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Abstract
The human capacity of treating illness is one of the mechanisms that have led our species
to an overall increase in life quality and an increase in the human population. The drug
discovery process aims at finding suitable treatments for diseases. This process is usually
carried out with in vitro testing of compounds against a target protein. In this way, the
process can be very long and costly. It requires time, human efforts, and chemical compo-
nents. With the advent of supercomputers, arises the idea of using computer-generated
models to get a hint on the most promising compounds. This generated a new field of
research on virtual screening pipeline, which is a pipeline of compounds screening against
a target protein, done virtually. Since a large dataset of compounds exists it becomes
necessary to scale an HPC infrastructure to analyze each compound against the disease.
Nowadays high-performance computing environment is facing an increasing challenge in
trying to continuously speed up the computation: Moore’s law decline makes it impossi-
ble to increase the computational power by relying only on components miniaturization.
These premises created the general interest in pursuing new techniques, that enable us
to be more efficient while being faster. So we need to keep in mind the balance that
exists between memory usage and computation requirements. The outbreak of the re-
cent pandemic has shown us how the existence of a fast and reliable process of molecular
docking for drug discovery [1], could lead to a faster response when fighting these such
emergencies in the next future [2]. This document has the objective of proposing a way
in which we can increase the throughput of a molecular docking simulation as much as
possible, by analyzing which part of the pipeline can be accelerated. The techniques used
in this thesis to accelerate and application comes from approximated computing field. In
the end, we will apply the result of the analysis on the pipeline of a CADD: LiGen.

Keywords: Molecular Docking, Drug Discovery, XSCORE, Autodok, Autogrid, Approx-
imate Computing, Scoring Function, GPU, HPC, High performance Computing, Virtual
Screening, Ligand, Poses, Receptors, Precision Scaling, Memoization, LiGen





Abstract in lingua italiana
La capacità della razza umana nel curare le malattie è uno dei motivi che ha perme-
sso alla nostra specie di aumentare la sua aspettativa di vita, e di conseguenza anche
di aumentare la sua popolazione. La scoperta di cure per le malattie viene solitamenta
fatta eseguendo test in vitro, in cui vengono analizzati gli effetti di vari composti chimici
sui recettori di alcune malattie. Ques’ultimo è però un processo molto lungo e costoso.
Richiede tempo, fatica, e reagenti chimici. Con l’avvento dei supercomputer, è nata l’idea
di usare dei model computerizzati per ottenere degli indizzi su quali potessero essere i
composti chimici di maggiore interesse per fare test in vitro. Ciò ha portato alla nascita
di molti studi sulle virtual screening pipeline, cioè pipeline di analisi degli effetti di vari
composti chimici su diverse malattie. Siccome al giorno d’oggi esistono grandi raccolte
di composti chimici conosciuti dalla scienza, è necessario progettare una struttura HPC
per analizzare ogni composto contro la malattia obbiettivo dell’analisi. A questo punto
i ricercatori nell’ambito del HPC devono affrontare una sfida sempre maggiore, nell’ac-
celerare la computazione: il declino della legge di Moore rende impossibile l’aumento
della potenza computazione basandosi solo sulla miniaturizzazione delle componenti. Ed
è proprio per questo che i ricercatori hanno iniziato a perseguire nuove strade, per essere
più veloci ed efficenti nella computazione. Bisogna però sempre tenere in considerazione il
tradeoff che esiste tra l’utilizzo della memoria e la potenza di calcolo richiesta. Lo scoppio
della recente pandemia ha mostrato come una più vloce virtual screeing pipeline [1] possa
essere di aiuto nel combattere emergenze future simili a questa [2]. Questa tesi ha come
obbiettivo quello di proporre un metodo che può essere utilizzato per aumentare l’output
di una simulazione di molecular docking il più possibile, attraverso un’analisi delle com-
ponenti della pipeline che possono essere accelerate. Le tecniche utilizzate per accelerare
la pipeline sono prese dal campo dell’approximated computing. Alla fine analizzeremo
l’impatto di queste tecniche su un CADD: LiGen.

Parole chiave: Molecular Docking, Drug Discovery, XSCORE, Autodok, Autogrid, Ap-
proximate Computing, Scoring Function, GPU, HPC, High performance Computing, Vir-
tual Screening, Ligand, Poses, Receptors, Precision Scaling, Memoization, LiGen
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1| Introduction
In all of human history, we have pursued the objective of increasing our quality of life.
Breakthrough discoveries in the medical field, have led our lifespan of decades. When
humanity encounters a new disease, it takes its capacity to find a treatment for this new
illness. In the past centuries, the discovery of new treatments has been based on the
human capacity of finding new compounds able to inhibit the effects of the disease. This
process is called drug discovery, which is largely used by the pharmaceutical industry.
Before the advent of computers, researchers have to create new compounds and test them
in vitro against the target disease, to discover the compound’s effects on the disease.
This is process relies on human intuition in finding the desired compound, and so it can
be very long and costly because, each compound under analysis, requires time, human
efforts, and chemical components. A first attempt to automatize this process has been
carried out through high-throughput screening techniques, which used machines to replace
researchers. Today machines are faster and can test a larger number of compounds [3].
The digitalization process in act nowadays has targeted also the pharmaceutical industry,
which has aggregated its knowledge into a big dataset of compounds [4]. Nowadays the
limit in the number of tested compounds is not on the number of compounds that can be
tested in vitro, but rather on the throughput of a computer-generated model which an-
ticipates the in vitro testing. We can use a computer-generated model for the analysis of
the big ligand’s dataset, and we can identify which compounds should be passed to the in
vitro testing. The simulation of the interactions between molecules (as a compound) with
a computer model, goes into the research field of molecular docking algorithms. With this
algorithm, researchers can find out how a compound interacts with another compound.
In this way, the drug discovery process is partially digitalized. Because it relies on the
results obtained by a computer model to get hints on the most promising compounds
that should be passed to later stages of the process, for further analysis. The virtual
screening pipeline requires as input a set of compounds, which will be digitally tested on
the receptor of a disease, in search of the compounds that can inhibit such a disease. HPC
becomes important to use the whole super-computing infrastructure. The complexity of
an algorithm is evaluated as a function of the input’s size. To increase the throughput
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of a virtual screening pipeline. To get a high throughput we should feed our application
with enough data, so as not to remain idle. So the input’s size should be increased, in this
way the complexity is increased, and a higher complexity means a higher time to solution.
In the following approximated co muting technique are used to reduce the complexity of
virtual screening pipeline algorithms.
Molecular docking algorithms can be used to understand how a compound can inhibit a
disease, then scoring is used to evaluate which ligands should be further tested. Having
at disposal big datasets of compounds can be combined with big computational power,
to deploy a high-throughput virtual screen pipeline, which is used to speed up the drug
discovery process. The evaluation of the most promising compounds has to be done with
a well-defined metric, so to each compound, the pipeline assigns a score. The compounds
with the highest score are selected for later stages of the pipeline. The purpose of this
thesis is to pursue new techniques which help a computer-generated model to increase
its throughput, thus increasing the number of tested compounds against a targeted ill-
ness. Usually, for an application, a small time-to-solution is an important requirement,
for which a lot of effort is put on. When dealing with a fast-spreading disease, as in the
recent pandemic, is preferable to have a fast response time. The response’s objective is to
find suitable treatments for a disease outbreak [1], thus is important to continue studies
in the urgent computing field.
The original drug discovery process, where scientist manually tests each compound against
a disease, makes use of the researchers’ ability to foresee which are the most promising
compounds against a disease. This is already an approximation because we are not an-
alyzing the whole input space of compounds. The input space would be too big for
an exhaustive analysis, instead, the original drug discovery process relies on domain-
expert knowledge. During the last decades, the requirement of increasing an application’s
throughput has been met thanks to the computers’ components’ miniaturization, which
has increased the computational power, while decreasing the computational cost. The
decline of Moore’s law [5] has led the researchers to think differently to meet the require-
ments. This document studies the possibility of increasing the number of compounds
tested in the same amount of time, by using approximation techniques. As an alterna-
tive, we can use a computer-generated model, which simulates the real-world interactions
between a compound and a disease. But since the real world is continuous while the
digitalized world is discrete, some other approximations have to be applied, to make the
virtual simulation feasible and to deploy a molecular docking algorithm. Today is easy to
access big datasets of compounds (for example PDBBind [6]), which makes possible an
exhaustive test of compounds against a disease. Based on the computer-generated model
used, the computation can be very long and complex. So other approximations can be
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introduced to increase the throughput of these models, and also increase the errors in the
solution. Approximated computing allows us to consider a trade-off between the needed
models’ throughput and the results’ accuracies, required by the application.
These approximations of interest come from the approximated computing research field.
Approximated computing analyzes the impact of approximations techniques on different
applications, based on the application’s sensibility to the results’ errors. Approximate
an application requires gaining deeper knowledge about its working mechanisms, which
is then used to find approximations opportunities. The solution proposed in this thesis
is to analyze a virtual screening pipeline in seek of approximations opportunities, and
then different approximations strategies will be applied to increase the throughput. The
approximations strategies used in this thesis, are used to reduce the input space to make
it finite, and so to make possible the pre-computation of some data, required during the
compounds’ evaluation. The pre-computation has to be carried on once for each protein
under analysis. Then a filtering stage which requires as input the docked poses and the
pre-computed data (used to evaluate the incoming poses), can be used in different ap-
proaches: on one hand, it can be used as a scoring function, on the other hand, it can be
used as a filter between the docking and the scoring stage.
The necessity of increasing the throughput of an extreme scale virtual screening pipeline
is the reason behind the efforts made during the thesis. So the core of the thesis is in the
explanation of our approach to defining a solution, along with an analysis of the solution’s
implementation. The understanding of this thesis’s content requires the introduction of
some base chemistry and computational theory concepts Chapter 2. Once these concepts
are clear a state-of-art analysis is required Chapter 3, to better comprehend the require-
ments of the drug discovery process, and the available approach in the literature. The
proposed methodology to solve the problem is now introduced Chapter 4, since the prob-
lem scope of this thesis will be well defined. And in the last part, this document reviews
the obtained results Chapter 5, with a focus on the advantages someone can gain when
using our proposed methodology. In support of the results, also a real-world use case has
been analyzed Section 5.6. Finally, Chapter 6 concludes the thesis.
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2| Background
This thesis seeks new techniques which can increase the throughput of an application.
The application of most interest in this thesis is drug discovery. Since Approximated
computed applied to the drug discovery process will be the most important topic for the
rest of this document, it is essential the introduction of some keywords and concepts. The
understanding of topics covered in this thesis requires the assimilation of certain concepts,
that range from basic chemistry to more advanced notions of computational complexity.
This chapter will give a better definition of such concepts.

2.1. Ligand, Poses, Receptor
The term Ligand comes from the Latin word ligare (which means to bind), and they can
be anions, cations, or neutral molecules, but they are usually composed of tens of atoms.
Figure 2.1 shows a ligand representation when loaded by PyMol, which is molecular
visualization system [7]. Ligand can change their conformation, as Figure 2.2 shows.
Figure (a) shows a ligand pose, which is a ligand’s conformation in space, with a well-
defined spatial transformation. Figure (b) shows the same ligand with a different pose.
While figure (c) shows two ligands’ poses overlapped. If a ligand is considered as a
rigid body then it will have 6 degrees of freedom (3 for translation and 3 for rotations).
Otherwise, if the ligand is considered to be flexible its degrees of freedom are 6+ r, where
r is the number of rotatable bonds in it. Rotatable bonds, also called rotors, are any non-
ring bonds, bounded to non-terminal heavy atoms. As the name suggests rotatable bonds
can rotate, thus changing the pose conformation. The difference between the same ligand
conformation is usually measured with the RMSD or Roor-Mean-Square Deviation, which
is the average distance between the same atom position in the different conformations.
Their conformation can change in space based on the environment and the different forces
in action. They become of great interest when they are considered in pair with a Receptor.
Ligands can bind with receptors, which are the target of a drug discovery process. Usually,
a disease is identified by the receptor protein, for which the process aims at finding a
ligand that inhibits the protein activity. Receptors are a class of proteins that can bind
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Figure 2.1: A representation of a ligand taken from PyMol.

(a) (b) (c)

Figure 2.2: Different ligands’ poses.
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Figure 2.3: Receptor 00007_1WKM as seen by PyMol.

to ligand molecules. A receptor visualization is reported in Figure 2.3. Some portions of
the receptor’s surface are more suitable for binding with a ligand: these are called binding
sites. Based on where a ligand binds to a receptor, it changes its conformation to form a
stronger bond with the receptor. Since a receptor can have multiple binding sites, in which
a ligand can be found with different conformations, we call each specific conformation a
pose. Receptor binding sites are also referred to as pockets of the receptor. An example of
a ligand docked to a receptor is reported in Figure 2.1. These pairs of ligand-protein are
usually extracted, for analysis, from PDBBind [6]: a collection of experimental binding
between proteins and ligands. For each couple, PDBBind also provides the crystal pose.
The crystal pose is the reference pose of the ligand upon binding with the paired receptor.
The crystal is determined through X-ray Crystallography, as the name suggests.

2.2. Drug Discovery
Drug Discovery is the process of finding new treatments for diseases. The process began
because there is a disease without any suitable medication. Usually, the treatment of a
disease coincides with the inhibition of a protein, which will be the receptor. The outcome
of drug discovery will be a ligand, a small molecule able to inhibit the receptor under study.
This is a long and capital-intensive process, as Figure 2.5 shows. The process starts with
basic research and lead discovery stages, which are important for the identification of
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Figure 2.4: Receptor 00007_1WKM which forms a bond with the ligand in Figure 2.1.

Figure 2.5: Drug discovery stages, taken from [8]. IND stands for Investigation New Drug,
while NDA stands for New Drug Application.
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compounds that can potentially inhibit the activity of the disease. The best candidates
will pass later on to the preclinical and then clinical development. If the drug can pass all
these stages then is marked as a drug. Figure 2.5 also shows how on average the duration
of a drug discovery process is longer than 10 years. Since the drug discovery process is
very important for the pharmaceutical industry has a great interest in the drug discovery
field. Over time different techniques have been used to discover new drugs:

• HTS High-Throughput Screening which automates the process of testing a big
dataset of ligand against a receptor in vitro, accelerating the work done by a human
researcher [8];

• VHTS Virtual High-Throughput Screening, is similar to HTS as the name suggests,
but in this case, computer-generated models are used to evaluate how a ligand bind
with a receptor [8];

• FBDD Fragment-based Lead Discovery, uses smaller organic compounds, which are
then combined to obtain a compound with the desired effect against the receptor [8].

Among them, one of the most promising techniques in the drug discovery process is the
VHTS. VHTS requires computer-generated models, that are constructed starting from
Molecular Docking’s knowledge.

2.3. Virtual Screening
Nowadays, the pharmaceutical industry has collected a big dataset of compounds. Com-
pounds are used to inhibit disease, so testing each compound against each disease is im-
possible. A more feasible option is to use a supercomputer to analyze which compounds
have a relevant effect on a particular disease. The analysis task is very complex also for a
computer: it requires time. The recent pandemic has shown us that a fast development in
treatment against new diseases can help in increasing the quality of the response to such
an event. Virtual Screening is the experimental screening of a large data-set of compounds
against a target receptor, intending to identify the lead compounds. Lead compounds are
the ligands that are most likely to form a stable complex with the receptor. Thus they
require further investigation. The key idea is that we want to automatize the whole pro-
cess as much as possible. Compounds are tested computationally, to reduce compounds
that have to be physically screened in the laboratory by the researcher. Crucial in this
virtual screening pipeline are two stages: Sampling and Scoring, which can be seen in
Figure 2.6. Starting from the ligand and the protein the pipeline uses the sampling stage
to produce output ligands’ conformations upon binding with the receptor. These output
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Figure 2.6: Virtual Screening stages representation taken from [9].

poses are scored. Based on the score a rank of the poses is produced, from which the
leads compounds are extracted. In the literature, not only virtual screening exists, but
different screening techniques can be found:

• High throughput pharmaceutical companies use a large dataset of compounds to
perform an exhaustive search on the whole combination ligand-receptor available [8];

• Focused Screen compounds that have been already found to be active against specific
receptors are used as a starting point to design new drugs along the pipeline [8];

• Fragment Screen small compounds are used as a building block for large molecules
to be tested [8];

• Structural Aided Drug Design the design of new molecules starts from the analysis
of the crystal structure [8];

• Virtual Screening combining the crystal structure along with a known ligand to
build other compounds further on.

The most important stages in a virtual screening pipeline are sampling and scoring. Sam-
pling analyzes the whole search space for all the possible orientations and conformations
of the ligand paired with the receptor. The search space is too big for an exhaustive
search. A value of energy is associated with each new conformation of the ligand inside
the receptor’s binding site. This energy evaluates the stability of the ligand-protein com-
plex. Virtual screening programs use heuristic techniques to find the local minima of the
energy associated with the pose. These techniques range from Monte-Carlo to genetic
algorithms.
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Scoring happens right after Sampling. The selected ligands’ conformations have to be
ranked. From the rank, the lead compounds will be chosen. The poses’ rank is defined
by the score computed with a scoring function. Different types of scoring functions exist
in the literature [10]:

• Force Field computes the score based on the intramolecular interactions among
ligand and receptor, like Van der Waals and electrostatic interactions;

• Empirical different binding factors are taken into consideration. Each of these fac-
tors is associated with a coefficient. They are combined to fit in multiple linear
regression;

• Knowledge Based it solves the problem by using a statistical potential function. It
gains knowledge from a set of protein-ligand from the PDB database.

• Machine Learning the scoring function is inherited from the data.

A visual representation of scoring functions is provided by Figure 2.7. The output of the
docking stage is evaluated by the scoring stage, which will select the favorite complex.
This evaluation is done using a scoring function, which can be of different types. They
are classified based on which factors of atoms’ interactions they consider and the weight
they put on each factor. Usually, scoring functions are additive, which means that they
sum up the considered factors. In some cases, consensus scoring is implemented: multiple
scoring functions are computed and later used in a voting system.
Lead compounds are then used as a hint for in vitro analysis, a later step in the drug
discovery pipeline.

2.4. Molecular Docking
Molecular Docking is used to predict the best pose in which a ligand can be bound to a
receptor to form a stable complex. Molecular Docking can be considered as a lock-and-
key: the lock is the receptor (more precisely the binding site), while the ligand is the key.
It is used to predict the best orientation of the ligand in the binding site of the receptor.
Thus molecular docking plays an important role in the drug discovery process. Different
molecular docking approaches exists [11]:

• Rigid Docking ligand and receptor conformations does not change upon binding [11];

• Flexible Docking the involved molecule are free to change their conformation when
docked [11];

• Semi-flexible Docking ligand and target are allowed to change their structure within
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Figure 2.7: Molecular docking and scoring functions types, taken from [10].
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a certain range [11].

The main difference among them is in how flexible they consider the structure of the
ligand and of the receptor. More flexible the structures are considered to be, the higher
the computation power required to perform molecular docking [11].

2.5. HPC
From Section 2.2 is clear that the drug discovery process is long and costly. So for the
pharmaceutical industry, the cost of using a supercomputer infrastructure that runs a
computer-generated model to restrict the number of compounds which should be passed
to the clinical and preclinical stages of the drug discovery process, is very convenient,
with respect to the whole in vitro drug discovery process. High-Performance Computing
uses computer clusters to solve complex computational tasks. Docking ligands with a
receptor is an embarrassedly parallel task: each ligand can be docked with the receptor
independently from the other ligands. HPC infrastructures are composed of a big number
of nodes. Nodes are equal, usually composed of a CPU, and the best supercomputers in
the world are usually equipped with some accelerators, like multiple GPUs per node [12].
The virtual screening task can thus be decomposed: ligands can be docked against the
receptor at the same moment on different nodes.
Advances in the High-Performance Computing infrastructure increase the computational
power, and thus the throughput of an application executed on them. So for example
Molecular Docking becomes faster to be executed on an HPC infrastructure: in early
times docking was performed using a rigid structure for the ligands, leading to big variance
in the binding site conformations [3], nonetheless, this leads to some successful drug
design example [13]. Even if computation was quite inaccurate, only a small amount of
compounds have been considered, since the computational power limit of that time.
Thanks to the computational progress we have done up to now, nowadays is it possible to
score a large number of ligands against a single target in a reasonable time frame. This
is due to the level of parallelism used [14]: we can decide to parallelize different stages
of the Molecular Docking Pipeline, we can parallelize the analysis of multiple ligand-
protein pairs on different computing units, we can parallelize the evaluation of a single
pair ligand-protein, by divide and conquer on the single atoms. To support and speed
up the development of these architectures, multiple technology stacks exist, like MPI [15]
and CUDA [16].
Great results have been obtained using this approach: for example on the Summit IBM
supercomputer, researchers have been able to perform exhaustive docking of one billion
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ligands in under 24 hours [3].

2.6. Complexity
The quality of an algorithm can be evaluated in terms of memory requirement and compu-
tational complexity. In this document, HPC infrastructure is used to resolve the molecular
docking problem. The complexity of an algorithm is evaluated from a function of its in-
puts f(n). For example one can say that the worst-case complexity of an algorithm is
f(n) = n3. In that case, the time requires by the algorithm to resolve the problem grows
as n3 where n is the size of the input. Computational complexity grows following different
functions of the input, based on the algorithm used. As the complexity grows also the
time required to resolve the problem grows with it. The bottleneck of our application
is the complexity of the algorithm, used to solve the molecular docking problem, rather
than the memory complexity of our application.
Docking a ligand on a receptor, using a semi-flexible docking algorithm, requires a lot
of computation based on the ligand’s atom number and on the receptor’s pocket size.
Because the highest the number of atoms involved during the docking, the highest the
degrees of freedom, which will increase a lot the solution space the virtual screening
simulation has to explore.

2.7. Approximated Computing
Increasing the throughput of a virtual screening task is a difficult task. The computa-
tional complexity of the molecular docking algorithm becomes a factor that cannot be
reduced any longer, after a certain point. Thus other approaches should be considered:
approximate computing is used to trade computational complexity, thus computing time,
with the accuracy of the results, as shown in Figure 2.8 [17]. An example of approxi-
mated computing is loop perforation: some iterations of a loop are skipped, as the name
suggests. Before applying approximate computing to a computation one should analyze
how much the application is error-resilient. Approximated computing can be introduced
at multiple layers of the system stack: architectures, programming models and algorithms
can benefit from approximated computing. Approximated computing has been applied
to a wide range of fields, from machine learning to graphic application. Similarly, ap-
proximated computing can be applied to the molecular docking problem. The following
chapters will show how approximated computing is not able to solve all the problems of
molecular docking algorithms: precise analysis and definitions of metrics in the output
quality should be considered. Metrics help in understanding the level of approximation
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Figure 2.8: Approximated computing trade-off [17].

the application is able to tolerate. Approximated computing can instead take advantage
of some statistical property of the data, in order to reduce the complexity.
The next chapters will consider approximated computing applied to molecular docking
algorithms. This document does not provide a general framework that one can use to
accelerate its application. This document wants to show how the in-depth analysis of
the problem, can lead to a series of optimizations and approximations that increase the
throughput of an application.
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3| State of the Art
This chapter will expose the most related work to this thesis, to provide an overview of the
actual sate-of-art. A molecular docking algorithm is used to predict how a ligand binds
with a receptor. Since the problem to approach is to speed up a virtual screening pipeline,
we investigate how to apply approximated computing to the problem, by introducing a
filtering step between the sampling and the scoring stage of the pipeline Figure 2.6. The
purpose of the filtering stage is to filter out a part of the sampling’s output, to reduce the
input passed to the scoring stage. The sampling and scoring stages implementations are
instead selected from a range of applications already present on the shelf. This chapter
will review more in-depth the sampling and scoring algorithms in the literature, along
with other tentative applications of approximated computing to virtual screening. This
will give a better understanding of the effort driving this work.

3.1. Virtual Screening Pipeline
Compounds screening aims at finding the ligand with the highest interaction with the
target protein. Among the various screening strategies of Listing 2.3 in this thesis, the fo-
cus is on high throughput virtual screening techniques. Figure 3.1 shows how the pipeline
works. Starting from the pipeline inputs, we need the ligand structure and the receptor
structure. A docking algorithm parses their structure, and by using a molecular docking

Docking Scoring

Ligand

Protein

Ligand
Poses

Ligand Poses
Rank 

Input Pipeline Output

Figure 3.1: A virtual screening Pipeline representation.
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algorithm, can return a set of ligand’s poses inside the receptor’s pockets. At this point,
the scoring function ranks these ligand’s conformations and extracts the lead compound
conformations, that will be forwarded to later stages of the pipeline.
The virtual screening pipeline’s success relies on the goodness of the scoring function.
The higher the capacity of the scoring function of evaluating the binding affinity based
on the displacement found from the docking stage. And it also depends on the sampling
algorithm’s capacity into estimating the 3D displacement of atoms upon interactions.
Combining the two, we get that the higher the bond strength between a ligand’s confor-
mation and the receptor, the more likely the lead compounds will get good results in in
vitro studies.

3.1.1. Docking algorithms

The previous chapter already mentioned different types of docking algorithms Listing 2.4.
The process of docking a ligand onto a receptor can be approached in different ways: a
way to take into analysis all the interactions between receptor and ligand, starting from
an infinite distance among them, you move them closer and closer and simulate the full
and real process of docking. This process is too computationally heavy to be carried
out on a big dataset of ligands. The other way we consider is to immediately dock the
ligand onto the receptor and evaluate the goodness of this docking. A classification of
these algorithms is based on the degrees of freedom associated with receptor and ligand
structures [18].

Rigid Body Docking Rigid body docking considers both ligand and receptor as a rigid
structure, so only translations and rotations of the ligand are considered upon docking
evaluation [18]. Rigid body algorithms utilize Fast Fourier Transform for energy eval-
uation [19]. Energy functions consider a small number of effects, like electrostatic and
desolvation effects. The receptor’s and ligand’s structures are considered to be rigid.
Examples of them are FRODOCK [20] and ZDOCK [21].

Semi-flexible Body Docking In Semi-flexible docking algorithms, the ligand is con-
sidered to be flexible in conformation, while the receptor is viewed as a rigid structure [18].
An example of semi-flexible body docking is LiGen [22].

Flexible Body Docking Orientation of the ligand inside the binding site alters the
receptor structure. Thus considering either the ligand or the receptor as a rigid structure
is no longer sufficient. This document focuses its attention on flexible docking algorithms
since they are more accurate, but also more computationally expensive. Also in the
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literature more examples of flexible docking algorithms can be found, each implementing
different strategies. There exists Dock [23], Autodock [24], and many more [18].
Among them, we have modified the LiGen pipeline, by adding our filtering stage to it.
LiGen has been our choice from the beginning of our work, also because it has gained
attention after its usage in the Exscalate4Cov project [2]. E4C aims at using the EU’s
computing resources, to respond much faster to international pandemics. At the core of
the project is EXSCALATE. EXSCALATE leverages a "chemical library" of 500 billion
molecules, thanks to a processing capacity of more than 3 million molecules per second.
Advanced CADD, in combination with the high throughput biochemical and phenotypic
screening, will allow the rapid evaluation of the simulation results and the reduction of
time for the discovery of new drugs.

3.1.2. Scoring algorithms

Docking algorithms produce as output a set of ligand poses. This set of poses can be
very large based on the configuration of the docking simulation. The definition of the
lead compounds requires the identification of the best-obtained pose. Poses have then
to be evaluated, and ranked based on the evaluation. The evaluation given to the poses
is called scoring, and the virtual screening component designed to do so is the scoring
function. Scoring functions score ligand’s conformations upon binding to the receptor
based on different factors. The higher the score, the stronger the bond between the ligand-
receptor pair will be, according to the used scoring function. Different scoring functions
implementations exist, based on how they estimate the strength of interactions [25]:

• Force Field Scoring Functions (also referred to in the literature as physics-based
[26]) considers physical interactions between atoms, including van der Waals effects,
electrostatic interactions, and bond stretching between ligand and receptor. DOCK
and Autodock scoring functions are an example of force field scoring functions. They
are good at predicting the binding energy between ligand and receptor, but they
are computationally expensive;

• Knowledge-based Scoring Functions use statistical-potential energy functions, de-
rived from experimentally analyzed ligand-receptor binding. DrugScore [27] is an
example of knowledge-based scoring functions. These kinds of scoring functions try
to find a good balance between accuracy and speed. Fits of the energy equation are
done using atoms structures, rather than reproducing atom affinities;

• Machine-Learning-Based Scoring Functions machine learning algorithms are used to
evaluate a ligand’s conformation upon docking, as the name suggests. The obtained
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results rely heavily on the training dataset. Machine learning scoring functions are
not usually embedded inside scoring algorithms, instead, they are used for rescoring.
Rescoring is used to confirm the results obtained with other scoring functions [10];

• Empirical Scoring Functions evaluate the binding affinity among ligand and recep-
tor based on a set of weighted energy terms. These energy terms usually include
van der Waals effects, hydrogen bond, rotatable bond, and hydrophobic effects.
ChemScore [28], SCORE [29], and XSCORE [30] are examples of empirical scoring
functions. Score computation is done with individual and intuitive additive terms,
which yields a simpler calculation, and then a lower computational complexity com-
pared with force field scoring functions, and they are good at predicting binding
affinity [10].

Since our objective is to increase the throughput of a virtual screening scenario, empirical
scoring functions are the ones we have taken into consideration. They are fast and produce
a relatively good prediction of the binding affinities. In particular, XSCORE is the scoring
function we have chosen for our application:

• LiGen scoring is inspired by XSCORE. So it is more useful for our case study, to
have a pre-filter based on XSCORE, rather than with other scoring functions;

• XSCORE is open source, so the source code is easily accessible;

• XSCORE makes use of consensus scoring, the score associated with a pose is com-
puted by interpolating multiple scores obtained by different scoring functions.

XSCORE
XSCORE is an empirical scoring function. XSCORE assumes that the binding score can
be decomposed into basic components [30]:

∆GBind = ∆GMotion +∆GInteraction +∆GDesolvation +∆GConfiguration (3.1)

Such terms are combined altogether, and their combination is calibrated starting from a
training set of protein-ligand pairs, in a multivariate regression analysis.
XSCORE makes use of consensus scoring[31]: in this way it can ensure convergence results
in the prediction, by having a final score that resembles the contribution of more factors.
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The three functions used in consensus scoring are the following:

HMSCORE = Cvdw,HM · V DW + CHB,HM ·HB + CHM ·HM + CRT,HM ·RT +BHM

(3.2a)
HPSCORE = Cvdw,HP · V DW + CHB,HP ·HB + CHP ·HP + CRT,HP ·RT +BHP

(3.2b)
HSSCORE = Cvdw,HS · V DW + CHB,HS ·HB + CHS ·HS + CRT,HS ·RT +BHS

(3.2c)
VDW is the contribution to the score associated with Van der Walls Interactions, HB
instead refers to the Hydrogen Bonding Interactions, RT accounts for the rotatable bond
effect. HMSCORE, HPSCORE, and HSSCORE differ due to the regression coefficients,
and on the different effects they consider:

HM is the Hydrogen Matching contribution to the score. It was also adopted by SCORE [29]
scoring function;

HP is the Hydrogen Contact Algorithm contribution to the score. It is inherited from
the Chem-Score [28] scoring function;

HS is the Hydrophobic Surface contribution to the score.

Each term is associated with a Regression coefficient Cx,y, which is the regression coeffi-
cient associated with the X factor (HB, VDW, HM,etc.) inside the Y function (HSSCORE,
HMSCORE, HPSCORE), plus the regression constant BY , one for each function. Finally
all these ingredients are mixed altogether with a linear interpolation:

XSCORE =
(HMSCORE +HPSCORE +HSSCORE)

3
(3.3)

This last computation introduces consensus scoring.

Autodock
From the Autodock algorithm [24] we have considered a specific component of its scoring
function. Both XSCORE and Autodock’s scoring function account for the hydrogen bond
effect on the bond strength:

Autodock′sScore = V DW +HB + ELECT + CONFORM + TOR + SOL (3.4)

Each term captures the contribution to the final scoring of Van der Walls Interactions,
hydrogen bonding interactions, electrostatics effects, conformation effects caused by devi-
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ations from covalent geometry, torsion effects due to the rotation, and desolvation effects
upon binding. Later on in the thesis, at Section 4.1.3 a closer look at the computation of
the HB component is done [32].

3.2. Approximated Computing
Approximate computing increases the efficiency of the machine and technology already
utilized, by exploiting the performance-quality trade-off. Approximate computing is a
computing technique that relies on the capabilities of the application to be tolerant of the
loss of accuracy in the results [33]. It can be applied to different fields, from multimedia
processing to machine learning, to scientific fields. In the scientific field, approximations
are largely applied. In fact, to capture the complexity of the real world (for example
when analyzing the forces between atoms), we only consider the most important factors,
to maintain the computation feasibly and fast. In these fields, a single solution to a
problem may not exists, but approximated solutions are acceptable as an answer to the
problem.
No universally known approximated computing technique exists that well suits all appli-
cations [34]. As such when approaching a new application to approximate, we should rely
on a deep understanding of the problem, the algorithm, and finally the code. An example
of a high-level framework that can be used to implement a self-aware approximated com-
puting application is mARGOt [35]. mARGOt introduces an adaptation layer to provide
self-optimization capabilities. In the following of this thesis, the focus is instead on how
domain-expert knowledge can be used to make approximations and increase the through-
put of an application.q
The initial step to do when applying approximated computing to an application consists
in identifying variables and operations that can be approximated. In this way, we can
gain more insights into the problem characteristics. The next step consists in deciding
which approximation strategy applies to these variables/operations. In the following we
make some examples [34]:

• Precision Scaling which reduces the precision of the input to minimize memory and
computation requirements [34];

• Loop Perforation consists in skipping some iterations of a loop [34];

• Skipping Tasks and Memory Accesses in this case the application selectively skips
some tasks or memory access [34];

• Voltage Scaling to reduce the energy consumption of memory, increasing in the
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Figure 3.2: Continuous point inside the cube are represented by a single point among
them, usually the center of the cube

meanwhile the probability of a bit flip during a read operation [34];

• Neural Network accelerator is used to emulate a code region, which can be approx-
imated [34];

• Memoization approach works by saving the output of functions, that will be later
reused when the same function is called on a similar input [34].

In this thesis, precision scaling and memoization are applied to the molecular docking
pipeline. Precision scaling reduces the size of the inputs space. Now that the input space
is finite, we can apply memoization, and so a pre-computation task can be carried out for
all the possible inputs, and the results saved into memory. All the burden of calculus is
moved away from the runtime application, to the pre-computation step. A similar idea
has been proposed by qLUT [36]. qLUT suggests a general design paradigm, that in our
case will be concretized for molecular docking. Quantizing the input introduces some
approximations since now a set of input points are represented by a single one of them.
Tuning approximation parameters, like grid spacing, is a critical point of approximated
computing.

AutoGrid
Something similar to our approach is AutoGrid. Autodock, before running, requires the
application’s input to be analyzed by AutoGrid [37]. AutoGrid requires as input the target
of our screening. From the receptor target of the analysis, AutoGrid builds a structure of
pre-computed data. Summing up, AutoGrid uses precision scaling and memoization for
the Autodock scoring function. Figure 3.3 shows how the pre-computed data are obtained
from the 3D representation in space of the target receptor. The receptor’s bounding box
is gridified into points evenly distanced,. For each point Autogrid analyzes which is the
impact on the final score if a ligand’s pose has an atom in that position of a certain atomic
type.
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Figure 3.3: AutoGrid architecture [37].

Autogrid is taken as inspiration for the proposed methodology refined in this thesis.
Because Autogrid’s implementation is suitable to be used accordingly with Autodock,
cannot be extended to other virtual screening pipelines or other scoring functions. This
is different from the aims of this thesis, which wants to propose a methodology that can
be used to apply approximated programming to different virtual screening pipelines. In
Section 4.1 and Section 5.6.2 we will see how the proposed methodology of this thesis can
be fitted on XSCORE and on the LiGen virtual screening pipeline.

3.3. HPC Infrastructure
High-performance computing (HPC) centers provide supercomputer that aims at maxi-
mizing the computation throughput. Supercomputers are usually organized as a cluster
of nodes. To take full advantage of this infrastructure one should utilize all the nodes
available. Today’s top supercomputer [12] nodes are shipped with accelerators, which are
usually GPUs. Full usage of a supercomputer can be obtained by working at different
levels when implementing an application:

• At a design level, such that data and code are already targeting multiple nodes of
the architecture. In this case, all the architecture characteristics can be utilized,
but the code portability is reduced;
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• At a programming level, by inserting a special directive inside the code, which will
be later on be expanded by the compiler, when compiling for a specific architecture.
In this way, the code portability is increased.

This work will make use of the second approach. We need to define which are the tech-
nologies stack we will use to balance the work among nodes.

3.3.1. Node Communication

The communication among nodes in a supercomputer is usually implemented by using
Message Passage Interface [38], MPI is a standardization of a communication protocol
architecture for parallel computing architecture. Since it is the de facto standard in
HPC infrastructure. MPI is used to coordinate and synchronize the work of independent
nodes with no concept of shared memory. It best suits our application since we want to
develop it for an HPC infrastructure, with a very large number of nodes and we need to
synchronize and balance the work among them. MPI adoption allows our solution to be
highly scalable. The chosen MPI implementation is OpenMPI [39] since it is open-source,
targets the GCC compiler, and is largely adopted. However other implementations of
MPI exist, such as MPICH [40]. This thesis will adopt the usage of OpenMPI since we
are more familiar with its usage.

3.3.2. Accelerator management

Since most of the top supercomputers nowadays utilize GPUs [12] we are interested in how
we can take advantage of them to speed up our computation. At a programming level, we
can use a different technological stack, like OpenACC, OpenGL, or CUDA. The choice
among them is usually based on the vendor of the accelerator present on the targeting
infrastructure.

OpenACC Open ACCelerators is a standardization of a parallel programming model
targeting CPU/GPU architectures. It is integrated into a C/C++ application by using
compile directives and code annotations. It works with Nvidia, AMD, and Intel acceler-
ators.

OpenCL Open Computing Level is a framework for writing parallel workflow, which
works on heterogeneous architectures, with CPUs, GPUs, DSPs, FPGAs, and other ac-
celerators. It specifies a set of APIs that can be integrated into different applications,
and also OpenCL specifies programming languages. It targets a large set of accelerators
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vendor: Intel, Xilinx, Nvidia, IBM, AMD, Qualcomm, and others.

CUDA Compute Unified Device Architecture is a parallel programming paradigm,
which defines a set of APIs, that allow easy-to-use access to computational power ex-
posed by Nvidia’s GPUs. Our reference HPC infrastructure uses Nvidia’s GPUs on each
node, so the adoption of CUDA stack technology is mandatory.

SYCL Is a programming model, for programming hardware accelerators. Is a cross-
platform abstraction layer, which gives the possibility of writing a single standard C++
code, which can target heterogeneous architectures. Since it works at a higher level, it
does not requires the usage of any specific compiler: no C++ extensions are needed,
making debugging easier. Among all these stack technologies, this thesis has adopted
the usage of CUDA. Because the reference supercomputers infrastructure we have in
mind utilizes Nvidia’s GPUs as accelerators for each core. This choice is also confirmed
by the real world’s most adopted accelerator in supercomputers: the November 2021
top 10 supercomputers, which included 9/10 supercomputer architecture with an Nvidia
accelerator per node. Thus the usage of CUDA is mandatory
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This chapter explains the problem this thesis tries to target, and how we have used ap-
proximated computing to solve it. In particular, the proposed methodology used consists
of a deep analysis of the application we are studying: the virtual screening pipeline. The
analysis is required to identify approximations opportunities. Once the approximations
opportunities have been located, it’s time to understand which approximations strategies
should be applied to them.
The structure of this chapter is organized into four sections. The first Section 4.1 il-
lustrates the problem we are facing. Once the problem is well defined, Section 4.1 also
defines the requirements for the tool resolving the problem, considering it as a black box.
The application under analysis in this thesis is a virtual screening pipeline, so the next
step is presented in Section 4.2, which analyzes how we have specifically fitted our tool to
the virtual screening scenario. Finally, Section 4.2 introduces the architectural structure
of the tool implementation, and how it has been adapted to XSCORE.

4.1. The Pose Filter
The problem we are facing in this thesis consists in accelerating the drug discovery process.
Since the in vitro analysis of ligand and receptor requires time and money, it is common to
use a computer-generated model to get a hint on which are the most promising inhibitors
(ligand) of a given receptor. These molecules will be passed to later stages of the pipeline,
for example for a more detailed in vitro analysis of the inhibitor. Inhibitor identification
can be carried out using molecular docking in a virtual screening pipeline. Molecular
docking algorithms generate ligand conformations that bind to the receptor, and then
scoring functions are used to identify the most promising poses. Our goal is to increase as
much as possible the throughput of a virtual screening pipeline. We anticipate some work
done in the drug discovery process: instead of starting directly with in vitro testing, we
start with a virtual screening pipeline to get the most promising compounds for further
testing. The computation is done in silicon, in this way since we are using a computer-
generated model the number of input poses is almost infinite. The limit on the number of
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Figure 4.1: Filter block usage.

poses that can be scanned in a reasonable amount of time is not in the human and chemical
resources available but the throughput of the application. Since the thesis’ objective is
to increase the throughput this means increasing the number of molecules analyzed, thus
increasing the chance of finding better lead compounds. The results are then used as a
hint for later stages of the pipeline, and they will be further verified by domain experts.
The solution we propose is to use approximated computing on the scoring function, to
speed up the computation.
The solution to the problem I propose in this thesis is the usage of a Filter. The Filter is
a computational block, which is used to filter out the poses which are not likely to have
a good binding affinity with the target of the analysis: the receptor. This can also be
rephrased considering that an ideal scoring function should give a lower score to the poses
with a low binding affinity with the receptor, so the Filter has to filter our poses that are
likely to get a low score. This means that the Filter has to mimic the functionality of a
scoring function. The Figure 4.1 shows the inputs and outputs of our block: as input,
it requires the receptor under analysis in the virtual screening pipeline and the poses of
the ligands produced by the previous docking step. As output, the Filter produces the
best poses among the ones received as input. The computation done inside of the filter
emulates the computation done by the targeted scoring functions. The filter approximates
the scoring function. The filter can then be applied in two different scenarios. On one
hand, it can be used as a replacement for a scoring function. On the other hand, it can
be used as a filtering stage before the scoring stage of the pipeline. It can be helpful
because it trade-offs computational complexity with accuracy on the final score. Or the
Filter can be used as a filtering stage before the scoring function. In both scenarios, the
remaining poses are passed to the real scoring function. The Filter has been developed
by applying approximated computing technique to the virtual screening pipeline, using a
two steps-process:
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Figure 4.2: Input discretization process.

• the first step consists in the identification of the variables and operations which
can be approximated. We can gain this knowledge by disassembling the application
(XSCORE);

• the second step uses the approximation opportunities identified by the first step,
and it decides which approximations strategies best target the approximation op-
portunities identified. This thesis makes use of precision scaling to quantize the
input space, and memoization as shown in Figure 4.2

These two steps are better described in the next sections.

4.1.1. Approximations Identification

We will now disassemble how XSCORE computes each factor. This is the first step to
gaining the required knowledge to identify the approximations opportunities present in
the XSCORE implementation.

Van Der Walls Interactions (VDW)
As stated in the XSCORE paper [30] the VDW factor accounts for interactions between
molecules that depend on distance. In particular, for each protein-ligand pair, we compute
the VDW factor accordingly to the following equation:

V DW =

ligand∑
i

protein∑
j

V DWij =

ligand∑
i

protein∑
j

[(
dij,0
dij

)8

− 2×
(
dij,0
dij

)4
]

(4.1)

Were dij,0 = ri + rj is the sum of the atom’s radius, while dij is the distance between the
two atoms. XSCORE implements this component with this Algorithm 4.1. This sketch of
the algorithm shows how VDW factor computation is dependent form the atoms’ radiuses
and coordinates.
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Algorithm 4.1 VDW interactions computation
1: for atoms in ligand that are valid and not hydrogen do
2: for atoms in protein that are valid and not hydrogen do
3: d0 = sum atoms radius
4: d = distance between atoms
5: if distance<cutoff then
6: sum += Lennard-Jones 8-4 potential
7: end if
8: end for
9: end for

Hydrogen Bonding Interactions (HB)
HB factor accounts for the interaction that happens when two atoms get close enough
and form a donor-acceptor pair [30]. As with VDW, also HB is computed pairwise for
each ligand-protein atom couple:

HB =

ligand∑
i

protein∑
j

HBij (4.2)

Hydrogen Bonding Interactions are computed starting from the idea that a hydrogen
bond has an ideal geometry, and any deviation from its makes weakens the strength of
the interaction. So for each ligand-protein pair, the contribution to HB factor is computed
as:

HBij = f (dij) f (θ1,ij) f (θ2,ij) (4.3)

Where each term is computed as:

f (d) =


1.0 d ≤ d0 − 0.7Å

(1/0.7)× (d0 − d) d0 − 0.7Å < d ≤ d0

0.0 dd > d0

(4.4a)

f (θ1) =


1.0 θ1 > 120

(1/60)× (θ1− 60) 120 > θ1 ≥ 60

0.0 θ1 < 60

(4.4b)

f (θ2) =


1.0 θ2 > 120

(1/60)× (θ2− 60) 120 > θ2 ≥ 60

0.0 θ2 < 60

(4.4c)
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Also in this case d0 = ri+rj while d is the distance between the two atoms. Algorithm 4.2

Algorithm 4.2 Hydrogen bonding interactions computation.
1: for atoms in ligand that are valid do
2: for atoms in protein that are valid do
3: check which one is the donor and which one is the acceptor
4: if cannot make hydrogen bond then
5: skip this pair
6: end if
7: compute the distance between atoms
8: if distance<cutoff then
9: skip this pair

10: end if
11: score this hydrogen bond
12: add this hydrogen bond to the candidates list
13: end for
14: end for
15: for each candidate do
16: for each candidate do
17: check that the angular limit between two hydrogen bonds on the same atom is

greater than 45◦

18: check that an acceptor atom cannot accept more hydrogen atoms than the number
of lone pairs

19: check that a donor atom cannot form more hydrogen bonds than the number of
hydrogen atoms it has

20: end for
21: end for

wraps up the implementation of the HB stepwise functions. By valid atoms, we consider
ligands or protein atoms that are non-hydrogen, nitrogen, phosphor.
Moreover, HB computation requires atoms’ radiuses and coordinates. We would like to
stress out that HB computation depends also on the atom’s root, defined as [30]:

The root of an atom is its non-hydrogen neighboring atom. When an
atom bonds with more than one non-hydrogen atom, its root locates at the
geometric center of all its non-hydrogen neighboring atoms.

Hydrophobic Terms
XSCORE makes use of consensus scoring as detailed in this section 3.2. HPSCORE and
HMSCORE account both for the hydrophobic effect. But the computation of the factor
is done with two different approaches: Hydrophobic Contact and Hydrophobic Matching.
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Hydrophobic Contact (HP) This algorithm was adopted by Chem-Score[28]. its
value is computed by summing up the hydrophobic atom pairs between the ligand and
the protein [30]:

HC =

ligand∑
i

protein∑
j

f (dij) (4.5)

With f (dij) defined as:

f (d) =


1.0 d ≤ d0 + 0.5Å

(1/1.5)× (d0 + 2.0− d) d0 + 0.5Å < d ≤ d0 + 2.0Å

0.0 d > d0 + 2.0Å

(4.6)

Similarly to the previous factors of the computation, d0, d are defined respectively as the
sum of the radius, and as the distance between atoms. The score associated to a pair
of atoms will have max value when the two hydrophobic atoms have a van der Wall
interaction, and diminish as the distance increases. Algorithm 4.3 shows how the HP

Algorithm 4.3 Hydrogen Contact computation
1: for atoms in ligand that are valid do
2: for atoms in protein that are valid do
3: d = distance between atom i and j
4: if d>cutoff then
5: skip this pair
6: end if
7: sum this contribution to atom’s i total
8: end for
9: add total atom’s i contribution to the score

10: end for

factor is computed in XSCORE. With valid atoms we refers to non-hydrogen atoms.
Also in this case the Algorithm 4.3 shows data dependencies on atoms’ radiuses and
coordinates. To be noted that Line 7 compute the contribution of this pair in the same
way as done by hydrophobic matching algorithm, at Line 7.

Hydrophobic Matching (HM) HM factor evaluations is done considering that differ-
ent parts of the ligand sense the protein differently because of the heterogeneous nature
of the binding site. If a hydrophobic ligand atom is placed at a hydrophobic site of the
protein, then it is expected to be favorable to the binding process [30]. The computation
of the HM component is taken from an algorithm used in SCORE [29]. HM values for a
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pose is computed as in the following:

HM =

ligand∑
i

logPi ×HMi (4.7)

With HMi is an indicator variable:

HMi =

1 if hydrophobic atom in an hydrophobic environment

0 if otherwise
(4.8)

logPi is the contribution of atom i to the n-octanol/water partition coefficient of the
molecule. This scale factor depends on the atom’s type, defined as its atomic type, so
they can be computed once and then saved [41]. logPi is used as a weight factor, such
that hydrophobic atoms contribute more to the hydrophobic effect.
This factor takes into account that the ligand reacts differently when docked into a differ-
ent part of the docking site, due to differences that can be in the docking site nature: in
fact, a hydrophobic ligand’s atom is favored in a hydrophobic protein’s site. HM, factor

Algorithm 4.4 Hydrogen Matching computation
1: for atoms in ligand that are valid do
2: for atoms in protein that are valid do
3: d = distance between atom i and j
4: if d>cutoff then
5: skip this pair
6: end if
7: sum this contribution to atom’s i total
8: end for
9: if logPi ≥ 0.5 ∨ totali > −0.5 then

10: score = logPi

11: else
12: score = 0.0
13: end if
14: end for

si computed in XSCORE with Algorithm 4.4. Valid atoms refer to ligands and protein
atoms that are not Hydrogen, and only ligand’s atoms that have an logPi that is greater
than 0. HM is another factor for which the computation is dependent on the atoms’
radiuses and coordinates. Is to be noted that Line 7 computes the contribution of this
pair in the same way as done by the Hydrophobic Contact algorithm, at Line 7.
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Hydrophobic Surface (HS)
HS factor is assumed to be proportional to the buried hydrophobic surface of the lig-
and [30]. This is the most computationally intensive part done during XSCORE com-
putation. Before actually computing this factor value, XSCORE requires the definition
of the solvent-accessible surface, which is represented by evenly distributed point spacing
0.5 Å on the ligand surface. It is computed using a probe atom with a radius of 1.5 Å,
which is considered to be buried if it penetrates the SAS (solvent-accessible surface is the
area of a molecule accessible by a solvent) of the protein:

HS =

ligand∑
i

SASi (4.9)

So for each ligand, we are analyzing we should compute the SAS with Algorithm 4.5.

Algorithm 4.5 Surface Dots generation algorithm
1: for ligand atom that is valid do
2: create a sphere centered in this atom with a radius sum of the atom’s radius and

the probe’s radius
3: generate a candidate list of evenly distributed point on the previous sphere
4: for each candidate in the list do
5: if is on the ligand surface then
6: add the point to the surface’s point list
7: associated with its unit
8: end if
9: end for

10: end for

The point Unit is the portion of the surface represented by this point after discretizing
the surface. In this case is defined as sphere’s surface

points on the surface . Valid atoms are non-hydrogen
atoms. In this algorithm, the surface is quantized into a finite number of points. Each
point represents an area on the sphere’s surface. The check if a candidate point is on the
ligand’s surface is carried out by comparing its distance with each other ligand’s atom
position k: if this such a distance is 10% more than any other sum of atom’s k radius and
the probe atom’s radius, it is considered to be on the surface.

Once we have obtained the points that are both on the protein’s and ligand’s surface
we can proceed with Algorithm 4.6 computation. Valid ligands’ atoms are the ones that
are non-hydrogen, phosphor, nitrogen, and the ones that are acceptors. Protein atoms
are valid if they are not hydrogen atoms. Wrapping up each ligand’s atom the algorithm
checks the protein atoms for which is not possible to put two water molecules between
them. Then it checks which of the surface point generated by the ligand’s atom i have a
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Algorithm 4.6 Hydrophobic Surface factor computation
1: for ligand atom i that is valid do
2: for ligand surface point p generated by atom i do
3: for protein atom that is valid do
4: d = distance between point p and protein atom j
5: if d < rj +WATER_R then
6: sum up the point Unit of point p to atom i
7: end if
8: end for
9: end for

10: atom score is the ration between the atom buried surface and the total surface of
the ligand

11: end for

distance that is less than a water probe from the protein atoms. The unit is associated
with this point will contribute to the ratio, and then to the final impact on the score.
The combination of the two algorithm highlight how also HS computation requires atoms’
radiuses and coordinates. The problem is that HS computation also requires the definition
of the ligand’s SAS which cannot be pre-computed. This is a similar problem we have
encountered for HB computation, and which is better analyzed in section 4.1.3.
Is worth noticing that this algorithm has been first used in Bohm’s scoring function [42].

Deformation Effect (RT)
Upon binding, ligand and protein are constrained in conformation due to atom interac-
tions, with respect to their solvent state. The deformation effect of the ligand is then
expressed as the contribution of all the rotors with proper weight. This introduces a
negative factor to the scoring value since it reduces the interaction strength. Rotatable
bonds are important to understanding molecular flexibility [43]. RT is computed as:
RT =

∑ligand
i RTi Where RTi is a step function:

RTi =



0.0 if atom i not involved in any rotor

0.5 if atom i is involved in one rotor

1.0 if atom i is involved in two rotors

0.5 if atom i is involved in more than two rotors

(4.10)

RT value is computed with Algorithm 4.7. RT algorithm shows dependencies on the
ligand structure, as for HB and HS its pre-computation is not straightforward. This
problem is further analyzed in section 4.1.3.
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Algorithm 4.7 Deformation Effect computation
1: for ligand bonds that are valid do
2: mark non valid bond, line ring bonds, non-single bonds, terminal rotors
3: end for
4: for ligand atoms that are valid do
5: count the number of bond not marked in which it is found
6: compute the score of the atom based on the step function previously defined
7: end for

Apparent Charge
XSCORE assigns an apparent charge to each atom of the pose. This is done before each
pose is scored. The apparent charges value depends on the atom type: these values are
loaded from pre-computed values.

4.1.2. Approximation Strategies

Now that we have gained domain knowledge, we can apply approximations to the ap-
plication. In particular, we will apply memoization and precision scaling to XSCORE.
Memoization has been implemented by making extensive use of fast lookup tables.XS-
CORE has as input ligand atoms, and each XSCORE factor depends in general on three
properties of the atoms:

• atoms radiuses;

• atoms types;

• atoms coordinates.

Coordinates and radiuses are real numbers, so an infinite combination of them exists.
Precision scaling is applied at this point since the pre-computation needs to discretize the
inputs, as in Figure 4.2. In this way, we obtain a finite number of input combinations. Up
to now, the Filter has been considered as a black box, we now enter inside of it to analyze
its component. Figure 4.7 shows how the Filer block emulates the scoring function. The
inputs are the receptor structure and the ligand’s poses. Internally the Filter works in
two steps:

• a Pre-computation step uses the receptor structure for the memoization and preci-
sion scaling part. It has to be done once for each receptor. Precomputed data are
passed on to the next step;

• Filtering step with the approximated version of the scoring function. The approxi-
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mated scoring function will score ligands’ poses based on the precomputed data of
the previous step.

The output of the Filter will be a ranking of the input poses.

4.1.3. How to Approximate XSCORE

The following part of the thesis defines how the previously described techniques and the
knowledge of XSCORE, can be merged to approximate XSCORE computation. For each
component of the XSCORE function, we will analyze how it can fit in our Filter block,
and in particular how we can anticipate its computation in the pre-computation stage.

Apparent Charge
Before each pose is scored, XSCORE re-assigns the apparent charges. In the end, XS-
CORE assigns a charge of 0.0 to all atoms except for atoms of type: 0.co2, N.4, and
N.pl3.h. We can then approximate it to assign directly 0.0 to all atoms.

VDW, HM, HP
Van der Waals interactions, hydrophobic matching, and hydrophobic contact function
computations show dependencies with ligands’ atoms coordinates and radiuses. So it is
possible to pre-compute grids associated with these functions, by using an atom probe
that changes its radius for each point of the grid (as detailed in 5.1.2).

HB
HB factor computation in XSCORE shows dependencies with: the atom’s coordinates,
atom’s radius, and type, and also with the atom’s root. Atom’s root computation requires
knowing the atoms near him, that are in the same compound pose (ligand or receptor).
At the pre-computation time, this is impossible for ligand’s pose atoms. This is a problem
since the HB factor appeared in all the three functions used by XSCORE in the voting
system (HSSCORE, HMSCORE, HPSCORE). From the analysis in figure 4.3, we’ve found
out that HB values account on average for 2% of the final score value. Since the HB factor
contributing to the final score cannot be pre-computed using the XSCORE HB algorithm,
we have made three attempts in approximating HB:

• Full HB: in this case, HB computation remains unchanged, the approximation on
the HB factor is 0;

• No HB: in contrast with the previous approach HB value are set by default to 0;
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Figure 4.3: How much the value of HB assigned to each pose contribute to the final score
in XSCORE.

• HB Approximation: since XSCORE HB algorithm cannot be precomputed due to
the atom’s root dependency. This dependency has an impact on the first in the HB
equation 4.1.1. Since the three-term in equation 4.1.1 ranges from 0 to 1, we can try
to approximate the equation by setting the term dependent on the angle between
the hydrogen bond and the root of the atom always to 1:

HBi = f (d) f (θ2) (4.11)

The HB algorithm in XSCORE has also other data dependencies: on the atom probe
capacity of accepting or donating electrons (Donor, Acceptor, Donor-Acceptor), and
on the atom probe radius. So for each grid point, we should store a different value
for each combination of atom probe type and radius;

• Autodock HB: HB values are instead pre-computed using the HB algorithm of
Autodock, which can be pre-computed. Autodock HB computation algorithm is
described in paper [32]: ∆GAutoDock4 =

∑
i,j E (t)E (θ)

(
Cij

r12ij
− Dij

r10ij

)
Where E (t) is

a function of the angle of the probe atom away from the ideal position for hydrogen
bonding. While E (θ) is a ramp function that favors hydrogen bonding interactions
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that occur with the trigonal or tetrahedral geometry of the lone pairs. In our case,
we have found AutoGrid very useful for our purposes. AutoGrid is a tool used by
Autodock for pre-computing required data structures that will speed up computa-
tion. These data structures also include the HB values pre computation for each
point of the grid. The HB pre-computation algorithm used in AutoGrid has data
dependencies on the atom type. The outputs of AutoGrid HB computation will be
a set of files. Each file will contain the grid with the HB value in space of an atom
probe, with atom type associated with the file name.

Above all these approaches we have chosen our final version for the thesis the version
with Autodock HB. Due to the good approximation, we have obtained when using this
version, as we will demonstrate in chapter 5.
The implementation details for HB computation using the Autodock algorithm are de-
scribed in section 4.2.2.

RT,HS
RT computation is set by default to 0 since it is a property of the ligand which is inde-
pendent of its pose. RT value is then the same for each pose, and thus its impact on the
final value of the score will be the same for each pose.

HS instead cannot be pre-computed, its computation depends on the input ligand be-
cause the computation of the Solvent Accessible Surface (SAS) is needed. Since XSCORE
is a consensus scoring function, the HS factor is less important because it is used only
in the HSSCORE function, one of the three functions used for voting. In our XSCORE
Filter version, we have disabled HS computation, due to the complexity of computing the
SAS. Also from figure 4.4 we know that its impact on the score is quite small, only 4%. It
is also less important as a factor because the HS factor compares only to the HSSCORE
function, which is only one of the three functions for voting. This is different from another
factor like HB, which is instead used in all three voting functions.

4.1.4. Filter Implementation

We now introduce how we have implemented the approximations proposed in Section 4.1.2,
by splitting the Filter into two blocks: the Pre-computation and Filtering stages.

Pre-computation Stage
The pre-computation stage is required once for each receptor of a virtual screening analy-
sis. The fast lookup tables previously mentioned, have to be calculated in advance before
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Figure 4.4: XSCORE HS values impact on the final score.

the real computation starts. At run time, they can be accessed in constant time, re-
moving a lot of overhead. All the returned values, obtained from a function call with
as input all the available input space, will be stored in these tables. Pre-computing all
functions results requires exploring the whole input space. For each component (HB,
VDW, etc.) these tables are organized as a grid, which should be pre-computed. Each
XSCORE component computation depends on different factors (atoms radiuses, types,
coordinates). Grids are a 3D matrix in which each cell represents a position of the space,
in which we place an atom probe for evaluating a function return value. Each point of the
grid stores multiple results of the same function, based on the atom’s probe properties.
Atom’s properties can change, in our case atom probe can change radius, type, or both.
Since radiuses are a real value, they are discretized along with the atom probe position
in space.
Once a function has been precomputed it is saved in memory. At runtime, all grids are
loaded into different lookup maps. Maps are then accessed in constant time. Grids and
maps are what we have called lookup tables. The grid’s structure is defined starting from
the fact that atoms coordinates are required as input of each XSCORE component.
The grid’s structure is defined by two factors:

• Grid Spacing this is the space between two consecutive points on the same axis
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Grid 
Spacing

Figure 4.5: Grid spacing definition.

In Figure 4.5 represents a portion of the quantized space. The cube vertexes are
the points of the grid, obtained after the space has been quantized. The red central
point represents any of the points of the continuous space, which will be represented
by the nearest vertex of the cube. The loss of accuracy from this approximation is
because the real atom position is approximated to the near cube’s vertex.

• Protein’s Dimensions Atom probes are placed in each grid’s position. The grid’s
dimension will be a bounding box surrounding the area of interest around the re-
ceptor.

Each grid point stores multiple values of the same component, based on the atom’s prop-
erties on which the factor computation depends:

• Atom Type each function has a different grid, each grid point stores a value for each
atom type. Atom type refers to its atomic type (nitrogen, hydrogen, etc.) or to its
ability to accept, or donate an electron;

• Atom Radius each function has a different grid, each grid point stores a value for
each atom radius;

• Atom Radius and Type each function has a different grid, each grid point stores a
value for each combination of atom radius and type.

During the pre-computation stage for each point of the grid, we compute the contribution
to all the factors (VDW, HB, HM, etc.) of an atom probe at that point. The atom probe
is not fixed, it changes some of its properties (radius, type, etc.), so at each point of the
grid, we store multiple values for each XSCORE factor, and each combination of atom
probe properties.
The pre-computation of each factor of a scoring function is carried out by placing an atom
probe in each point of the grid associated with that factor. For each position, the atom
probe can change its properties, based on the computation dependencies of the factor
related to that grid. For example, VDW computation requires to use an atom probe that
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changes its radius in each position of the grid, to pre-compute the contribution to the
score value, if an atom is placed in that position.

Atom Radius At each point of the grid, a different atom probe is placed. Atom probes
can differ based on their radius. An atom probe placed in a certain grid point can change
its atom radius. Radiuses have to be quantized since they are real values. The approach
we have used consists of grouping atoms’ radiuses into ranges. For each range, we define a
max value, a min value, and an average value, which will be the radius value used during
pre-computation for all the atoms that have a radius between max and min value

Atom Type The pre-computation of some factors like HB requires to use an atom probe
which changes its atom type in each position of the grid. An atom probe placed at a certain
grid point can change some of its properties. For example, for each available atom type in a
certain point of the grid, the function under pre-computation is called, and the results are
stored in the grid. With atom types, we refer to both the atomic type (hydrogen, nitrogen,
etc.) and the atom’s ability to accept or donate electrons (Donor, Acceptor, Donor-
Acceptor). An increase in the number of atom types increases the memory requirements
since more values per point of the grid should be stored because for each point of the grid
we need to pre-compute the value for each combination of atom types and radiuses. If
the atom type is considered to be the atomic type (nitrogen, hydrogen, etc.) then the
radiuses are already known and no other layer has to be introduced based on the radiuses.
Instead, if we consider the atom type to be Donor, Acceptor, or Donor-Acceptor we should
compute other layers for each type based on the possible radiuses.

Pre-computation algorithm The algorithm used for pre-computation is very straight-
forward. It consists in moving an atom probe on the grid, and for each point of the grid,
its contribution to the factor value (VDW, HB, etc.) is computed. As described in Al-
gorithm 4.8. Whenever points are all points that have a distance from protein’s atom j
that is lower than the value of cutoff. We have customized this algorithm for each factor
we are pre-computing. For example for VDW, HM, and HP factors we have implemented
Algorithm 4.9 because they have data dependencies on atoms’ radiuses and coordinates.

Another example is the pre-computation of the HB factor. In this case, we have im-
plemented two algorithms: the first Algorithm 4.10 considers the HB pre-computation
dependent on the atomic types (each type having its radius), while the second Algo-
rithm 4.11 considers HB dependent on the atoms’ capacity to donate or accept electrons,
and on the atom’s radiuses.
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Algorithm 4.8 Factor pre-computation algorithm, which will be structured as a grid.
1: for valid protein atom j do
2: for point near protein atom p do
3: factor kernel pre-computation based on factor data dependencies
4: end for
5: end for

Algorithm 4.9 Single grid point pre-computation algorithm, for factor with data depen-
dencies on atoms’ radiuses and coordinates.

Input receptor atom j, grid g, grid point p
1: for radius ranges with average radius r do
2: compute the contribution to the factor of grid g, due to the relation between recep-

tor’s atom j and atom probe with radius r in position p on-grid g.
3: end for

Algorithm 4.10 Single grid point pre-computation algorithm, for factor with data depen-
dencies on atoms’ atomic types.

Input receptor atom j, grid g, grid point p
1: for atomic’s types t do
2: compute the contribution to the factor of grid g, due to the relation between recep-

tor’s atom j and atom probe of atomic’s type t in position p on-grid g.
3: end for

Algorithm 4.11 Single grid point pre-computation algorithm, for factor with data depen-
dencies on atoms’ capacity of accepting or donating electrons.

Input receptor atom j, grid g, grid point p
1: for atom’s type in [Donor, Acceptor, Donor-Acceptor] as t do
2: for radius ranges with average radius r do
3: compute the contribution to the factor of grid g, due to the relation between

receptor’s atom j and atom probe of atom’s type t with radius r in position p
on-grid g.

4: end for
5: end for
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Pre-filtering stage
The Filtering stage uses as input the data coming from the pre-computed stage to evaluate
the ligand’s poses coming from the docking algorithm. The filtering stage implements the
approximated version of XSCORE. Algorithm 4.12 further explains the importance of the

Algorithm 4.12 Filtering stage algorithm implementation.
Input output grids of pre-computing stage G, ligand’s poses
Ouput ligand’s poses ranking

1: for ligand’s pose p do
2: for pose’s p atom a do
3: approximate atom a coordinates to a point on the grid
4: select grid g from G based on atom a properties
5: uses g data to evaluate the contribution to each factor of the scoring function of

atom a.
6: end for
7: end for
8: compute the rank

pre-computation stage to increase the throughput: the contribution of each atom to the
factors of the scoring function has been already computed in the pre-computation stage.
So when Line 5 is reached no computation has to be done. As the last step computes the
poses’ ranking based on the previous evaluations.

4.2. Solution Architecture and Usage
Now the focus is shifted to the implementation of the Filter for a virtual screening pipeline
and how it can be used. We want to propose a general approach that can be used to
develop a Filter based on the application. In this thesis, the application is a virtual
screening pipeline. The original virtual screening pipeline is presented into Figure 3.1.
The output of the docking stage is fed directly to the input of the scoring stage. In the
modified pipeline proposed by this thesis, in Figure 4.6, the Filter stage can be inserted
inside a virtual screening pipeline, in between the docking and scoring stage. The Filter
takes as input the ligands’ poses obtained from the docking stage and produces as output
a subset of poses that has to be processed by the scoring stage. Using the Filter in
this setup, allows the modification to be transparent to the docking and scoring stage.
Moreover, the docking stage can produce as output more poses to be evaluated since the
Filter can select only the most promising ones. The best poses are then passed to the
scoring stage.
Since in a virtual screening pipeline a protein is usually docked with a lot of ligands, it is
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Figure 4.6: High throughput poses selection with pre filtering

convenient to split the Filter block into two smaller components to be used in a different
part of the pipeline. Figure 4.7 illustrate how the filter can be used from an external
point of view, as a black box, which receives the receptor’s and ligands’ structures and
gives as results the top poses. A closer look at the filter is found in Figure 4.8, which
shows how the Filter is decomposed into:

• The Pre-computation stage that has to apply memoization and precision scaling
using the receptor’s structure;

• The Filtering stage will score with the approximated version of the scoring function
the input ligand’s poses and the precomputed data from the previous stage. This
stage has the job of filtering out the poses which more likely will get a low score.

The Filter’s output will be a ranking of the poses produced by the docking stage. Consid-
ering the Filter as composed of two smaller building blocks has the advantage of making
the Filter re-usable and more efficient. For example in an HPC environment, the work-
load is split into batches. So for each receptor, the ligands’ poses to be analyzed are
grouped into batches. Each batch is processed separately from the other: the virtual
screening pipeline is run into different instances, maybe in parallel. The pre-computation
stage is the same among all pipeline runs because the receptor remains the same. Is then
highly inefficient to perform pre-computation at each pipeline run. Is more clever to do
the pre-computation once, and store the result in memory. Then every launched pipeline
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Figure 4.7: Filter block disassemble. This figure shows how the Filter can be composed
of smaller building blocks: the pre-computation and filtering blocks.

Pre
computationReceptor Pre-computed FilteringData Top Poses

Ligands’ Poses Filter

Figure 4.8: Filter block close look to its internal structure.
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will load into memory the pre-computation. The pre-computation result is organized into
memory in multiple grids, as we will see in the next sections. Wrapping up, our complete
pipeline is described in Figure 4.9. Before launching the virtual screening pipeline, the
pre-computation stage takes the protein’s structure and computes the grids required by
the filtering stage. The filtering stage takes the ligand’s poses produced by the docking
algorithm, and it evaluates them using an approximated scoring function and the pre-
computed data coming from the pre-computation stage. This architecture has also the
advantage that the docking and scoring algorithms are unaware of the filter’s existence,
they remain unchanged.

4.2.1. CUDA & MPI Implementation Architecture

To get the best speedup we should also go beyond the optimization of the scoring algo-
rithm: we should take advantage of the underlying technology that will run our appli-
cation. The next section will review the results we have obtained with the last version
of our application, that fully embrace the usage of MPI and CUDA technologies. So our
final implementation will be available in C/C++, because XSCORE implementation is
written in C/C++, and also CUDA and OpenMPI are targeting C/C++.
The complexity of the Molecular Docking problem requires it to run on a supercomputer,
and so scalability is needed since it will target multiple nodes. The best way to cope with
this is the usage of MPI, the de facto standard when doing HPC on a supercomputer.
With our MPI implementations, we want to address the problem of scoring a very large
dataset of ligands against a single target receptor. To better understand this, figure 4.10
shows how computation is balanced among nodes. After each node produces its rank, we
collect all ranks, and we merge them into only one ranking. From this final rank, we can
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retrieve the best poses that should be passed as input to the next stage in the pipeline.
For each of these MPI nodes, we have accelerated even more the execution by implement-
ing a GPU version of our application, using CUDA. We can get the best from CUDA only
by implementing a clever multi-streaming architecture.
First of all we have created ad hoc memory structures (figure 4.11) At this point, each
MPI Node will manage the loading of the poses in the same way as seen in figure 4.11.
It is worth noticing that MPI nodes will be responsible for the workload management of
each GPU stream. Each node will split the poses he has to process into batches, and then
each node sends them to available streams ( figure 4.12), the number of poses per batch
is defined by a macro, and by default is 256. The goal is to keep streams busy as much
time as possible, so it is preferable to tune the application, in such a way to have a lot
more batches than streams. So when a stream has finished computation, the node can
send another batch to it. Figure 4.13 highlight how GPU threads, blocks, and grids have
been organized to deal with our problem. Each blocks i is responsible for the final score
of poses i, i*2,... , while each threads t of block i is responsible for retrieving the contri-
bution to the score of atom t, t*2, ..., of the pose that is under process in block i. Since
a grid is associated with a stream, and since each stream, a batch of poses is associated,
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Figure 4.12: MPI CUDA integration architecture.

derived that each block in a grid repetitively processes poses from the streaming batch of
poses.

4.2.2. Autodock HB Computation

Pre-computing the HB value using the Autodock algorithm can be done by modifying Au-
toGrid, and taking only the portion of code responsible for the hydrogen bonds evaluation.
Autodock implementation is shipped also with a set of tools, like AutoGrid, from which
we extrapolate the HB computation, and a set of scripts that can be used to prepare the
input for the Autodock or AutoGrid computation, that can be reused in our case. The
pre-computation requires also a pre-parsing stage that assigns to each ligand’s atoms its
Autodock type.
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5| Results Analysis
This chapter describes how we performed the analysis that drove the design of the pro-
posed approach. Moreover, we evaluate the performance when we deploy the filter in
different use cases, in particular in Section 5.6. The next sections illustrate the impacts
of the approximations used for the Filter development. Approximations are required by
the Filter to emulate XSCORE, for being faster, and for increasing the throughput. The
structure of this chapter follows the process we have followed when we have started ap-
proaching the problem and designing a solution for it. We have started by analyzing how
much XSCORE was sensible to precisions scaling, in Section 5.1. At this point, we have
checked in Section 5.2 how memoization reduces the accuracy of XSCORE components
values. And finally, we have analyzed how a Filter implementation can improve a pipeline,
with the implementation integration inside the LiGen pipeline, Section 5.6.

Experimental Set Definition With Test Set, we refer to an experimental dataset of
50 ligand-receptor pairs taken from PDBBind [6].

5.1. Precision Scaling Approximations Analysis
The first approximation we have analyzed was precision scaling. The objective is to test
the sensibility of XSCORE to approximations of atom’s coordinates and radiuses. Using
precision scaling as described in Section 4.1.2 highlights how each atom’s coordinates
are approximated to their nearest position on the grid. Precision scaling analysis has
been conducted mostly on XSCORE factors that have data dependencies on these two
parameters (VDW, HM, HP).

5.1.1. Precision Scaling on Coordinates

Coordinates can be quantized by transforming the space from being continuous to being
discrete, by snapping an atom to the center of its cube in the grid (see Figure 4.5). In
this way, an infinite set of points is reduced to a single point on a grid. In other words,
no point of the space can have a distance from another point near to him which is less
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Figure 5.1: Distribution of the XSCORE errors with quantized space. On the y-axis the
relative difference between the original values and the quantized ones are reported. While
on the x-axis there are different grid resolution.

than the defined spacing along all axes. All atoms’ coordinates will be rounded according
to their nearest value. Figure 5.1 shows how the error introduced by precision scaling is
very restrained: the box plots represent the distribution of the differences between the
original XSCORE values, and the XSCORE values obtained when the space is quantized
( with a spacing of 0.1, 0.3, 0.5, or 1.0 Å). 0.5 Å is the default spacing value we have
used for the thesis since it introduces on average an approximation on the final XSCORE
of around 1%.
Higher values have not been considered because the approximation will be too much, and
upon pocket analysis, XSCORE is not able to support these rounding. The increase of
accuracy when using lower spacing values is not useful if compared with the increase of
memory space for memoization (during our analysis the memory requirement is duplicated
with triplicate when using a resolution o 0.3 Å, and 10x with a spacing of 0.1 Å) and
computational time required for pre-computation (with a spacing of 0.1 Å I was not even
able to complete the computation of a single factor). This is because the number of point
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Figure 5.2: Percentage Error on VDW, HB, HP, HM, HS, RT when using precision scaling.
The value are capped ot 5%, the outliner above thi threshold are not relevant.

to be analyzed at pre-compute time grows as XY Z
grid−spacing3

: passing from 0.5 to 0.1 Å grid
resolution increase the number of points of 125x. Figure 5.2 reports the relative errors on
VDW, HB, HP, HMN, HS, RT (factor of the XSCORE function) when grid’s resolution
is of 0.5 Å. The figure confirms our suspects that the XSCORE sensibility to precision
scaling is very low since on average single component values are impacted for at most of
1%. The only exception comes from the HB factor, which is more sensible to changes in
the atoms’ coordinates. The content of Figure 5.2 is casted at 5, outliners up to 17 exists
but they are not relevant for the average case, so not report.

5.1.2. Precision Scaling on Radius

Precision scaling should be used on radiuses since some XSCORE factors have data de-
pendencies on the atoms’ radiuses. Since at the pre-computer time the ligand’s atoms
are not available, we should discretize the radiuses, to make the input space finite for the
pre-computation. Precision scaling on radiuses requires the definition of ranges (a max,
min, and avg value for each). By analyzing atoms’ definitions used by XSCORE, we can
retrieve the maximum and minimum values of radiuses. While from a subset of ligands
taken from PDBBind, we have obtained the following radiuses distribution. Figure 5.3
shows the atoms’ radiuses distribution inside the test set used for this thesis. Also, atoms
with a radius of 0.0 are considered, they are the atom whose atomic type is not sup-
ported by the XLOGP [41] list used by XSCORE. Using this figure we got the idea of
doing clustering on the most common values of radiuses. Based on the number of ranges
used, the loss of accuracy of the results changes. So to decide the number of ranges that
best suited our application, we have conducted some tuning of approximation parameters.
This is one of the critical parts of approximated computing, that affects a lot the quality
and the accuracy of the results. We have analyzed relative errors on VDW, HM, and HP
values with different sets of ranges, to understand the consequence of using different sets
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Figure 5.3: Radiuses distribution. On the y-axis the number of occurrences in the PDB-
Bind dataset, when varying the atom radius according to the atomic type.



5| Results Analysis 55

Figure 5.4: VDW box plots of relative errors with sets of ranges with different numbers
of clusters. On the x-axis, the number of ranges per set, on the y-axis the relative errors
introduces to the VDW values.

of ranges. Figure 5.4 Figure 5.5 Figure 5.6 show that the relative error on VDW, HP
and HM values decrease as we increase the number of layers in the set. We have analyzed
the loss of accuracy for VDW, HP, and HM factors using sets of ranges of different sizes:
1, 2, 5, 8, and 12 ranges. 12 is the maximum value since from XLOG [41] atoms’ type
definition there are 12 unique atom radiuses. The analysis in HB has not been done, since
its computation is done differently from the radiuses, as explained in Section 4.2.2. The
relative errors obtained for each factor on the pair in the test set are reported in the box
plots. Is clear from these figures that the decreasing trend reaches a local minimum upon
using 5 layers. With 8 and 12 layers, the reduction in the approximation is not worth the
increased requirements of memory space and computation time. We have been able to
demonstrate that by using a set of 5 ranges, using clusters suggested from Figure 5.3 we
are able to obtain a loss of accuracy on the results of around 6% for VDW, 9% HP, and
7%HM.
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Figure 5.5: VDW box plots of relative errors with sets of ranges with different numbers
of clusters. On the x-axis, the number of ranges per set, on the y-axis the relative errors
introduces to the HP values.
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Figure 5.6: VDW box plots of relative errors with sets of ranges with different numbers
of clusters. On the x-axis, the number of ranges per set, on the y-axis the relative errors
introduces to the HM values.
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Figure 5.7: Relative errors of VDW, HM, Hp values with precision scaling and memoiza-
tion. On the y-axis, there is the distribution of the relative errors.

5.2. Memoization and Precision Scaling Approxima-
tions Analysis

Values errors of Approximated HB wrt to the original. With it ht speed up is of 45x wAfter
we have tuned precision scaling, we have evaluated the impact of precisions scaling cooped
with memoization. The memoization approximation requires the pre-computation of the
XSCORE factors for each possible input. Finally, in this section, we evaluate the final error
on XSCORE factors due to precision scaling combined with memoization, when we use
the proposed configuration: 0.5 Å grid size and 5 clusters for the layers radiuses. Our goal
is to check the impact of precision scaling (grid’s spacing of 0.5 Å and 5 radiuses layers).
We want to check how memoization impacts those terms which have data dependencies
on an atom’s radiuses and coordinates. We start with the analysis of VDW, HM, and
HP components since they can be pre-computed using an approximated version of the
original XSCORE algorithm (HB will be reviewed later on since its approximation is not
straightforward Section 4.1.3)
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5.2.1. VDW, HM, and HP Memoization and Precision Scaling

Figure 5.7 shows on the box plot the loss of accuracy on the VDW, HM, and HP values
when using precision scaling and memoization together. In particular, the approximation
on the VDW values is around 0.3%, on the HP values is around 6%, and on the HM values
are around 0%. These are acceptable approximations that can be introduced compared
to the gained speed up, from Section 5.5.
The next section shows which of the proposed version in Section 4.1.3 performs better. In
fact, in Section 4.1.3 we have introduced the problems encountered in the pre-computation
of the HB factor, and different solutions have been proposed.

5.2.2. HB Version Selection and Score Analysis

In section 4.1.3 we have reported that the Autodock HB pre-computation is the best-
suited approximation for the case of study in this thesis. Taking inspiration from the
Auogrid source code shipped with Autodock, we have been able to find out how the pre-
computation of the HB term is done by Autodock, and by reusing part of its source code,
we were able to integrate it within the demo, reducing the development time, and in this
section, we will see also how the accuracy loss has been reduced. Each of the graphs
in Figure 5.8 shows two plots: on the left, there is the set of errors on the final score
obtained from the Filter on the test set, while on the right there is the set of errors on
the HB value obtained with the same Filter version on the same test set. Figure 5.8b
since it does not compute the HB values (by default is set to 0), in some cases the error
is 100% in others is 0%, because if the real value of HB is 0, then we have done the
correct computation casually. From these figures is clear that the version able to reduce
the HB values errors is the Full HB version, since its the one that computes the HB factor
using the original HB algorithm, without approximation. A trade-off is now analyzed
on the approximation: instead of using the Full HB version, we can think about using
the Autodock HB, which among the other Filter’s versions is the one with the lowest
XSCORE and HB errors. In this way, we describe the overall XSCORE error of 0.2%,
while the speedup increases from 42x to 47x times. This is why we have chosen to use the
Filter with Autodock HB pre-computation as a reference implementation. The Autodock
HB speed up is comparable to the one of the No HB Filter version, in this case by using
the Autodock HB Filter we reduce the error on the final XSCORE by about 0.5%.
Figure 5.9 shows how a regression can be used to fit the value of HB obtained from the

Autodock HB algorithm to HB values computer with XSCORE algorithm.
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(a) Values errors of Full HB wrt to the original. With it ht speed up is of 43x while the score
error is of 1.8%.

(b) Values errors of No HB wrt to the original. With it ht speed up is of 47x while the score
error is of 2.8%.
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(c) Values errors of Autodock HB wrt to the original. With it ht speed up is of 47x while the
score error is of 2.2%.

(d) Values errors of Approximated HB wrt to the original. With it ht speed up is of 45x while
the score error is of 2.5%.

Figure 5.8: Values errors with different strategies for approximating the HB component
in the Filter block.
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Figure 5.9: Autodock HB Filter version regression wrt to original XSCORE values.

5.3. Simplification Approximation Analysis
Besides precision scaling and memoization we have used other approximations techniques.
In particular, the cost of computing a subset of score components, may not be justified
by its contribution to the final score value, as shown in Figure 5.10. Therefore, in this
section, we evaluate the impact of using those components altogether.
Some parts of the code can be simplified, or are too computationally heavy with respect
to their weight on the XSCORE value. In some cases what we introduce as an approxi-
mation, has instead no impact on the result accuracy. For example, the apparent charge
approximations introduce no error in the XSCORE values.
For example, our analysis has shown how the RT value is the same among all the poses
of the same ligand. The deformation effects account for the rotatable bonds present in
the ligand, Section 4.1.1. So its impact on the final XSCORE is negligible since it would
be the same thing as adding a fixed offset to the XSCORE value for each pose.
A similar analysis to the RT simplification and impact on the score, have been conducted
on the HS component. HS computation has been removed as specified in the previous
chapter. Figure 5.10 highlights that the loss of accuracy on the final XSCORE value is
about 2% on average. While the scoring time is reduced by about 35%.
Regarding apparent charges, we have stated that they can be removed from the compu-
tation. For each pose to be scored, XSCORE assigns an apparent charge for each atom,
based on its atom type. Since in most of the cases the apparent charge is equal to 0, we
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Figure 5.10: XSCORE accuracy loses when removing HSSCORE from the consensus
scoring. It is a box plot with the distribution of errors on the final XSCORE values.
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have analyzed the impact of removing apparent charges from the computation. The loss
of accuracy introduced by removing apparent charges has been computed for each pose
of the ligands in the test set. Our hypothesis that removing apparent charges from the
computation is a simplification and not an approximation is confirmed by the fact that
the average degradation of the results’ accuracy is 0%,

5.4. Performance Approximation Results
The previous sections have evaluated the proposed solution as a stand-alone box against
a scoring function (XSCORE). In this section, we evaluate the whole approach in two use
cases.

5.4.1. RMSDs And Ranking Analysis

The review done in this section has the purpose of showing how we can get in most of
the cases the best pose selected by XSCORE and also in the top 10 poses selected by our
Filter. And how in general these top 10 approximated poses, have an RMSD that is the
same if not better, with respect to the RMSD of the best poses identified by XSCORE.
The RMSD is computed in all cases with respect to the crystal pose. Figure 5.11 contains
a different graph that compares the original version of XSCORE against the proposed
solution with approximations:

• the left plot is how many times in the experimental test set we were able to capture
poses with the highest XSCORE returned from the original version, also inside the
top 10 poses filtered by our proposed solution;

• the center plot shows the lowest value of RMSD obtained from the 10 best poses
selected by our filter against the crystal pose;

• the center plot shows the lowest value of RMSD obtained from the 10 best poses
selected by XSCORE against the crystal pose.

The Filter version is using precision scaling with a grid resolution of 5 Å and 5 layers
for VDW, HM, and HP pre-computation. While the HB version is pre-computed using
the Autodock HB value. In our proposed solution we have used 10 poses for the Filter
analysis, since it is much faster with respect to the original XSCORE version, we can then
analyze more poses in the same amount of time respect to the original XSCORE version.
This analysis is useful if the proposed solution is integrated into the original version as a
filter before the scoring function. So only the Filter selected 10 poses to be passed to the
original XSCORE version, which now executes on a very small dataset compared with the
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Figure 5.11: RMSD and ranking analysis for the Filter version with Autodock HB pre-
computation.

whole set of poses coming as the output of the docking stage. Figure 5.11 indicates how
the best RMSD obtained with our Filter is comparable, if not even better, with respect
to the RMSD of the best pose identified by XSCORE.

5.4.2. Approximations Impact on Complete Scoring

Is now time to review the impact of all the approximations strategies we have introduces
in Section 4.1.2, using different metrics to evaluate the accuracy of the results. To do so we
have compared the original XSCORE version, with our proposed version approximated,
using a grid’s resolution of Å with 5 radiuses layers and hydrogen bond value computed
using the Autodock algorithm. The following data have been collected on the experimental
dataset defined in Section 5.
Up to this moment, all the analyses have been focused on a single parameter for the
approximations evaluations. Is interesting to analyze also the relation there exists among
all of the interesting accuracy metrics ( RMSD, scoring time, accuracy). For this analysis,
we have taken into consideration a single pair of ligand receptors from PDBBind [6],
which is 00562_2AY4. For each ligand-receptor pair, PDBBind allows downloading the
structure of both receptor and ligand, along with the reference pose of the ligand, which
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Figure 5.12: Best score comparison when using our approximated pipeline with respect to
the original pipeline. on the y-axis the XSCORE values are reported, while on the x-axis
we find the number of poses passed as input to the scoring function, for the receptor-ligand
pair 00562_2AY4.

is obtained experimentally with crystallography. This pose is called the crystal. The lead
compounds we get from the scoring function should have the lower RMSD among all the
poses computed from docking programs. Our approximations can increase the number
of poses analyzed in the same amount of time. So the possibility of retrieving from the
docking program output the pose which has the lower RMSD with respect to the reference
crystal is higher. Figure 5.12 on the x-axis has the number of poses passed as input to the
scoring function. After the docking program has generated a list of poses in the original
pipeline we select only X random poses from this list to be used as input to XSCORE.
While in the approximated one we apply our proposed solution as a filtering stage on all
the output poses for the original pipeline, and the X first poses from the filtering output of
our filter is the input of the original XSCORE’s version. The figure clearly shows how also
when having a small value for X we can get the best scoring pose, with the approximated
version. The approximate version is able to identify almost immediately the best pose
because it can scan the whole output poses of the docking stage, while at the same time
the original XSCORE version can score only a subset of such output. In Figure 5.12 the
green line shows instead the XSCORE value associated with the crystal pose. We are not
able to reach this green line with the poses returned by the docking program, due to the
limitations of docking algorithms: they cannot usually explore the whole space of poses
in order to find the crystal pose. Another graphical representation of the relationships
between RMSD, scoring time, and the number of poses is in Figure 5.13. Y-axis on the left
refers to the RMSD reported on the bars, while the y-axis on the right refers to the scoring
time reported by the two lines. Green bars are the best RMSD between the crystal pose
and the poses coming from the output of the docking program, so the RMSD is always
the same. Red bars are instead the RMSD between the crystal pose and the best-scored
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Figure 5.13: Another graphical representation of the relation between RMSD, scoring
time, and the number of poses for the receptor-ligand pair 00562_2AY4.
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pose, which is the pose that we can get from the original XSCORE version with as input
1, 5, 10, 20, 40, 70, 100, 120, 160, 200, and 256 random poses from the docking program
output. The red line is the scoring time of the original XSCORE version. Scoring time
of the original version increases as we increase the number of poses passed to XSCORE.
Blue bars are the RMSD between the crystal pose and the best-scored pose. In this case,
we compare directly the best pose obtained by the filter, without passing from XSCORE,
and the Filter is applied on 1, 5, 10, 20, 40, 70, 100, 120, 160, 200, and 256 random poses
from the docking program output. The blue line is the scoring time of the Filter, which
seems to be a straight line compared to the red line because the Filter’s computational
complexity increases very slowly with the number of poses if compared to the increase of
the original version. Figure 5.13 shows that with the proposed approximated version we
are able in a fraction of the time to score more poses with respect to the original XSCORE
version. That means that the input space (the docking output) can be explored much
faster (as shown by the differences between the red and the blue lines), and at the same
time the best poses, with respect to the RMSD value, can be found in a fraction of the
original time. In fact, in Figure 5.13 already in the first 5 poses selected by our filter, we
are able to identify the poses which have the lower RMSD among all the poses coming
from the docking output. With Figure 5.12 Figure 5.13 we have demonstrated how the
Filter proposed by this thesis, can select poses with an RMSD and score comparable to
the poses selected by XSCORE, but in a fraction of the original time.

5.5. Speedup: CUDA and MPI vs CPU
Part of the thesis development has also been focused on a Filter version for HPC, im-
plementing all the approximations strategies we have seen in Section 4.1.2. The previous
chapter has better detailed 4.2.1 the CUDA and MPI version of the Filter. Since we
are analyzing the impact of approximations, we want also to include in this analysis the
importance of using MPI and CUDA had for the Filter implementation, when compared
with the original XSCORE version. Figure 5.14 reports on the y-axis the occurrences of
speedups on the scoring time, between the HPC Filter version against the single CPU
XSCORE version. The cited figure highlights the advantages of using the HPC version
of the Filter, which has on average a speedup on the computation time of around 26x,
which is also confirmed by the speedup distribution in the same figure. The values dis-
tribution we can see in Figure 5.14 confirms also as the variance is acceptable: most of
the speed-up occupancies are between 10x and 30x, which is a very great improvement
for the throughput of a virtual screening application.
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Figure 5.14: Speedup of using the GPU version of the Filter with respect to the original
only CPU XSCORE version.
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Figure 5.15: Ligen Pipeline, taken from the LiGen doc.

5.6. LiGen Pipeline Integration Results
Figure 5.12 Figure 5.13 demonstrate how the Filter performs when compared against a
scoring function. We have already stated how the Filter can be used in different ways:
on one hand, it can be used to evaluate the same number of poses with respect to the
original version, but in a fraction of time, or on the other hand it can be executed in the
same amount of time on more poses, increasing the throughput of the docking program.
In conclusion, the figures confirm the Filter capacity of identifying the poses with both a
lower RMSD and a higher score, in a smaller amount of time, when compared with the
original XSCORE version: we have been able to confirm that the throughput of a virtual
screening pipeline for drug discovery can be increased using approximated computing
techniques.
Using the same Filter is now time to review its performance when it is inserted inside a
real-world virtual screening pipeline. In this section in fact we analyze the results obtained
when inserting the Filter inside the LiGen pipeline.

5.6.1. LiGen Pipeline

The driven concept of Ligen’s architecture is the concept of OPA or one-purpose applica-
tion. The workflow is shown in Figure 5.15: LiGen is composed of small applications with
a specific scope and meaning, which are chained altogether. This is a very good feature
in our case: in fact, we can more easily put our Filter inside the workflow of LiGen.
I’ve modified the LiGen pipeline, Figure 5.15, which as in Figure 4.9 has already a Pose
Filtering stage, which uses some quick heuristic. In this case, I’ve substituted it with the
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proposed Filter of this thesis, and I’ve added the pre-computation stage to the pipeline,
which has to be executed once for each receptor under analysis.

5.6.2. Pose Filtering and Pre-computation

The Filter I’ve integrated inside the pipeline uses a grid’s resolution of 0.5 Å and a number
of 5 layers (based on radiuses), the HB value is computed using the Autodock algorithm.
The implementation of the Filter is done using CUDA and MPI as stack technologies.
For the data analysis, I’ve taken 10 randomly receptor-ligand pairs from the experimental
dataset (Section 5). From the previous results, we expect to decrease the execution time
of the pipeline, thus increasing the throughput, while the results’ accuracy loss should be
a low value.
Referring to Figure 5.15 we do make the following statement on how our approximation
works:

• Only Scoring considers the Ligen version in which the Filter is ignored by the work-
flow, and so all the output poses of LiGen are processed by XSCORE;

• Filtering+Scoring considers the LiGen’s pipeline version with the Filter, which se-
lects only the best 15 poses to be scored by the scoring function;

• With RMSD we intend the RMSD of the best scored pose.

The collected data are reported in Table 5.1 The table highlight how the insertion of the
Filter into the workflow makes the computation faster, while the best RMSD remains the
same. This means that our hypothesis is confirmed, and the LiGen pipeline can increase
its throughput by using the proposed Filter of this thesis, instead of the quick heuristics
already used in the original Pose Filtering Stage.
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Protein Name Only Scoring Filtering+Scoring Speedup
Time (ms) Best RMSD (Å) Time (ms) Best RMSD (Å)

1a0q 3076 3.04 240 3.04 12.8
1a0t 3588 5.6 312 5.6 11.5
1a1b 5322 10.6 401 10.6 13.2
1a3e 13065 7.27 1315 7.27 9.93
1a4h 5926 1.3 598 1.08 9.9
1a5g 7025 2.99 690 2.99 10.4
1a5h 4726 2.6 399 2.6 11.8
1a07 4748 5.7 381 5.7 12.4
1a7x 10832 2.85 2124 2.85 5.09
1a08 5925 10.7 438 10.7 13.5

Table 5.1: This tables illustrate the obtained results with the proposed solution applied to
the LiGen pipeline. It compares the RMSD and time obtained with the original pipeline
version, and with the pipeline modified with the proposed solution.
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6| Conclusion
The drug discovery process is a long and costly process [44]. Computer-generated mod-
els, to dock and score molecules, have been applied to the drug discovery process, leading
to the implementation of a virtual screening pipeline. At this point, the analysis of
compounds is done in virtual environments by supercomputers, not only in vitro by re-
searchers. Thus high efficiency and small time-to-solutions are key requirements for the
virtual screening pipeline. The solution I’ve proposed is throughput-oriented. To increase
the throughput I’ve decided to analyze the impact of approximated computing on a virtual
screening pipeline. This thesis has dissected the problem of increasing the throughput of
a virtual screening pipeline in detail, with the objectives of proposing, implementing, and
analyzing a solution. Starting from the problem analysis, I’ve analyzed how a virtual
screening pipeline is used in the drug discovery process. The stage on which the thesis
has focused most of its attention is the scoring stage. In Chapter 4 the scoring stage
has been disassembled, with a particular interest in XSCORE. Based on this knowledge,
this document explains a way in which precision scaling and memoization can be used to
approximate the scoring stage. Using these approximation strategies the thesis was able
to anticipate most of the computation at pre-compute time. The docked poses coming
from the docking stage have to be scored, and a first evaluation is done thanks to the
pre-computed data, to avoid the burden of doing all the computation during a run of a
virtual screening pipeline. Wrapping up the results we have gathered and reported into
Chapter 5, the proposed solution has proven to be effective in increasing the throughput
of a virtual screening pipeline, with a negligible loss in accuracy.
The proposed solution obtained good results, both in the analysis of precision scaling and
memoization impact on each component of the scoring function and on the final value of
the score. With these results, the thesis has continued its analysis to check the solution’s
impact on a real case scenario: LiGen’s pipeline. In the end with LiGen, we were able to
obtain an average speedup of 10x Section 5.6, while the error is almost 0%.

Future Developments The proposed solution can further analyze the impact of other
approximations techniques, for example, this document has not considered the impact of
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a neural network accelerator, which can be useful for the factors’ coefficients of a scoring
function. Other work of optimization could be done on the final implemented version of
the Filter. The implemented code can be further optimized, and the pre-computation
stage can be better organized. Especially the AutoGrid computation can be rewritten
and inserted directly into the whole pre-computation natively, without using the origi-
nal Autodock source code. The implementation used in this thesis used OpenMPI and
CUDA. Other technologies can be used to extend the support on other architectures and
hardware (for example SYCL). On the actual implementation, a deeper analysis of the
usage of GPU’s streams and GPU’s memory management should be done, which can lead
to great improvement in the application throughput.
The work illustrated in this thesis can be further expanded. Its validity should be tested
on another pipeline, so also other scoring functions should be taken into consideration.
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