
Executive Summary of the Thesis

Towards Efficient Training in Deep Learning Side-Channel Attacks

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Luca Castellazzi

Advisor: Prof. Luca Oddone Breveglieri

Co-advisors: Prof. Alessandro Barenghi, Prof. Gerardo Pelosi

Academic Year: 2021-2022

1. Introduction
Today’s digital world highly relies on data and
their security is one of the most crucial aspects.
Side-Channel Attacks (SCAs) represent a se-
rious threat to data security, offering a non-
invasive way of retrieving secrets processed by
a microcontroller during the execution of cryp-
tographic algorithms. Recent research enhanced
SCAs exploiting Deep learning (DL) networks
to retrieve the secrets. The usage of multi-
ple devices for training showed that DL-based
SCAs can be effective even in real-world sce-
narios against an unprotected implementation of
the Advanced Encryption Standard (AES), be-
ing able to successfully attack a device that is
different from the ones used for training.
In addition to multiple devices, this work consid-
ers several training-phases with multiple encryp-
tion keys and different amounts of data, show-
ing that these three variables affect the perfor-
mance of DL-based SCAs in real-world scenar-
ios. Device-Key Trade-off Analysis (DKTA) is
introduced to study the trade-off between num-
ber of devices and number of keys, while Device-
Trace Trade-off Analysis (DTTA) to investigate
the trade-off between number of devices and
number of traces. This work aims at provid-
ing efficient training-configuration to mount ef-

fective realistic DL-based SCAs against a soft-
ware implementation of AES-128, both with and
without masking countermeasures.

2. Background
2.1. Deep Learning
Deep Learning (DL) is the sub-field of Artificial
Intelligence that aims at automatically extrapo-
lating relevant features from raw data exploiting
Artificial Neural Networks (ANNs).
The Multi-Layer Perceptron (MLP), depicted in
Figure 1, is the ANN considered throughout this
work.

…

…

… …

…

Hidden Layers Output LayerInput Layer

… …

Figure 1: Multi-Layer Perceptron (MLP).

It is a fully-connected network that involves an
input layer, containing as many neurons as the
input features, multiple hidden layers of varying
number of neurons and an output layer which
contains exactly as many neurons as the num-

1



Executive summary Luca Castellazzi

ber of possible output values.
An MLP can be used, as in this work, to solve
complex classification problems, where one must
identify which category, from a fixed set, a given
input belongs to. In this case, the output layer
features exactly as many neurons as the number
of classes and the actual output of the network is
the probability that the provided input belongs
to each class.
The training process involves the automatic tun-
ing of the internal parameters of the MLP in
a supervised way: during training, the inputs
are provided to the network with the related ex-
pected output, so that the network can learn
their dependency.

2.2. Side-Channel Attacks
Side-Channel Attacks (SCAs) allow to retrieve
a secret encryption key from a device in a non-
invasive way. Statistical methods are exploited
to extract the correlation (leakage) between
device-related physical variables (e.g., Power
Consumption, Electro-Magnetic emissions)
and processed sensitive information, making
it possible to retrieve the key. The physical
variables are captured from the device through
measurements, known as traces. Moreover,
usually the exploited processed information is
not the key itself, but rather an intermediate
value of the targeted algorithm. Attacking AES,
as performed in this work, the most common
target is sbox-out, the output of the first round
SubBytes operation, since it adds non-linearity
to the algorithm. Moreover, it offers an easy
way to recover the key, being SubBytes easily
invertible. Figure 2 shows how to compute
sbox-out from plaintext and key and how to
compute the key from plaintext and sbox-out.

Plaintext

Key SBox-in SBox-outSBox
Lookup

Figure 2: First Round SubBytes Operation, Forward
(left-to-right) and Backward (right-to-left).

Profiled-SCAs extends traditional SCAs consid-
ering the attacker able to exploit a sample of the

target device to produce a model of the leakage.
The model is generated during the so-called Pro-
filing Phase, while the key is recovered from the
actual target-device during the Attack Phase.
SCAs can be thwarted by several countermea-
sures, which aim at either reducing the leakage
or making it uncorrelated with the secret. In
this work, a masking countermeasure [5] of or-
der 1 is considered: it splits the secret x into
2 shares x0, x1 such that x0 ⊕ x1 = x. In par-
ticular, x0 is the masked value, while x1 is the
random mask. This simple countermeasure ex-
ponentially increases the complexity of the at-
tack, since the attacker, to recover the secret,
needs to exploit not only a single leakage point,
but two, one related to the mask and one related
to the masked value.

2.3. Deep Learning based
Side-Channel Attacks

One of the emerging trends in SCA field is the
use of DL networks to produce a model of the
leakage and then retrieve the secret [4]. In par-
ticular, the SCA is treated as a classification
problem where the input to be categorized is a
measurement taken from the target-device and
the classes are all the possible values of the tar-
geted intermediate value. A final key-recovery
step allows to retrieve the secret key.
The absence of assumptions about the distribu-
tion of the noise in the measurements and the
ability of correctly retrieving the secret with few
attack samples are the main advantages of DL-
based SCAs over traditional Profiled-SCAs. In
addition, the ability of ANNs to perform au-
tomatic feature extraction from data allows to
completely automate the Profiling Phase, es-
pecially targeting a masked implementation of
AES, as shown in [4].
On the other hand, the usage of ANNs in real-
world scenarios makes this approach affected by
the so-called Portability Problem: if the network
focuses only on recognizing noise and details
from the sample-device rather than learning its
general behavior, then it would provide wrong
predictions during the Attack Phase against a
different device. Therefore, the goal is to build
a network that is general enough to success-
fully attack a device which is different from the
one used during training. The Multiple Device
Model (MDM) [1] is the state-of-the-art solution

2



Executive summary Luca Castellazzi

(validated only on 8-bit CPUs) to the Portabil-
ity Problem. It suggests the usage of at least
2 devices during the Profiling Phase. Indeed,
additional devices allow to add diversity to the
training set, making the network more general
and able to attack a different, unseen device.
This work aims at providing efficient training-
configurations to mount effective realistic DL-
based SCAs. In order to do so, three main
variables are considered: the number of train-
devices, the number of keys used during the
Profiling Phase and the number of train-traces.
Therefore, differently from [1], this work ad-
dresses the Portability Problem not only in
terms of number of devices, but also considering
the impact of other two variables. Moreover, for
the first time, this work applies the MDM both
on 32-bit CPUs and against a masked implemen-
tation of AES.

3. Methodology
3.1. Dataset Construction
All the data used during the experiments, in-
cluding traces and multiple keys, were gener-
ated throughout this work. In particular, the
power consumption traces exploited to perform
the attacks were collected by an oscilloscope at
500MHz and then re-sampled at 168MHz, the
clock-frequency of the targeted devices. This re-
sampling technique allows to capture all needed
information and, at the same time, reduce the
number of samples per trace, since it is the num-
ber of neurons of the input layer of the MLP. The
capture of the traces is followed by a labeling
phase, needed to apply the supervised approach
of MLP training: this procedure is performed
emulating AES as shown in Figure 2 (forward
step). Traces are also scaled to 0-mean and unit-
variance to simplify MLP convergence.

3.2. Hyperparameter Tuning
For simplicity, a single MLP is trained to retrieve
a single byte of the secret key, so a total of 16
models is needed to extract the full key. The
training process is preceded by the definition of
the hyperparameters, all the external parameters
of the MLP (e.g., number of hidden layers) that
define its structure and control its training. The
following Genetic Algorithm, based on [3], was
considered to find their optimal configuration.

Algorithm 1 Genetic Algorithm for Hyperparameter
Tuning

pop← Populate(hpSpace, popSize)
for i← 0 to nGen− 1 do

sortedPop← Evaluate(pop)
parents← Select(sortedPop, selPerc)
pop← Evolve(parents, mutProb)

end for
bestHPs← sortedPop[0]
return bestHPs

Algorithm 1 is based on the Natural Selection
Principle: starting from an initial population
of random hyperparameters, for a fixed number
of generations, the population is evolved con-
sidering, for the next population, only the hy-
perparameters that lead to the best MLP per-
formance. Random mutations are added to the
process to increase the diversity of the popula-
tions. Throughout this work, Algorithm 1 is run
every time a train-device, the targeted algorithm
or the targeted byte are changed, to obtain the
best MLP possible for the given situation.

3.3. Key-Recovery and
Attack Evaluation

The considered DL-based SCAs differ from clas-
sical classification problems: the MLP is trained
to provide the value of a single byte of sbox-out,
while the target of the attack is a single byte
of the key. For this reason, an additional step is
needed to recover the key from MLP predictions.
It computes the value of the key-byte starting
from the predicted sbox-out and the plaintext,
as shown in Figure 2 (backward step).
Moreover, in DL-based SCAs, the network pro-
vides a prediction for each single attack-trace,
but the key-byte to be recovered is actually
shared among all of them. Therefore, in this
work, the MLP predictions are combined to gen-
erate a ranking of all possible key-bytes: the
key-byte in position 0 (counting 0-based) is the
actual result of the attack, being the most prob-
able outcome given by the network.
This ranking is useful to evaluate the attack per-
formance. The Guessing Entropy (GE), defined
as the average position of the correct key-byte in
the final ranking over on multiple independent
experiments is used as metric. In this work, po-
sitions (ranks) range from 0 to 255 (since a single
byte is targeted), meaning that an attack able to
retrieve the correct key-byte is expected to reach
GE = 0. Given multiple attacks, the best one is

3



Executive summary Luca Castellazzi

the attack that achieves GE = 0 (or the lowest
GE) using the smallest number of attack-traces.

3.4. Trade-off Analysis of DL-SCAs
This work identifies the number of devices,
the number of keys and the number of traces
as the three main variables of the Profiling
Phase of a DL-based SCA. To study the in-
fluence that these variables have on the attack
performance and consequently provide efficient
training-configurations to mount effective real-
istic attacks, this work introduces the Device-
Key Trade-off Analysis (DKTA) and the Device-
Trace Trade-off Analysis (DTTA). These tech-
niques allow to analyze the trade-off between the
three main variables tracking the performance
of multiple attacks in terms of GE, where the
number of keys (for DKTA) or the number of
traces (for DTTA) is gradually increased. The
experiments are repeated for increasing number
of devices (at most 2). In this way, it is possible
to completely characterize the Profiling Phase
with respect to its most important variables,
highlighting their influence on the attack per-
formance. The provided results are robust, av-
eraging the outcome of attacks performed with
all possible device-combinations available with
the considered setup.
Moreover, DKTA and DTTA allow to highlight
possible scenarios where the number of keys and
the number of traces, respectively, can enhance
the attack performance in case of limited num-
ber of devices, providing possible alternative so-
lutions to the Portability Problem.

4. Experimental Evaluation
4.1. Experimental Setup
Table 1 summarizes the capturing setup used
for collecting the traces.
The code relative to all experiments was
developed, from scratch, in Python 3.8.10.
In particular, DL scripts were implemented
with Keras considering a Tensorflow backend.
A Nvidia GeForce RTX 2080 Ti GPU with
11GB of dedicated DDR6 memory provided
the computing power needed to perform DL
training. The collected traces are available
on Zenodo [2] while the code can be found
at https://github.com/luca-castellazzi/
EfficientTraining_DLSCA.

Capturing Setup

Instrument Name Description

Target Device Riscure
Piñata
v2.3.1

STM32,
Cortex-M4 CPU,

168MHz
clock-frequency

Oscilloscope Tektronix
MS58

Max sample-rate
of 6.25GS/s

Capturing
Application

Riscure
Inspector
v2022.1

Trace collection,
Attack

simulation

Table 1: Capturing Setup for Trace Collection.

4.2. Results Targeting
Unprotected-AES

Figure 3 shows a compressed representation of
the results of DKTA targeting byte 5 with one
and two train-devices. Each single curve is the
GE obtained with a specific amount of keys,
while the color indicates the number of devices
involved.

2 4 6 8 10

0

20

40

Attack Traces

G
E

1 Train-Device
2 Train-Devices

Figure 3: DKTA Results Targeting Byte 5 against
Unprotected-AES.

The attacks are successful even when a single
train-device is considered, retrieving the correct
key-byte in 9 attack-traces, but the usage of an
additional one allows to reduce this number to
just 6. This results shows that, with the con-
sidered setup, the Portability Problem is mini-
mal. The number of keys appear not to influence
the attack, since all GE curves are almost over-
lapped and converge to GE = 0 at the same
time. This motivates the choice of not differen-
tiating the single curves with several colors.
Further analysis targeting byte 0, 11 and 14
highlighted that the number of keys influences

4

https://github.com/luca-castellazzi/EfficientTraining_DLSCA
https://github.com/luca-castellazzi/EfficientTraining_DLSCA


Executive summary Luca Castellazzi

only the specific case of attack against byte 0
with two train-devices, since considering at least
2 keys ensures convergence to GE = 0 in less
than 10 attack-traces. On the other hand, the
number of devices always ensures performance-
boost, decreasing the number of needed attack-
traces. In addition, it was found that targeting
byte 5 is easier than targeting byte 14, which
is itself easier than targeting byte 11: this is
due to the jitter effect, a partial misalignment of
the traces more visible towards the end of the
measurements. Byte 14 and byte 11 are more
affected by this problem than byte 5 because
they are computed later during the execution of
SubBytes and, in particular byte 5 is computed
before byte 14, which is computed before byte
11. On the other hand, byte 0 is not affected
by the jitter effect, but it shows anyway a quite
bad performance. This happens because it is
computed first, being affected by the warm-up
problem of the instruction cache: when byte 0
is computed, the instruction cache of the pro-
cessor is empty (cold) and the instructions are
taken directly from the flash memory, while from
the second iteration on, the cache is full of in-
structions (warmed-up).
Figure 4 shows the results of DTTA in terms
of minimum number of attack-traces needed to
achieve GE ≤ 0.5, a good approximation for
GE = 0.

100 200 300 400 500
2

4

6

8

Total Train Traces (thousands)

A
tk

T
ra

ce
s

fo
r

G
E

≤
0
.5

1 Train-Device

2 Train-Devices

Figure 4: DTTA Results Targeting Byte 5,
Unprotected-AES.

The results highlight how the number of train-
traces allows to gain a 2× performance improve-
ment by adding 450,000 traces to the starting
training set. Such an influence of the number
of train-traces over the attack is independent of
the number of devices, which still increases the
performance allowing, in the best scenario, to
recover the key-byte in only 3 attack-traces.

4.3. Results Targeting Masked-AES
Figure 5 shows the results of DKTA targeting
byte 5 against masked-AES: the upper figure
shows the results obtained with a single train-
device, while the lower one presents the outcome
obtained with two train-devices.

0 100 200 300

0

50

100

150

Attack Traces
G
E

1 Key

2 Keys

3 Keys

4 Keys

5 Keys

6 Keys

7 Keys

8 Keys

9 Keys

10 Keys

0 100 200 300

0

50

100

150

Attack Traces

G
E

Figure 5: DKTA Results Targeting Byte 5, Masked-
AES.

The results show that the considered MLP is
able to break even a masked implementation of
AES-128, since at least a GE curve reaches 0.
The number of keys influences the attack: higher
number of keys are preferred, even if the perfor-
mance improvement is not monotonic. In par-
ticular, GE = 0 is achieved with 9 keys and 300
attack-traces. On the other hand, considering
an additional device, on average, makes the at-
tack unfeasible, causing the GE to diverge.
Figure 6, instead, shows the results of DTTA ob-
tained with a single train-device (solid lines) and
with two train-devices (dashed lines) in case of
masking countermeasures. Also in this case, the
addition of a device makes it impossible, on av-
erage, to retrieve the correct key-byte, even with
300 attack-traces. On the other hand, the per-
formance of the attack increases monotonically
with the number of traces. Indeed, the best re-
sult is obtained with 350,000 traces, since GE
reaches 0 in only 150 attack-traces. The num-

5



Executive summary Luca Castellazzi

ber of used keys is 9, relying on the results of
DKTA.

0 100 200 300

0

50

100

150

Attack Traces

G
E

50k Traces 100k Traces

150k Traces 200k Traces

250k Traces 300k Traces

350k Traces

Figure 6: DTTA Results Targeting Byte 5, Masked-
AES.

The results shown in Figure 5 and Figure 6
are averages over the attacks performed with
all possible combinations of train-devices and
target-device. A further analysis of the single
attacks revealed that it is possible to recover the
key with even fewer attack traces and sometimes
also with two train-devices. At the same time,
some attacks involve a network which acts like a
random classifier, causing the divergence of the
average. In particular, the attacks where the
train-devices coincide with the ones used during
Hyperparameter Tuning achieved the best per-
formance: this demonstrates that the Portabil-
ity Problem can manifest itself not only in terms
of difference between the train and target device,
but also in terms of choice of the train-devices.

5. Conclusions and
Future Work

This work offers a complete characterization of
the Profiling Phase of a DL-based SCA target-
ing AES-128, both with and without masking
countermeasures and running on a 32-bit CPU,
in terms of trade-off between its most impor-
tant variables. When targeting unprotected-
AES, the number of devices and the number of
traces highly influence the attack performance,
because adding a device improves the attack in
all scenarios, validating for the first time the
MDM [1] on 32-bit CPUs, and a bigger train-
ing set (up to 500,000 traces) always allows to
perform better attacks. The number of keys
appears to be much less relevant, boosting the
performance only in the specific case of attack

against byte 0 with two train-devices. When tar-
geting masked-AES, all variables influence the
attack: an high number of keys (9) and traces
(350,000) allows to perform better attacks, while
the addition of a device makes them unfeasible,
on average. In addition, this work demonstrates
that the Portability Problem, with the consid-
ered setup and when masking countermeasures
are in place, can manifest itself in terms of choice
of the train-devices, rather than in terms of dif-
ference between train-devices and target-device:
if the train-devices coincide with the ones used
during Hyperparameter Tuning, then the attack
performs better.
Even if this work focuses entirely on AES, the
proposed methodology can be applied to any
encryption algorithm. Therefore, future works
can involve DKTA and DTTA over an hard-
ware implementation of AES, AES with a dif-
ferent mode of operations or pipelined-AES.
Moreover, this work can be further extended
considering Electro-Magnetic (EM) emissions as
side-channel, relaxing the implicit assumption of
physical access to the pins of the target-device,
needed to connect the current probe, at the cost
of additional noise in the measurements.

6. Acknowledgements
A special thanks for the collaboration goes to
Prof. Luca Oddone Breveglieri, Prof. Alessan-
dro Barenghi, Prof. Gerardo Pelosi, and to Dr.
Paolo Amato, Dr. Danilo Caraccio, Dr. Niccolò
Izzo.

References
[1] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser,

Dirmanto Jap, Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind
the portability: A warriors guide through realistic profiled side-
channel analysis. IACR Cryptol. ePrint Arch., page 661, 2019.

[2] Luca Castellazzi. Towards Efficient Training in Deep Learning
Side- Channel Attacks, April 2023. https://doi.org/10.5281/zenodo.
7817187.

[3] Matt Harvey and Norman Heckscher. Evolve a neural net-
work with a genetic algorithm. https://github.com/harvitronix/
neural-network-genetic-algorithm, 2017. Published under MIT Li-
cense.

[4] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
Breaking cryptographic implementations using deep learning tech-
niques. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat,
editors, Security, Privacy, and Applied Cryptography Engineer-
ing - 6th International Conference, SPACE 2016, Hyderabad,
India, December 14-18, 2016, Proceedings, volume 10076 of Lec-
ture Notes in Computer Science, pages 3–26. Springer, 2016.

[5] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-
order masking of AES. In Stefan Mangard and François-Xavier
Standaert, editors, Cryptographic Hardware and Embedded Sys-
tems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings, volume 6225
of Lecture Notes in Computer Science, pages 413–427. Springer,
2010.

6

https://doi.org/10.5281/zenodo.7817187
https://doi.org/10.5281/zenodo.7817187
https://github.com/harvitronix/neural-network-genetic-algorithm
https://github.com/harvitronix/neural-network-genetic-algorithm

	Introduction
	Background
	Deep Learning
	Side-Channel Attacks
	Deep Learning based Side-Channel Attacks

	Methodology
	Dataset Construction
	Hyperparameter Tuning
	Key-Recovery and Attack Evaluation
	Trade-off Analysis of DL-SCAs

	Experimental Evaluation
	Experimental Setup
	Results Targeting Unprotected-AES
	Results Targeting Masked-AES

	Conclusions and Future Work
	Acknowledgements

