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1. Introduction
This thesis aims at developing a stabilized finite
element method for numerical modeling of cav-
itating flows, with a specific focus on cavitation
effects in blood flows.
Cavitation is a phenomenon in which the static
pressure of a liquid reduces to below the liq-
uid’s vapor pressure, leading to the formation of
small vapor-filled cavities. Cavitation is quite an
ubiquitous phenomenon both in natural and in-
dustrial processes; experimental evidence proved
that it occurs also in the human cardiocircu-
latory system, the most common cause being
interaction of blood with valves regulating the
flow, especially when they are replaced by me-
chanical prostheses [2]. The occurrence of this
phenomenon entails several drawbacks: when
vapor bubbles collapse, they can damage the
prostheses structure and the blood cells, result-
ing in an enhanced erosion of the valve’s leaflets
and promoting thrombus formation. It is clear,
therefore, that being able to predict and model
cavitation has considerable implications in clin-
ical applications.
Despite several experiments, numerical simula-
tions on cavitation effects in blood flows are lim-
ited. To bridge this gap, we proposed a numer-
ical model able to include cavitation effects and

predict the occurrence of cavitation. We devel-
oped a volume of fluid (VOF) model, in which
the fluid is considered as an homogeneous mix-
ture of liquid and vapor phase, and the evolu-
tion of the vapor fraction is described by an
advection-diffusion-reaction equation coupled to
the mass and momentum conservation equations
of the mixture. We adopted the Zwart model [5]
to derive the expression of the liquid-vapor mass
transfer.
The cavitation model is discretized by means
of SUPG-stabilized finite elements. For spatial
discretization we relied on piecewise linear La-
grangian polynomials; time discretization was
performed by means of finite differences, specif-
ically Backward Differentation Formulas (BDF)
of order one. The fluid flow and cavitation
solvers have been implemented in lifex [1], a
C++ FE library under development at MOX
laboratories at Politecnico di Milano, mainly fo-
cused on cardiac applications. The two solvers
have been coupled in a staggered partitioned
manner for versatility: at each timestep, the
vapor fraction distribution is determined first,
and then the homogeneous mixture equations
are solved for pressure and mixture velocity.
We tested the model on different benchmarks:
• flow past a circular cylinder;
• flow in a nozzle benchmark proposed by the
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Food and Drug Administration (FDA);
• flow past an idealized bileaflet valve geom-

etry.
We show how the model predicts the occurrence
of cavitation and the relevant flow features such
as the pressure distribution, the divergence of
the velocity field and the shear stresses. In the
following, we present the mathematical and nu-
merical model, and finally the numerical results.

2. Mathematical model
Let Ω be the physical domain and let Γ = ∂Ω
be its boundary. We denote with x ∈ Ω the
spatial coordinates and with t ∈ (0, T ] the tem-
poral coordinate. In the framework of the VOF
methods, we define the volume vapor fraction:

α(x, t) =
Vv

Vm
, (1)

where Vv is the volume of the vapor phase and
Vm is the volume of the mixture. Once the phase
indicator is defined, we denote with ρm and µm

the density and viscosity of the mixture:

ρm = αρv + (1− α)ρv,

µm = αρv + (1− α)ρv,

(2)
(3)

where ρv and ρl are the constant vapor and liq-
uid densities. The same holds for viscosity.
To obtain the final form of the cavitation model,
we couple the mixture mass and momentum con-
servation system with the equation of the net
vapor phase as follows.
The mixture mass and momentum system reads:

∂ρm
∂t

+∇ · (ρmu) = 0, in Ω× (0, T ],

∂(ρmu)

∂t
+∇ · (ρmu⊗ u) =

−∇P +∇ · (2µ∇S(u)), in Ω× (0, T ],

(4)

where u(x, t) ∈ R3 is the mixture velocity,
P (x, t) ∈ R is the pressure and the symmetric
gradient is defined as: ∇S(u) = 1/2(∇u+∇uT ).
The equation for the vapor phase reads [5]:

∂α

∂t
+∇ · (αu) + κ∆α =

Ṡα(α, P )

ρv
, in Ω× (0, T ],

(5)

where Ṡα is the liquid-vapor mass transfer term,
specific to the cavitation model and κ is a diffu-
sion parameter introduced in this formulation to

regularize the interfaces between fluid volumes
with null and finite value of α and facilitate the
numerical solution of the equation for α.
The expression of the liquid-vapor mass trans-
fer rate Ṡα is developed following the model
proposed by Zwart et al. [5]. We start from
the Rayleigh-Plesset equation, describing the
growth of a vapor bubble in a liquid:

RB
d2RB

dt2
+

3

2
(
dRB

dt
)2 +

2σ

RB
=

P − Pv

ρl
, (6)

where RB represents the bubble radius, σ rep-
resents the surface tension coefficient and Pv is
the vapor pressure. Zwart proposed to simplify
the second order terms and introduce some di-
mensional arguments, resulting in the following
expression for the mass transfer rate:

Ṡα(α, P ) =

Fvap
3rnuc(1− α)ρv

RB

√
2

3

max(Pv − P, 0)

ρl︸ ︷︷ ︸
(vaporization)

−Fcond
3αρv
RB

√
2

3

max(P − Pv, 0)

ρl︸ ︷︷ ︸
(condensation)

.

(7)

The positive contribution describes vaporization
and depends on the nucleation site radius RB,
the nucleation volume fraction rnuc and a user
defined calibration coefficient Fvap; the negative
term describes condensation and is proportional
to a corresponding calibration coefficient Fcond.
Zwart et al. [5] have provided values for the
model parameters, calibrated to match experi-
mental data for a variety of fluids and devices:

Fvap = 50.0 [−],

Fcond = 0.01 [−],

rnuc = 10−4 [−],

RB = 10−6 [m].

2.1. Coupled problem in strong for-
mulation

The continuous problems (4) and (5) are coupled
and the following continuous problem holds; let
us assume that Γ is subdivided in a subset ΓD,
where Dirichlet conditions are prescribed, and a
subset ΓN , where Neumann conditions are set,
such that Γ = ΓD ∪ΓN . In a time interval (0, T ]
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with T > 0, the problem reads:

ρ
∂u

∂t
+ ρu · ∇u+∇P+

−∇ ·
(
2µ∇S(u)

)
= 0 in Ω× (0, T ],

∇ · u−
( 1

ρv
− 1

ρl

)
Ṡα = 0 in Ω× (0, T ],

∂α

∂t
+∇ · (αu)+

−κ∆α− Ṡα(α, P )

ρv
= 0 in Ω× (0, T ],

u = g, α = γ on ΓD × (0, T ],

(−P I+ 2µ∇S(u)) · n̂ = h on ΓN × (0, T ],

(αu− κ∇α) · n̂ = η on ΓN × (0, T ],

u = u0, α = α0 in Ω× {0}.

(8)

3. Numerical model
Let us define the finite element spaces used for
space discretization; Φh, V h and Qh are intro-
duced for the vapor fraction αh, the mixture ve-
locity uh and the pressure P h, respectively:

Φh := Φ ∩Xh
r ,

Φh
0 := Φ0 ∩Xh

r ,

Vh
g = V h

g ×Qh,

Vh
0 = V h

0 ×Qh,

V h
g := Vg ∩ [Xh

r ]
3, V h

0 := V0 ∩ [Xh
r ]

3, Qh := Q ∩Xh
r .

Xh
r is the space of piecewise Lagrangian polyno-

mial functions of degree r ≥ 1 on each element
K of the partition T h of Ω:

Xh
r := {xh ∈ C0(Ω̄) : xh|K ∈ Pr,∀K ∈ T h}.

For time discretization, we employ the Backward
Difference Formula (BDF) of order 1 (σ = 1).
Given a uniform timestep, ∆t, we denote with
xhn the approximation of xh at time tn = n∆t.
The time derivatives are therefore approximated
as:

∂xh

∂t
≈

ασx
h
n+1 − xh

n,BDFσ

∆t
,

where ασ = 1 and xhn,BDFσ
= xhn, when σ = 1.

The non-linearities in the convection term of the
mixture momentum equation, and the coupling
terms in the α transport equation are treated
semi-implicitly, extrapolating quantities at time
tn+1 with Newton-Gregory polynomials. When
σ = 1:

uh
n+1,EXTσ

= uh
n,

P h
n+1,EXTσ

= P h
n .

In order to numerically solve the coupled prob-
lem, a staggered approach is employed: the

transport equation of the vapor fraction and the
mixture mass and momentum system are solved
sequentially at each timestep. In these settings
the outline of the solution procedure is the fol-
lowing: We define a uniform partition tn = n∆t,
n = 0, 1, . . . of the time interval. The quantities
at time tn are known; then for each n = 0, 1, . . . ,

1. Evaluate uh
n+1,EXTσ

and P h
n+1,EXTσ

on the
Gaussian quadrature points of the elements
of the computational grid;

2. Solve a time step of the SUPG-stabilized,
linear discrete vapor transport problem:
find αh

n+1 ∈ Φh:

(ασα
h
n+1 − αh

n,BDFσ

∆t
, ϕh

)
−

(
αh
n+1u

h
n+1,EXTσ

,∇ϕh)
+
(
κ∇αh

n+1,∇ϕh)− ( Ṡα(α
h
n+1, P

h
n+1,EXTσ

)

ρv
, ϕh

)
+

∑
K∈Th[(

τϕ(u
h
n+1,EXTσ

)rϕ(α
h
n+1,u

h
n+1,EXTσ

, Ph
n+1,EXTσ

)),

1

2
(∇ · uh

n+1,EXTσ
)ϕh + uh

n+1,EXTσ
· ∇ϕh

)
K

]
=

(
ηn+1, ϕ

h)
ΓN

,

∀ϕh ∈ Φh
0 , for all n ≥ σ − 1.

The terms under the sum are the SUPG
stabilization terms, where:

• K denotes a generic cell of Th;
• rϕ is the residual of the equation for α:

rϕ(α
h,uh, Ph)) =

∂αh

∂t
+∇ · (αhuh)

−κ∆αh − Ṡα(α
h, Ph)

ρv
;

• the stabilization parameter τϕ reads:

τϕ(u
h) =

[( σ

∆t

)2

+ uh ·Guh

+CIκ
2G : G+ s2

]−1/2

.

G is the element controvariant metric ten-
sor: Gij =

∑3
k=1

∂ξk
∂xi

∂ξk
∂xj

, where x = {xi}3i=1

are the physical coordinates of element K
and ξ = {ξi}3i=1 the coordinates in para-
metric space, CI = 60 · 22−r, s = ∂Ṡα(α,P )

∂α .
3. Evaluate αh

n+1 on the Gaussian quadrature
points of the elements of the computational
grid;

4. Solve a time step of the SUPG-stabilized,
semi-implicit mixture mass and momentum
conservation system:
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find {uh
n+1, P

h
n+1} ∈ Vh

g :

(
ρh(αh

n+1)
ασu

h
n+1 − uh

n,BDFσ

∆t
,vh

)
+
(
ρh(αh

n+1)u
h
n+1,EXTσ

· ∇uh
n+1,v

h)
+(2µh(αh

n+1)∇Suh
n+1,∇vh)− (

Ph
n+1,∇ · vh)

+
(
∇ · uh

n+1, q
h)

−
(( 1

ρv
− 1

ρl

)
Ṡα(ρ

h(αh
n+1), P

h
n+1), q

h
)

+
∑

K∈Th

[(
τM (uh

n+1,EXTσ
)rM (αh

n+1,u
h
n+1, P

h
n+1)),

ρhuh
n+1,EXTσ

· ∇vh +∇qh
)
K
+

+
(
τC(u

h
n+1,EXTσ

)rC(α
h
n+1,u

h
n+1, P

h
n+1)),

∇ · vh
)
K

]
=

=
(
hn+1,v

h)
ΓN

,

∀{vh, qh} ∈ Vh
0 , for all n ≥ σ − 1.

The terms under the sum are the SUPG
stabilization terms, where:

• rM is the residual of the momentum
equation for the mixture:

rM (αh,uh, Ph) = ρh
∂uh

∂t
+ ρhuh · ∇uh

+∇Ph − µh∆uh;

• rC is the residual of the continuity
equation for the mixture:

rC(α
h,uh, Ph) = ∇ · uh

−
( 1

ρv
− 1

ρl

)
Ṡα(α

h, Ph);
(9)

• the stabilization parameter τM reads:

τM (αh,uh) =
[
ρh

2
( σ

∆t

)2

+ ρh
2
uh ·Guh

+Crµ
h2G : G

]−1/2

• the stabilization parameter τC reads:

τC(α
h,un) =

(
τMg · g

)−1
.

Cr = 60 · 22−r and g is the metric tensor
defined as: gi =

∑3
k=1

∂ξk
∂xi

.
We highlight that in the problem solved at step
2, we use the explicit formulation of the pres-
sure P h

n+1,EXTσ
in the definition of Ṡα, whereas

in step 4, we use the implicit formulation P h
n+1.

This is done to foster the staggered solver sta-
bility and is supported by an estimate of the en-
ergy on the mixture velocity and confirmed by
numerical results.

4. Numerical results
In this section we present the numerical results
on the three different benchmarks. We first
define two dimensionless groups governing the
flow: the Reynolds and the cavitation number:

Re =
ρuD

µ
,

σcav =
P − Pv

1/2ρu2
,

(10)

(11)

in each of the following sections, we provide the
values of these two numbers, as well as the refer-
ence velocity u and pressure P for the adimen-
sionalization.
As for the fluid properties, we select the blood
literature values for density and viscosity for
both liquid and vapor phases at 37◦C:

ρl = 1060 kg/m3, µl = 3.30 · 10−3 Pa·s,
ρv = 0.485 kg/m3, µv = 4.71 · 10−5 Pa·s.

4.1. Numerical simulation of the cav-
itating cylinder benchmark

As a first benchmark, we study the transient
cavitation over a circular cylinder. It allows
a simple representation of cavitation phenom-
ena over bluff bodies. We validate and com-
pare results with [3] by choosing the same value
for the Reynolds number computed with the in-
let velocity: Re = 200. Non-cavitating results
(σcav = 2.0) are compared to cavitating results
(σcav = 1.0).
As for the boundary conditions, we impose a
Dirichlet time evolving ramp velocity profile at
the inlet, a no-slip condition on the cylinder sur-
face, zero normal flux on the channel walls and a
homogeneous pressure boundary on the outlet.
Regarding the vapor fraction α, we impose a ho-
mogeneous Dirichlet boundary condition (BC)
on the inlet and a homogeneous Neumann BC
on the outlet, channel walls and cylinder sur-
face.
As the liquid accelerates past the bluff body,
pressure drops in the shear layer, resulting in
cavitation inception. The shear layer rolls up
into vortexes with cavitating cores, as shown in
Figure 1, they are shed from the body into the
wake and collapse. The model, compared to [3],
predicts accurately:
• the bubble inception location on the cylin-

der surface, which is at an angle θ = 65◦

from the stagnation point;
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Figure 1: Instantaneous vapor fraction contour.

Figure 2: Mean pressure coefficient distribution
on the cylinder surface: σcav = 2.0, σcav =
1.0.

• the decreasing in the magnitude of the min-
imum value of the pressure coefficient on
the cylinder surface CP = P−P∞

1/2ρlu2
∞

, plotted
in Figure 2. This occurs because once the
flow cavitates, the pressure in the vapor re-
gion remains close to the vapor pressure;

• the divergence of the velocity field, plotted
in Figure 3. Positive values of velocity di-
vergence correspond to vapor bubble forma-
tion; negative values of divergence are in-
stead due to some bubble collapsing back
to the liquid phase;

• the unsteady loads on the cylinder: cavi-
tation reduces the Strouhal number com-
puted using the vortex shedding frequency
by 11%, a similar result is found in [3].

4.2. Numerical simulation of the noz-
zle FDA benchmark

As second test case we consider the FDA nozzle
benchmark. Its geometry was proposed by the
US Food and Drug Administration (FDA) as a
reference to validate CFD codes for biological
simulations of the circulatory system in [4] and
is shown in Figure 4. Analogous Venturi-like
configurations are typical in mechanical heart
valves (MHVs). We evaluate two different sets

Figure 3: Divergence of the velocity field.

Figure 4: FDA geometry. Image taken from [4]

of boundary conditions at the inlet: a ramp and
pulsatile inlet velocity. We set a no-slip bound-
ary condition on the nozzle walls and a pres-
sure BC on the outlet. For α, we set homoge-
neous Dirichlet on the inlet and homogeneous
Neumann on the nozzle walls and at the outlet.
The Reynolds number and the cavitation num-
ber are computed using the mean velocity in the
throat: Re = 500, σcav = 0.23.
The main outcomes are:
• in both the ramp and pulsatile case, when

the maximum value of the inlet velocity is
reached, a jet develops in the expansion re-
gion of the nozzle, resulting in local pressure
drops near the front that induce cavitation
as shown in Figure 5;

• positive values of vapor fraction are also
produced at the end of the throat due to lo-
cal pressure drops, and accumulated in the
region near the step due to the recirculating
flow generated by the jet;

• in the case of the pulsatile flow, when the
inlet velocity decreases, pressure drops in
the whole domain resulting in cavitation in
the throat. This is observed also in experi-
mental studies of cavitation across MHVs;

• the shear stresses and the wall shear stresses
in the non-cavitating and cavitating case
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Figure 5: Tridimensional view of the α contours.
In the backgorund the axial velocity contour is shown.

Figure 6: Flow streamlines colored by velocity
magnitude. Instance at t = 0.625T .

are computed. When cavitation is active,
the stresses are higher, resulting in an en-
hanced damage on the nozzle walls and on
the blood tissue. This confirms the need to
model cavitation to estimate shear stresses
in blood flows across MHVs.

4.3. Numerical simulation of an ide-
alized valve geometry

As a third case study, we consider a simpli-
fied geometry of a bileaflet MHV, modelled as
a straight cylinder with two semicircular leaflets
in a fixed position, as shown in Figure 6. We set
a homogeneous Dirichlet boundary condition on
the inlet for α, and a homogeneous Neumann
on the other boundaries (channel wall, outlet,
leaflet surface). We set a pulsatile inlet condi-
tion on the velocity, no-slip on the channel walls
and on the leaflets, and a pressure BC on the
outlet. The values of the flow rate, periodicity
T , and pressure are chosen accordingly to avail-
able data on the mitral valve dynamics.
The main results of this test case are:

• the cavitation model provides good results
by means of velocity distribution and tur-
bulent instantaneous structures, visualized
through Q-criterion contours: the cavita-
tion model proves suitable for turbulent

(a) t = t0 (b) t = t0+20 ms(c) t = t0+40 ms

Figure 7: Vapor bubble collapse dynamics.

Figure 8: Tridimensional view of the α contours.

regimes (Re = 4900);
• we find a peek velocity of 3 m/s across

the valve as shown in Figure 6; this
value matches the experimental results on
squeeze flows across MHVs;

• in the wake, the vapor bubbles have a life-
time of the order of 10− 20 ms, this result
matches the experimental measurements by
[2]. Recirculating flows convey vapor bub-
bles towards the valve, where they collapse.
Figure 7 shows instances of a vapor bubble
dynamics. Figure 8 shows the α contour
t = 0.75T ;

• we find larger values of the shear stress if
cavitation bubbles interact with the leaflets,
with respect to the non-cavitating regions.

5. Conclusions
The model showed effective in predicting the oc-
currence of cavitation, providing consistent re-
sults with the literature. Moreover, we demon-
strated the relevance of modelling cavitation
to accurately predict the flow features such as
the pressure distribution, the velocity divergence
and the shear stresses, which are crucial to de-
termine the deterioration effects of cavitation on
the blood tissue and the valve structure. Nu-
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merical results confirmed the efficacy of the pro-
posed method which provides a tool that can be
adopted in the MHVs engineering, towards im-
proved designs and clinical applications. Future
developments of this work can include tests on
more complex and more realistic geometries, as
well as extensions to the model to account for
the motion of the leaflets, and a coupling with a
turbulence model.
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Abstract

This work aims at modelling cavitation phenomena occurring in blood flows. Cavitation
is a phenomenon in which the static pressure of a liquid falls below the liquid’s vapour
pressure, leading to the formation of small vapor-filled cavities. Several in vitro and in
vivo studies demonstrated that cavitation is likely to occur in blood flows in individuals
with an implanted mechanical heart valve prosthesis, however numerical simulation of
these phenomena is still limited. The main objective of the work is to provide an effec-
tive computational tool to numerically simulate and predict the occurrence of cavitation
towards better designs and clinical implications. The Zwart-Gerber-Belamri model, an
homogeneous Volume of Fluid mixture model, is selected to model cavitation. We pro-
vide and implement a proper discretization by means of the finite element method in a
finite element library. Three different geometries are considered to test the model: simple
geometries allow a direct comparison with literature results, whereas some insights are
provided when complex geometries are considered to model the occurrence of cavitation
across mechanical heart valves towards better designs. The cavitation model demon-
strated capable of predicting cavitation in a wide range of geometries and conditions;
numerical results confirmed that cavitation effects have to be considered to properly pre-
dict the flow features, especially the shear stresses across the valves, and their clinical
consequences.

Keywords: Heart cavitation, Zwart cavitation model, VOF, MHVs





Abstract in lingua italiana

Questa tesi si pone come obiettivo modellare i fenomeni di cavitazione che si verificano
nell’apparato cardiocircolatorio. La cavitazione è un fenomeno in cui la pressione di un
liquido scende sotto la pressione di vapore del liquido stesso, portando alla formazione di
piccole cavità di vapore. Diversi studi in vitro ed in vivo hanno dimostrato che fenomeni
di cavitazione si verificano spesso nel flusso sanguineo di pazienti con protesi meccaniche
di valvole cardiache, tuttavia la simulazione numerica di questo fenomeno è molto limi-
tata. L’obiettivo principale di questa tesi è quindi quello di fornire uno strumento com-
putazionale efficace per modellare e prevedere il verificarsi di fenomeni di cavitazione verso
migliori design e implicazioni cliniche. Il modello di Zwart-Gerber-Belamri, un modello di
miscela omogenea Volume of Fluid, è scelto per modellare la cavitazione. Viene discretiz-
zato attraverso il metodo degli elementi finiti e implementato in una libreria ad elementi
finiti. Tre diverse geometrie vengono considerate per testare il modello: le geometrie più
semplici permettono un confronto diretto con i risultati presenti in letteratura, mentre
geometrie più complesse portano a diverse considerazioni utili a migliorare il design delle
valvole. Il modello di cavitazione si è dimostrato efficace nel predirre la cavitazione in
un ampio spettro di geometrie e condizioni; i risultati numerici hanno confermato che gli
effetti della cavitazione sono da tenere in considerazione per valutare correttamente le
caratteristiche dei flussi sanguinei, specialmente gli shear stresses a cavallo delle valvole,
e le loro conseguenze cliniche.

Parole chiave: Heart cavitation, Zwart cavitation model, VOF, MHVs
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1

Introduction

Although the word cavitation was firstly coined by R.E. Froude and then cited by Barnaby
and Thornycroft in 1895 [78], this phenomenon was discovered much earlier by L. Euler in
his studies on water turbines in 1754 [17]. In the last century, cavitation phenomena have
been observed and studied in a countless of engineering and research fields [8, 40, 81]. In
this thesis work we focus on cavitation effects in biomedical applications, more precisely
on numerical modelling of cavitation occurring in blood flows.

Cavitation in blood mainly occurs in the presence of implanted mechanical valves reg-
ulating the flow, when native valves are replaced by mechanical prostheses. The first
phenomenological observations are dated back in the early 90s [41], when in vitro experi-
ments on a mechanical heart valve (MHV) demonstrated the valve’s tendency to cavitate.
In more recent years, cavitation have been studied to engineer better valve designs and
avoid several drawbacks associated with these phenomena [60]: cavitation, indeed, short-
ens the operating life of the prostheses due to the accelerated valves damage caused by
the collapsing bubbles and the higher shear stresses deteriorate the blood tissue, making
the use of anticoagulants compulsory [16].

In the literature different studies provide suggestions for improved designs that limit the
occurrence of cavitation as, for example, through the use of softer materials [59]. However,
the problem is still considered an open question and numerical studies on cavitation across
mechanical valves are limited. For this reason, we propose a numerical model able to
predict cavitation and model cavitation effects.

We carried out a literature research on cavitation phenomena and on the most common
strategies employed to perform numerical simulations of cavitation. Cavitation in blood
flows occurs mostly in the form of cloud cavitation [63], thus it is not advisable to track
each liquid-vapor interface, instead a volume of fluid (VOF) method is preferable: in the
whole domain the local vapor volume fraction is computed at each timestep and the fluid
is considered as an homogeneous mixture of liquid and vapor phase. We adopted the
Zwart-Gerber-Belamri cavitation model [85], since it demonstrated effective in modeling
cavitation in Venturi-type geometries which resemble MHVs at the closing stage.
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We developed the formulation of the model, coupling the mixture mass and momentum
system with the equation describing the evolution of the vapor fraction. This resulted
in a non zero velocity divergence when some evaporation or condensation process takes
place, which provided a significant contribution in the energy estimate on the velocity.

We proposed a novel stabilized finite element formulation for the numerical modeling
of cavitating flows. For spatial discretization we relied on piecewise linear Lagrangian
polynomials; time discretization was performed by means of finite differences, in particular
Backward Differentation Formulas (BDF) [62] of order one. The fluid flow and cavitation
solvers have been implemented in lifex [3], a C++ FE library under development at
MOX laboratories at Politecnico di Milano, mainly focused on cardiac applications. The
two solvers have been coupled in a staggered partitioned manner for versatility: at each
timestep, the vapor fraction distribution is determined first, and then the homogeneous
mixture equations are solved for pressure and mixture velocity.

We have tested the model on different geometries: the first benchmark provided an ex-
ample of cavitation past bluff bodies and allowed a direct comparison with the literature
[26]; we then studied a benchmark proposed by the Food and Drug Administration (FDA)
to validate CFD codes for cardiovascular applications; finally a bileaflet valve geometry
at the closing stage is considered. We show that the model is effective in predicting the
occurrence of cavitation, providing consistent results with the literature. Moreover, we
demonstrated the relevance of modelling cavitation to accurately predict the flow features
such as the pressure distribution, the velocity divergence and the shear stresses, which
are crucial to determine the deterioration effects of cavitation on the blood tissue [36]. In
short, numerical results confirmed the efficacy of the proposed method which provided a
tool that can be adopted in the MHVs engineering, towards improved designs and clinical
applications.

The thesis is structured as follows: in Chapter 1 a literature review of cavitation phe-
nomena in blood flows and a review of the cavitation modelling strategies are presented.
In Chapter 2 the Zwart-Gerber-Belamri cavitation model in strong and weak formulation
is described; the dimensionless groups governing the flow are derived and the cavitation
number is defined. In Chapter 3 the problem is formulated by means of stabilized finite
elements and the coupling of the staggered solvers is discussed, providing details on the
solution algorithm. Chapters 4, 5 and 6 present the numerical results on different geome-
tries. In Chapter 4 the results of the cylinder benchmark are analyzed and compared to
the literature [26]. Chapter 5 is dedicated to the FDA nozzle benchmark. Chapter 6,
presents the results on a 3D geometry resembling a bileaflet MHV. Finally, in Chapter 7
we summarize the main findings of the thesis, highlighting possible extensions.
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1| Cavitation phenomenon

Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the
liquid’s vapour pressure, leading to the formation of small vapor-filled cavities. When
pressure recovers to values higher than the vapor pressure, bubbles collapse, generating
shock waves that can damage machinery.

This phenomenon is quite ubiquitous both in natural and industrial systems. One of the
most famous examples of cavitation in nature are pistol shrimps which are able to generate
a cavitating high speed water jet through a special shaped claw [39]; this ability is used
for stunning and hunting preys and for communication purposes. Cavitation has also
been studied in many engineering contexts, mainly the ones involving marine propellers
[20], hydrofoils [40], machinery [8] and mechanical valves [81], where cavitation needs to
be avoided to prevent damage caused by the bubbles collapse [56].

In more recent years researchers started to investigate possible applications of cavitation,
understanding that bubble collapse could produce some advantages in many engineering
fields. Examples include industrial mixing machines used to mix or break down suspended
particles in a colloidal liquid compound, such as paint mixture or milk [13]; cavitation can
play an important role in promoting the fuel and oxidizer mixing in fuel nozzles [6, 25].
Cavitation is exploited also in bioengineering applications, for instance in the destruction
of kidney stones in shock wave lithotripsy [24], industrial cleaning applications [72] and
for food and beverage applications, where it has been applied to egg pasteurization [4].

Despite having been studied in several fields of application, as depicted in the previous
paragraphs, cavitation is still considered a complex phenomenon, difficult to understand
and to predict through numerical modelling. The main purpose of the present work is
to focus on a specific application investigating the effects of cavitation in blood flows,
providing evidences of the need to consider this issue and proposing a numerical model
able to predict the occurrence of cavitation.
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1.1. Cavitation phenomena in blood flows

Cavitation in human blood circulation can seldom occur in physiological conditions: in an
healthy patient in rest condition, blood cavitation does not take place, whereas it is very
likely to occur for a patient who suffered from a heart valve disease and had the flawed
valve replaced with an implanted mechanical prosthesis [5]. The first valve replacement on
a human patient was performed in 1962 by surgeon Alfred Gunning from Oxford [50], and
nowadays approximately 280.000 cardiac valve substitutes are implanted globally every
year, half of which are mechanical valve prostheses (MVP) [82].

Starting from the early 90s, the issue of heart valve cavitation started receiving some
careful attention by several researchers, because of the increasing number of mechanical
valve installed. As first step these studies were mainly focused on in vitro phenomenon
observations [41], then some in vivo measurements were taken, measuring the high fre-
quency pressure fluctuations caused by cavitation bubble formation and collapse after
valve closure, mainly focusing on mitral MVPs [83]. Through a high fidelity, piezoelectric
pressure transducer the root mean square (RMS) value of the mitral pressure signal dur-
ing a 5 ms interval after valve closure was calculated and used as a measure of cavitation
intensity, finding good accordance with the in vitro set of measurements.

Right after the first experimental campaigns, researchers started wondering if the phe-
nomenon observed across the valve had the same nature of the already known propellers
cavitation or was due to other reasons. In 1999 Rambod et al. [63] provided a detailed
physical description of the measured cavitation phenomena across heart MVPs. High
intensity transient signals due to microbubbles and cloud cavitation have been recorded
at the instant of closure of all the different mechanical heart valves (MHV) tested by his
team. They postulated that, as in every phase transition process, cavitation is facilitated
by a local structural inhomogeneity in the fluid, as for example pre-existing gaseous nuclei
in the liquid. Then, two mechanisms appear to drive the growth of nuclei in the blood
stream: diffusion, which mildly enlarges the nuclei, followed by sudden pressure drop,
which initializes the rapid growth. The pressure drop is driven by the high trans-valvular
velocity reached at the valve closure, inducing a local pressure approximately equal to
the vapor pressure of water at the working temperature. These bubbles have a very short
lifetime of approximately 8− 10 ms and can be effectively described by cloud cavitation.
Some images taken from the original work of rambod et al. [63] are reported in Figure
1.1. They show the evolution of the cavitation clouds across a St. Jude Medical bileaflet
mechanical valve at closure.

Rambod [63] also observed that a few bubbles had a longer lifetime (1−2 s). He postulated
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(a) (b)

(c) (d)

(e)

Figure 1.1: The sequence of gas-filled microbubbles formation in a 29 mm mitral St. Jude
Medical bileaflet mechanical valve at closure. (a) End-diastolic period < 1 ms prior to complete
closure, (b) the burst at the instant of closure and formation of clouds of microbubbles (t0) (c) dissipation
of clouds at about t0 + 5 ms, (d) and (e) pressure recovery and growth of persisting gas-filled bubbles
at approximately t0 + 8 ms. Adapted from [63].

a physical explanation different from the cavitation cloud, due to the substantial difference
in characteristic times: the bubbles with a longer lifetime are hypothesized to be filled
with released gas due to the pressure drops. The longer bubble lifetime could be due to
the time needed to reabsorb the released gas in blood. N2 has proved to be the most
likely gas [22] to be responsible for this phenomenon.

Starting from the Rambod’s pioneering work, different researchers tried to understand
the reason for cavitation across mechanical heart valves. A comprehensive review of the
different studies is reported in [59].
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There are different types of prosthetic heart valves, which can be categorized as mechanical
valves or bioprosthetic valves, made from animal tissue. In this work, we mostly focus on
MHVs because it has been proven that bioprostheses are not likely to cavitate just as a
native heart valves [5]. However, mechanical heart valve have many advantages and their
lower risk to benefit ratio has led the American and European guidelines on valvular heart
disease to recommend the use of mechanical prostheses in patients younger than 60 years
of age [29]. Their main advantage with respect to bioprosthetic valves is the extended
lifetime. Indeed, valves made of animal tissue suffer of an accelerated structural valve
deterioration, requiring reoperation after 20 years on average [79].

Mechanical valves are mainly divided in two types: monoleaflet and bileaflet; Figure 1.2
shows examples of popular valve designs. Different studies demonstrated that both the
designs suffer from cavitation problems which is mainly due to the closing dynamic. In
monoleaflet valves, high velocity squeeze flows and hammer phenomenon are generated
when the leaflet hits the seat stop. This induces local pressure drops which lead to
cavitation inception. Reducing the contact area and the closing velocity is beneficial in
diminishing the cavitation effects [46], as well as more flexible leaflet tips [12]. In bileaflet
valves, cavitation is mainly due to the high speed squeeze flows generated during the
closure of the second leaflet [37] whereas large scale vortexes formed at the instance of
closure play a minor role in cavitation inception [44]. In vitro studies on mechanical
heart valves mounted in an electrohydraulic total artificial heart [43] demonstrated that
cavitation bubble density is higher in monoleaflet valves designs. This effect was motivated
with the higher closing velocity observed for the monoleaflet design with respect to bileaflet
valves.

After observing the cavitation phenomenon across mechanical heart valves, scientists tried
to understand the clinical implications of this phenomenon. The clinical relevance of cav-
itation is mostly related to cavitation clouds of small bubbles collapsing after a very short
lifetime of few milliseconds. The first clinical implication of cavitation is in fact due to the
collapse of the cavitation bubbles which can damage the mechanical heart valves structures
and the blood cells. Scanning electron microscopy of explanted valves revealed confined
areas of pitting and erosion on the leaflet and the housing after only 36 months of service
[38]. At the same time bubble collapse damages blood cells, inducing the release of cell
contents (fragments of monocytes and platelets) into the blood [36]. The release of tissue
factor into the bloodstream is the primary initiator of blood coagulation and thrombus
formation seen in patients with mechanical heart valve implants [66], making anticoag-
ulation therapies compulsory for patients with an implanted MHV. Another important
effect of cavitation is the formation of gaseous emboli. Potthast et al. [58] supported the
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Photographs of different MHVs. The upper row provides examples of
monoleaflet valves, whereas in the lower row bileaflet valves are shown. (a) Medtronic Hall
valve, (b) Björk-Shiley valve, (c) Omnicarbon valve, (d) St. Jude valve, (e) ATS valve, (f) Sorin valve.
Adapted from [42].

idea that cavitation is the key factor in the appearance of gaseous microemboli at heart
valve prostheses which have been identified also in the cranial circulation of some mechan-
ical heart valve patients through transcranial Doppler ultrasonography [53] representing
a serious threat for atherosclerotic stenosis of intracranial arteries leading to strokes [21].

As demonstrated in the previous paragraphs, cavitation phenomena can take place across
mechanical heart valves and a better understanding of these occurrences could have signif-
icant clinical implications. Numerical modelling of cavitation in blood flows would allow
for improved mechanical valves designs reducing one of the main drawbacks of these kind
of prostheses.

1.2. Modelling cavitation

Cavitation modeling involves the simulation of multiphase flows and poses great chal-
lenges, due to the need to track intefaces between the different fluid phases and the large
and discontinuous properties variations across them. Two different models are commonly
used for the simulations of multiphase and multicomponent flows.

The first set of models is a generalization of the two-fluid approach [64] where each
phase or component is considered to fill a distinct volume and the interfaces between
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the volumes are captured explicitly. Typical applications include front tracking methods
for the prediction of the motion of large bubbles in a liquid [80] and the capture of any
liquid-gas interface through phase-fields models [27]. In those kind of models, in order to
capture the transfer of mass for cavitation, an equation of state to correlate density and
speed of sound with pressure and temperature is required whereas no additional transport
equations are used for the vapor phase, whose void fraction is determined by the mixture
composition, known thanks to the interface tracking [47]. These methods have been tested
only on simple cases and geometries because they require a great computational effort and
are not able to effectively reproduce the small cavitation bubbles populating the bubble
clouds observed in the in vitro experiments.

In the second approach, the phases or the different components are spatially averaged,
and the fluid is considered as an homogeneous mixture. These methods are broadly
categorized as Volume of Fluid (VOF) [30], the Level Set (LS) [70] and the Coupled
Level Set-Volume of Fluid (CLSVOF) [77]. This class of methods assumes that the pure
liquid and vapor phases are incompressible and the two-phase mixture density can be
obtained as an interpolation based on a phase indicator coefficient, which is often written
as the local phase fraction of either the liquid or the vapor phase. Hence, in addition to the
Navier-Stokes system for the mixture there is a supplementary number of scalar transport
equations, depending on the number of fluid interfaces to capture. To describe a single
component cavitating flow, only one phase indicator is needed, representing e.g. the local
vapor volume fraction. In this framework, different models differ in their definition of the
rate of transfer of mass between different phases. Merkle et al. [49] used dimensional
arguments for bubble clusters to obtain a source term depending on the local pressure
and the liquid phase fraction. Later models by Schnerr-Sauer [68], Zwart et al. [85] and
Singhal et al. [73] assumed the cavities to be present in the form of clusters of spherical
bubbles. The volume fraction occupied by the vapor is considered as the sum of the small
vapor bubbles whose evolution is described by a simplified form of the Rayleigh-Plesset
equation [57] for spherical bubble dynamics. The source term is hence derived directly
from the Rayleigh-Plesset equation. The models differ in the phenomenological arguments
related to bubble-bubble interaction

VOF transport equation models have been applied to study several cavitating flow con-
figurations over hydrofoils [34], nozzles [25] and are the current standard models used to
study cavitation across industrial valves. We refer the interested reader to Quian et al.
[59] for a review. Regarding the specific problem of mechanical heart valves, although a
large number of researchers have done many studies on the flow characteristics and struc-
tural improvement of MHV, few consider cavitation effects and only rare examples are
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found in the literature. In a very recent work, Gao et al. [45],[60] presented a transient
computational model for computing the flow and cavitation characteristics of mechanical
heart valves, analyzing the mechanism of cavitation using an VOF homogeneous mix-
ture approach exploiting the Singhal [73] cavitation model, available in the commercial
software Fluent 17.2 (ANSYS Inc., USA) [2].

The points described in the previous paragraphs led us to consider an homogeneous mix-
ture model to include cavitation in the description of the fluid dynamics of blood flows. In
the next chapters the Zwart-Gerber-Belamri model [85] and its coupling with the Navier-
Stokes system is presented, as well as its numerical formulation and implementation within
a Finite Element library.
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2| Mathematical modeling of

cavitation

In this chapter the cavitation model selected for the implementation is developed and
described. First of all, a proper phase indicator is defined; then the strong form of
the governing equations is presented, motivating the need to couple the Navier-Stokes
system for the homogeneous mixture with a transport equation for the vapor fraction
phase indicator. After that, the Zwart cavitation model [85] is introduced, describing the
dimensional arguments that led to the expressions of the condensation and vaporization
terms. Finally, the dimensionless formulation of the coupled system is derived to highlight
the dimensionless groups characterizing the flow. Such dimensionless groups will become
relevant when validating our results against available literature data, in Chapter 4.

2.1. Governing equations

The strong form of the governing equations is presented before introducing the variational
formulation. Let Ω ∈ R3 be the physical domain and let Γ = ∂Ω be its boundary. We
denote by x ∈ Ω the spatial coordinates, and with t ∈ (0, T ] the temporal coordinate.
At each point of the domain the fluid consists of two phases, namely the liquid phase
and the vapor phase, and it is modeled as an homogeneous mixture. In the framework
of the volume of fluid (VOF) methods [30], we define two phase indicators αv(x, t) and
αl(x, t) to represent the volume phase fraction of the vapor and the liquid phase over the
two-phase liquid-vapor mixture, respectively:

αv =
Vv

Vm

, (2.1)

αl =
Vl

Vm

. (2.2)
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Since the sum of the volume occupied by vapor and liquid must be equal to the volume
of the mixture, there holds:

αv + αl = 1. (2.3)

Therefore, in a two phase mixture, only one independent phase indicator is needed to
fully determine the properties of the mixture. In this work the vapor volume fraction is
selected and will be denoted just as α:

αv = α,

αl = 1− α.

(2.4)

(2.5)

Once the phase indicator is defined, the physical properties of the mixture are obtained
as a combination of the properties of the liquid and vapor phases. The mixture density
ρm and the fluid viscosity µm read as:

ρm = αvρv + αlρl = αρv + (1− α)ρl,

µm = αvµv + αlµl = αµv + (1− α)µl,

(2.6)

(2.7)

where ρv and ρl are the vapor and liquid density respectively which are though to be
constant. The same notation holds for viscosity.

Once the phase indicators are defined, the governing equations can be written. The
equations are derived imposing conservation of momentum and mass of the mixture, as
well as conservation of mass for each phase. We recall the expression of the Navier-Stokes
system for an homogeneous mixture:

∂ρm
∂t

+∇ · (ρmu) = 0 in Ω× (0, T ],

∂(ρmu)

∂t
+∇ · (ρmu⊗ u) = −∇P +∇ · τ in Ω× (0, T ],

u = g on ΓD × (0, T ],

(−P I+ τ) · n̂ = h on ΓN × (0, T ],

u = u0 in Ω× {0}.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

where u(x, t) ∈ R3 is the mixture velocity, P (x, t) ∈ R is the pressure, τ(x, t) ∈ R3 × R3

is the deviatoric stress tensor, ΓD and ΓN are the Dirichlet and Neumann boundaries,
respectively.

In the next sections the strong form of the equation describing the evolution of the vapor
fraction and the Navier-Stokes system for the mixture are formulated.
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2.1.1. Vapor fraction transport equation

We prescribe the mass conservation for each of the individual mixture species, i.e. vapor
and liquid phases. The conditions take the form [85]:

∂ρvα

∂t
+∇ · (ρvαu) = Ṡαv in Ω× (0, T ],

∂ρl(1− α)

∂t
+∇ · (ρl(1− α)u) = Ṡαl

in Ω× (0, T ].

(2.9a)

(2.9b)

Equations (2.9a) and (2.9b) represent the conservation of mass for the sole vapor and
liquid transition respectively; Ṡαv and Ṡαl

are the mass transfer terms representing the
phase transition from liquid to vapor or vice versa. (2.9a) and (2.9b) are not independent
since only two phases are considered and the mass transfer terms are related: Ṡαv = −Ṡαl

.
This holds because the sum of the mass conservation equations of the sole vapor and liquid
phase is the mass conservation of the mixture which is granted by the continuity equation
for the mixture (2.8a). For this reason equation (2.9b) is not considered in the following
model and the Navier-Stokes system written for the mixture is coupled with only one
additional equation which is the mass conservation of the vapor fraction. In the following
the notation will be simplified and Ṡαv will be addressed just as Ṡα.

Dividing equation (2.9a) by ρv, the final form of the transport equation of the phase
indicator α is obtained:

∂α

∂t
+∇ · (αu) = Ṡα(α, P )

ρv
in Ω× (0, T ]. (2.10)

The right-hand side of the transport equation, Ṡα(α, P ), is the term regulating the mass
transfer between the liquid and the vapor phase and depends on the specific cavitation
model. The derivation and the expression for Ṡα(α, P ) is presented in section 2.1.4.

In the following, equation (2.10) is modified introducing a diffusive term κ∆α in order
to regularize the interfaces between fluid volumes with null and finite value of alpha
and facilitate the numerical solution of the vapor fraction equation. The influence of
the diffusion coefficient κ is evaluated when the numerical results of the benchmarks are
presented in Chapter 4 and 5; this is done to avoid introducing an artificial bias in the
solution. The equation for α, hence reads:

∂α

∂t
+∇ · (αu) + κ∆α =

Ṡα(α, P )

ρv
in Ω× (0, T ]. (2.11)
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2.1.2. Mixture mass conservation

The mass conservation of the mixture (2.8a), reads:

∂ρm
∂t

+∇ · (ρmu) = 0 in Ω× (0, T ]. (2.12)

During cavitation and condensation, the mixture flow is affected by strong variations of
density; therefore to foster the stability of the solver the continuity equation is first written
using its non-conservative formulation as suggested in [75]:

∂ρm
∂t

+ ρm∇ · u+ u · ∇ρm = 0 in Ω× (0, T ]. (2.13)

Equation (2.13) is then rewritten to obtain a leaner formulation: taking the material
derivative of equation (2.6) one can write:

∂ρm
∂t

+ u · ∇ρm = (ρv − ρl)
(∂α
∂t

+ u · ∇α
)
. (2.14)

Substituting in equation (2.14) the identities (2.10) and (2.13), one obtains:

−ρm(∇ · u) = (ρv − ρl)
( Ṡα

ρv
− α(∇ · u)

)
; (2.15)

re-arranging terms:

(ρvα + ρl(1− α))(∇ · u) = (ρl − ρv)
( Ṡα

ρv
− α(∇ · u)

)
; (2.16)

collecting ∇ · u, the final form of the continuity equation for the mixture is obtained:

∇ · u =
ρl − ρv
ρvρl

Ṡα =
( 1

ρv
− 1

ρl

)
Ṡα. (2.17)

Therefore, we consider the following form for the continuity equation of the mixture:

∇ · u =
( 1

ρv
− 1

ρl

)
Ṡα in Ω× (0, T ]. (2.18)

We remark that the divergence of the mixture velocity is no longer zero, as for incom-
pressible flows, because local dilation and compression effects are introduced by the finite
mass transfer rate. The incompressibility constraint for each isolated phase is still valid,
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indeed if no mass exchange between liquid and vapor happens, Ṡα = 0, and equation
(2.18) reduces to ∇ · u = 0.

2.1.3. Mixture momentum conservation

The momentum conservation of the mixture (2.8b), reads:

∂(ρmu)

∂t
+∇ · (ρmu⊗ u) = −∇P +∇ · τ in Ω× (0, T ]. (2.19)

We assume the fluid to be Newtonian, so that τ can be written as a function of the flow
velocity u and first and second viscosities µm and λm:

τ = µm[(∇⊗ u) + (∇⊗ u)T ] + λm(∇ · u) = 2µm∇S(u) + λm(∇ · u), (2.20)

where the symmetric gradient-gradient formulation has been introduced:

∇S(u) =
1

2
[(∇⊗ u) + (∇⊗ u)T ]. (2.21)

For simplicity, we will assume λm = 0 so that

τ = 2µm∇S(u). (2.22)

The left-hand side of the equation (2.19) can be rewritten in non-conservative form, ex-
panding the transport term and subtracting the continuity equation of the mixture (2.8a)
multiplied by the flow velocity u. With the Einstein notation, there holds:

(
∇ · (ρmu⊗ u)

)
i
= ∂jρmuiuj = ui∂j(ρmuj) + ρmuj∂jui =

(
u∇ · (ρmu)

)
i
+
(
ρmu · ∇u

)
i
,

(2.23)
thus, it follows:

∂(ρmu)

∂t
+∇ · (ρmu⊗ u) =

= ρm
∂u

∂t
+

������������[
u
∂ρm
∂t

+ u∇ · (ρmu)
]
+ ρmu · ∇u =

= ρm
∂u

∂t
+ ρmu · ∇u.

(2.24)

The final strong formulation of the momentum equation is:

ρm
∂u

∂t
+ ρmu · ∇u+∇P −∇ ·

(
2µm∇S(u)

)
= 0 in Ω× (0, T ]. (2.25)
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2.1.4. Zwart cavitation model

In section 2.1.1, the expression of the generic transport equation for the vapor volume
fraction (2.11) has been derived. In this section the expression of the liquid-vapor mass
transfer Ṡα is presented following, the model proposed by Zwart et al. [85].

Like in other cavitation models [68, 73], the expression of Ṡα is derived from the Rayleigh-
Plesset equation which describes the growth of a vapor bubble in a liquid [57]:

RB
d2RB

dt2
+

3

2
(
dRB

dt
)2 +

2σ

RB

=
P − Pv

ρl
, (2.26)

wherein RB represents the bubble radius, σ represents the surface tension coefficient, and
Pv represents the vapor pressure.

Following [68] and [73], Zwart neglected the second order terms and the surface tension
obtaining a simplified expression for the evolution of the bubble radius RB:

dRB

dt
=

√
2

3

Pv − P

ρl
. (2.27)

Equation (2.27) is called the Rayleigh relation and it is considered an adequate description
for the so-called inertia controlled bubble growth if the system pressure is sufficiently low
and the pressure difference Pv − P is large [68].

The volume of a single bubble is VB = 4
3
πR3

B, hence the rate of change of mass of a single
bubble can be computed as:

dmB

dt
= 4πR2

Bρv

√
2

3

Pv − P

ρl
. (2.28)

If there are NB bubbles per unit volume, and they are assumed to have the same radius
RB, then it is possible to express the vapor volume fraction as:

α = VBNB =
4

3
πR3

BNB. (2.29)

The total interphase mass transfer rate is hence obtained as:

Ṡα = NB
dmB

dt
=

3αρv
RB

√
2

3

Pv − P

ρl
. (2.30)
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The definition of Ṡα provided in (2.30) has been derived assuming that bubbles only grow,
i.e. that mass is only transferred from the liquid to the vapor phase (vaporization). It
can be generalized to include condensation:

Ṡα = F
3αρv
RB

√
2

3

|Pv − P |
ρl

sign(Pv − P ), (2.31)

introducing an empirical calibration coefficient F .

Zwart [85] argued that (2.31) represents well condensation, whereas it is not physically
correct in modeling vaporization because it has been obtained assuming that no bubble-
bubble interaction takes place. This is true only for the early stages of cavitation, whereas
when the vapor fraction increases, the generation of new bubbles must decrease accord-
ingly. To account for this, (2.31) is modified introducing the nucleation site volume
fraction rnuc, and replacing α with rnuc(1− α) during vaporization, so that vaporization
decreases as alpha increases.

The final form of mass transfer terms of the cavitation model is the following:

Ṡα(α, P ) =

Fvap
3rnuc(1− α)ρv

RB

√
2

3

max(Pv − P, 0)

ρl︸ ︷︷ ︸
(vaporization)

−Fcond
3αρv
RB

√
2

3

max(P − Pv, 0)

ρl︸ ︷︷ ︸
(condensation)

. (2.32)

In (2.32), the first part of the right-hand side represents the vaporization term, which is
active only when the local pressure is lower than the mixture vapor pressure, whereas the
second part is the condensation term.

Substituting (2.32) in (2.10), the Zwart vapor fraction transport equation is obtained:

∂α

∂t
+∇ · (αu) + κ∆α =

Fvap
3rnuc(1− α)

RB

√
2

3

max(Pv − P, 0)

ρl
− Fcond

3α

RB

√
2

3

max(P − Pv, 0)

ρl
.

(2.33)

Zwart [85] provided values for the model parameters, calibrated to match experimental
data for a variety of fluids and devices. Their meaning, value and unit of measure are
summarized in Table 2.1.
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Evaporation coefficient Fvap = 50 [-]

Condensation coefficient Fcond = 0.01 [-]
Nucleation volume fraction rnuc = 10−4 [-]

Nucleation site radius RB = 10−6 [m]

Table 2.1: Original Zwart model constants.

2.2. Dimensionless formulation

In this section the dimensionless formulations of the mass and momentum conservation
for the flow mixture and the transport equation for the vapor fraction are obtained. This
is done to identify the proper dimensionless groups and scaling factors that can be used
to compare numerical results with data from the literature. In addition to the Strouhal
number St, Euler number Eu and Reynolds number Re, we introduce the definition of the
cavitation number σ, the liquid-vapor density and viscosity ratios Rρ and Rµ and Reκ,
the dimensionless group associated with the diffusion parameter κ.

We introduce the dimensionless variables (ρ̄, µ̄ ū, x̄, t̄, P̄ , κ̄, ∆P̄ ) through suitable scaling
factors, as follows:

ρ = ρ0ρ̄ = ρ0ρ̄l[α
ρv
ρl

+ (1− α)],

µ = µ0µ̄ = µ0µ̄l[α
µv

µl

+ (1− α)],

u = u0ū,

x = L0x̄,

t = t0t̄,

P = P0P̄ ,

κ = κ0κ̄,

P − Pv = (P0 − Pv)∆P̄ = ∆P0∆P̄ .

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The other constant dimensional parameters, as the vapor density ρv, the liquid density
ρl, the vapor viscosity µv, the liquid viscosity µl and RB are scaled consistently with the
corresponding variables in (2.34)-(2.41).
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2.2.1. Vapor fraction transport equation

Starting from the strong form of the vapor fraction transport equation (2.33), and sub-
stituting the adimensionalizations (2.34)-(2.41), we obtain:

1

t0

(∂α
∂t̄

)
+

u0

L0

(
∇̄ · (αu)

)
+

κ0

L2
0

(
κ̄∇̄2α

)
=

√
∆P0

L0
√
ρ0

(
Fvap

3rnuc(1− α)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
− Fcond

3α

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
,

(2.42)

L0

u0t0

(∂α
∂t̄

)
+
(
∇̄ · (αu)

)
+

κ0

u0L0

(
κ̄∇̄2α

)
=√

∆P0

ρ0u0

(
Fvap

3rnuc(1− α)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
− Fcond

3α

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
.

(2.43)

From the above, we introduce the definition of the Strouhal number St:

St =
L0

u0t0
, (2.44)

the adimensional group associated with the diffusion Reκ:

Reκ =
u0L0

κ0

, (2.45)

and the cavitation number σ:

σ =
P0 − Pv

1
2
ρ0u2

0

. (2.46)

Substituting the definition of the adimensional groups defined previously, we obtain the
non-dimensional transport equation for α:

St
(∂α
∂t̄

)
+
(
∇̄ · (αu)

)
+

1

Reκ

(
κ̄∇̄2α

)
=√

σ

2

(
Fvap

3rnuc(1− α)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
− Fcond

3α

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
.

(2.47)
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2.2.2. Mass conservation

We rewrite the continuity equation (2.33) using the adimensionalizations (2.34)-(2.41):

u0

L0

(
∇̄ · ū

)
=

ρ0
√
∆P0

L0ρ0
√
ρ0

(
(

1
ρv
ρl
ρ̄l
− 1

ρ̄l
)Fvap

3rnuc(1− α)(ρv
ρl
ρ̄l)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
+

−Fcond

3α(ρv
ρl
ρ̄l)

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
,

(2.48)

(
∇̄ · ū

)
=

√
∆P0

ρ0u2
0

(
(

1
ρv
ρl
ρ̄l
− 1

ρ̄l
)Fvap

3rnuc(1− α)(ρv
ρl
ρ̄l)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
+

−Fcond

3α(ρv
ρl
ρ̄l)

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
.

(2.49)

We define the liquid-vapour density ratio Rρ as:

Rρ =
ρv
ρl

(2.50)

Substituting the definition of the cavitation number and of the density ratio in (2.49), the
non-dimensional mass conservation for the mixture is obtained:

(
∇̄ · ū

)
=

√
σ

2

(
(

1

Rρρ̄l
− 1

ρ̄l
)Fvap

3rnuc(1− α)(Rρρ̄l)

R̄B

√
2

3

max(−∆P̄ , 0)

ρ̄l
+

−Fcond
3α(Rρρ̄l)

R̄B

√
2

3

max(∆P̄ , 0)

ρ̄l

)
.

(2.51)

2.2.3. Momentum conservation

Replacing the definitions of the non-dimensional variables in the strong form of the mo-
mentum conservation for the mixture (2.25) the following holds:

ρ0u0

t0

(
ρ̄
∂ū

∂t̄

)
+

ρ0u
2
0

L0

(
ρ̄ū · ∇̄ū

)
+

P0

L0

(
∇̄P̄

)
− µ0u0

L2
0

(
∇̄ ·

(
2µ̄∇̄S(ū)

))
= 0, (2.52)

L0

u0t0

(
ρ̄
∂ū

∂t̄

)
+
(
ρ̄ū · ∇̄ū

)
+

P0

ρ0u2
0

(
∇̄P̄

)
− µ0

ρ0u0L0

(
∇̄ ·

(
2µ̄∇̄S(ū)

))
= 0. (2.53)
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It is possible to recognise and define the the Euler number Eu:

Eu =
P0

ρ0u2
0

, (2.54)

and the liquid-vapour viscosity ratio:

Rµ =
µv

µl

(2.55)

Substituting the definitions introduced above in (2.53) and making explicit the dependence
of the non dimensional density and viscosity on the respective ratios, the final form of the
non-dimensional momentum equation reads:

St
(
ρ̄(Rρ)

∂ū

∂t̄

)
+
(
ρ̄(Rρ)ū · ∇̄ū

)
+ Eu

(
∇̄P̄

)
− 1

Re

(
∇̄ ·

(
2µ̄(Rµ)∇̄S(ū)

)
= 0. (2.56)

2.3. Cavitation model in strong formulation

Coupling the mass conservation (2.18) and the momentum conservation (2.25) for the
mixture, with the equation describing the evolution of the vapor fraction (2.33), we state
the cavitation model in strong formulation.

Let us assume that Γ is subdivided in a subset ΓD, where Dirichlet conditions are pre-
scribed, and a subset ΓN , where Neumann conditions are set, such that Γ = ΓD ∪ ΓN . In
a time interval (0, T ] with T > 0, the problem reads:

ρ
∂u

∂t
+ ρu · ∇u+∇P −∇ ·

(
2µ∇S(u)

)
= 0 in Ω× (0, T ],

∇ · u−
( 1

ρv
− 1

ρl

)
Ṡα = 0 in Ω× (0, T ],

∂α

∂t
+∇ · (αu)− κ∆α− Ṡα(α, P )

ρv
= 0 in Ω× (0, T ],

u = g, α = γ on ΓD × (0, T ],

(−P I+ 2µ∇S(u)) · n̂ = h on ΓN × (0, T ],

(αu− κ∇α) · n̂ = η on ΓN × (0, T ],

u = u0, α = α0 in Ω× {0}.

(2.57)

The coupled problem reported in (2.57) is written using the conservative formulation of
the equation for α, since the transport term is written as ∇ · (αu). Another possibility
is considering the non-conservative formulation where ∇ · (αu) = α∇ · u +∇α · u. This
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reduces in a different expression for the boundary condition ΓN :

∂α

∂t
+ α∇ · u+∇α · u− κ∆α− Ṡα(α, P )

ρv
= 0 in Ω× (0, T ],

α = γ on ΓD × (0, T ],

(−κ∇α) · n̂ = η on ΓN × (0, T ],

α = α0 in Ω× {0}.

(2.58)

Both the conservative and non-conservative numerical formulation have been developed,
implemented and used to produce numerical results. However, in the following sections
of this document, only the conservative formulation is reported. When needed, the non-
conservative formulation is recalled and the differences with the conservative formulation
are highlighted.

2.4. Cavitation model in weak formulation

Let us introduce the following spaces:

Vg := {u ∈ [H1(Ω)]d : u|ΓD
= g},

V0 := {u ∈ [H1(Ω)]d : u|ΓD
= 0},

Q := L2(Ω),

Vg := Vg ×Q,

V0 := V0 ×Q.

The system of conservation of mixture mass and momentum in weak formulation reads:

for all t ∈ (0, T ], find U(t) = {u, P} ∈ Vg with u(0) = u0:

A(U,W) = A1(U,W) + A2(U,U,W) = L(W), (2.59)

for all W = {v, q} ∈ V0 with:

A1(U,W) =
(
ρ(α)

∂u

∂t
,v

)
+
(
2µ(α)∇Su,∇v

)
−
(
P,∇ · v

)
+

+
(
∇ · u, q

)
−

(( 1

ρv
− 1

ρl

)
Ṡα(ρ, P ), q

)
,

A2(U,U,W) = (ρ(α)u · ∇u,v),

L(V) = (h,v)ΓN
,

(2.60)

(2.61)

(2.62)
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where (·, ·) denotes the L2 inner product over Ω and (·, ·)ΓN
the inner product over ΓN .

A similar procedure is followed for the transport equation of the vapor fraction α; let us
define the spaces:

Φγ := {α ∈ [H1(Ω)]d : α|ΓD
= γ},

Φ0 := {α ∈ [H1(Ω)]d : α|ΓD
= 0}.

The α transport equation in weak formulation reads:

for all t ∈ (0, T ], find ϕ ∈ Φγ with α(0) = α0:

a(α, ϕ) = l(ϕ), (2.63)

for all ϕ ∈ Φ0 with:

a(α, ϕ) =
(∂α
∂t

, ϕ
)
−

(
αu,∇ϕ

)
+
(
κ∇α,∇ϕ

)
−
( Ṡα(α, P )

ρv
, ϕ

)
,

l(ϕ) = (η, ϕ)ΓN
.

(2.64)

(2.65)

Equation (2.59) and (2.64) represent the weak formulation of the coupled problem, let us
remark that (2.59) and (2.64) are coupled, since the mixture density and viscosity depend
on α and the velocity divergence depends on the liquid-vapor mass transfer rate Ṡα(α, P ).

In the non-conservative formulation, instead, the following holds:

a(α, ϕ) =
(∂α
∂t

, ϕ
)
+
(
α∇ · u+∇α · u, ϕ

)
+
(
κ∇α,∇ϕ

)
−
( Ṡα(α, P )

ρv
, ϕ

)
. (2.66)

In the Chapter 3 the spatial and temporal discretization are presented for both problems
(2.59) and (2.64) as well as the coupling strategy.
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In this chapter the numerical model for cavitation is presented. First the space discretiza-
tion of both (2.59) and (2.64) is developed introducing additional terms responsible for
the stabilization in (3.29) and (3.23). Then a full time-space discretization is derived,
highlighting the choices undertaken for the terms responsible for the coupling between
the vapor fraction transport equation and the system of mixture mass and momentum
conservation. The coupling strategy is presented and its effects on the coupling stability
and on the energy estimate on the velocity. Finally the numerical methods employed for
the advance in time are presented as well as some implementation details.

3.1. Vapor fraction transport equation

In this section, the weak formulation of the vapor fracion transport equation (2.64) is
spatially discretized. An additional stabilization term is added in (3.23) to face stabiliza-
tion problems arising for low values of the diffusion parameter κ, when (2.64) becomes a
transport-dominated problem.

3.1.1. Space discretization

Let us define the finite element spaces used for numerical discretization:

Φh := Φ ∩Xh
r ,

Φh
0 := Φ0 ∩Xh

r ,

wherein Xh
r is the space of piecewise Lagrangian polynomial functions of degree r ≥ 1 on

each element K of the partition T h of Ω:

Xh
r := {xh ∈ C0(Ω̄) : xh|K ∈ Pr,∀K ∈ T h}. (3.1)

The weak formulation of the equation describing the evolution of the volume vapor fraction
α can be spatially dicretized and the following Galerkin problem is obtained:
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for all t ∈ (0, T ), find αh ∈ Φh, with α(0) = α0:

(∂αh

∂t
, ϕh

)
−

(
αhuh,∇ϕh

)
+
(
κ∇αh,∇ϕh

)
−
( Ṡα(α

h, P h)

ρv
, ϕh

)
=

(
η, ϕh

)
ΓN

, (3.2)

for all ϕh ∈ Φh
0 .

In (3.2), uh and P h are respectively the discrete counterparts of u and P and are respon-
sible for the coupling with the system of mixture mass and momentum conservation.

3.1.2. SUPG stabilization of the vapor fraction equation

For low values of the diffusion parameter k, the equation for α becomes a convection-
dominated transport problem and thus the numerical method could produce numerical
instabilities and oscillations in the solution. To prevent these phenomena, a stabilization
strategy is proposed: a stabilized and strongly consistent method can be obtained by
adding a further term to the Galerkin approximation (3.2) [61], resulting in the following
problem:

∀t ∈ (0, T ), find αh ∈ Φh: a(αh, ϕh) + Lh(α
h, f ;ϕh) = (η, ϕh)ΓN

∀ϕh ∈ Ψh, (3.3)

for a suitable form Lh(α
h, f ;ϕh) satisfying

Lh(α
h, f ;ϕh) = 0 ∀ϕh ∈ Φh. (3.4)

A possible choice that verifies (3.4) is

Lh(α
h, f ;ϕh) =

∑
K∈Th

(
∂αh

∂t
+ Lαh − f, τϕI(β)(ϕh))L2(K), (3.5)

where

Lα = −κ∇α +∇ · (αu) + σα,

σα =
∂Ṡα(α, P )

∂α
α,

f = Ṡα(α, P )− σα.

(3.6)

(3.7)

(3.8)

β and τϕ are parameters to be determined, and

I(β)(ϕh) = LSS(ϕ
h) + βLs(ϕ

h). (3.9)
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In equation (3.9), LS and LSS are the symmetric and the skew-symmetric part of the
operator L, respectively. The choice β = 0 is made, which means that the additional term
Lh corresponds to the Streamline Upwind Petrov-Galerkin (SUPG) stabilization scheme
[9] which depends only on the skew-symmetric part of the linear operator L. In the
following sections we derive the skew-symmetric part of L, and we provide an expression
for the stabilization parameter τϕ.

Skew-symmetric part of the operator

Let V be a Hilbert space and V ′ its dual. An operator L : V → V ′ is symmetric if:

V ′⟨Lα, ⟩V = V ⟨α,Lϕ⟩V ′ ∀α, ϕ ∈ V, (3.10)

skew-symmetric when:

V ′⟨Lα, ϕ⟩V = − V ⟨α,Lϕ⟩V ′ ∀α, ϕ ∈ V. (3.11)

An operator can be split into the sum of its symmetric part LS and its skew-symmetric
part LSS, needed to obtain the expression of the SUPG stabilization term.

To identify LS and LSS, we consider two functions α, ϕ ∈ H1
0 (Ω), and starting from (3.6),

we rewrite the transport term as ∇ · (αu) = 1
2
(∇ · u)α + 1

2
u · ∇α + 1

2
∇ · (αu):

V ′⟨Lα, ϕ⟩V = −κ(∆α, v) + (
1

2
(∇ · u)α, ϕ) + (

1

2
u · ∇α, ϕ) + (

1

2
∇ · (αu), ϕ) + (σα, ϕ).

(3.12)

The diffusion term and (1
2
∇ · (αu), ϕ) are integrated by parts:

V ′⟨Lα, ϕ⟩V = κ(∇α,∇ϕ) + (
1

2
(∇ · u)α, ϕ) + (

1

2
∇α, ϕu)− (

1

2
αu,∇ϕ) + (σα, ϕ). (3.13)

The term resulting from diffusion is again integrated by parts. The same is done for
(1
2
∇α, ϕu). The other terms are rearranged to recognise their contribution in the expres-

sion of V ⟨α,Lϕ⟩V ′ .

V ′⟨Lα, ϕ⟩V = −κ(α,∆ϕ) + (α,
1

2
(∇ · u)ϕ)− (α,

1

2
∇ · (ϕu))− (α,

1

2
u · ∇ϕ) + (α, σϕ).

(3.14)
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Reordering terms, one can write:

V ′⟨Lα, ϕ⟩V = −κ(α,∆ϕ) + (α,
1

2
(∇ · u)ϕ) + (α, σϕ)− (α,

1

2
∇ · (ϕu))− (α,

1

2
u · ∇ϕ).

(3.15)
From the definition of L, the following holds:

V ⟨α,Lϕ⟩V ′ = −κ(α,∆ϕ) + (α,
1

2
(∇ · u)ϕ) + (α, σϕ) + (α,

1

2
∇ · (ϕu)) + (α,

1

2
u · ∇ϕ).

(3.16)

The comparison between equation (3.15) and (3.16), following the definitions provided in
(3.10) and (3.11) allows to write the expressions of the symmetric and skew-symmetric
part of the L operator:

L(·) = LS(·) + LSS(·), (3.17)

LS(·) = −κ∆(·) + 1

2
(∇ · u)(·) + σ(·), (3.18)

LSS(·) =
1

2
u · ∇(·) + 1

2
∇ · ((·)u). (3.19)

Choice of the stabilization parameter τϕ

Following what has been proposed in [7], τϕ is designed by asymptotic scaling arguments
developed within the theory of stabilized methods in [71] and [32]. The resulting expres-
sion for τϕ is the following:

τϕ =
[( σ

∆t

)2

+ u ·Gu+ CIκ
2G : G+ s2

]−1/2

, (3.20)

where σ is the order of the BDF scheme employed (see 3.3.1) and G is the element
controvariant metric tensor, which is defined as

Gij =
3∑

k=1

∂ξk
∂xi

∂ξk
∂xj

. (3.21)

x = {xi}3i=1 are the coordinates of the element K in physical space and ξ = {ξi}3i=1

the coordinates of the element K̂ in parametric space. ∂ξ
∂x

is the inverse Jacobian of
the element mapping between the reference and the physical domain. CI is a positive
constant, independent of the mesh size, derived from an element-wise inverse estimate
[19, 28], and based on the polynomial degree r of the finite element space: CI = 60 · 2r−2.
s the partial derivative of the mass transfer rate with respect to the local vapor fraction:
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s = ∂Ṡα

∂α
. For the Zwart model s reads:

s = −Fvap
3rnucρv
RB

√
2

3

max(Pv − P, 0)

ρl
− Fcond

3ρv
RB

√
2

3

max(P − Pv, 0)

ρl
. (3.22)

Stabilized weak formulation

The SUPG stabilization term is added to the weak formulation (3.2). The space dis-
cretized stabilized weak formulation of the α transport equation reads:

for all t ∈ (0, T ), find αh ∈ Φh, with α(0) = α0:

(∂αh

∂t
, ϕh

)
−

(
αhuh,∇ϕh

)
+
(
κ∇αh,∇ϕh

)
−
( Ṡα(α

h, P h)

ρv
, ϕh

)
+

+CS

∑
K∈T h

[(
τϕ(u

h)rϕ(α
h,uh, P h)),uh · ∇ϕh +

1

2
(∇ · uh)ϕh)

)
K

]
=

(
η, ϕh

)
ΓN

,

(3.23)

for all ϕh ∈ Φh
0 .

The first line represents the standard Galerkin finite element terms. The second line
consists of the SUPG stabilization terms where:

• K denotes a generic cell of the mesh Th;

• CS is an arbitrary coefficient, in the following CS = 1.0;

• the residual rϕ has the following expression:

rϕ(α
h,uh, P h)) =

∂αh

∂t
+∇ · (αhuh)− κ∆αh − Ṡα(α

h, P h)

ρv
; (3.24)

• the stabilization parameter τϕ has the following expression:

τϕ =
[( σ

∆t

)2

+ uh ·Guh + CIκ
2G : G+ s2

]−1/2

. (3.25)

3.2. Mixture mass and momentum conservation

In this section the space discretization of the system of the mixture mass and momentum
conservation is presented. In section 3.2.2, a stabilization term is added to (3.28), following
the same steps performed in section 3.1.2 to obtain (3.23).
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3.2.1. Space discretization

Let us define the finite element spaces for the numerical discretization:

Vh
g = V h

g ×Qh,

Vh
0 = V h

0 ×Qh.

(3.26)

(3.27)

where V h
g := Vg ∩ [Xh

r ]
3, V h

0 := V0 ∩ [Xh
r ]

3, Qh := Q ∩ Xh
r . The Galerkin problem for

(2.59) reads:

for all t ∈ (0, T ), find {uh, P h} ∈ Vh
g with uh(0) = u0:

(
ρh

∂uh

∂t
,vh

)
+
(
ρhuh · ∇uh,vh

)
+ (2µh∇Suh,∇vh

)
−

(
P h,∇ · vh

)
+

+
(
∇ · uh, qh

)
−

(( 1

ρv
− 1

ρl

)
Ṡα(ρ

h, P h), qh
)
=

(
h,vh

)
ΓN

,
(3.28)

for all {vh, qh} ∈ Vh
0 ,

In the formulation (3.28), ρh and µh are the mixture density and viscosity respectively,
computed as weighted mean of the liquid and vapor properties following the definitions
(2.6) and (2.7). The value of αh is computed on each quadrature point thanks to the
coupling with the transport equation.

3.2.2. Stabilization terms

The problem (3.28) is stabilized adding to the weak formulation the SUPG terms. Here
only the final form of the semi-discrete formulation is reported since the formulation of
the stabilization is already available in the literature [19]:

for all t ∈ (0, T ), find {uh, P h} ∈ Vh
g with uh(0) = u0:

(
ρh

∂uh

∂t
,vh

)
+
(
ρhuh · ∇uh,vh

)
+ (2µh∇Suh,∇vh

)
−

(
P h,∇ · vh

)
+

+
(
∇ · uh, qh

)
−
(( 1

ρv
− 1

ρl

)
Ṡα(ρ

h, P h), qh
)
+

+CS

∑
K∈Th

[(
τM(uh)rM(αh,uh, P h)), ρhuh · ∇vh +∇qh

)
K
+

+
(
τC(u

h)rC(α
h,uh, P h)),∇ · vh

)
K

]
=

(
h,vh

)
ΓN

,

(3.29)

for all {vh, qh} ∈ Vh
0 .
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The first and second line represent the Galerkin finite element terms. The third and
fourth line consist of the SUPG stabilization terms where:

• the residual rM has the following expression:

rM(αh,uh, P h) = ρh
∂uh

∂t
+ ρhuh · ∇uh +∇P h − µh∆uh; (3.30)

• the residual rC has the following expression:

rC(α
h,uh, P h) = ∇ · uh −

( 1

ρv
− 1

ρl

)
Ṡα(α

h, P h); (3.31)

• the stabilization parameter τM has the following expression:

τM(αh,uh) =
[
(ρh)2

( σ

∆t

)2

+ (ρh)2uh ·Guh + Cr(µ
h)2G : G

]−1/2

; (3.32)

• the stabilization parameter τC has the following expression:

τC(α
h,un) =

(
τMg · g

)−1
. (3.33)

In the above definitions Cr = 60 · 22−r as in (3.20) and g is the metric vector defined as:

gi =
3∑

k=1

∂ξk
∂xi

. (3.34)

3.3. Time discretization and coupling strategy

In this section the time discretization of (3.23) and (3.29) is analyzed, then the coupling
between the problems is described. A segregated approach is followed, as done in the
original model proposed by Zwart [85]. This provides two unique advantages compared
to monolithic couplings: firstly it ensures simplicity of linearization and implementation,
and secondly it provides the flexibility to possibly couple additional governing equations
as demanded by the case being studied. For example, additional equations for turbulence
modeling and the ALE mesh update can be similarly coupled using a staggered partitioned
method.



32 3| Numerical model

3.3.1. Time discretization

For time discretization, employ the Backward Difference Formula (BDF) [62], a family
of linear multi-step methods that approximates the derivative of a function at a specific
time step tn as a function of the prevoius timesteps (tn+1, tn−2, . . . ). The number of the
timesteps considered is the order of the BDF scheme, denoted with σ. Examples of BDF
schemes of order σ = 1 and σ = 2 are reported in the next paragraph.

Given a uniform timestep ∆t, uh
n, P h

n and αh
n are the approximations of uh, P h and αh at

time tn = n∆t. The time derivatives are therefore approximated as:

∂uh

∂t
≈

ασu
h
n+1 − uh

n,BDFσ

∆t
, (3.35)

∂αh

∂t
≈

ασα
h
n+1 − αh

n,BDFσ

∆t
, (3.36)

where

uh
n,BDFσ

=

 uh
n for σ = 1, if n ≥ 1;

2uh
n −

1

2
uh
n−1 for σ = 2, if n ≥ 2;

(3.37)

αh
n,BDFσ

=

 αh
n for σ = 1, if n ≥ 1;

2αh
n −

1

2
αh
n−1 for σ = 2, if n ≥ 2;

(3.38)

and

ασ =

 1 for σ = 1;

3

2
for σ = 2;

(3.39)

It is worth mentioning the choices undertaken to treat the non-linearities of the problem,
due to the convection term (ρuh · ∇uh) in (3.29) and the coupling of the two problems.
When needed, a semi-implicit approach is be used in which the non-linear terms uh

n+1 and
P h
n+1 are extrapolated at time tn+1 with Newton-Gregory polynomials [69] as follows:

uh
n+1,EXTσ

=

{
uh
n for σ = 1, if n ≥ 0;

2uh
n − uh

n−1 for σ = 2, if n ≥ 1;
(3.40)

P h
n+1,EXTσ

=

{
P h
n for σ = 1, if n ≥ 0;

2P h
n − P h

n−1 for σ = 2, if n ≥ 1.
(3.41)
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3.3.2. Fully discretized problem

The fully discrete formulation of problem (3.23) is:

find αh
n+1 ∈ Φh:

(ασα
h
n+1 − αh

n,BDFσ

∆t
, ϕh

)
−
(
αh
n+1u

h
n+1,EXTσ

,∇ϕh
)
+

+
(
κ∇αh

n+1,∇ϕh
)
−
( Ṡα(α

h
n+1, P

h
n+1,EXTσ

)

ρv
, ϕh

)
+

+
∑
K∈Th

[(
τϕ(u

h
n+1,EXTσ

)rϕ(α
h
n+1,u

h
n+1,EXTσ

, P h
n+1,EXTσ

)),uh
n+1,EXTσ

· ∇ϕh
)
K
+

+
(
τϕ(u

h
n+1,EXTσ

)rϕ(α
h
n+1,u

h
n+1,EXTσ

, P h
n+1,EXTσ

)),
1

2
(∇ · uh

n+1,EXTσ
)ϕh

)
K

]
=

=
(
ηn+1, ϕ

h
)
ΓN

,

(3.42)

for all ϕh ∈ Φh
0 , for all n ≥ σ − 1.

The fully discrete formulation of (3.29) is:

find {uh
n+1, P

h
n+1} ∈ Vh

g :

(
ρh(αh

n+1)
ασu

h
n+1 − uh

n,BDFσ

∆t
,vh

)
+
(
ρh(αh

n+1)u
h
n+1,EXTσ

· ∇uh
n+1,v

h
)
+

+(2µh(αh
n+1)∇Suh

n+1,∇vh
)
−
(
P h
n+1,∇ · vh

)
+

+
(
∇ · uh

n+1, q
h
)
−

(( 1

ρv
− 1

ρl

)
Ṡα(ρ

h(αh
n+1), P

h
n+1), q

h
)
+

+
∑
K∈Th

[(
τM(uh

n+1,EXTσ
)rM(αh

n+1,u
h
n+1, P

h
n+1)), ρ

huh
n+1,EXTσ

· ∇vh +∇qh
)
K
+

+
(
τC(u

h
n+1,EXTσ

)rC(α
h
n+1,u

h
n+1, P

h
n+1)),∇ · vh

)
K

]
=

=
(
hn+1,v

h
)
ΓN

,

(3.43)

for all {vh, qh} ∈ Vh
0 , for all n ≥ σ − 1,

In the source term Ṡα, the dependence on pressure is treated with an implicit strategy in
(3.43) and an explicit one in (3.42). In principle, the latter may introduce a constraint on
the choice of ∆t to ensure the stability of the scheme, but the energy estimate that will
presented in the section 3.4 and the computational results that are going to be discussed
in the next chapters show that such constraint is not extremely strict.

Regarding Ṡα in (3.43), an explicit treatment of pressure Ṡα(α
h
n+1, P

h
n ) would make such

term significantly large for large timesteps because the difference between the local pres-
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sure and the vapor pressure is not bounded. This would yield large values of the velocity
divergence and thus to high velocity values where cavitation occurs. On the other hand,
treating pressure implicitly limits the value of the right-hand side. This reasoning is
justified by the energy estimate on the velocity, which is presented in section 3.4.

3.3.3. Numerical methods and solver algorithm

In this section the numerical methods employed to solve (3.42) and (3.43) are presented
and the solver algorithm for the coupled problem is developed.

In order to numerically solve the coupled problem, a staggered approach is employed: the
transport equation of the vapor fraction and the mixture mass and momentum system
are solved sequentially at each timestep. In these settings the outline of the solution
procedure is the following:

We define a uniform partition tn = n∆t, n = 0, 1, . . . , of the time interval. The quantities
at time tn are known; then for each n = 0, 1, . . . ,

1. Evaluate uh
n+1,EXTσ

and P h
n+1,EXTσ

on the Gaussian quadrature points of the ele-
ments of the computational grid;

2. Solve a time step of the SUPG-stabilized, linear discrete vapor transport problem
stated in (3.42) to obtain the distribution of vapor fraction at the following timestep
αh
n+1;

3. Evaluate αh
n+1 on the Gaussian quadrature points of the elements of the computa-

tional grid;

4. Solve a time step of the SUPG-stabilized, semi-implicit mixture mass and momen-
tum conservation system stated in (3.43) to obtain the mixture velocity and pressure
at the following timestep uh

n+1 and P h
n+1.

In step 2, the linear system resulting from the discretization of the vapor fraction transport
equation is solved by the GMRES method [65], using the L2 norm of the absolute residual
as stopping criterion, with a tolerance of 10−7. The block-wise preconditioner aSIMPLE
[15], combined with an algebraic multigrid approximation of the single blocks, is employed
to speed up the solution of the linear system.

In step 4, the semi-implicit formulation is employed for the advection term. However, this
formulation is not linear because pressure is under a square root in Ṡα. The non-linear
system is solved by means of Newton’s method: at each non-linear step k = 1, 2, . . . , Nmax,
until convergence, the jacobian matrix and the residual vector are computed. The lin-
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earized system is solved for the increments δuk+1
n+1 and δP k+1

n+1 , and the solution is updated
as:

uk+1
n+1 = uk

n+1 − δuk+1
n+1;

P k+1
n+1 = P k

n+1 − δP k+1
n+1 .

(3.44)

(3.45)

3.3.4. Implementation details

The fully discretized problems (3.42) and (3.43) have been implemented in lifex [3], a high
performance Finite Element library, written in C++ and based on deal.II [1] finite element
core. The transport equation of the volume vapor fraction and the mass and momentum
conservation system are solved sequentially at each timestep, hinging upon specific C++
classes: the FluidDynamics class and the CavitationModel class. Another class, named
CavitationFluid, contains an instance of both FluidDynamics and CavitationModel and
it is responsible for the interaction between the two sub-classes.

The FluidDynamics class, already present in the library, has been modified to consider
the effect of the cavitation model on the Navier-Stokes system: when cavitation is active,
the continuity equation and the expression of the residuals are properly modified, as well
as the definition of the mixture density and viscosity, which have different values in the
domain, depending on the value of α on the quadrature points required for the assembling
of the finite element approximation of the problems.

The CavitationModel class has been developed from scratch; it is responsible for modelling
the transport equation for the volume vapor fraction by solving the fully discretized
problem (3.42).

The classes are able to interact thanks to the CavitationFluid class; this is needed because
the two problems are coupled by the variables α, u and P . Algorithm 1 briefly describes
the solution strategy: at each time step the values of the mixture velocity u and pressure
P are computed on the quadrature points and passed to CavitationModel. Then the finite
element system coming from the α transport equation is assembled considering velocity
and pressure as known parameters, resulting in a linear system in α.

Once the equation for α is solved, few sanity checks are performed. This is done because
the presence of high gradients, due to the interface between regions with positive and
null values for α, could produce unbounded oscillations of α. This problem is partially
addressed introducing the artificial diffusivity κ and choosing a small enough timestep but
still oscillations to negative value of α are possible. This is unphysical and could introduce
numerical instability because the value of α is directly related to the value of the local
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density and viscosity. For this reason, at the end of each timestep, the solution of the
equation for α is bounded between 0 and 1. This is a common practice in homogeneous
mixture models as the same is done in Fluent 17.2 (ANSYS Inc., USA) [2] for similar
cavitation models. At the same time, when cavitation is not active, meaning that P > Pv

in all the domain, numerical errors could produce a non-zero α field which is summed to
the value of α at the previous time step. This results in an unphysical accumulation of
α which produces numerical instabilities after several timesteps. Again, this problem is
solved through a sanity check on the value of α. If α ≤ 10−6, the effect of cavitation is
considered negligible, hence α is forced to be null.

Once the sanity checks have been performed, the value of α on the quadrature points is
passed to the FluidDynamics class, where the modified Navier-Stokes system is solved,
considering the value of α known. To foster the stability of the coupled solver, in the
continuity equation in (3.43) Pn+1 is used. This requires to use a non-linear solver for the
Navier-Stokes system as Ṡα is a non-linear function of the pressure in Zwart model [85].
For this reason the Navier-Stokes system is linearized and solved by means of Newton’s
method. The linearization process is handled directly by the Automatic Differentiation
(AD) tool available in deal.II [1]. The tool requires to use continuous functions, but
Ṡα ̸∈ C0(R) in the variable P due to the max function. For this reason in the actual
implementation, the max function is smoothed as following:

max(x1, x2) =
(x1 + x2) +

√
(x1 − x2)2 + ϵ

2
, (3.46)

with a small parameter ϵ = 10−6.

Once the Navier-Stokes system is solved, time advances to the next timestep, updating
the boundary conditions and the velocity and pressure values on the quadrature points.
Algorithm 1 schematically summarizes the solution strategy implemented in the software.

3.4. Energy estimate

In this section, we present an energy estimate on the mixture velocity. We compare
the estimate for the incompressible Navier-Stokes system to the same computed for the
mixture mass and momentum system employed in the cavitation model. This is done to
understand the effects on the energy estimate of the non-zero velocity divergence due to
evaporation and condensation processes occurring in cavitating flows. In this section, the
dependence of density and viscosity on alpha will be neglected; this allows to keep the
computation simpler and isolate and recognize the role of the non-zero divergence in the
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Algorithm 1 Partitioned coupling of mixture mass and momentum system with the vapor
fraction transport solvers
1: Input: u0, P0, α0

2: for n← 0 to nlast do
3: Compute velocity and pressure fields on quadrature points: un+1,EXTσ , Pn+1,EXTσ

4: Cavitation linear solver: Solve for αn+1

5: Perform sanity checks on αn+1

6: Output αn+1

7: Compute α on quadrature points: αn+1

8: Interpolate density and viscosity fields: ρ(αn+1), µ(αn+1)
9: for k ← 0 to convergence or kmax do

10: Newton non linear iteration:
11: Fluid dynamics linear solver: Solve for the update on un+1, Pn+1

12: end for
13: Output un+1 and Pn+1

14: end for

energy estimate.

If the incompressible Navier-Stokes system is considered:

ρ
∂u

∂t
+ ρu · ∇u− µ∆u+∇P = 0 in Ω× (0, T ],

∇ · u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u = u0 in Ω× {0}.

(3.47)

the following energy estimate holds [18]:

||u(t)||2L2 +

∫ t

0

µ||∇u(τ)||2L2dτ ≤ C||u(0)||2L2 , ∀t ∈ [0, T ), (3.48)

with some constant C = C(Ω) > 0. The energy estimate (3.48) can be obtained by
eliminating the pressure contribution with an Helmholtz-Leray projection and considering
that the advection term produces a null contribution in the energy balance. These two
considerations hold if only if velocity is a solenoidal field, hence it is not valid in the
cavitating case.

We consider the following system; in (3.49) the velocity divergence has a non null value
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in the domain Ω: 

ρ
∂u

∂t
+ ρu · ∇u− µ∆u+∇P = 0 in Ω× (0, T ],

∇ · u = k in Ω× (0, T ],

u = g on ∂Ω× (0, T ],

u = u0 in Ω× {0}.

(3.49)

Computing the energy estimate for (3.49) is a more difficult task because all the simpli-
fications performed thanks to ∇ · u = 0 are no longer valid.

Following the procedure developed in [18], we use a perturbation argument and write
u = v + E where E is the solution of the Stokes problem reported below with some
associated pressure h: 

ρ
∂E

∂t
− µ∆E+∇h = 0 in Ω× (0, T ],

∇ · E = k in Ω× (0, T ],

E = g on ∂Ω× (0, T ],

E = E0 in Ω× {0}.

(3.50)

Substituting the definition of u = v + E in (3.49), the system becomes:

ρ
∂v

∂t
− µ∆v + ρ(v + E) · ∇(v + E) +∇P ∗ = 0 in Ω× (0, T ],

∇ · v = 0 in Ω× (0, T ],

v = 0 on ∂Ω× (0, T ],

v = v0 in Ω× {0},

(3.51)

with associated pressure P ∗ = P − h and homogeneous conditions for v.

The system presented in (3.51) is called perturbed Navier-Stokes system. It is possible to
prove the following theorem which provides an energy estimate similar to the one obtained
in the incompressible framework [18]:

Theorem 3.1. Suppose:

v0 ∈ L2(Ω),

E ∈ Ls(0, T ;Lq(Ω), ∇ · E = k ∈ L4(0, T ;L2(Ω),

4 ≤ s <∞, 4 ≤ q <∞,
2

s
+

3

q
= 1,
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Then there exists at least one weak solution v of the perturbed system (3.51) in [0, T )×Ω

with initial data v0. The solution v satisfies with some constant C = C(Ω) > 0 the
following energy estimate1:

||v(t)||2L2
+

∫ τ

0

µ||∇v(τ)||2L2
dτ ≤ C

(
||v0||2L2

+

∫ t

0

||E(τ)||4L4
dτ

)
exp(C||k||42,4;t + C||E||sq,s;t),

(3.52)

for each 0 ≤ t < T .

Differently from the energy estimate for the incompressible Navier-Stokes system (3.48),
in (3.52), new terms appear in the upper bound of the energy estimate. Let us focus on
the definition of κ in the Zwart cavitation model:

k = Ṡα(α, P ) = Fvap
3rnuc(1− α)ρv

RB

√
2

3

max(Pv − P, 0)

ρl︸ ︷︷ ︸
(vaporization)

−Fcond
3αρv
RB

√
2

3

max(P − Pv, 0)

ρl︸ ︷︷ ︸
(condensation)

.

(3.53)

In the definition of k in the Zwart cavitation model, the pressure plays an important role
in the vaporization and condenstation terms: if at a specific timestep t∗, the pressure
reduces to below the vapor pressure, k is no longer zero and the upper bound of the
energy estimate at t∗ changes according to Theorem 3.1, since some energy contribution
is injected in the system. To limit the amount of energy injected in the system when some
liquid evaporates, the pressure in the definition of Ṡα in the mixture mass conservation
(3.43) is treated implicitly (Pn+1) as mentioned in section 3.3.2. By doing so, the resulting
pressure of the mixture does not reduce much with respect to the vapor pressure Pv and
the energy injected in the system is limited. This is confirmed by the numerical results: if
an explicit formulation in time (Pn) is used in the definition of Ṡα, the resulting mixture
velocity magnitude is overestimated and the model provides unphysical results, mainly
because too much energy has been introduced in the system. If, instead, an implicit
formulation in time (Pn+1) is used, the system is stable and provides significant results
which match the expected outcomes when compared to the literature.

1For 1 ≤, s ≤ ∞ the Bochner space Ls(0, T ;Lq(Ω)) is equipped with the norm || · ||q,s;t = (
∫ t

0
|| · ||sqdτ)

1
s

when s <∞ and || · ||q,∞;t = ess sup(0,t) || · ||q when s =∞.
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cavitating cylinder benchmark

In this chapter, numerical results of the first benchmark are presented. The homogeneous
mixture model described in the previous chapters is used to study the transient cavitation
over a circular cylinder. This benchmark has been selected because it allows a simple
representation of cavitation phenomena past bluff bodies; although cavitation on lifting
bodies has been extensively studied both experimentally and numerically, relatively fewer
studies exist for bluff bodies. However, the final aim of this thesis work is to provide
a tool able to simulate cavitation across cardiac valves, which are not streamlined, thus
cavitation over bluff bodies has to be take into account. To numerically validate our
model, we compare our results with the work of [26]; similarly to the model developed in
this thesis, the cavitation model used in [26] is an homogeneous mixture model.

Figure 4.1 shows the schematic of a low-Reynolds-number cavitating flow over a cylinder.
As the liquid accelerates past the bluff body, pressure drops in the shear layer, resulting
in cavitation inception. The shear layer then rolls up into vortexes and, depending on the
conditions, the vortexes can also cavitate. These vortexes are shed from the body into
the relatively high-pressure region in the wake, where vapor bubbles collapse due to the
higher pressure.

The numerical simulations are preformed at low Reynolds number in the computational
domain shown in Figure 4.2. The solver is tridimensional but for this test case the mesh
has only one element in the third direction; this is done to lower the computational time
and does not ruin the quality of the results, since the flow is laminar. The domain is
chosen wide enough to be able to capture the wake of the cylinder, moreover the cylinder
has a small offset with respect to the centerline of the domain since the center is located
0.05D upwards with respect to the centerline, where D is the diameter of the cylinder.
This is done to ensure that this geometry results in vortex shedding at moderate Reynolds
numbers as usually done for low Reynolds cylinder benchmarks [67]. More details on the
grid generation process are provided in the section 4.1.
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Figure 4.1: Schematic of vortex shedding and vapour formation in flow over a circular
cylinder at low Reynolds number. Taken from [26]

In section 4.3, we present the numerical results of the cavitating cylinder benchmark: we
perform a comparison between cavitating and non-cavitating flows and we compare our
results with the one form [26]; to perform a comparison, we ensure the same values of the
adimensional groups describing the flow.

We fix the value of the Reynolds number computed using the upstream quantities and
the cylinder diameter D: Re = ρuD

µ
= 200.

The cavitation number σ = P−Pv

1/2ρu2 is computed using the outlet pressure as reference.
Different values of σ are achieved by varying the value of the outlet pressure, keeping
constant the value of the vapor pressure Pv. A non-cavitating case is analysed, where
σ = 2, as well as a cavitating setup, where σ = 1.0.

The density and viscosity ratios Rρ and Rµ are computed by using the values for blood,
which are similar to the one found for water. At an ambient temperature of 37◦C, which
is the physiological working temperature for blood, density and viscosity for the liquid
and saturated vapor are [45]:

ρl = 1060 kg/m3 µl = 3.30 · 10−3 Pa·s

ρv = 0.485 kg/m3 µv = 4.71 · 10−5 Pa·s

The resulting values for the density and viscosity ratios are:

Rρ = 4.85 · 10−4 Rµ = 1.43 · 10−2

Regarding the cavitation model, a tuning of the evaporation and condensation constant
has been performed. This is a normal practice for homogeneous mixture models [52] that
depend on user defined constants. In this test case Fvap = 50.0, Fcond = 0.1.

As for the temporal discretization, in the following simulations we use a fixed value of the
time step: ∆t = 10−3 s which ensured stable solutions. If it is normalized through the
reference quantities, the dimensionless timestep reads: ∆t̄ = ∆tu∞/D = 0.02.
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Figure 4.2: Two-dimension view of the computational domain.

Figure 4.3: Block subdivision of the computational domain.

4.1. Mesh generation

Gmsh [23] is used for mesh generation; it is an open source 3D finite element grid generator
designed to provide a fast, light and user-friendly meshing tool. lifex can handle both
hexahedral and tetrahedral meshes; for this test case an hexahedral mesh is used. Due
to the presence of the curved cylinder surface, an orthogonal mesh is not advisable, as
well as an O-grid because both would result in highly skewed and deformed cells at the
boundaries. For this reason a block structured approach is preferred. At the same time,
defining different blocks allows more flexibility and a more effective refinements: the
regions nearby the cylinder are meshed as O-grids and refined in order to better catch
the occurrence of cavitation. The same is done for the blocks in the wake of the cylinder,
where the grid has to be fine enough to catch the behaviour of the wake. Figure 4.3
shows the different blocks in which the computational domain is divided. To perform 3D
simulations, the planar mesh is extruded in the third direction.

In Figure 4.4 some screenshots of the three different meshes are reported. The mesh
spacing for the fine grid is 0.008D × 0.01D in the radial and azimuthal directions near
the cylinder and stretches to 0.017D× 0.02D at approximately 2D downstream and then
further stretches to 0.06D×0.05D at a distance of 5D downstream. The coarse grid has a
near-wall mesh spacing of 0.03D×0.02D and stretches to 0.06D×0.06D at approximately
2D downstream. These spacings are comparable to the ones used in the reference work
[26]; moreover, mesh convergence analysis has been performed and is described in the
following sections.

In Table 4.1 the main features of each grid are reported: the number of the cells of the
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(a) Mesh 1: Coarse grid. (b) Mesh 2: Medium grid.

(c) Mesh 3: Fine grid.

Figure 4.4: Screenshots of the different grids.

different meshes, the number of active degrees of freedom (DOFs), and the maximum,
minumum and mean value of the cell diameters: hmax, hmin and hmean.

4.2. Boundary conditions

In this section, we provide boundary conditions for the mixture velocity u, pressure P

and vapor fraction α.

As for the vapor fraction α, an homogeneous Dirichlet boundary condition is set at the
inlet. This is done because the pressure at the inlet is though to be always greater than
the vapor pressure and no cavitation occurs at the inlet. On all the other boundaries, awe
impose an homogeneous Neumann boundary condition, meaning that:

(αu− κ∇α) · n̂ = 0 on ΓN × (0, T ] (4.1)

We impose a Dirichlet boundary condition for the velocity on the inlet boundary. The
velocity is a flat profile, constant in space, but evolving in time through a cosinusoidal
ramp function: the final value of the velocity uf is reached after some time tload = 0.1s
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Mesh 1 Mesh 2 Mesh 3

Number of cells 10080 27836 57708

Number of velocity DOFs 62088 169860 350124

Number of pressure DOFs 20696 56620 116708

Number of α DOFs 20696 56620 116708

hmax 7.1 · 10−2 m 6.5 · 10−2 m 5.5 · 10−2 m
hmin 5.0 · 10−3 m 3.3 · 10−2 m 2.3 · 10−2 m
hmean 2.4 · 10−2 m 1.4 · 10−2 m 1.0 · 10−2 m

Table 4.1: Comparison of the different grids used to perform numerical simulations.

trough the (4.2) starting from u0 = 0 at t0 = 0:

u(t) =

u0 + (uf − u0)
1

2

(
1− cos

(π(t− t0)

tload

))
t0 ≤ t ≤ t0 + tload

uf t0 + tload ≤ t

(4.2)

On the cylinder surface, we impose a no-slip boundary condition, whereas on the channel
walls boundaries a zero flux boundary condition is set, imposing u · n̂ = 0.

On the outlet boundary, an homogeneous pressure boundary condition is imposed:

σ(u, P )n̂ = −PΓN
n̂ on ΓN × (0, T ] (4.3)

4.3. Numerical results

In this section we present the numerical results on the different grids described in section
4.1. Simulations were carried out on gigat computing system available at MOX labora-
tories, using one node with 20 CPUs. The total simulation time, for each simulation,
resulted in 4 h 24 min for Mesh 2, and 9 h 48 min for Mesh 3.

This section is divided as follows: first of all the mesh convergence is assessed by comparing
the CL and CD temporal history resulting from the three different grids, as well as the
mean α distribution. Then, a parametric study on the artificial diffusion parameter κ is
discussed. Finally the results are presented: first we provide some insights on the time
evolution of the flow and then we discuss the peculiar features of the flow such as: the
quantity of interest on the cylinder surface, the mean velocity divergence distribution and
the unsteady loads on the cylinder.
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(a) Lift coefficient - CL. (b) Drag coefficient - CD.

Figure 4.5: Comparison of lift (a) and drag (b) coefficient: coarse mesh (Mesh 1),
medium mesh (Mesh 2), fine mesh (Mesh 3).

(a) (b) (c) (d)

Figure 4.6: Comparison of the vapor fraction mean distribution (a,b) and fluctuations (c,d)
at x1/D = 0.6 (a,c) and x2/D = 2.0 (b,d): coarse mesh (Mesh 1), medium mesh (Mesh 2),

fine mesh (Mesh 3).

4.3.1. Mesh convergence

In Figure 4.5 the temporal evolution of the lift coefficient CL and the drag coefficient CD

are plotted with respect to the adimesional time t̄ = tu∞/D. The evolution of the velocity
ramp is clearly visible in Figure 4.5(b) and ends at t̄ = 2.0. After a transient, a periodic
oscillation is visible in the CL time history; more comments on the periodic behaviour
are provided in section 4.3.6. In Figure 4.6 the α distribution over a vertical line at two
different adimensional positions in the wake of the cylinder is plotted : x̄1 = x1/D = 0.6

and x̄2 = x2/D = 2.0. Since data are averaged, only half of the domain is considered.

Both Figures 4.5 and 4.6 confirm that mesh convergence is achieved since the results
obtained using Mesh 2 and Mesh 3 are almost identical, proving mesh independence.
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(a) (b) Detail of (a)

Figure 4.7: Parametric study on the diffusion parameter κ, distribution over a line at
x/D = 1.5: κ = 10−2, κ = 10−3, κ = 10−4, κ = 10−5, κ = 10−6, κ = 0.0,

4.3.2. Parametric study on κ

When presenting the strong formulation of the coupled problem in section 2.3, a diffusion
term (−κ∇α) has been added to the transport equation for α (2.57) to prevent unphysical
oscillations across the interfaces with positive and null value of vapor fraction. In this
section the influence of the κ parameter is evaluated to understand its effectiveness and
to prevent an artificial bias of the solution. In Figure 4.7 the distribution of the mean
vapor fraction ᾱ is plotted over a vertical line located downstream at x/D = 1.5 for the
different values of diffusion parameter κ. In Figure 4.8 instantaneous of α contours are
shown for different values of diffusion parameter κ at t̄ = 8.0.

Figures 4.7 and 4.8 show that higher values of the diffusion coefficient κ influence the
solution, smoothing artificially the α distribution over the line. Smaller values of the
parameter k produce similar results starting from κ = 10−4. However, smaller values of
the parameter produce oscillations at the interfaces. This drawback is mitigated by the
presence of the SUPG stabilization terms but, starting from κ = 10−5 some oscillations
are visible in Figure 4.7. For this reason, κ = 10−4 is selected and used in the following.
In section 5.3.2 the value of the diffusion coefficient is related to the size of the mesh
elements h, we refer to that section for a complete discussion.
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(a) κ = 10−2 (b) κ = 10−3

(c) κ = 10−4 (d) κ = 105

(e) κ = 10−6 (f) κ = 0.0

Figure 4.8: Parametric study on the diffusion parameter κ: α contours. Snapshots at t̄ = 8.0.

4.3.3. Velocity, pressure and α distribution

In this section the main features of the cavitating flow are analysed. Figures 4.9, 4.10,
4.11 and 4.12 show some snapshots of velocity, pressure and α distribution at different
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 4.9: Main features of the cavitating flow: instantaneous snapshot at t̄ = 2.6. This
snapshot is taken few timesteps after the final value of the inlet velocity is reached at t̄ = 2.0: the flow on
the lower and upper side of the cylinder is accelerated and the pressure drops under the vapor pressure,
resulting in cavitation inception. The wake starts to develop as the velocity magnitude plot shows.

instances in a portion of the fluid domain. The pressure is not shown as a dimensional
quantity, instead, for each point of the grid the local cavitation number σl is computed:

σl =
Pl − Pv

1
2
ρlu2

∞
. (4.4)
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 4.10: Main features of the cavitating flow: instantaneous snapshot at t̄ = 3.4. The
pressure on both sides of the cylinder remains below the critical value and this results in an higher value
of the vapor fraction. Some vapor fraction is convected by the flow. At the same time two counter
rotating vortexes develop in the wake. Pressure in the vortexes cores is lower than the critical value, this
results in posivite value of α in the wake.

Above the local cavitation number contours, the line σl = 0 is highlighted: where σl < 0,
the net production of vapor fraction is positive, whereas where σl > 0, if some vapor
fraction is present, it condensates back to the liquid phase. The velocity magnitude is
adimensionalized with respect to the inlet final value uf . All results in Figures 4.9, 4.10,
4.11 and 4.12 are obtained using the fine grid, Mesh 3.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 4.11: Main features of the cavitating flow: instantaneous snapshot at t̄ = 10. The
vortexes in the wake interact creating a lower pressure zone and resulting in higher values of α in the
cores. The presence of vapor fraction, reduces the local density and viscosity of the fluid, resulting in a
more stable wake [26], for this reason the periodic vortex shedding is delayed in time with respect to the
non-cavitating flow.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 4.12: Main features of the cavitating flow: instantaneous snapshot at t̄ = 47. Once
the flow is fully developed, the typical periodic vortex shedding feature appears. Non zero value of α are
still present on the surface of the cylinder and in the vortex cores, even though the pressure recovery in
the wake makes the pressure higher than the critical value, inducing the condensation of the vortex cores.
The velocity magnitude contour, as well as the frequency of the shedding is modified by cavitation and
will be discussed in detail in section 4.3.6.

4.3.4. Quantities of interest on the cylinder surface

In this section the quantities of interest on the cylinder surface are analyzed. The main
focus is on the mean distribution of α and the mean pressure coefficient computed over
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Figure 4.13: Vapor fraction distribution on the cylinder surface: coarse mesh (Mesh 1),
medium mesh (Mesh 2), fine mesh (Mesh 3). Cavitation bubble is predicted to start at θ = 65◦.

one period of oscillation. θ = 0◦ corresponds to the stagnation point, whereas θ = 180◦ is
its diametrical opposite.

Figure 4.13 shows the distribution of the vapor volume fraction over the surface for the
three mesh considered at Re = 200 and σ = 1.0. The vapor bubble inception is predicted
to start at θ = 65◦. This prediction is in accordance with the results from [26], where
cavitation bubbles are predicted to start at θ = 60◦.

Figure 4.14, shows the pressure coefficient CP distribution over the surface of the cylinder
at Re = 200, σ = 1.0 and σ = 2.0. CP is computed as following:

CP =
P − P∞
1
2
ρlu2

∞
(4.5)

When σ = 2.0, the outlet pressure is higher enough to avoid cavitation in all the domain.
The CP starts from CP = 1.0 at the stagnation point, then pressure decays to its minimum
value at approximately 80◦ as the flow accelerates from the stagnation point, then increases
as the flow decelerates, prior to becoming approximately constant in the wake region at the
trailing edge. Cavitation is seen to decrease the magnitude of minimum CP magnitude, as
shown in Figure 4.14. This result is in accordance with the available literature data and
can be motivated as following: once flow cavitates (close to the minimum CP location),
the pressure in the vapour region remains close to the Pv, it does not further decrease with
fluid acceleration. The upstream flow therefore sees lower values of favourable pressure
gradient and the downstream flow experiences approximately constant pressure.
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Figure 4.14: Pressure coefficient distribution on the cylinder surface: σ = 2.0, σ = 1.0.
Cavitation decreases the magnitude of the minimum CP and results in an higher pressure recovery on
the cylinder surface.

4.3.5. Divergence of the velocity field

Cavitation causes density change, which implies a considerable change in the divergence
of the velocity field. Figure 4.15 shows the mean velocity divergence ∇ ·u contours when
σ = 1.0. The divergence is properly normalized trough the diameter D and the inlet
velocity u∞. Expansion caused due to cavitation produces positive velocity divergence
and, as the flow cavitates more, the region of positive divergence also increases due to
the increased amount of vapor. It is interesting to note a compression region (negative
divergence) downstream of the expansion region. This region is an indication of some
amount of vapour being converted back to liquid due to the pressure recovery. This
comment is in accordance with the distribution of α on the cylinder surface plotted in
Figure 4.13, where starting from θ ≈ 100◦, the value of vapor fraction decreases.

The mean velocity divergence contour from [26] is reported for a direct comparison.

4.3.6. Unsteady loads on the cylinder

In section 4.3.3,velocity distribution at different instances have been discussed: Figure 4.12
provides the pressure and velocity contours when the flow is fully developed, showing the
typical vortex shedding behaviour. In this section the unsteady loads on the cylinder are
analysed through the Strouhal number, investigating how cavitation affects the frequency
of this periodic phenomenon. The power spectrum of the lift time history for both the
non-cavitating (σ = 2.0) and the cavitating (σ = 1.0) case is computed and plotted in
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(a) Mean velocity divergence. (b) Mean velocity divergence from [26].

Figure 4.15: Mean velocity divergence contour: Re = 200, σ = 1.0. Positive values of velocity
divergence correspond to evaporation zones; negative values of divergence are instead due to some vapor
condensing back to the liquid phase.

Figure 4.16 as function of the Strouhal number St = fD/u∞. The vortexes shed from the
cylinder are responsible for the primary peaks in the power spectrum, thus the value of
the Strouhal number is obtained identifying the primary peaks of the lift history power
spectrum.

The Strouhal number for the non-cavitating flow is Stσ=2 = 0.171; this result is in agree-
ment with the work by [35] where the Strouhal number has been computed for a wide
range of Reynolds numbers. In the cavitating case the Strouhal number is reduced to
Stσ=1 = 0.153, resulting in an 11% decrease of the frequency. This reduction of the fre-
quency vortex shedding is a phenomenon observed also in [26], where the Strouhal number
is decreased by 19% when σ = 1.0. Thus, decreasing cavitation number has an important
side effect on the unsteady loads: vapor bubbles induce a reduction of the frequency of
oscillation, pointing to a more steady behaviour near the cylinder.
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Figure 4.16: Unsteady loads on the cylinder - Power Spectrum: non-cavitating case (σ =

2.0), cavitating case (σ = 1.0), × Stσ=2.0 = 0.171, ∗ Stσ=1.0 = 0.153. The Strouhal number associated
to vortex shedding is identified as the primary peak of the power spectrum. In the cavitating case the
shedding frequency is reduced due to the presence of the vapor bubbles.



57

5| Numerical simulation of the

FDA nozzle benchmark

In this chapter, the numerical results obtained on the nozzle FDA geometry are presented.
This benchmark has been proposed by the U.S. Food and Drug Administration (FDA) to
bridge the lack of biological benchmarks to validate CFD simulations applied to complex
human anatomy and physiology. In [48], two hemodynamics benchmarks are proposed:
a nozzle model and a blood pump model. In this chapter we consider the nozzle model
because it is representative of the closing valves Venturi-type geometry. In literature only
non-cavitating cases have been investigated; for this reason only results without cavitation
will be compared to literature results, whereas the cavitating case will be analyzed with
respect to the non-cavitating one.

The nozzle model benchmark is represented in Figure 5.1 and consists of an axisymmetric
geometry composed of a 0.012 m diameter cylindrical inlet, a 20◦ conical nozzle, a 0.004

m diameter throat and a 0.012 m diameter cylindrical expansion region. The flow is
accelerated progressively in the conical section, then it encounters a sudden expansion
after the end of the throat. Shear layers and recirculating flows are expected. The length
of the inlet and the outlet channels are set respectively to 0.120 m and 0.144 m to avoid
the influence of the boundary at the throat as suggested in [54].

We use the same values for density and viscosity described in Chapter 4 for both the
liquid and vapor phase; thus the density and viscosity ratios Rρ and Rµ have the same
values as in the cylinder benchmark. The same is done for the constants Fvap and Fcond.

The Reynolds number, following what is done in [48] and [84], is defined using the throat
diameter and the mean velocity ūz,t in the throat:

Re =
ρlūz,tDt

µl

=
4

π

Q

Dt

ρl
µl

. (5.1)

In the above expression, Q is the volumetric flow rate. In the following we impose a
volumetric flow rate Q = 5.2026 · 10−6 m3/s at the inlet, resulting in Re = 500.
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Figure 5.1: FDA nozzle model benchmark geometry. Taken from [84].

The cavitation number σ, for the present benchmark is computed as follows:

σ =
P − Pv

1
2
ρlu2

=
P − Pv

1
2
ρl
(

4Q
πD2

)2 . (5.2)

The outlet pressure is considered as the reference pressure; as for the reference velocity,
both the inlet mean velocity and the throat mean velocity are considered; the resulting
values for the cavitation numbers are:

σinlet = 18.90,

σthroat = 0.23.

(5.3)

(5.4)

5.1. Mesh generation

The mesh is generated using Gmsh [23]. An OH-grid topology is adopted in order to
properly mesh the circular domain. The nozzle is divided into five different subdomains:
a central square block with H-grid topology and four external regions with an O-grid
topology; Figure 5.2 shows the 2D topology of the mesh. The mesh is then extruded in
order to model the whole 3D nozzle domain as shown in Figure 5.3.

We considered two different meshes: a coarse mesh (Mesh 1) and a finer mesh (Mesh 2).
In Mesh 2, the mesh spacing along the longitudinal direction is 0.25Dt, whereas along the
radial direction the mesh element size is 0.04Dt, where Dt is the diameter of the throat
section. In Table 5.1 the main features of each grid are reported: the number of the
cells of the different meshes, the number of active degrees of freedom (DOFs), and the
maximum, minumum and mean value of the cell diameters: hmax, hmin and hmean.
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Figure 5.2: FDA nozzle model 2D topology. The center of the domain is meshed using an H-grid
topology; the four external regions are meshed with an O-grid topology.

Figure 5.3: FDA nozzle benchmark 3D mesh. The 2D surface is extruded to the final 3D mesh.

Mesh 1 Mesh 2

Number of cells 36128 217287

Number of velocity DOFs 116442 670704

Number of pressure DOFs 38814 223568

Number of α DOFs 38814 223568

hmax 4.1 · 10−3 m 2.3 · 10−3 m
hmin 1.2 · 10−3 m 9.2 · 10−4 m
hmean 3.1 · 10−3 m 1.3 · 10−3 m

Table 5.1: Comparison of the different grids used to perform numerical simulations.

5.2. Boundary conditions

In this section, we provide boundary conditions for the mixture velocity u, pressure P

and vapor fraction α. As for the vapor fraction, an homogeneous Dirichlet boundary
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condition is set at the inlet, and an homogeneous Neumann boundary condition is set at
the outlet and on the FDA nozzle walls. In this set of simulations the non-conservative
formulation of the transport equation is used; this means that Neumann homogeneous
boundary condition reduces to null gradient of the vapor fraction on the outlet boundary.

As for the mixture velocity, a no-slip boundary condition is set on the FDA nozzle walls;
on the outlet boundary a pressure boundary condition is set, whereas two different time
evolving Dirichlet boundary conditions for velocity are considered at the inlet:

• the first is a time evolving ramp, which follows the expression provided in equation
(4.2). The solution starts from still fluid and evolves towards a steady state where
Q = 5.2026 · 10−6 m3/s;

• the second is a pulsatile condition, which is intended to model the heart periodic
behaviour. The flow Q has the following evolution in time:

Q(t) = Qmin + (Qmax −Qmin)
1

2

(
1− cos

(2πt
T

))
(5.5)

corresponding to a sinusoidal oscillation between Qmin = 0 and Qmax = 5.2026 ·10−6

m3/s with a period T . The periodicity of the flow rate profile is T = 0.6475s,
corresponding to a cardiac cycle of about 92 beats per minute.

The space velocity profile distribution at the inlet is parabolic, resembling a Poiseuille
velocity profile, since for the Reynolds number considered (Re = 500) the flow at the
inlet is laminar:

u(x, t) =
2Q(t)

π(D/2)2

(
1− r2(x)

(D/2)2

)
. (5.6)

5.3. Numerical results

In this section we present the numerical results on the different grids described in section
5.1. Simulations were carried out on gigat computing system available at MOX labora-
tories, using one node with 32 CPUs. The total simulation time, for each simulation,
resulted in 2 h 10 min for Mesh 1, and 20 h 36 min for Mesh 2.

This section is divided as follows: we first present the grid convergence analysis, comparing
the results obtained with the coarse and the fine mesh both in the non-cavitating and
cavitating case; then we provide some additional comments on the choice of the diffusion
parameter κ. In the subsequent sections, the results of the cavitating flows are presented,
with a specific focus on the shear stresses distribution.



5| Numerical simulation of the FDA nozzle benchmark 61

(a) Normalized axial velocity profile. (b) Normalized pressure profile.

Figure 5.4: Plot of the normalised velocity and pressure along the centerline. Results from
the coarse and fine grid are compared for mesh convergence: fine mesh, coarse mesh.

5.3.1. Grid convergence

In order to assess grid convergence, Figure 5.4 shows the distribution of the normalized
axial velocity and pressure profile along the centerline of the FDA nozzle geometry.

Velocity and pressure are normalized as follows [55]:

unorm =
u

ūinlet
,

∆P norm =
P − Pz=0

1/2ρlū2
t

,

(5.7)

(5.8)

where ūinlet =
Q

π(Dinlet/2)2
, ūt is the mean velocity in the throat and Pz=0 is the pressure in

z = 0, where the throat ends. Figure 5.4 shows that results coming from the coarse and
finer mesh are very similar, meaning that the mesh is fine enough to properly model the
centerline behaviour.

Figure 5.5, shows the profiles of vapor volume fraction along different lines at a fixed axial
position and in a specific time instance. Figure 5.6 sketches the lines considered. The
values of vapor fraction α predicted by the coarse mesh and the fine mesh are similar in
the center of the domain, where both the meshes are finer. On the contrary near the walls
of the FDA nozzle geometry the values of α are not predicted accurately by the coarse
mesh, especially in the sudden expansion region near the end of the throat.

To validate the non-cavitating case, the centerline profiles of the normalised velocity and
pressure are reported in Figure 5.7. The results obtained match the literature results
confirming that the case setup matches with the available results.
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Figure 5.5: Plot of the vapor fraction distribution along different axial positions. Results
from the coarse and fine grid are compared for mesh convergence: fine mesh, coarse
mesh. The axial positions are sketched in Figure 5.6. Near the center the coarse mesh predicts well the
values of α; near the walls results are different in the expansion region. Results are at t̄ = 12.95; time is
normalised through Dt and ūt.
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Figure 5.6: Axial coordinates of the extracted data. Dimensions are in meters.

5.3.2. Parametric study on κ

Following the procedure proposed in section 4.3.2, a parametric study on the diffusion
parameter κ is performed in order to avoid excessive diffusion and, at the same time,
prevent the solution from numerical instabilities. The study is performed on the fine grid
imposing an inlet velocity ramp.

Different values for the diffusion parameter κ have been tested: κ = 10−4, 10−6, 10−7, 10−8.
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(a) Normalized axial velocity profile. (b) Normalized pressure profile.

Figure 5.7: Non-cavitating normalised velocity and pressure along the centerline, compared
to literature results. coarse mesh numerical result, literature results [55]. The profiles of the
normalised velocity and pressure along the centerline of the geometry match the literature results.

Numerical instabilities arise for k < 10−7 whereas when κ = 10−4 diffusion dominates the
solution. Thus, k = 10−7 is chosen for the fine grid of the present geometry.

The two parametric studies performed in this section and in section 4.3.2, allow to provide
meaningful indications upon the right κ value to use. Stabilization parameters have proven
to be related to the local mesh size: Forti et al. [19] propose to choose stabilization
parameters proportional to h2, where h is the local mesh characteristic size. We propose
to choose k proportional to the maximum cell diameter of the mesh: in the cavitating
cylinder case the maximum cell diameter is hmax = 5.5 · 10−2 m and κ = 10−4 is used;
in the FDA nozzle benchmark, the maximum cell diameter is hmax = 2.3 · 10−3 m and
κ = 10−7, in both cases κ ≈ 1

10
h2. This result is consistent with [19] and will be used in

the following chapter when testing a complex geometry resembling a MHV.

5.3.3. Numerical results in the case of an inlet velocity ramp

In this section we present the main flow features resulting from a transient simulation in
the case of an inlet velocity ramp, as described in section 5.2. Time is normalized with
respect to the throat diameter Dt and the mean flow velocity in the throat ūt. The ramp
reaches its maximum value at t̄ramp = 0.25. We first present the velocity, pressure and α

distribution at different instances, we then focus on the divergence of velocity field and
on the shear stresses

Figures 5.8-5.13 show some snapshots of the main quantities describing the flow at different
instances in a portion of the fluid domain. The pressure is not shown as a dimensional
quantity, instead, for each point of the grid the local cavitation number σl,t is computed
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.8: Main features of the cavitating flow: instantaneous snapshot at t̄ = 0.39. The
impulsive start of the flow produces local negative cavitation numbers near the edges of the expansion
region. This induces the mixture to cavitate. The velocity of the jet is higher in the throat; more
timespteps are needed to reach the maximum value of velocity in the throat.

using the mean throat velocity ūt. Above the local cavitation number contours, the line
σl = 0 is highlighted. The velocity magnitude is adimensionalized with respect to the
inlet mean velocity value ūinlet. All results are obtained using the fine grid.

The impulsive start of the flow generates two vortexes at the edges of the expansion
region, these are convected downstream by the jet and condenstate. When the jet reaches
the regime velocity, the shear between the jet and the still fluid induces low pressures
and the mixture cavitates near the jet front. At the same time when the jet reaches the
maximum velocity, pressure near the edges of the expansion region is low enough to induce
cavitation. Recirculation produces an accumulation of α until the steady configuration is
reached. We refer to the Figure’s captions for a more detailed description of the the flow.
Figures 5.14, 5.15 and 5.16 also show some tridimensional views of the α contour.



5| Numerical simulation of the FDA nozzle benchmark 65

(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.9: Main features of the cavitating flow: instantaneous snapshot at t̄ = 0.78. The
vortex cores are convected away from the edge; the mixture velocity in the throat grows and the jet
develops in the expansion region.

(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.10: Main features of the cavitating flow: instantaneous snapshot at t̄ = 1.94. The
cavitation bubbles produced due to the impulsive start condensates. At the same time the velocity of
the jet starts saturating. The shear between the jet front and the sorrounding still fluid produces low
pressure zones which induce the fluid to cavitate.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.11: Main features of the cavitating flow: instantaneous snapshot at t̄ = 10.36. The
jet is almost fully developed. Recirculating vortexes appear besides the jet and allows for an accumulation
of vapor fraction α. At the same time pressure is close to the vapor pressure in a big portion of the domain.
(Note that due to visualization issues the scale of the quantities is changed.)

(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.12: Main features of the cavitating flow: instantaneous snapshot at t̄ = 18.13. The
jet is fully developed and velocity has reached its maximum value. The edges at the end of the throat
induce a low pressure region where there is a positive production of vapor fraction α. Gaseous bubbles
accumulate in the region near the edges due to the recirculating flows surrounding the jet.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.13: Main features of the cavitating flow: instantaneous snapshot at t̄ = 25. Steady
state is reached as t̄ = 10 · t̄ramp and the α distribution reaches an equilibrium between the cavitation
produced at the edge of the geometry and the condensating vapor fraction downstream.

Figure 5.14: Tridimensional view of the vapor fraction α contour at t̄ = 1.43. The jet enters
the sudden expansion region and cavitation arises due to the pressure drop near the jet front. In the
background the axial velocity contour is reported.



68 5| Numerical simulation of the FDA nozzle benchmark

Figure 5.15: Tridimensional view of the vapor fraction α contour at t̄ = 4.0. The jet is
fully developed: cavitation bubbles are created and transported downstream by the jet front. In the
background the axial velocity contour is reported.

Figure 5.16: Tridimensional view of the vapor fraction α contour at t̄ = 15.6. When the
velocity in the throat saturates, the local pressure near the edges falls below the vapor pressure and the
fluid cavitates. The vapor fraction is accumulated in the vicinity of the edge due to the recirculating flow
produced by the presence of the jet. In the background the axial velocity contour is reported.
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Figure 5.17: Velocity divergence due to cavitation at t̄ = 25. When the jet is fully developed,
the only region where vapor fraction is produced is where the step introduces a pressure drop sufficient
to activate cavitation.

Divergence of the velocity field

Figure 5.17 shows the divergence of the velocity field at t̄ = 25, hence when a steady
configuration is reached in the sudden expansion region, downstream the nozzle throat.
We remark that positive divergence means local production of vapor fraction, whereas
negative divergence stands for a local condensation process. As observed also in Figures
5.12, 5.13 and 5.16, when the jet is fully developed, the sole production zone of vapor
fraction is where the throat ends and the step introduces a local pressure drop able to
activate cavitation. Vapor bubbles are then redistributed in the expansion region due to
the presence of recirculating flow besides the jet.

Shear stresses

In this section the computation of the shear stresses is presented, comparing the cavitating
and non-cavitating case for t̄ = 25. Shear stresses are important quantities in hemody-
namics because they are directly related to hemolysis and platelets activation [11, 74].
According to [76], viscous shear stress is defined as follows:

τ = 2µϵ(u) = 2µ
(1
2

(
∇u+ (∇u)T

))
. (5.9)

Figure 5.19 shows the magnitude of the shear stresses computed along different lines at
different axial positions. The axial coordinates considered are the same as sketched in
Figure 5.6. In the inlet channel, the cone and the throat, the maximum shear stress is
measured near the walls, whereas in the expansion region the peak is due to the jet and
it is reached where the velocity difference between the jet and the surrounding liquid is
maximum. The secondary peak is due to the recirculating flow.
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Figure 5.18: Comparison of the shear stresses magnitude between the cavitating and non-
cavitating case: cavitating case, non-cavitating case. Results are obtained at t̄ = 25 using the
fine mesh. Across the end of the throat (z = 0), where vapor fraction is produced, the shear stresses
predicted by the model including cavitation are higher with respect to the non-cavitating fluid. Only half
of the domain is plotted due to symmetry.

The comparison between the non-cavitating and the cavitating case allows some com-
ments: in the inlet channel and in the second part of the outlet channel, cavitation does
not introduce relevant differences with respect to the non-cavitating case. This is expected
because the amount of the vapor fraction is null or very limited. However, across the end
of the throat, the peak of maximum shear stress is increased. This is more evident for
z = 0, where most of the vapor fraction is produced. This result suggests that, if cavita-
tion occurs, it is important to model its effect to obtain more accurate results in terms of
shear stresses to properly estimate the expected damage on the blood tissue.

Wall shear stresses

Another important hemodynamic measure related to the velocity gradients is the wall
shear stress defined as:

WSS = τ n̂− (τ n̂ · n̂)n̂. (5.10)
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Figure 5.19: Comparison of the wall shear stresses magnitude between the cavitating and
non-cavitating case: cavitating case, non-cavitating case. The magnitude of the wall shear
stress predicted by the cavitating case is higher in the throat region.

Figure 5.19 shows the magnitude of the wall shear stresses computed at different axial
positions. Values are averaged over the circumferential direction. Once more, results
coming from the model that includes cavitation are compared with the non-cavitating
results. Similar conclusions to the previous paragraph can be drawn: in the inlet and the
outlet region there is no noticeable difference, nevertheless in the region across the throat
end and in the throat, an increased value of wall shear stress magnitude is found for the
cavitating case.

5.3.4. Numerical results in the case of an inlet pulsatile velocity

In this section the results obtained imposing a pulsatile inlet flow rate are presented. We
recall that the periodicity of the flow rate is T = 0.6475s, corresponding to a cardiac cycle
of about 92 beats per minute; the maximum value of the flow rate is Q = 5.2062 · 10−6,
corresponding to a maximum value for the Reynolds number of Re = 500.

Figures 5.20-5.24 show snapshots of the main quantities describing the flow at different
instances in a portion of the fluid domain in one single cycle. Pressure and velocity are
normalized as in the previous section. Time is normalized through the period duration.
At the beginning of the cycle, the jet produced by the previous pulse is still visible in the
velocity contour and cavitation bubbles are present at the jet’s front. However, differently
form the inlet velocity ramp case, the diminishing velocity produces a lower pressure in
the throat and in the expansion region. This results in cavitation bubbles in the throat,
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.20: Main features of the cavitating flow: instantaneous snapshot at t = 0.0T. At
the beginning of the period, the velocity contour shows the jet of the previous cycle. Pressure drops to
lower values (negative values of the local cavitation number) and this induces cavitation in the throat.

which were not observed in the previous section. When the inlet velocity rises, pressure
in the whole nozzle increases, resulting in condensation of the vapor bubbles, first in the
throat section and then in the outlet channel. When the jet reaches the maximum speed,
the quantities contours resemble the behaviour found in the inlet ramp velocity case.
Finally, velocity decreases again and the contours observed at the end of the cycle are the
same reported in the first Figure 5.20, confirming the periodicity.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.21: Main features of the cavitating flow: instantaneous snapshot at t = 0.35T. The
inlet velocity is growing towards the maximum value. The flow velocity in the throat increases and this
reduces in higher values of the pressure. The local cavitation number is positive in the whole domain and
cavitation bubbles in the throat have condensated.

(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.22: Main features of the cavitating flow: instantaneous snapshot at t = 0.50T. At
the half of the period the inlet velocity reaches its maximum value and the jet develops in the expansion
region. The higher pressures induce the flow to condensate and just small values of the vapor fraction
are present in the expansion region.
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(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.23: Main features of the cavitating flow: instantaneous snapshot at t = 0.83T. The
front of the jet is fully developed and induces cavitation, just as in the case of the inlet velocity ramp. At
the same time the inlet velocity is decreasing, this induces a pressure drop in the domain which results
in negative values of the local cavitation number resulting in vapor bubbles forming in the throat.

(a) Instantaneous vapor fraction contour.

(b) Instantaneous local cavitation number contour.

(c) Instantaneous adimensional velocity magnitude contour.

Figure 5.24: Main features of the cavitating flow: instantaneous snapshot at t = 1.0T. At
the end of the period the contours are the same found in Figure 5.20, confirming the periodicity of the
flow. The zones with negative values of local cavitation number produce positive values of volume vapor
fraction α.
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Figure 5.25: Velocity profile along the centerline for different time instances of the pulsatile
period: t = 0.0T , t = 0.35T , t = 0.5T , t = 0.83T . The effects of the jet in the expansion
region are visible more visible for t = 0.0T and t = 0.83T , whereas the maximum velocity is reached in
the throat at half of the period.

Figures 5.20 and 5.24 show the main features of the cavitation flow at the beginning of a
new periodic cycle. At that stage the velocity at the inlet is at its minimum. A peculiar
behaviour is observed in the throat, since the local pressure drop induced by the lower inlet
velocity is responsible for cavitation. This phenomenon can be related to experimental
results on cardiac valves: the occurrence of cavitation in valves has been mostly observed
at the closing stages, when the inlet velocity reaches its minimum value. This is though
to be mainly due to leakage backflows but at the same time these results suggest that the
pressure drop due to a lower inlet velocity is also responsible for this phenomenon.

Distribution of velocity and α

In Figure 5.25 the normalized velocity distribution is plotted at the different instances
of time considered in the previous section. It is remarkable that maximum velocity is
reached at half of the period in the nozzle throat but the jet develops in the expansion
region in the following instances, when the inlet velocity is decreasing.

In Figure 5.26 the distribution of the vapor fraction is plotted along different lines at
different axial positions. Once again the attention is put on the positive value of α in
the throat (z = −0.02m and z = −0.08m) for t = 0.0T and on the cavitation occurring
nearby the jet front in the expansion region (z = 0.08m) when the jet is developed in the
outlet channel at t = 0.83T .
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Figure 5.26: Distribution of vapor fraction along different lines at different time instances
of the pulsatile period: t = 0.0T , t = 0.35T , t = 0.5T , t = 0.83T . Positive values of
vapor fraction are found in the throat at the beginning of the period, then the increasing pressure induce
condensation. When the jet is fully developed in the expansion region, cavitation bubbles appears nearby
the jet front.

Shear stresses

Figure 5.27 collects the distribution of the magnitude of the shear stresses along the
different lines depicted in Figure 5.6. The maximum value of the shear at each position
is obtained at the instance of time when the flow velocity is higher. If we look to the
throat and the accelerating cone, this happens at half period, when the inlet velocity has
reached the maximum value. If, instead, we look at the expansion region, the maximum
velocity is reached at t = 0.83T and this reflects in an higher value of the shear stress.
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Figure 5.27: Distribution of the magnitude of the shear stresses along different lines at
different time instances in of the pulsatile period: t = 0.0T , t = 0.35T , t = 0.5T ,

t = 0.83T . Higher values of flow velocity correspond to higher shear stresses: for this reason the
maximum shears in the throat are reached at t = 0.5T , whereas in the expansion region the maximum
values are at t = 0.83T .





79

6| Numerical simulation of an

idealized valve geometry

In this chapter, we present the numerical results obtained with a valve geometry. Since
the first heart valve replacement performed with a caged-ball valve, more than 50 valve
designs have been developed, differing principally in valve geometry, number of leaflets
and material. Currently, the most commonly used valves are those with a bileaflet design
[14], thus we numerically simulate a simplified version of this geometry. The bileaflet
design consists of two semicircular leaflets that pivot on hinges; Figure 6.1 shows the
Medtronic Open Pivot bileaflet valve [51] as a reference.

To perform numerical simulations, we consider a simplified version of the actual geometry
modelled as a straight cylinder with two semicircular leaflets in a fixed position. We show
the 2D and 3D views of the computational domain in Figure 6.2. The cylinder diameter
is D = 25 mm, which is a typical size for MHVs [51]. The leaflets are in a fixed position,
with an opening angle θ = 45◦. This is done to simulate the closing instances of the
bileaflet valve, since most of in vitro cavitation is observed in these conditions [63]. The
length of the inlet and the outlet channel is set to Lin = Lout = 0.1 m, to avoid the
influence of the boundary conditions at the valve location.

The model parameters, as the density and viscosity of the liquid and vapor phase are set
to the same values described in the previous chapters. The same holds for the constants
of the Zwart cavitation model [85].

The Reynolds number is defined using the diameter and the mean inlet velocity ūz:

Re =
ρlūzD

µl

=
4

π

Q

D

ρl
µl

. (6.1)

In the above expression, Q is the volumetric flow rate. From (6.1) the maximum Reynolds
number of the simulation is Re = 4900.
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Figure 6.1: Medtronic Open Pivot (TM) bileaflet valve. Image taken from [51]. Bileaflet design
consists of two semicircular leaflets that pivot on hinges

(a) 2D view of slice the computational domain.

(b) 3D views of the computational domain.

Figure 6.2: 2D and 3D views of the computational domain. The domain resembles a simplified
version of a bileaflet mechanical valve at closing instances. Blood flows from left to right.

The cavitation number σ is computed using the value of the outlet pressure, as follows:

σ =
P − Pv

1
2
ρlū2

z

=
P − Pv

1
2
ρl
(

4Q
πD2

)2 = 3.54. (6.2)
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Figure 6.3: Surfaces of the computational domain meshed in 2D.

Mesh

Number of cells 420549

Number of velocity DOFs 228525

Number of pressure DOFs 76175

Number of α DOFs 76175

hmax 6.4 · 10−3 m
hmin 4.1 · 10−4 m
hmean 1.1 · 10−3 m

Table 6.1: Main features the mesh used to perform numerical simulations.

The time step is set to ∆t = 10−3 s. The dimensionless time step is obtained and written
as: ∆t̄ = ∆tūz/D = 0.024.

6.1. Mesh generation

As in the previous chapters, we use Gmsh [23] for the mesh generation. For this geometry
an unstructured approach is followed. The tetrahedral mesh is obtained through the
MeshAdapt algorithm, which is the most robust meshing algorithm for complex curved
surfaces available in Gmsh [23].

We perform a local refinement in the valve location, where elements have a mesh spacing
of 0.02D. Elements are larger as the distance from the valves increases: the mesh spacing
at the inlet and outlet boundaries is 0.16D. Figure 6.3 shows a clip of the surfaces of the
computational domain meshed in 2D. In Table 6.1, we report the number of the cells, the
active degrees of freedom (DOFs) and the values of hmax, hmin and hmean.
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6.2. Boundary conditions

As in the case of the FDA nozzle benchmark described in Chapter 5, we select the cavita-
tion model with the non-conservative formulation of the vapor fraction transport equation.
We impose an homogeneous Dirichlet boundary condition on the inlet for α, and an ho-
mogeneous Neumann on the other boundaries (channel wall, outlet, leaflet surface).

We impose a Dirichlet boundary condition for the inlet velocity, whth a pulsatile evolution
in time and a parabolic distribution in space. The periodicity of the flow is T = 0.6475

s, corresponding to a cardiac cycle of about 92 beats per minute. No-slip boundary
conditions are set on the channel wall and on the leaflets. The flow rate imposed at the
inlet varies from Q = 0 to Q = 300 ml/s = 3.0 · 10−4 m3/s. On the outlet boundary, a
pressure boundary condition is set: Pout = 6700 Pa. The values for the inlet flow rate and
the outlet pressure are taken from [10]; the value for the pressure is chosen computing
the mean pressure in the left ventricle: P̄LV = 50 mmHg = 6700 Pa. The mitral valve
hemodynamics is, in fact, more complex and considering the outlet pressure as a constant
is a simplification.

6.3. Numerical results

In this section we present the numerical results on the valve geometry. The simulation
was carried out on gigat computing system available at MOX laboratories, using one node
with 32 CPUs. The total simulation time, for each period, resulted in 14 h 35 min. In the
following, results over one period are presented; time is normalized through the period.

In Figures 6.4 and 6.5 the streamlines and the instantaneous structures of the flow, iden-
tified by means of Q-criterion [33] are shown at different instances. The maximum values
for the velocity are found for t = 0.5T , when the inlet flow rate is maximum. The peak
velocity is in the order of 3 m/s, which is comparable with the squeeze flows found at valve
closing instances in [45, 60]. Figure 6.5 shows that coherent structures develop across the
valve, and persist when the inlet velocity decreases. Cavitation appears starting from
t = 0.54T and all the vapor bubbles condensates within t = 0.96T . The vapor bubbles
have a lifetime in the order to 10 − 20 ms; in Figure 6.6 the evolution of a single vapor
bubble is followed for few milliseconds: the recirculating flows convect the bubble near the
valve structure, where vapor condensates, possibly causing some pitting and and damage
on the leaflet. Figure 6.7 shows 3D contours of the vapor fraction in the whole domain at
different instances: in Figure 6.7(a), some amount of α is recognized on the right leaflet
and in Figure 6.8 the shear stress distribution at the same instant shows an higher stress
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value in that spot, confirming that modelling cavitation is important to predict the shear
stresses, as we found also in section 5.3.4.

(a) t = 0.25T . (b) t = 0.5T .

(c) t = 0.625T . (d) t = 0.75T .

(e) t = 0.875T .

Figure 6.4: Flow streamlines at different time instances: The streamlines are colored by the
velocity magnitude in m/s. (a): the inlet flow rate is growing and velocity streamlines develop; (b): the
velocity reaches the maximum value, approximately 3 m/s, which matches literature results on MHVs
squeeze flows [45, 60]; (c): the flow becomes unstable, showing a turbulent behaviour due to the high
Reynolds number Re = 4900; (d) and (e): the flow rate goes to zero and so the velocity field.
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(a) t = 0.25T . (b) t = 0.5T .

(c) t = 0.625T . (d) t = 0.75T .

(e) t = 0.875T .

Figure 6.5: Representation of the Q-criterion contours colored by velocity magnitude at
selected times. Starting from (b), vortical structures according to the Q-criterion appear in the flow.
The flow becomes unstable, and vortical structures are found in the wake also in (c) and (d), when the
inlet flow rate is decreasing. In (e) the flow is almost completely still and few vortical structures appear
in the flow.
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(a) α distribution at t0. (b) α distribution at t0 + 10 ms.

(c) α distribution at t0 + 20 ms. (d) α distribution at t0 + 30 ms.

(e) α distribution at t0 + 40 ms. (f) α distribution at t0 + 50 ms.

Figure 6.6: Vapor bubble collapse dynamics. The distribution of α over a portion of the domain
is shown at different instances. A single vapor bubble is followed starting from t0 = 0.70T , for a few
milliseconds. The bubble has a life of 10 − 20 ms. The recirculating flows convey the bubble near the
valve structure, where it collapse, possibly causing some pitting and and damage on the leaflet.



86 6| Numerical simulation of an idealized valve geometry

(a) t = 0.75T .

(b) t = 0.875T .

Figure 6.7: Tridimensional contour of the vapor fraction distribution. The vapor fraction
contour is plotted in the whole domain. Some vapor bubbles are clipped for an inside better visualization.
In (a), some vapor fraction is recognized on the surface of the right leaflet. This information is correlated
to the shear distribution plotted in Figure 6.8.
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Figure 6.8: Shear stress contour in the computational domain. On the right leaflet we found
an increased shear stress with respect to the left leaflet. This is because some vapor fraction has reached
the leaflet (see Figure 6.7(a)), and is responsible for an enhanced shear stress.
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developments

We proposed a numerical method to perform numerical simulation on cavitation occurring
in blood flows. Indeed, very few examples examples of numerical simulations of the
circulatory system including cavitation models have been found in the literature.

We first performed a literature review on the cavitation phenomena and the state-of-the-
art models used to simulate cavitation. This led to consider an homogeneous mixture
model, specifically the Zwart model [85], because it proved to be effective in modelling
cavitation across Venturi-type geometries. We developed the mathematical model, high-
lighting the coupling between the mixture mass and momentum conservation with the
vapor fraction transport equation. We proposed a novel stabilized Finite Element formu-
lation for the numerical modeling of cavitation flow: space discretization was performed
by means of finite elements, time discretization by means of finite differences. We im-
plemented the cavitation model in lifex [3], a C++ Finite Element library focused on
cardiac applications. Insights have been provided on the stabilization methods used for
the mixture mass and momentum conservation system and the additional equation of
the cavitation model as well as on the coupling strategy. For the solution of the coupled
problem, we followed a staggered approach mainly for its flexibility and its ease of gen-
eralization to the coupling of possible additional models, as for example models for the
fluid-structure interaction or turbulence models. One of the main features of the cavi-
tating mixture was the non-zero value of the velocity divergence where vapor fraction is
generated or condensates to the liquid state. Hinging upon an energy estimate for the
cavitation model, we highlighted the role of the velocity divergence.

The cavitating cylinder benchmark provided meaningful results when compared to litera-
ture data with the same geometry and boundary conditions. One of the most interesting
outcomes was the change in the distribution of pressure over the cylinder surface, where
cavitation limited the minimum value of CP with respect to the non-cavitating case. We
found interesting implications of cavitation on the Strouhal number, which was reduced
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with respect to the non-cavitating case, as expected from the literature results.

We considered the FDA nozzle geometry because it is a common benchmark in hemo-
dynamics and because it resembles the Venturi-type geometry characterizing the flow
through mechanical heart valves at the closing stages. Also in this case, the cavitation
model provided relevant insights: cavitation yielded an increase in shear stress, and the
vapor phase was generated also within the narrower region of the domain in the case of
pulsatile inlet velocity. This results suggested that considering cavitation is important
to predict the stresses acting on the blood tissue. At the same time throat cavitation
resembled the experimental results on MHVs, where most of the cavitation occurs at the
closing stages, when the inlet pressure reached its minimum value.

In Chapter 6, we tested the cavitation model on a more complex geometry which resem-
bled a bileaflet mechanical heart valve. The model demonstrated effective in predicting
cavitation at high Reynolds (Re = 4900), and allowed to locate the regions where the
mixture evaporated and condensated. In the wake, the vapor bubbles showed a lifetime
of the order of 10 − 20 ms, matching the experimental measurements by [63]. We found
larger values of the shear stress if cavitation bubbles interact with the leaflets, with re-
spect to the non-cavitating regions, thus identifying the regions of the valve being more
subjected to possible damage by cavitation.

In conclusion, the Zwart cavitation model [85] demonstrated capable of predicting cloud
cavitation on different geometries and the computational tools that have been developed
are fully integrated in a software library for clinical applications. Being able to model
and predict the occurrence of cloud cavitation is very much relevant to develop strategies
to suppress and avoid this phenomena, responsible for an enhanced erosion and pitting
on implanted MHVs and for higher shear stresses acting on the blood tissue which force
patient to be treated with anticoagulants.

Future developments of this work may be considered, along different directions. More
complex geometries may be evaluated in order to investigate cavitation phenomena across
more realistic mechanical heart valves. Domain motion may be included by implementing
the arbitrary Lagrangian–Eulerian (ALE) Finite Element formulation of the cavitation
model to account for the movement of the leaflets, possibly coupling the cavitation model
with a model for the fluid-structure interaction. Finally, a turbulence model may be
added to the cavitation model for turbulent simulations. The Variational Multiscale LES
turbulence modeling [31] is already implemented in lifex and may be considered suitable
for this purpose.
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