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Abstract
Machine Learning and Deep Learning are the topics which are paid huge
attention since the last several years. While Machine Learning utilizes
simpler ideas, deep learning works with artificial neural networks, which
are designed to mirror how people think and learn. The recent adoption of
GPUs as parallel general purpose processors partially satisfied this need, but
the high costs associated with this technology, even in the cloud, dictate the
need to design efficient capacity planning and job scheduling algorithms to
reduce operational costs through resource sharing.

The proposed work tackles the problems of capacity planning and job scheduling
together. In the envisioned scenario, the complexity of the problem, which
poses a major challenge in terms of modeling and solvability, is compounded
by the fact that capacity allocation and scheduling are evaluated in an online
environment. Deep Learning training jobs are submitted in a continuous
fashion, so that no scheme can be detected in their arrival times or features,
especially as regards priority.

Inspired by greedy and local search techniques, heuristic methods have been
developed to form efficient and scalable solutions to the proposed problem.

An experimental campaign proves the feasibility of the approaches developed
for practical scenarios, showing considerable improvements in the computational
time needed to determine solutions of good quality.
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Sommario
Machine Learning e Deep Learning sono gli argomenti a cui è stata prestata
grande attenzione negli ultimi anni. Mentre l’apprendimento automatico
utilizza idee più semplici, il Deep Learning funziona con reti neurali artificiali,
progettate per rispecchiare il modo in cui le persone pensano e apprendono.
La recente adozione delle GPU come processori paralleli per scopi generici
ha parzialmente soddisfatto questa esigenza, ma i costi elevati associati a
questa tecnologia, anche nel cloud, impongono la necessità di progettare
efficienti algoritmi di allocazione della capacità e scheduling, per ridurre i
costi operativi attraverso la condivisione delle risorse.

Il lavoro proposto affronta insieme i problemi della allocazione della capacità
e scheduling. Nello scenario immaginato, la complessità del problema, che
rappresenta una grande sfida in termini di modellizzazione e soluzione, è
aggravata dal fatto che l’allocazione della capacità e lo scheduling sono
valutati in un modo online. I lavori di training per il Deep Learning vengono
inviati in modo continuo, in modo che non sia possibile rilevare alcun pattern
nei tempi o nelle caratteristiche di arrivo, in particolare per quanto riguarda
la priorità.

Ispirati da tecniche di ricerca greedy e di local search, sono stati sviluppati
metodi euristici per offrire soluzioni efficienti e scalabili al problema proposto.

Una campagna sperimentale dimostra la fattibilità degli approcci sviluppati
per scenari pratici, mostrando notevoli miglioramenti nel tempo di calcolo
necessario per determinare soluzioni di buona qualità.
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Chapter 1

Introduction
Machine Learning and Deep Learning are the topics which have been paid
huge attention since the last several years. This is very interesting in the
sense that research in artificial intelligence started back in the mid 20th
century with bold promises which were not materialized by the end of the
century. Machine Learning systems are used to identify objects in images,
transcribe speech into text, match news items, posts or products with users’
interests, and select relevant results of a search. Increasingly, these applications
make use of a class of techniques called deep learning.

Deep learning allows computational models that are made out of different
preparing layers to learn portrayals of data with various degrees of abstraction.
These strategies have drastically improved in classification problems like
visual object recognition, object identification, and numerous different areas,
for example, drug discovery and genomics.

Deep learning finds a perplexing structure in huge data collections by utilizing
the back-propagation algorithm to demonstrate how a machine should change
its inner parameters that are utilized to register the portrayal in each layer
from the portrayal in the past layer. Deep convolutional nets have realized
advancements in handling pictures, video, discourse, and sound, while intermittent
nets have shone a light on successive information, for example, text and
speech [9].

To empower deep learning algorithms to handle progressively complex issues,
a savage power arrangement, scaling up to the framework level, is regularly
applied. The quantity of utilized neurons becomes so as to manage an
expanding measure of information, making the training procedure of the
subsequent system increasingly more computationally demanding. The expansion
in the necessary computational force expected to take care of these issues
has been looked at in different manners [11].

The measure of the computational power required for ring DL applications,
other than the need for high stockpiling abilities to manage massive or
complex datasets, remains a central issue in the field of Machine Learning.
The possibility of utilizing Graphics Processing Units as General Purpose
equal processors has been investigated in the most recent years as a strategy
ready to upgrade the computational power. The subsequent huge parallelism
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empowers us to understand, with a sensible computational time and exertion,
progressively complex undertakings, as those emerging in the fields of DL and
Artificial Intelligence.

GPU speeding up, and particularly the chance of productively performing
grid increases in equal, on account of deeply specific direct polynomial math
libraries, is especially fit to DL training jobs, ensuring, as for CPU-based
frameworks, speedup from 5 to 40x GPU-based frameworks, exploiting their
design [3].

The way toward training deep learning applications remains a computationally
serious assignment. Also, GPU-based servers are described by extensively
significant expenses. As an outcome, they remain frequently unreasonably
expensive for the overall population, comprising additionally of little associations
with restricted financial plans.

Developing interest and the problems identified with the openness of GPU-
based engineering decided, in the most recent years, an ensuing movement of
Cloud administrations and arrangements intending to upgrade the utilization
of those assets in various settings. The chance of approaching GPU-based
frameworks as indicated by pay-to-go evaluating models has added to the
across the board of those advancements applied to the arrangement of various
issues, including the DL training issues previously mentioned.

The Cloud Computing worldview and the ensuing chance of approaching
a preferably boundless computational and capacity power, the time unit
expenses of Virtual Machines dependent on GPUs are still surprisingly high,
being 5-8x more costly than those of VMs misusing just CPUs [3]. As an
outcome, the issue of deciding proficient planning for deep learning training
jobs and different applications that ought to be conveyed on those frameworks
has still an incredible significance.

The joint issue is tended to in the writing by misusing various methodologies
and it speaks to an extraordinary test as far as demonstrating and resolvability.
The unpredictability is even exacerbated, in the analysed situation by the
fact that capacity allocation and scheduling are investigated in an online
setting, where numerous deep learning training jobs are submitted in a
nonstop manner, so that no plan can be identified in their submission times
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or qualities, especially regarding need. Besides, jobs can be preempted, in
order to be able to prioritize, if needed, subsequently arriving jobs with
different characteristics in terms of execution times and expected deadlines.

The proposed work intends to improve the adaptability of the arrangement
by misusing an alternate Mixed Integer Linear Programming detailing, applied
to the previously mentioned issue in a various leveled design. In addition,
diverse heuristic methodologies, motivated by greedy and local search, have
been planned and executed to decide a productive arrangement both as far
as computational time and precision.

The expanding utilization of Cloud-based answers for algorithms that require
a huge computational power and a lot of resources determines a likewise
expanding interest for VM allocation and job scheduling problems.

Job scheduling issues are normally characterized as the portrayal of strategies
that allow disseminating and resource spending plans among various tasks.
A financial plan can consist of time or various types of resources, including,
for example, computational power or capacity.

The circumstance where various applications ought to be simultaneously run
sharing a fixed amount of resources regularly emerges in Deep Learning. The
improvement of a DL program is typically partitioned into two primary steps:
in the first, the program is composed and tried on a neighborhood machine
or on a test cluster; in the subsequent one, the application is at long last
sent and run on the production cluster.

The time expected to run a Deep Learning program in the primary stage
can be extensively different as for the subsequent one. Without a doubt, the
creating procedure normally requires to play out a few tests, including little
datasets, hence it is less demanding for what concerns time and computational
power. The fundamental issue that emerges in this specific situation, while
considering GPUs use, is the fact that the iterative procedure of adjusting
the code and afterward running a few little tests is probably going to leave
resources idle for a lot of time.

The thesis is structured as follows: Chapter 2 discusses the state of the
art, providing a general overview of the technical fields discussed in this
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work and providing a perspective on the optimization approaches adopted
for the design of the algorithms proposed. Chapter 3 discusses the various
algorithms designed to evaluate an efficient and scalable solution. Chapter
4 presents the findings of some preliminary experimental research conducted
in order to test the models and approaches discussed in this study. Lastly,
Chapter 5 draws the findings from this thesis work and provides several
potential directions for future study.
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Chapter 2

State of the art
2.1 Machine learning

Machine Learning is one of the domains of Artificial Intelligence (AI). The
objective of Machine learning is to understand the structure of data and
find hidden correlation/patterns and fit that data into models that can be
understood and utilized by people. Even though Machine Learning is a
domain within computer science, it varies from traditional computational
approaches. In traditional computing, algorithms are composed of programming
instructions to calculate or solve a problem. In Machine Learning algorithms,
a computer is trained on data inputs, and then it applies statistical analysis
to the output values, checking if they fall within a specific range. This
characteristic of machine learning enables computers to build models from
sample data and automate decision making processes based on data input.

Currently, any user of technology has in one way or another benefited from
Machine Learning, Facial recognition technology has allowed media platforms
to automatically tagging images. Optical Character Recognition (OCR)
technology has helped convert images to editable text. Biggest of all in the
consumer side, it has helped big companies like Amazon, YouTube, Google,
Spotify by using recommendation engines powered by Machine Learning
to recommend movies, music and products more precisely. Autonomous
vehicles’ navigation is made possible by Machine Learning.

2.2 Deep learning

Deep Learning can be considered as a subset of Machine Learning. It is a
field that depends on learning and enhancing its own by inspecting computer
algorithms. While Machine Learning utilizes simpler ideas, Deep Learning
works with artificial neural networks, which are designed to mirror how
people think and learn. Up to this point, neural systems were restricted
by computing power and along these lines were constrained in multifaceted
nature. Deep learning has helped image classification, language interpretation,
discourse acknowledgment. It tends to be utilized to take care of any pattern
recognition issue and without human intervention.

Deep Learning is characterized by the attempt to generate and improve
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knowledge by extracting patterns from raw data. This procedure, known
as the learning process, can only be performed profitably in the presence of
large amounts of data which can be analyzed using the algorithm chosen.

Artificial neural systems, including numerous layers, drive deep learning.
Deep Neural Networks (DNNs) are such sorts of systems where each layer
can perform complex tasks, for example, representation and reflection that
comprehend images, sound, and content. Considered the quickest developing
field in AI, Deep Learning represents a really troublesome advanced innovation,
and it is being utilized by progressively more organizations to make new plans
of action [11].

Neural systems are involved in layers of nodes, much like the human mind
is composed of neurons. Nodes inside individual layers are associated with
neighboring layers. The network is said to be deeper depending on the
quantity of layers it has. A single neuron in the human mind gets a huge
number of signals from other neurons. In an artificial neural system, signals
travel among nodes and dole out relating loads. A heavier weighted node will
apply more impact on the following layer of nodes. The last layer orders the
weighted contributions to create a yield. Deep Learning frameworks require
amazing equipment since they have a lot of information being prepared
and include a few complex scientific computations. Indeed, even with such
advanced hardware, however, Deep Learning training computations can take
weeks.

Deep Learning systems require a huge amount of data to return precise
outcomes; in like manner, data is taken care of as gigantic data collections.
When handling the data, ANN can arrange data with the appropriate responses
obtained from a progression of binary true or false inquiries including exceptionally
complex numerical computations[11].

2.3 Cloud computing

The Cloud Computing worldview has been created to answer such a developing
interest by giving resources that can be rented by clients in an on-request
design. The principle explanation behind the presence of distributed computing
is to diminish IT overhead for End clients and furthermore decrease the
aggregate of On-Demand administrations and numerous different things.
Distributed computing utilizes advances, for example, virtualization and
utility-based valuing to meet the innovative and conservative prerequisites
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of the client’s interest in IT [7].

Cloud Computing refers to both the applications delivered as services over
the Internet and the hardware and systems software in the data centers
that provide those services. In addition, cautious scope organizations so as
to purchase the necessary assets are not required, since Cloud clients can
adjust the quantity of dispensed assets as indicated by their outstanding
task at hand request in no time flat. This has the benefit of lessening the
working expenses since inert resources can typically be fueled off or dedicated
to various purposes, while having the option to fulfill the pinnacle loads,
rapidly reallocating assets to the most demanding activities.

2.3.1 Cloud computing architecture

In distributed computing, assets are recovered from the web through electronic
instruments and applications. This permits the clients to work remotely
in light of the fact that the Cloud can be utilized as the "Web". In this
way, it isn’t handled as conventional redistributing. It is likewise called
Massive Computing. In this, the assignment of the application must be
dynamic. There is no compelling reason to introduce any sort of equipment
and programming. The objective of distributed computing is to allow the
clients to get to the information from all the advancements, applications with
no deep information about them. In distributed computing engineering, the
applications, information, and administrations all are put away in the Cloud
by means of the web and run the applications and put away information by
conveying the product assets as on-request benefits [7].

Cloud computing architecture can be divided into four layers, that is hardware
layer, infrastructure layer, platform layer and application layer, as shown in
Figure 2.1.

• Hardware layer : The physical assets of the Cloud are overseen by
it. Controlling physical servers, switches, router, power framework is
the duty of the equipment layer. The usage of the equipment layer
is given in the server farm. This server farm contains a few servers
that are interconnected through switches. A few issues happen in the
equipment layer including adaptation to non-critical failure, equipment
setup, traffic the board and assets of the executives [7].

• Infrastructure layer : It is a basic part of distributed computing.
Framework layer depends on key highlights, for example, dynamic asset
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Figure 2.1: CLOUD COMPUTING ARCHITECTURE

tasks that are accessible through virtualization innovation. Framework
layer makes the assortment of processing and capacity assets and partitions
the physical assets by using virtualization procedures.

• Platform layer: It is based on the infrastructure layer. The fundamental
idea of the stage layer is to limit the overhead of sending applications
legitimately into VM compartments. For instance, Google AppEngine
works at the stage layer to assign API bolsters for actualizing information
stockpiling of the various web applications.

• Application layer: It is based on the top level of Cloud architecture.
It is made out of real Cloud applications. Cloud applications have
basic highlights to accomplish better execution, lower working cost,
accessibility, and versatility. Therefore this engineering is more particular
than other designs. Inexactly coupled ideas are utilized in each layer.
This design grants distributed computing to convey a wide scope of
utilization necessities while decreasing generally speaking overhead [7].

2.3.2 Deployment models

Computational assets accessible on the Cloud can be conveyed and disseminated
to clients as per various models. The decision of one of those models, both
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from the end-clients’ and from the Cloud suppliers’ point of view, is basically
determined by the degree of dependability, adaptability, and security that is
required.

• Public Cloud: It very well may be shared by different associations.
Model Amazon, Google. Open Computing application stockpiling is
made accessible to all associations. Assets are progressively appropriated
over the web by means of web administrations.

• Private Cloud: This Cloud framework is committed to a particular
association and can’t be imparted to other associations. Private Cloud
is progressively secure and increasingly costly as a contrast with an
open Cloud and other blurring modes.

• Hybrid Cloud: It is blended of Public and Private Cloud and furthermore
made out of in excess of two obfuscating modes. Association may have
basic applications on open Cloud or private Cloud that are thoroughly
relying upon requests. In a mixed Cloud, some portions of the applications
administration framework are processed in private Cloud while the
remaining part are processed in broad public Cloud. What’s more,
modes of Cloud computing are shown below [7].

Figure 2.2: CLOUD COMPUTING MODELS

2.3.3 Cloud services

Cloud services can be divided in four main categories:
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• Infrastructure as a service (IaaS): It conveys a computer foundation
that is a virtualized stage as help without purchasing programming
and servers [6]. These infrastructures are for the most part given
to clients by means of Virtual Machines, that permit them to send
and run their own product. IaaS arrangements are generally utilized
with regard to programming advancement and testing, other than for
information reinforcement and capacity and in the structure of Big
Data examination.

• Platform as a service(PaaS): It permits application developers to
have their administrations [6]. They can incorporate working framework
support, databases, web servers, and programming improvement structures.
They disentangle the procedure of programming improvement by maintaining
a strategic distance from clients of the setup of the server framework.

• Software as a service(SaaS): The application itself is given by a
specialist organization. Programming can be utilized as help over
the web without introducing programming on the client’s computer
[5]. This ensures the clients the likelihood to access totally different
applications without the need to introduce or refresh them, streamlining
upkeep and backing. Notable instances of this sort of administration
are given by Google systems like Google Docs or Google Sheets, which
permit overseeing archive and spreadsheets altering without the need
to introduce physical applications.

All the administrations portrayed above are commonly proposed as on-
request administrations and they are sorted out as indicated by a compensation-
to-go, evaluating a model that represents the use of the administrations
themselves. The associations’ interest for Cloud administrations is developing
exponentially, getting one of the best contributing needs.

As indicated by the IDC report, this positive pattern includes, as a matter
of first importance, IaaS administrations, generally utilized in the Big Data
investigation structures, with an expected Compound Annual Growth Rate
of 32% by 2023.

2.4 Virtual Machine

Virtualization has become a significant tool in computer system design and
virtual machines are utilized in various sub-disciplines extending from the
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operating system to programming dialects to processor structures. By liberating
engineers and clients from the conventional interface and resource limitations,
VMs upgrade programming interoperability, framework invulnerability, and
stage flexibility. Since VMs are the result of assorted gatherings with various
objectives, be that as it may, there has been generally little unification of
VM ideas. Thus, it is valuable to take a step back, consider the variety
of virtual machine structures, and portray them in a brought together way,
putting both the notion of virtualization and the types of VMs in context
[15].

The idea of virtualization can be applied not exclusively to subsystems (for
example, disks), yet to an entire machine. To implement a virtual machine,
engineers add a product layer to a genuine machine to help the ideal design.
Thus, a VM can bypass real machine similarity and equipment resource
limitations [15].

2.4.1 VM allocation problems

The VM allocation problem is one of the central difficulties of utilizing the
cloud computing worldview productively. Cloud computing envelops a few
distinct setups and, relying upon this, the VM allocation issue additionally
has various flavors [10].

Virtual machine allocation issues consist in deciding the best position of
VMs on physical nodes, that can be arranged both on a private or public
Cloud. In the accompanying, the entity who is accountable for taking care
of the VM designation issue is meant as Cloud Provider. Most importantly,
the interest for VMs that must be put onto physical machines can change
after some time, just as the quantity of resources that those virtual machines
require, as far as memory or computational power.

As an outcome, VMs can be relocated starting with one machine then onto
the next furthermore, they can be turned on or off as per the interest. Both
these forms are generally tedious, regardless of whether this time is frequently
ignored in plans, particularly when it is extensively lower than the time
required to run applications on the VMs themselves. This methodology will
be misused likewise in this proposition work, where the execution times of
Deep Picking up preparing jobs will be constantly thought to be certainly
bigger at that point the movement times of Virtual Machines.
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Physical machines have, thus, a fixed limit regarding assets they can have.
Besides, the situation of various virtual machines on the equivalent physical
host regularly prompts execution corruption, which ought to be considered
when characterizing the ideal arrangement for the broken framework. The
utilization of resources decides operational costs that are for the most part
due to power utilization and are along these lines identified with the number
of uses and the measure of time spent by various assignments on the VMs.

2.5 Heuristic approaches

The heuristic methodology is designed so as to construct great or close
optimal solutions for complex optimization problems in a sensible measure
of time. The expansive class of advancement issues can be partitioned
into a progression of sub-classes, as per the chance of creating productive
calculations to decide an answer.

2.5.1 Greedy algorithm

Greedy algorithms have been produced for a large number of issues in combinatorial
optimization. For a large number of these greedy algorithms, exquisite most
pessimistic scenario examination results have been gotten. These Greedy
algorithms are regularly exceptionally simple to depict and code and they
have extremely quick running times. On the other hand, the exactness of
avaricious calculations is frequently unacceptable. When occasion size is
large, precise arrangement approaches are commonly not pragmatic. In any
case, a wide variety of metaheuristics have been effectively applied to take
care of combinatorial optimization issues to within 5% or better of optimality
[1].

The point of greedy algorithms is to discover sensibly great answers for the
improvement issues they are tending to by methods for a sequence of locally
optimal decisions. At any progression, the most encouraging move is chosen
among the set of potential decisions, while never questioning past decisions.

Greedy algorithms are one of the well-known solutions for some advancement
issues. As a simple algorithmic paradigm, it makes locally optimal decisions
at each progression with the desire for accomplishing a globally good solution
in sensible time [2].
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Greedy algorithms work on problems for which it is true that, at every step,
there is a choice that is optimal for the problem up to that step, and after
the last step, the algorithm produces the optimal solution of the complete
problem. Greedy algorithms identify an optimal substructure or subproblem
in the problem. Then, determine what the solution will include (for example,
the largest sum, the shortest path, etc.). Create some sort of iterative way
to go through all of the subproblems and build a solution [13].

Figure 2.3: GENERAL GREEDY ALGORITHM

2.5.2 Randomized greedy algorithms

The fundamental issue identified with pure greedy methodologies is the fact
that there is no assurance of getting an optimal solution. Indeed, the method
of playing out an optimal decision in every single step does not really deliver
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an answer that is optimal for the full issue. Regardless of whether this is
reached, its optimality may hold just locally, since the procedure of never
questioning the decisions characterized at past steps effectively leads to being
stuck in local optima.

Using randomization can help to solve this problem by attempting to reach
the global equilibrium of the problem. Randomness can be implemented
by associating a probability distribution with candidate elements in Si. In
general, the level of randomness to be considered may be specified by weighing
the likelihood of extracting an element sij from Si based on the value it would
add to the objective function.

A pseudo-code is stated in Figure 2.3 for the randomised greedy algorithm.
As with the pure greedy version, each candidate variable is evaluated in set
Si. The probability pij of selecting sij as a new component s* is determined
in a pure random approach only on the basis of a function of probability
densities.

In addition, the objective feature is assessed in a mixed approach at the
latest based on the new value, the candidate variable and pij are weighted.

vij = f(S∗ ∪ sij)

The new element s* is then extracted from Si and added to the solution for
the candidate.

2.5.3 Local search

Local search is a Metaheuristic strategy that is applied with the broadly
useful of deciding a, conceivably optimal, solution for an optimization problem.

In many optimization problems, the state space is the space of all possible
complete solutions. The local search consists in moving from a solution to
another one in its neighbourhood according to some well-defined rules. For
definiteness, we consider the problem of minimizing a function f(p) on a finite
set of points p. This can be considered a general statement of a combinatorial
optimization problem.

A local search strategy starts from an arbitrary solution p ∈ P and at
each step n, a new solution pn+1 is chosen in the neighbourhood V(pn) of
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the current solution pn. This presupposes the definition of a neighbourhood
structure on P; to each p ∈ P is associated V(p): a subset of P called the
neighbourhood of p. For instance, if P is a set of binary vectors and p ∈ P,
a neighbourhood V(p) of p can be defined as the set of all solutions p ∈ P
obtained from p by flipping a single coordinate from 0 to 1 or conversely
[12].

Specifically, it is tended to as a local search in light of the fact that any
conceivable move performed to show signs of improvement result is assessed
distinctly as for a neighborhood set of solutions.

In the general system, there is no assurance for global optimality of the
solution built by neighborhood search; be that as it may, this strategy is
regularly applied to improve the aftereffects of other heuristic algorithms,
for example, ravenous or randomized greedy methods.
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Chapter 3

Methods
3.1 Scalable methods for the joint capacity allocation

and scheduling of DL jobs

3.1.1 Centralized Model

The proposed Mixed Integer Linear Programming (MILP) is an extension
of the Monolithic Model (MM) [6]. Specifically, it focuses on estimating the
cost of first-end job delivery. This method is more appropriate for modeling
the actions of an online scheduling problem. In reality, the framework is
reconfigured not just every time a new job is submitted yet additionally
every time a job’s execution is finished. Since, from an online viewpoint, the
only foreseeable event is the completion of a job and as all resources that
are reallocated after a rescheduling, it is fair to bond the total cost to the
first-end job’s delivery expense.

Parameter Description

J The list of submitted job

N The set of nodes

dj The dead line

v Type of Virual Machine (VM)

g Number of GPUs

jn Deployment cost

Tj Tardiness of job

Table 3.1: PROBLEM PARAMETERS
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3.1.2 Hierarchical approach

In order to improve the scalability of the problem, namely the scheduling of
Deep Learning Training jobs on GPU-based Cloud Virtual Machines and the
Centralized Model, a Hierarchical approach is proposed as follows, aimed at
separating and resolving the analyzed problem via a series of local controllers.

The method is shown in Table 3.1 below. According to a Round Robin (RR)
scheme, the number of reported jobs, denoted as normal by J, is split into a
set of local queues, governed by a corresponding group of central controllers,
denoted by the index k ∈ K.

The RR algorithm assigns jobs in circular order to the local queues, so the
union of all Jk, for k ∈ K , forms the initial queue J. The same policy
applies to the nodes in set N, which are divided into a series of subsets Nk,
for k ∈ K, each of which is managed by one of the local controllers.

Each controller K solves a joint resource allocation and schedule of jobs
problem taking into account the Jk queue and the Nk subset, which can be
equipped with different VM types and different GPU numbers.

G

G G

G

G G

Figure 3.1: REFERENCE FRAMEWORK
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3.1.3 Greedy algorithm

A Greedy algorithm is designed to solve the MILP problem. It expects
to additionally improve, as for the result of the hierarchical approach, the
scalability of the model, so that it can be employed to solve joint capacity
allocation issues and job scheduling problems not just from the perspective
of the Cloud end-clients, but also of the Cloud providers.

Greedy algorithms expect to discover sensibly optimal solutions for the optimization
issue they are tending to by implies a sequence of locally optimal decisions.
At each progression, the most encouraging local choice is selected, while
failing to question past choices. So as to design a greedy algorithm for the
problem, to indicate the rules used to decide the best local solution at each
step, the following assumptions are considered:

• First assumption: jobs should be scheduled according to their pressure.
For each job j ∈ J , the pressure j is defined by determining how close
it is to its deadline dj when it is executed with the fastest configuration.
Having denoted by Tc the current time when the scheduling is performed,
the pressure of each job j is therefore computed as:

∆j = Tc + min
v,g

(tjvg)− dj . (3.1)

• Second assumption: the optimal configuration (v, g) ∈ V × Gv

for each selected job is the cheapest configuration such that the job
is executed before its deadline, if such a configuration exists, and the
fastest available configuration if, independently from the selected setup,
it is not possible to execute the job before its deadline.

• Third assumption: deployment costs increase linearly in the number
of GPUs, as demonstrated by Cloud providers pricing models and the
speedup of jobs’ execution is sublinear in the number of GPUs, as
observed in GPU-based application benchmarks.

The Greedy algorithm consists of three main phases: preprocessing phase,
scheduling phase, post-processing phase.

1. Preprocessing phase
First of all, jobs are sent, sorted by their pressure, and the current
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Figure 3.2: GREEDY ALGORITHM

time Tc is modified by adding the elapsed time t between the previous
schedule and the new schedule, while the open node set NO is initialized
by the empty set. Then, consideration is given to the complete queue
J of the submitted jobs. If a job has been partially executed in the
preceding period, its execution time tjvg must be modified for all
possible values of v ∈ V and, therefore, g ∈ Gv. Specifically, being cpj
the completion percentage of job j, its execution time is updated by
replacing its value with:

tjvg ·
100− c̄pj

100
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After updating the execution time of all jobs submitted in J, their
pressure is determined so that the list of jobs submitted can be sorted,
by calling the corresponding function, generating a new queue denoted
by Js. In the sorted queueJ is placed before k if and only if j > k, i.e.
job j deadline is more likely to be missed.

2. Scheduling phase
In this step the best possible configuration is chosen for all queue jobs.
For all jobs j in the sorted queue Js, the set of configurations such that
the job can be executed within its deadline is defined as:

D∗j = {(v, g) ∈ V × Gv s.t. tjvg + Tc < dj} .

In the procedure, the set Dj∗ is used to select the best job j configuration,
according to the following rules.

• If Dj∗ is not empty , i.e., job j can be executed within the time
limit, The best configuration is the cheapest one.

• When, in effect, job j can not be executed within its time limit,
regardless of the chosen configuration, the optimal setup for the
system is the fastest.

The assignment continues as follows, having denoted the appropriate
configuration for job j by (v*, g* ).

(a) Firstly, the algorithm tries to assign job j to an already available
node With the right configuration (v*, g*). It can be achieved
in two different ways. First, a first-fit approach: let NO ⊆ N be
the set of already open nodes; if there is a node v ∈ NO whose
VM and whose number of available GPUs is higher than or equal
to g∗, then job j is allocated to v with optimal configuration.
The second procedure is a best-fit approach instead of looking for
the first open node with a compatible configuration and enough
free resources, the best available node is selected through the
procedure reported in Figure 3.3.

Specifically, One of the main objectives is to minimize the amount
of idle resources, thus open nodes whose type of VM is compatible
with the one required by the current job are sorted by their
saturation level. The saturation level has been described as the
number of GPUs remaining idle after deploying job j on v with the
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necessary optimum configuration (v*, g*) for each node v ∈ NO

equipped with a VM type v* and such that it hosts sufficient
free resources to allocate any GPUs to the job j. Under this rule,
jobs are allocated to open nodes in order to saturate the node
resources as much as possible, thereby reducing the total number
of idle GPUs.

(b) If the assignment to an already open node is not feasible, but |NO |
< N , a new node ’ is opened, with VM type v* and the maximum
number Gv∗ of GPUs available. Job j is then allocated to v’ with
configuration (v∗, g∗) and the number of GPUs available on v’ is
changed as needed.

(c) Lastly, if (v*, g*) does not match in any open node and all
available nodes are already open (NO ≡ N), the job j is assigned
to the sub-optimal configuration of the node v ∈ NO . Two
alternative assignment realizations to sub-optimal setups can be
exploited. In the first version, which follows a best-fit approach,
The job is assigned to the first configuration available on an open
node. The second edition, which follows a best-fit approach,
assigns the given job to the best of the sub-optimal configurations
on available open nodes.

3. Post Processing Phase

The final step of the algorithm is a post-processing phase which aims at
reducing the number of idle GPUs in open nodes, as much as possible.
This objective is achieved through two distinct operations.

• First, the fact that two configurations are said to be equivalent if
they have the same type of VM but different number of available
GPUs, the algorithm tests whether it is possible to substitute the
currently selected setup with an equivalent one on an open node,
having a lower number of available GPUs.

• If the update presented in the previous step can not be performed
or if there are still nodes with idle GPUs after it has been completed,
the additional resources will be reallocated by assigning them to
the job which gains the highest speed-up.
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Greedy algorithm was implemented by means of a C++ code, to optimize
efficiency in terms of execution time. As mentioned earlier, the ultimate
purpose is to address problem instances in such a way as to consider a
very large number of nodes and jobs.

Let J be the cardinality of the queue J of submitted jobs and let
N be the cardinality of the set of nodes N . Moreover, define C =∑

v∈V Gv as the cardinality of the set V × Gv. The overall complexity
of lst:greedy can be computed as described in the following. First of
all, the complexity of the preprocessing stage is given by two terms:
the first, O (JC), is due to the update of all execution times, while the
second, O (J log J), is determined by the sorting operation. Overall,
the complexity of preprocessing is therefore O (JC + J log J).

As far as the scheduling stage is concerned, the first term influencing
the complexity is due to the selection of the best configuration. If
this operation needs to be performed only once, to determine the best
configuration of a given job, because the assignment to a sub-optimal
configuration follows instead the first-fit method there is need to build
the set D∗j explicitly. Therefore all the configurations available must
be checked in this case and the resulting complexity is O(C).

If the assignment to a sub-optimal configuration is in effect the best
choice approach in the best configuration selection may be performed
many times during the algorithm. Therefore, at the outset, a more
convenient option would be to construct specifically the set Dj . The
selection of an ordered associative container specifies for this operation
a complexity of O(ClogC) , but allows the actual complexity of the
selection process to be reduced to O (1).

For what concerns the assignment process, in both the first-fit and best-
fit approach, the complexity is O(N). The assignment to a new node,
as long as the information about the last used node is always available,
is reduced to O(Gv∗), as the VM of type v* with the maximum number
of GPUs must be selected. Since Gv is, for all v ∈ V, considerably
smaller than all the other dimensions of the problem, the complexity
of the assignment to a new node can however be reduced to O(1).
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Finally, the complexity of the assignment to a suboptimal configuration
depends on the chosen strategy. For the first-fit, if, in the worst case,
no open nodes can host the incoming job, the complexity is O (N
). Following the best-fit approach, the complexity of the worst case,
where all possible configurations must be examined, is given by O (CN
).Since both the selection of the best configuration and the assignment
process are carried out in the queue J for all jobs, the above measured
terms must always be multiplied by the number of jobs J.

Finally, the post-processing step has O (N + J) complexity, determined;
first of all, by replacing configurations which leave a large amount of
idle resources and, secondly, by assigning still idle GPUs to the job
which gains the highest speed-up.

3.1.4 Randomized Greedy algorithm

As mentioned earlier, Pure Greedy algorithms usually provide sub-optimal
solutions, which can sometimes be of low quality. The procedure can be
modified by introducing randomness in different stages of the pre-processing
and the selection phases to enhance the robustness of the method and to
find lower-cost solutions.

1. Preprocessing stage
The pre-processing randomization consists of re-molding the sorted
queue Js, where the probability of swapping the location of two jobs in
the queue is weighted by their priority. In particular, since the penalty
for breaching the deadline is more expensive for higher-priority jobs,
the likelihood of changing their order in Js is lower, as jobs are more
likely to be executed if they are at the queue’s first positions.

2. Scheduling stage

The randomization strategy exploited in the scheduling step is based
on the pattern described for the Greedy Randomized Adaptive Search
construction phase. In particular, a Restricted Candidate List (RCL)
of elements is defined instead of choosing the element that has the best
outcome with respect to the selection procedures described above and
the new component of the solution is extracted from RCL at random.
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Figure 3.3: SELECTION OF BEST NODE(RANDOM GREEDY)

First of all, in the selection process, instead of determining the best
configuration, a small subset of candidate configurations is selected
from Dj and the optimal configuration (v∗, g∗), is randomly selected
from this subset; with a probability that is inversely proportional to
the configuration cost itself.

Finally, assigning a job to an already open node is randomized starting
with the best-fit approach and modifying the function used to select the
best node. In fact, instead of scanning all open nodes and selecting the
one that leaves the smallest amount of idle resources, open nodes are
sorted to form the set N according to their saturation level, a subset of
candidates is extracted from N and the best node is randomly selected
from this subset with a probability that is inversely proportional to the
number of idle GPU.

In the randomized case too, the overall structure of the Greedy algorithm
remains the same. Nonetheless, the complete process, including pre-
processing, scheduling, and post-processing phases, is repeated multiple
times to find the best randomization solution.
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3.1.5 Local Search

A step of local search can be performed to enhance the results obtained
by a randomized greedy algorithm. The strategy followed in this work , in
particular, prescribes saving the best solutions obtained by the randomized
greedy in a set S and applying a step of local search to all of them, in order to
find the best solution. Since the worst situation for a job is to terminate its
execution after the prescribed deadline, thereby creating a tardiness penalty,
the collection of jobs in tardiness are the first candidates that our local search
often takes into consideration. There are three types of neighbourhoods:

1. Neighborhoods involving nodes hosting the jobs with highest expected
tardiness, To improve the current solution by modifying the configuration
selected from the node on which they run.

2. Neighborhoods which seek to reduce the total cost of the schedule by
considering running and postponing jobs and attempting to exchange
their state hunting for better solutions.

3. Neighborhoods which include a list of jobs to select improve movement
by swapping the configurations assigned to them, according to different
criteria.

All of those techniques are further detailed by identifying the necessary
information criteria used to pick jobs or nodes which should be updated
in configuration. In addition, a best-improving strategy is adopted, while
parameterizing the number of random solutions to be saved in S, and the
number of jobs or nodes to be considered in building the neighborhoods, so
that their values can be adjusted to achieve better results.

The neighborhoods explored were designed as follows: First of all, Jobs
whose execution, with the configuration selected, would violate the deadlines
are sorted in decreasing order relative to the projected lateness. It allows
neighborhoods experimentation to begin from the jobs whose penalty cost is
likely to be the greatest, with the goal of reducing the expense of choosing
a new design for the solution. Denoted the sorted list with JT , the local
search algorithm proceeds by exploring the neighborhoods as listed below.
The first k elements of JT are contrasted with the elements of another goal
list during all of the discovery process. Only the first k or all the elements
of the goal list are evaluated, depending on the neighborhood considered.
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1. Two sets of jobs are considered: the first k elements of the JT list
mentioned above, of jobs sorted by their anticipated tardiness, and a
list of k running jobs which, with the current configuration, does not
infringe the deadline, sorted by their execution costs, in decreasing
order. The algorithm goes through the selection of all possible pairs
from those sets of jobs running on different nodes, and assessing the
cost of a new schedule by swapping their configurations. In particular,
if the two jobs in the pair, e.g. j1 and j2 are executed on nodes n1 and
n2 respectively, with configurations (v1, g1) and (v2, g2), the proposed
move consists of deploying j1 on n2 , with the VM type and the number
of GPUs (v2, g2) originally assigned to j2 and vice versa. As a candidate
solution, the step providing the lowest cost is saved.

2. The first k jobs in the JT list, sorted by the planned delay of work,
are compared to the full list of running jobs, considered in decreasing
pressure order. As in the previous case, all possible pairs of jobs
running on different nodes are chosen, and the objective function value
is evaluated after that the corresponding configurations have been
swapped. As a candidate solution, the step providing the lowest cost
is saved.

3. Unlike in the previous examples, the third possible neighborhood does
not find pairs of running jobs, but explores the set of submitted jobs.
Specifically, the collection of deferred jobs, reported in rising pressure
order, is compared with the list of operating jobs, in increasing pressure
order. If a running job has less pressure than a postponed job, their
status will be swapped and the objective function reassessed.

4. Given the JT list of jobs whose estimated tardiness cost is greater than
zero, consideration is given to the set of nodes where the first k of
these jobs will be deployed. The fourth neighborhood is created by
attempting to allocate a more efficient type of VMs to those nodes,
while retaining the same number of GPUs. Many jobs will have a
lower execution time when allocated to other types of VMs, depending
on their characteristics, whereas the performance of other jobs will get
worse. Therefore, if the total execution times of all jobs deployed on
that node decreases, a VM is said to be "more efficient".

Politecnico di Milano Page 34



LUEL MIERAF KIROS

5. As with the preceding neighborhood, the fifth aims to reduce the total
timing cost by changing the configuration of nodes hosting jobs with
the utmost tardiness predicted. The configurations chosen to form the
neighborhood in particular have the same type of VM but a double
number of GPUs. These are thus assigned to running jobs without
altering the relative mutual power.

6. A similar technique is also implemented in the sixth neighborhood,
where only configurations are considered with half the number of GPUs.
To be able to share GPUs among running jobs while retaining the
original mutual power, only nodes are considered so that all jobs are
deployed on an even number of GPUs.

7. Eventually, the same list of nodes hosting jobs with the highest delay
is evaluated and a new candidate solution is generated by changing the
number of GPUs allocated to each job, with the constraint that the
total number of GPUs needed can not surpass the amount of resources
originally available on the node.

The value of the objective function created for all candidate solutions by
exploring these neighborhoods, and the value obtained from the randomized
greedy construction are always compared, so that only improving movements
are exploited. Finally, the best among the solutions obtained with each
neighborhood is chosen as a new schedule.

The overall complexity of exploration of the neighborhoods has to be considered
when implementing the local search procedure and added to the complexity
of the randomized greedy construction process. Specifically, a maximum
number of jobs is then derived from the JT list to investigate the neighborhoods,
so that the number of jobs explored in the current iteration turns out to
be the minimum between k and the number of jobs in lateness. Having
constructed JT and at the same time a list of k running jobs, considered in
decreasing order of cost of execution, the exploration is carried out.

With concerns to the first neighborhood, from the first k jobs in JT and in
the list of jobs sorted by execution costs, all possible pairs are generated,
resulting in a complexity of O(k2). In addition, the first k elements of JT
are contrasted with the list of running jobs in decreasing pressure order in
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the second neighbourhood. Since the list J of jobs is sorted according to
pressures at the beginning of the construction process listed in the previous
sections, the pairs of jobs examined in this context are generated by comparing
JT ’s first k jobs to the full J, resulting in O (kJ). This is worth noting that
k is selected as being considerably smaller than J. The list J of submitted
jobs is considered also in the third district, where delayed and running jobs
are compared, resulting in O (J2) complexity.

In the fourth, fifth, sixth and seventh neighborhoods, the JT list is used to
drive node exploration, so those with the highest tardiness are considered to
host the jobs.

In exploring the fourth neighborhood, the list of jobs running on the same
node is analyzed for each of those jobs, if the corresponding node has not
yet been visited. If v ∈ V is the type of VM deployed on the current node
n, the maximum number of jobs running on n, under the worst-case scenario
that all of them are allocated to a single GPU, is Gv, the total number of
available GPUs on VM a type v. All possible configurations are evaluated
for each job to decide whether there is a more efficient configuration that
can substitute the current one.

The overall cost of this operation, being C = v ∈ VGv is given by O(kGvC). If
such a configuration exists, all jobs running on the current node are scanned
again to change their setup. Hence, under the assumption that all jobs are
late deployed on different nodes, in order to carry out the analysis k times,
the average exploration expense of the neighborhood is O (kGvC + kGv) and
O (kGvC).

In the case of the fifth and sixth districts a similar approach is used. However,
because the types of VMs that can be deployed on the different nodes are the
same for all jobs, the review of available configurations to find out whether
there is a particular configuration with a double or half number of GPUs
is done for each node only once. Therefore, the total cost for the fifth and
sixth neighborhood is O(kC + kGv), under the hypothesis that all workers
are deployed on separate nodes in late. Because C = v ∈ VGv, by definition,
is substantially greater than Gv for all v ∈ V, this can be approximated to
O (kC).
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Finally, in the seventh neighborhood, the running jobs are allocated a configuration
with the same type of VM but a different number of GPUs. Consequently,
because the available configurations are grouped by their VM from using an
unordered associative container, the total exploration cost may be approximated
to O (kGv log C).

In both neighbourhoods, an incremental cost is defined by the objective
function assessment required to decide if the new step represents an improvement
on the cost of the original solution. The test can be carried out in two
separate ways, as the suggested alteration might alter the identity of the
first-end job on the network.

Indeed, the completion of execution of a job defines a rescheduling in an
online scheduling process, thus the assessment of the current configuration
is only true until this event occurs. An O(J) expense is due to decide which
is the system’s first-end task. Having that information, if the first-end job is
the same as in the original solution, the objective function value can be re-
evaluated by measuring only the discrepancies between the original schedule
and the proposed changes. Nevertheless, if the first-end job changes in the
proposed new timetable, the objective feature must be recalculated for all
workers, which specifies an additional expense of O(J).
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Chapter 4

Result and Simulation
4.1 Experiment Setting

The proposed models were developed in the special context of the Deep
Learning training tasks to solve a joint capacity allocation and job scheduling
problem.

In general, Deep Learning applications have a tremendous demand for resources,
in terms of both computing power and storage. Consequently, when performed
on GPU-based systems, they typically achieve considerable performance
improvement, being deployed on various configurations according to their
requirement, probably variable.

Specifically, the applications chosen to evaluate the proposed scheduling
methods consist of heterogeneous Neural Networks (NNs) training tasks,
the main applications we considered are as follows:

• AlexNet: is an extremely versatile model that can provide high accuracy
on very complex datasets. Its architecture consists of five convolutional
layers plus three layers which are completely connected. AlexNet is
a deep Convolutional Neural Network (CNN) which is designed to
recognize images [8].

• Visual Geometry Group (VGG): VGG Neural Network has been
designed to improve predictive accuracy by increasing the number of
active layers as opposed to previous architectures. Its training process
is highly, therefore the amount of computational power available on
the system significantly affects its performance.

• Deep Speech: A speech recognition system based on the use of a
Recursive Neural Network, the performance of which is determined
primarily by the memory size and speed.

• ResNet: Has been designed to ease the deep network training process.
The general purpose of a NN, H(x) as an underlying mapping to be fit
by a few stacked layers, given an input x, ResNet modifies this method
by estimating a residual function:

F (x) = H(x)− x
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It is characterized by a balanced type of workload as compared to the
former [4].

The three CNNs were chosen as targets for image classification tasks; the
proposed experiments are planned because they are traditionally known
as the best architecture in the ImageNet competition. In fact, they are
commonly used in realistic contexts, owing to the implementation of the
theory of paradigm learning. Since their architectures are heterogeneous,
representative examples of the variety of architectures used for image classification
and video processing in practice may be considered.

Several instances of the Deep Learning training applications listed, both
implemented with PyTorch and TensorFlow frameworks, were considered,
by varying the number and batch size of the epochs and thus with different
characteristics in terms of the expected execution times. Such execution
times were calculated by relying in particular on Machine Learning models
based on linear regression; such models allow to learn the execution times of
Deep Learning workers, beginning with a training set of experimental runs
of the target applications themselves, with an average error of about 10% [5].

The joint capacity allocation and job scheduling issue considers different
types of VMs as target execution platforms, whose characteristics are reported
in Table 4.1. Six of the available VM types, namely NC6, NC12, NC24, NV6,
NV12 and NV24 are based on Nvidia K80 and M60 GPUs, and are available
in the catalog of Microsoft Azure. Three types of VM, using Quadro P600
or GTX 1080Ti GPUs, are based on a configuration of the in-house servers.
Finally, the two VMs named "Standard NC24X" and "Standard NV24X"
are not available as reference in the Azure catalog. However, they have been
added, with time unit costs consistent with those of the elements selected
from the catalog, in order to extend the spectrum of potential solutions.

4.2 Simulation

The general structure of the process used to solve VM capacity allocation
and job scheduling problems is independent from the chosen approach and
therefore is common to all the available methods. This consists mainly of
three parts, namely a data generator, a simulator and a solver, as illustrated
in Figure 4.1. In particular, the first is common to all the applied techniques,
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VM type GPUs type Number of GPUs Cost [$/h]

Standard NC6 K80 1 0.56

Standard NC12 K80 2 1.13

Standard NC24 K80 4 2.25

Standard NV6 M60 1 0.62

Standard NV12 M60 2 1.24

Standard NV24 M60 4 2.48

In-house server 1 Quadro P600 2 0.11

In-house server 2 GTX 1080Ti 8 1.13

In-house server 3 Quadro P600 8 0.44

Table 4.1: CHARACTERISTICS OF THE TARGET NODES

while the others have been adapted differently for the two cases of the
Hierarchical approach and the heuristic methods.

The process of generating data has been implemented in Python. Given a
list of inputs related to the characteristics of the required system, it allows
all the data needed to run the simulation process described below to be
generated.

Specifically, the parameters, that can be provided through a suitable configuration
file, concern the number of nodes that will be available in the system, the
total number of applications that be submitted along the simulation, denoted
in the following as Jc, and the average inter-arrival time to be considered.

Starting from a pool of candidate programs, which features on all the available
configurations in terms of execution times. A Python code selects Jc jobs at
random to shape the Jcandidate package. In this step, as defined in section
4.1, all information relating to submission times, deadlines, and tardiness
weights are determined. During the simulation process the applications in
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Figure 4.1: GLOBAL STRUCTURE OF THE SOLUTION PROCESS

Jcandidate will be selected to form the queue J of submitted jobs.

In addition, all the information related to the resources available in the
system, namely the set N of nodes and the set V and Gv representing the
catalog of available VMs and the GPUs that can be installed on each VM,
are generated in this section and used to solve the instance provided below.

Simulation method is responsible for reproducing the actions of a real online
program, which receives a series of requests and runs the current solver
to decide the best schedule for all applications submitted. The simulator
configuration is similar for the Hierarchical process and heuristic procedures,
but it was introduced separately to better communicate with the underlying
solver.

The simulation process consists mainly of a time loop, the iterations of which
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are driven by the submission of new applications or the completion of their
implementation. Specifically, the new jobs are extracted from Jcandidate
based on their time of submission and inserted into the queue J . This
queue is provided to the solver, as well as the information about available
resources, which analyzes the current instance in order to determine the
best scheduling. possible. This is then returned to the simulator, which
measures the costs associated with the execution of the jobs and, if a task
is completed, the potential fines due to violations of deadlines. The process
ends when complete execution of all jobs.

All the results presented were obtained by running the implementations on a
VM running on top of a server based on Intel Xeon E5-2640, using 32 cores
and 32 GB of memory.

Many instances of the program that included a large number of nodes and
submitted jobs were considered. The mean value equal to 30000s was selected
having considered the minimum execution times of jobs, so that the scheduling
process is guided, at least in the first part, by submissions of new jobs rather
than by their finishing time. The mean time interval is divided by the number
of available nodes, so that the workload of each node is constant as the
network size increases.

Specifically, three sets of jobs were generated for each case, defined by
a given size N and consequently by a fixed J , as mentioned earlier, to
represent different submission scenarios. In addition, in the Randomized
Greedy algorithms, the experiments were conducted with 10 different seeds
for each generated job trace, in order to be able to discriminate the differences
in the results determined by randomization from those by choosing another
method.

The findings were compared to those of some of the key heuristic methods
which can be used to solve problems with VM allocation and job scheduling.
In particular, the algorithms used as benchmarks, called "first-principle
methods", are:

• First-In-First-Out (FIFO) method: jobs submitted to queue J will
be processed in their order of arrival as soon as resources are available.
No preemption is permitted, so if a job is selected and assigned to a
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certain configuration, that setup will be performed until it is completed.

• Earliest Deadline First (EDF) method: the queue J will be sorted
with respect to the job deadline as soon as jobs are submitted, so that
those who are more likely to violate it will be processed first. As far
as the FIFO algorithm is concerned, it provides a better scheduling in
terms of the tardiness costs, since this sorting decreases the frequency
of violation of deadlines.

• Priority Scheduling (PS) method: the queue J is sorted with
respect to the lateness weights of the jobs as soon as jobs are sent. This
strategy aims at reducing the total tardiness expense of scheduling by
handling in advance jobs that would assess a higher penalty if their
deadline is broken.

All of these algorithms are based on the premise that multiple jobs can
not be shared between resources (nodes and VMs, other than GPUs).
Furthermore, applications can not be preempted until allocated to a
given configuration.

4.3 Comparison with first principle methods

To test the efficacy of the proposed strategies, the results obtained were
compared, as in other literature proposals, to those measured using the so-
called "first-principle methods", by considering a large collection of randomly
generated instances; First-In-First-Out (FIFO), Earliest Deadline First (EDF)
and Priority Scheduling (PS) methods are the three algorithms used as
benchmarks for assessing the output obtained, both in terms of execution
time and cost.

All these algorithms are based on the assumption that multiple jobs cannot
share resources (nodes and VMs, other than GPUs). Furthermore, applications
cannot be preempted once allocated to a given configuration. The outcomes
of the analysis are summarized in the following pages, both for the Hierarchical
Method and for the three heuristic algorithms.
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4.3.1 Heuristic Approach

Both simulator and solver designed for the heuristic algorithms presented
in Sections 3.1.3 and 3.1.4 have been implemented in a C++ program.
Specifically, the Randomized Greedy method extends the solver by introducing
an internal loop, that is in charge of performing the required number of
iterations for the randomized construction. It consists of a mathematical
optimization solver that can be applied to Linear, Quadratic and Mixed
Integer Programming problems. The interface between the simulator and
the solver has been implemented by relying on Pyomo [14], a Python-based
modeling language that allows to define a symbolic model and to generate
the instance that has to be solved.

In the case of the Hierarchical Model, the entire simulation process have
been implemented as a Python library. In addition to the aforementioned
procedures, it also involves the initial splitting of the set N of available nodes
and the list of candidate jobs listed in Section 3.1.2.

This takes place at the beginning of the process, so that, if K is the number
of local controllers, the list Jcandidate is split in K different portions before
entering in the time loop representing the simulation.

This has been done in order to simulate a real system, such that all controllers
run independently one from the others, by performingK different simulations,
whose results in terms of computed costs are gathered only at the end of the
whole process.

4.3.2 Hierarchical approach and Random Greedy Algorithm

The comparison between the Random Greedy algorithm presented in Section
3.1.4 and Hierarchical approach described in Section 3.1.2 highlights the
great power of the former in terms of scalability. Have been tested by
performing 1000 random iterations at each scheduling stage, with varying
the mean value of inter-arrival times to (1000-40000).

A comparison of the results obtained with the Hierarchical approach and the
Random Greedy algorithm , Figure 4.2 reports the total costs that obtains
almost the same results.
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Figure 4.2: Comparison between Hierarchical Model and Random Greedy
Algorithm

4.3.3 Pure Greedy and Randomized Greedy Algorithms

The Randomized Greedy algorithms, proposed in section 3.1.4 to enhance
the results of the pure Greedy method, have been tested by performing 1000
random iterations at each scheduling stage, with varying the mean value of
inter-arrival times to (1000-40000).

Specifically within the algorithm, the scheduling obtained through the proposed
randomized construction is always compared, in terms of objective function
value, with the solution of the Pure Greedy, so that the proposed solution is
implemented only if its value, in the current scheduling step, has a promising
outcome with respect to Pure Greedy, while solutions with a worse outcome
are neglected.

Specifically, as shown in Figure 4.3, the percentage gain of Randomized
Greedy algorithm with respect to EDF method is almost superimposable,
with an average value of 95.99% compared to the 95.05%, of the pure Greedy
algorithm.
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It is worth to notice, as reported in Figure 4.3, that the average percentage
gain of the Randomized Greedy method over the Greedy algorithm is of
9.56%.

Figure 4.3: PERCENTAGE GAIN w.r.t EDF

4.3.4 Comparison between Centralized Greedy and Centralized
Random Greedy Algorithms

The schedule developed by the Centralized Model at each stage have been
implemented and worked on a specific framework to measure standards
output with result obtained. The experiment results have been tested by
performing 1000 random iterations at each scheduling stage, with fixed the
mean value of inter-arrival times to 30000s.

The Figure 4.4 compares the real value obtained from the results of the
complete simulation, measured at the conclusion of all the scheduling steps
performed, with the average gain Eg. For each experiment, Crg being the
cost of the schedule determined by the Randomized Greedy algorithm and Cg

being the cost of the schedule that would be returned by taking advantage of
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the pure Greedy method, Randomized Greedy ’s expected benefit in respect
of Greedy is calculated as:

Eg =
Cg − Crg

Cg
· 100

The average gain of 3% over the Greedy algorithm. In particular, the

Figure 4.4: COMPARISON BETWEEN CENTRALIZED GREEDY AND
CENTRALIZED RANDOM GREEDY

comparison between the total costs in all experiments with a number of
nodes ranging from 55 to 75 shows that the Random Greedy improves the
results.

4.3.5 Comparison between Centralized Greedy and Hierarchical
Random Greedy Algorithms

The comparison between the Greedy algorithm presented in section 3.1.3
and the Hierarchical approach described in section 3.1.2 highlights the great
power of the former in terms of scalability. The experiment results have been
tested by performing 1000 random iterations at each scheduling stage, with
fixed the mean value of inter-arrival times to 30000.
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Figure 4.5: (a) COMPARISON BETWEEN CENTRALIZED GREEDY
AND HIERARCHICAL Random Greedy Algorithms

Figure 4.5 reports the execution times of each scheduling step with the
Hierarchical approach. Due to the splitting in local queues, the average
execution times remain almost constant for the Hierarchical approach. it
is relevant to notice that the scheduling process for each local controller
is independent of what happens to the other queues. When a new job is
submitted to the central queue J , it is assigned to one of the K local queues
according to the Round Robin policy described in Section 3.1.2, so that the
problem is solved only for the corresponding controller k.

A comparison of the results obtained with the centralized Greedy and the
Hierarchical Random Greedy algorithms, both in terms of average gain
and the cost of schedule, is shown in Figure 4.5 both Centralized Greedy
and Hierarchical Random Greedy they are obtaining the same cost-related
results.

The experiment results are performed as shown Figure 4.6 jobs J splitting in
queues Q , The queues are created the first job j1 is sent to the first queue
q1. the second job j2 is sent to the next queue q2, Then the next job j3 is
sent to the next queue q3, Usually we will not have the same number of jobs
and queues , so the job is assigned into the queue again until all jobs have
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been completed. The pressure P defines jobs J, the pressure computes how
much a job is close to the deadline, because the closest to the deadline dj
must be processed as first.

P = Minimun_execution_time− dj

Figure 4.6: (b) COMPARISON BETWEEN CENTRALIZED GREEDY
AND HIERARCHICAL

Specifically, as show Figure 4.6 The Hierarchical Random Greedy is faster
than the Centralized Random Greedy, but it obtains the percentage gain
-15% which is very poor results, so it’s not worth using it.

4.4 Discussion

The Centralized Randomized Greedy method has been proven to be the best
approach in all the considered scenarios for the problem analyzed from the
perspective of cloud end-users. but it takes a lot more time than pure Greedy
and Hierarchical Random greedy.

In both Greedy and Random Greedy obtaining the same cost-related results,
it is also the execution time is very fast. The Hierarchical Random Greedy is
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faster than the Centralized Random Greedy, but it obtains really bad results.
Therefore it is not recommended to use it.

The results of the scalability analysis highlight the great power of all the
proposed methods with respect to the initial work applied in [6], enabling
to extend the experimental campaign to instances involving hundreds of
nodes. Specifically, while the Monolithic Model required a computational
time of nearly 14 minutes to solve the largest instance, including 40 nodes,
the Hierarchical Model guarantees an average execution time of 40 seconds
for all instances up to 100 nodes.

Even better results have been obtained with the Greedy, Randomized Greedy
and Local Search methods, in 0.0038, 3.04 and 3.15 seconds, respectively.
The speed-up obtained with all the proposed approaches over the initial
Monolithic Model guarantees therefore a reduction of the required computational
time by one or two orders of magnitude, while the Randomized Greedy
algorithm have been proved to be more than 6 times faster than the Hierarchical
Model, on average.

The analysis was extended to the case of Data Center environments. The
comparisons performed in the simplified context of homogeneous Data Centers
enabled to assess the promising behaviour of both the Hierarchical Model and
the heuristic approaches.

Specifically, the pure Greedy method remains 40 times faster than the Hierarchical
approach. The Randomized Greedy algorithm obtains, instead, promising
results for instances considering up to 600 nodes, while a lower execution
time can be achieved, in case of larger systems, by the Hierarchical Model.
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Chapter 5

Conclusion and future work
The core objective of this thesis work has been the analysis of scheduling
algorithms for deep learning training jobs running on virtualized GPU-based
clusters.

The solution of this problem represent great challenges, exacerbated, in the
envisioned scenario, by the fact that the problem is setup in an online
setting, where multiple Deep Learning training jobs are submitted in a
continuous fashion, so that no scheme can be detected in their arrival times
or characteristics, particularly in terms of priority.

The main goal of Mixed Integer Linear Programming (MILP) models was
to design an optimal scheduling for jobs, that would allow to minimize
the overall execution costs, while meeting the constraints related to system
capacity and applications deadlines. Resource sharing have bee designed in
such a way that multiple tasks could be deployed on the same machine, with
a variable number of dedicated GPUs.

The Hierarchical approach developed to solve the proposed model, discussed
in section 3.1.2, aimed to tackle the solution of the problem in a hierarchical
fashion,to reduce the dimensionality by splitting the Monholitic MILP formulation
in a set of smaller sub-problems. In addition, three different heuristic methods,
inspired to Greedy and Local Search techniques, have been developed, as
reported in Sections 3.1.3 , 3.1.4 and 3.1.5, in order to further enhance the
performance obtained with the Hierarchical approach, while maintaining the
quality of the results in terms of scheduling costs.

The results, extensively discussed in Chapter 4 highlight the effectiveness
of the proposed approaches, both in terms of scalability and quality of the
identified solutions.

The review of the results obtained in all the considered scenarios by the
different methods, as described in Section 4.4, allows one to conclude that
the models and approaches built for this thesis work completely achieve the
goal of providing flexible strategies for the solution of the problem of joint
capacity allocation and job scheduling.
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Future work will focus on further improving the approach scalability in order
to manage clusters and disaggregated hardware resources of very large scale
data centres.
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