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1. Introduction
1.1. Clinical context
Speech articulation is the most complex motor
activity humans perform. Difficulties with ar-
ticulation are called motor speech impairments
and may be the first symptoms present in sev-
eral neurodegenerative diseases such as non-
fluent/agrammatic variant primary progressive
aphasia (nfvPPA), manifesting as progressive
apraxia of speech (AOS) and/or dysarthria [1].
Currently, diagnosis relies on the perceptual and
subjective judgment of clinicians. Linking the
vocal tract’s shape alterations, extracted au-
tomatically, with clinical and acoustic speech
evaluations has the potential of better defin-
ing the anatomical changes of specific articu-
lation deficits and might provide an effective
tool for diagnosis and monitoring of neurode-
generative diseases. MRI sequences of the vocal
tract have several advantages over other existing
instrumental approaches that either have lim-
ited spatial coverage of the vocal tract (ultra-
sound, electropalatography), are invasive (cine
x-ray and optical coherence tomography), or al-
ter articulatory kinematics (electromagnetic ar-
ticulography). In particular dynamic speech

MRI (dsMRI), an innovative MR technology, of-
fers a unique opportunity for fast, direct, non-
invasive, real-time visualization of the changes
in the vocal tract during speech.

1.2. MRI analysis methods
Because of number of articulators involved in
the speech production and the complexity of
their anatomy, there are still no gold stan-
dard datasets available and this makes difficult
to evaluate the performance of proposed auto-
mated analysis. The existing techniques used
to analyze dsMRI images to investigate speech
properties can be summarized in four classes [2]:

1. Basic decomposition or matrix factorization
techniques: these methods obtain spatio-
temporal basis functions of the articulators’
movement associated to linguistic gestures;

2. Region of interest (ROI)-based : they are
based on the manual demarcation of the re-
gions of interest of which variation can pro-
vide useful information regarding linguistic
or clinical questions;

3. Grid-based : they are based on a refer-
ence coordinate system that is superposed a
sagittal view of vocal tract to facilitate the
calculation of the vocal tract area functions
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by the identification of points of intersection
between soft tissue and gridlines;

4. Contour-based : they are based on the ex-
traction of all the tissue boundaries belong-
ing to structures recruited during speech
production.

The last class of methods is the one that
was used in this work to develop an auto-
mated image-segmentation tool, exploiting a
deep learning approach (advanced UNet), to ex-
tract the contouring of the main articulators
that are critically involved in speech production.
The final aim of this tool is to extract quantita-
tive metrics that can provide useful information
to detect motor speech impairments and follow
the progression of disease over time.

2. Materials and Methods
2.1. Data Collection
A multidisciplinary team from Department of
Neurology and Department of Radiology of Uni-
versity California San Francisco (UCSF) en-
rolled 10 young and 20 older healthy controls
as well as 15 nfvPPA patients from active
projects at the UCSF Memory and Aging Center
(MAC) and the Language Neurobiology Labora-
tory (ALBA). Speech stimuli were provided to
the subjects to guarantee a wide range of permis-
sible articulatory movements in Standard Amer-
ican English. After training, all participants un-
derwent MRI on a 3T Siemens Prisma scanner
where they repeated the speech stimuli during
the MRI acquisition. A series of mid-sagittal
slices for dynamic speech MRI were acquired
during the speech stimuli and grouped into dy-
namic speech videos. The study was approved
by the UCSF Committee on Human Research
and all subjects provided written informed con-
sent.

2.2. Dataset preprocessing
Because of the restrictions due to the COVID-19
pandemic, only 4 young control subjects and 1
nfvPPA patient were able to complete the study
protocol. In Table 1 the speech videos provided
by UCSF and used to extract the images and
build the dataset are listed.

Table 1: Each video includes the Subject ID, the
stimulus provided and the belonging to patient
or control group.

Subject ID Stimulus Control/Patient
1 SEGREGATION Control
1 MICROSCOPIC Control
1 TOPCOP Control
2 MICROSCOPIC Control
2 SEGREGATION Control
2 TOPCOP Control
3 PATAKA Control
3 MICROSCOPIC Control
3 WELCOME Control
4 PA Control
4 KA Control
4 COUNT Control
5 SEGREGATION Patient
5 MICROSCOPIC Patient
5 TOPCOP Patient

A graphical user interface (GUI) was developed
in Python 3.7.9 to extract the desired number of
frames (equally spaced) from videos, create and
organize the dataset (made by 970 images). A
manual annotation of the anatomical contour-
ing of the main articulators was provided under
the supervision of an expert radiologist using
3D Slicer software to obtain the ground truth
segmentations. The manual segmentation took
approximately 15 minutes for each image. Con-
sidering the onset of fatigue of the operators af-
ter about 20/25 images, it took approximately
250 hours to complete the segmentation process.
Since pixels of dsMRI images assumed values be-
tween 0 and 256, they needed to be normalized
between 0 and 1 to obtain better performances.
A min-max normalization was applied using 0 as
minimum value and the 90th percentile (about
130) as maximum value. Non zero pixels be-
long to the so called foreground, whereas zero
pixels belong to the so called background. Fig-
ure 1 shows an example of a dsMRI frame and
the corresponding manual segmentation where
seven regions of interest were identified: Upper
Lip (UL): green, Hard Palate (HP): yellow, Soft
Palate (SP): soft brown, Tongue and Epiglottis
(TO): light blue, Lower Lip and Jaw: red, Head
(HE): orange and Background (BK): black or
dark grey.
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(a) (b)

Figure 1: a) Example of dsMRI frame of dimen-
sions 256×256, b) Corresponding ground truth.

2.3. UNet
A groundbreaking architecture called UNet ap-
pears to be promising with respect to segmen-
tation problems. It can efficiently process large
images by combining information from both lo-
cal and global features. UNet include two oper-
ational paths connected each other through a
bottleneck. The first is the contraction path
where the network learns by coding (convolu-
tion) and compressing (maxpooling) the initial
image into a series of feature maps. The second
is the expansion path where the information ob-
tained is brought back to the initial resolution
(deconvolution) and decoded in the segmenta-
tion mask. To enhance network performances,
skip connections are used between the same lev-
els of the two paths. Due to them the expansion
path can better recover spatial information by
merging features skipped from the various res-
olution levels on the contracting path. Based
on these considerations, different UNet architec-
tures were developed and trained with different
loss functions. Their output is a 7-layers Soft-
max that provide the seven classes probability
maps and their accuracy was evaluated by some
properly chosen metrics. UNet architectures de-
veloped were five, but only the most effective
ones will be explained below.

2.3.1 QT-UNet

QT-UNet architecture has an encoding unit
structured as a dense block, where each con-
volutional layer receives all the previous out-
puts as inputs. This means that bottleneck re-
ceives portions of all the previous layers as in-
put, enhancing information flow. Furthermore,
this architecture replaces deconvolution as mean

of up-sampling with an unpooling layer based on
nearest-neighbor interpolation.

2.3.2 IM-UNet

IM-UNet uses residual blocks as encoding unit
formed by two separate convolutional branches,
with a branch having kernel size 1 × 1, joined
by a pixelwise sum. This allows the network to
propagate multi-scale information to the bottle-
neck, which is instead made up of four dilated
convolutions that further increase the receptive
field, without reducing resolution. Each encod-
ing unit is equipped with a dropout layer to re-
duce overfitting. A new version of this archi-
tecture was also tested, obtained with the addi-
tion of an Attention Block. This was introduced
in correspondence of the skip connections to di-
minish the number of redundant features that
are brought from the down-sampling path to the
up-sampling path [3].

2.4. Loss Functions
Loss function quantifies the discrepancy between
ground truth and prediction, updating network
parameters (weights and bias) every training
epoch, through back-propagation. The loss
functions used to train the networks are depicted
in Figure 2. They are subdivided in three classes
according to their operating method.

Cross-Entropy (CE)

WCE
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TopK

WTopK
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Figure 2: Graphical representation of the losses
used, subdivided in their classes.

1. The Distribution-based class includes all
the losses that aim to minimize the differ-
ence between two distributions. They were
tested also in their weighted form for class
imbalance problem, with weights given by:

wc =
npixc
Npix

, (1)
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where npixc represents the number of pixels
belonging to the foreground of class c, while
Npix is the sum of the total pixels belong-
ing to the different classes foregrounds;

2. The Region-based class includes all the
losses that measure the difference between
ground truth and prediction, trying to max-
imize the overlap between the two;

3. Compound losses are conceived as the sum
of multiple losses, with the aim of improv-
ing performance by combining the different
strengths. In literature there are compound
losses composed of a maximum of two ele-
ments, while in this study this concept was
extended to three and four elements.

2.5. Metrics
Networks segmentation accuracy was assessed
using three complementary metrics. They were
the most uncorrelated ones among those that
focus on the properties that are most inherent
to the considered task (small segment, complex
boundary, low densities, importance of contour).
First, Dice metric (DICE) was used to quantify
the overlap between the ground truth segmen-
tations and the predicted segmentations. Sec-
ond, the Hausdorff Distance (HD) was used to
quantify the precision of the prediction’s spa-
tial position and boundaries compared to the
ground truth. Third, the Global Consistency Er-
ror (GCE) was able to focus particularly on the
overlap of small portions of the images and take
into account also the amount of true negatives.
To evaluate the overall goodness of networks an
overall metric (OM) was introduced:

OM = (1−DICE) +GCE +HD (2)

2.6. Networks Training and Evalua-
tion

A portion of the dataset, composed by 820 im-
ages of control subjects, was split into train-
ing (80%), validation (10%) and test (10%) sets.
Networks taken into account were given by the
combination of loss functions and architectures
mentioned above. They were all trained with a
batch size of 8, 70 epochs and Adam optimizer
with learning rate of 0.001. The best networks
in term of the overall metric were saved and ap-
plied on the test set. The project was developed
in Google Colab environment using TensorFlow

v2.8.0. The initial trainings were conducted ex-
ploiting Google Colab GPU NVIDIA Tesla T4
with RAM of 25 Gigabyte and each model took
about 1 hour and 20 minutes to be trained.
The successive trainings exploited a cluster of
NVIDIA Tesla A100 with RAM of 40 Gigabyte
each and each model took about 40 minutes to
be trained. Particularly, the mean value of in-
ference time for a single image was about 0.092s.

2.6.1 Statistical analysis

A statistical analysis was made to rank the 95
networks and asses their statistical differences.
First the overall metric distribution on the test
set was extracted from each network. These dis-
tributions were used to perform Kruskal Wallis
test which produced a p-value equal to 0, mean-
ing that at least two networks were significantly
different each other. Then Tukey Kramer test
was applied to see which networks were or not
significantly different from one another. All the
analysis was performed in MATLAB R2021b en-
vironment.

2.6.2 Cross Validation

Cross validation was applied on the best net-
works selected after the statistical analysis.
The subject-one-out cross validation was imple-
mented using the 4 control subjects to guarantee
that each subject could appear in both the train-
ing and the test set, enhancing the variability of
data.

2.7. Post processing
Since the seven classes were predicted separately
by networks and their predictions were fuzzy
[0, 1], they were converted into crisp segmenta-
tions {0, 1} and reassembled to obtain the over-
all predicted segmentation. The conversion car-
ried out by introducing a threshold of 0.5 on the
pixels produced holes in the most uncertain ar-
eas of Softmax probability map. So the entire
image was scanned and each pixel was assigned
to the class to which it has the highest proba-
bility of belonging (Argmax). This way all holes
were filled and all pixels were assigned to a class.

2.8. Vocal Tract Segmentation Tool
In order to make this work accessible to clini-
cians and allow them to benefit from the seg-
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mentations, a user friendly application was de-
veloped using Python 3.7.9 and KV language.
Vocal tract segmentation tool (VTS-tool) uses
the best networks to perform rapid segmenta-
tion of the MRI recording and it allows to in-
teractively visualize the images with their pre-
dicted segmentations superposed. It also gives
the possibility to compute some clinical met-
rics both interactively (distances) and automat-
ically (dynamic computation of articulators ar-
eas). This way clinicians can evaluate the trend
of the change of the articulators areas over time.

3. Results
The three best networks, with their Dice medi-
ans, obtained from the statistical analysis were:

• IM-UNet with Attention Block (IMUNe-
tAtt) trained with Dice-CrossEntropy-
Focal-TopK loss (0.9375);

• IM-UNet trained with Dice-CrossEntropy-
Focal loss (0.9285);

• QT-UNet trained with Dice-CrossEntropy-
Focal loss (0.9256)

After the post processing they also obtained a
median Hausdorff Distance of 0.32, a median
Global Consistency Error of 0.0011 and a me-
dian overall metric of 0.38 on the control sub-
jects. Since their best possible value is 0 and the
worst possible value is 1, these results are consid-
ered satisfactory. Figure 3 provides a graphical
example of the best networks capacity to cor-
rectly predict a control subject segmentation.

(a) (b)

Figure 3: Example of a) ground truth segmen-
tation of a control subject and b) the correspon-
dent predicted and post processed segmentation.

In Figure 4 was depicted an example of the man-
ual delineation of the articulators as well as the
predicted areas with the corresponding under-
segmented and over-segmented areas. Specifi-

cally, under-segmented areas are those ones that
should have been included in a region but were
not; over-segmented areas are those ones that
should have been excluded from a region but
were not.

Ground Truth area

Under-segmented area

Ground Truth edge

Over-segmented area

Background Head

Upper Lip Hard Palate Soft Palate

TongueLower Lip

Figure 4: Example of a map showing, for a con-
trol subject, the ground truth area of regions
with the superposition of areas that were under-
segmented and over-segmented.

Cross validation produced the following results:
a median Dice of 0.91, a median Hausdorff Dis-
tance of 0.28, a median Global Consistency Er-
ror of 0.001 and a median overall metric of 0.37
on the control subjects. These results prove
that these networks don’t suffer from overfitting
problem and they are able to correctly segment
images when trained and tested with different
sets.
Taking into account that patient articulators are
quite different from the ones of control subjects,
the same networks applied on his/her 150 images
(out of 970) produced worse results. Specifically,
they produced a median Dice of 0.82, a median
Hausdorff Distance of 0.38, a median Global
Consistency Error of 0.0026 and a median over-
all metric of 0.55. Figure 5 shows the change
of the articulators areas in the patient over the
repetition of a task obtained from the VTS-tool.
This is one of the possible clinical metric that
can be used to discriminate between a physio-
logical production of speech and the presence of
some motor speech impairments. In particular,
as mentioned in 1.1, apraxia of speech (AOS)
is characterized by inconsistent speech patterns,
while dysarthria is connoted by consistent pat-
terns. This way, by looking at areas trend, is
possible, for example, to discriminate between
these two pathological conditions.
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Trend of a patient’s vocal tract areas

Figure 5: Trend of patient articulators areas
during the repetition of the task Segregation.

4. Discussion
Networks that perform the best in the segmen-
tation task were those ones built with compound
losses with three and four elements. This means
that combining Dice loss and Cross-Entropy loss
succeeds in taking into account the dissimilari-
ties between the two distributions and also the
overlap degree. Then, adding Focal loss allows
to penalize the well-classified samples to focus
on the worst ones. This loss amplifies preci-
sion to the detriment of recall, meaning that it
privileges a sub-segmentation rather than over-
segmentation. This tendency is confirmed by the
map shown in Figure 4, where a strong predom-
inance of under-segmented areas can be seen.
Eventually, adding TopK loss allows to focus on
the most difficult pixels.
The reason why IMUNet, IMUNetAtt and
QTUNet prevailed over the other two architec-
tures may be linked to the propagation of the
initial information through all the layers before
the bottleneck. The IMUNet and IMUNetAtt,
in their encoding path, propagate the initial in-
formation layer by layer, adding the linear pro-
jection of the input with a deeper convolution.
QTUNet, instead, propagates the input to the
bottleneck through the connections of the dense
block, increasing the information flow received.
This concept, as well as improving the quality
of the network outputs, also improves its perfor-
mances, as back-propagation is facilitated.
Dice values are all equal or greater than 0.92,
meaning that the amount of overlap between the
predicted classes and their ground truth is sat-
isfactory. Hausdorff Distance values are quite
close to 0, it means that the prediction’s spatial

position and boundaries are close to the ones
of ground truth. Global Consistency Error val-
ues are very close to zero, meaning that also the
overlap of the smallest portions of the regions
is guaranteed and the amount of the true neg-
atives is high as well as the amount of the true
positives. Eventually, the Overall metric values
are quite close to 0 and it means that the overall
performance of the networks can be considered
satisfactory.

5. Conclusions
The automatic segmentation of vocal tract in its
main articulators was successfully performed by
the best networks obtained. They gained satis-
factory metrics results on control subjects and
good results on patient. These networks achieve
quite good generalizability and don’t suffer from
overfitting problem. The VTS-tool developed al-
lows clinicians to save time, because it is not
necessary to perform the manual segmentation
of each dsMRI image, which is a very time-
consuming activity. It also allows to obtain
quantifiable and objective clinical information
that can help clinicians making an early diagno-
sis and a better monitoring of speech diseases.
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