ϵih), (7.5)

where h ∈ {buy, sell}, ϵih ∈ [−ϵ, ϵ] is the action chosen by the market maker and P̃t,h(v)
is a reference price calibrated on the market.

State The state space is S = [−Zm, Zm] × [Pl, Pu], where Zm > 0 is the maximum
inventory allowed to be held, and 0 < Pl < Pu are the minimum and maximum values for
the asset price in consideration, respectively.

Transition Function The transition function P(·|st,at) of the MDP specifies the evo-
lution of the state st = (zt, Pt) to the next state st+1 = (zt+1, Pt+1) for each player.
Specifically, the asset price Pt evolves according to a transition function common to all the
players, while the inventory zit evolves differently for the winner of the auction. Formally,
the zit dynamic is described by the following equation:

zit = zit−1 + vt Ii=i∗ , (7.6)

where i∗ is the index of dealer that provided the best quotes.
The objective of each dealer i is to find a policy πi specifying, for each combination

inventory and price in S, the optimal bid-ask spreads in Ai that maximize their objective
function in Equation (7.3).

Remark 7.1. The main appeal of the proposed framework is that it allows to model
various features of interest to the dealer. For instance, one could be interested in including
in the model the relationship between the distribution of the RFQs and the price process
of the underlying asset, i.e., simulating a market sell-off with many bid RFQs but no ask
RFQs.

Remark 7.2. Notice that the information required to run this scheme is easily available to
the dealers. Indeed, to fit the parameters of the RFQ arrival process, one needs only the
information collected by interacting with the MD2C platform (such as the distribution of

102

7.3. Learning Equilibrium via General MFGs

the RFQ sizes vt, the price Pt, and the reference market price P̃t,h(v)). Conversely, other
existing approaches make use of information on the behaviour of the other dealers, e.g.,
the work by Fermanian et al. (2016), which is in general hard to obtain since it constitutes
private information of the competitors.

7.3 Learning Equilibrium via General MFGs

The model described in the previous section provides an accurate description of a real
dealer market. However, modeling this environment as an N -player stochastic game suffers
from the combinatorial complexity with respect to the number N of players (Daskalakis
et al., 2009). In the subsequent sections, we describe the Mean Field Game approach, which
allow us to obtain an approximate equilibrium strategy of the game.

General Mean Field Game Approximation of the Dealer Market Problem For the
mean-field approximation, we assume homogeneous market participants and a number of
players N that goes to infinity, while maintaining a finite market thickness Mt. In practice,
under this approximation, the players’ population is compactly represented by a distribution
on the possible states-actions space L ∈ ∆(S ×A) and the interaction between each single
player and the rest of the distribution happens only trough the mean-field L. At each time
t and for each RFQ, the market participants answering the RFQ are generated sampling
Mt − 1 players (market makers) from the mean-field L, thus specifying their state sk

and action ak for k ∈ [Mt − 1]. In the next paragraph, we describe formally the GMFG
framework, which expands and generalizes MFGs.

Notice that assuming a homogeneous policy between the dealers is only an assumption
needed to find an approximate equilibrium, while it does not represent a simplifying
assumption with respect to a real market making framework. Indeed, we show in the
experimental campaign that the agents trained with the MFG approach provided here
perform exceptionally even when tested against agents with different policies, i.e., in
settings in which the homogeneous assumption does not hold.

General mean-field Games GMFG is an extension of mean-field Games introduced
by Guo et al. (2019), which enables the next state transition and reward to depend also
on all the actions played by the population. Let the mean-field Lt be a distribution of
the population over the state-action space, or, formally, Lt ∈ ∆(S × A). At each time
t, a player in state st ∈ S plays the action at ∈ A and receives the reward r(st, at,Lt).
Consequently, the player’s current state evolves to st+1, according to the distribution
st+1 ∼ P(·|st, at,Lt). In such a modeling approach, the definition of the value function,
given a mean-field L is:

V (π,L) := E
at∼πt(·|st,µt),

st+1∼P(·|st,at,Lt)

[
+∞∑
t=1

γtr(st, at, µt)

]
, (7.7)

where µt :=
∫
A
L(·, a) da is the marginal distribution of the population L over the state

space S.
The definition of a Nash Equilibrium profile for a GMFG is defined as follows:

103

Chapter 7. Dealer Markets: a Mean-Field RL Approach

Algorithm 6: Model Free GMFG
1 Initialize: mean-field L0, environment simulator E(·, ·;L), number of iterations W
2 for w ∈ [W] do
3 Find the single-agent optimal policy πw with fixed mean-field Lw

4 Update Lw+1 using E(·, ·;Lw)

5 Return (πW ,LW)

Definition 7.1. The tuple (π∗,L∗) is a Nash Equilibrium for the GMFG if, for any policy
π, it holds that:

V (π∗,L∗) ≥ V (π,L∗), (7.8)

and

at ∼ π∗
t (st, µ

∗), st+1 ∼ P(·|st, at,L∗), (7.9)

where µ∗ is the marginal distribution of the mean state-action population L∗.

To find the equilibrium strategy π∗, we employ the algorithm proposed by Guo et al.
(2019). The high-level structure of the algorithm is presented in Algorithm 6. The main idea
is to alternatively evolve the policy πw and the mean-field Lw for w ∈ [W]. Specifically,
the algorithm requires an initial mean-field L0, an environment simulator E(·, ·;L), and the
number of iterationsW . The simulator E(·,Lw) is a function that simulates the environment
step, or, formally, for a mean-field L, we have that (st+1, rt+1) = E(st, at;L). For W
steps, the algorithm learns an (approximate) optimal policy πw, by fixing the mean-field
distribution Lw (Line 3).34

After that, during the update of the mean-field Lw, the optimal policy πw is used to
generate a new mean-field distribution Lw+1 (Line 4). At the end of the process, the
algorithm returns the tuple (πW ,LW), which is guaranteed to converge to an approximate
Nash equilibrium for the GMFG as proved in Guo et al. (2020).

GMFG with FQI In the subsequent paragraphs, we present the FQI for GMFG algorithm,
whose pseudo-code is provided in Algorithm 7, an implementation of Algorithm 6 in
which the FQI algorithm (see Section 6.2.1) is used to find the policy πw. Specifically,
the procedure described in Line 3 of Algorithm 6 corresponds to Lines 3 through 7 of
Algorithm 7, while the update of the mean-field Lw of Line 4 of Algorithm 6 corresponds
to Lines 8 through 13 of Algorithm 7.

More precisely, the algorithm requires as input an initial mean-field L0, a simulator
E(·, ·;L), and the parameters W , J , I , and τ . Specifically, W is the number of times the
FQI algorithm and the evolution of the mean-field Lw are performed, J represents the
number of iterations to be set in the FQI algorithm, I is the number of samples to generate
the empirical distribution for Lw and τ is the inverse temperature parameter to be used in a
Boltzmann distribution.

For each of the W iterations, the FQI algorithm is employed to find the policy πw.
Indeed, the goal of the FQI algorithm is to approximate the state-action function Q(s, a),

34The number of iterations W should be selected so that the error on the Weierstrass distance between LW−1

and LW is smaller than a required threshold. See the work by (Guo et al., 2020) for details.

104

7.3. Learning Equilibrium via General MFGs

Algorithm 7: FQI for GMFG
1 Initialize: state-action distribution L0, environment simulator E(·, ·;L), number of

iterations I , W , and J , inverse temperature parameter τ
2 for w ∈ [W] do
3 Initialize Q̂w,0(s, a)← 0 ∀s ∈ S, a ∈ A
4 Generate dataset Dw = {(si, ai, ri, s

′
i)}i∈[D] using simulator E(·, ·;Lw)

5 for j ∈ [J] do

6 Q̂w,j+1 = argmin
f∈F

∑
i∈D

(
f(si, ai)− ri − γmax

a∈A
Q̂w,j(s

′, a)

)2

7 Extract πw(s) =
exp(τQ̂w,J (s,·))∑

a∈A
exp(τQ̂w,J (s,a))

∀s ∈ S

8 µw ←
∫
A
Lw−1(s, a) da

9 Initialize Lw(s, a)← 0 ∀s ∈ S, a ∈ A
10 for i ∈ [I] do
11 si ∼ µw, ai ∼ πw(si)
12 (s′i, r

′
i)← E(si, ai;Lw−1)

13 Lw(s
′
i, ai)← Lw(s

′
i, ai) + 1/I

14 Return πW and LW

i.e., the cumulative value of a specific action a in a state s, by means of a regressor Q̂w(s, a)
that exploits the dataset Dw. At first, for each state s ∈ S and action a ∈ A the algorithm
initializes the approximated state-action function Q̂w,0(s, a) to zero (Line 3) and generates,
using the current environment simulator EL, a dataset Dw. With the dataset, we apply FQI
as specified also in Algorithm 4.35 The regression step is repeated J times (Line 5), as
prescribed by the FQI algorithm, and results in an approximation Q̂w,J(s, a) of the true
state-action function. From the state-action function, we extract the approximate optimal
policy πw(·) for each state s ∈ S by applying the soft-max function to Q̂w,J(s, a) (Line 7).
This ensures that πw(s) defines a probability distribution over the actions A for a specific
state s.

In the pseudo-code following Line 7, the algorithm performs an update of the popu-
lation Lw due to the change in the players’ policy πw(·). First, it computes the marginal
distribution of the population over the state space µw (Line 8). After that, it samples I
states and actions pairs from the distributions µw and πw, respectively (Line 11), that are
used in the simulator E(·, ·;Lw) to generate the next state s′i (Line 12). Finally, it updates
the empirical distribution of the population Lw(s′i, ai).

The above two steps are repeatedW times, after which the algorithm returns an estimate
of the approximate optimal policy πW and the mean-field LW .

Remark 7.3. It is important to note that the approximation of infinite players still provides
theoretical guarantees to the original stochastic game, where the number of players N to
whom the platform is available is finite. In particular, if we have an equilibrium for the

35In what follows we used as hypothesis space for the regression problem the class F of extra trees (Ho, 1995)
(see also Appendix B.4.2), due to their lightweight computational expenses during training. Depending on the
computational complexity required by this step and the characteristics of the environment one might select a
different regressor, e.g., Support Vector Machines or Neural Networks. See Antos et al. (2007) for details.

105

Chapter 7. Dealer Markets: a Mean-Field RL Approach

GMFG, then it is an ε-Nash equilibrium for the finite player game with N = N(ε) players.
An ε-Nash equilibrium for a N -player stochastic game, is a collection of N policies
(π∗

1 , π
∗
2 , . . . , π

∗
N) such that for all players i ∈ [N]:

V (πi
∗, π∗

−i) ≥ V (π, π∗
−i)− ε ∀π, (7.10)

with ε > 0. For reference, see Theorem 2.1 in (Anahtarcı et al., 2019).

Remark 7.4. Note that Guo et al. (2019) proposed a solution, which, instead of using
FQI for the optimal policy estimation, uses Q-learning (see Equation 3.8).36 However, this
approach does not perform well on the problem of dealer markets, due to the fact that it
models the state-action function Q(·, ·) in a tabular fashion, therefore not exploiting its
regularity structure. Indeed, this is crucial in the dealer market framework, as we expect the
optimal Q-function Q∗

w(s, a) to show continuity with respect to state s and action a.

7.4 Experimental Results

In what follows, we describe the experimental results achieved with the proposed framework.
At first, we introduce the model of the environment, i.e., the evolution of the price, the
reference spread, and the RFQ process used in the experiments. Then, we present the
different dealer agents that interact in the market making simulations. Finally, we cover the
relevant metrics employed in the evaluation of our method.

After explaining the setting, we provide empirical simulations for two different dealer
market environments. In the former, we explore the robustness of the equilibrium policy
by testing it in a market in which one player has knowledge over the strategy of the other
player. In the latter, we provide a wide experimental campaign in which we populate the
market with many players with different strategies, strategic and/or stochastic, and verify
how they interact over time.

7.4.1 Experimental Setting
Synthetic Environment The price process Pt is modeled as a GBM as in Section 4.3.1.
These values have been annualized and we consider one RFQ per day over a year, µ = 0 to
ensure the price process is a martingale, and σ = 20%. Such a volatility may be found for
example in high yield bonds in periods of market distress. The volume vt of the RFQ at
time t is extracted from {−1, 1} with equal probability. The possible actions for buying and
selling for each market maker are in A = {−0.03,−0.02,−0.01, 0, 0.01, 0.02, 0.03}. The
inventory penalization of the reward defined in Equation (7.4) has been set to ϕ(z) = λz2,
as commonly done in literature (Ganesh et al., 2019; Guéant and Manziuk, 2019), where
λ can be seen as a risk aversion parameter, which controls the amount of inventory. We
consider λ = 1

2 unless stated otherwise. Finally, following what has been done in Kolm
and Ritter (2019), we defined the market price as:

P̃t,h(v) = Pt + δ(|v|+ 0.01v2), (7.11)

where h ∈ {buy, sell} and δ = 0.1.

36See Algorithm 16 in Appendix A.4.1 for details.

106

7.4. Experimental Results

MFG Agents We trained two FQI-GMFG agents: FQI2 and FQI4. FQI2 was trained
considering a market thickness of Mt = 2, for each t ∈ [T], while FQI4 considered a
market thickness of Mt = 4, for each t ∈ [T].

In both cases, we fixed W = 5, J = 5, I = 2 · 106, τ = 4, and γ = 1. As a regressor
we used extra trees (see Appendix B.4.2) with 500 trees and a min-split parameter of 0.1%
of the total samples.

Benchmark Agents We compared our solution with agents following stochastic strategies
and with solutions from the literature, e.g., in Ganesh et al. (2019). Specifically, we
analysed:

• Persistent (P) agents, which select the action (ϵb, ϵs) = (0, 0) for each state s ∈ S;

• Uniform (U) agents, which randomly select an action (ϵb, ϵs) ∈ [−ϵ, ϵ]2 for each
state s ∈ S;

• Normal (N) agents, which randomly select an action ϵb ∼ N (0, 0.04), and ϵs ∼
N (0, 0.04), i.e., from Gaussian distributions;37

• Q-learning agents (Q2, Q4), generated using the Q-GMFG algorithm described in
Appendix A.4.1. We trained two agents Q2, and Q4, for market thickness Mt = 2,
for each t ∈ [T], and Mt = 4, for each t ∈ [T], respectively.

Metrics We evaluate the strategies in terms of:

• mean dollar reward: L :=
∑
t≤T

lt
T , where the loss lt for each agent i is defined as

lt := Ii=i∗ |vt(Pt,·(vt)− Pt)|+ zt−1(Pt − Pt−1);

• mean Sharpe ratio on the dollar reward: S := L√ ∑
t≤T

(lt−L)2

T

;

• the average reward: R :=
∑
t∈[T]

rt
T , where the reward rt is defined in Equation (7.4);

where the length of each run is T = 500 days.
Note that we study two different metrics to evaluate different aspects of each strategy.

Specifically, we want to evaluate the average dollar gain provided by a strategy and its
reliability.

7.4.2 Equilibrium Policy
As a preliminary analysis, we investigate the behaviour of the policy πW learnt by the FQI-
GMFG agents in the environment described in the previous section. In particular, we explore
the policy πW as a function of the inventory zt. For each inventory z ∈ [−Zm, Zm], we
generated 100 states by sampling uniformly a price Pk ∈ [Pl, Pu], registered (ϵbuy, ϵsell) =
πW (z, Pk) for each state (z, Pk), and averaged over the 100 samples. Figure 7.1 shows the
average strategy for the two actions (buy and sell) with respect to the inventory zt for the

37The distribution are truncated so that they have probability 1 of being in the action space A.

107

Chapter 7. Dealer Markets: a Mean-Field RL Approach

−10 −5 0 5 10
−4

−2

0

2

4
·10−2

z

π
W

εbuy
εsell

Figure 7.1: Equilibrium policy πW for the FQI2 agents.

FQI2 agent with dashed lines, and the 95% confidence interval, collected with statistical
bootstrap, with semi-transparent areas. We observe that the learnt policies bid aggressively
for large negative and positive inventory. This behaviour allows the market maker to keep
on average a zero net inventory. This has an important economical interpretation: it shows
that the equilibrium policy for the dealers tends to a zero inventory. Note that reaching the
equilibrium requires receiving negative rewards to adjust the inventory. Specifically, when
ϵsell and ϵbuy are negative, the agent receives an immediate negative reward with probability
1, due to the fact that it will buy (sell) at price a higher (lower) price than the reference
market. FQI4 gives results that are in line with the ones just discussed. Note that, this
behaviour, a.k.a. skewing, is also a common trait in most of the market making strategies
designed in the economic literature, e.g. Guéant (2017).

7.4.3 Exploitability Study
In this section, we study the setting of a market with a strategic dealer that has information
allowing her to exploit the other dealers. This investigation is of paramount relevance to
evaluate the performance of strategies in case opponents are aware of the currently adopted
strategy. Indeed, in a multi-agent setting, there is no concept of best policy as its optimality
also depends on the aggregate policy of the other players. For instance, when playing a
rock/paper/scissors game against a player that plays rock more often than scissors, then
playing paper is favorable in this situation. However, this is ruinous in the case the other
player switches to playing scissors. This is why, in a multi-agent framework, the correct
concept to analyze is exploitability, which is commonly used in the game theory literature
to evaluate multiple-player settings. Formally, in a N -player stochastic game, exploitability
for the i-th player with policy πi is defined as:

Jexp(π
i) := min

π−i
J i(πi,π−i). (7.12)

Intuitively, the above quantity measures how much value can be gained from an opponent
by the policy πi. For instance, in the example above (rock/paper/scissors game), assuming
each turn we bet $1, the exploitability of playing rock with probability 100% is $1, i.e.,
the opponent can make us lose at most $1 per round if she knows our strategy, while the

108

7.4. Experimental Results

FQI4 FQI2 Q4 Q2 P U N

L 0.049 0.048 0.0021 -0.02 0.009 0.018 0.026
S 0.008 0.008 0.002 -0.0 0.001 0.002 0.002

Table 7.1: Performance of the different agents E in the setting where the other dealer is the
corresponding exploitative agent E(E). Best results, or tied for the best, are highlighted
in boldface.

exploitability of playing rock/paper/scissors each with probability 1/3 is $0. To test the
exploitability of an agent E in our setting, we generate an exploitative agent E(E) and train
it in the following way. We build an environment only composed by the agent E and the
agent E(E). Then, we train the agent E(E) so that it maximizes its own value function.
To find an approximate optimal policy, we employ a RL algorithm on the MDP that is
generated by fixing the behaviour of agent E.38 In particular, we used the Proximal Policy
Optimization (PPO) policy by Schulman et al. (2017) with a policy network of 2 layers and
64 neurons each. We trained it against the E agent described above, creating an exploitative
agent E(E) for each policy described in Section 7.4.1. We used the implementation of
Stable Baselines (Hill et al., 2018) with default parameters for PPO. The provided results
have been averaged over 1, 000 independent runs.

Exploitability Results

Table 7.1 reports the performances of the different agents E when employed against their
corresponding exploitative agent E(E). We see that the FQI2 and FQI4 agents, which
are considering the strategic nature of the dealer market setting, perform better than the
others when employed against exploitative agents. Indeed, the dollar reward L for FQI4
and FQI2 is 0.049 and 0.048, respectively, which is almost twice the second best agent
(Normal N with L = 0.026). Moreover, for the same agents, we have an improvement of a
factor 4 of the Sharpe ratio S (0.008 for FQI4 and FQI2 vs. 0.002 for N). The improved
performance is due to the fact that the FQI2 and FQI4 cannot be strategically manipulated
as that they have been trained to cope with these kind of adversarial environments. The
same is not true for the Q2 and Q4 agents, which still consider the strategic aspect of
the market making setting, but are not learning appropriate equilibrium policies. This
suggests that the tabular nature of the Q-GMFG algorithm fails in incorporating the intrinsic
regularity of the reward with respect to the state and action pair (s, a) ∈ S × A, which,
instead, is crucial in training the FQI-GMFG agents.

7.4.4 Market Simulation Study
In this section, we analyse several market simulations. Specifically, we used the setting of
Section 7.4.1 and for each of the agents described, we created a market simulation with
one or more other dealer agents. We studied two different scenarios: Mt = 2, for all t ∈ T ,
and Mt = 4, for all t ∈ T . For each of the defined metrics, i.e., L, S, and Z, we provided

38This is a standard approach to approximate the exploitability of learnt policies used by Greenwald et al.
(2013).

109

Chapter 7. Dealer Markets: a Mean-Field RL Approach

FQI2 Q2 P U N

FQI2 0.049 0.059 0.075 0.065 0.061
Q2 0.03 0.048 0.053 0.044 0.045
P 0.019 0.052 0.044 0.043 0.048
U 0.028 0.041 0.042 0.064 0.047
N 0.04 0.057 0.046 0.048 0.06

Table 7.2: Mean dollar reward L for Mt = 2. Larger is better.

FQI4 Q4 P U N

FQI4,FQI4,FQI4 0.03 0.029 0.031 0.031 0.037
Q4,Q4,Q4 0.013 0.016 0.009 0.023 0.033
P,P,P 0.019 0.039 0.026 0.035 0.066
U,U,U 0.01 0.023 0.015 0.019 0.037
N,N,N 0.015 0.011 0.008 0.017 0.021

Table 7.3: Mean dollar reward L for Mt = 4. Larger is better.

the result obtained by the reference agent (reported on the columns) in a setting where the
other market makers are configured as reported on the rows. The provided results have been
averaged over 1, 000 independent runs. We highlight the best agent over each row in bold.

Market Simulation Results

Table 7.2 and Table 7.3 present the average dollar reward L of the agents for Mt = 2 and
Mt = 4, respectively. In particular, when Mt = 2 there is always at least one agent that
outperforms the FQI2 one, but there is no clear agent able of overcoming the others in
all the settings. Indeed, the Persistent agent P provides the largest dollar reward against
FQI2 and Q2, the Q2 agent is the best option against P and N, and the Uniform agent
U outperforms the others only when tested against an agent of the same kind. Overall, in
terms of mean dollar reward, it seems that there is no algorithm able to outperform all
the others. Instead, when Mt = 4, the Normal agent N outperforms all the other agents,
with a mean dollar reward L in the range [0.021, 0.066] for all the market configurations
considered. However, one cannot base the decision for the best strategy only looking at the
average dollar reward, since large values of this metric might be achieved at the cost of a
large risk (in terms of variance of the gain over time).

Conversely, the results are significantly different if we analyze the Sharpe ratio S, for
Mt = 2 and Mt = 4, as presented in Table 7.4 and Table 7.5, respectively. Differently
to what has been observed with the mean dollar reward L, the FQI2 and FQI4 agents
achieve, in most scenarios, the best results for the metric S, where FQI2 is tied in only one
setting by the Uniform agent U. In particular, this happens in the case of Mt = 2 as the
FQI2 agent achieves a larger mean Sharpe ratio S than the other agents in all the market
configurations. Indeed, S is in the range [0.009, 0.024] for FQI2 while all the other agents
have a mean Sharpe ratio S in the range [0.006, 0.01].

However, when Mt = 4, we have that in all the market configurations considered,

110

7.4. Experimental Results

FQI2 Q2 P U N

FQI2 0.009 0.008 0.01 0.009 0.008
Q2 0.024 0.007 0.008 0.006 0.007
P 0.021 0.008 0.006 0.006 0.006
U 0.023 0.006 0.006 0.009 0.007
N 0.019 0.008 0.007 0.007 0.009

Table 7.4: Mean Sharpe ratio S for Mt = 2. Larger is better.

FQI4 Q4 P U N

FQI4, FQI4, FQI4 0.008 0.004 0.004 0.004 0.004
Q4, Q4, Q4 0.014 0.003 0.002 0.003 0.005
P,P,P 0.021 0.007 0.004 0.005 0.009
U,U,U 0.011 0.002 0.003 0.002 0.006
N,N,N 0.011 0.005 0.001 0.003 0.004

Table 7.5: Mean Sharpe ratio S for Mt = 4. Larger is better.

0 100 200 300 400 500
−5

0

5

10

15

20

25

t

l t

N
N
N
FQI4

Figure 7.2: Average dollar reward lt of the FQI4 agent (solid purple line) and those of
three identical Normal agents N (dashed green lines), when dealing in the same market
simulation.

the FQI4 agent achieves a larger Sharpe ratio, specifically in the range [0.008, 0.021].
Comparing these results with the ones we provided in Table 7.2 and Table 7.3, we conclude
that the advantage of the Persistent P, Uniform U, and Normal N agents we saw in terms
of mean dollar reward L comes at the cost of high risk, increasing the Sharpe ratio S.

To better understand this phenomenon, we present a detailed example of a specific
market configuration for one of the market simulation settings described above.39 Figure 7.2
depicts the dollar reward lt, t ∈ [T] in a setting where the FQI4 agent is competing with
three Normal agents N (i.e., corresponding to the 1-st column and 5-th row of Table 7.3).
The shaded areas are the 95% confidence intervals for the values computed by statisti-

39We opt to provide this level of detail for a single configuration since the behaviour we show is common to all
of them, therefore the analysis and comments would be the same.

111

Chapter 7. Dealer Markets: a Mean-Field RL Approach

FQI4 N N N

−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0

(b)

z
i T

FQI4 N N N

−60
−40
−20

0
20
40
60

(a)

S

Figure 7.3: Box-plot of the distribution over 1, 000 runs for (a) Sharpe ratio S; (b) final
inventory ziT .

FQI2 Q2 P U N

FQI2 -11.203 -19.188 -19.18 -21.129 -20.982
Q2 -0.287 -16.695 -18.585 -20.271 -19.328
P -0.132 -17.526 -17.998 -19.057 -17.809
U -0.322 -16.408 -18.697 -17.849 -17.748
N -1.245 -17.524 -18.375 -19.153 -18.848

Table 7.6: Average reward R for Mt = 2. Larger is better.

cal bootstrap over the 1, 000 independent runs of the setting. The results show that the
FQI4 agent achieves positive returns in the market simulation since its trend is increasing
approximately linearly over time. Note that, also the Normal agents N are generating
profit, as the dashed lines corresponding to the average dollar reward are progressively
increasing. However, differently from the FQI4 agent, the Normal agents N have a large
confidence interval, indicating that they are not reliably achieving profits in each simulation.
Conversely, looking at the confidence areas of FQI4, we conclude that it consistently
provides profit over time. This is due to the specifically crafted reward function used during
the training phase, which allows it to maintain a smaller net inventory, thus reducing the
standard deviation associated with large net inventory.

We now further analyse the scenario in the first column and fifth row of Table 7.3. We
report in Figure 7.3 the box-plots associated with the distribution over the 1, 000 runs of
the Sharpe ratio S (Figure 7.3 (a)) and the Inventory ziT at the final time T (Figure 7.3 (b)).
In Figure 7.3 (a) the FQI4 agent has a slightly larger distribution of the Sharpe ratio S
compared to the three Normal agents N. However, it also has a larger expected value, which
is consistent with the results in Table 7.2 and Table 7.3. In Figure 7.3 (b), the distribution
of the final inventory ziT is smaller than the ones corresponding to the three Normal agents
N. This is also consistent with the behaviour observed in Figure 7.2, and shows that for all
the runs, the final inventory ziT was small. We recall that having small inventory constitutes
a favorable characteristic of the learned strategy since it prevents the market makers from
having large capital requirements as stated by the current legislation in most countries.

Table 7.6 and Table 7.7 present the average reward R3. We can see that in almost all

112

7.4. Experimental Results

FQI4 Q4 P U N

FQI4, FQI4, FQI4 -8.617 -21.076 -20.473 -19.996 -21.521
Q4, Q4, Q4 -0.127 -18.001 -19.951 -18.028 -17.909
P,P,P -0.162 -17.355 -19.137 -17.999 -17.998
U,U,U -0.141 -18.438 -17.66 -17.611 -18.085
N,N,N -0.333 -17.562 -18.776 -17.62 -18.638

Table 7.7: Average reward R for Mt = 4. Larger is better.

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0
.0
2

0
.0
4

0
.0
6

0
.0
8

0.5

0.005

0.05
0.01

Q2

U

N
P

Standard deviation

M
ea

n
do

lla
r

re
w

ar
d FQI2

Figure 7.4: Each dot represents the performance of the agent against P, with the mean
dollar reward lt on the y-axis and the standard deviation of lt on the x-axis. For the
case of FQI and Q, the label next to each dot represents the value of λ in the inventory
penalization term ϕ(z) = λz2.

the instances, the FQI2 and FQI4 agents perform better than the other agents. Focusing
on the case Mt = 2 (Table 7.6), over all the configurations, FQI2 has a mean reward R
of ≈ −11 and ≈ −0.1 against the FQI2 and Q2 agents, while all the other agents have a
mean reward of ≈ −19.

Similarly, in the case of Mt = 4 (Table 7.7), we observe that the FQI4 agent has a
mean reward of in the range [−8.6,−0.3], in all the configurations, while the other agents
have a mean reward of ≈ −20 in all configurations. We remark that this table is presented
only for completeness, as the agents P, U, N are not explicitly optimizing the metric R,
while the strategic agents are optimizing this value in their learning procedure. However,
such table shows that the Algorithm 16 fails to learn optimal policies due to the large sizes
of the Q-tables involved. This justifies the introduction of Algorithm 7, which solves this
problem by using function approximation tool on the Q-tables, namely regression trees.

Finally, in Figure 7.4, we analyse the behavior of FQI when changing the risk aversion
coefficient λ of the inventory penalization ϕ(z). In the figure, we are plotting the mean
dollar reward lt and the standard deviation of lt for each agent against P (row 3 of Table 7.2),
in the setting Mt = 2. We can see that when decreasing λ the performance improves but

113

Chapter 7. Dealer Markets: a Mean-Field RL Approach

with increased risk. Furthermore, we can see that with λ = 0.05 we are already achieving a
dollar reward similar to the benchmark agents but with a lower standard deviation.

7.5 Chapter Summary

In this chapter, we presented a novel solution to the problem of market making in dealer
markets in the presence of strategic players. After defining the market making framework
as a N-player stochastic game, we proposed a solution based on the framework of learning
in MFGs, which assumes homogeneous market participants. To find the equilibrium, the
policy and the mean-field are evolved in an iterative manner. We used FQI to optimize
the policy at each iteration. Thanks to this training phase, the strategy learned this way
can be executed without requiring further learning processes during the daily operations
of the market maker. This approach is capable of handling the competitive nature of the
problem, due to the presence of other market makers, by learning an equilibrium strategy
in a multi-agent framework. After presenting the approach, we empirically tested the
robustness of the equilibrium strategy in terms of multiple metrics. The experimental
evaluation showed that, in the presence of strategic opponents, the method outperforms the
other benchmark agents. Instead, in the presence of a generic market configuration, other
agents might perform better when considering P&L. However, since proposed methods
guarantee a safe behaviour, they are capable of achieving a lower risk in terms of a higher
Sharpe ratio and a smaller inventory. This shows that the learning in games framework can
lead to promising results when employed in the market making context.

An interesting future direction to explore is to add elements of realism to the problem,
e.g. by considering a portfolio of correlated assets, or by training on real data. Moreover,
one might consider other RL techniques, such as policy search methods, which might
perform better from an empirical point of view, but at the expense of the theoretical
guarantees and/or computational costs. Finally, our approach can be tested/compared to
other strategies currently used in a production setting, to check the rationality level, from a
game-theoretic point of view, of the players.

114

CHAPTER8
Hedging Options with Risk-Averse RL

As described in Section 2.3.3, hedging the delta risk of options is a task common to options
market makers. Delta hedging is executed in an automatic fashion in some of the more
advanced trading companies by means of hedging algorithms. This framework, as we have
seen in Sections 2.2.3 and 2.2.4, makes unrealistic assumptions such as continuous time
hedging and no transaction costs when trading the underlying. Thus, blindly following the
B&S delta hedge (afterwards we refer to it as simply delta hedge) can generate relevant
costs. This chapter analyzes the delta hedging problem proposing an approach to manage
the trade-off between risk and return by using RL.

In this chapter, we analyze two different delta hedging problems, starting with equity
options (see Section 2.2.3), and then turning to credit index options (refer to Section 2.2.4).
Hedging is a form of risk management that requires being risk-averse, thus it is necessary
to optimize for a risk-averse objective function. Risk-averse RL has been the object of
extensive literature, which was analyzed to select the appropriate algorithm. The chosen
algorithm, Trust Region Volatility Optimization (TRVO) (Bisi et al., 2020b), a risk-averse
variant of TRPO (Schulman et al., 2015), is presented in Section 8.2. TRVO not only
optimizes a risk-averse objective but, being a policy search algorithm, is also natively
compatible with continuous states and actions, a necessary property to handle the hedging
environments. We solve both hedging problems using TRVO. With the same technology, we
also address DVA hedging. DVA is a hybrid risk with no possibility of trade the underlying
generating one of the risks. Given the complexity of the problem, there are very preliminary
results, thus we only explain the methodology in Appendix C.

In Chapter 7 we covered the pricing task in the case of bonds. A very similar task exists

115

Chapter 8. Hedging Options with Risk-Averse RL

in the case of options. Indeed, options market makers often find themselves with a net
positive or negative inventory of options for which the delta needs to be hedged. Hedging
the delta in a realsitic setting is the topic explored in this chapter. This topic has a long
history and following Black and Scholes (1973), several approaches have been proposed
to extend the B&S model to account for realism, starting with Leland (1985) and more
recently Guéant and Pu (2017). In this chapter we take a different perspective, proposing
a model free risk-averse RL approach to solve the problem of hedging the delta. Being
model free, it is independent from the model generating the prices of the underlying, we
use a GBM model as a proof of concept, but also verify the robustness of the approach by
testing the behavior on a Heston simulated market and, finally, on real data.

Chapter outline The chapter begins with an overview of the state-of-the-art on option
hedging using RL, as the background is common for both topics. Then, in Section 8.2, we
introduce the Trust Region Volatility Optimization (TRVO) algorithm. Once the common
elements have been described, we elaborate on each of the hedging problems, starting with
equity option hedging in Section 8.3 and credit index option hedging in Section 8.4. In both
cases, we focus our attention on the promising experimental results.

8.1 Background on RL for Hedging

The issue of delta hedging using RL has been analyzed by various authors. Among the
most recent approaches we mention Du et al. (2020); Kolm and Ritter (2019); Buehler et al.
(2019); Halperin (2017, 2019); Cao et al. (2019). These papers can be subdivided into two
categories, one addresses the problem from a practitioner’s perspective and is focused on
the details of the hedging strategies chosen by the agent; the other builds on the formal
mathematical structure of option pricing and uses machine learning techniques to overcome
the problems posed by realistic features such as transaction costs. The distinction is faint as
a hedging strategy implies a price, and vice versa.

The first category includes Kolm and Ritter (2019); Cao et al. (2019) and is also
pertinent for this chapter. The most comparable, regarding the financial environment,
are Du et al. (2020); Kolm and Ritter (2019), which use the same MDP formulation
considered in this dissertation. The main difference consists in the use of an approximate
variance formulation in the RL objective, compared to the full variance used in this chapter.
Furthermore, Kolm and Ritter (2019), uses a one-step SARSA update, a value based
approach (see Section 3.3.1), instead of a policy search method, while Du et al. (2020)
considers both DQN (Mnih et al., 2013) and PPO (Schulman et al., 2017). Cao et al. (2019)
also consider an environment very close to ours, but with a transaction costs size that is ∼ 20
times more than what we considered. Regarding the RL algorithm, they use value-function
methods and, in particular, risk-averse deep Q-learning. It is an advanced approach taken
from the risk-averse reinforcement learning literature (Tamar et al., 2016). They consider
two Q functions, one for the first moment and another for the second moment. The paper
then focuses on the agent’s efficiency as a function of the rebalancing frequency. Differently
to this chapter where we also analyze what happens when changing the risk-aversion
parameter, in Kolm and Ritter (2019); Cao et al. (2019), only a single value of risk aversion
is tested.

116

8.2. Risk Aversion in RL with TRVO

The second category includes Halperin (2017, 2019); Buehler et al. (2019). In Halperin
(2017, 2019), the problem of option pricing in discrete time has been addressed from
a machine learning perspective, neglecting hedging costs. In Buehler et al. (2019), the
option pricing problem is undertaken by considering a class of convex risk measures and
embedding them in a deep neural network environment. Initially, the dependence of the
option price and hedge on the risk aversion parameter is studied in the absence of transaction
costs. Then, a study of the option price dependence on transaction costs is discussed and
the functional dependence of the price on the cost parameter is reconstructed.

What distinguishes our approach is the algorithm we considered: the risk-averse policy
search algorithm TRVO. One of the advantages of TRVO compared to value based algo-
rithms like the ones used by Kolm and Ritter (2019); Cao et al. (2019); Halperin (2017)
is the fact that being policy search, TRVO is natively compatible with continuous states
and actions and thus does not suffer from the problems of using a function approximator.
Furthermore, being risk-averse, it is not necessary to apply any transformation to the reward
differently from what is done for example in Kolm and Ritter (2019) and it is able to create
a policy specific on the risk aversion of the user. Moreover, an advantage of model free RL
algorithms, is that the policy learned is independent from the model used to generate the
data. Thus TRVO can be used as is in an option hedging framework, and only requires the
standard hyperparameter tuning typical of RL algorithms.

8.2 Risk Aversion in RL with TRVO

In Section 4.5, we introduced the concept of reward volatility (Equation 4.11) as a perfor-
mance metric. In this section, we analyze how to insert this metric in the objective function,
thus optimizing for a risk-averse objective.

In the RL framework, there are two main sources of risk: the first is the inherent risk,
which is generated by the stochastic nature of the environment, while the second is the
model risk, which is related to the imperfect knowledge of the model parameters. In a
certain way, the inherent risk is related to the distribution of the results once a policy is
selected, while the model risk is related to the safety in the learning process, which is
desired to monotonically improve the results. Several ways of minimizing inherent risk have
been taken into consideration in the RL literature with many different approaches (García
and Fernández, 2015): employing a utility function for the return (Shen et al., 2014),
changing the objective function, or adding a constraint (Tamar et al., 2015). A number
of modified objectives have been studied, for example the minimization of variance of
the returns in a mean-variance (Tamar and Mannor, 2013; Prashanth and Ghavamzadeh,
2014) or Sharpe ratio (Moody and Saffell, 2001) fashion. Another example is a family of
well-behaved risk measures, which includes CVaR, called coherent risk measures (Tamar
et al., 2017). Nevertheless, all these approaches consider only the minimization of the
long-term risk, while in financial trading interim results are also fundamental, and keeping
a low-varying intermediate P&L becomes crucial. Moreover, the analytical intractability of
all these formulation does not allow the related algorithms to perform (in terms of learning
improvements) as the state-of-the-art algorithms in the standard RL framework, such as
TRPO (Schulman et al., 2015). For these reasons, we introduced in Bisi et al. (2020b) a
new risk measure, which takes into account the variance of the reward at each time-step
with respect to state visitation probabilities and called it reward volatility.

117

Chapter 8. Hedging Options with Risk-Averse RL

In most trading and even hedging applications, achieving a profit is at least as relevant
as being risk-averse thus, we decide to consider an objective that handles the risk-return
trade-off through a risk aversion coefficient, the parameter λ. Recalling the Jπ function
of Equation (3.7): Jπ := (1− γ)Eπs0∼µ

[∑T
t=0 γ

trt

]
, and reward volatility of Equation

(4.11): ν2π := E s∼dµ,π

a∼π(·|s)

[
(r(s, a)− Jπ)

2
]

the objective related to the policy π can be

defined as:
ηπ := Jπ − λν2π, (8.1)

called mean-volatility hereafter, where λ ≥ 0 allows to trade-off expected return maximiza-
tion with risk minimization. Similarly, the mean-variance objective is Jπ

/
(1− γ)− λσ2

π,

where σπ is the return variance defined in Equation (4.9): σ2
π := Eπs0∼µ

[(
Gτ − Jπ

1−γ

)2]
An important result on the relationship between the two variance measures is the following:

Lemma 8.1. Consider the return variance σ2
π (Equation (4.9)) and the reward volatility

ν2π defined in (Equation (4.11)). The following inequality holds:

σ2
π ≤ ν2π

(1− γ)2
,

It is important to notice that the factor (1 − γ)2 comes from the fact that the return
variance is not normalized, unlike the reward volatility. What is lost in the reward volatility
compared to the return variance are the inter-temporal correlations between the rewards.
However, Lemma 8.1 shows that the minimization of the reward volatility yields a low
return variance. The opposite is clearly not true: as counterexample, it is possible to
consider a stock price with the same value at the beginning and at the end of the investment
period, but making complex movements in-between.

The main advantage in considering this measure consists in its analytical tractability,
thanks to which it is possible to derive linear Bellman equations, in a similar form as in
Equation (3.6), and a policy gradient theorem, analogous to the standard RL framework.
Indeed, we can introduce a volatility equivalent of the action-value function Qπ (Equa-
tion 3.5), called action-volatility function, which is the volatility observed by starting from
state s, taking action a, and following policy π thereafter:

Xπ(s, a) := E
st+1∼P (·|st,at)
at+1∼π(·|st+1)

[∞∑
t=0

γt(R(st, at)− Jπ)
2|s, a

]
.

Like the Qπ function, this can be written recursively by means of a Bellman equation:

Xπ(s, a) =
(
R(s, a)− Jπ

)2
+ γ E

s′∼P (·|s,a)
a′∼π(·|s′)

[
Xπ(s

′, a′)
]
.

We can define also the state-volatility function Wπ as the expected value of Xπ under the
policy π, i.e., the equivalent of the V function (Equation 3.4) for volatility.

The linearity of this Bellman equation allows an alternative interpretation of the mean-
volatility objective. In fact, by applying a reward transformation Rλπ(st, at) = R(st, at)−

118

8.3. Equity Option Hedging with RL

Algorithm 8: Trust Region Volatility Optimization

1 Initialize: policy parametrization θ0, batch size N , number of iterations K,
discount factor γ.

2 for k = 0, . . . ,K − 1 do
3 Collect N trajectories with θk

4 Compute estimates of the risk neutral objective Ĵ
5 Estimate advantage values Aλθk

(s, a)

6 Solve the constrained optimization problem
7

θk+1 = argmax
θ∈Θ

[
Lλk(θ)−

2ϵγ

1− γ
Dmax
KL (πθk

, πθ)
]

where ϵ = max
s

max
a

|Aλθk
(s, a)|

Lλk(θ) = ηθk
+ E

s∼dµ,πk

a∼πθ(·|s)

Aλθk
(s, a)

λ(R(st, at)−Jπ)2, it is possible to formulate the problem as a standard RL problem, where
X and W functions are reduced to Q and V .

Thanks to the similarity to the standard framework, we are allowed to include all the
value functions to define the mean-volatility advantage function Aλπ(s, a):

Aλπ(s, a) :=

(
Qπ(s, a)− λXπ(s, a)

)
−
(
Vπ(s)− λWπ(s)

)
At this point, it is possible to adopt a risk-averse version of the TRPO algorithm de-
scribed in the previous section: we can consider a surrogate function Lλπθold

(πθnew), of the
parametrized policy πθ, that approximates the gain in terms of performance of θnew with
respect to θold:

Lλπ(π̃) := ηπ +

∫
S
dµ,π(s)

∫
A
π̃(a|s)Aλπ(s, a) da ds.

Thus, we can define the Trust Region Volatility Optimization (TRVO) algorithm where, as
in the classic TRPO, the optimization of the objective function is performed in an iterative
manner, and each policy update has the constraint on the KL-divergence of two consecutive
policies. The pseudo algorithm is summarized in Algorithm 8.

8.3 Equity Option Hedging with RL

This section presents the results achieved by learning the equity option hedging framework,
illustrated in Section 2.3.3, with TRVO. This is a generic framework, where the underlying
can be a generic equity instrument such as a stock (see Section 2.2.1) or a future (see
Section 2.2.2). Equity options are defined in Section 2.2.3 and can be embedded in an MDP
where:

119

Chapter 8. Hedging Options with Risk-Averse RL

• the action at is the current hedge portfolio,

• the state st = (St, Ct,
∂C(t,St)
∂S , at−1),

• the reward r(st, at) as defined in Equation (2.18).

Regarding the financial framework, we consider a single underlying generated with
GBM as explained in Section 4.3.1. There are 5 prices per day. The option has unitary
notional and is At The Money (ATM) with a 60 day maturity.40 The starting price of
the underlying is 100 and the annual volatility is 20%, approximately that of an equity
option in normal market conditions. With these characteristics, the option price value at
inception is ∼ 3.24 (also referred to as premium) and the corresponding delta ∼ 0.5. 305
time-steps means 61 days, where day 61 is the day the option expires. On the last day, small
movements of the underlying around the strike price can cause the delta to jump between
0 and 1, this is called pin risk. Finally, we simplify a zero financing cost. In this section,
we refer to P&L :=

∑
t rt and P&L volatility is σ :=

√
Var[P&L], where rt is defined as

defined in Equation (2.18). We remark that this is a proof of concept, with the objective of
showing that with risk-averse RL it is possible to learn a realistic delta hedging strategy.
For simplicity, we consider an underlying which behaves as a GBM, but the model used to
generate the underlying should not impact on the results, ideally should use real data to
train and test our algorithms.

8.3.1 Experimental Results
We start the section by considering option hedging in discretized time without hedging
costs, then we introduce transaction costs and finally stress our models by testing them on
options with different strikes, different volatility, and even portfolios of options. Training
is performed on 10,000 scenarios, with ∼2,000 episodes where each batch has ∼120,000
steps, the discount factor is 0.999, max KL is 0.001. The policy is a neural network (see
Appendix B.4.3 for more details on neural networks) with 2 hidden layers with 64 neurons.
Testing is an average of 2,000 out-of-sample scenarios. All figures present the results of
those 2,000 scenarios unless specified otherwise.

Training without transaction costs

In this section we analyze the performance of TRVO on a cost free environment and
compare it with the delta hedge. As we can see in Figure 8.1, time discretization injects
some volatility in the delta hedge (red bars), but the generated wealth is very small with
respect to the option premium (∼ 3.24). In fact, the delta hedge remains optimal and the
agent learns to reproduce it (as we can see in Figure 8.2). It is clear that the hedging strategy
is able to exploit the change in delta typical of a long option position, to compensate for the
time decay of the option premium. The presence of a risk aversion factor, even if slightly
weighted, forces the algorithm to reduce the volatility as much as possible, thus there is no
frontier and everything condenses to the delta hedge.

40We have chosen an ATM option because it is the most traded type and generates the most interesting delta
behavior. Nevertheless, in Section 8.3.1 we show that an agent trained on ATM options is able to hedge options
with different moneyness.

120

8.3. Equity Option Hedging with RL

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0
%

1
0
%

2
0
%

delta hedge
model

Figure 8.1: P&L distribution without transaction costs.

1 50 100 150 200 250 300

0
0
.5

1

time-step

ac
ti

on

delta hedge
model

Figure 8.2: Single scenario, no transaction costs with also an example of pin risk handled
appropriately by the agent.

Training with transaction costs

In this section, we consider costs along the line of (Kolm and Ritter, 2019) as specified in
Equation (2.23) with a mid-ask spread of 0.05. The choice of the mid-ask is such that the
costs replicate those of listed stocks (the Euro Stoxx Banks futures - see Figure B.1, and
FTSE MIB futures, renormalizing the underlying to 100, have a rescaled mid-ask spread
of ∼ 0.05. A more liquid index such as the S&P 500 mini futures contract, has a typical
mid-ask ∼ 0.01). We picked risk-averseness parameter of the objective η = J + λν2 by
measuring the typical values assumed by the reward volatility and the average P&L. For
the specific environment at hand we found 0.2 ≲ λ ≲ 20 as the most interesting range.

The average of the costs generated by the delta hedge on the test set is ∼ 0.286, which
is ∼ 9% of the option premium.

In Figure 8.3, we can see that lower risk aversions generate lower costs. This can be
clearly seen also in Figure 8.4, where the yellow bars show that the distribution of costs
generated by an agent trained with λ = 2 are much lower than those generated by the
delta hedge average. This is even more evident with λ = 0.5 (green bars) and λ = 0.82
(blue bars), where costs are even lower. Increasing the risk-aversion parameter leads the

121

Chapter 8. Hedging Options with Risk-Averse RL

0 2 4 6 8 10

0
.2

0
.3

0
.4

λ

co
st

s

0
.0
2

0
.0
3

0
.0
4

ν

costs
reward volatility

Figure 8.3: Hedging costs (red) and reward (blue) experienced by the TRVO agent, as
functions of the training risk aversion λ. The dotted lines represent the hedging cost
(red) and reward volatility (blue) of the delta hedge. Each point is calculated on a single
scenario, the same of Figure 8.2.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
%

1
0
%

2
0
%

3
0
%

4
0
%

costs

delta hedge
λ = 0.5

λ = 0.82

λ = 2

Figure 8.4: Hedging costs generated by delta hedge (red) and RL agent trained with
different risk aversion parameters.

agent to behaviors more adherent to the delta hedge strategy, which is essentially recovered
for λ ∼ 20. This is evident from Figure 8.3, in which the costs due to the actions of the
RL agent (red line) approach the costs realized by the delta hedge (dashed red line) as λ
increases.

How the agent reduces hedging costs

In light of these results, we tried to understand which strategy was chosen by the agent
to reduce costs. The essence is that, even with a very low risk-aversion, the agent tries
to control the P&L volatility by mimicking the delta hedge strategy, but by delaying and
reducing the action, in line with what is also described in Cao et al. (2019). This means
that the agent does not act immediately when the delta spikes up (down), but waits to see
if, due to market movements, the delta returns to the previous lower (higher) values. In
case the delta spikes up more, surpassing the agent’s “comfort zone”, the agent covers the

122

8.3. Equity Option Hedging with RL

1 50 100 150 200 250 300

0
0
.5

1

time-step

ac
ti

on

delta hedge
λ = 0.5

λ = 0.75

λ = 1

Figure 8.5: Comparison between the delta hedge and the agent’s actions with different risk
aversion parameters λ. Same scenario as figure 8.2 but with hedging costs.

0.017 0.019 0.021 0.023 0.025 0.027

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

10
6

4
3

2

1
0.825

0.75
0.5

ν

∆
p
&
l

agent
delta hedge

Figure 8.6: Efficient frontier of the TRVO agent at different risk aversions on the P&L /
reward volatility space.

position. Having studied an agent trained with different risk-aversion levels, we are able
to show how this comfort zone depends on the risk aversion parameter: it is very wide for
lower values and very tight (or essentially zero) for higher values.

This behavior is well represented in Figure 8.5, where the red line represents the delta
hedge, while the other lines represent the action of the agent trained with different risk
aversions. For lower risk-aversions, the action is smoother and expresses a significant delay
with respect to the delta hedge. For higher values of λ, not shown for the interpretability of
the figure, the agent’s action is consistently more adherent to the delta hedge, confirming
the behavior that could be supposed from Figure 8.2. Comparing Figures 8.2 and 8.5, it is
clear how the same risk aversion with different costs gives different hedging strategies.

Efficient frontier

The interplay between reward volatility reduction and cost minimization can be analyzed
by observing the efficient frontier in Figure 8.6, where we plotted a point for each value
of the risk aversion parameter λ, in the ν-P&L space. The y-axis is not the pure P&L, but

123

Chapter 8. Hedging Options with Risk-Averse RL

0.2 0.25 0.3 0.35 0.4

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

109
6
5
4

3

2

1
0.825 0.75

0.5

optimum

delta hedge

σ

∆
p
&
l

average
confidence bounds
delta hedge

Figure 8.7: Efficient frontier of the TRVO agent at different risk aversions on the P&L /
P&L volatility space.

the difference of the P&L of the agent with respect to that of the delta hedge. As expected,
increasing the risk-aversion coefficient lowers the reward volatility and the P&L. The point
in red shows the average wealth and reward volatility experienced by following the delta
hedge strategy. Reward volatility is a relevant risk metric to a trading strategy given that,
in real life, a portfolio will experience a single scenario: if the loss is too large, the trader
may be tempted, or forced, to adopt stop-loss strategies, hampering any chance of profiting
from an otherwise properly trained agent. This is the main financial reason why we chose
the TRVO agent. Nevertheless, a posteriori, it is important to evaluate the performance
of the hedge over the entire life of the option. This can be seen in Figure 8.7 where a
point in the σ-P&L space is plotted for each value of λ. As before, the y-axis indicates
the P&L of the agent with respect to that of the delta hedge. To measure the uncertainty
of the learning model, we performed 20 trainings for each value of λ. The blue line is a
logarithmic best fit of the obtained frontier, while the yellow lines provide an indication of
the 1-σ (68%) confidence interval. The red dot represents the delta hedge, with performance
defined as being zero. The frontier points laying on the left of the vertical red line strictly
dominate the delta hedge, since the corresponding agents perform better both in terms of
P&L and in terms of volatility. Those on the right, instead, while performing even better
in terms of P&L, induce a volatility increase, thus, their relevance depends on the trader’s
risk aversion. As an example, a trader valuing the volatility increase on the same footing as
the P&L gain (a completely arbitrary choice, of course) will consider the whole frontier as
an improvement with respect to the delta hedge, since it lays above the diagonal red line,
indicating the region of the space where the P&L gain is equal to the volatility increase.
That trader will consider the blue point, which has tangent line parallel to the diagonal
red line and is very close to the λ = 2 point, as an optimum. We stress that, whatever
risk aversion is chosen, there is a corresponding frontier point performing better than delta
hedge.

P&L distribution

One may wonder about the statistical significance of a gain of ∼ 0.15 with respect to the
delta hedge if the P&L-volatility is of the same order of magnitude. We believe this is

124

8.3. Equity Option Hedging with RL

[−
0.
4,
−0

.3
)

[−
0.
3,
−0

.2
)

[−
0.
2,
−0

.1
)

[−
0.
1,
0.
0)

[0
.0
, 0
.1
)

[0
.1
, 0
.2
)

[0
.2
, 0
.3
)

[0
.3
, 0
.4
)

[0
.4
, 0
.5
)

[0
.5
, 0
.6
)

[0
.6
, 0
.7
)

[0
.7
, 0
.8
)

0
%

5
%

1
0
%

1
5
% delta hedge

model

Figure 8.8: Distribution of the P&L performance of a TRVO agent with λ = 2 over the
delta hedge.

the case, and support our claim by showing, in Figure 8.8, how the agent performance is
distributed in the case λ = 2, where the green (red) bars show the distribution of scenarios in
which the agent performs better (worse) than the delta hedge. Assuming that a performance
better than that of the delta hedge is not always ensured, one has to observe that in 81% of
the scenarios the performance is superior and that the average superior performance, which
is 0.15, is more than ten times the average of the worse performance, which is -0.014, and
even more of the absolute value of the 5-th percentile of the distribution, which is -0.09.
The t-test on the data used for the histogram gives more than a 99.9% confidence that the
average of the model is greater than the average of the delta hedge.

Strengths and limits of the approach

In the previous section, we presented the performance of a TRVO agent where the option to
be hedged had the same characteristics, as the one on which the agent had been trained. In
this section, we consider the same agents, without any type of re-training, and test them on
options characterized as follows:

• single in the money (strike 105) option, 60 days maturity,

• single out of the money (strike 95) option, 60 days maturity,

• single at the money option, 60 days maturity, tested on scenarios where the realized
volatility is 30% (to be compared with the training set scenarios having volatility
20%),

• portfolio of options with different moneyness (strikes from 90 to 110), 60 days
maturity.

The results of the tests are summarized in Table 8.1, by using as performance indicators
the difference between the agent and delta hedge P&L (∆P&L) (as in Figure 8.7) and the

125

Chapter 8. Hedging Options with Risk-Averse RL

STD option ITM option OTM option High vol Portfolio

λ ∆P&L ∆σ ∆P&L ∆σ ∆P&L ∆σ ∆P&L ∆σ ∆P&L ∆σ
0.5 0.2 0.17 0.15 0.17 0.17 0.21 0.2 0.37 0.15 0.22

0.75 0.19 0.12 0.14 0.13 0.15 0.15 0.19 0.23 0.14 0.14
0.82 0.18 0.1 0.13 0.1 0.15 0.12 0.18 0.2 0.13 0.12

1 0.17 0.08 0.13 0.08 0.14 0.1 0.17 0.17 0.13 0.1
2 0.14 0.03 0.1 0.02 0.12 0.03 0.13 0.08 0.1 0.05
3 0.11 0.01 0.08 0 0.1 0 0.11 0.04 0.08 0.03
4 0.09 0 0.07 -0.01 0.08 -0.01 0.09 0.03 0.07 0.03
5 0.08 -0.01 0.06 -0.02 0.07 -0.01 0.07 0.02 0.06 0.02
6 0.07 -0.01 0.05 -0.02 0.06 -0.01 0.06 0.02 0.05 0.02
7 0.06 -0.01 0.05 -0.02 0.05 -0.01 0.06 0.02 0.05 0.02
8 0.06 -0.01 0.04 -0.02 0.05 -0.01 0.05 0.01 0.04 0.02
9 0.05 -0.01 0.04 -0.02 0.05 -0.01 0.05 0.01 0.04 0.02
10 0.05 -0.01 0.04 -0.02 0.04 -0.01 0.04 0.01 0.03 0.02

Table 8.1: Behavior of agent on a test environment where the option characteristics have
been modified.

difference between the agent and delta hedge P&L volatility (∆σ). An optimum (in bold) is
identified by looking at the risk aversion-value such that the P&L gain obtained by varying
it is equal to the volatility increase (i.e. at the optimum the frontier has a tangent line with
unitary steepness).

Table 8.1 proves the robustness of the presented approach, and we believe that a single
training may be sufficient to properly hedge any portfolio of options for a given maturity.
In fact, given the definition of the state at the beginning of Section 8.3, the agent learns
a hedging strategy that is independent of the number of options, their strike, and also on
the behavior of the market. Notice also that the λ realizing the optimum (with the same
considerations as Section 8.3.1) does not change significantly in the table, indicating that a
given λ consistently realizes a certain risk - P&L balance, at least for the hedging cost level
we adopted.

One could argue that our training and testing is built on a really simple market generation
model, i.e. GMB with constant volatility. We believe that a strategy able to deal with
a volatility change of around 50% (from 20% to 30%) is already robust and that a real
improvement in the strategy would require a massive injection of reality, both on the
option and underlying details, and on the market data generation. Such reality boost
could take advantage of AI-based approaches, e.g., the use of a generative adversarial
network (Goodfellow et al., 2014), as in Kondratyev (2018), or other approaches such as
the Restricted Boltzmann Machine described in Kondratyev and Christian (2019) to be
more adherent to real-world data. We leave this extension for future work.

We also tried to understand whether this robustness could be extended to the manage-
ment of portfolios of multiple options with different maturities. Unfortunately, our first
attempts seem to indicate that it is extremely difficult to train the agent to learn that, from a
certain point on, one or more options expire and so hedging that portion of the portfolio is
no longer necessary (and thus the total portfolio delta is not in [0, 1] anymore but in [0, x]
where x < 1). In our view, the essential point is that the price-value-delta relationship is

126

8.4. Credit Index Option Hedging with RL

broken after expiry, and even the use of expiry signals to inform the agent about the fact
that something changed in the game was not able to solve this point completely. However,
we must observe that for most of the options traded on the market, the available option
maturities are not so many. Thus, it is perfectly viable to split the whole portfolio into
maturity sets, each of which is managed by a different instance of the same agent.

Managing increasing hedging costs

Until now, we considered hedging costs given by Equation (5.5) with mid-ask = 0.05. Less
liquid or less standard listed contracts may have a significantly higher mid-ask , while OTC
instruments, such as swaps and CDS, which are perfectly viable option underlyings, have
even higher transaction costs (see Section 8.4). For this reason, we verified what happens
with costs with mid-ask = 0.2. In such a setting, the average cost of the delta hedge is
fourfold (from ∼ 0.286 to ∼ 1.2), as well as the cost distribution width. This enhances
the advantage of a parsimonious agent: it is possible to draw an efficient frontier in the
P&L/reward volatility space similar to Figure 8.6, just with an increase in the y-axis from
0.2 to 0.8. Nonetheless, a greater width for the cost distribution means a greater P&L
volatility induced on the delta hedge by the hedging costs, which become the predominant
source of volatility. This effect on P&L volatility is such that an agent, when reducing
hedging costs, may be able to reduce the P&L volatility as well.

In this sense, in the presence of higher hedging costs, a winning strategy seems to be
decreasing the risk aversion.41 In fact, as also mentioned in Cao et al. (2019), an optimal
strategy in case of very high costs may require no hedging at all. We also tested the
(extreme) case of mid-ask = 0.5, where the described behavior is enhanced even further,
essentially recovering the results of Cao et al. (2019). As mentioned, the agent is able to
outperform delta hedging both in P&L and in P&L volatility, we stress that even in this
extreme case the relative outperformance depends on the risk aversion parameter, which in
Cao et al. (2019) was chosen as a fixed parameter (λ ∼ 1.5 using our language).

8.4 Credit Index Option Hedging with RL

This section also focuses on option hedging, but it considers a credit index instead of an
equity instrument. Credit indexes and credit index options are defined in Section 2.2.4.
The main differences with the equity instruments considered in the previous section is
that credit indexes are OTC instruments, while stocks and futures are listed on exchanges
(see Section 2.1.1). Hence, also transaction costs are handled differently as we saw in
Section 2.4. Recalling Section 2.3.3, the credit index option hedging framework can be
embedded in an MDP where:

• the action at is the current hedge portfolio,

• the state st = (St,Payt, Nh(t), at−1),

• the reward is defined in Equation (2.19).

Regarding the financial framework, we simulated only the traded credit spread S, by
using the GBM described in Section 4.3.1 with σ, the annualized volatility, equal to 60%

41This does not necessarily imply decreasing the risk aversion parameter λ, which is not dimensionless.

127

Chapter 8. Hedging Options with Risk-Averse RL

and neglecting the drift term. We did not consider the possibility of a default of one of
the components as no default has been observed in recent times for the instrument in
consideration. We trained our agents on generated data, with episodes of 40 working days,
with 17 observations per day, beginning at 9.30 and ending at 17.30. In each simulation,
the underlying credit spread starts from an initial value of 100 bps; we define the stochastic
evolution on the actual time span between the time-steps: 30 minutes during the day, 16
hours between the last step of one trading day and the first step of the next trading day in
case of two contiguous trading days, a span of 16 + 24n hours in the case of trading days
separated by n holidays or weekend days.

We trained our agents to hedge a position long a payer (but any other position would
have been equivalent) option with two months maturity, thus maturing at the end of each
episode. We considered a strike K of 100 bps, equal to the initial value of the underlying at
the beginning of the episode. We assumed an option notional of C100mln, which implies
a hedging portfolio containing an underlying notional between C0 and C100mln. Given
the market structure, our results are valid even assuming an option notional up to 10 times
larger. We also assumed continuous underlying trading, which is reasonable given the
option size and the fact that in the market small clips (down to C100k) can be traded.
Assuming a risk neutral volatility equal to 60% the option has initial value of C530k.

8.4.1 Experimental Results

In this section we present the experimental results. Once described the data generation and
training parameters, we show the results obtained on a GBM simulated market and analyze
the robustness of the learnt policy testing also on a market simulated with a Heston model
and finally on real market data.

We built a training set of 40,000 episodes, and trained our agents while varying two
parameters: the risk aversion parameter λ and the bid-ask. In this section, we also refer to
bid-ask as the ba parameter. It is important to notice that in this case, the bid-ask spread
refers to the credit spread of the index, and not the price as in the equity case. We considered
λ similarly to the previous section, so to span an efficient frontier in the risk-reward space.
The values of lambda are 10−6 ≲ λ ≲ 10−3 but, for better interpretability, in the rest
of the paper we rescale λ by 105, so to have bounds between 0.1 and 100. The choice
of ba as an extra parameter comes from the observation that the bid-ask spread of the
instrument considered here shows a higly dynamic pattern. We considered ba ranging
from 0.5 to 2 as per Figure 4.2. We also considered the case with low values of ba, even
ba = 0 to further test our algorithms and to check that the standard delta hedging strategy
is smoothly recovered in the limit ba → 0. The relationship between ba and transaction
costs is represented by Equation (2.24).

Testing on a GBM-simulated Market We tested our agents on a dataset of 2,000
episodes with the underlying credit spreads generated by a GBM, with the same parameters
of the training dataset. We performed different tests varying the ba spread to monitor agents’
performances comparing to the delta hedging strategy.

In the ba = 0 case, the trained agent perfectly replicates the delta hedge. This can be
seen in Figure 8.9, where, for a specific testing scenario, the delta hedging strategy (in red)
is compared with the action chosen by the agents trained with different values of the risk

128

8.4. Credit Index Option Hedging with RL

0 100 200 300 400 500 600

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

time-step

ac
ti

on

ba = 0 bps

delta hedge
λ = 10

λ = 4

λ = 2

Figure 8.9: The hedging strategy chosen by agents trained at different values of the
risk aversion parameter λ is compared with the delta hedging strategy in a zero-cost
environment. The vertical axis represents the hedging notional as a percentage of the
option notional.

aversion parameter (in green, blue, and purple). Given the absence of trading costs, all the
agents replicate the same strategy, which is the optimal one, minimizing risks.42 Under the
ba = 0 assumption, the strategy has zero cumulated P&L on average.

Introducing hedging costs ba > 0, the average cumulated P&L of the delta hedging
strategy is shifted to negative values, depending linearly on ba, specifically, considering
a ba of 1 bp the cumulated P&L is on average -C136 k. The presence of hedging costs
during training induces a smoother strategy for the agent, in terms of underlying allocation
changes. Since each action becomes more expensive as ba increases, the agent cuts costs
through the reduction of portfolio rebalances. The downside of this approach consists in
an increase in the variability of the rewards, since the option is not continuously hedged.
The desired balance between cost reduction and low reward volatility, which depends on
the trader’s preference, can be achieved by changing λ. This relationship is plotted in
Figure 8.10, where different degrees of smoothness in the variation of the hedging portfolio
can be seen to be dependent on λ. The smoothness degree depends also on the size of the
hedging cost: defining a certain risk aversion, a higher ba implies a higher smoothness, as
is apparent by comparing the upper and lower plot.

Figure 8.11 summarizes the performance of the agents with respect to the delta hedging
strategy in terms of cumulated P&L for different values of λ and the ba parameter. In
the figure, each dot represents the performance of an agent with the λ indicated by the
nearby annotated number and acting in an environment with ba depending on the color.
The position on the vertical axis indicates the average P&L performance of the agent with
respect to the delta hedging strategy in an environment having the same ba. The average
is taken with respect to the terminal P&L measured on the 2,000 testing scenarios. The
position on the horizontal axis, instead, indicates the square root of the variance of the

42Indeed, neglecting hedging costs, the B&S paradigm is violated only by the assumed time discretization.

129

Chapter 8. Hedging Options with Risk-Averse RL

0 100 200 300 400 500 600

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

ac
ti

on

ba = 0.5 bps

delta hedge
λ = 25

λ = 10

λ = 4

λ = 2

0 100 200 300 400 500 600

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

time-step

ac
ti

on

ba = 2.0 bps

delta hedge
λ = 25

λ = 10

λ = 4

λ = 2

Figure 8.10: The hedging strategy chosen by agents trained with a different value of the risk
aversion parameter λ is compared with the delta hedging strategy in an environment
including hedging costs. In the vertical axis the hedging notional as a percentage of the
option notional. In the upper plot ba = 0.5 bps, in the lower plot ba = 2 bps.

terminal P&L (the P&L volatility) on the same testing sample. The colored dots laying on
the horizontal axis indicate the performance of the delta hedging strategy in terms of P&L
volatility at different values of the ba parameter. It is evident that all the agents perform
better than the corresponding delta hedging strategy in terms of P&L, while only a certain
number of agents (those lying left of the corresponding colored vertical line) perform
better than the delta hedging strategy also in terms of P&L volatility. In this sense, all the
frontiers dominate the corresponding delta hedge, and it is striking to notice that the level
of dominance depends on the ba parameter: at low costs the dominance is mild (as it was
also experienced in the previous section, where the very low hedging costs of listed equity
products were considered), at high costs the delta hedging is barely reasonable a strategy.
As an example, one can consider the λ = 4 point of the blue frontier (which assumes very
large costs and beats the delta hedge both in terms of P&L and P&L volatility) and observe

130

8.4. Credit Index Option Hedging with RL

50 100 150 200 250

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

delta hedge

ba = 0.50 bps

ba = 1.00 bps

ba = 1.50 bps

ba = 2.00 bps

0.50.60.751

1.25
1.5234

5 67.5

0.5
0.7511.251.52

3
45
67.5

10
15

0.751
1.251.523

4
5

6
7.5
10

15

1
234

5
6

7.5
10

12.515
20

p&l volatility (kEur)

∆
p&

l(
kE

ur
)

Figure 8.11: Each dot represents the performance of an agent on a GBM-simulated market
in terms of P&L (with respect to delta hedge) and P&L volatility, depending on λ
(annotated next to each dot) and the ba parameter.

0 100 200 300 400 500

0
%

5
%

1
0
%

1
5
%

2
0
%

p&l model - p&l delta hedge (kEUR)

Figure 8.12: The distribution of the P&L of the λ = 4 agent relative to the P&L of delta
hedge assuming ba = 1.5 bps and GBM-simulated market.

from Figure 8.10 how smooth its action is. Another aspect to notice is the λ parametrization
of the different frontiers: there is a shift of λ to the right at the increase of the ba parameter.
The benefit of adopting our approach instead of the delta hedging strategy is clear also from
Figure 8.12, where we show the distribution of the P&L of the λ = 4 agent relative to the
P&L of the delta hedging strategy in the realistic case of ba = 1.5 bps. It is evident that
essentially the agent performs always better.

131

Chapter 8. Hedging Options with Risk-Averse RL

80 100 120 140 160 180 200 220 240 260

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

delta hedge

ba = 0.50 bps

ba = 1.00 bps

ba = 1.50 bps

ba = 2.00 bps

0.50.60.751

1.25
1.5234

5 67.5 1012.5
25

0.5
0.7511.251.52

3
45
67.5

10
15

0.751
1.251.523

4
5

6
7.5

10
15

1
234

5
6

7.5
10

12.515
20

p&l volatility (kEUR)

∆
p&

l(
kE

U
R

)

Figure 8.13: Each dot represents the performance on a Heston simulated market of an
agent in terms of P&L (with respect to delta hedge) and P&L volatility, depending on λ
(the number close to the dot) and the ba parameter.

Testing on a Heston simulated Market To make a step towards realism, we challenge
the assumption of the GBM constant volatility, as we know it does not hold in the financial
markets. We thus construct a new testing set of 2000 episodes with credit spreads generated
with the Heston model defined in Equations (4.1) and (4.2), with ν(0) = 60%2, so to
recover the initial volatility used in training, κ = 2, θ = ν(0), ξ = 0.9, and no correlation
between the stochastic terms dWS(t) and dW ν(t). With this configuration ν(t) oscillates
significantly reaching values as high as ∼ 120% and as low as ∼ 0%. When pricing the
option we maintained the B&S formulation with σ = 60%.

Even if the agents were trained on a dataset generated with a GBM process, they are
able to achieve very good performance over the Heston dataset (see Figure 8.13). The
reason behind this behaviour could be that the hedging of an option is a task that implies a
deep knowledge of the relationship between the underlying price and the option premium,
but the way in which the underlying evolves is probably a secondary aspect.

Testing on Real Market Data To move a further step towards a realistic setup, we
consider now real market data for SNRFIN. We use the dataset constructed as in Section 4.2
and processed as in Section 4.4, thus considering real market prices and real transaction
parameters ba as seen in Figure 4.2. We simulate the option price with σ = 60%. The
available data is sufficient for 5 episodes of 40 days, which we used as a test set for agents
trained with different values of λ with ba = 1 bp.

In Figure 8.14 we show the action of the various agents compared with the delta hedge
in one of the episodes. We also show the market data dynamics (in black), on the right
vertical axis. We can see as in the previous figures, how lower values of λ generate smoother
hedging policies.

Table 8.2 summarizes the performance of the various agents (in Ck) and shows the

132

8.4. Credit Index Option Hedging with RL

21-07-2020 04-08-2020 18-08-2020 02-09-2020 15-09-2020

5
0

6
0

7
0

8
0

S
(b

ps
)

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

ac
ti

on

S (RHS) delta hedge
λ = 25 λ = 10

λ = 4 λ = 2

Figure 8.14: The delta hedging strategy (red line) is compared to the strategy selected by
agents trained with ba = 1, at various risk aversions (other colored lines), on a real
episode. The black line shows the underlying credit spread S observed between July
and September 2020.

Scenario
1 2 3 4 5

λ P&L vol P&L vol P&L vol P&L vol P&L vol
1 -177 4.1 183 8.7 -257 3.8 -174 2.6 -282 2.4

1.25 -165 3.6 221 8.9 -224 3.6 -185 2.4 -272 2.4
1.5 -174 3.5 236 8.9 -212 3.6 -200 2.1 -270 2.4
2 -181 3.2 219 7.1 -188 3.5 -223 1.8 -285 2.3
3 -188 3.5 154 5.3 -144 3.6 -215 1.8 -294 2.3
4 -212 3.6 95 3.9 -129 3.7 -234 1.7 -308 2.4
5 -224 3.5 62 3.3 -134 3.4 -242 1.7 -317 2.4
6 -229 3.4 40 3.0 -138 3.3 -247 1.7 -323 2.4

7.5 -231 3.0 18 2.7 -145 3.0 -252 1.6 -329 2.4
10 -237 2.8 -15 2.2 -154 2.8 -259 1.6 -338 2.4
15 -264 2.4 -53 1.9 -191 2.7 -269 1.6 -349 2.3
25 -293 2.2 -80 1.7 -224 2.6 -278 1.6 -356 2.3
δ -376 2.1 -149 1.6 -310 2.5 -299 1.6 -372 2.3

Table 8.2: The performance of the agents trained with ba = 1 at various risk aversions on
the real market data of Figure 4.2. On each 40 day scenario the P&L and path volatility
of the delta hedging strategy (last line) is compared with those of the agents (the other
lines). The agents always outperform delta hedge in terms of P&L, at the cost of an
increase of the path volatility that is null or negligible for high values of λ and it’s very
moderate in the other cases.

5 different episodes, all the considered agents overperform the delta hedging strategy in
terms of P&L. Considering risk, given the low number of scenarios at hand, the cumulated
P&L volatility previously considered is a very noisy estimator, thus, we considered the
volatility of the P&L along each scenario, a measure similar to the reward volatility defined

133

Chapter 8. Hedging Options with Risk-Averse RL

in Equation (4.11) and used in Section 8.2 to define the objective of the TRVO algorithm,
as described in Bisi et al. (2020b). Using this measure no agent outperforms delta hedge,
but the volatility increase is very small when compared with the cost reduction obtained by
adopting our agents.

8.5 Chapter Summary

In this chapter, we learned how to use a risk-averse RL algorithm to optimally hedge the
delta risk of options, thus starting the chapter with the definition of TRVO.

Hedging the Delta Risk of Equity Options In Section 8.3, we concentrated on equity
options, initially defining the MDP. The focus of this section was on the experimental
results, which proved that without transaction costs the agent learns to reproduce the delta
hedge. When considering transaction costs, the mean-volatility objective makes it possible
to balance risk and return by deciding the agent’s level of risk aversion. We noticed that
when increasing risk aversion, the policy approaches that of the delta hedge, while when
decreasing risk aversion the policy becomes smoother and reduces the transaction costs.
Finally, we learned that the policies are robust, as the agents can efficiently hedge options
with different characteristics or markets that behave differently than those used in training.

Hedging the Delta Risk of Credit Options In Section 8.4 we are in a dealer market
scenario, with higher transaction costs and higher volatility than in the equity options case.
We followed similar experimental steps to Section 8.3, showing that in the no costs case the
TRVO policy learns to reproduce the delta hedge. With costs, we then verified the trade-off
between P&L, risk and transaction fees when changing the risk aversion parameter λ. We
showed that, given the high bid-ask spread, it is possible to learn a strategy that beats the
practitioner’s delta hedge in terms of risk and reward, and generates lower transaction costs.
These results were obtained not only when testing on data generated through a GBM, but
also when generating the underlying with a Heston process and testing our agents on real
market data.

Future works As future works we would like to extend our financial environment to
consider hybrid instruments, such as (but not limited to) credit contingent fx options, where
the rebalancing costs are enhanced by the correlation between the different underlyings,
which can have an adverse effect, known as wrong way risk, or even positive effects. Our
interest in these issues is motivated by the desire of structuring an automatic operative
framework able to efficiently manage second order risks, i.e., the bank’s XVA, one of the
most formidable task nowadays at hand in the financial industry. In Appendix C, we provide
a preliminary approach to DVA hedging and explain the concept of XVA, which can be
seen as hybrid products (refer to Appendix C.1.1).

Another future stream of work would aim to combine the hedging task with the market
making task of Chapter 7, but considering options instead of bonds. This would result in
modeling a “complete” options market maker that prices the options and hedges the delta
optimally, possibly also optimizing the hedge execution as in Chapter 9.

134

CHAPTER9
Optimal Execution with RL

The majority of financial institutions continuously face the optimal execution problem.
Indeed, the sizes of financial instruments they handle are often large enough to have an
impact on the market, thus causing the price to move in an adverse manner with respect to
the trade. This results higher trading costs than expected. Moreover, the optimal execution
problem is relevant for any trade of size larger than what is posted in the first limit of the
LOB. The most basic form of optimal execution problem can be stated as the purchase (or
sale) of a fixed number of shares within a fixed time horizon minimizing the overall cost
paid.

Most asset management firms have entire desks created to focus only on the execution.
While portfolio managers decide portfolio allocation, execution desks are then assigned
with implementing the trades. In investment banks, there are departments designated with
executing client’s orders. In other realities, such as proprietary trading desks or market
making desks, the traders who decide the investment or hedging strategy are also tasked
with executing it optimally. Practitioners mostly use the TWAP strategy (see Section 2.4.3)
and the VWAP strategy.

Among all market players, HFTs are those that profit the most from optimal execution.
HFTs have low latency colocated infrastructure used to monitor continuously the order
book with sophisticated software.43 In our setting, we assume that we do not have access
to such infrastructure, keeping our problem close to the existing literature (Almgren and
Chriss, 2001). For these analyses we assume we can only use market orders, possible
extensions of this work could consider also limit orders (see Section 2.4.2).

43https://www.globalbankingandfinance.com/colocation-and-high-frequency-trading/.

135

https://www.globalbankingandfinance.com/colocation-and-high-frequency-trading/

Chapter 9. Optimal Execution with RL

In this chapter we propose the use of RL techniques to optimize execution in a changing
market environment. We split the problem in two phases, an offline and an online phase. In
the offline phase, we learn multiple optimal execution strategies, one for each simulated
market condition using FQI. With the trained execution policies, we then select in an online
manner the optimal one to use using Thompson Sampling (TS).

In a single trading day, it is possible to collect thousands of data points from the LOB
of a single asset. Unfortunately, this data is not ideal, as to analyze the market impact
caused by a trade it is necessary to execute the trade on the market, and, thus, collecting
historical data is not sufficient. To overcome this problem, we decided to use the multi-agent
market simulator ABIDES (Byrd et al., 2019), described in Section 4.3.2, which offers the
possibility of simulating the LOB with great realism.

Optimal execution strategies can potentially be used together with the portfolio opti-
mization approaches of Chapter 5, the trading strategies of Chapter 6, and also the hedging
policies of Chapter 8 to further reduce transaction costs and, thus, improve performance.

Chapter outline This chapter begins with an overview of the state-of-the-art regarding
optimal execution using RL. We then describe TS in Section 9.2, explaining how it can
be used together with FQI to tackle the optimal execution problem. The experimental
campaign is described in Section 9.3.

9.1 Background on Optimal Execution with RL

The first studies on optimal execution are based on a stochastic framework in which the
dynamics of the assets and execution costs are modeled through SDEs. The first formal
analysis of the optimal execution problem is by Bertsimas and Lo (1998). Under suitable
conditions and using dynamic programming, they provide a closed-form formula as a
solution to the optimal execution problem. Subsequently, an extension of the stochastic
model was provided by introducing the permanent and temporary effects due to the impacts
of orders on the market and by inserting a risk-aversion parameter by Almgren and Chriss
(2001) (see Appendix B.2). Huberman and Stanzl (2005) further extended the optimal
execution framework by introducing more complex price impact functions and risk aversion
parameters. Furthermore, the book by Guéant (2016) proposes an in depth analysis and
extension of these approaches. These methods, however, make strong assumptions on the
underlying price movement or distributions.

Thanks to technological advances and the availability of data, Nevmyvaka et al. (2006)
applied RL for the first time to optimal execution strategies, with the objective of minimizing
implementation shortfall. Subsequently, Hendricks and Wilcox (2014) proposed to combine
the Almgren-Chriss model with the Q-learning algorithm (see Equation (3.8)), to create a
hybrid framework that executes a proportion of the AC trajectory based on the states in input.
To address the high dimensions and the complexity of the underlying dynamics, Ning et al.
(2018) used the Deep Q-Network (DQN) (Mnih et al., 2015), a combination of deep neural
network and Q-learning, for optimal trade execution, addressing the curse of dimensionality
issue faced by tabular Q-learning. Lin and Beling (2020), one of the most recent works,
used PPO (Schulman et al., 2017), to propose an end-to-end optimal execution framework
that can account for temporal correlations and make decisions based on level II market
LOB data (see Section 4.1) using a sparse reward signal. These approaches suffer from the

136

9.2. Optimal Execution with FQI and Thompson Sampling

shortcomings of learning from historical data: the impossibility of reproducing realistically
the impact of the orders of the agent. This has paved the way for the use of multi-agent
approaches (Balch et al., 2019) and inspired the creation of ABIDES (Byrd et al., 2019).
Karpe et al. (2020) are the first to use ABIDES to reproduce a realistic environment, and
the DDQL algorithm (Van Hasselt et al., 2016) to learn the optimal execution policy. The
work presented in this chapter starts with a similar framework to Karpe et al. (2020), and
expands by proposing a preliminary method to confront the non-stationarity of the markets.

9.2 Optimal Execution with FQI and Thompson Sampling

As previously mentioned in Section 2.4.3, specifically in Definition 2.9, the objective of
the agent is to learn the optimal way of executing a trade by minimizing market impact.
Thus, it is necessary to give the agent both information on the market conditions by
means of features deriving from the LOB, internal information, such as size remaining
and time remaining, and a reward that leads to the minimization of market impact. With
this information, the agent then decides how much to trade at each time-step. Specifically,
recalling the notation of Section 2.4.3 the MDP is defined as follows.

State The state contains both private information and features deriving from the LOB.
The LOB features are described in Section 2.4.2, and include the volume imbalance, the
price imbalance, the total depth, the rolling volatility, and the mid price. The private features
are:

• assuming we are at time tk, the time tr remaining until T , normalized to be in the
range [−1, 1]:

tr = 2 · T − tk
T

− 1,

• the quantity of remaining inventory to execute at time tk, depending on the initial
inventory X , also normalized:

x = 2 · X −∑tk−1

t=0 nt
X

− 1,

Given the high number of features, we used a feature selection approach as defined in
Section 4.4.

Action The action at each time-step represents how much of TWAP i.e., X
N to execute

(see Equation (2.26)), where the action a ∈ {0, 0.2, 0.4, ..., 4}. So the market order nt to
be traded at each time-step corresponds to:

nt = at
X

N
.

If the trade has not been completely executed by time tN−1, the remaining size will be
executed as a market order at time T .

137

Chapter 9. Optimal Execution with RL

Algorithm 9: Thompson Sampling
1 Initialize: a Bayesian prior for each arm f1, ..., fn
2 for each round t do
3 Sample θ1, ..., θn from each of the priors f1, ..., fn
4 Pull the arm it with the highest sampled value it = argmaxi θi
5 Observe reward rit
6 Update the prior fit corresponding to arm it

Reward The reward is:

rt+1 =

(
1− |Ptfill − Parrival|

Ptfill

)
λ
nt
X
, (9.1)

where Parrival is the price of the asset in consideration when the trade is requested, while Ptfill

is the average execution price at each time-step. λ is a constant for scaling the effect of the
quantity component, which we valued as 10. Implementation shortfall (see Equation (4.7))
is a common reward function, as, similarly to Equation (9.1), it penalizes market impact.
Nonetheless, given the disadvantages pointed out in (Lin et al., 2020), we preferred the
simpler reward structure defined above in Equation 9.1.

Now that we have defined the MDP, we can learn the optimal policy by interacting
with ABIDES. In this case, we use FQI (see Section 6.2.1) with extra tree regressors (see
Appendix B.4.2). The issue is that market scenarios vary greatly and there are different
optimal policies in different scenarios depending on the current market conditions, the asset
in consideration etc. Thus, we train a policy for each market scenario, and propose the
use of Thompson Sampling (TS) to select the best policy to use. In the next section we
introduce TS, and then illustrate our approach.

Thompson Sampling

Thompson Sampling (Thompson, 1933) is one of the earliest works on MAB problems
(see Section 3.3.3). While TS has always given promising experimental results, only
recently Agrawal and Goyal (2012); Kaufmann et al. (2012) have proved sublinear regret
bounds. TS is an online algorithm, related to the online learning setting explained in
Section 3.3.3. In the MAB framework, the agent chooses at each round among a finite
set of n arms. The environment responds with a reward rt, the agent updates its model
accordingly. The objective of the agent is to minimize regret as defined in Equation (4.8).

TS is illustrated in Algorithm 9, where each arm is initially associated with a prior
distribution fi. At every round, we get a sample θi from each distribution (Line 3) and then
pull the arm with the highest sampled value (Line 4). The environment then answers with a
reward for the arm that has been pulled. This reward is used to update the distribution of
the chosen arm fit (Line 6).

9.2.1 Using FQI and TS for Optimal Execution
Algorithm 10 represents our approach to tackle the optimal execution problem. By using
ABIDES and a random execution policy, it is possible to create multiple datasets D1, ...,Dn

138

9.3. Experimental Results

Algorithm 10: Thompson Sampling and FQI for optimal execution
1 Initialize: create a dataset Dk for each market scenario k ∈ [1, ..., n]
2 Learn the optimal policy πk for each dataset using FQI
3 Set a Gaussian prior f1, ..., fn and likelihood l1, ..., ln (with known variance) for each arm
4 for each round t do
5 Sample θ1, ..., θn from each of the priors f1, ..., fn
6 Run the policy πi with the highest sampled value it = argmaxi θi
7 Observe the reward ri obtained by running πi on a trading day
8 Calculate the posterior pi incorporating new information
9 Assign fi = pi

that represent different market scenarios and have different characteristics. For each
scenario, we learn a policy π1, ..., πn using FQI (Line 2). In Line 3, we initialize the
Gaussian priors and likelihood. In our case we use non-informative priors with N (9.5, 1),
and a Gaussian likelihood with unknown mean and a variance obtained empirically by
running each policy on multiple market scenarios.

Then, the loop starts and for every time-step we sample from each of the priors (Line 5).
We then select the arm it that has given the highest sample. This arm represents a trained
policy, so we run this policy πi on a trading day on ABIDES and obtain the reward ri
(Line 7). The reward ri, together with the prior and the likelihood, is then used to calculate
the posterior. The posterior becomes the new prior, while the likelihood remains the same,
and the process starts over. The variance of the posterior σ2

1 is calculated as:

σ2
1 =

1

σ−2 + σ−1
0

,

where σ2 is the variance of the likelihood and σ2
0 is the variance of the prior. The mean of

the posterior µ1 is calculated as:

µ1 = (µ0σ
−2
0 + rσ−2)σ2

1 ,

where µ0 is the mean of the prior.

9.3 Experimental Results

We generated the market using ABIDES for the experimental campaign. Specifically, we
used the following multi-agent composition:

• 1 exchange agent: it acts as a centralized exchange that keeps the order book and
matches orders on the bid and ask sides;

• 75 value agents: they produce an internal and noisy estimate of the real value of
the stock and, based on the current price at which the stock is traded in the market,
decide if it is undervalued or overvalued. Then, they buy or sell as consequence of
their estimate;

• 100 noise agents: they introduce some noise in the simulation acting randomly;

139

Chapter 9. Optimal Execution with RL

Figure 9.1: Single execution with the price process on the top graph and the dynamics of
the transaction volume dynamics on the bottom graph. Execution in grey shaded area.
The market scenario and trained policy are both low volatility low liquidity.

• 1 market maker: it provides liquidity posting limit orders in bid and ask.

Starting with this configuration, we reproduced two different market situations, one with
low volatility and low liquidity, and another with high volatility and high liquidity. These
two characterizations can be done by modifying the fundamental curve of the ABIDES
configuration (see Section 4.3.2), and the liquidity of the market makers. For each scenario,
a dataset of about 2,000 executions, and thus about 350,000 samples, was generated using a
random execution policy and used to train the policy through FQI.

Due to computational complexities and the duration of the simulations, we consider
T = 30 minutes for a single execution (see Figure 9.1). We consider a decision-step every
10 seconds (τ = 10), for a total of 180 decision steps (N = 180). Finally, the total number
of shares to execute was X = 50, 000. This size was chosen so to have an impact on the
market but at the same time not consume the entire liquidity of the LOB.

Figure 9.1 shows an example of a single execution in an ABIDES simulation, with the
price process on the top graph and the dynamics of the transaction volume on the bottom
graph. On the top graph, the fundamental price is depicted in blue while the actual real
price is in black. We can see that when there is a high transaction volume the real price
tends to detach from the fundamental price. Specifically, we are executing a large buy order,
thus the price tends to go higher. This is evident at the last time-step as there probably was
a large size remaining to be executed.

In both scenarios (high and low), FQI was run for 180 iterations with 10 executions for
each iteration, to tune the number of iterations. The optimal iteration number for the low
volatility case was 55, while in the case of high volatility iteration 5 performed best. In the
figures shown below, we refer to the two trained agents as “High Volatility Expert” and
“Low Volatility Expert”.

Figure 9.2 shows, in the low volatility case, the return of the two FQI agents compared

140

9.3. Experimental Results

Figure 9.2: Return of different algorithms in the low volatility, low liquidity scenario with
95% confidence intervals.

Figure 9.3: Return of different algorithms in the high volatility, high liquidity scenario with
95% confidence intervals.

with the TWAP approach described in Section 2.4.3, and two Almgren-Chriss (AC) with
varying risk aversion, described in Appendix B.2. Mean and confidence intervals are
calculated on 50 executions. The y-axis represents the return over the execution period,
specifically, a return of 10 represents the case in which we are capable of executing the
order exactly at the level of the arrival price Parrival. This can be seen by considering
Equation (9.1) and the fact that λ = 10. In this figure, the low volatility expert is equivalent
to TWAP and AC, which suggests that with low volatility and low liquidity TWAP is
the optimal approach. On the opposite, the high volatility expert behaves quite badly,
suggesting that the two FQI policies behave differently.

141

Chapter 9. Optimal Execution with RL

Figure 9.4: Distributions of each TS arm in low volatility, low liquidity scenario. Left
graph is the distribution after 5 iterations and right graph after 10 iterations.

Figure 9.5: Distributions of each TS arm in high volatility, high liquidity scenario. Left
graph is the distribution after 5 iterations and right graph after 10 iterations.

Figure 9.3 is the equivalent of Figure 9.2, but the scenario in consideration is the one
with high liquidity and volatility. In this case, it is evident that the FQI policy trained on the
high volatility scenario is superior to all the other approaches.

At this point, we are at Line 2 of Algorithm 10, the priors and the likelihood are defined
as in Section 9.2.1. Figures 9.4 and 9.5, represent the for loop of Algorithm 10 (from Line
4 to the end).

In Figure 9.4 we are considering the low volatility, low liquidity market scenario. This
figure depicts the prior distributions of returns obtained of the two FQI policies. We can see
that after 5 TS iterations it is not yet possible to distinguish the two approaches, while by
iteration 10 the two distributions start to detach. With respect to the assumptions taken in
the experimental campaign, this means that about ten 30-minute executions are necessary
to understand which one is the optimal policy for this market scenario.

Figure 9.5 represents the high volatility configuration. In this case, the two distributions
can be easily distinguished already at the fifth iteration. This was also expected from
Figure 9.3, as the performances of the two trained FQI policies are noticeably different.
This means that after at most 5 executions, it is possible to select the optimal execution
policy.

142

9.4. Chapter Summary

9.4 Chapter Summary

The work presented in this chapter considers the optimal execution problem using RL.
The main difficulty, when analyzing optimal execution is the fact that it is not possible to
realistically simulate market impact by using historical data. For this reason, we decided to
use the multi-agent market simulator ABIDES, which creates a multi-agent simulation of
the financial markets, enabling the replication of market impact. We started the chapter by
defining the MDP, selecting the state features through a feature selection approach. We then
proposed the use of FQI to learn the MDP and concentrated on two market scenarios, one
with high volatility and high liquidity, and the other with low volatility and low liquidity,
comparing with two benchmark strategies: TWAP and Almgren-Chriss. The experimental
results show that the FQI approach is superior in the case of high volatility and high liquidity.
With low volatility all the approaches obtain similar results. Finally, we devised a method
to select in an online manner the optimal policy to use for execution using TS. The results
shows that in the high volatility context, it is possible to select the optimal policy after a
small number of iterations. This is a first effort to tackle the non-stationarity of the markets.

Interesting future works could be to add the possibility of using also limit orders instead
of only market orders and to increase the realism in the order book, using the market replay
feature of ABIDES. Finally, it will be important to combine optimal execution with the
portfolio optimization, quantitative trading, and hedging tasks to optimize transaction costs
in all these domains.

143

CHAPTER10
Conclusions

In this dissertation, we explored the use of RL techniques in the financial markets domain,
providing theoretical, algorithmic, and experimental contributions. Specifically, in Part I
we introduced the financial knowledge and RL notions we deemed necessary to understand
Part II. Then, in Part II, we analyzed how to learn in an autonomous fashion the main
decision-making processes in the financial markets, namely portfolio optimization, quanti-
tative trading, market making, hedging, and optimal execution. We present below a brief
conclusion to each topic.

Online Portfolio Optimization In Chapter 5, we examined two characteristics of the
OPO framework, dividing the chapter in two parts. The first part, Section 5.1, focused on
controlling transaction costs in the OPO problem by defining a novel algorithm, namely
OGDM. We proved that OGDM is capable of achieving a total regret of O(

√
T). We then

verified the analytical results through an extensive experimental campaign comparing with
state-of-the-art OPO algorithms.

The second part, Section 5.2, focused on the problem of conservative optimization
defining a novel algorithm, namely CP. CP is a “wrapper” that can be applied to any existing
OCO algorithm and maintains the same regret order of the OCO algorithm it uses as a
subroutine, while satisfying the conservativeness property. We confirmed the theoretical
results through the experiments on the OPO framework.

Quantitative Trading In Chapter 6, we proposed two methodologies to create a quanti-
tative trading strategy, specifically, using FQI and using MCTS. Section 6.2 concentrates

145

Chapter 10. Conclusions

on the use of FQI, and is mostly experimental. We compared two different scenarios, a
multi-currency framework with EURUSD and USDGBP and a single currency framework
considering the FX pairs individually. We observed experimentally the behavior of the
resulting trading policy, by changing FQI parameters (min-split and number of training iter-
ations), and action persistence (1-minute, 5-minute, and 10-minute). The results show that
the 5-minute persistence achieves a superior performance. Furthermore, the multi-currency
setting surpasses the single currency cases - this is expected as it may exploit additional
trading opportunities.

Section 6.3 proposed the use of MCTS for trading. We coined a new algorithm, namely
QL-OL UCT, that uses open loop planning in order to handle the continuous state space
and stochastic transition model and a Q-learning backup operator to reduce the noise of
the backups. We also introduced a novel generative model that uses historical data and
a clustering approach. We tested the algorithm on the EURUSD FX pair, concentrating
on optimizing parameters. While being profitable without considering transaction costs,
adding these costs causes the agents to decide not to trade. Further work is necessary in
order to improve the performance, also compared to the FQI approach. Such improvement
could be achieved by using advanced algorithms like Alphazero (Silver et al., 2017).

Bond Market Making In Chapter 7, we presented a novel solution to the problem of
market making in dealer markets. We defined the framework as an N-player stochastic
game and proposed a solution using MFGs and RL. This approach is capable of handling
the competitive nature of the problem, by learning an equilibrium strategy in a multi-agent
framework. The experimental evaluation showed that, in the presence of strategic opponents,
the method outperforms other benchmark agents. Instead, in the presence of a generic
market configuration, other agents might perform better when considering P&L. However,
since the proposed methods guarantee a safe behaviour, they are capable of achieving a
lower risk in terms of a higher Sharpe ratio and a smaller inventory.

An interesting future direction to explore is the addition of elements of realism to the
problem, e.g., by considering a portfolio of correlated assets, or by training on real data.

Option Hedging In Chapter 8, we learned how to use a risk-averse RL algorithm, namely
TRVO, to optimally hedge the delta risk of options. This chapter is composed of two parts,
the first on hedging equity options and the second on hedging credit index options. In both
cases, the focus is on the experimental campaign, which shows that, without considering
costs, the TRVO policy learns to reproduce the delta hedge. With transaction costs, the
mean-volatility objective considered, makes it possible to balance risk and return, by
deciding the agent’s level of risk aversion. We noticed that, when increasing risk aversion,
the policy approaches that of the delta hedge, while when decreasing risk aversion the policy
becomes smoother and reduces the transaction costs. Furthermore, we learned that the
policies are robust, as the agents can efficiently hedge options with different characteristics
or markets that behave differently than those used in training. Additionally, in Section 8.4
we obtained positive results when testing on an underlying with a Heston process, and,
finally, also with real market data.

As future works, we would like to extend our financial environment to consider hybrid
instruments, such as the bank’s XVA, one of the most formidable task nowadays at hand in
the financial industry. Another future stream of work would aim to combine the hedging

146

task with the pricing task of Chapter 7.

Optimal Execution The work presented in Chapter 9 considers the optimal execution
problem using RL. We used the multi-agent market simulator ABIDES, which creates a
multi-agent simulation of the financial markets, enabling a realistic market impact. We
proposed FQI to learn a policy on two market scenarios, one with high volatility and high
liquidity, and the other with low volatility and low liquidity, and used TS to select in an
online manner the optimal policy to use for execution. The experimental results show that
the FQI approach is superior to benchmarks such as TWAP and Almgren-Chriss, in the case
of high volatility and high liquidity. With low volatility all the approaches obtain similar
results. Furthermore, in the high volatility context, it is possible to select the optimal policy
after a small number of TS iterations.

Interesting future works could explore the possibility of using also limit orders instead
of only market orders, and adding the realism in the order book, using the market replay
feature of ABIDES.

Future Synergies We analyzed separately the portfolio management and quantitative
trading streams, as they originate from different streams of literature, but highlighted how
they are becoming more and more intertwined, as they share the same objective of obtaining
a positive return on invested capital. Furthermore, the optimal execution approach presented
in Chapter 9 is beneficial when managing a portfolio or implementing a trading or hedging
strategy. Hence, future works would include unifying optimal execution with the mentioned
approaches.

We evaluated the pricing and hedging tasks of market makers in two separate chapters,
since they derive from different streams of literature. One of the future works on this topic
is to model through RL a “complete” market maker, covering all the necessary tasks from
pricing to hedging to optimal execution.

Moreover, some specialist firms continuously price an asset while also taking a market
position with trading strategies, hedging unwanted risks and optimizing the execution. An
ambitious project is that of modelling an artificial agent or a team of agents to manage
multiple assets with the flexibility of combining all the approaches.

147

Bibliography

Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A. (2008). Optimal strategies and minimax
lower bounds for online convex games.

Abernethy, J. and Kale, S. (2013). Adaptive market making via online learning. In Neural Information
Processing Systems, pages 2058–2066, Stateline, Nevada, United States. NeurIPS.

Achdou, Y., Camilli, F., and Capuzzo-Dolcetta, I. (2012). Mean field games: numerical methods for
the planning problem. SIAM Journal on Control and Optimization, 50(1):77–109.

Achdou, Y. and Capuzzo-Dolcetta, I. (2010). Mean field games: numerical methods. SIAM Journal
on Numerical Analysis, 48(3):1136–1162.

Adlakha, S., Johari, R., and Weintraub, G. Y. (2015). Equilibria of dynamic games with many players:
Existence, approximation, and market structure. Journal of Economic Theory, 156:269–316.

Agarwal, A., Hazan, E., Kale, S., and Schapire, R. (2006). Algorithms for portfolio management
based on the newton method. In International Conference on Machine Learning, pages 9–16,
Pittsburgh, Pennsylvania, United States. ICML.

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pages 39–1. JMLR Workshop and Conference Proceedings.

Almgren, R. and Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk,
3:5–40.

Alonso, M. N. and Srivastava, S. (2020). Deep reinforcement learning for asset allocation in us
equities. CompSciRN: Other Machine Learning (Topic).

Anahtarcı, B., Karıksız, C. D., and Saldi, N. (2019). Fitted q-learning in mean-field games. arXiv
preprint arXiv:1912.13309.

Antos, A., Szepesvári, C., and Munos, R. (2007). Fitted q-iteration in continuous action-space mdps.
Advances in neural information processing systems, 20.

149

Bibliography

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256.

Auer, P. and Ortner, R. (2010). Ucb revisited: Improved regret bounds for the stochastic multi-armed
bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65.

Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica: Journal of the Economet-
ric Society, pages 39–50.

Avellaneda, M. and Stoikov, S. (2008). High-frequency trading in a limit order book. Quantitative
Finance, 8(3):217–224.

Bacoyannis, V., Glukhov, V., Jin, T., Kochems, J., and Song, D. R. (2018). Idiosyncrasies and
challenges of data driven learning in electronic trading. arXiv preprint arXiv:1811.09549.

Balch, T. H., Mahfouz, M., Lockhart, J., Hybinette, M., and Byrd, D. (2019). How to evaluate trading
strategies: Single agent market replay or multiple agent interactive simulation? arXiv preprint
arXiv:1906.12010.

Balseiro, S. R., Besbes, O., and Weintraub, G. Y. (2015). Repeated auctions with budgets in ad
exchanges: Approximations and design. Management Science, 61(4):864–884.

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fund. math, 3(1):133–181.

Banerjee, A., Merugu, S., Dhillon, I., and Ghosh, J. (2005). Clustering with bregman divergences. J
MACH LEARN RES, 6:1705–1749.

Bank, P., Ekren, I., and Muhle-Karbe, J. (2021). Liquidity in competitive dealer markets. Mathemati-
cal Finance, 31(3):827–856.

Basel Committee, B. S. (2016). Minimum capital requirements for market risk.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. JAIR, 15.

Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

Belmega, E., Mertikopoulos, P., Negrel, R., and Sanguinetti, L. (2018). Online convex optimization
and no-regret learning: Algorithms, guarantees and applications. arXiv:1804.04529, 12 April:1–34.

Bensoussan, A., Frehse, J., Yam, P., et al. (2013). Mean field games and mean field type control
theory, volume 101. Springer.

Bernasconi de Luca, M., Vittori, E., Trovò, F., and Restelli, M. (2021). Conservative online convex
optimization. In European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML-PKDD 2021.

Bertsimas, D. and Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets,
1(1):1–50.

Besson, L. and Kaufmann, E. (2018). What doubling tricks can and can’t do for multi-armed bandits.
arXiv preprint arXiv:1803.06971.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg.

150

Bibliography

Bisi, L., Liotet, P., Sabbioni, L., Reho, G., Montali, N., Corno, C., and Restelli, M. (2020a). Foreign
exchange trading: A risk-averse batch reinforcement learning approach. In ICAIF 2020. ACM.

Bisi, L., Sabbioni, L., Vittori, E., Papini, M., and Restelli, M. (2020b). Risk-averse trust region opti-
mization for reward-volatility reduction. In Bessiere, C., editor, Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20, pages 4583–4589. International
Joint Conferences on Artificial Intelligence Organization. Special Track on AI in FinTech.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political
economy, 81(3):637–654.

Blum, A. and Kalai, A. (1999). Universal portfolios with and without transaction costs. MACH
LEARN, 35(3):193–205.

Borodin, A. et al. (2004). Can we learn to beat the best stock. In Neural Information Processing
Systems, pages 345–352, Vancouver, Canada. NeurIPS.

Bouchaud, J.-P. and Potters, M. (2003). Theory of financial risk and derivative pricing: from statistical
physics to risk management. Cambridge university press.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. FOUND TRENDS MACH
LEARN, 3(1):1–122.

Briceño-Arias, L., Kalise, D., Kobeissi, Z., Laurière, M., González, A. M., and Silva, F. J. (2019). On
the implementation of a primal-dual algorithm for second order time-dependent mean field games
with local couplings. ESAIM: Proceedings and Surveys, 65:330–348.

Briceño-Arias, L. M., Kalise, D., and Silva, F. J. (2018). Proximal methods for stationary mean field
games with local couplings. SIAM Journal on Control and Optimization, 56(2):801–836.

Briola, A., Turiel, J., Marcaccioli, R., and Aste, T. (2021). Deep reinforcement learning for active
high frequency trading. arXiv preprint arXiv:2101.07107.

Buehler, H., Gonon, L., Teichmann, J., and Wood, B. (2019). Deep hedging. Quantitative Finance,
pages 1–21.

Byrd, D., Hybinette, M., and Balch, T. H. (2019). Abides: Towards high-fidelity market simulation
for ai research. arXiv preprint arXiv:1904.12066.

Cao, H., Guo, X., and Laurière, M. (2020). Connecting gans and mfgs. arXiv preprint
arXiv:2002.04112.

Cao, J., Chen, J., Hull, J. C., and Poulos, Z. (2019). Deep hedging of derivatives using reinforcement
learning. Available at SSRN.

Carapuço, J., Neves, R., and Horta, N. (2018). Reinforcement learning applied to forex trading.
Applied Soft Computing, 73:783–794.

Cardaliaguet, P. and Hadikhanloo, S. (2017). Learning in mean field games: the fictitious play.
ESAIM: Control, Optimisation and Calculus of Variations, 23(2):569–591.

Carlini, E. and Silva, F. J. (2014). A fully discrete semi-lagrangian scheme for a first order mean field
game problem. SIAM Journal on Numerical Analysis, 52(1):45–67.

151

Bibliography

Carlini, E. and Silva, F. J. (2015). A semi-lagrangian scheme for a degenerate second order mean
field game system. Discrete & Continuous Dynamical Systems, 35(9):4269.

Carmona, R. and Laurière, M. (2019). Convergence analysis of machine learning algorithms for the
numerical solution of mean field control and games: Ii–the finite horizon case. arXiv preprint
arXiv:1908.01613.

Carmona, R., Laurière, M., and Tan, Z. (2019a). Linear-quadratic mean-field reinforcement learning:
convergence of policy gradient methods. arXiv preprint arXiv:1910.04295.

Carmona, R., Laurière, M., and Tan, Z. (2019b). Model-free mean-field reinforcement learning:
mean-field mdp and mean-field q-learning. arXiv preprint arXiv:1910.12802.

Cartea, Á., Jaimungal, S., and Penalva, J. (2015). Algorithmic and high-frequency trading. Cambridge
University Press.

Cartea, Á., Jaimungal, S., and Ricci, J. (2014). Buy low, sell high: A high frequency trading
perspective. SIAM Journal on Financial Mathematics, 5(1):415–444.

Cesa-Bianchi, N., Dekel, O., and Shamir, O. (2013). Online learning with switching costs and other
adaptive adversaries. In Neural Information Processing Systems, pages 1160–1168, Stateline,
Nevada, United States. NeurIPS.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge university
press.

Chan, N. T. and Shelton, C. (2001). An electronic market-maker.

Chang, H. S. and Marcus, S. I. (2003). Approximate receding horizon approach for markov decision
processes: Average reward case. Journal of Mathematical Analysis and Applications, 286(2):636–
651.

Choueifaty, Y. and Coignard, Y. (2008). Toward maximum diversification. The Journal of Portfolio
Management, 35(1):40–51.

Chowdhury, G. G. (2003). Natural language processing. Annual review of information science and
technology, 37(1):51–89.

Corazza, M. and Malliaris, A. T. G. (2002). Multi-fractality in foreign currency markets. Multinational
Finance Journal, 6(2):65–98.

Couetoux, A. (2013). Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision
Making Problems. PhD thesis, Université Paris Sud-Paris XI.

Cutkosky, A. and Orabona, F. (2018). Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR.

Darley, V., Outkin, A., Plate, T., and Gao, F. (2000). Sixteenths or pennies? observations from
a simulation of the nasdaq stock market. In Proceedings of the IEEE/IAFE/INFORMS 2000
Conference on Computational Intelligence for Financial Engineering (CIFEr)(Cat. No. 00TH8520),
pages 151–154. IEEE.

Das, P. (2014). Online convex optimization and its application to online portfolio selection. PhD
thesis, The University of Minnesota.

152

Bibliography

Das, P., Johnson, N., and Banerjee, A. (2013). Online lazy updates for portfolio selection with
transaction costs. In Conference on Artificial Intelligence, pages 202–208, Bellevue, Washington,
United States. AAAI.

Das, S. (2005). A learning market-maker in the glosten–milgrom model. Quantitative Finance,
5(2):169–180.

Das, S. (2008). The effects of market-making on price dynamics. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-Volume 2, pages
887–894. Citeseer.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity of computing a
nash equilibrium. SIAM Journal on Computing, 39(1):195–259.

Debnath, A. (2019). Global currency trading surges to $6.6 trillion-a-day market.

Degris, T. and Sigaud, O. (2013). Factored markov decision processes. Markov Decision Processes
in Artificial Intelligence, pages 99–126.

Dempster, M. A., Payne, T. W., Romahi, Y., and Thompson, G. W. (2001). Computational learning
techniques for intraday fx trading using popular technical indicators. IEEE Transactions on neural
networks, 12(4):744–754.

Di Matteo, T., Aste, T., and Dacorogna, M. M. (2003). Scaling behaviors in differently developed
markets. Physica A: Statistical Mechanics and its Applications, 324(1-2):183–188.

Dochow, R. (2016). Online algorithms for the portfolio selection problem. Springer, Berlin, Germany.

Du, J., Jin, M., Kolm, P. N., Ritter, G., Wang, Y., and Zhang, B. (2020). Deep reinforcement learning
for option replication and hedging. The Journal of Financial Data Science, 2(4):44–57.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the
l1-ball for learning in high dimensions. In International Conference on Machine Learning, pages
272–279, Helsinki, Finland. ICML.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Tewari, A. (2010). Composite objective mirror descent.
In Conference on Learning Theory, pages 14–26, Haifa, Israel. COLT.

Economist, T. (2019). The rise of the financial machines.

Efroni, Y., Ghavamzadeh, M., and Mannor, S. (2020). Online planning with lookahead policies.
Advances in Neural Information Processing Systems, 33.

Elder, T. (2008). Creating algorithmic traders with hierarchical reinforcement learning msc disserta-
tion.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. JMLR,
6(Apr):503–556.

Feng, L. and Seasholes, M. S. (2005). Do investor sophistication and trading experience eliminate
behavioral biases in financial markets? Review of Finance, 9(3):305–351.

Fermanian, J.-D., Guéant, O., and Pu, J. (2016). The behavior of dealers and clients on the european
corporate bond market: the case of multi-dealer-to-client platforms. Market microstructure and
liquidity, 2(03n04):1750004.

153

Bibliography

Fischer, T. G. (2018). Reinforcement learning in financial markets-a survey. Technical report, FAU
Discussion Papers in Economics.

Fouque, J.-P. M. and Zhang, Z. (2020). Deep learning methods for mean field control problems with
delay. Frontiers in Applied Mathematics and Statistics, 6:11.

Fu, Z., Yang, Z., Chen, Y., and Wang, Z. (2019). Actor-critic provably finds nash equilibria of
linear-quadratic mean-field games. arXiv preprint arXiv:1910.07498.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of learning in games,
volume 2. MIT press.

Ganesh, S., Vadori, N., Xu, M., Zheng, H., Reddy, P., and Veloso, M. (2019). Reinforcement learning
for market making in a multi-agent dealer market. arXiv preprint arXiv:1911.05892.

Garcelon, E., Ghavamzadeh, M., Lazaric, A., and Pirotta, M. (2020a). Conservative exploration in
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pages
1431–1441. PMLR.

Garcelon, E., Ghavamzadeh, M., Lazaric, A., and Pirotta, M. (2020b). Improved algorithms for con-
servative exploration in bandits. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3962–3969.

García, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. JMLR,
16(1):1437–1480.

Garcin, M. (2019). Fractal analysis of the multifractality of foreign exchange rates. Technical report,
HAL.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine learning,
63(1):3–42.

Goel, G., Lin, Y., Sun, H., and Wierman, A. (2019). Beyond online balanced descent: An optimal
algorithm for smoothed online optimization. Advances in Neural Information Processing Systems,
32:1875–1885.

Gold, C. (2003). Fx trading via recurrent reinforcement learning. In 2003 IEEE International
Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings., pages
363–370. IEEE.

Gomes, D. A. et al. (2014). Mean field games models a brief survey. Dynamic Games and Applications,
4(2):110–154.

Gomes, D. A., Mohr, J., and Souza, R. R. (2010). Discrete time, finite state space mean field games.
Journal de mathématiques pures et appliquées, 93(3):308–328.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In NeurIPS, pages 2672–2680. Neural Information
Processing Systems (NIPS) Foundation.

Greenwald, A., Li, J., Sodomka, E., and Littman, M. (2013). Solving for best responses in extensive-
form games using reinforcement learning methods. RLDM 2013, page 116.

Grinold, R. and Kahn, R. (2000). Active portfolio management. McGraw Hill, New York, New York,
United States.

154

Bibliography

Guéant, O. (2016). The Financial Mathematics of Market Liquidity: From optimal execution to
market making, volume 33. CRC Press.

Guéant, O. (2017). Optimal market making. Applied Mathematical Finance, 24(2):112–154.

Guéant, O., Lehalle, C.-A., and Fernandez-Tapia, J. (2013). Dealing with the inventory risk: a
solution to the market making problem. Mathematics and financial economics, 7(4):477–507.

Guéant, O. and Manziuk, I. (2019). Deep reinforcement learning for market making in corporate
bonds: beating the curse of dimensionality. Applied Mathematical Finance, 26(5):387–452.

Guéant, O. and Pu, J. (2017). Option pricing and hedging with execution costs and market impact.
Mathematical Finance, 27(3):803–831.

Gunia, A. (2019). How machines are taking over the world’s stock markets.

Guo, X., Hu, A., Xu, R., and Zhang, J. (2019). Learning mean-field games. arXiv preprint
arXiv:1901.09585.

Guo, X., Hu, A., Xu, R., and Zhang, J. (2020). A general framework for learning mean-field games.
arXiv preprint arXiv:2003.06069.

Halperin, I. (2017). Qlbs: Q-learner in the black-scholes (-merton) worlds. The Journal of Derivatives.

Halperin, I. (2019). The qlbs q-learner goes nuqlear: fitted q iteration, inverse rl, and option portfolios.
Quantitative Finance, pages 1–11.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex
optimization. MACH LEARN, 69:169–192.

Hecht-Nielsen, R. (1989). Neural network primer: part i. AI Expert, 4(2):61–67.

Hendricks, D. and Wilcox, D. (2014). A reinforcement learning extension to the almgren-chriss
framework for optimal trade execution. In 2014 IEEE Conference on Computational Intelligence
for Financial Engineering & Economics (CIFEr), pages 457–464. IEEE.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C.,
Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. (2018).
Stable baselines. https://github.com/hill-a/stable-baselines.

Ho, T. and Stoll, H. R. (1981). Optimal dealer pricing under transactions and return uncertainty.
Journal of Financial economics, 9(1):47–73.

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE.

Ho, T. S. and Stoll, H. R. (1983). The dynamics of dealer markets under competition. The Journal of
finance, 38(4):1053–1074.

Hongyang, Y., Xiao-Yang, L., Shan, Z., and Anwar, W. (2020). Deep reinforcement learning for
automated stock trading: An ensemble strategy. In ICAIF ’20: ACM International Conference on
AI in Finance.

Huang, C. Y. (2018). Financial trading as a game: A deep reinforcement learning approach. arXiv
preprint arXiv:1807.02787.

155

https://github.com/hill-a/stable-baselines

Bibliography

Huang, M. (2010). Large-population lqg games involving a major player: the nash certainty equiva-
lence principle. SIAM Journal on Control and Optimization, 48(5):3318–3353.

Huang, M., Caines, P. E., and Malhamé, R. P. (2007). Large-population cost-coupled lqg problems
with nonuniform agents: individual-mass behavior and decentralized varepsilon-nash equilibria.
IEEE transactions on automatic control, 52(9):1560–1571.

Huang, M., Malhamé, R. P., Caines, P. E., et al. (2006). Large population stochastic dynamic games:
closed-loop mckean-vlasov systems and the nash certainty equivalence principle. Communications
in Information & Systems, 6(3):221–252.

Huberman, G. and Stanzl, W. (2005). Optimal liquidity trading. Review of finance, 9(2):165–200.

Hull, J. C. (2003). Options futures and other derivatives. Pearson Education India.

Hutter, M. and Poland, J. (2005). Adaptive online prediction by following the perturbed leader.
Journal of Machine Learning Research, 6:639–660.

Ito, S., , Hatano, D., Sumita, H., Yabe, A., Fukunaga, T., Kakimura, N., and Kawarabayashi, K. (2018).
Regret bounds for online portfolio selection with a cardinality constraint. In Neural Information
Processing Systems, pages 1–10, MontrÃ©al, Canada. NeurIPS.

Iyer, K., Johari, R., and Sundararajan, M. (2014). Mean field equilibria of dynamic auctions with
learning. Management Science, 60(12):2949–2970.

Jangmin, O., Lee, J., Lee, J. W., and Zhang, B.-T. (2006). Adaptive stock trading with dynamic asset
allocation using reinforcement learning. Information Sciences, 176(15):2121–2147.

Jarrow, R. A. and Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit
risk. The journal of finance, 50(1):53–85.

Jiang, Z., Xu, D., and Liang, J. (2017). A deep reinforcement learning framework for the financial
portfolio management problem. arXiv preprint arXiv:1706.10059.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learning. In
ICML, pages 267–274.

Kalai, A. and Vempala, S. (2002). Efficient algorithms for universal portfolios. J MACH LEARN
RES, 3(Nov):423–440.

Karpe, M., Fang, J., Ma, Z., and Wang, C. (2020). Multi-agent reinforcement learning in a realistic
limit order book market simulation. arXiv preprint arXiv:2006.05574.

Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson sampling: An asymptotically optimal
finite-time analysis. In International conference on algorithmic learning theory, pages 199–213.
Springer.

Kazerouni, A., Ghavamzadeh, M., Abbasi-Yadkori, Y., and Van Roy, B. (2016). Conservative
contextual linear bandits. arXiv preprint arXiv:1611.06426.

Keh (2018). Billionaire robots: Machine learning at renaissance technologies.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

156

Bibliography

Koller, D. and Parr, R. (1999). Computing factored value functions for policies in structured mdps. In
IJCAI, volume 99, pages 1332–1339.

Kolm, P. N. and Ritter, G. (2019). Dynamic replication and hedging: A reinforcement learning
approach. The Journal of Financial Data Science, 1(1):159–171.

Kondratyev, A. (2018). Curve dynamics with artificial neural networks. Risk, 31(6).

Kondratyev, A. and Christian, S. (2019). The market generator. Available at SSRN.

Koolen, W. (2013). The pareto regret frontier. Advances in Neural Information Processing Systems
26 (NIPS 2013), pages 1–9.

Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Japanese journal of mathematics, 2(1):229–
260.

Lattimore, T. (2015). The pareto regret frontier for bandits. arXiv preprint arXiv:1511.00048.

Lecarpentier, E., Infantes, G., Lesire, C., and Rachelson, E. (2018). Open loop execution of tree-search
algorithms. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 2362–2368. International Joint Conferences on Artificial Intelligence
Organization.

Leland, H. E. (1985). Option pricing and replication with transactions costs. The journal of finance,
40(5):1283–1301.

Li, B. and Hoi, S. (2014). Online portfolio selection: A survey. ACM COMPUT SURV, 46(3):35.

Li, B., Hoi, S., Sahoo, D., and Liu, Z. (2015). Moving average reversion strategy for on-line portfolio
selection. ARTIF INTELL, 222:104–123.

Li, B., Wang, J., Huang, D., and Hoi, S. (2018a). Transaction cost optimization for online portfolio
selection. QUANT FINANC, 18(8):1411–1424.

Li, B., Zhao, P., Hoi, S., and Gopalkrishnan, V. (2012). Pamr: Passive aggressive mean reversion
strategy for portfolio selection. MACH LEARN, 87(2):221–258.

Li, Y., Qu, G., and Li, N. (2018b). Online optimization with predictions and switching costs: Fast
algorithms and the fundamental limit. arXiv:1801.07780, 7 March:1–24.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Lim, Y.-S. and Gorse, D. (2018). Reinforcement learning for high-frequency market making. In
ESANN.

Lin, A. T., Fung, S. W., Li, W., Nurbekyan, L., and Osher, S. J. (2020). Apac-net: Alternating the
population and agent control via two neural networks to solve high-dimensional stochastic mean
field games. arXiv preprint arXiv:2002.10113.

Lin, M., Wierman, A., Roytman, A., Meyerson, A., and Andrew, L. (2012). Online optimization with
switching cost. PERF E R SI, 40(3):98–100.

Lin, S. and Beling, P. A. (2020). An end-to-end optimal trade execution framework based on proximal
policy optimization. In IJCAI, pages 4548–4554.

157

Bibliography

Lo, A. W. (2019). The adaptive markets hypothesis. Princeton University Press.

Loeb, T. F. (1983). Trading cost: the critical link between investment information and results.
Financial Analysts Journal, 39(3):39–44.

Loh, W.-Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(1):14–23.

Lopes, R. and Betrouni, N. (2009). Fractal and multifractal analysis: a review. Medical image
analysis, 13(4):634–649.

Lu, D. and Weng, Q. (2007). A survey of image classification methods and techniques for improving
classification performance. International journal of Remote sensing, 28(5):823–870.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In
Proceedings of the 31st international conference on neural information processing systems, pages
4768–4777.

Mantegna, R. N. and Stanley, H. E. (1999). Introduction to econophysics: correlations and complexity
in finance. Cambridge university press.

Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1):77–91.

Meng, T. L. and Khushi, M. (2019). Reinforcement learning in financial markets. Data, 4(3):110.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The
review of Economics and Statistics, pages 247–257.

Metelli, A. M., Mazzolini, F., Bisi, L., Sabbioni, L., and Restelli, M. (2020). Control frequency
adaptation via action persistence in batch reinforcement learning. In International Conference on
Machine Learning, pages 6862–6873. PMLR.

Meyes, R., Tercan, H., Roggendorf, S., Thiele, T., Büscher, C., Obdenbusch, M., Brecher, C., Jeschke,
S., and Meisen, T. (2017). Motion planning for industrial robots using reinforcement learning.
Procedia CIRP, 63:107–112.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533.

Moody, J. and Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE transactions on
neural Networks, 12(4):875–889.

Moon, J. and Başar, T. (2016). Robust mean field games for coupled markov jump linear systems.
International Journal of Control, 89(7):1367–1381.

Nevmyvaka, Y., Feng, Y., and Kearns, M. (2006). Reinforcement learning for optimized trade
execution. In Proceedings of the 23rd international conference on Machine learning, pages
673–680.

Ning, B., Lin, F. H. T., and Jaimungal, S. (2018). Double deep q-learning for optimal execution.
arXiv preprint arXiv:1812.06600.

158

Bibliography

Papini, M., Pirotta, M., and Restelli, M. (2017). Adaptive batch size for safe policy gradients. In
NeurIPS, pages 3591–3600.

Papini, M., Pirotta, M., and Restelli, M. (2019). Smoothing policies and safe policy gradients.

Pendharkar, P. C. and Cusatis, P. (2018). Trading financial indices with reinforcement learning agents.
Expert Systems with Applications, 103:1–13.

Perrin, S., Pérolat, J., Laurière, M., Geist, M., Elie, R., and Pietquin, O. (2020). Fictitious play for
mean field games: Continuous time analysis and applications. arXiv preprint arXiv:2007.03458.

Pirotta, M., Restelli, M., and Bascetta, L. (2015). Policy gradient in lipschitz markov decision
processes. Machine Learning, 100(2):255–283.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D. (2013). Safe policy iteration. In Dasgupta,
S. and McAllester, D., editors, ICML, volume 28 of Proceedings of Machine Learning Research,
pages 307–315, Atlanta, Georgia, USA. PMLR.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17.

Prashanth, L. A. and Ghavamzadeh, M. (2014). Actor-critic algorithms for risk-sensitive reinforcement
learning. arXiv preprint arXiv:1403.6530.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151.

Riva, A., Bisi, L., Sabbioni, L., Liotet, P., Vittori, E., Trapletti, M., Pinciroli, M., and Restelli, M.
(2021). Learning fx trading strategies with fqi and persistant actions. In ICAIF 2021. ACM.

Robinson, J. (1951). An iterative method of solving a game. Annals of mathematics, pages 296–301.

Rokach, L. and Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery
handbook, pages 321–352. Springer.

Roncalli, T. (2013). Introduction to risk parity and budgeting. CRC Press.

Ruthotto, L., Osher, S. J., Li, W., Nurbekyan, L., and Fung, S. W. (2020). A machine learning frame-
work for solving high-dimensional mean field game and mean field control problems. Proceedings
of the National Academy of Sciences, 117(17):9183–9193.

Saldi, N., Başar, T., and Raginsky, M. (2019). Partially-observed discrete-time risk-sensitive mean-
field games. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 317–322.
IEEE.

Saldi, N., Başar, T., and Raginsky, M. (2020). Approximate markov-nash equilibria for discrete-time
risk-sensitive mean-field games. Mathematics of Operations Research, 45(4):1596–1620.

Sani, A., Neu, G., and Lazaric, A. (2014). Exploiting easy data in online optimization. Advances in
Neural Information Processing Systems, 27:810–818.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015). Trust region policy
optimization. In ICML, volume 37, pages 1889–1897.

159

Bibliography

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Shalev-Shwartz, S. et al. (2011). Online learning and online convex optimization. Foundations and
trends in Machine Learning, 4(2):107–194.

Sharpe, W. (1963). A simplified model for portfolio analysis. MANAGE SCI, 9(2):277–293.

Shen, Y., Huang, R., Yan, C., and Obermayer, K. (2014). Risk-averse reinforcement learning for
algorithmic trading. In CIFEr, pages 391–398.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

Soner, H. M. and Touzi, N. (2013). Homogenization and asymptotics for small transaction costs.
Siam journal on control and optimization, 51(4):2893–2921.

Sornmayura, S. (2019). Robust forex trading with deep q network (dqn). ABAC Journal, 39(1).

Spooner, T., Fearnley, J., Savani, R., and Koukorinis, A. (2018). Market making via reinforcement
learning. arXiv preprint arXiv:1804.04216.

Spooner, T. and Savani, R. (2020). Robust market making via adversarial reinforcement learning.
arXiv preprint arXiv:2003.01820.

Streeter, M. and McMahan, H. B. (2012). No-regret algorithms for unconstrained online convex
optimization. arXiv preprint arXiv:1211.2260.

Sui, Y., Burdick, J., Yue, Y., et al. (2018). Stagewise safe bayesian optimization with gaussian
processes. In International Conference on Machine Learning, pages 4781–4789. PMLR.

Sui, Y., Gotovos, A., Burdick, J., and Krause, A. (2015). Safe exploration for optimization with
gaussian processes. In International Conference on Machine Learning, pages 997–1005. PMLR.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pages 1139–1147.
PMLR.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA, USA, 1st edition.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tadoori, G. (2020). Quantamental investing: A machine learning investment process. Available at
SSRN 3704670.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2015). Policy Gradient for Coherent Risk
Measures. CoRR, page 9.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2017). Sequential Decision Making With
Coherent Risk. IEEE Transactions on Automatic Control, 62(7):3323–3338.

160

Bibliography

Tamar, A., Di Castro, D., and Mannor, S. (2016). Learning the variance of the reward-to-go. JMLR,
17(1):361–396.

Tamar, A. and Mannor, S. (2013). Variance adjusted actor critic algorithms. arXiv preprint
arXiv:1310.3697.

Tembine, H., Zhu, Q., and Başar, T. (2013). Risk-sensitive mean-field games. IEEE Transactions on
Automatic Control, 59(4):835–850.

Théate, T. and Ernst, D. (2021). An application of deep reinforcement learning to algorithmic trading.
Expert Systems with Applications, 173:114632.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294.

Trovò, F., Paladino, S., Restelli, M., and Gatti, N. (2016). Budgeted multi-armed bandit in continuous
action space. In European Conference on Artificial Intelligence, pages 560–568, The Hague,
Netherlands. ECAI.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

Vittori, E., Bernasconi de Luca, M., Trovò, F., and Restelli, M. (2020a). Dealing with transaction
costs in portfolio optimization: Online gradient descent with momentum. In ICAIF.

Vittori, E., Likmeta, A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging. In
Proceedings of the International Conference on AI for Finance.

Vittori, E., Trapletti, M., and Restelli, M. (2020b). Option hedging with risk averse reinforcement
learning. In Proceedings of the International Conference on AI for Finance.

Vodopivec, T., Samothrakis, S., and Ster, B. (2017). On monte carlo tree search and reinforcement
learning. Journal of Artificial Intelligence Research, 60:881–936.

Wang, S., Jia, D., and Weng, X. (2018). Deep reinforcement learning for autonomous driving. arXiv
preprint arXiv:1811.11329.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College, Cambridge.

Wiese, M., Knobloch, R., Korn, R., and Kretschmer, P. (2020). Quant gans: Deep generation of
financial time series. Quantitative Finance, 20(9):1419–1440.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Wu, Y., Shariff, R., Lattimore, T., and Szepesvári, C. (2016). Conservative bandits. In International
Conference on Machine Learning, pages 1254–1262. PMLR.

Yang, J., Ye, X., Trivedi, R., Xu, H., and Zha, H. (2018a). Learning deep mean field games for
modeling large population behavior. In Proceedings of the International Conference on Learning
Representations.

Yang, X., Li, H., Zhang, Y., and He, J. (2018b). Reversion strategy for online portfolio selection with
transaction costs. INT J APP DECIS SCI, 11(1):79–99.

161

Bibliography

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. (2018c). Mean field multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 5571–5580.
PMLR.

Zaki, M. J. and Meira, W. (2014). Data mining and analysis: fundamental concepts and algorithms.
Cambridge University Press.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning, pages 928–936, Washington D.C., United States.
ICML.

162

APPENDIXA
Proofs and Additional Material

A.1 Proof for Chapter 3

Lemma 3.1. In the applications considered in this dissertation, let s = (sm, si), where
sm are the market prices and si are the agent’s internal information, assuming P(s′i|si, a)
is deterministic, P(s′m|sm, a) = P(s′m|sm) i.e., it does not depend on the agent’s actions
and r(s, a) = r(sm, a) + r(si, a) then:

Qπ(s, a) = r(sm, a) + r(si, a) + γ E
s′m∼P(·|sm)

a′∼π(·|s′)

[
Qπ(s

′, a′)
]
.

Futhermore, assuming no transaction costs, then we can exclude si from the state, thus
s = sm, r(si, a) = 0 and we obtain:

argmax
a

Q(s, a) = argmax
a

r(sm, a).

Proof. Expanding the expected value of Q in Equation (3.6), and considering P(s′|s, a) =
P(s′m|sm), we get that:

Q(s, a) =R(s, a) +
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)Q(s′, a′),

=R(sm, a) +R(si, a) +
∑
s′m

P (s′m|sm)
∑
a′

π(a′|s′)Q(s′, a′).

163

Appendix A. Proofs and Additional Material

Now if we consider no transaction costs, we can take out si from the state and obtain:

Q(sm, a) =R(sm, a) +
∑
s′

P (s′m|sm)
∑
a′

π(a′|s′m)Q(s′m, a
′),

and thus
argmax

a
Q(sm, a) = argmax

a
R(sm, a).

A.2 Proofs for Section 5.1

Theorem 5.1. The OGDM algorithm with ηt =
Kη√
t
, and λt = Kλ

t , for each value of
Kη,Kλ ∈ R+, has a total regret of:

RCT ≤
[
D2

Kη

(
1

2
+Kλ

)
+KηG̃

(
2γ

√
M + G̃

)]√
T , (5.8)

where D = sup
a,y∈X

||a− y||2, and G̃ = sup
a∈X

||∇ft(a)||2 + DKλ

2Kη
.

Proof. Recall that for a generic loss function ft : X → R and a convex set X the OGDM
algorithm has the update rule in Equation (5.6). This formulation can be rewritten as:

at+1 = ΠX

(
at − ηt∇f̃t(at)

)
, (A.1)

by defining: f̃t(a) = ft(a) +
βt

2 ||a − at−1||22, with βt = λt

ηt
. Note that, by the triangle

inequality ||∇f̃(at)||2 ≤ G̃.
Before presenting the main result, we use that, from Zinkevich (2003), given the update

in Equation (A.1) we have:

||at+1 − a∗||22 = ||ΠX(at − ηt∇f̃t(at))− a∗||22
≤||at − a∗||22 − 2ηt⟨at − a∗,∇f̃t(at)⟩+ η2t ||∇f̃t(at)||22,

where we consider the fact that the projection operator Π∆X
(·) is non-expansive. Rearrang-

ing the terms, we have:

⟨at−a∗,∇f̃t(at)⟩≤
1

2ηt

(
||at−a∗||22−||at+1−a∗||22

)
+
ηt
2
G̃2. (A.2)

Using the above inequality, the total regret RCT (OGDM) of the OGDM algorithm is
bounded as follows:

RCT (OGDM) =

T∑
t=1

ft(at)− ft(a
∗) + γ

T∑
t=1

||at − at−1||1 (A.3)

164

A.2. Proofs for Section 5.1

=

T∑
t=1

f̃t(at)− f̃t(a
∗)−

T∑
t=2

βt
2

(
||at − at−1||22 − ||a∗ − at−1||22

)
+ γ

T∑
t=1

||at − at−1||1 (A.4)

≤
T∑
t=1

⟨at − a∗,∇f̃t(at)⟩+
T∑
t=1

βt
2
||a∗ − at−1||22

+ γ

T∑
t=1

√
Mηt||∇f̃t(at)||2 (A.5)

≤
T∑
t=1

1

2ηt

(
||at − a∗||22 − ||at+1 − a∗||22

)
+

T∑
t=1

ηt
2
G̃2

+

T∑
t=1

βt
2
||a∗ − at−1||22 + γ

T∑
t=1

√
Mηt||∇f̃t(at)||2 (A.6)

≤D2

2η1
+
D2

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt
2
G̃2

+

T∑
t=1

βt
2
||a∗ − at−1||22 + γ

T∑
t=1

√
Mηt||∇f̃t(at)||2 (A.7)

≤ D2

2ηT
+

T∑
t=1

ηt
2
G̃2 +

T∑
t=1

βt
2
D2 + γ

√
MG̃

T∑
t=1

ηt, (A.8)

where we dropped the negative term and used the convexity of f̃(·) to derive Equation (A.5),
and used the result in Equation (A.2) to derive Equation (A.6).

Finally, substituting βt = λt

ηt
, λt = Kλ

t , ηt =
Kη√
t

in Equation (A.8), and using the fact

that
T∑
t=1

1√
t
≤ 2

√
T concludes the proof.

Data used in experimental section Figure A.1 shows the behavior of the 5 assets chosen
for the portfolio optimization exercise of Figure 5.1 (b) and (c).

165

Appendix A. Proofs and Additional Material

1962 1966 1970 1974 1978 1982

0
5

1
0

1
5

2
0

t

P
ri

ce

Price evolution of selected NYSE data

Figure A.1: Assets from the NYSE dataset used for Figures 5.1(b) and (c). Price process is
normalized to start at 1.

A.3 Proofs and Additional Material for Section 5.2

Theorem 5.3. In the OCO setting, there is no algorithm U which obtains Lt ≤ L̃t, unless
θt = θ̃ for all t ∈ [T].

Proof. Let k be the first round in which the algorithm U plays θk ̸= θ̃. If the loss function is
fk(x) := fk(θ̃)+||θ̃−x||2, then, by the convexity of the space Θ, we can find c ∈ (0, 1) and
z ∈ Θ s.t. θk = cθ̃+(1−c)z. This implies that fk(θk) = fk(θ̃)+(1−c)||θ̃−z||2 > fk(θ̃),
showing that Lt > L̃t.

Theorem 5.4. Let B(θ̃, ωt) be the conservative ball defined in Equation (5.12) and assume
that Equation (5.11) is satisfied at round t− 1. Then, each parameter θ ∈ B(θ̃, ωt) ∩Θ
satisfies Equation (5.11) at round t.

Proof. Given θ ∈ B(θ̃, rt) ∩Θ we have:

ft(θ)− (1 + α)ft(θ̃) ≤ ⟨∇ft(θ), θ − θ̃⟩ − αft(θ̃) ≤ Grt − αεl, (A.9)

where the first inequality is given by the convexity of ft(·), and the second inequality
is given by the Cauchy-Schwarz inequality and by the fact that θ ∈ B(θ̃, rt) implies
||θ̃ − θ||2 ≤ rt. Let us consider two cases: rt < D, and rt = D.

Case rt < D: In this case, the value of the radius is rt =
(1+α)L̃t−1−Lt−1+αεl

G . By
substituting it in Equation (A.9), we conclude that:

ft(θ)− (1 + α)ft(θ̃t) ≤ (1 + α)L̃t−1 + Lt−1. (A.10)

Case rt = D: From the fact that rt ≥ 0 and using Equation (5.12), we obtain that:

Lt−1 − (1 + α)L̃t−1 − αεl
GD

+ 1 ≤ 0 (A.11)

GD − αεl ≤ (1 + α)L̃t−1 + Lt−1. (A.12)

166

A.3. Proofs and Additional Material for Section 5.2

Combining the above result with the inequality in Equation (A.9), provides the same result
presented in Equation (A.10).

The proof is concluded by rearranging the terms of Equation (A.10).

Theorem 5.5. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤ ξ
√
T .

The CP algorithm using A as subroutine has the following regret bound:

RT (CP) ≤ ξ
√
T + τDG, (5.15)

for any T > τ , where:

τ =
2αµ(DG+ αµ) + ξ

(√
ξ2 + 4αµ(DG+ αµ) + ξ

)
2α2µ2

. (5.16)

Proof. Using the convexity of the loss functions on the regret and the definition of θt in
Equation (5.13), we have:

LT − L̃T ≤
T∑
t=1

[βtft(θ̃) + (1− βt)ft(zt)− ft(θ̃)]

=

T∑
t=1

(1− βt)[ft(zt)− ft(θ̃)] (A.13)

≤ sup
θ∈Θ

(
T∑
t=1

(1− βt)[ft(zt)− ft(θ)]

)
≤ ξ

√
T . (A.14)

This shows that the CP algorithm has sublinear regret with respect to an algorithm that
always chooses the default parameter θ̃ over the entire time horizon T .

Combining Equation (5.14) and (5.12), we have:

βt ≤ 1− rt

||zt − θ̃||2
≤ 1 +

Lt−1 − (1 + α)L̃t−1 − αεl
DG

(A.15)

≤ 1 +
ξ
√
t− (t− 1)µα

DG
, (A.16)

where we used the bound in Equation (A.14), the fact that the space Θ has radius D, and
that θ̃ is not a no-regret strategy, and, hence, there exists a µ > εl > 0 s.t. L̃t−1 > µ(t− 1).

On the other hand, we assumed that A is a no-regret strategy and, therefore, the regret of
the algorithm A is sublinear, this means that there exists a round τ > 0 s.t. Equation (A.16)
is negative, and, consequently, for t > τ , defined in Equation (5.16) we have βt = 0. The
value of τ is provided by the solution of the following equation 1 + ξ

√
τ−τµα
DG = 0.

What we showed above also proves that the CP algorithm for t > τ eventually plays
the same parameter as A since for all t > τ the pseudo-losses gt(·) and the true losses ft(·)
coincide. Indeed, the regret of the CP algorithm can be written as:

RT (CP) ≤
τ∑
t=1

[
βtft(θ̃) + (1− βt)ft(zt)− ft(θ̄)

]
+

T∑
t=τ+1

(ft(zt)− ft(θ̄)) (A.17)

167

Appendix A. Proofs and Additional Material

≤
τ∑
t=1

βt

[
ft(θ̃)− ft(zt)

]
+

T∑
t=1

[ft(zt)− ft(θ̄)] (A.18)

≤
τ∑
t=1

βt⟨∇ft(θ̃), θ̃ − zt⟩+
T∑
t=1

[ft(zt)− ft(θ̄)] (A.19)

≤ τDG+ ξ
√
T , (A.20)

where the inequality in Equation (A.17) uses the convexity of ft(·). Equation (A.18) comes
from the extension of the time horizon from {τ, . . . , T} to {1, . . . , T}. Equation (A.19)
follows from the convexity of ft(·) and the inequality in Equation (A.20) follows from the
Cauchy-Schwarz inequality on the first term while the second term is the regret of the used
no-regret algorithm A.

Theorem 5.6. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤
ρ log(T). The CP algorithm using A as subroutine has the following regret bound:

RT (CP) ≤ ρ log(T) + τDG, (5.17)

for any T > τ , where:

τ :=
αe2µ(DG+ αµ) + 2ρ

(√
αe2µ(DG+ αµ) + ρ2 + ρ

)
e2α2µ2

. (5.18)

Proof. The proof is similar to that of Theorem 5.6, we only report the steps that are
significantly different from it. From Equation (A.14), which holds also in this setting, we
obtain:

LT − L̃T ≤ ρ log(T). (A.21)

This shows that the regret with respect to an algorithm which always chooses the default
parameter θ̃ is of the order O(log(T)). Following the same steps used to derive Equa-
tion (A.16), we have that βt ≤ 1+ ρ log(t)−tµα

DG . Therefore, βt is zero after τ rounds, where
τ is defined in Equation (5.18). The derivation of τ is provided in Lemma A.1. Finally,
using the same argument used to derive Equation (A.20), we obtain the bound present in
the theorem.

Lemma A.1. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤
ρ log(T). The last time the CP algorithm using A as subroutine plays the default parameter
θ̃, i.e., βt > 0, is upper-bounded by τ , defined as:

τ :=
αe2µ(DG+ αµ) + 2ρ

(√
αe2µ(DG+ αµ) + ρ2 + ρ

)
e2α2µ2

.

Proof. The CP algorithm plays at each time: θt = βtθ̃+(1−βt)zt, where βt = 1− rt
||zt−θ̃||2

,
and zt is generated by a no-regret algorithm A. From Equation (5.12) we know that:

Lt−1 − (1 + α)L̃t−1 − αϵl
GD

+ 1 ≥ βt.

168

A.3. Proofs and Additional Material for Section 5.2

By using Equation (A.21) we have that eventually there is a time t for which:

1

GD
[ρ log(t)− αµ(t− 1)] + 1 = 0, (A.22)

as the left hand side goes to zero for t sufficiently large.
Finding the τ for which βt becomes zero is equivalent to solving an equation of the

type A log t = Bt−C with A,B,C > 0, which has no analytical roots. Thanks to the fact
that the logarithm is concave, upper-bounding it in Equation (A.22) results in an equation
whose result gives an upper bound on the solution of the original equation. Using that
log x < 2

√
x
e , holding for each x > 0, the upper bound on the solution is of Equation (A.22)

is provided by:
1

GD

[
ρ
2
√
t

e
− αµ(t− 1)

]
+ 1 = 0,

whose solution concludes the proof.

A.3.1 Baseline Approaches
In what follows we present the Conservative Switching (CS) and CRDG algorithms, used
as baseline for our experiments.

The Conservative Switching Algorithm

In this section, we design a more immediate approach to solve the COCO problem. The
algorithm follows the idea by (Wu et al., 2016), and adapts it to the OCO setting: play
the action zt only if the conservativeness constraint is satisfied at round t and the current
budget is big enough to sustain any loss at the next iteration; otherwise, it plays the default
parameter θ̃. The complete pseudo-code implementing this approach in the COCO setting,
namely Conservative Switching (CS), is presented in Algorithm 11. The algorithm works as
follows: at each round t, the algorithm computes its budget (Algorithm 11, Line 6). If the
current budget is large enough to ensure the conservative constraint is satisfied even after
suffering the loss at round t (Line 4), CS queries the action zt from the no-regret algorithm
A (Line 6). Otherwise, CS plays the default action θ̃ (Line 9) keeping fixed the optimistic
action zt.

In what follows, we prove that the CS algorithm satisfies the conservativeness constraint
in Equation (5.11) and has sublinear regret bound of the same order of the underlying
algorithm A.

Theorem A.1. The CS algorithm applied to a generic online learning algorithm A is
conservative.

Proof. Let k be a time in which we played the optimistic action zt given by algorithm A,
otherwise the constraint is trivially verified by the fact that the default parameter is inside
the conservative ball. In this specific case we have that the following condition (Line 4 in
Algorithm 11) is satisfied:

Lk−1 + ϵu − (1 + α)ϵl ≤ L̃k−1(1 + α)

Lk−1 ≤ L̃k−1(1 + α) + (1 + α)ϵl − ϵu. (A.23)

169

Appendix A. Proofs and Additional Material

Algorithm 11: Conservative Switching
1 Initialize: Online learning algorithm A, conservativeness level α > 0, default parameter

θ̃ ∈ Θ
2 Set L̃0 ← 0, L0 ← 0
3 for t ∈ [T] do
4 if Lt−1 + ϵu − (1 + α)ϵl ≤ L̃t−1(1 + α) then
5 zt ← A(ft−1(zt−1))
6 Select θt ← zt

7 else
8 zt ← zt−1

9 Select θt ← θ̃

10 Suffer loss ft(θt)
11 Observe feedback ft(zt) and ft(θ̃)

Moreover, we have that, due to the fact that the loss function is bounded from below by
ϵl, we have:

L̃k−1(1 + α) + (1 + α)ϵl ≤ L̃k−1(1 + α) + fk(θ̃)(1 + α) = L̃k(1 + α). (A.24)

The loss of the CS algorithm becomes:

Lk = Lk−1 + fk(zk)

≤ L̃k−1(1 + α) + (1 + α)ϵl︸ ︷︷ ︸
≤L̃k(1+α)

−ϵu + fk(zk)︸ ︷︷ ︸
≤0

(A.25)

≤ L̃k(1 + α), (A.26)

where Equation (A.25) follows from the fact that we played the A algorithm for the round
k, thus the condition in Equation (A.23) holds, and Equation (A.26) is derived using
Equation (A.24) and from the fact that the loss function is bounded from below by ϵl. This
concludes the proof.

Theorem A.2. Consider any OCO algorithm A that guarantees a regret ofRT (A) ≤ ξ
√
T .

The CS algorithm using A as subroutine has the following regret bound:

RT (CS) ≤ ξ
√
T + τDG,

where:

τ :=
ξ2 − 2αµ(ϵu − ϵl)

2α2µ2
+

1

2

√
ξ4 + 4αξ2µ(ϵu − ϵl)

α4µ4
.

Proof. Let us define Cα := ϵu − (1 + α)ϵl and let k ≥ 1 be a time in which we played the
default strategy and define S and R as the set of rounds in which the CS algorithm played
the default parameter and the parameter chosen by A up to time k, respectively. Formally:

S = {t ≤ k s.t. (1 + α)L̃t−1 − Lt−1 ≤ Cα},

170

A.3. Proofs and Additional Material for Section 5.2

V = {t < k s.t. (1 + α)L̃t−1 − Lt−1 > Cα}.

By definition of the cumulative loss Lk−1 and since S ∪ V = [k − 1], we have:∑
t∈V

ft(zt) = Lk−1 −
∑

t∈S\{k}
ft(θ̃)

≥ (1 + α)L̃k−1 − Cα −
∑

t∈S\{k}
ft(θ̃)

= (1 + α)L̃k−1 − Cα−
∑

t∈S\{k}
ft(θ̃)−

∑
t∈V

ft(θ̃)︸ ︷︷ ︸
=−L̃k−1

+
∑
t∈V

ft(θ̃)

= αL̃k−1 − Cα +
∑
t∈V

ft(θ̃),

where the first inequality follows from the fact that k ∈ S̃ and, therefore, Lk−1 ≥ (1 +
α)L̃k−1 −Cα. Finally, using that L̃k > µk, since the default parameter θ̃ is not a no-regret
strategy we get: ∑

t∈V
ft(zt) ≤ αL̃k−1 − Cα +

∑
t∈V

ft(θ̃) (A.27)∑
t∈V

[ft(zt)− ft(θ̃)] ≥ kαµ− (ϵu − ϵl). (A.28)

Since the algorithm A has been run only on the set V , the left hand side is bounded by the
regret of A on the set V , and, consequently, also on the entire time horizon k. Taking the
limit k → +∞, there will be a time τ in which Equation (A.28) is not verified anymore,
proving that the last time the algorithm plays the default parameter satisfies t0 ≤ τ < +∞.

Solving for τ the following equation:

ξ
√
τ = ατϵl − (ϵu − ϵl),

we get:

τ :=
ξ2 − 2αµ(ϵu − ϵl)

2α2µ2
+

1

2

√
ξ4 + 4αξ2µ(ϵu − ϵl)

α4µ4
.

With this result we can bound the regret of the CS algorithm as follows:

RT (CS) ≤ ξ
√
T + τDG.

Theorem A.3. Consider any OCO algorithm A that guarantees a regret of RT (A) ≤
ρ log(T). The CS algorithm using A as subroutine has the following regret bound:

RT (CS) ≤ ρ log(T) + τDG,

171

Appendix A. Proofs and Additional Material

Algorithm 12: RD-1D
1 Initialize: Learning rate η1, upper bound H̄ , initial parameter θ0
2 Set i← 1, Q1 ← 0
3 for t ∈ [T] do
4 Play θt and suffer loss ft(θ)
5 Qi ← Qi − ft(θt)
6 if Qi < ηiH̄ then
7 θt+1 ← θt − η1∇ft(θt)
8 else
9 i← i+ 1

10 Qi ← 0
11 ηi ← 2ηi−1

12 θt = θ0 − η1∇ft(θt)

where:

τ :=
2ρ2 + αe2µ(ϵu − ϵl)

α2e2µ2
+ 2

√
ρ4 + αe2ρ2µ(ϵu − ϵl)

α4e4µ4
.

Proof. The proof follows the same steps as the one of Theorem A.2 up to Equation (A.28).
Now the left hand side can be bounded by ρ log(k) that, on its turn, is bounded as

ρ log k ≤ ρ 2
√
k
e , which holds for k > 1. Thanks to this inequality the value of an upper

bound τ on the value of the last instant CS plays the default parameter θ̃ is provided by the
analytical solution to the following equation:

ρ
2
√
τ

e
= ατϵl − (ϵu − ϵl).

With the above result we can bound the regret of the CS algorithm as follows:

RT (CS) ≤ ρ log T + τDG,

This concludes the proof.

Even if from these results it is not possible to state that CP attains a strictly better regret
than CS. The intuition behind this superior performance is that during the first phase of the
optimization, i.e., rt < D, we are less constrained using the CP algorithm since we are
allowed to select the parameter for the next round on the conservative ball B(θ̃, rt) border.
Conversely, the CS algorithm plays the default parameter θ̃ until enough budget is collected.
Concerning the computational cost of the CS algorithm, it has a constant computational
overhead with respect to the original algorithm A due to the evaluation of the losses ft(θt),
and ft(θ̃).

The Constrained Reward Doubling Guess Algorithm

In this section we provide the description of the Conservative Reward Doubling Guess
(CRDG). The pseudo-code of the CRDG algorithm is provided in Algorithms 12-15.

172

A.3. Proofs and Additional Material for Section 5.2

Algorithm 13: RD-1D-Guess
1 Initialize: Learning rate ε, initial parameter θ0
2 Set i← 1, Hi = 1, ηi = ε, H = 0
3 while t ∈ [T] do
4 A = RD-1D(ηi, Hi, θ0)
5 while H ≤ Hi do
6 Play θt from algorithm A and suffer loss ft(θt)
7 H ← H +∇ft(θt)2
8 t← t+ 1

9 i← i+ 1
10 H = 0
11 Hi = 2Hi−1

12 ηi = ηi−1/4

Algorithm 14: RD-ND-Guess
1 Initialize:Learning rate ε, initial parameter θ0
2 for k ∈ [d] do
3 Set Ak = RD-1D-Guess(ε/k, θ0,k)

4 while t ∈ [T] do
5 for k ∈ [d] do
6 Get θt,k from Ak

7 Play θt and suffer loss ft(θt)

Algorithm 15: CRDG
1 Initialize: Learning rate ε, initial parameter θ0, parameter set Θ
2 Set A = RD-ND-Guess(ε, θ0)
3 for t ∈ [T] do
4 Get zt from A
5 Play θt = ΠΘ(zt) and suffer loss ft(θ)
6 Observe the gradient of the loss∇ft(θt)
7 Update A using∇gt(θt)

In particular, the RD-1D algorithm, presented in Algorithm 12, performs a search, using
a gradient descend approach, on the space R (Lines 7 and 12), and restarts from the point θ0
(Line 12) every times it collects enough wealth, formally, if Qi ≥ ηiH̄ . At every restart, it
doubles its learning rate (Line 11). Notice that the RD-1D algorithm requires the knowledge
of an upper bound on the variance of the loss gradients H̄ ≥∑T

t=1(∇ft)2. Conversely, if
the quantity H̄ is unknown, one can resort to the RD-1D-Guess algorithm, presented in
Algorithm 13. This algorithm performs the doubling trick (Besson and Kaufmann, 2018)
on the quantity H̄ , using the RD-1D algorithm as a subroutine.

The extension of the RD-1D-Guess algorithm to parameter spaces Θ ⊆ Rd, with d > 1,
is provided by RD-ND-Guess, which uses an instance RD-1D-Guess as subroutine, applying
it to each one of the d coordinates separately. The pseudo-code of the RD-ND-Guess is

173

Appendix A. Proofs and Additional Material

presented in Algorithm 15, which, at the beginning, sets d instances {A1, . . . ,AD} of the
RD-1D-Guess algorithm, and at round t, selects the k-th component θt,k of the parameter
θt querying the algorithm Ak. Each Algorithm Ak is run by providing it with the k-th
coordinate of the gradient of the loss ∇ft(θt,k).

The aforementioned algorithms have been designed to work in unconstrained domains.
However, they can be adapted to work in a convex parameter space Θ, by utilizing the
Constrained Set Reduction (CSR) Algorithm described in (Cutkosky and Orabona, 2018).
The CRDG algorithm, presented in Algorithm 15, describes the CSR meta-algorithm
applied to Algorithm 15. It works by projecting the parameter predicted by the CRDG
algorithm into the set Θ (Line 4). Moreover, it requires that the losses fed to the CRDG
algorithm are redefined to penalize parameter outside the parameter space Θ using the
following pseudo-loss function:

gt(x) :=
1

2
[⟨x,∇ft(θt)⟩+ ||∇ft(θt)||2SΘ(x)] ,

where SΘ(x) := arg inf
y∈Θ

||x − y||2 is the distance between x and the set Θ. Finally, the

gradient of such a function is used to update the subroutine (Line 7).
The Reward Doubling Guess (RDG) algorithm has been proposed by (Streeter and

McMahan, 2012) to solve an instance of the unconstrained online optimization problem. In
this framework the guarantees are given with respect to a so called comparator parameter
θ̊ ∈ Rd. When the algorithm starts from the origin of Rd, the RDG algorithm provides a
regret bound of:

RT (θ̊) ≤ ||̊θ||2
√
T log

[
d(1 + ||̊θ||2)T

ε

]
, (A.29)

where ε > 0 is the learning rate of the procedure. Without loss of generality the algorithm
can start from a generic point in Rd, and restate the bound in terms of the distance from the
starting point and the general comparator parameter θ̊. In the case the comparator parameter
is the starting point of the algorithm the RDG algorithm, it guarantees a regret of:

RT (θ̊) ≤ ε.

The use of the RDG algorithm in a constrained setting, i.e., over a convex parameter
set Θ ⊂ Rd, requires to use a conversion provided by the CSR algorithm. We named
Constraint Reward Doubling Guess (CRDG) the combination of this algorithm together
with the RDG algorithm. Thanks to the reduction algorithm we project onto the set Θ,
and convert any algorithm with regret RT in the unconstrained setting to an algorithm
that guarantees 2RT in the constrained one. Overall, the resulting algorithm provides the
following guarantee:

RT (θ̊) ≤ 2||̊θ||2
√
T log

[
d(1 + ||̊θ||2)T

ε

]
, ∀θ̊ ∈ Θ, (A.30)

and
RT (θ̃) ≤ 2ε.

for a specific known parameter θ̃ ∈ Θ.

174

A.4. Additional Material for Chapter 7

To guarantee the budget constraint of Equation (5.11) as required by the COCO frame-
work, we need to set ε = µα/2 in the CRDG algorithm. Two main differences emerge
from this analysis. First, setting such ε requires the a priori knowledge of the parameter µ,
which conversely is not necessary to run either the CP or the CS algorithms. Second, the
regret bound in Equation (A.30) has an extra term of log(T) compared with ones provided
by the CP and CS algorithms. Moreover, the choice of the learning rate as ε = µα/2 is too
conservative to provide a performing algorithm in practice.

A.4 Additional Material for Chapter 7

A.4.1 Q-learning for GMFG
In this section we describe the algorithm used to train the Q2 and Q4 agents used in the
experimental section. In particular, in the work by (Guo et al., 2020) the authors present
an algorithm designed for finite action and state spaces A e S, that builds on the idea of
Algorithm 6. We report it in Algorithm 16 for completeness. The algorithm exploits the
Q-learning algorithm (Equation (3.8)) to update the approximated equilibrium strategy and
uses a simulation approach to evolve the population distribution.

Algorithm 16: Q-learning for GMFG
1 Initialize: initial state-action distribution L0, environment simulator E(·, ·;L), number of

iterations I,W and J , learning rate α and ε greedy parameter
2 for k ∈ [K] do
3 Initialize Q̂w,0(s, a) = 0 ∀a ∈ A, s ∈ S
4 for j ∈ [J] do

5 at ←
{
argmax

a
Qw,j(st, a) with probability 1− ε

uniform random with probability ε

6 (st+1, rt+1) = E(st, at;Lk−1)
7 Qw,j+1(st, at) =

Qw,j(st, at) + α [rt+1 + γmaxa∈A Qw,j(st+1, a)−Qw,j(st, at)]

8 Extract πw(s) =
exp(τQ̂w,J (s,·))∑

a∈A
exp(τQ̂w,J (s,a))

∀s ∈ S

9 µw ←
∫
A
Lw−1(s, a) da

10 Initialize Lw(s, a)← 0 ∀s ∈ S, a ∈ A
11 for i ∈ [I] do
12 si ∼ µw, ai ∼ πw(si)
13 (s′i, r

′
i)← E(si, ai;Lw−1)

14 Lw(s
′
i, ai)← Lw(s

′
i, ai) + 1/I

15 Return πW and LW

Algorithm Description

Algorithm 16 is similar to Algorithm 7, we highlight here the main differences. Algo-
rithm 16 works by using the Q-learning algorithm to update the Q function. Specifically, it

175

Appendix A. Proofs and Additional Material

initializes to 0 the Q-function for each state and action (Line 3), then, for J steps, it either
selects the action that currently has the best Q-value with probability 1− ε, or it selects a
random action with probability ε (Line 5), a.k.a. ε-greedy algorithm. Using the simulator
E(·, ·;L), it extracts the next state st+1 and the reward rt+1, that are used to update of the
Q-function (Line 7). After that, the algorithm (namely the update of the population Lk) is
identical to Algorithm 7.

Parameter Setting For the experimental evaluation of Q2 and Q4, we used K = 5 outer
iterations and J = 10 · 105 inner iterations, we fixed the learning rate to α = 0.8 and the
discount factor to γ = 0.95.

A.5 Proof for Chapter 8

Lemma 8.1. Consider the return variance σ2
π (Equation (4.9)) and the reward volatility

ν2π defined in (Equation (4.11)). The following inequality holds:

σ2
π ≤ ν2π

(1− γ)2
,

Proof. Expanding the square term in Equation (4.9),

σ2
π = Eτ

[
(
∑
t

γtRt)
2
]
− J2

π/(1− γ)2.

As a consequence of the Cauchy-Schwarz inequality,

Eτ
[
(
∑
t

γtRt)
2
]
≤ Eτ

[
(
∑
t

γtR2
t)
]
/(1− γ).

Rearranging the terms the lemma is proven.

176

APPENDIXB
Additional Financial Material and ML Tools

In this supplementary material chapter, we provide information on topics that are relevant
for the dissertation, but not the main focus.

B.1 Additional Material on Financial Instruments

This section adds detail to the concepts of Section 2.2.

B.1.1 Stocks

Stocks are the most popular type of financial asset. They represent the ownership of a
corporation and a single unit is referred to as a share.

Although stocks are traded on stock exchanges, they are easily accessible even to retail
investors through online brokers. Trading stocks may seem more restrictive than trading
derivatives as they are funded. However, it is possible to increase one’s buying power with
the use of margin, i.e., a short-term loan offered directly by the broker. Moreover, it is
possible to borrow a stock to sell it, this is called shorting. Once the short position is closed,
the stock is given back to the lender. To borrow the stock, the holder is required to pay an
interest rate. Thus holding short positions can be quite costly.

177

Appendix B. Additional Financial Material and ML Tools

B.1.2 Bonds
The price of a bond Pt is quoted on the markets, given the price it is possible to calculate
the yield i by implicitly solving:

Pt =

N∑
n=1

C

(1 + i)n
+

M

(1 + i)N
,

where M is the value payed at maturity (thus the price to which P converges at maturity), C
is the coupon payment, defined as M × iF where iF is the contractual interest rate. The
yield i is composed of credit risk and interest rate risk. Specifically, knowing the risk-free
market interest rate rf , the credit risk can be calculated as i− rf . As we can see from the
price equation, if interest rates increase, then P decreases, this means that by buying a bond
we are also hoping interest rates will decrease (we are short rates). Credit risk is present in
the context of corporate bonds, or specific government bonds that are not risk-free (such
as the italian BTPs). Furthermore, while for a public company there is usually a relatively
small number of types of stock that can be traded (e.g., preferred or common stock), the
same company may issue a variety of different bonds with different maturities as well as
other diverse characteristics.

B.1.3 Forwards
Forwards contracts are OTC instruments and belong to the category of derivatives, as their
price depends on an underlying asset (also referred to as spot). They represent an agreement
to buy or sell an asset for a certain price at a certain future time, in contrast with a spot
contract, which is an agreement to make a trade today. The payoff of a long position in a
forward contract is ST −K where K is the agreed upon price and ST is the spot price of
the asset at maturity.

B.1.4 Futures
Futures contracts can be thought of as standardized forwards: they share all the same
properties with the only difference of being actively traded on regulated exchanges. Futures
are leveraged instruments, which means that it is not necessary to fund the future contract
but there is an initial margin requirement to pay to the broker. In fact, since futures contracts
are ruled at delivery, there is a strict regulation aiming to avoid large losses in case of
financial difficulties of one of the counterparties. The increase or decrease in value of the
contract is exchanged at the end of each trading day. To handle this exchange, brokers
usually require a margin to be posted initially and maintained if necessary. When the value
of an investor’s margin account falls below the minimum required amount, the investor
receives a margin call asking to deposit additional money as a means to bring the account
above the minimum amount required.

There are multiple futures contracts, with different delivery dates, which are active at
the same time on a single asset. A futures contract is specified using the delivery or expiry
month, and, in general, the most liquid future contract is the one that is closest to delivery.
A futures contract is defined as on the run when it is the closest one to delivery, the others
are referred to as off the run. Before the on the run contract delivers, on the Last Trade

178

B.1. Additional Material on Financial Instruments

03-2021 04-2021 05-2021 06-2021

7
0

8
0

9
0

1
0
0

m
id

pr
ic

e
(E

U
R

)

0
.0
0

0
.2
0

0
.4
0

bi
d-

as
k

sp
re

ad
(E

U
R

)mid (LHS)
bid-ask (RHS)

Figure B.1: The evolution of the SX7E mid price (EUR, left axis) and bid-ask spread (EUR,
right axis) from mid 03-2021 to 06-2021.

Date (LTD), it is necessary to switch the position to the upcoming on the run contract, this
means closing the current position and re-opening it on the new series. This procedure is
referred to as roll. If the future is not rolled, it is either cash settled or physically settled. If
it is physical delivery, one will receive the underlying bond in case of bond futures, or even
the physical commodity in case of commodity futures.

Trading Futures Futures may exhibit different characteristics depending on their under-
lying, on the exchange, and so forth. Let’s take the EURO STOXX Banks Index Futures
(SX7E) as an example. The SX7E is a capitalization weighted index that includes banks
and financial institutions located in the European Monetary Union. In Figure B.1 we can
see the evolution of mid prices and the bid-ask spread during 4 months of trading. As we
can see from the figure, the bid-ask spread is generally 0.05 or 0.1, which corresponds to
one or two tick sizes (see Section 2.4.2). These future contracts deliver every March, June,
September and December. Trading hours are between 2:10am and 10:00pm CET, even
though most of the trading happens between 9:00am and 6:00pm.44 Futures are not traded
as single units, but as lots and each lots contains multiple units, in the SX7E the number of
units is 50.

B.1.5 Equity Options
In this section, we add detail to equity options as defined in Section 2.2.3. It is often
complex to decide which option to trade as it is necessary to pick not only the underlying
risk but also the strike and expiry. For each underlying instrument there may be up to
around 100 different strikes, and usually the most liquid are those close to the At The
Money (ATM), i.e., the strikes that are closest to the current price of the underlying. Expiry
dates vary depending on the underlying instrument, if we consider again the SX7E, there is
an expiry every month for the next 6 months, then they thin out. From a practical point of
view, once the specific option to trade has been chosen, the trading is the same as in the

44Central European Time.

179

Appendix B. Additional Financial Material and ML Tools

case of a futures contract.

B.1.6 Credit Default Swaps
In this section, we add detail to CDS indexes as defined in Section 2.2.4.

A CDS is a financial derivative or contract that allows an investor to swap or offset
her/his credit risk with that of another investor. Every 6 months, on the 20/09 and 20/03,
or the business day immediately thereafter if it is not a business day, a new Series of the
index is originated. The new Series will be called on the run, until a new one is generated.
Different maturities are traded for this CDS index (3, 5 and 10 years) with the maturity date
that is the 20/12 or 20/06, respectively. For our purposes we consider the CDS index with
5Y maturity because it is the most liquid and there are many more options compared to the
other maturities. The index composition may be different from one series to the other either
in the number of constituents or in the CDS reference entities considered.45 At the present
time (December 2021), the SNFRIN index on the run is the Series 35, started the 22 March
2021 and with maturity date 20 June 2026.

Each CDS index has a premium leg and a protection leg. The premium leg has
standardized coupon dates: 20/03, 20/06, 20/09 and 20/12 (or the business day immediately
thereafter if it is not a business day). The coupon C is defined as:

C = N τ(ti−1, ti) 1%,

where N is the notional expressed in Euro, τ(ti−1, ti) is the year fraction (the number of
days between the present ti and the previous ti−1 coupon date divided by 360) and 1% is
the standardized coupon, which is paid on ti.46

In the event of a default of one of the j-th Series constituents occurred before the Series’
maturity, the protection leg pays, an amount equal to LGDj N

n , where LGDj is the loss given
default and n the number of constituents at the default time.47 Upon default of a constituent
and the subsequent settlement of the relative protection leg, a new version of the Series
is spun-off including the surviving constituents and the original notional N is rescaled
accordingly. The upfront is defined in Equation (2.3).

B.1.7 Interest Rate Swaps
Interest Rate Swaps (IRS) are contracts where a fixed coupon payment F is swapped with
a variable payment f that depends on the current market interest rate. The price of an IRS
can be defined as:

Pt = F
∑

t<{ti}≤tn
τ(ti−1, ti)D(t, ti)−

∑
t<{ti}≤tn

f(t, ti)τ(ti−1, ti)D(t, ti),

where f(t, ti) is the forecast variable rate at time ti, D(t, ti) is the forecast discount
factor and τ(ti−1, ti) is the year fraction of the days between ti and ti−1. IRS are OTC

45For index versions originated before March 2015 the number of constituents was 25.
46The only caveat is about the last coupon date, which corresponds to the index maturity equal to the 20/06 or

20/12 even in case that day is a holiday, with a year fraction including an extra day.
47LGDj is equal to 1 − Rj , where Rj is the recovery rate determined at the end of the ISDA CDS auction

triggered by the credit event.

180

B.2. Almgren-Chriss for Optimal Execution

instruments, they can be traded for example on the Bloomberg MTF. There is a specific
terminology, “being long interest rates” means we are paying fixed, and vice versa “being
short” means receiving fixed. The sensitivity to 1 basis point of movement of the interest
rate in consideration can be approximated as N × τ(t0, T)/10

3 where N is the notional.

B.1.8 Sensitivities
Sensitivities are used as features in the state in the DVA hedging problem of Appendix C.
The sensitivity of bonds or derivative instrument represent how much the price changes
with respect to the movement of the underlying risk factor. Formally, let X be the price of
each derivative instrument, and y the underlying risk, the sensitivity is generally defined as
∂X
∂y . As we saw in Section 2.2.3, in the case of options, this is referred to as delta risk. To

be consistent with regulatory environments, we use the same definition as in the Minimum
capital requirements for market risk (Basel Committee, 2016).

• let rt be the interest rate at tenor t of the risk-free yield curve in a given currency, the
sensitivity is defined as: (for BTP and Bund)

X(rt + 0.0001)−X(rt)

0.0001
,

• let ct be the credit spread at tenor r, the sensitivity, also referred to as CS01, is
defined as: (for SNRFIN and BTP)

X(ct + 0.0001)−X(ct)

0.0001
,

• let EQ be the market value of the cash equity asset taken into consideration, the
sensitivity is defined as: (for SX7E)

X(1.01EQ)−X(EQ)

0.01
,

These formulas, represent the way in which the sensitivities must be represented to cal-
culate the risk weighted assets, necessary to quantify the cost of capital as mentioned in
Section 2.1.2.

B.2 Almgren-Chriss for Optimal Execution

In this section, we describe the Almgren-Chriss (AC) optimal execution framework (Alm-
gren and Chriss, 2001). It is used as a baseline to compare our approach in Chapter 9.
Recalling the notation defined in Section 2.4.3, a trading trajectory is defined as a list
{x0, ..., xN}, where xk is the number of units held at time tk. We fix x0 = X and liq-
uidation at time T requires xN = 0. Equivalently, it is possible to specify a “trade list”
{n1, ..., nN}, where nk = xk−1 − xk is the number of units sold between times tk−1 and
tk.

AC assumes that the security price evolves according to the following discrete random
process:

Pk = Pk−1 + στ
1
2 εk − τg

(nk
τ

)
, (B.1)

181

Appendix B. Additional Financial Material and ML Tools

where Pk is the mid price at time k, σ is the volatility of the security, τ the length of the
time interval, nk is the volume traded at time k, g(·) is the permanent price impact and εk
are draws from guassian independent random variables with zero mean and unit variance.
Trades induce also a temporary impact modelled by the following function:

P̂k = Pk−1 − h
(nk
τ

)
,

meaning that the price of the security considered is P̂k.
To optimize the execution, the IS of Equation (4.7) is used to measure the performance:

IS = XP0 −
N∑
k=1

nkP̂k.

Inserting Equation (B.1) in the price process, it is possible to write the IS as:

N∑
k=1

nkh
(nk
τ

)
−

N∑
k=1

(
(στ

1
2 εk)− τg

(nk
τ

))
xk.

Now the objective is to minimize both the expected IS and its variance. Since the IS is a
random variable, it is possible to compute its expectation and variance as:

E[IS] = E

[
N∑
k=1

τxkg
(nk
τ

)
+

N∑
k=1

nkh
(nk
τ

)]
,

Var[IS] = σ2
N∑
k=1

τx2k.

At this point, optimizing the execution, consists in finding the minimum of the problem:

min(E[IS] + λVar[IS]).

By defining the permanent price impact g(·) and the temporary price impact h(·) as linear
functions:

g
(nk
τ

)
= γ

nk
τ
;

h
(nk
τ

)
= ϵ sgn(nk) +

η

τ
nk;

it is possible to find a closed form solution that depends on the risk aversion parameter λ,
as the optimization problem is a quadratic and strictly convex function:

nj =
2 sinh(12kτ)

sinh(kT)
cosh

(
k(T − tj− 1

2
)
)
X for j ∈ {1, ..., N}, (B.2)

where k = 1
τ cosh

−1
(
τ2

2 z
2 + 1

)
and z2 = λσ2

η(1− γτ
2η) .

In Figure B.2, we can see the execution trajectories resulting from the solution to the AC
model (Equation (B.2)), while varying the risk-aversion coefficient. A higher risk aversion
leads to a quicker execution.

182

B.3. Additional Material for Data Simulation

0 5 10 15 20 25 30
Time

0

10000

20000

30000

40000

50000

Sh
ar

e
ho

ld
in

gs

 = 5e-7
 = 3e-7
 = 1e-7
 = 7e-8

Figure B.2: Almgren-Chriss execution trajectories, y-axis represents xk. X = 50000,
T = 30 minutes.

B.3 Additional Material for Data Simulation

As an extension to Section 4.3, it is also possible to generate financial data using econometric
models.

B.3.1 Econometric Models
To use econometric models, the time series data must be differenced until it becomes
stationary before fitting the model to the data. An econometric model, specifically the
ARMA model, was tested as a generative model for minute-by-minute FX data in the
MCTS trading approach of Section 6.3, but the result was that with this method it is not
possible to find and thus reproduce any relevant patterns.

ARMA ARMA stands for autoregressive integrated moving average, and is defined as:

St = c+ ϵt +

p∑
i=1

ψiSt−i +
q∑
i=1

θiϵt−i,

where St = c+ ϵt +
∑p
i=1 ψiSt−i is the autoregressive model or order p: AR(p). Where

ψ1, ..., ψp are parameters, c is a constant and ϵ is white noise. Instead St = µ + ϵt +∑q
i=1 θiϵt−i is the moving average model of order q: MA(q). Where θ1, ..., θq are the

parameters of the model and µ is the expectation of St.

B.4 Regression through Random Forests and Neural Networks

It is common to use random forests or Neural Networks (NNs) in RL and also online
planning algorithms. For example, in TRPO or TRVO (see Section 8.2), the parametrized
policy is usually a NN. In FQI (see Section 6.2.1), the approximate Q-function can be

183

Appendix B. Additional Financial Material and ML Tools

represented by a random forest or a NN. In Alphazero (Silver et al., 2016), a NN represents
both the policy and value function. In this section we briefly present these two tools for the
supervised learning realm. A random forest is a combination of tree predictors, hence it is
firstly necessary to introduce decision trees (Loh, 2011; Zaki and Meira, 2014).

B.4.1 Decision Trees
A decision tree is a supervised learning method based on a tree model that, in regression
problems, predicts the value of the target yi, given a datum xi ∈ Rd. Denoting with X the
data space, a decision tree iteratively produces axis-parallel hyperplanes to recursively split
the data space partitioning it, until the points inside each set of the partition are relatively
homogeneous in terms of target yi. Once the tree is trained, X is partitioned collecting
train data into subgroups. It is then possible to assign each test point to one subgroup (a
leaf of the tree), and its target can be predicted as mean value of the targets of the train
data belonging to the same set. Summing up, a decision tree consists of internal nodes that
split the data depending on the value of a feature selected for that node, and leaf nodes that
represent a set of the partition of X and they are labeled with the predicted value of the
target of data in that set, computed in regression as the mean of train targets.

At each internal node, one attribute is selected to split training samples in two subgroups,
maximizing a measure of similarity of the targets among data in the same subgroup and
minimizing the similarity between them in different subgroups. Therefore, it is necessary
to select a splitting method capable of choosing the attribute on which the splitting is
based on and to determine the value of the selected attribute: the threshold for the split.
In classification there are different methods to perform the splits, like information gain or
information gain ratio, which are based on entropy, or the Gini index, that always produces
binary splits. In regression the mean squared error or the standard deviation are the common
indices of impurity used to determine the split, so the best feature and its best threshold
are selected as the ones that minimize the chosen impurity measure. Independently from
the split procedure adopted, they are all focused on maximizing the purity among data
so that in the same set their target values are as similar as possible. Clearly it is always
possible to produce a regression decision tree that predicts exactly all the training target
values by splitting until each leaf is made by a single datum, but this is an evident example
of overfitting, that will perform very poorly in testing. To overcome this issue, the tree must
be pruned:

• it is possible to adopt a prepruning approach so that the partitioning is stopped if
a certain depth of the tree is reached, if data in a group have a standard deviation
smaller than a chosen tolerance, or if the number of data in a subgroup is smaller
than a certain minimum number;

• another possibility is a postpruning approach, that once the tree is built starts from
last splits and removes them if there is no statistical evidence that they increase the
performance on the evaluation of the target.

In conclusion, a decision tree iteratively splits data into subgroups maximizing the similarity
among their target inside each subgroup, paying attention to splits, because too many
subgroups lead to overfitting. At the end, leaf nodes of the tree predict the target value
associated to each set of the produced partition of the data space, which is computed as the

184

B.4. Regression through Random Forests and Neural Networks

mean of the target values of the training data in the set, assigning that value to each test
datum belonging to that group.

B.4.2 Random Forests and Extra Trees
A random forest regression algorithm is a model ensemble method consisting in a large
number of unpruned decision trees with a random selection of features at each split.48 The
idea is to use many weak learners as uncorrelated as possible, that together form a strong
learner.

The correlation between decision trees (hence the variance of the model) is reduced in
two ways:

• each decision tree in the forest has training set composed by the same number of data
N of the original training set extracted with bootstrap technique, which consists in
sampling with replacement N data from the original set;

• at each split of a node, the feature on which the split is based on can be selected only
between m variables, randomly selected from the d available features.

Summing up, all decision trees of the random forest are trained in this way: the training set
is extracted with bootstrap, at each split only some features can be selected and the trees
are unpruned. Each one of them is a weak regressor, since its training is not optimized and
it will probably overfit, but they all together become a strong learner, since their learning
procedure, which singularly is not optimal, reduces the correlation among trees, decreasing
the variance. Moreover, since there is no pruning and at each split a smaller number of
features is available, decision trees in the random forest are much faster to train. Finally,
the prediction of the target of a test datum is computed in the random forest regression as
the average value of the predictions of each decision tree.

A possible variant is called extremely randomized trees or extra trees (Geurts et al.,
2006), where randomness is even more exploited. In particular, a third random procedure is
performed to decrease the variance: as in random forests, a random subset of m features
is available at each node to perform the split, but instead of looking for the best threshold,
some values are randomly chosen for each available feature and the best of these randomly
generated thresholds is used to perform the split.

It is possible to control the complexity of this approximator, by setting a number of
parameters that regulate the forest dimensions. We cite here only the main ones we used in
our experiments:

• the number of trees: setting a higher number of trees it is possible to average out
noise from relevant information, hence, the forest would be less dependent from its
internal randomization;

• the minimum sample split: also referred to as min-split this parameter regulates the
minimum number of samples that are necessary to allow a node to split. Increasing
this parameter, we help the forest selecting features that are common to a large
number of samples, hence we improve its generalization capability. On the other

48Classically in random forests, weak learners are unpruned, nevertheless, in pratice, it is common to prune the
weak learners.

185

Appendix B. Additional Financial Material and ML Tools

hand, decreasing this parameter allow to overfit more, allowing trees to specialize on
patterns that are common among a lower number of samples.

Random forests also present two peculiar characteristics:

• the first is that it is possible to compute a validation error directly through the
training set. Exploiting the fact that not all the data appears in all the datasets, the
out of bag approach estimates the value of the target averaging only the output of
trees corresponding to bootstrap samples where does not appear the selected datum.
Repeating this for all the data in the training set allows to measure the performance
of the learner in a more robust way than training error without the use of a cross
validation set;

• another important property of random forests, that makes them widely applied to
perform feature selection, is that they produce an estimate of the importance of the
features in predicting the target. Indeed decision tree methods calculate their splits
by mathematically determining which split will most effectively distinguish groups
of data with similar target. Therefore in random forests the importance of a feature is
measured as the sum of the improvements (in terms of Gini index, information gain
or mean squared error) in any node in which the feature is used to split, weighted by
the percentage of training data reaching that node.

In conclusion, to train a random forest it is necessary to set the number of trees, to decide
the percentage of features available at each split and the minimum number of data required
in a node to be splittable. These parameters can be tuned using a cross validation approach.

B.4.3 Neural Networks
In policy based algorithms, such as TRVO (Section 8.2), the policy is parametrized by
feed-forward NN. The simplest definition of a NN is provided by the inventor of one of the
first neurocomputers, Dr. Robert Hecht-Nielsen, who defines it (Hecht-Nielsen, 1989) as
“[...] a computing system made up of a number of simple, highly interconnected processing
elements, which process information by their dynamic state response to external inputs".

They constitute a class of flexible nonlinear models designed to mimic biological neural
systems, elaborating signals through several layers, each with a large number of neural units
(neurons) that can process the information in a parallel manner. So a NN has a multilayer
structure such that every layer is built upon many simple nonlinear functions, playing the
role of neurons in a biological system. By allowing the complexity of the structure to
increase indefinitely, multilayered NNs are able to approximate any continuous function
with any desired degree of accuracy. Thanks to their representation power, they are said
to be universal approximators, and became very popular in the fields related to machine
learning.

The number of applications of NNs grew larger and larger in the last decade along
with the evolution of GPUs and distributed computed systems, capable of supporting the
computational power required to perform tasks in a short time. A feed-forward NN is a
generalization in multiple layers of one of the simplest models user for regression, the
perceptron. For this reason, it is called also MultiLayer Perceptron (MLP).49

49Perceptron generally refers to using heavyside activation function, nevertheless it is common to use also other
activation functions (e.g., ReLu, tanh, and sigmoid in feed-forward NNs).

186

B.4. Regression through Random Forests and Neural Networks

Figure B.3: Composition scheme of a neuron.

Building blocks: Neurons

Every layer is made of several neurons, the building blocks of the overall structure. Each
neuron receives as input a linear combination of the data elaborated in the previous layer,
and then transforms it to generate a neural signal to be forwarded to the neurons in the
next layer. For example, consider the jth neuron in one of the layers; suppose that it is
connected to N neurons of the previous layer with values called {xi}Ni=1. Then, the jth

neuron will have as input (also known as net value):

netj =

N∑
i=1

wijxi + w0j ,

in particular, the coefficient wij corresponds to the weight of the connection between
the input i and the neuron j. The last weight w0j is called bias, and it behaves like a
connection with a fictitious input always equal to 1. The value that this neuron returns as
output, also called activation value, is simply

outj = Ψ(netj),

where Ψ(·) is called activation function.

The architecture

A NN is built by hooking together many simple neurons in several layers, so that the
output of a neuron can be the input of another. For example Figure B.4 illustrates a simple
representation of a NN.

In Figure B.4 it is possible to see the different roles of the layers. The leftmost one is
called the input layer, and it is the one that directly considers the input data (eventually
elaborated through a preprocessing procedure). The rightmost is the output layer; which is
the final step where the results can be observed. The middle layers of the network are called
hidden layers, because their values are not directly accessible. In general, their number

187

Appendix B. Additional Financial Material and ML Tools

Figure B.4: Scheme of a fully connected NN

may vary, but in most cases only one or two hidden layers are used. It is also possible to
have no hidden layers, and in this case the NN degenerates into a simple perceptron.

NNs usually exhibit a high degree of connectivity, determined by the presence of
weights in the network. In this example, there is a connection between any couple of
neurons in consecutive layers, hence this NN is said to be fully connected. Moreover, in
feed-forward NNs the sample information is passed only forward from the input layer to
the output.

NNs are used to parametrize a policy in the following manner: the input layer is the
state state vector st, whereas the output layer dimension coincides with the dimension of
the action space A. To be more precise, to ensure the exploration of the stochastic policy, it
is modelled as a multivariate Gaussian distribution, where the mean is the output vector of
the NN. Thus, in mathematical terms: π(st) ∼ N (µ(st), σ

2). Consequently, at ∈ A is the
action at time t and it is a realization of the multivariate Gaussian π(st); and its mean µ(st)
is the output vector of the NN.

188

APPENDIXC
DVA Hedging with RL

C.1 CVA and DVA

The Credit Valuation Adjustments (CVA) and Debt Valuation Adjustments (DVA) are not
financial instruments that can be individually traded, but are risks that come paired with
non collateralized OTC derivatives (see Section 2.1.1). OTC derivatives mostly represent
contingent claims that entail bilateral payment obligations. Credit risk associated with these
payment obligations is normally negligible, as it is substantially mitigated by the frequent
exchange of collateral margin security between the two parties; this is especially true for
OTC derivatives traded between regulated financial institutions, where such credit support
practices are normally mandatory (see Appendix B.1.4). For this reason, OTC derivatives in
the interdealer market are usually priced as if they were counterparty “risk-free”. However,
when dealing with non-financial clients, banks may trade without collateral margin security.
Dealing on uncollateralized lines is required for instance by most corporate treasurers, due
to the costs and sophistication required to set up and run collateral exchange operations.
These adjustments are priced and charged by investment banks to the corporate clients. The
lack of collateral exposes banks to potential credit risk associated with the impossibility of
fully recovering unrealised profits in case of a default of the corporate client.

Such risk is often hybrid in nature, as it depends on both the underlying risk drivers for
the contingent claim and on counterparty’s default probability. From the 1990s, dealers
have started adjusting the price of uncollateralized OTC derivatives to take into account
counterparty risk, by adding a (negative) term called Credit Value Adjustment (CVA) to the
risk-free value of the derivative.

189

Appendix C. DVA Hedging with RL

Hence, CVA gradually became a generally accepted practice in the manufacturing reality
of derivative products, to the extent that it was subsequently recognized as a component of
the fair value of derivatives both in international accounting standards and by prudential
capital regulators.50

Formalizing CVA We introduce the notion of Credit Exposure (CE), which represents
the close-out amount from the point of view of the bank. As anticipated, the effect of the
client’s default is different depending on the sign of the MtM (see Section 2.2) at the time
of default:

• if the MtM > 0, then the (defaulted) client owes the close-out amount to the bank.
The bank may expect to recover this amount only partially via insolvency proceedings
upon liquidation of the client’s assets.

• if the MTM < 0, then the bank owes the balance to the client. The bank has not
defaulted, so it can fully honour this obligation.

Mathematically, CE can be expressed by:

CE(τC) = max[MtMτC , 0], (C.1)

where, at time t, an OTC derivative with maturity T is considered and τC ∈ (t, T) is the
default time of the counterparty C. A related quantity is the Expected Exposure (EE) at
time t∗ ∈ (t, T):

EE(t∗) = Et[MtMt∗ |MtMt∗ > 0].

As discussed, experienced loss upon default is only part of CE, as the bank may expect
to recover part of the close-out claim amount in the insolvency proceedings. The recovered
fraction of CE is estimated by the recovery rate RC ∈ [0, 1] of the client. Correspondingly,
the lost fraction is the Loss Given Default LGDC = 1−RC . The formula for the CVA of
an OTC derivative at time t under the risk-neutral measure Q:

CVA(t) = −EQt
[
LGDC 1{τC≤T} 1{τC<τI}D(t, τC)CE(τC)

]
, (C.2)

where:

• the loss given default LGDC is usually set to a deterministic quantity;

• τC is a random variable that represents the time of arrival of the counterparty’s default
(its “credit event”), typically modelled as the first jump of a Poisson process;

• τI is the bank’s default time (to account for the bilateral nature of the risk);

• T is the maturity date of the contract;

• D(t, τC) is the risk-free stochastic discount factor evaluated at counterparty’s time to
default;

50Fair value is defined by International Financial Reporting Standard (IFRS) 13 as “the price that would be
received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the
measurement date (i.e., an exit price)".

190

C.1. CVA and DVA

• CE(τC) is the bank’s Credit Exposure (C.1) at counterparty default time.

If we assume that the Bank cannot default, then it follows that τI = ∞, so the corresponding
indicator function vanishes. If we make the further assumption that credit exposure and
default probability are independent, then Equation (C.2) becomes:

CVA(t) =EQt
[
LGDC 1{τC≤T}D(t, τC)CE(τC)

]
,

=LGDC

∫ T

t

B(t, s)EE(s) dPD(s),

where:

• PD(s) is the counterparty’s probability of default at time s;

• B(t, s) is the expected value of the stochastic discount, i.e., Et[D(t, s)].

Adding time discretization and assuming that the default probability of the counterparty is
known in a finite interval [ti−1, ti), with t0 = t and tm = T , the CVA of an OTC derivative
in this simplified context becomes:

CVA(t) ≈ LGDC

m∑
i=1

B(t, ti)EE(ti)PD(ti).

This equation is easier to compute and highlights the two main components of CVA:
EE and default probability of the counterparty.

Formalizing DVA Since Counterparty Credit Risk (and, consequently, CVA) is bilateral,
another concept arises: Debt Value Adjustment (DVA). Similarly to what has been done for
CVA, DVA can be defined as the difference between the risk-free instrument value and the
true instrument value that takes into account the possibility of default of the investor. From
a different point of view, it is the CVA from the perspective of the counterparty looking at
the institution. Furthermore, remembering that a positive MtM value has a negative impact
on the CVA, in a symmetrical way, a negative MtM value affects positively the DVA: in fact,
it could be considered as the gain inducted by the counterparty’s loss due to the institution’s
default.

Similarly to CE for CVA, it is necessary to introduce the notion of Negative Credit
Exposure (NCE). Using a similar notation, NCE is defined as:

NCE(τI) = min[MtMτI , 0],

while its expected value at time t∗ ∈ (t, T) is the Expected Negative Exposure (ENE):

ENE(t∗) = Et[MtMt∗ |MtMt∗ < 0].

Even in this case, the actual impact of NCE depends on institution’s recovery rate RI .
Under the risk-neutral measure Q, at time t the DVA can be computed using:

DVA(t) = EQt
[
LGDI 1{τI≤T} 1{τI<τC}D(t, τI)NCE(τI)

]
. (C.3)

191

Appendix C. DVA Hedging with RL

If we assume, similarly to the CVA case, that the counterparty cannot default (i.e., τC = ∞)
and following the same steps as before, a simplified formula for DVA is obtained:

DVA(t) =LGDI

∫ T

t

B(t, s)ENE(s) dPD(s),

≈LGDI

m∑
i=1

B(t, ti)ENE(ti)PD(ti).

(C.4)

To simplify this expression further, we decided to consider the DVA generated by a
liability of a single cash flow N that the institution has to pay at maturity time T . With this
financial instrument, the value of the cash flow at default time τI becomes:

NCE(τI) = N D(τI , T),

as a consequence, the DVA formula in Equation (C.4) becomes:

DVA(t) = N LGDIB(t, T)[1− S(t, T)], (C.5)

where S(t, T) is the survival probability between t and T .
Survival probability is built upon an intensity-based model and calculated starting from

the CDS curve of the bank, it is defined as:

S(t, T) = e−
∫ T
t
λsds,

where λs is called intensity rate at time s. For the detailed methodology, we invite the
reader to follow (Jarrow and Turnbull, 1995).

C.1.1 Banks and the Corporate Derivatives Business
In this section, we describe one of the characteristics of the corporate derivatives business.
The function of this business is to sell OTC derivatives to other corporate companies. This
business requires the interaction of several functions of the bank starting with the derivatives
sales team that is in contact with the clients and tries to understand their needs and give
advice on which financial assets are more fitting. Once a deal needs to be priced, the sales
team calls the bank’s market makers that calculate the fair market price of the derivative.
When these derivatives are uncollateralized, they have further risks and costs, such as the
CVA, DVA (see Section C.1), Funding Valuation Adjustment (FVA) i.e., how much the
bank needs to pay to fund such a position, and the cost of capital or KVA i.e., how many
capital reserves the bank needs to have for this specific deal.

We focus on one of the tasks of the XVA desk, hedging the DVA. DVA is very difficult
to hedge: in fact, recalling Equation (C.3) we can see that it depends on multiple, possibly
correlated, risk factors. If we simplify and neglect the possibility of counterparty’s default,
while part of the DVA’s risk can be hedged through the risk drivers of the underlying
OTC derivative, the default probability of the institution requires, in principle, to sell
protection through its own Credit Default Swaps (CDS). Obviously, this is not possible,
since no counterparty would accept to hedge the risk related to the institution’s default with
a CDS on the institution itself. For this reason, a perfect hedge of the DVA is impossible:
anyway, good results can be achieved by using instruments that are highly correlated with
the institution’s CDS. In our case, the institution we are dealing with is Intesa Sanpaolo.
Hedging instruments that can be considered include (see Section 4.2 for further details):

192

C.2. DVA hedging with RL

• CDS on correlated entities, e.g., the SNRFIN index;

• government bonds issued by institution’s country of origin, e.g., BTP futures and
specifically the BTP-Bund spread;

• futures and options on financial entities, e.g., the SX7E Index,

• bonds (or stocks) on the institution’s own name. However, this last operation cannot
be easily done without constraints, thus we do not consider this last possibility in our
analyses.

The profit of a trader hedging the DVA is defined as the sum of the DVA variation and
the P&L of the hedging strategy:

rt+1 = DVA(t+ 1)− DVA(t)︸ ︷︷ ︸
DVA variation

−
5∑
k=0

akt × (Skt+1 − Skt)︸ ︷︷ ︸
hedge

− c(at − at−1)︸ ︷︷ ︸
transac. costs

, (C.6)

where aki represents the current portfolio position or notional of each instrument, and Sk

their price. c(at − at−1) represent the transaction costs corresponding to the sum of the
transaction costs of the various hedging instruments.

C.2 DVA hedging with RL

DVA hedging is one of the most complex hedging problems as DVA is a hybrid risk
that depends on the risk drivers of the underlying derivative and the institution’s default
probability and because it is not possible to use the institution’s CDS to hedge this risk.
The basics of DVA are explained in Section C.1 and the requirements of banks that price
and hedge DVA are described in Section C.1.1. Finally, Section 4.2 illustrates the data and
how it was collected and prepared. In this chapter, we describe a preliminary approach to
DVA hedging, where the institution pricing the DVA is Intesa Sanpaolo.

Notation

In Table C.1, we present some common notation used throughout the chapter. In general,
aki represents the notional i.e., the actions chosen by the agent at time ti, finally the cash
account a0i and collateral account a1i are calculated to obtain a realistic gain process Gi.

Conventions

There are some conventions used throughout Appendix D.

• The sign − usually indicates a cash outflow, instead + a cash inflow.

• (.)i means that the simulator consider the value of the variable at step i, before it is
modified by the action taken in i+. Instead, (.)i+ , represent the value of the variable
after the action Ai+ has been taken into account, e.g., a2i+ represents the SNRFIN
notional at time t+i .

193

Appendix C. DVA Hedging with RL

πxyi Credit spread at time ti of Intesa Sanpaolo CDS with x-years maturity.

k Instrument index (k = 0: cash account, k = 1: collateral account, k = 2:
SNRFIN, k = 3: BTP, k = 4: Bund, k = 5: SX7E).

Qki Market quotation of instrument k, at time ti.

Xk
i Unit price at time ti referring to the market quotation Qki : X{0,1}

i = 1;
X2
i = X2

i (Q
2
i) (i.e., the upfront amount); X{3,4,5}

i = Q
{3,4,5}
i .

Y ki Unit dividend at time ti of instrument k.

Lki Number of lots at time ti of instrument k.

Mk Lot size: M{0,1,2} = 1, M{3,4} = 100,000, M5 = 50.

aki Notional at time ti; aki = Lki ×Mk and aDVAi =C400$mln ∀i.
y(ti, ti−1) Year fraction with the convention Act/360.

∆(.)i (.)i − (.)i−1.

Gi Gain process at time ti.

Ri Reward at time ti.

sBTPi BTP-Bund (yield) spread at time ti.
Dk
i Unit sensitivity at time ti.

Table C.1: Notation for the DVA problem.

• For k ∈ {3, 4, 5}, aki > 0 indicates that the agent has a long position with respect to
the instrument k (he bought a certain quantity of instrument k). Instead, for k = 2,
aki > 0 indicates that the agent has a long position with respect to the risk (he sold
protection).

• Positive collateral a1i > 0 means that the collateral is within Intesa Sanpaolo collateral
account; vice versa a1i < 0 if the collateral is within the counterparty account.

• The agent buys at ask price and sells at bid price, so it is not necessary to explicitly
consider transaction costs. Ask prices are referred as Xask, bid prices as Xbid.

C.2.1 Price and Dividend Processes

In this section we define the price and dividend processes Xk
i and Y ki for each of the

different instruments. The data collection process and some details on these instruments
can be found in Section 4.2.

SNRFIN We assign index k = 2 to SNRFIN. As we saw in the Section 2.2.4, specifically
Equation 2.3 the upfront is obtained from the credit spread, which here we call Qkt through
an evaluation function Xk

t (Q
k
t). The price process increments are thus given by

∆X2
i = X2

i −X2
i−1,

194

C.2. DVA hedging with RL

while the dividend process (the quarterly coupon) is given by

∆Y 2
i = Y 2

i − Y 2
i−1 = Ci.

To determine the SNRFIN value the simulator uses the mid priceX2
i = (X2,bid

i +X2,ask
i)/2.

When buying SNRFIN A2
i < 0 (to indicate a short risk position) we use the bid price, while

when selling A2
i > 0 we use the ask price.

BTP and Bund Futures For BTP and Bund Futures we assign k = 3 and k = 4
respectively (see Section 2.2.2 and Appendix B.1.4 for more details on futures). In this
case price processes exactly match market quotes, meaning that Xk

i = Qki , while there is
no dividend process (i.e., Y ki = 0 ∀i).

To implement the BTP-Bund spread trade previously described, the amount of Bund
Futures to be bought or sold is determined implicitly from the amount of BTP Futures
chosen by the trader following a delta neutral strategy:

L4 = −
⌊
L3 × D3

D4
+

1

2

⌋
,

where Lk represents the number of lots (i.e., the minimum negotiable size) related to the k-
th instrument and Dk its sensitivity (computed with respect to its yield, see Appendix B.1.8
for further details).

SX7E We assign k = 5 to this instrument and, as for the previous case, price process is
X5
i = Q5

i and the dividend process is Y 5
i = 0 ∀i.

DVA We refer to XDVA
i as the unitary DVA amount, thus ∆DVA at time ti is computed

as:
∆DVAi = aDVAi ×∆XDVA

i ,

where DVA is calculated as defined in Equation (C.5). The dividend Y DVA
i represents the

payment to the counterparty made at the beginning of the derivative contract.

Rolling Instruments For futures prices BTP, Bund, SX7E, it is necessary to consider
the roll. If ti is a roll date for one future instrument, the agent observes two prices: one
referring to the old series (indicated by Xko

i) and a one referring to the new instrument with
a longer maturity (indicated by Xka

i). In the day ti, there isn’t any change in the simulator
mechanism and ∆Xk

i = Xko
i −Xko

i−1. Instead the following day ti+1 in Equations (C.7)
and (C.8), Xi is the new series price: ∆Xk

i+1 = Xka
i+1 −Xka

i .

C.2.2 Collateral and Cash Accounts
With collateralized derivative contracts, if the contract increases in value for the bank (or
vice versa) then the counterparty is required to immediately recognize this increase by
exchanging a collateral of equal ammount. This collateral in the case of OTC derivatives
like the SNRFIN is inserted in a collateral account that must be remunerated, while for
listed futures contracts, the collateral is not remunerated and thus ends up in the cash
account.

195

Appendix C. DVA Hedging with RL

Both accounts are calculated at every step (so every 5 minutes), the dividends are always
zero except for the final step at the daily closure.

Collateral Account In our case the only instrument that influences the collateral account
is the SNRFIN. Thus the collateral balance at step i is:

a1i = a2i ×X2
i ,

where: X2
i−1 = (X2,bid

i−1 +X2,ask
i−1)/2.

The collateral is remunerated at a rate of r1t (which can be approximated with a con-
stant risk-free rate rf) through the dividend process described by the following ordinary
differential equation:

dY 1
t = −r1t dt.

The dividend process is negative if the collateral is within Intesa Sanpaolo collateral account
(and interest rate r1(ti) is positive) and vice versa. The above equation can be simply
discretized as:

∆Y 1
i = −r1i−1 × y(ti, ti−1).

Notice that ifX2
i is positive and the portfolio has a long risk position (a2i > 0, see Table C.1)

the agent will pay to the counterpart −a2i ×X2
i (cash outflow). To balance this outflow the

agent will receive as collateral the same amount: a2i ×X2
i (cash inflow).

Cash Account The cash account used to manage the collateral of the futures contracts,
but also the gains or losses of the hedging activity. Similarly to the collateral the dividend
process can be described by the following ordinary differential equation:

dY 0
t = r0t dt.

But differently from before, the dividend process will be positive if the cash account is
positive, negative in the opposite situation. It can be discretized as follows:

∆Y 0
i = r0i−1 × y(ti, ti−1).

Since DVA exists, we cannot assume that the dividend process of the cash account is
remunerated by the risk-free rate. Instead, it must grow at a rate r0t consistent with the
Intesa Sanpaolo unsecured financing rate, so that:

r0t = rf + π1y
t ,

where π1y
t is the Intesa Sanpaolo 1Y CDS credit spread.

Moreover, given that collateral is rehypothecable, only the net cash position between a0t
and a1t is actually remunerated at r0t through the cash account dividend process, we can
insert the collateral change a1i − a1(i−1)+ = a2i ×∆X2

i directly in the formula for the delta
cash, obtaining:

∆a0i =

5∑
k=2

aki ×∆Xk
i +

2∑
k=0

ak(i−1)+ ×∆Y ki . (C.7)

Where:

• ak(i−1)+ = aki , k ∈ {2, 3, 4, 5},

• a1(i−1)+ = a2(i−1)+ ×X2
i−1.

196

C.2. DVA hedging with RL

C.2.3 Gain and P&L
A gain process G is linked to the hedging strategy:

G(t, T, a) =

K+1∑
k=0

(∫ T

t

aku dX
k
u +

∫ T

t

aku dY
k
u

)
,

assuming X0
t = X1

t = 1 for every t.
that can be discretized as:

Gi(a) =

5∑
k=2

aki ×∆Xk
i +

2∑
k=0

ak(i−1)+ ×∆Y ki , (C.8)

which is exactly the formulation for the change in cash account. The step P&L is defined as
the sum of the hedging strategy gain and the DVA variation:

ρi = Gi︸︷︷︸
hedge

+(∆DVAi + aDVAi ×∆Y DVA
i)︸ ︷︷ ︸

DVA variation

. (C.9)

This formulation is equivalent to Equation (C.6), with the difference that both the hedge
gain process (Equation (C.8)) and the DVA are split between the market movement and the
dividend process. Another noticeable difference is that the transaction costs are not explicit
in the reward formulation as we are considering buying at the ask price and selling at the
bid price.

C.2.4 DVA Hedging as an MDP
We can now define the MDP.

State At time ti, the agent observes the following information to decide next allocation:

• SNRFIN (price: X2
i ; sensitivity: D2

i ; total allocation: L2
i and delta allocation: ∆L2

i);

• BTP-BUND yield spread: sBTPi ;

• BTP (sensitivity: D3
i ; total allocation: L3

i and delta allocation: ∆L3
i);

• BUND (sensitivity: D4
i ; total allocation: L4

i and delta allocation: ∆L4
i);

• SX7E (price: Q5
i ; sensitivity: D5

i ; total allocation: L5
i and delta allocation: ∆L5

i);

• Time to roll for different instruments;

• VIX Index and V2X Index.

Action After receiving a state from the environment, the agent selects an action a, which
is a three-dimensional vector: the first component refers to the quantity of Futures on
SX7E, the second one to the Futures on BTP (and, as a consequence, to the Futures on
Bund), the third one to the quantity of SNRFIN. These quantities are subsequently added
(or subtracted) to the total allocations stored inside the environment.

197

Appendix C. DVA Hedging with RL

Reward The reward is Equation (C.9).

C.2.5 Experimental Approach
With this formulation, it is possible to learn the MDP using RL. Given this is a hedging
problem, like those in Chapter 8, we have run preliminary tests using TRVO (see Sec-
tion 8.2), but the results are not yet satisfactory. This is not surprising as the DVA hedging
problem is extremely challenging. It is a hedging problem as those of Chapter 8, but with
the difference that it is not possible to use the underlying that generates the counterparty
risk, it is thus necessary to use a number of correlated instruments. The dataset used is
described is Section 4.2, and consists of intra-day snapshots of 5 minute frequency. In what
follows we describe the preliminary steps taken.

• The first step is to learn a near-optimal risk-neutral policy in the in-sample context,
in other words: trying to overfit the financial data, by using all the available data for
training. This step is meant to be a way to select the more suitable tools to approach
the problem (e.g., neural network architecture) and to highlights the possible issues
in a more controllable context. The selected algorithm for this task is TRPO.

• Learning a near-optimal risk-averse policy in the in-sample context. In this way it
should be possible to understand the effects of controlling reward-volatility on the
obtained policies. The selected algorithm for this task is TRVO.

• Learning a near-optimal risk-averse policy that can generalize on unseen data.

Unfortunately, learning in this scenario resulted to be challenging. We leave as future work
the solution of the DVA hedging problem with RL.

198

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Symbols
	Introduction
	Reinforcement Learning for the Financial Markets
	Reinforcement Learning
	Original Contributions
	Online Portfolio Optimization
	Quantitative Trading
	Market Making
	Hedging
	Optimal Execution

	Overview of the Dissertation

	I Intro to Financial Markets and Reinforcement Learning
	Financial Markets Fundamentals
	Introduction to Financial Markets
	Trading Venues
	Regulation

	Financial Instruments
	Cash Instruments
	ETFs and Futures
	Equity Options
	CDS and CDS Index Options
	Asset Classes

	Market Players
	Asset Managers
	Quantitative Hedge Funds
	Options Market Makers
	Bond Dealers

	Algorithmic Trading
	Transaction Costs and Market Impact
	Limit Order Books
	Optimal Execution

	Introduction to Reinforcement Learning
	Markov Decision Process
	Value Functions and Bellman Equations
	Learning the MDP
	Reinforcement Learning
	Online Planning
	Online Learning

	Data Preparation and Testing
	Data Types
	Data Collection
	Data Simulation
	Stochastic Differential Equations
	Multi-agent Market Simulation

	Data Processing
	Performance Metrics
	Testing

	II Learning the Financial Markets with RL
	Online Portfolio Optimization
	Online Portfolio Optimization with Transaction Costs
	Background on OPO with Transaction Costs
	Formulating Transaction Costs in OPO
	Online Gradient Descent with Momentum
	Comparison with State-of-the-art OPO algorithms
	Experimental Results

	Online Portfolio Optimization with a Benchmark
	Background on Conservative OCO
	Formulating Conservativeness in OCO
	The Conservative Projection Algorithm
	Experimental Results

	Chapter Summary

	Quantitative Trading with FQI and MCTS
	Background on RL for Trading
	Learning to Trade with FQI
	Fitted Q Iteration
	Persistent Actions
	Using FQI for FX Trading
	Experimental Results

	Trading with MCTS
	The Open Loop Q-Learning UCT Algorithm
	Nearest Neighbor Generative Model
	Experimental Results

	Chapter Summary

	Dealer Markets: a Mean-Field RL Approach
	Background on Dealer Markets and MFGs
	Modelling Dealer Markets as a Stochastic Game
	Learning Equilibrium via General MFGs
	Experimental Results
	Experimental Setting
	Equilibrium Policy
	Exploitability Study
	Market Simulation Study

	Chapter Summary

	Hedging Options with Risk-Averse RL
	Background on RL for Hedging
	Risk Aversion in RL with TRVO
	Equity Option Hedging with RL
	Experimental Results

	Credit Index Option Hedging with RL
	Experimental Results

	Chapter Summary

	Optimal Execution with RL
	Background on Optimal Execution with RL
	Optimal Execution with FQI and Thompson Sampling
	Using FQI and TS for Optimal Execution

	Experimental Results
	Chapter Summary

	Conclusions
	Bibliography
	Appendix
	Proofs and Additional Material
	Proof for Chapter 3
	Proofs for Section 5.1
	Proofs and Additional Material for Section 5.2
	Baseline Approaches

	Additional Material for Chapter 7
	Q-learning for GMFG

	Proof for Chapter 8

	Additional Financial Material and ML Tools
	Additional Material on Financial Instruments
	Stocks
	Bonds
	Forwards
	Futures
	Equity Options
	Credit Default Swaps
	Interest Rate Swaps
	Sensitivities

	Almgren-Chriss for Optimal Execution
	Additional Material for Data Simulation
	Econometric Models

	Regression through Random Forests and Neural Networks
	Decision Trees
	Random Forests and Extra Trees
	Neural Networks

	DVA Hedging with RL
	CVA and DVA
	Banks and the Corporate Derivatives Business

	DVA hedging with RL
	Price and Dividend Processes
	Collateral and Cash Accounts
	Gain and P&L
	DVA Hedging as an MDP
	Experimental Approach

