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Abstract

THE integration of genomic data and of their describing metadata is, at
the same time, an important, difficult, and well-recognized challenge.
It is important because a wealth of public data repositories is available
to drive biological and clinical research; combining information from

various heterogeneous and widely dispersed sources is paramount to a num-
ber of biological discoveries. It is difficult because the domain is complex and
there is no agreement among the various data formats, data models, and meta-
data definitions, which refer to different vocabularies and ontologies. It is well-
recognized in the bioinformatics community because, in the common practice,
repositories are accessed one-by-one, learning their specific metadata defini-
tions as result of long and tedious efforts, and such practice is error-prone;
moreover, downloaded datasets need considerable efforts prior to insertion in
analysis pipelines.

Within the context of the European project data-driven Genomic Comput-
ing, which supports genomic research by proposing bioinformatics tools, this
PhD thesis focused on the data integration problem, sharing the motivations
and methodologies of the project and addressing one of its objectives.

We have thoroughly analyzed the players involved in the genomic data con-
text, and proposed a conceptual model of metadata (the Genomic Conceptual
Model) to represent in a general way the most common information attributes
that document genomic samples and experiments in the available sources. The
model describes a typical genomic region data file by different perspectives (bi-
ology, technology, management and extraction) and sets the basis to query the
underlying data sources for locating relevant experimental datasets. We then
overview META-BASE, our architecture for integrating datasets, retrieved from
a variety of genomic data sources, based upon a structured transformation pro-
cess; we present a number of innovative techniques for data extraction, clean-
ing, normalization and enrichment and we show a general, open and extensible
pipeline that can easily incorporate any number of new sources. The result-
ing repository – already integrating several important sources – is exposed by
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means of user interfaces to respond to biological researchers’ needs. We pro-
vide both a graph-based endpoint for expert users, who need to explore the se-
mantic structure of metadata, and GenoSurf (http://www.gmql.eu/genosurf/),
a user-friendly search system providing access to the consolidated repository
of metadata attributes, enriched by a multi-ontology knowledge base, locat-
ing relevant genomic datasets, which can then be analyzed with off-the-shelf
bioinformatics tools. The models, frameworks and tools that are described in
this thesis are already included in follow-up projects; they can be exploited to
provide biologists and clinicians with a complete data extraction/analysis en-
vironment, guided by a conversational interface, which breaks down the tech-
nological barriers that are currently slowing down the practical adoption of our
systems.

Inspired by our work on genomic data integration, during the outbreak of
the COVID-19 pandemic we searched for effective ways to help mitigate its
effects with our contribution; we were able to successfully re-apply the model-
build-search paradigm used for human genomics. Even if the domain of vi-
ral genomics is completely new, it presents many analogies with our previous
challenges. Here we model viral nucleotide sequences as strings of letters, with
corresponding sub-sequences – the genes – that encode for amino acid proteins.
To highlight differences with previously considered data, we have devised the
Viral Conceptual Model to account for their technological, biological and orga-
nizational aspects, in addition to computed annotations and variants on both
nucleotides and amino acid sequences. We then integrate sequences with their
metadata from a variety of different sources and propose a powerful search in-
terface (ViruSurf, http://www.gmql.eu/virusurf/) able to quickly extract se-
quences based on their combined variants, to compare different conditions,
and to build interesting populations for downstream analysis. When applied to
SARS-CoV-2, the virus responsible for COVID-19, complex conceptual queries
upon our system are able to replicate the search results of recent articles, hence
demonstrating considerable potential in supporting virology research.

The results on this thesis are part of a broad vision: availability of conceptual
models, related databases and search systems for both humans and viruses’
genomics will provide important opportunities for research, especially if virus
data will be connected to its host, the human being, who is the provider of
genomic and phenotype information.
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Sommario

L’INTEGRAZIONE di dati genomici e dei loro metadati descrittivi è, allo
stesso tempo, una sfida importante, difficile e ben riconosciuta. È im-
portante perché è disponibile un gran numero di archivi di dati pub-
blici che guidano la ricerca biologica e clinica; la combinazione di in-

formazioni provenienti da varie fonti eterogenee e sparse è fondamentale per
una serie di scoperte biologiche. È difficile perché il dominio è complesso e
non vi è accordo tra i vari formati dei dati, i modelli dei dati e le definizioni dei
metadati, che si riferiscono a diversi vocabolari e ontologie. È ben riconosciuta
nella comunità bioinformatica perché, nella pratica comune, i repository sono
accessibili uno alla volta, utilizzabili solo dopo una comprensione profonda
delle specifiche definizioni dei metadati, come risultato di un lungo e faticoso
lavoro di interpretazione; tale pratica è sicuramente soggetta ad errori, per di
più i dataset scaricati necessitano di sforzi considerevoli prima di essere inseriti
nelle pipeline di analisi.

Nel contesto del progetto europeo data-driven Genomic Computing, che
sostiene la ricerca genomica proponendo strumenti bioinformatici, questa tesi
di dottorato si è occupata del problema di integrazione dei dati, condividendo
le motivazioni e metodologie del progetto ed affrontandone un particolare ob-
biettivo.

Abbiamo analizzato a fondo gli attori coinvolti nel contesto dei dati ge-
nomici, e abbiamo proposto un modello concettuale per i metadati (il Mo-
dello Concettuale Genomico) per rappresentare in modo generale gli attributi
informativi più comuni che descrivono i campioni biologici e gli esperimenti
nelle fonti disponibili. Il modello introdotto descrive un tipico file di regioni
genomiche da diverse prospettive: biologica, tecnologica, di gestione ed es-
trazione; in questo modo pone le basi per interrogare le sorgenti di dati sot-
tostanti ai fini di localizzare dataset sperimentali rilevanti. Proponiamo poi
META-BASE, la nostra architettura per l’integrazione di dataset e loro meta-
dati estratti da una varietà di fonti di dati genomici, basata su un processo
di trasformazione strutturato; presentiamo una varietà di tecniche innovative
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per l’estrazione dei dati, la loro pulizia, normalizzazione ed arricchimento e
mostriamo una pipeline generale ed estendibile, che può facilmente includere
un grande numero di nuove fonti di dati. Descriviamo il repository risul-
tante – già contenente diverse sorgenti importanti – che viene esposto tramite
interfacce utente per rispondere alle esigenze di biologi e clinici. Forniamo
sia un’interfaccia per utenti esperti, basata su un grafo che permette di es-
plorare la struttura semantica dei metadati, sia GenoSurf (http://www.gmql.
eu/genosurf/), un sistema di ricerca di facile utilizzo che fornisce l’accesso
al repository consolidato dei metadati, arricchito da una base di conoscenze
multi-ontologiche. Tale interfaccia permette di individuare sottoinsiemi di dati
genomici rilevanti che possono essere analizzati con strumenti di bioinforma-
tica standard. I modelli e gli strumenti descritti in questa tesi sono già stati inse-
riti in progetti successivi; possono essere sfruttati per fornire a biologi e clinici
un ambiente completo di estrazione/analisi dei dati, guidato da un’interfaccia
conversazionale che abbatte le barriere tecnologiche che attualmente rallentano
l’adozione pratica dei nostri sistemi.

Ispirati dal lavoro sull’integrazione di dati genomici, all’inizio della pan-
demia COVID-19 abbiamo cercato modi efficaci per contribuire a mitigarne
gli effetti tramite la nostra ricerca; siamo stati in grado di riapplicare con suc-
cesso il paradigma di ricerca modellazione-integrazione-interrogazione utilizzato
per la genomica umana. Anche se il dominio della genomica virale è comple-
tamente nuovo, presenta molte analogie con le nostre sfide precedenti. Anche
qui rappresentiamo le sequenze di nucleotidi del virus come stringhe di lettere,
con le loro sotto-sequenze corrispondenti – i geni – che codificano per le pro-
teine di aminoacidi. Per evidenziare le differenze con i dati analizzati in prece-
denza, abbiamo invece ideato il Modello Concettuale Virale, che rappresenta
gli aspetti tecnologici, biologici ed organizzativi delle sequenze, oltre alle anno-
tazioni e varianti calcolate sia sui nucleotidi che sulle sequenze di aminoacidi.
Abbiamo quindi integrato le sequenze con i loro metadati provenienti da una
varietà di fonti diverse ed infine abbiamo proposto una solida interfaccia di
ricerca (ViruSurf, http://www.gmql.eu/virusurf/), in grado di estrarre rapida-
mente le sequenze in base alle loro varianti combinate, di confrontare diverse
condizioni e di costruire popolazioni di interesse per analisi successive.

Le query concettuali eseguite sul nostro sistema, se applicate al virus SARS-
CoV-2, permettono di replicare i risultati di ricerca di articoli molto recenti,
dimostrando così un enorme potenziale a sostegno della ricerca virologica.

I risultati di questa tesi fanno parte di una visione più ampia: la disponibilità
tempestiva di modelli concettuali, di relativi database e di sistemi di ricerca
– sia per gli esseri umani che per la genomica dei virus – fornirà importanti
opportunità di ricerca, soprattutto se i dati del virus saranno connessi a quelli
del suo ospite, l’essere umano, che a sua volta fornirà informazioni sia a livello
di genotipo che di fenotipo.
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CHAPTER1
Introduction

“Genomics is at risk of becoming the sport of kings, where only the wealthy can play.”
— Anthony Philippakis - Broad Institute

Genomics was born in relatively recent times. The first publication, concerning
the double helix model of DNA by the Nobel prizes James Watson and Fran-
cis Crick, was in 1953 on Nature; the first draft of the human genome (result-
ing from the Human Genome Project1) was completed and published in April
2003 [296].

In the last two decades, the technology for DNA sequencing has made in-
credible steps; Figure 1.1 shows the trend of the sequencing cost in the last
twenty years; it has followed a pattern similar to the one of computing hard-
ware, approximately halving every two years (see Moore’s Law indication in
the graph). That trend has changed since the beginning of 2008: we observe
a big drop corresponding to the introduction of Next-Generation Sequencing
(NGS), a high-throughput technology based on massively parallel image cap-
turing [343], bringing increasing amounts of genomic data of multiple types,
together with microarray and single-cell technologies. With such technologi-
cal enhancements, sequencing costs perceived a significant reduction, less than
20 years after the Human Genome Project; producing a complete human se-
quence costs less than 1000 US$ in 2020 and is expected to become even more
affordable for individuals in the next few years, as many companies are promis-
ing [1, 302]. In terms of processing time, the first attempt to sequence a whole
human genome took over a decade; to date, the same operation can be accom-
plished in one single day [47].

1The Human Genome Project, funded by the National Institutes of Health (NIH), was the result of a collective effort
involving twenty universities and research centers in the USA, UK, Japan, France, Germany, Canada, and China.
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Chapter 1. Introduction

Figure 1.1: Cost of DNA sequencing per genome. Image courtesy of [315].

A sequencing session is able to produce a huge mass of raw data (i.e., "short
reads" of genome strings), reaching a typical size of 200 Gigabytes per single
human genome, once it is stored. According to [356], genomics is going to
generate the biggest "big data" problem for the mankind: between 100 million
and 2 billion human genomes are expected to be sequenced within 2025.

From being a long string of nitrogenous bases, encoding adenine (A), uracil
(U), cytosine (C), guanine (G), and thymine (T) representing the raw data, our
concept of genomic data has by now evolved, starting to include also the signals
produced by the living system represented in the genome; signals can be inte-
grated and interpreted, to better understand carried information. A variety of
data types, collected within numerous files that are heterogeneous both in for-
mats and semantics, are available, mainly expressing DNA or RNA features:

i) Mutations, specific positions of the genome where the code of an individ-
ual differs from the code of the "reference" human being. Mutations are
associated with genetic diseases, which are inherited in specific positions
of the chromosomes, and other diseases such as cancer, produced during
the human life and related to external factors such as nutrition and pollu-
tion.

ii) Gene expression, indicating in which conditions genes are active (i.e., they
transcribe a protein) or inactive; the same gene may have intense activity
in given conditions and no activity in others.

iii) Peaks of expression, specifying the positions of the genome with higher read
density due to a specific treatment of DNA; these in turn indicate specific
biological events (e.g., binding of a protein to the DNA).

iv) Annotations, a peculiar kind of "signal", representing known information,
such as positions of genes, transcripts, or exons;

v) Structural properties of the DNA (e.g., break points, where the DNA is dam-
aged, or junctions, where the DNA creates loops).

All signals are aligned to a reference genome, a standard sequence charac-
terizing human beings that is constantly improved and updated by the scien-

2
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Figure 1.2: Signals on a genome browser, corresponding to genes (annotation track where four genes are
shown in black), gene expression (one track with red signal), peaks (three tracks with blue signals)
and mutations (three tracks with red segments pointing to mutated positions of the genome).

• Analysis of hardware 
generated data

• Sequencing reads 
and quality score

primary data analysis secondary data analysis

• QA filtering on raw reads
• Alignment of reads
• Variant calling filtering and 

annotation
• Peak calling
• Identification of differentially 

expressed genes

• Multi-sample processing
• Annotation and filtering of 

variants
• Mutation Signature
• Clonal Analysis
• Identification of driver genes
• Motif discovery
• Association analysis
• Population structure analysis
• Data aggregation

tertiary data analysis

Figure 1.3: Primary, secondary, and tertiary data analysis for genomics.

tific community. Signals on a genome browser may appear, for example, as in
Figure 1.2, where tracks of different colours describe gene annotations, gene
expression, peaks of expressions, and mutations. The browser is open on a
window of a given number of bases (from few bases to millions of them), and
signals are presented as separated tracks in the window; each track displays
the signal by showing its position and possibly its intensity.

Signals can be loaded on the browser, analysed to extract statistical and
novel biological knowledge only after being produced by a long and complex
bioinformatics pipeline. In particular, the analysis of NGS data is composed
of three phases (see Figure 1.3): i) sequencing machines perform primary data
analysis, producing raw datasets of sequences of DNA/RNA bases; ii) secondary
data analysis includes alignment of reads to a reference genome (typical for a
biological species), variant/peak calling (i.e., the process of determining the
differences between a sample and the reference genome, such as single nu-
cleotide variants, insertions, deletions, or larger variants), and production of
regions (portions of the DNA/RNA identified by the number of chromosome,
start-stop coordinates, strand, and their features); iii) tertiary data analysis is in
charge of "making sense" of the data, by processing multiple heterogeneous

3
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Chapter 1. Introduction

experiments from several samples and patients in order to answer complex bi-
ological or clinical questions.

Processed genomic datasets include experimental observations, representing
regions along the chromosomes of the genome, with their properties and meta-
data, carrying information about the observed biological phenomena associ-
ated clinical elements, and technological/organizational aspects. Thousands of
these processed datasets are becoming available every day, typically produced
within the scope of large cooperative efforts, open for public use and made
available for secondary research use, such as i) the Encyclopedia of DNA Ele-
ments (ENCODE) [312], the most general world-wide repository for basic biol-
ogy research comprising hundreds of epigenetic experiments of processed data
in human and mouse; ii) The Cancer Genome Atlas (TCGA) [377], a full-scale
effort to explore the entire spectrum of genomic changes involved in human
cancer; iii) the Roadmap Epigenomics Project [216], a repository of "normal"
(not involved in diseases) human epigenomic data from NGS processing of
stem cells and primary ex vivo tissues; iv) the 1000 Genomes Project [311], aim-
ing at establishing an extensive catalogue of human genomic variations from
26 different populations around the globe. In addition to these well-known
sources, in these years we are witnessing the birth of several initiatives funded
by national governments, performing population-specific or nation-scale se-
quencing [355].

In the following of this introductory chapter, we motivate this thesis with
a general overview of problems regarding data and metadata heterogeneity; a
considerable systematic effort for their integration is needed (Section 1.1). We
then present our goal of building an integrated repository of genomic datasets
within the scope of the data-driven Genomic Computing project (Section 1.2)—
this thesis is a major reference point of the data integration achievements of the
project. In Section 1.3 we discuss how our presented approach to data integra-
tion in the human genomic domain has proven extremely effective when, nine
months ago – in the middle of the COVID-19 pandemic – we applied the ex-
perience gained in the previous work, on the new domain of viral sequences.
In a critical period for scientific research, we provided a well-defined contribu-
tion to support virologists’ everyday activities (searching data, understanding
sequence variation, building preliminary hypotheses). Finally, we outline the
thesis organization, by overviewing each Chapter’s focus and related publica-
tions (Section 1.4).

1.1 Genomic Data Integration

As genome sequencing data production is by now considered a routine activity,
research interest is rapidly moving towards its analysis and interpretation, only
recently becoming possible thanks to the generous amount of available data.
Although the potential collective amount of available information is huge, the
effective combination of genomic datasets from disparate public sources is hin-
dered by the inherent heterogeneity of datasets, their lack of interconnected-
ness and considerable heterogeneity, spanning from download protocols and

4
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1.1. Genomic Data Integration

formats, to notations, attribute names and values.
The lack of organization and systematization is partly due to the metadata

authoring process (i.e., the preliminary compilation of information describing
datasets); research practitioners often prioritize publishing their research rather
than leaving a legacy of reusable data (note that funding agencies do not always
explicitly require data sharing and documentation). Moreover, systematic data
curation – considered cumbersome, tedious, and time-consuming – is not con-
sidered as rewarding as other downstream activities. As a result researchers
have to face substantial obstacles when searching data that suits their analysis.

Therefore, prior to data analysis and biological knowledge discovery, data
and metadata integration is gaining irrefutable priority, with pressing demands
for enhanced methodologies of data extraction, normalization, matching and
enrichment, to allow building multiple perspectives over the genome, possibly
leading to the identification of meaningful relationships not perceivable other-
wise [325]. Genomic data integration for processed data includes technological
efforts on the data representing signals and (mainly) conceptual efforts on the
metadata.

Many approaches are already showing the benefits of data integration, at
times performed with ad-hoc techniques [69, 326, 378], others with automatic
methods [45, 185, 400]. However, several issues are still to be addressed, in-
cluding: i) the need for always updated data, to guarantee higher quality of re-
sults [223], ii) the lack of normalization/harmonization between the processing
pipelines [160], iii) the limited structured metadata information and agreement
among models [300], and iv) the unsystematic use of controlled terminology
to allow interoperability [154]. In general, shared and systematic solutions are
missing and – in the majority of cases – the necessary integration efforts are
solved by authors themselves.

There have been broader attempts of integration, but mostly inside the sin-
gle institutes’ walls (Broad Institute’s Terra,2 EMBL-EBI,3 NIH-NCBI,4 Seven
Bridges5). All these consortia provide portals for data access, but integrated ac-
cess is not provided. When data are handled within the scope of the consortia
that coordinate their production, their downstream impact will be much less
powerful and relevant with respect to scenarios where data can be managed
all together, addressing cross-source differences—a single laboratory may pro-
duce data of excellent quality for one specific technology, but not for many.

In view of scientific advancement, important results are most likely achieved
when combining multiple signals; for this, input data is needed also from other
technologies and their integration is an essential ingredient, where consider-
able timely efforts should be concentrated in current research.

Motivating example. Let us consider a researcher who is looking for data to
perform a comparison study between a human non-healthy breast tissue, af-
fected by carcinoma, and a healthy sample coming from the same tissue type.

2https://terra.bio/
3https://www.ebi.ac.uk/
4https://www.ncbi.nlm.nih.gov/
5https://www.sevenbridges.com/
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Source name T47D-MTVL
Organism Homo Sapiens
Characteristics gender: female

tissue: breast cancer ductal carcinoma

Gene Expression Omnibus

Genomic Data Commons

ENCODE

Assay: ChIP-seq
Target: MYC
Biosample: Homo sapiens MCF-7
Biosample Type: cell line
Description: Mammary gland, adenocarcinoma
Health status:  Breast cancer (adenocarcinoma)

Assay: ChIP-seq
Target:                MYC
Biosample: Homo sapiens MCF-10A
Biosample Type:  cell line
Description: Mammary gland, non-tumorigenic cell line
Health status:   Fibrocystic disease

Figure 1.4: Example of Web interfaces of data sources: GDC, GEO, and ENCODE. Yellow circles
highlighted how information regarding the category disease observed in an experiment is named in
different sources. The red circles and lines show how the similar disease values are used in the sources.

Exploiting her previous experience, the researcher locates three portals hav-
ing interesting data for this analysis (see Figure 1.4). For the diseased data,
describing gene expression, the chosen source is the portal of Genomic Data
Commons (GDC) [160], an important repository on human cancer mutation
data. As it can be seen on the top of Figure 1.4, one or more cases (i.e., datasets)
can be retrieved by composing a query which allows to locate variation data
on "Breast Invasive Carcinoma" from "Breast" primary site. To compare such
data with references, the researcher chooses additional datasets coming from
cell lines, a standard benchmark for investigations. A tumor cell line data is
found on the Gene Expression Omnibus (GEO) [27] web interface (middle rect-
angle of Figure 1.4) where, by browsing thousands of human samples, the re-
searcher locates one with analyzed cell type "T47D-MTVL" and observed dis-
ease "breast cancer ductal carcinoma". On ENCODE, the researcher chooses
both a tumor cell line (bottom left of Figure 1.4) and a normal cell line (bottom
right of Figure 1.4), to make a control comparison. "MCF-7" is a cell line from a
diseased tissue affected by "Breast cancer (adenocarcinoma)", while "MCF-10A"
is its widely considered non-tumorigenic counterpart.

From the point of view of attributes (i.e., how each pieces of information
are identified), when searching for disease-related information, we find many
possibilities: "Disease type" in GDC, "Characteristics–tissue" in GEO, "Health
status" in ENCODE (see yellow circles in Figure 1.4). From the point of view
of values, instead, when searching for breast cancer-related information, we
find multiple similar expressions, possibly pointing to comparable samples:
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1.2. Thesis Contribution within GeCo Project

Short-Term Goals

Mid-Term Goals Long-Term Goals

Developing a new core model for genomic
processed data. There is a need for a simple
data model encompassing the diversity of data
formats which have been developed in the past,
centred on the notion of sample (not just of
humans, but also of animals, plants, bacteria, viruses,
etc.), including both genomic information
(organized as regions of DNA or RNA) and
metadata (generic properties of the sample,
including biological and clinical properties and
provenance), that should make the data comparable
across heterogeneous experiments.

Providing the required abstractions and
technological solutions for improving the
cooperation of research or clinical organizations
(i.e., the members of a same research project or
international consortium) through federated
database solutions, in which each centre will
keep data ownership, and queries will move to
remote nodes and will be locally executed, thus
distributing genomic processing to data.

Promoting the evolution of knowledge sources into
an Internet of Genomes, i.e. an ecosystem of
interconnected repositories made available to the
scientists’ community. The dream is to offer single
points of access to worldwide available genomic
knowledge, by leveraging on new services, including
metadata indexing and domain-specific crawlers,
towards the vision of Google-like systems
supporting keyword-based and region-based queries
for finding genome data of interest available
worldwide, by using large storage systems and
techniques such as indexing and crawling.

Developing new abstractions for querying
and processing genomic data, by means of a
declarative and abstract query language rich of
high-level operations, with the objective of enabling
a powerful and at the same time simpler
formulation of biological questions w.r.t. the state-
of-the-art. Abstractions should include data-driven
computations, such as clustering of results or
characterization of their statistical significance. The
query results should be seamlessly integrated with
computational environments supporting the typical
data analysis processing that occurs in genomic
computing, e.g. network analysis.

Bringing genomic computing to the
cloud. Due to the huge dimensions of involved
data, processing should be addressed to highly
parallel, high performance environments; by using
new domain-specific optimization techniques,
computational complexity should be pushed to the
underlying computing environment, producing
optimal execution which is decoupled from
declarative specifications, as it is customary within
the data management community. In particular, we
will target open-source cloud computing
environments that take advantage of wide
developer communities, so that our domain-specific
work will leverage the general progress of cloud
computing.

Providing unified access to the new
repositories of processed NGS data
which are being created by worldwide
consortia. Unified access requires breaking
barriers which depend both on data semantics and
data access, so this work requires both ontological
integration and new interaction protocols.
Currently, metadata-driven access is supported at
each individual repository through specific
interfaces; this must be generalized and amplified,
and augmented by providing search methods. We
also aim at providing user-friendly search interfaces
on top of integrated repositories

WP1 WP2 WP3

WP4 WP5 WP6

Figure 1.5: Description of working packages of the ERC AdG project on data-driven Genomic Comput-
ing 2016-2021. WP5 is highlighted as it is the main focus of this thesis; here we also set the basis to
achieve WP6.

"Breast Invasive Carcinoma" (GDC), "breast cancer ductal carcinoma" (GEO),
"Breast cancer (adenocarcinoma)" (ENCODE) (see red lines in Figure 1.4). It
can be noted that "Breast Invasive Carcinoma" and "breast cancer (adenocarci-
noma)" are related sub-types of "breast carcinoma" (as observed in specialized
ontologies); this allows the researcher to compare GDC’s data with the dataset
from ENCODE. For what concerns the cell line, researchers typically query spe-
cific databases or dedicated forums to discover tumor/normal matched cell
line pairs. This kind information is not encoded in a unique way over data
sources and is often missing. Considerable external knowledge is necessary
in order to find the above mentioned connections, which cannot be obtained
on the mentioned portals. Beside disease, tissue and cell line-related aspects,
many other metadata aspects are involved.

1.2 Thesis Contribution within GeCo Project

My PhD research has evolved within the scope of the Genomic Computing
(GeCo) project, led by Stefano Ceri at Politecnico di Milano, who received an
ERC Advanced Grant project (No. 693174), starting in 2016 and ending in
September 2021. The project is set in the context of tertiary data analysis for
genomics and aims to provide a new focus on data extraction, querying, and
analysis by raising the level of abstraction of models, languages, and tools.

In Figure 1.5 we summarize short/mid/long-term goals of the GeCo project
divided in six Working Packages. Initially, a new core model for genomic pro-
cessed data [259] has been devised (WP1); based on this, a data engine for ge-
nomic region-based data and metadata was developed to support the novel
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Chapter 1. Introduction

GenoMetric Query Language (GMQL) [260] (WP2), also available as a Python
library (pyGMQL, [278]) and an R-Bioconductor package (RGMQL6); the as-
sociated cloud-based query system, using Apache Spark7 on arbitrary servers
and clouds was proposed in [258] (WP3), followed by many works on opti-
mization [163, 183, 199]; a solution to share and process genomic datasets with
a federated version of GMQL system was published in [65], allowing its adop-
tion in clinical organizations and in cooperating scenarios between distinct re-
search institutes (WP4).

My thesis focuses on GeCo project’s WP5, while also setting the basis to
achieve WP6; it is concerned with building a repository of genomic datasets to
provide unified access to a large number of well-known processed NGS data
created and continuously updated by worldwide consortia. To this end, we an-
alyzed thoroughly the issues related to the integration of heterogeneous data
coming from multiple open data sources, and we followed a systematic ap-
proach:

• Model: first we analyze the domain thoroughly, by means of a complete
state of the art analysis, comprehensive of online resources scouting (as
many systems do not have connected research papers), reading of their
documentation and testing of functionalities (focusing on the methods
they expose to retrieve their data). The data is studied and understood,
with the objective of proposing a conceptual model that captures the main
characteristics shared by relevant data sources in the field; we target com-
pleteness but favor simplicity, as the goal is to produce easy-to-use systems
for the community of biologists and genomic experts.

• Integrate and build: we select a number of interesting open data sources
for the domain, we build solid pipelines to download data from them,
while transforming it into a standard interoperable format. We include
descriptions into a relational database which allows for interoperability
of schemata and of instances, after a process of data normalization and
semantic annotation using specialized ontologies available for biomedical
terms. The result is a repository of homogenized data, that can be used
seamlessly from a unique endpoint, allowing for integrated and complex
biological querying.

• Search: we then target the end-users of the repository, i.e., experts of the do-
main who browse the repository in search for the right datasets to prove
or disprove their research hypotheses, or just explore data types to find
interesting data for their analysis. Interfaces need to take into account
the specific needs of the particular users: very knowledgeable in biology,
limited knowledge of programming languages and limited time to under-
stand complex features as opposed to more intuitive functionalities.

All in all, this thesis addresses the need for a general and systematized ap-
proach to data and metadata integration for genomic datasets, targeted to an
improved interoperable search and analysis; it advocates that many efforts thus

6https://bioconductor.org/packages/release/bioc/html/RGMQL.html
7https://spark.apache.org/
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1.3. The Recent COVID-19 Pandemic

far proposed are not as general as necessary, only solving the problem in spe-
cific sub-areas of genomics (e.g., epigenomics, cancer genomics, or annotation
data) or are not published at all. In this sense we have fully achieved the in-
dications of WP5 and started a long-term study towards the so-called "Internet
of Genomes", which bridges many systems and queries genomic regions along
with their metadata.

1.3 The Recent COVID-19 Pandemic

During the first phase of the COVID-19 epidemic, in March and April 2020
we responded proactively to the call to arms addressed to the broad scientific
community. We first conducted an extensive requirement analysis by engaging
in interdisciplinary conversations with a variety of scientists, including virolo-
gists, geneticists, biologists, and clinicians, including – in alphabetical order –
Ilaria Capua (University of Florida, US), Matteo Chiara (University of Milano-
Statale, IT), Ana Conesa (University of Florida, US), Luca Ferretti (University of
Oxford, UK), Alice Fusaro (Istituto Zooprofilattico Sperimentale delle Venezie,
IT), Susanna Lamers (BioInfoExperts, US), Stefania Leopardi (Istituto Zooprofi-
lattico Sperimentale delle Venezie, IT), Alessio Lorusso (Istituto Zooprofilattico
Sperimentale Abruzzo e Molise, IT), Francesca Mari (University of Siena, IT),
Carla Mavian (University of Florida, US), Graziano Pesole (University of Bari,
IT), Alessandra Renieri (University di Siena), Anna Sandionigi (University of
Milano-Bicocca, IT), Stephen Tsui (Hong-Kong Chinese University, HK), Lim-
soon Wong (National University of Singapore, SGP), Federico Zambelli (Uni-
versity of Milano-Statale, IT).

This preliminary activity convinced us of the need for a structured proposal
for viral data modeling and management. We reapplied the previously pro-
posed methodology of modeling a data domain, integrating many sources to
build a global repository, and finally making its content searchable to enable
further analysis. This experience suggests that the approach is general enough
to be applied to any domain of life sciences and encourages broader adoption.

1.4 Thesis Structure

This thesis is organized in two parts:

• Part I ‘Human Genomic Data Integration’ is dedicated to the description
of the data integration problem in the field of genomic tertiary analysis,
where data are complex and heterogeneous. We proposed a model for
their description, an integration pipeline, a continuously updated reposi-
tory and two search systems upon its content, tested by domain expert and
members of out research community. The chapters of this part are dedi-
cated to "data" assuming the general meaning of the word (including data
and their descriptions); at times we focus specifically only on metadata—
when this is the case, it is stated in the discussion.

• Part II ‘Viral Sequence Data Integration’ is dedicated to understanding
the world of viral sequences and their descriptions in terms of collected

9
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Chapter 1. Introduction

samples, characteristics of host organisms, variants and their impact on
the related disease. We describe a data model for metadata and integrate
several information into a unique schema, exploited by a powerful search
system over viral sequences, that will be potentially expanded to include
also genotype and phenotype information regarding the host organism
(with particular attention to humans, as this is critical for future epidemics
events).

In Part III, the thesis concludes with a vision on how the two debated parts
can indeed be included in one single system, where different organisms’ data
can be interconnected to drive more powerful biological discovery. In the fol-
lowing we outline the content of each chapter of the thesis, specifying when
they are based on contributions that have been recently published.

Chapter 2 ‘Genomic Data Players and Processes’ provides an analysis of the
most important data contributors and distributors currently active in the land-
scape of genomic research, describing the data integration practices imple-
mented in their pipelines. We give a brief explanation of the technological
pipeline through which genomic data are produced and manipulated before
being exposed and used via interfaces. Then we propose a taxonomy to char-
acterize genomic data actors and describe about thirty important data sources
according to this model. This analysis has been conducted on a wide land-
scape of genomic data sources and has been instrumental to a more informed
development of the following parts of this thesis, which are our original contri-
butions. This chapter is based on the review journal article:
[41] A. Bernasconi, A. Canakoglu, M. Masseroli, and S. Ceri. The road towards data integra-

tion in human genomics: players, steps and interactions. Briefings in Bioinformatics, 2020.
https://doi.org/10.1093/bib/bbaa080

My own contribution stands in the conceptualization of the technological
pipeline and of the taxonomy of genomic data players. I also carried out data
collection and analysis. Other authors supported my research and contributed
to the writing.

In Chapter 3 ‘Modeling Genomic Data’ we describe a general modeling option
for genomic data (which has been introduced in previous works of the GeCo
research group) and we propose a novel and concise modeling solution for
metadata, by means of a compendious conceptual model for the representation
of the most meaningful attributes documenting data samples in many genomic
data sources; this model may be used to motivate and drive schema integration
of such documenting information. The work presented in this chapter is based
on the conference article:
[44] A. Bernasconi, S. Ceri, A. Campi, and M. Masseroli. Conceptual Modeling for Genomics:

Building an Integrated Repository of Open Data. In Proceedings of the International Confer-
ence on Conceptual Modeling. ER, 2017. https://doi.org/10.1007/978-3-319-69904-2_

26

With respect to the first version thereby presented, the model has been later
updated thanks to the experience gained in the field and to changes required
by some sources included in the repository. I am main author of the model, I
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performed the data collection, analysis, and validation. Co-authors contributed
to the inception of the ER model with prolific discussions and feedback.

Chapter 4 ‘Integrating Genomic Data’ provides a broad explanation of how
our modeling principles have been employed to drive an ambitious and ex-
tendable integration pipeline, which is able to solve, at the same time, hetero-
geneity at multiple levels. The described architecture includes all the integra-
tion steps for data and metadata. For what concerns data collection, we follow
a partition-driven approach to synchronize our local instances with the ori-
gin ones. We do not re-process data, but perform many transformation tasks,
homogenizing formats and cleaning metadata. We consolidate data into a rela-
tional database (realized after our unique conceptual representation), resolving
schema integration issues. Then, we achieve value interoperability among col-
lected instances, by annotating them with specialized ontologies’ terms and
their hierarchies, in order to instrument a semantically enriched search of
datasets linked to such metadata. The work presented in this chapter is based
on two workshop papers and one journal publication, respectively describing:

The metadata integration vision:
[36] A. Bernasconi. Using Metadata for Locating Genomic Datasets on a Global Scale. In

International Workshop on Data and Text Mining in Biomedical Informatics, 2018. http://
ceur-ws.org/Vol-2482/paper5.pdf

The ontological annotation of metadata:
[39] A. Bernasconi, A. Canakoglu, A. Colombo, and S. Ceri. Ontology-Driven Metadata En-

richment for Genomic Datasets. In International Conference on Semantic Web Applications
and Tools for Life Sciences, 2018. http://ceur-ws.org/Vol-2275/paper6.pdf

The comprehensive formal description of the metadata integration architecture:
[40] A. Bernasconi, A. Canakoglu, M. Masseroli, and S. Ceri. META-BASE: a novel archi-

tecture for largescale genomic metadata integration. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2020. https://doi.org/10.1109/TCBB.2020.2998954

I conceptualized the integration framework and formalized all the phases. Al-
gorithms, analyses, and software have been realized in collaboration with my
co-author Arif Canakoglu. Single modules implementations have been con-
tributed by some master students. The conceptualization of the workflow has
been achieved with the help of Stefano Ceri. Stefano Ceri and Marco Masseroli
organized the research and contributed to the writing.

Chapter 5 ‘Snapshot of the Data Repository’ shows the result of the appli-
cation of the META-BASE architecture: we built an integrated repository of
genomic data that contains many datasets from relevant data sources used in
the domain and that is periodically updated. Here we describe each included
source more in depth and give a quantitative view on the repository compo-
sition. With respect to other compared integrative repositories, our approach
is the only one that joins together such a broad range of genomic data, which
spans from epigenomics to all data types typical of cancer genomics (e.g., mu-
tation, variation, expression, etc.), until annotations. For two data sources we
provide additional details on the methods used for extracting metadata and
including them in the general META-BASE pipeline, as they required extra ef-
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Chapter 1. Introduction

forts with respect to the formalization proposed in the preceding chapter. Part
of the work presented in this chapter is based on one journal paper and one
conference paper:

Integration of Genomic Data Commons:
[68] E. Cappelli, F. Cumbo, A. Bernasconi, A. Canakoglu, S. Ceri, M. Masseroli, E. Weitschek.

OpenGDC: Unifying, modeling, integrating cancer genomic data and clinical metadata.
Applied Sciences, 10(18):6367, 2020. https://doi.org/10.3390/app10186367

Extraction of structured metadata from Gene Expression Omnibus:
[66] G. Cannizzaro, M. Leone, A. Bernasconi, A. Canakoglu, and M. J. Carman. Automated

Integration of Genomic Metadata with Sequence-to-Sequence Models. In Proceedings of
the 24th European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, 2020. (In print)

In the first work, realized in collaboration with researchers of Università Roma
Tre, I analyzed and conceptualized the metadata retrieval process, proposed
the new structure and wrote the corresponding part in the manuscript. In the
second work, I contributed to the analysis of metadata, to the writing of the
paper, and to the experimental results validation.

An important side effect of providing a global and integrated view of data
sources is the ability to build user-friendly query interfaces for selecting items
from multiple data sources. In Chapter 6 ‘Searching Genomic Data’ we
overview the critical aspects that search interfaces over integrative genomic
systems need to address. We describe the implemented search methods em-
ployed on top of the integrated repository, to make the results of this effort
available to the bioinformatics and genomics community.

We propose two different search systems, both for users that are search-
ing for datasets upon which performing data analysis and knowledge discov-
ery. Different personas are targeted: 1) a graph-based representation of the
repository targets expert users with knowledge of semantic interoperability
concepts, with exploration objectives; 2) a fast metadata-based search engine
targets users with basic knowledge of the underlying technologies with an in-
terface designed to allow user-friendly interaction – positively evaluated by an
audience of bioinformaticians and genomics practitioners. The work presented
in this chapter is based on three publications:

The genomic knowledge graph for metadata:
[38] A. Bernasconi, A. Canakoglu, and S. Ceri. From a Conceptual Model to a Knowledge

Graph for Genomic Datasets. In Proceedings of the International Conference on Conceptual
Modeling. ER, 2019. https://doi.org/10.1007/978-3-030-33223-5_29

The Web metadata-based search engine:
[63] A. Canakoglu, A. Bernasconi, A. Colombo, M. Masseroli, and S. Ceri. GenoSurf: meta-

data driven semantic search system for integrated genomic datasets. Database: The Journal
of Biological Databases and Curation, 2019. https://doi.org/10.1093/database/baz132

The validation of the web search engine:
[37] A. Bernasconi, A. Canakoglu, and S. Ceri. Exploiting Conceptual Modeling for Searching

Genomic Metadata: A Quantitative and Qualitative Empirical Study. In 2nd International
Workshop on Empirical Methods in Conceptual Modeling (EmpER), 2019. https://doi.org/
10.1007/978-3-030-34146-6_8

12

https://doi.org/10.3390/app10186367
https://doi.org/10.1007/978-3-030-33223-5_29
https://doi.org/10.1093/database/baz132
https://doi.org/10.1007/978-3-030-34146-6_8
https://doi.org/10.1007/978-3-030-34146-6_8


i
i

“output” — 2021/1/14 — 8:34 — page 13 — #37 i
i

i
i

i
i
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I am main author of the graph-based representation, while the GenoSurf inter-
face has been realized mainly by my co-author Arif Canakoglu (with collabo-
ration of Andrea Colombo). My work concentrated on the database implemen-
tation, data provisioning, use case scenarios, software testing and validation.
Stefano Ceri and Marco Masseroli contributed to the design and the writing of
the papers.

Chapter 7 ‘Future Directions of the Data Repository’ includes perspective di-
rections of the work described in the preceding chapters. We aim to feed the
repository with new data sources in a continuous fashion in the next years,
in addition to running periodic updates of the currently included datasets. A
novel perspective that I am currently investigating targets data quality dimen-
sions during the process of collecting and joining different datasets of genomic
features together. Moreover, we are embedding the technologies developed
for the repository within a broader project that aims to provide biologists and
clinicians with a complete data extraction/analysis environment, guided by a
conversational interface, breaking down the technological barriers that are cur-
rently hindering practical adoption of some of our systems. We also plan to
add semantic interoperability support and conceive a marketplace service to
suggest best practice queries for data extraction and analysis. Part of the work
presented in this chapter has been described in two manuscripts currently sub-
mitted to relevant journals.
× A. Bernasconi. Data quality-aware genomic data integration. (Under review)
× P. Crovari, S. Pidò, P. Pinoli, A. Bernasconi, A. Canakoglu, F. Garzotto, and S. Ceri. GeCo-

Agent: a Conversational Agent for Empowering Genomic Data Extraction and Analysis.
(Under review)

The work on data quality is my own. In the GeCoAgent project I contributed
to the requirements analysis and to the provisioning of back-end technology.

Chapter 8 ‘Viral Sequences Data Management Resources’ overviews the latest
scenario on integrative resources dedicated to SARS-CoV-2, the virus respon-
sible for COVID-19, in addition to other viruses. We compare characteristics
of data, interfaces and openness policies, discussing how these impact on the
success of data integration efforts. The work presented in this chapter is based
on the review journal article:
[42] A. Bernasconi, A. Canakoglu, M. Masseroli, P. Pinoli, and S. Ceri. A review on viral

data sources and search systems for perspective mitigation of COVID-19. Briefings in
Bioinformatics, 2020. https://doi.org/10.1093/bib/bbaa359

I am the main author of this work, I performed all the research and the writing
of the first draft, which has been refined with the help of Stefano Ceri.

In Chapter 9 ‘Modeling Viral Sequence Data’ we propose a novel conceptual
model for describing viral sequences, with a particular focus on aspects that are
relevant for SARS-CoV-2 and other RNA single-stranded viruses: their genes,
mutations, metadata. The work presented in this chapter is based a conference
publication:
[43] A. Bernasconi, A. Canakoglu, P. Pinoli, and S. Ceri. Empowering virus sequence research

through conceptual modeling. In Proceedings of the International Conference on Conceptual
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Modeling. ER, 2020. https://doi.org/10.1007/978-3-030-62522-1_29

The model has been conceptualized by the four authors in active collaboration.
In addition, I contributed to the state of the art analysis and to the construction
of examples, adapting the content of research studies that are timely reporting
COVID-19-related discoveries. The manuscript was written in collaboration
with Stefano Ceri.

Chapter 10 ‘Integrating Viral Sequence Data’ and Chapter 11 ‘Searching Vi-
ral Sequence Data’ report how we collected requirements from experts and
built the pipeline that imports viral sequence data from many sources, com-
putes variants with respect to a reference sequence and feeds a web engine
with complex query capabilities. The work presented in these two chapters is
based on a journal publication:
[64] A. Canakoglu, P. Pinoli, A. Bernasconi, T. Alfonsi, D. P. Melidis, and S. Ceri.

Virusurf: an integrated database to investigate viral sequences. Nucleic Acids Research,
49(D1):D817–D824, 2020. https://doi.org/10.1093/nar/gkaa846

The system was conceptualized by myself, Arif Canakoglu, Stefano Ceri and
Pietro Pinoli; we also wrote the manuscript. Arif Canakoglu is the main au-
thor of the interface, Pietro Pinoli realized the variant computation algorithm,
Tommaso Alfonsi managed data import. I performed the interface configura-
tion and software testing; I conducted the requirement analysis and realized
the use case examples.

Chapter 12 ‘Future Directions of the Viral Sequence Repository’ concludes
Part II by describing the contribution of this thesis to the viral sequence inte-
gration problem. In particular, we plan to systematize our requirements elicita-
tion process (tailored at emergency times), we extend the perspective to future
schema and content additions, we preview our visualization support proposal,
we sketch our assets to establish an active monitoring of viral sequences, and
we present the idea of linking our database with data regarding the host organ-
ism characteristics, including both genomic features and phenotype elements
(e.g., clinical picture). This kind of integration is currently hindered by lack of
connections in the input data. Part of the future developments presented in this
chapter has been described in two manuscripts currently under submission.

The research preview on extreme requirements elicitation:
× A. Bernasconi. Extreme Requirements Elicitation for the COVID-19 Case Study. (Under

review)

The visualization support:
× A. Bernasconi, A. Gulino, T. Alfonsi, A. Canakoglu, P. Pinoli, A. Sandionigi, S. Ceri.

VirusViz: Comparative analysis and effective visualization of viral nucleotide and amino
acid variants. (Under review)

Chapter 13 ‘Conclusions and Vision’ ends this dissertation by highlighting the
realized final result: a big integrated repository of data and metadata consist-
ing in an important asset for the GeCo project and all its users in the bioinfor-
matics community. This can be used to locate interesting datasets for analysis
both on the original sources and on our system. Processed datasets available
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in several sources, are provided with compatible metadata; Processed region
datasets of many other sources in the future can be imported in the repository
with minimal effort. Search methods will automatically apply to all imported
data. Analysis can be further carried on using other GeCo’s modules or any
analysis tool that operates with standard format data files.

The same protocol has been reapplied to another kind of data, which is very
relevant at this critical time of COVID-19 pandemics. We built similar pipelines
and a system to support virological research and encourage interoperability
with patients data, which – when put in place – would lead to a very power-
ful analysis setting, able to uncover genetic determinants of the disease, either
connected to particular mutations of the virus sequence or specific genetic char-
acteristics of the human individual hosting the virus.
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CHAPTER2
Genomic Data Players and Processes

“In the life sciences, we do not have a big data problem. We have the ‘lots of small data’ problem.”
— Vijay Bulusu, Head, Data & Digital Innovation - Pfizer

My journey across different genomic data types and actors (including consor-
tia, integrators, analysis initiatives) has started in 2017 at the beginning of my
PhD. First, we studied the most used data sources withing the GeCo group
(e.g., ENCODE, TCGA, Roadmap Epigenomics); then we moved our atten-
tion towards the understanding of alternative projects (such as 1000 Genomes,
Gene Expression Omnibus, GWAS, and genomic annotations of RefSeq and
GENCODE), finally we reviewed approaches more similar to ours, i.e., study-
ing mechanisms to combine data to enable powerful analysis workflows (e.g.,
DeepBlue, Cistrome, Broad Institute’s Terra). After three full years of data
scouting and field experience, in 2020 we were able to understand more prag-
matically the role of different initiatives and finally extract an organized per-
spective of the whole genomic players landscape. The content of this chapter
should be perceived as such organized compendium, considering the bottom-
up strategy that has guided the acquisition of the necessary knowledge and
understanding of our position in the genomic world. GeCo (together with its
main products GMQL and GenoSurf) is finally a valuable provider of integra-
tion systems that can help the genomic research community. We constructed
this result step by step.

In the following we provide readers with a complete background represen-
tation of the context where the contribution of the Part I of the thesis should be
set.

Chapter organization. Section 2.1 is dedicated to the technological pipeline of
genomic data, from data production to final use of genomic datasets. We here
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Chapter 2. Genomic Data Players and Processes

describe the steps required for data and metadata production and integration.
Each data source and platform may perform only some of these steps. We also
discuss services and characteristics of the data access options provided to end
users. Section 2.2 presents a taxonomy of the players involved in data production
and integration; it describes the five main roles of such players and the relation-
ships that exist between them. Specifically, we identified the following types:
contributors are laboratories that produce the wet-lab data and associated infor-
mation; repository hosts are organizations handling primary and secondary data
archives—such as the well-known GEO [27]; consortia are international organi-
zations who have agreed on broad data collection actions (the ENCODE [312]
is a notable example); integrators are initiatives whose main objective is to com-
bine data collections from other players and provisioning high quality access
to integrated resources; finally consumers represent the actual users of the ex-
posed data platforms and pipelines. We also discuss the interactions among
different players. In Section 2.3 we describe the main players in the three central
categories (including 4 repository hosts, 12 consortia, and 13 integrators), spec-
ifying which parts of the technological pipeline discussed in Section 2.1 they
address. In particular, we anticipate a description of the integrative strategy
operated by our group within the GeCo project, which has dedicated huge ef-
forts to the whole genomic data integration problem, mainly described in this
PhD thesis.

2.1 Technological Pipeline of Genomic Data

Data and their corresponding descriptions, i.e., metadata, are first produced,
then integrated. In this section, we give an overview of the relevant technolog-
ical phases towards final use, distinguishing between data, metadata, and also
services and access interfaces built on top of them. Relevant steps are high-
lighted in the following in bold and comprehensively depicted in Figure 2.1
(data steps are in grey, metadata ones in purple, service/access ones in green),
along with supporting objects (in orange) that guide the definition of each step.

2.1.1 Production

Every genomic research study starts with nucleic acid sample collection and
preparation; ensuring high quality samples is important to maximize research
efforts and validity of data analysis. This phase deals with privacy issues, for
example, related to the use of clinical samples in research; it is impossible to
create fully anonymized samples and this leads to issues of identifiable popu-
lation data.

Methods that determine the nucleotide sequence of DNA and RNA
molecules are called "sequencing". Next-Generation Sequencing (NGS) is a
high-throughput sequencing technology that enables the reading of billions of
nucleotides in parallel. Sequencing (also referred to as "primary analysis") in-
cludes: (i) raw data generation; (ii) analysis of hardware generated raw data;
(iii) generation of sequencing reads and their quality score, i.e., billions of short
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Figure 2.1: Diagram of production and integration steps for data and metadata in genomics.

sequencing reads that are stored in text files in FASTQ1 format.
Typically, production is not driven by any imposed wet-lab standard, unless

laboratories are guided by a consortium or other organization (e.g., ChIP-seq
can have antibody standards, RNA-seq and DNase-seq2 can have specific pro-
tocols and replicate numbers). The metadata generation is usually performed
by the laboratories that generate the raw data; they document it in a rich way,
yet approximate in the structure and possibly imprecise in the content. Basic
information, about the performed assay, the used sequencing platform, and the
analyzed biological material, is collected.

Researchers can then submit data through one of the several data brokers
that act as links between production laboratories and ingestion APIs provided
by collecting platforms—at times these include web interfaces or web services.
Upon submission, the ingestion services sometimes perform basic quality as-
surance and checking of format consistency, and then deposit the data into their
data stores.

2.1.2 Integration

We describe as part of "data integration" all the steps that follow data produc-
tion and their preliminary publication. Along the way, a number of issues may
be encountered. Thus we hint at existing methodological solutions adopted by
players addressing the mentioned aspects.

During data processing, also referred to as "secondary analysis", genomic
sequences are reconstructed in a computational way by exploiting overlaps be-
tween short sequencing reads. After quality assurance filtering on raw reads,
the data processing workflow typically includes alignment of reads to a ref-

1A text file that stores both a biological nucleotides sequence and its corresponding quality scores.
2ChIP-sequencing is a method to analyze protein interactions with DNA; RNA sequencing is a technique used

to reveal the presence and quantity of RNA in a biological sample at a given moment; DNase I hypersensitive sites
sequencing is a method to identify the location of regulatory regions.
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Chapter 2. Genomic Data Players and Processes

erence genome, which produces BAM files.3 The differences between the se-
quenced genome and the reference one can be identified, for example, by per-
forming variant calling and filtering, which produce VCF files. Other sec-
ondary analysis workflows output different file formats,4 e.g., BED files from
peak calling or GTF files from the identification of differentially expressed
genes.

The following steps are at times performed together with the previous ones,
other times delegated to other data players that follow up with other data ma-
nipulation practices.

Quality Control (QC) is vital for NGS technology experiments. It can be per-
formed during three phases: on the initial extracted nucleic acids (in case they
are degraded), after the sequencing library preparation (to verify that the insert
size is as expected and that there are no contaminating substances), and after
sequencing (most common tools are Sequence Analysis Viewer5 and FastQC6).
The more time and effort are spent on QC, the better quality results will be.
Many players report some kind of QC check in one of these phases; sometimes
even just producing quality studies and reports is referred to as QC.

Some players may decide to reprocess portions of the data collected else-
where. Reasons for taking this approach may be several and of different nature,
mainly including the need for normalized pipelines, as a means to obtain more
homogeneous data ready for analysis. The normalization of the pipelines
deals with the problem of converting raw data to numerical data such that
any expression differences between samples are due solely to biological varia-
tion, and not to technical variation introduced experimentally; for example, in
microarrays-based experiments technical bias can be introduced during sample
preparation, array manufacture and array processing. The selected data types
require some processing to achieve compliance to standards (e.g., alignment to
a reference sequence, uniform peak calling, thresholding of signal peaks, con-
sistent signal normalization, consistency check between replicates, ...).

Among post-processing activities tailored at enhancing interoperability
among different datasets, we mention data normalization procedures (such as
format conversions like normalization of coordinates or re-formatting into nar-
rowPeak or broadPeakhttps://genome.ucsc.edu/FAQ/FAQformat.html stan-
dard format in ENCODE), data transformation (e.g., matrix-based data for-
matted as BED data), and data annotation. Examples of the latter include:
(i) providing positional information (i.e., genomic coordinates) and associated
known genomic regions (e.g. genes) in a standardized framework; (ii) allowing
joined use of different data types (e.g. gene expression and methylation) based
on common gene and sequence identifiers, such as gene IDs from HUGO Gene
Nomenclature Committee (HGNC) [385], Entrez Gene [248] or Ensembl [393]
terminologies; (iii) merging together in same files multiple expression mea-

3The reconstruction of a genome is facilitated by using a reference genome to which the sequencing reads are
systematically aligned; use of reference genomes is possible since representatives of a species are genetically highly
similar.

4https://genome.ucsc.edu/FAQ/FAQformat.html
5https://support.illumina.com/sequencing/sequencing_software/sequencing_analysis_viewer_sav.html
6https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.1. Technological Pipeline of Genomic Data

sures obtained through different calculations, such as FPKM [364],7 FPKM-
UQ,8 and counts in gene expression data.

For what concerns metadata, information associated with produced data, it
may be organized in a structured format. In some cases, integrators apply tai-
lored integration pipelines to extract the needed information to fill their own
agreed data models, thus performing schema-level integration. Generally, the
idea is to redistribute metadata over a few essential entities, e.g., Project-Sample-
File or Investigation-Study-Assay [331], as proposed in the general-purpose ISA-
Tab format for structuring metadata [330] and now adopted by the FAIRsharing
resource [329]. A number of questions are usually answered during this pro-
cess: Is this set of entities minimal? Is it enough to hold all information? Is something
lost at this granularity? Note that, depending on the specific sources, metadata
elements have been linked to different entities, and a different base entity has
been selected at times. To mention some notable choices:

• ENCODE [312] has centered everything on the Experiment, which includes
a number of Biosamples, from which many Replicates are produced, to
which Items belong (sometimes with a many-to-many cardinality as files
may be combined from multiple replicas).9

• GDC [160] is centered on the Patient concept, from which multiple Sam-
ples are derived. From another perspective, data are divided by Project,
associated with a Tumor Type, for which many Data Types are available.

• GEO [27] is organized into Series that include Samples (whereas these lat-
ter ones can be employed in multiple Series), sequenced with a Platform.
A higher-order classification organizes Series and Samples in Datasets and
Profiles.

• Sequence Read Archive (SRA) [210] is organized into Studies that include
Samples, used for many Experiments, which derive from multiple Runs.

• The International Cancer Genome Consortium (ICGC) [395] includes enti-
ties for Donor, Exposure, Family, File, Project, Sample, Specimen, Surgery, and
Therapy.

Most platforms offer a metadata-based search strategy, exploiting the
querying possibilities over the new metadata schema. However, sometimes
such a search functionality is available even when no new data schema has
been applied, using a simple string matching search.

Some players, especially the ones working in connection with a Data Coor-
dination Center (DCC), perform manual curation and additions to metadata.
Within such activities, we mention in particular two: assigning labels to replicas
and cleaning metadata names. The first activity is used for managing techni-
cal and biological replication, which is a common and recommended practice
in genomic experiments [220, 342, 384]. In a data model where information
is organized based on a hierarchy (e.g., Experiment/Replicate/ File), it is very
likely that metadata will be replicated inside each element. Metadata format

7FPKM = Fragments Per Kilobase of transcript per Million mapped reads
8FPKM-UQ = Fragments Per Kilobase of transcript per Million mapped reads - Upper Quartile
9A complete list of entities is available at https://www.encodeproject.org/profiles/.
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such as JSON or XML have a hierarchical structure and can easily represent
such data models, by encapsulating each element inside its parent. When a de-
normalization of such structures is produced (e.g., to associate with a material-
ized file also information about the ancestor Replicate or Experiment), integrators
face the problem of assigning labels to metadata in such a way that the one-to-
many or many-to-many relationship, which is implicit in the JSON or XML
syntax, can be explicit in the data. To overcome this problem while flattening
hierarchical formats, it is customary to assign labels to metadata that belong to
ancestors, in such a way that they can be recognized also in the de-normalized
version. The second activity, cleaning metadata names, is needed because after
label assignment attribute names may become too long. It is highly prefer-
able to obtain minimal names, so that they still express their information with-
out loosing their meaning, even if the semantics of nesting is removed; in this
way they are more easily usable within a metadata-based search system and
in the connected analysis platforms. As an example, a rather complicated at-
tribute such as replicates.biosample.donor.organism.scientific_name, de-
rived from flattening five hierarchical levels in a JSON document, may be sim-
plified into donor.organism to facilitate understanding. Redundant informa-
tion, including duplicated attributes deriving from a comprehensive download
approach from the source, may also be removed using similar rule-based mech-
anisms.

Other widely adopted processes to enhance metadata interoperability in-
clude ontological/terminological annotation on top of the original or curated
metadata. Annotation is a means to achieve metadata normalization, essential
for comparing metadata terms. Genomics, as many other fields in Bioinformat-
ics, is greatly helped by specialized ontologies, which mediate among terms
and enable interoperability. A considerable number of key ontologies are used
by many genomic actors: Uber Anatomy Ontology (UBERON) [274] for tissues,
Cell Ontology (CL) [263] and Experimental Factor Ontology (EFO) [251] for pri-
mary cells and cell lines, Ontology for Biomedical Investigations (OBI) [21] for
assays, Gene Ontology (GO) [313] for biological processes, molecular functions
and cellular components. All these are employed by ENCODE, that has dedi-
cated great efforts to the systematization of official term names for the descrip-
tion of its data. EFO is used by the Genome-Wide Association Studies (GWAS)
Catalog [61] that curates all trait descriptions by mapping them to terms of this
ontology. Moreover, GDC enforces a standardization using the National Insti-
tutes of Health (NIH)10 Common Data Elements (CDE)11 rules. Many attributes
present codes referencing terms from the CDE Repository controlled vocabu-
laries. Other relevant resources include: the National Cancer Institute (NCI)12

Thesaurus [104] for clinical care, translational/basic research, and administra-
tive/public information, and the National Center for Biotechnology Informa-
tion (NCBI)13 Taxonomy [127], providing curated nomenclature for all of the
organisms in the public sequence databases.

10https://www.nih.gov/
11https://cde.nlm.nih.gov/
12https://www.cancer.gov/
13https://www.ncbi.nlm.nih.gov/
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2.1. Technological Pipeline of Genomic Data

Several search services, which integrate a high number of ontologies, are
employed in the landscape of genomic data integration. Examples include:
BioPortal [379] and Ontology Lookup Service (OLS) [198], two repositories
of biomedical ontologies and terminologies that provide services to annotate
search keywords with ontological terms; Ontology Recommender [253], a Bio-
Portal service that annotates free text with a minimal set of ontologies contain-
ing terms relevant to the text; Zooma14, an OLS service providing mappings be-
tween textual input and a manually curated repository of text-to-ontology-term
mappings. Annotation can also include adding external identifiers pointing to
different databases that contain same real-world entities. While redundancy
is not accepted within a single source, in the genomics domain it is common
across sources, provided that resources are well interlinked and representations
are coherent between each other (i.e., metadata values have the same level of
detail).

2.1.3 Services and Access

Organizations operating in the integration field also provide interfaces to ac-
cess the result of their service. To this end, they must address the issues related
to the synchronization of their local database with the original data one. As
data size is significant, when updating the interface content, downloading ev-
erything from scratch from the original sources should be avoided. Instead, it is
necessary to precisely define metrics to compare contents: What is new, what has
been updated, and what is not present anymore? One possible strategy is defining
a partitioning schema. In many cases this is not the simplest possible one (i.e.,
file by file) since information is typically structured in a complex and hierar-
chical way. For example, when considering the source ENCODE, metadata can
be used to partition the source data repository. API requests can be composed
in order to extract always the same partition of data, specifying parameters
such as "type = Experiment", "organism = Homo Sapiens" and "file.status
= released". Consequently, a list of corresponding files is downloaded; the
identifying characteristics of the files (typically including size, last update date,
checksum) can be compared with the ones saved in the local database at a pre-
vious download session of the same partition. Making a distinction between
genomic region data and metadata, the latter are typically smaller in size; in
case comparing versions becomes too complicated, metadata may be down-
loaded each time, as often there are no such things as a data release version or
pre-computed checksum values to be checked.

Besides offering updated content, genomic players that host data and make
it available through any kind of interface, usually offer also other support-
ing services. Typically these include: application programming interfaces to
directly download and extract specific portions of data, or perform rich and
structured queries; free-text search over metadata, sometimes only on selected
kinds of metadata, such as gene names or functional annotations; direct meta-
data export, at times included within the API options, other times as bulk
download; visualization tools or ready-to-use connections to common visu-

14https://www.ebi.ac.uk/spot/zooma/
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Chapter 2. Genomic Data Players and Processes

alization browsers (e.g., UCSC and Ensembl genome browsers [186, 205]); em-
bedded integrated analysis tools to further process and analyze the results
retrieved in the interface (diverse use cases include clustering [349], spatial re-
construction [335], visualization [239], and graph-based analysis [23]); possi-
bility to perform computations on cloud in a dedicated space, with reserved
computational resources.

In addition to openly available datasets, some sources also feature con-
trolled data, whose access is only given upon authorization; some just require
a registration step to access the download functionality. Many players make
available legacy versions of data, rarely of metadata.

A few players accept user-data submissions, either to be included as fu-
ture content of the platform or to be processed together with publicly available
datasets in further computations and analysis.

2.2 Taxonomy of Players Involved in Data Production and Integration

The landscape of institutions, private actors and organizations within the scope
of genomics is broad and quite blurred. The authors of [27] had previously pro-
posed a tentative classification of sources: primary resources publish in-house
data; secondary resources publish both in-house data and collaborator data; ter-
tiary resources accept data to be published from third, unrelated parties. More
recently, the Global Alliance for Genomics and Health (GA4GH) [361], an in-
ternational, nonprofit alliance formed in 2013, built the Catalogue of Genomic
Data Initiatives,15 where they include the following types, not mutually ex-
clusive: Biobank/Repository, Consortium/Collaborative Network, Database, GA4GH
Driver Project, Industry, National Initiative, Ontology or Nomenclature Tool, Re-
search Network/Project, Standards, and Tool.

We expand the taxonomy of [27], whereas we compact the one proposed by
GA4GH – which in any case only includes initiatives under the alliance’s um-
brella – by identifying five categories to classify every entity that plays a role in
this field, named genomic data player. In general terms, data are produced at lab-
oratories (corresponding to the player: contributor), deposited at data archives
(player: repository host), harmonized within programs (player: consortium), in-
tegrated by systems or platforms that aggregate data from different sources
and add value to it (player: integrator), and employed by end users, mainly
biologists and bioinformaticians (player: consumer). These categories are not
intended to completely represent the whole possibilities, nor to be exclusive
with respect to each other. In the following, we detail each category’s char-
acteristics and the interactions among categories, carrying genomic data from
production to its integrative use.

Contributor. A contributor generates raw data with any high-throughput plat-
form, using next-generation sequencing or alternative technology; it takes care
of annotating wet-lab experiment data with a set of descriptive metadata, as
well as encrypting and uploading data to archives. A contributor can be a lab-
oratory or hospital, which reports directly to a Principal Investigator holding

15https://www.ga4gh.org/community/catalogue/
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an independent grant and leading the grant project. In other cases laboratories
are part of a bigger program, led by a consortium or national institution. In
both cases, it is standard for laboratories to send their data to other players,
who carry on the publication and integration process.

Repository host. We call "repository hosts" the organizations standing behind
primary data archives (also referred to as "data storage"), recently grown ex-
ponentially in size. They host data not only from independent laboratories
and companies that gain visibility in this way, but also from consortia that
wish to make their data available from such general archives. Moreover, it
is customary for authors of biological publications to deposit their raw and
processed datasets on these repositories—some journals even require it upon
submission [115]. Primary data archives currently face a number of challenges:

• Their primary goal is to pool disparate data into a single location, giving
priority to quantity and typically not demanding a structure. However,
without any homogenization effort, data is barely useful, impeding anal-
ysis and cross-comparison that build an added value with respect to indi-
vidual experiments [25].

• They archive raw sequencing data, which is usually not immediately us-
able by the scientific community. The majority of these archives do not
provide access to pre-processed published data, leaving this cumbersome
task to individual scientists who need to analyze them.

• Usually metadata deriving from contributors’ submissions are not suffi-
cient to ensure that each dataset/experiment is reproducible and that the
data can be re-analysed. As new technologies, protocols and correspond-
ing annotation vocabularies are constantly emerging, new metadata fields
are required and need curation to accurately reflect the data.

Consortium. Consortia provide evolved forms of primary repositories. They
usually include many participants and projects, which have to abide to certain
policies (see, for example, policies of GDC16) and operational conventions for
participation (see, for example, experiment guidelines of ENCODE17). These
policies have to ensure agreement among the parts about sensitive matters such
as data access, data submission, and privacy. Guidelines guarantee compatibil-
ity among datasets, in order to establish an infrastructure that enables data
integration, analysis, and sharing.

Many consortia refer to a DCC in charge of data and metadata normal-
ization and cleaning, and of all the activities that stand between production
and publication. Most well-known DCCs include the ones of ENCODE [182],
BLUEPRINT [4], ICGC, and 1000 Genomes; Roadmap Epigenomics Consor-
tium has an Epigenomics Data Analysis and Coordination Center (EDACC)18

and Genotype-Tissue Expression (GTEx) [238] has a Laboratory, Data Analy-
sis, and Coordinating Center (LDACC). Along with repository hosts, consortia
are required by their own policies to submit raw sequencing reads and other

16https://gdc.cancer.gov/about-gdc/gdc-policies/
17https://www.encodeproject.org/about/experiment-guidelines/
18http://www.roadmapepigenomics.org/overview/edaac
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Figure 2.2: Diagram of interactions among genomic data players. Nodes are players; arrows, with
different colors and textures represent their interactions. Contributors publish either on repositories
or consortia platforms; data are then integrated. Consumers retrieve data from repositories, consortia
or integrators. The data view represents the perspective of data stages, while the business view shows
the process applied to genomic datasets.

primary data to controlled access public repositories. The main ones that serve
this purpose are the European Nucleotide Archive [11], the European Genome-
phenome Archive (EGA) [222], and the database of Genotypes and Phenotypes
(dbGaP) [365].

Integrator. An integrator may be a platform, an initiative, or a project whose
objective is to overcome the constant need of users to learn how to navigate
new query interfaces and to transform data from different sources to be inte-
grated in the analysis. As a secondary purpose, an integrator usually aims at
providing visualization and integrative analysis tools for the research commu-
nity. Integrators do not point to raw data; they instead always reference the
sources of their data (either with links to the source portals, or by reporting
original identifiers for each data unit).

Consumer. Genomic data and metadata are finally used by biologists, bioin-
formaticians and data scientists, who download them from sources’ platforms
and FTP servers to feed a wide variety of tertiary analysis pipelines, including
applications in pharmacology, biotechnology, and cancer research.

Interactions among genomic data players are described in Figure 2.2. Ex-
perimental genomic data and metadata are first produced – occasionally also
preliminarily processed – by contributors, then published on repositories or
directly on consortia’s platforms. Within consortia themselves, re-processing
may happen, as their pipeline for raw data processing uses community-agreed
or consortium’s guideline-based algorithms. Intermediate derived results are
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generated to be later published. In some cases data curated by consortia are
re-published also on general archives, such as ENCODE and Roadmap Epige-
nomics on GEO.19 Data are finally collected by integrators that expose them on
tertiary interfaces, tailored at enhancing interoperability and use. Simpler in-
terfaces are provided to consumers also by many repository hosts and consor-
tia. In rare cases, not depicted in Figure 2.2 as they are exceptional, integrators
may consider important to re-process data of some sources with normalized
pipelines to enhance the possibilities of integration. Two long arrows show the
taxonomy from different points of view: from a data perspective, contributors
deal with raw data, repository hosts and consortia with processed data, while
integrators make data interoperable and fit for use of consumers; from a process
perspective, data is produced by contributors, submitted to aggregating plat-
forms, that take care of dissemination to tertiary players, who make it available
for its consumption.

We instantiate the taxonomy described by the diagram in Figure 2.2 with
a number of relevant genomic players, which will be described thoroughly in
the following. Figure 2.3 thus shows interactions between example players,
starting from the laboratories where data are primarily generated, throughout
repositories where data are deposited, consortia where they are curated, and
finally integrator interfaces where they are used and explored. The used nota-
tion and colors reflect the ones adopted in Figure 2.2.

We drew the relationships between these players according to their spec-
ifications in the documentation and relevant publications, to the best of our
knowledge at the time of writing. Some consortia, for instance TCGA [377] and
GDC, accept submissions both from laboratories gathered under the same or-
ganization and from individual submitters that observe the submission guide-
lines. There are labs that contribute to more projects. Raw experimental data
are usually deposited to SRA [210], while GEO (the most used by researchers)
and ArrayExpress [17] are employed for publication of data at later stages of
processing; complete studies are uploaded to BioStudies [333]. Note that, in
the Figure 2.3 diagram, even primary archives reference to each other.

2.3 Main Genomic Data Players

We propose a systematic overview of a number of genomic data players,
guided by Table 2.1. The first column of the table contains a list of data sources
that contribute to produce, integrate and promote the use of genomic data for
research, grouped by the categories of the taxonomy introduced in the previ-
ous section. The list is in no way meant to be comprehensive, but should be
received as a starting reference. For each mentioned player we show which
steps/functionalities are provided. The following columns in Table 2.1 repre-
sent steps described in Section 2.1 in bold font and outlined in Figure 2.1.

Inside Table 2.1 cells, the notation × indicates a step included by the player;
an empty cell stands for a step not provided by the player; ~ is used when

19ENCODE: https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html; Roadmap Epigenomics: https://www.ncbi.
nlm.nih.gov/geo/roadmap/epigenomics/.
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Figure 2.3: Diagram of example players and their most important interactions.

an answer is only partially positive (e.g., some parts of the step are performed
while others not, or the step is only performed under certain conditions); ? is
used for an unknown answer, when the documentation and publications de-
scribing the player and its services did not allow us to determine an answer. All
information contained in the table are filled up to the best of our knowledge at
the time of writing (March 2020), being retrieved from the player’s main pub-
lications or from the linked online documentation. Our discussed overview is
divided in subsections, one for each player type.

2.3.1 Contributors

As it can be observed from Table 2.1, contributors – including independent
labs, private submitters, and consortium labs (depicted in Figure 2.3 – are the
only players in charge of sample collection, preparation and primary analysis,
followed by generation of metadata; only in some cases they also apply quality
control measures before or during secondary analysis activities.

30



i
i

“output” — 2021/1/14 — 8:34 — page 31 — #55 i
i

i
i

i
i

2.3. Main Genomic Data Players

Production Integration
Data Metadata Services Access

sa
m

pl
e

co
lle

ct
io

n
an

d
pr

ep
ar

at
io

n

pr
im

ar
y

an
al

ys
is

m
et

ad
at

a
ge

ne
ra

ti
on

se
co

nd
ar

y
an

al
ys

is

qu
al

it
y

co
nt

ro
l

pi
pe

lin
e

no
rm

al
iz

at
io

n

da
ta

no
rm

al
iz

at
io

n/
tr

an
sf

or
m

at
io

n

da
ta

an
no

ta
ti

on

st
ru

ct
ur

ed
fo

rm
at

ow
n

da
ta

m
od

el

m
et

ad
at

a-
ba

se
d

se
ar

ch
st

ra
te

gy

m
an

ua
lc

ur
at

io
n/

ad
di

ti
on

s

on
to

lo
gy

/t
er

m
in

ol
og

y
an

no
ta

ti
on

ap
pl

ic
at

io
n

pr
og

ra
m

in
te

rf
ac

es

m
ea

ta
da

ta
-f

re
e-

te
xt

se
ar

ch

m
et

ad
at

a
ex

po
rt

vi
su

al
iz

at
io

n
to

ol
s

in
te

gr
at

ed
an

al
ys

is
to

ol
s

co
m

pu
ta

ti
on

s
on

cl
ou

d

in
cl

ud
e

co
nt

ro
lle

d
da

ta

re
qu

ir
ed

re
gi

st
ra

ti
on

le
ga

cy
ve

rs
io

ns

ac
ce

pt
da

ta
su

bm
is

si
on

s

C
on

tr
ib

.

Laboratories × × × ~ ~

R
ep

os
it

. ArrayExpress [17] × × × × × × ? × × × × ×
BioStudies [333] × × × ? × ~ ~ ×
GEO [27] × ~ ~ ~ × × × × × ×
SRA [210] ~ × × × × × ? ×

C
on

so
rt

iu
m

1000 Genomes [311] × × × × × ~ ~ ~ × ~ ×
BLUEPRINT [4, 130] ? ? ? × ? × × × × × × × × ?
CCLE [147] × × × × × × × × × × × ×
ENCODE [103] × × × × × × × × × × × × × ? ? × ×
FANTOM [236] × × × ? × × × ×
GENCODE [136] × ? × × ~ ~ ×
gnomAD [201] × × × × ×
GDC [160] × × × × × × × × × × × × × × ×
GTEx [238] × × × × × × × × ×
ICGC [395] × × × × × × × × × × × × ~ × ×
RefSeq [284] × × × × × ~
Roadmap Ep. [216] × × × ? × × ~ × ×

In
te

gr
at

or

Firehose/FireBrowse ? ? ? ? ? × × ~ × × × ×
Terra × × ~ ~ × × × × × × ×
cBioPortal [75] × × × × × × ~ × × × × ~
Cistrome [398] × × × × × × × × × × × × × ×
COSMIC [360] × × × × × × × × × × × ×
DeepBlue [9] × × × × × × × × × × ×
GenoSurf/GMQL [63] × × × × × × × × × × × × × × ×
GWAS Catalog [61] × × × × × × × × × × × × ×
IHEC [59] × × × × × × × × × × × × × ~ × ×
ISB CGC [318] × × × × × × × × ×
MGA [113] × × × × × × × × × ×
Seven Bridges CGC [224] × × ? ? × ~ × × × × × × × ×
UCSC Xena [151] × ? × ? × × × × × × ×

Table 2.1: Overview of the steps towards data integration included by genomic data players. Rows
represent players (with reference of their flagship publication, when available) and are grouped by
player type. Columns represent the steps for genomic data integration described in Section 2.1 and
are grouped according to their progression in a typical pipeline. Used notation: × indicates that
a certain step is included/performed by the player; ~ indicates an uncertain answer (i.e., in some
cases the service/step is provided just in few studies or only for some data types); ? indicates that the
player’s documentation and publications did not allow us to determine a sharp answer; empty cell
indicates that the service/step is not provided. Note that, with respect to nodes referring to consortia
in Figure 2.3, two rows are omitted here: TCGA and TARGET. Indeed, currently, their data is only
made available through other platforms (the most important being GDC and ICGC); the old TCGA
portal was dismissed and TARGET does not have its own.

2.3.2 Repository Hosts

Gene Expression Omnibus (GEO) [27] is the most general and widely used
among repositories. It started in 2002 as a versatile, international public reposi-
tory for gene expression data [114]; it consequently adopted a more flexible and
open design to allow submission, storage and retrieval of a variety of genomic
data types, such as from next-generation sequencing or other high-throughput
technologies. To include also non-expression data, in 2008 GEO created a new

31



i
i

“output” — 2021/1/14 — 8:34 — page 32 — #56 i
i

i
i

i
i

Chapter 2. Genomic Data Players and Processes

division called "Omix", standing for a mixture of "omic data" [26].
Data can also be deposited into Sequence Read Archive (SRA) [210] as sup-

porting evidence for a wide range of study types: primarily raw sequence reads
and alignments generated by high-throughput nucleic acid sequencers (BAM
file format), now expanded to other data including sequence variations (VCF
file format) and capillary sequencing reads. As a part of the International Nu-
cleotide Sequence Database Collaboration (INSDC), the SRA is materialized in
three instances, one at the EBI,20 one at the NCBI [337], and one at the DNA
Data Bank of Japan (DDBJ) [209].

ArrayExpress [17] was first established in 2002 only for microarray data.
It is now an archive of functional genomics data ranging from gene expression
and methylation profiling, to chromatin immunoprecipitation assays. Recently,
it also increased the number of stored experiments investigating single cells,
rather than bulk samples (i.e., single-cell RNA-seq).

The EBI BioStudies [333] database holds high-level metadata descriptions
of biological studies, with links to the underlying data databases hosted at the
EBI or elsewhere, including general-purpose repositories. Also those that have
not been already deposited elsewhere can be hosted at BioStudies.

Discussion. By observing the repository-related rows of Table 2.1, we con-
clude that repositories are quite diverse with respect to the data integration
steps included in their practice. Generally, they do not perform specific steps
on data, however they often require submitters to ensure quality control checks,
as GEO and ArrayExpress do, while SRA mentions it as future work. Metadata
are not treated uniformly; some organization is enforced, but much information
is left also in unstructured format. While services offered by their interfaces are
various, they all allow submissions from any user; this is a characterizing fea-
ture of the repositories.

Since repositories are growing [319] in diversity, complexity and (unex-
pressed) interoperability, the need for organization and annotation of the avail-
able data has become urgent. In response to this, NCBI and EBI have imple-
mented additional, complementary, initiatives on top of repositories. NCBI
BioProject and BioSample databases [24] and EBI Biosamples [95] were initi-
ated to help addressing these needs by facilitating the capturing and managing
structured metadata and data for diverse biological research projects and sam-
ples represented in their archival databases.

2.3.3 Consortia

Consortia are usually focused on particular aspects of what we generically call
"genomics". The following four ones work on matters related to epigenomics.

The Encyclopedia of DNA Elements (ENCODE) Consortium [312] is an
ongoing international collaboration of research groups funded by the National
Human Genome Research Institute (NHGRI). Primary goal of the project is to
characterize functional features in DNA and RNA expression in a wide number
of cell lines. The project’s updated portal is presented in [103].

20https://www.ebi.ac.uk/
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BLUEPRINT [4] is an EU-funded consortium under the umbrella of the In-
ternational Human Epigenome Consortium (IHEC). It was set up to develop
new high-throughput technologies to perform epigenome mapping, and to an-
alyze diverse epigenomic maps comprehensively, making them available to
the scientific community as an integrated resource. Besides being available
through IHEC resources, the BLUEPRINT built its own Data Analysis Por-
tal [130], as the first platform based on EPICO, an open access reference set
of libraries to be used to develop data portals for comparative epigenomics.

The Roadmap Epigenomics Consortium [216] was born in 2015 from the
NIH with the aims of: (i) understanding the biological functions of epigenetic
marks and evaluate how epigenomes change; (ii) designing and improving
technologies, i.e., standardized platforms, procedures, and reagents, that allow
researchers to perform epigenomic analysis and to study epigenetic marks ef-
ficiently; (iii) creating a public resource of disease-relevant human epigenomic
data to accelerate the application of epigenomics approaches.

FANTOM [236] is an international research consortium created to perform
functional annotations of the mammalian genomes, including – but not limited
to – the Homo Sapiens one. The objective of the project has recently moved
from understanding the transcripts to understanding the whole transcriptional
regulatory network.

The following three consortia are instead focused on problems related to
cancer genomics.

Genomic Data Commons (GDC) [160] is an information system for stor-
ing, analyzing and sharing genomic and clinical data from cancer patients. It
aims to give democratic access to such data, improve sharing and promote ap-
proaches of precision medicine that can diagnose and treat cancer. Ultimately,
the goal is to become the one-stop cancer genomics knowledge base; however,
consolidation and harmonization of genomic and clinical data are ongoing and
they will require a long process. GDC was created mainly to help individ-
ual investigators and small programs to meet NIH and the NCI genomic data
sharing requirements, and thus to store their data in a permanent home. In
addition, GDC now includes data from big cancer programs, such as The Can-
cer Genome Atlas (TCGA) [377] and the Therapeutically Applicable Research
to Generate Effective Treatments (TARGET), also shown as consortia nodes in
Figure 2.3. While GDC is technically a cancer knowledge network, we classify
it as a consortium as it has a very broad mission: it accepts user submissions,
it performs quality control, it provides storage and it also redistributes the
data. What distinguishes it particularly from a simple repository host or an inte-
grator is the considerable effort dedicated to harmonizing data (standardizing
metadata, re-aligning data and re-generating tertiary analysis data using new
pipelines [141]) deriving from incoming submissions and from the included
cancer programs. TCGA, instead, is a terminated program; it no longer accepts
samples for characterization. It used to expose the data by means of its own
portal, while now it relies on the GDC infrastructure. As its concluding project,
in 2018 the TCGA program produced the Pan-Cancer Atlas [180], a collection
of analysis performed cross-cancer type. In addition to including many single-
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cancer-type projects, the last datasets that GDC platform makes available are
the ones produced within the context of the Pan-Cancer project.

The International Cancer Genome Consortium (ICGC) [395] was estab-
lished in 2011 to launch and coordinate a large number of research projects
de-centralized in many countries of the world, sharing the common goal of
explaining the genomic changes present in many forms of cancer. Its data por-
tal hosts data from other large-scale projects focused on cancer research, such
as TCGA and TARGET, as shown by the two dotted incoming arrows in Fig-
ure 2.3.

The Cancer Cell Line Encyclopedia (CCLE) [147], for almost 1,500 human
cancer cell lines, collects gene expression, chromosomal copy number and mas-
sively parallel sequencing data.

The last five consortia we mention are instead focused on various matters,
such as variation across populations, transcriptomics, exome sequencing, and
annotation.

Launched to become one of the largest distributed data collection and analy-
sis projects in genomics, the goal of the 1000 Genomes Project [311] was to find
most genetic variants with frequencies of at least 1% in the studied populations.
In 2015 the International Genome Sample Resource (IGSR) [90] was established
to expand and improve the legacy inherited from the 1000 Genomes Project.

The Genotype-Tissue Expression (GTEx) Consortium [238], supported by
the NIH Common Fund, aims at establishing a resource database and associ-
ated tissue bank to study the relationship between genetic variation and gene
expression and other molecular phenotypes in multiple reference tissues. The
results of this transcriptomics-focused project help the interpretation of find-
ings from Genome-Wide Association Studies (GWAS) by providing data and
resources on expression quantitative trait loci in many tissues and diseases.

The GENCODE project [136] produces high-quality reference gene annota-
tions and experimental validation for human and mouse genomes. It aims at
building an encyclopedia of genes and gene variants, by identifying all gene
features in the human and mouse genomes, using a combination of computa-
tional analysis and manual annotation.

The NCBI RefSeq project [284] provides a comprehensive manually anno-
tated set of reference sequences of genomic DNA, transcripts, and proteins—
including, for example, genes, exons, promoters, enhancers, etc.. Exploiting
the data from the INSDC, it provides a stable reference for genome annotation,
analysis of mutations and studies on gene expression.

The Exome Aggregation Consortium (ExAC) [227] unites a group of inves-
tigators who are aggregating and harmonizing exome sequencing data from
other large-scale projects. According to the most updated news (end of 2016,
[202]), the ExAC provided sequences from almost 61,000 individuals belong-
ing to studies about different diseases and populations. Recently, the ExAC
browser has been dismissed in favour of the Broad Institute Genome Aggrega-
tion Database (gnomAD) [201], which more than doubles the previous sample
size.

34



i
i

“output” — 2021/1/14 — 8:34 — page 35 — #59 i
i

i
i

i
i

2.3. Main Genomic Data Players

Discussion. From Table 2.1 we observe that consortia are generally con-
cerned with coordination of data transformation, from secondary analysis ac-
tivities, to quality control filtering and normalization/annotation of data. Al-
most all the analyzed consortia definitely include a pipeline normalization
step in their activities, as this is the characterizing step of this type of player
(only BLUEPRINT and GENCODE did not mention information about uniform
workflows in their documentation). Instead, the approach towards metadata
curation and tertiary analysis tools is diversified and does not show a unique
trend. As to the "metadata-based search strategy" column in Table 2.1, we spec-
ify that some consortia just provide a very limited functionality of this kind
(e.g., 1000 Genomes can only filter by population, technique and data collec-
tion, and Roadmap Epigenomics by tissue and data type only). While EN-
CODE and GDC present sophisticated search interfaces, other ones are quite
basic. As to providing APIs and visualization tools, GENCODE and 1000
Genomes were assigned the ~ symbol since they do not offer such services
natively, but exploit the ones of Ensembl.

2.3.4 Integrators

In a similar way as consortia, also integrators tend to cluster based on the spe-
cific sub-branch of genomics they cover. This happens mostly because rules
and common practices are better shared within a same area, following simi-
lar purposes, while cross-branch projects are more rare. We first mention four
integration organizations that collect data from epigenomics-focused consortia.

The International Human Epigenome Consortium (IHEC) [59] coordinates
large-scale international efforts towards the production of reference epigenome
maps. For a wide range of tissues and cell types, the regulome, methylome,
and transcriptome are characterized. As a second phase, the consortium is ex-
panding its focus from data generation to the application of integrative anal-
yses and interpretation on these datasets, with the goal of providing a stan-
dardized framework for clinical translation of epigenetic knowledge. Counter-
intuitively, we classified the IHEC as an integrator rather than a consortium as
the normalization work is mainly carried on by the members institutions (or
consortia themselves) that are part of it (for instance ENCODE, BLUEPRINT,
Roadmap Epigenomics). The main outcome of the IHEC is instead its Data Por-
tal, which can be used to view, search, download, and analyse the data already
released by the different associated projects.

DeepBlue [9] is a data server that was developed to mitigate the lack of
mechanisms for searching, filtering and processing epigenomic data, within
the scope of the IHEC. DeepBlue made a precise work of data integration
by homogenizing many epigenomic sources, including data from ENCODE,
BLUEPRINT, Roadmap Epigenomics among others. It uses a clear distinction
between region data and metadata, manages both experiment and annotation
related datasets, defines a set of mandatory metadata attributes – while storing
additional ones as key-value pairs – and uses metadata to locate region data.

In the Cistrome Data Portal [264] users can find data relevant to transcrip-
tion factor and chromatin regulator binding sites, histone modifications and
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chromatin accessibility. Such data is useful to a number of studies, including
differentiation, oncogenesis and cellular response to environmental changes.
As to the last available publication [398], its database contains about 100,000
samples, both for human and mouse organisms. It includes data of ChIP-seq
and chromatin accessibility from ENCODE, Roadmap Epigenomics and GEO,
which has been carefully curated and homogeneously re-processed with a new
streamlined analysis pipeline.21 Comparison between Cistrome enriched re-
gion signal peaks and the ones in ENCODE, which they are derived from,
showed that they are significantly different.

The MGA repository [113] is a database of both NGS-derived and other
genome annotation data, which are completely standardized and equipped
with metadata. It does not store raw sequence files, but instead lists of base
positions in the genome corresponding to reads from experiments, e.g., ChIP-
seq. Ten model organisms are represented.

The following seven integrators are mainly working in the field of cancer ge-
nomics. Notice that, in Figure 2.3, the cluster formed by consortia and integra-
tors working in the cancer domain is the most connected—integrators retrieve
datasets from the most important consortia portals.

The Catalogue Of Somatic Mutations In Cancer (COSMIC) [360] catalogue
is the most comprehensive global resource for information on somatic muta-
tions in human cancer. It contains 6 million coding mutations across 1.4 mil-
lion tumour samples, which have been (primarily) manually curated from over
26,000 publications.

Broad Institute maintains both Firehose/FireBrowse22 and Terra23 plat-
forms as aggregators of genomic data. The first one mainly imports TCGA
data and offers a number of visualization options over it. The second one is a
new large-scale project that also includes cloud computational environments.

Along with the Broad Institute, the Seven Bridges Cancer Genomics
Cloud [224] and the Institute for Systems Biology (ISB) Cancer Genomics
Cloud [318] are the other two systems funded by the NCI to store massive
public datasets (first of all TCGA ones) and together provide secure scalable
computational resources for analysis.

The cBio Cancer Genomics Portal (cBioPortal, [75]) was designed to address
the data integration problems that are specific of large-scale cancer genomics
projects, such as TCGA—including the Pan-Cancer Atlas datasets, TARGET,
and ICGC. In addition, it also makes the raw data generated by large projects
more easily and directly available to cancer researchers.

UCSC Xena [151] is a high-performance visualization and analysis tool that
handles both large public repositories (e.g., CCLE, GDC’s Pan-Cancer, TAR-
GET and TCGA datasets) and private datasets. Its characterizing aspects are
strong performances and a privacy-aware architecture, working across multi-
ple hubs simultaneously. Target users are cancer researchers with and without
computational expertise.

21The analysis pipeline is detailed at http://cistrome.org/db/#/about/
22Firehose: https://gdac.broadinstitute.org/; FireBrowse: http://firebrowse.org/
23https://terra.bio/
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The NHGRI-EBI GWAS Catalog [61] is a collection of all published genome-
wide association studies that enable investigations to identify causal variants,
understand disease mechanisms, and establish targets for novel therapies. It
adds manually curated metadata for publication, study design, sample and
trait information. Many information from GTEx are also integrated.

As a last player, we consider our own project, data-driven data-driven Ge-
nomic Computing (GeCo) [76], we analyzed thoroughly the issues related to
the integration pipeline described in Section 2.1, and we proposed a unique in-
tegration approach that is thoroughly described in Chapter 4. As indicated in
Table 2.1, we include all the integration steps for data and metadata that fol-
low secondary analysis. Among the analysed integrators, the GeCo approach
is the only one that joins together a broad range of genomic data, which spans
from epigenomics to all data types typical of cancer genomics (e.g., mutation,
variation, expression, etc.), until annotations.

Discussion. Integrators, as reported in Table 2.1, are in general concentrated
on metadata and services; however, some of them do re-process also data (e.g.,
Cistrome), and many of them transform and augment it in various ways. Ta-
ble 2.1 also proves that, for genomic data players, performing data integration
corresponds to applying the pipeline described in Section 2.1.

We should note that, in the table, information about the Broad Institute’s
FireBrowse and Terra is not as accurate as for other players, since currently
there is no publication and insufficient documentation that specify official in-
formation for these two integrators. In the specific case of metadata ontological
annotation, we highlight that in FireCloud, which has now been embedded
into Terra, the connection to the Disease Ontology [34] has been implemented.

Some integrators have been assigned the ~ symbol to the "metadata free-text
search" column since this only works on one attribute at a time. IHEC Data Por-
tal does not exactly require registration for downloading. Indeed, only the raw
data files for most of the IHEC datasets are located in controlled access reposito-
ries (e.g., EGA or dbGaP), while processed data are openly visible. cBioPortal
does not allow direct user submission, but indeed encourages suggestions of
inclusions of potential interest.
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CHAPTER3
Modeling Genomic Data

“The eternal mystery of the world is its comprehensibility... The fact that it is comprehensible is a miracle.”
— Albert Einstein

Advancements in database research should be conveyed by paradigm shifts in
the modeling of inputs, transformations, and outputs. Following the consoli-
dated expertise of our group in data modeling (even in domains that are very
distant from genomics and life sciences [71,77]), our approach to genomics has
started precisely from understanding the true nature of the data ad hand, by
ensuring simple, powerful and orthogonal abstractions, and by applying well-
known techniques such as Entity-Relationship modeling, also referred to as
Conceptual Modeling [28, 84].

Chapter organization. Even before my PhD research started, the GeCo group
had dedicated large efforts to the problem of modeling genomic-related data.
The first important contribution has been the Genomic Data Model (GDM), pre-
sented in [259], achieving the novel results of modeling processed data, their
supporting metadata (while other models used in the past only focused on
data), and providing seamless interoperability among heterogeneous datasets.
We briefly discuss this model in Section 3.1. During my PhD, we consolidated
the mentioned work, by continuing the implementation of several modules for
integrating more datasets to be used conjunctively in the repository. More im-
portantly, my doctoral research has been concerned with giving a more central
role to metadata, i.e., the descriptions of genomic datasets. We understood that
not only was it important to support the joint use of data with their metadata,
but that metadata deserved to become first-class citizens in the GeCo system,
needing their own model, semantics, and a plan to achieve interoperability
among sources. My efforts to model metadata are described in Section 3.2.
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Section 3.3 concludes the chapter with an overview of literature modeling ap-
proaches in genomics and comparable fields.

3.1 The Genomic Data Model

The Genomic Data Model (GDM) [259] is based on the notions of datasets and
samples; datasets are collections of samples. Samples are the basic unit of infor-
mation, containing experimental data that corresponds to a given individual
and preparation (e.g., cell line and antibody used) that first undergoes NGS se-
quencing (producing "raw data"), then alignment and calling processes (pro-
ducing "processed data"). Each sample includes DNA segments or regions
(possibly the whole genome) – called region data in the following – and it is
associated with information about the performed experiment, i.e., metadata de-
scribing the general properties of the sample.

Genomic region and feature data describe many molecular aspects, which
are measured individually; the resulting variety of formats hampers their in-
tegration and comprehensive assessment. GDM provides a schema to the
genomic features of DNA/RNA regions, making heterogeneous data self-
describing and interoperable.

Original files are imported into the GDM format, which has a fixed part –
representing the genomic coordinates – that guarantees the comparability of
regions produced by different kinds of processing, and a variable part, i.e.,
data-type-specific attributes, describing region properties, reflecting the pro-
cess of feature calling that produced the regions with their features specific of
the particular processing experiment.

(id, (chr, start, stop, strand), (name, score, signal, pvalue, qvalue, peak))
(1, (chr1, 1, 16, +), (‘.’, 0, 5396.7, -1, 3.8, 310))
(1, (chr1, 68, 94, +), (‘.’, 0, 4367.6, -1, 3.8, 284))
(1, (chr1, 137, 145, +), (‘.’, 0, 3901.0, -1, 3.8, 268))

id 1
biosample_term_name MCF-7
biosample_tissue  breast
assay ChIP-seq
donor.organism.name   Homo Sapiens

(chr1, 1, 16, +) (‘.’, 0, 5396.7, -1, 3.8, 310)
(chr1, 68, 94, +) (‘.’, 0, 4367.6, -1, 3.8, 284)
(chr1, 137, 145, +) (‘.’, 0, 3901.0, -1, 3.8, 268)

Chromosome 1
1             16                                                68                      94                                   137     145

Genomic regions

 

Figure 3.1: Genomic Data Model.

Moreover, GDM copes with the lack of widely agreed standards for meta-
data by representing them using a free arbitrary semi-structured attribute-
value pairs structure: attributes can have multiple values (e.g., the Disease at-
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Gene Expression
(RNA-seq)

Peaks
(ChIP-seq)

Mutations

Figure 3.2: Example of GMQL query to retrieve MYC-bounded promoters with somatic mutations in
recurrent breast cancer patients.

tribute can present both "Cancer" and "Diabetes" values).1

Figure 3.1 shows how a processed data genome track is modeled into one
GDM sample. Each blue rectangle becomes a region following the schema indi-
cated in bold, where id is unique for each sample, chr/start/stop/strand are
the fixed part, and name/score/signal/pvalue/qvalue/peak are the variable
one. Each region data file is tightly linked to its metadata file (with the same
identifier). The metadata part includes free attribute-value pairs; in GDM, at-
tributes are freely associated to samples, without specific constraints. A typical
GDC dataset contains thousands of samples like the represented one.

GDM is tightly liked to GenoMetric Query Language (GMQL), a closed alge-
bra over datasets with the ability of computing distance-related queries along
the genome, seen as a sequence of positions. GMQL is part of previous work
of the GeCo group [260] and has been consolidated in later extensions to which
I have also contributed [258, 344]. GMQL is capable of expressing high-level
queries for these genomic computations and evaluate them on big datasets over
a cloud computing system.

Figure 3.2 depicts an example of genomic computation that can be per-
formed by GMQL over heterogeneous genomic signals. Three types of signals
have been selected on a genome browser; the distinct tracks respectively rep-
resent one RNA-seq experiment, extracting gene expression levels (in red, in
correspondence of black annotated genes on top), three ChIP-seq experiments,
extracting peaks of expression (locations where a protein interacts with DNA),
and mutations. A typical question looks for mutations (one is highlighted in
green) upon expressed genes that overlap with "confirmed peaks" (in at least
two experiments).

1The reader should note that this simplified metadata representation will be outdone along the course of the next
chapters. However, it will be maintained in parallel, to provide the possibility to biologists to operate on purely file-
based datasets, with their usual tools.
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Chapter 3. Modeling Genomic Data

3.2 The Genomic Conceptual Model

While a lot of efforts are made for the production of genomic datasets, much
less emphasis is given to the structured description of their content, collectively
regarded as metadata. There is no standard for metadata, thus each source or
consortium enforces some rules autonomously; a conceptual design for meta-
data is either missing or, when present, overly complex (see the ENCODE
model2) or useless (see the GDC and GEO models3). Genomic metadata are
lacking a conceptual model for understanding which sources and datasets are
most suitable for answering a genomic question.

Since its beginning, the GeCo project has pursued the goal of developing
an integrated repository of open processed data, supporting both structured
and search queries; the first repository has been based on the GDM paradigm,
where – to overcome the lack of standards – metadata are stored as generic
attribute-value pairs; with such format, metadata are used for the initial selec-
tion of relevant datasets. This was only a viable solution, a preparing step to
our proposal for metadata: in this chapter we present the Genomic Conceptual
Model (GCM), a conceptual model for describing metadata of genomic data
sources.

We introduce a change of paradigm with respect to the common data man-
agement principles used for biological databases. In this chapter and in the
following parts of the thesis (see Chapter 9 and Chapter 13), we propose to em-
ploy Entity-Relationship (ER) models [84] to provide a synthetic and unifying
view of the genomic metadata universe, with the specific aim to organize the
domain and build effective search systems upon such model.

In literature, ER models have usually been applied to conceptual design of
databases followed by logical and physical implementation [28], to database in-
tegration [29], or to data processing in information systems [285]. In this work,
we use conceptual models as tools to model reality and to build systems upon them.
As our purpose is to simplify and organize the domain, our conceptual models
result essential in the use of entities, orthogonal in the use of attributes, poor in
generalization/specialization relationships and in relationships’ labels (since
they are trivial "has"), as they describe typical data warehouses structures. We
will later enforce semantics by linking relevant attributes to existing biomedical
ontologies (see Section 4.7.2).

In this Section we first explain our analysis of attributes in sources and the
characteristics they may hold in the conceptual schema (Section 3.2.1), then
we detail the entities and attributes of the model (Section 3.2.2) and show its
validation against ER schemas of important sources (Source 3.2.3).

2At https://www.encodeproject.org/profiles/graph.svg see the conceptual model of ENCODE, an ER schema
with tens of entities and hundreds of relationships, which is neither readable nor supported by metadata for most
concepts.

3At https://gdc.cancer.gov/developers/gdc-data-model/ see the conceptual model of GDC, a graph data model
without relationships cardinality or attributes that is far from practical for use. At https://www.ncbi.nlm.nih.gov/
books/NBK159736/figure/GEO.F1/ see the elementary conceptual model of GEO, containing only a hint to relationship
cardinality and no attributes.
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Level Symbol Feature Default

Source C Contextual Non-contextual
D Dependent Independent
R Restricted Free
S Single-valued Multi-valued
M Mandatory Optional

Table 3.1: Taxonomy of features for metadata attributes.

3.2.1 Analysis of Metadata Attributes

As a first step in developing GCM, we defined a taxonomy of the main prop-
erties of metadata attributes; we then systematically applied the taxonomy to
each considered source, so as to better characterize its content. According to
our taxonomy, attributes can be:

• Contextual (C) when they are present (or absent) only within specific con-
texts, typically because another attribute takes a specific value. In such
cases, there is an existence dependency between the two attributes.

• Dependent (D) when the domain of their possible values is restricted, typ-
ically because another attribute takes a specific value. In such cases, there
is a value dependency between the two attributes.

• Restricted (R) when their value must be chosen from a controlled vocab-
ulary.

• Single-valued (S) when they assume at most one value for each specific
experiment.

• Mandatory (M) when they must have a value, either for all experiments
or within a specific context.

The resulting taxonomy is shown in Table 3.1; it includes orthogonal fea-
tures and we targeted both completeness and minimality. By default (and in
most cases), attributes do not have any of the above properties. Very few at-
tributes are mandatory and unfortunately sources do not always agree on them;
in many cases they are named and typed somehow differently.

We use the first five categories to describe the attributes that are included
in the conceptual model, as explained in the next section; we label the at-
tributes with a feature vector, e.g. BiosampleType[RSM ] denotes Biosample-
Type as an attribute which is restricted, single-valued and mandatory, while
Feature[D(Technique)RSM ] denotes Feature as a restricted single-valued mandatory
attribute with a value dependency from the attribute Technique.

We examined several sources among the ones previously described in Sec-
tion 2.3. Three of them were chosen as most representative for the formal pre-
liminary analysis:

• TCGA (from its GDC distribution, as explained in Section 2.3) reports
many experiment pipeline-specific metadata attributes; out of them we
selected 22 attributes, common to all pipelines, which are the most inter-
esting from a biological point of view (Table 3.2).
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Chapter 3. Modeling Genomic Data

C D R S M Dependency Attribute

× × clinical.demographic.id
× clinical.demographic.year_of_birth

× × × clinical.demographic.gender
× × × clinical.demographic.ethnicity
× × × clinical.demographic.race
× × biospecimen.sample.id

× × × biospecimen.sample.sample_type
× × × sample_type biospecimen.sample.tissue_type

× × generated_data_files.data_file.〈type〉.id
× × × generated_data_files.data_file.〈type〉.data_type

× × × × data_type generated_data_files.data_file.〈type〉.data_format
× × generated_data_files.data_file.〈type〉.file_size

× × × × data_type generated_data_files.data_file.〈type〉.experimental_strategy
× × × data_type generated_data_files.data_file.〈type〉.platform

× × × × data_type analysis.〈workflow〉.workflow_type
× × analysis.〈workflow〉.workflow_link
× × case.case.id
× case.case.primary_site

× × primary_site case.case.disease_type
× × administrative.program.name
× × administrative.project.name
× administrative.tissue_source_site.name

Table 3.2: TCGA metadata attributes analysis.

• ENCODE includes both a succinct and an expanded list of metadata at-
tributes; while the expanded list has over 2000 attributes, the succinct list
has 49 attributes for experiments, 44 attributes for biosamples, and 28 at-
tributes for file descriptions.

• GEO is the most hard to describe as its metadata attributes are expressed
through semi-structured fields; their values are in many cases free texts.

Overall, TCGA and ENCODE have proven to be the most metadata-rich
sources. Later, the model has been validated on many other sources, which
were integrated to the repository one by one, as Chapters 4-5 will clarify. Dif-
ferently, the GEO source is at the same time a very rich public repository of
genomic data (as most research publications include links to experimental data
uploaded to GEO), but is also a very poor source of metadata, which are not
well structured and often lack information; hence our mapping effort is harder
and less precise for GEO than for the more organized TCGA and ENCODE
sources.4

3.2.2 Model Design

The driving design principle of GCM is to recognize a limited set of concepts
which are supported by most data sources, although with very different names
and formats. GCM is centered on the notion of the experiment item, typically
a file containing genomic regions and their properties. Four sub-schemata (or
views) depart from the central entity, recalling a classic star-schema organiza-

4Textual analysis to extract semantic information from the GEO repository is reported in [66] and summarized in
Section 5.3; we plan to capitalize on this work and import into the repository relevant subsets of this important source.
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Figure 3.3: Genomic Conceptual Model.

tion that is typical of data warehouses [54] (but here we allow for many-to-
many relationships and hierarchies of dimensions):

• The technology used in the experiment, including information about item
containers and their formats.

• The biological process observed in the experiment, in particular the sample
being sequenced (derived from a tissue or a cell culture) and its prepara-
tion, including its donor.

• The management of the experiment, describing the organizations/projects
which are behind the production of each experiment.

• The extraction parameters used for internal selection and organization of
items. It describes the containers available in the repository for storing
items that are homogeneous for data analysis.

These views are recognized in most sources and enable powerful query
processing for extracting relevant datasets from each source. The conceptual
schema is designed top-down, based on a systematic analysis of metadata at-
tributes and of their properties in many genomic sources, building the entity-
relationship schema represented in Figure 3.3.5

Central Entity: Item

We next describe the attributes of the ITEM entity and associate each of them
with their feature vector. The SourceId[D(Source)SM ] denotes the item identi-
fier within the source (from which it adopts the specific naming convention)
and must always be included, along with its Size[SM ]. When available, also
the LastUpdate[S] and the Checksum[S] should be included to help distinguish
copies of the item downloaded at different times. Platform[C(DataType)RSM ] is
used to illustrate the NGS platform used for sequencing and depends on the
DataType of the item. Pipeline[D(Technique)S] is a descriptor of the specific pa-
rameters adopted in the methods used for producing the processed data; it
is a single-valued attribute interpreted in the general context of the Technique

5The current version of the ER diagram, which can be appreciated in Figure 3.3, is slightly different from the one
originally proposed in [44], due to the practical experience we gained in the field.
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Chapter 3. Modeling Genomic Data

used for producing several items of the same kind. The single-valued attribute
ContentType[C(DataType)D(IsAnnotation)RS] accepts a restricted number of values, e.g.,
"peaks"/"hotspots"/"exon quantifications" when the contained regions are ex-
perimental, or e.g., "gene"/"transcript"/"promoter" when they are annotations.
For this it is dependent on the isAnnotation attribute (in addition to being con-
textual w.r.t. the DataType). The ITEM is physically available for download at
the LocalURI[SM ] and, in its original form, at the SourceURI[M ], where possibly
multiple endpoints are stored. Providing parameters and references to the orig-
inal data is relevant in the case of processed data, as sometimes biologists need
to resort to original raw data for reprocessing.

Biological View

This view consists of a chain of entities: ITEM-REPLICATE-BIOSAMPLE-DONOR
describing the biological process leading to the production of the ITEM. An
ITEM is associated with one or more REPLICATEs (N:N relation), each origi-
nated by a BIOSAMPLE (functional relation), each derived from a DONOR (func-
tional relation).

DONOR has the attribute SourceId[D(Source)SM ] (donor identifier related to a
source) and it represents an individual – characterized by the optional at-
tributes Age[S], Gender[RS] and Ethnicity[RS] – or a strain of a specific organism
(Species[RSM ]) from which the biological material was derived or the cell line
was established.

BIOSAMPLE describes the material sample taken from the biological entity
represented by the DONOR and used for the experiment; it is identified within
the original source by the mandatory SourceId[D(Source)SM ]. BiosampleType[RSM ]

is restricted to values such as "cell line", "tissue", or "primary cell", depending
on the kind of material sample used for the experiment. Based on the value of
this attribute, either Tissue[C(BiosampleType)D(Gender)SM ] or CellLine[C(BiosampleType)SM ]

becomes mandatory. Cell includes information of (single) cells in their nat-
ural state, immortalized cell lines, or cells differentiated from specific cell
types. Tissue includes information regarding a multicellular component in
its natural state, or the provenance tissue of the Cell(s) of a biosample. In
animal samples, some tissues are gender-specific. IsHealthy[RS] is Boolean
and denotes a healthy (normal/control) or non-healthy (e.g., tumoral) sam-
ple; Disease[C(IsHealhty)D(Tissue,Gender)] stores information about the disease inves-
tigated with the sample and its values depend on Tissue and Gender because
given diseases can only be related to given tissues and gender-related organs.
It is contextual w.r.t. IsHealthy because it is mandatory when the sample is
marked as diseased.

REPLICATE, identified by SourceId[D(Source)SM ] is useful to model cases where
an assay is performed multiple times on similar biological material. If repeated
on separate biological samples, the generated items are biological replica of a
same experiment; if repeated on two portions from the same biological sample
(treated for example with same growth, excision, and knockdown), the items
are technical replicates. This occurs only in some epigenomic data sources
(such as ENCODE and Roadmap Epigenomics) that perform assay replica-
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tion. Different replicas of the same experiment are associated with a distinct
item and progressive numbers (indicated as BiologicalReplicateNumber[S] and
TechnicalReplicateNumber[S]).

Technology View

This view describes the technology used to produce the data ITEM and con-
tains the EXPERIMENTTYPE entity. An ITEM is associated by means of a one-
to-many relationship with a given EXPERIMENTTYPE, which refers to the spe-
cific methods used for producing each item. It includes the mandatory at-
tribute Technique[RSM ], which describes the assay, i.e., the investigative proce-
dure conducted to produce the items (e.g., ["ChIP-seq", "DNase-seq", "RRBS",
. . . ]). Feature[D(Technique)RSM ] is a mandatory manually curated attribute that we
add to denote the specific aspect studied within the experiment (e.g., "gene
expression", "Copy Number Variation", "Histone Modification", "Transcription
Factor"). Epigenomic experiments (i.e., Technique = "ChIP-seq"), usually re-
quire two additional attributes to be fully characterized. These experiments
typically analyze a protein, which we call Target[C(Technique)RSM ]. Instead, the
Antibody[C(Technique)D(Target)RSM ] is the protein employed against such target. The
Target value is usually aligned to the Antibody Registry,6 when available. The
Antibody value depends on the Target since it is specific against that antigen.

Management View

This view consists of a chain of entities: ITEM-CASESTUDY-PROJECT describing
the organizational process for the production of each item and the way in which
items are grouped together to form a case. An ITEM is associated with one or
more CASESTUDIES (N:N relation), each originated by a PROJECT (functional
relation).

CASESTUDY represents a set of items that are gathered together, because
they participate to a same research objective (or study). Providing a precise def-
inition for this entity is complex because it represents a broad concept, usually
named in different ways in distinct sources;7 the grouping of items into cases
can be very useful in many applications. SourceId[D(Source)SM ] and ExternalRef-
erence contain identifiers respectively taken from the main original source and
other sources that contain the same data. While the first is unique and manda-
tory the second may optionally contain multiple values. The SourceSite[S] rep-
resents the single physical site where the material is analyzed and experiments
are physically produced (e.g., universities, bio banks, hospitals, research cen-
ters, or just laboratory contact references when a broader characterization is not
available).

PROJECT represents the initiative responsible for the production of the item.
It provides a single point of reference to find diverse data types generated in a
same research context. Source[SM ] describes the programs or consortia respon-

6http://www.antibodyregistry.org/
7More in detail, with CASESTUDY we capture the concepts of "experiment" from ENCODE, of "case/patient" from

TCGA/GDC, of "epigenome" from Roadmap Epigenomics, and of "annotation/data file" for GENCODE, RefSeq, and
ICGC.
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sible for the production of genomic items (e.g., TCGA, ENCODE, Roadmap
Epigenomics, RefSeq, GENCODE...). Within a source, items may be produced
within a specific initiative, specified in the ProjectName[SM ], which uniquely
references the project; it is particularly relevant in the context of TCGA data,
where items are organized based on the type of tumor analyzed in the specific
project (e.g., TCGA-BRCA identifies a set of items regarding the Breast Inva-
sive Carcinoma study), or of annotation projects (such as the RefSeq reference
genome annotation). This entity is inspired by the BioProject concept intro-
duced by NCBI.8

Extraction View

This view includes the entity DATASET, used to describe common proper-
ties of homogeneous items. It gathers groups of items stored within a folder
named DatasetName[D(Source)SM ], which embeds the name of the Source as a
substring. Dataset items are homogeneous as they share a specific data type,
format and assembly. The DataType[RSM ] has values such as "peaks", "copy
number segments", "gene expression quantification", "methylation levels". The
FileFormat[D(DataType)RSM ] denotes the standard format of the items dictating
the genomic region data schema, including the number and semantics of at-
tributes (e.g., "bed", or more specific ones such as "narrowPeak" and "broad-
Peak"); it depends on DataType (e.g. "narrowPeak" format is compatible with
"peak" and not compatible with "mutations"). The (Assembly[D(Species)RSM ]) is re-
stricted to a smaller vocabulary according to the Species. The Boolean attribute
IsAnnotation[RSM ] distinguishes between datasets containing experimental data
(describing arbitrary genomic regions) and datasets storing genomic annota-
tions (describing known genomic regions), currently defined in the ITEM’s Con-
tentType field.

3.2.3 Validation: Source-Specific Views of GCM

Arbitrary queries on GCM can be propagated to sources, using a global-as-view
approach [228]. Mapping rules are used to describe how data are loaded from
the specific sources (with local schemata) into the global schema of the inte-
grated repository. We will describe this operation in detail in Section 4.6.

Our conceptual schema was verified bottom-up, on TCGA, ENCODE, and
GEO; we show that ER schemas describing these sources can be constructed as
subsets of GCM. We verify that the global-as-view approach really captures the
three considered data sources, by showing them as subsets of GCM in Figure 3.4;
we use the following notation:

• We place the attributes of each source in the same position as in GCM, but
we use for them the name that we found in the documentation of each
source; missing attributes correspond to white circles.

• We cluster the conceptual entities corresponding to a single concept in the
original source by encircling them within grey shapes. The entity names
corresponding to the original source are reported with a bold bigger font

8https://www.ncbi.nlm.nih.gov/bioproject/
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Figure 3.4: Source-specific views of GCM for TCGA, ENCODE, and GEO.

on the clustered shape (e.g. Series in GEO) or directly on the new entity
(e.g., Case in TCGA) when this corresponds to an entity present in our
GCM.

• We indicate specific relationship cardinalities where GCM differs from the
source, using a bold font (e.g., see (1,1) from ITEM to CASESTUDY in EN-
CODE).

• We enclose fixed human curated values in inverted commas and use the
functions notation tr, comb, and curated to describe a transformation of a
source field, a combination of multiple source fields, and curated fields,
respectively.

3.3 Related Works

The use of conceptual modeling to describe genomics databases dates back
to the late nineties, including a functional model for DNA databases named
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"associative information structure" [283], a model representing genomic se-
quences [262], and a set of data models for describing transcription/translation
processes [295]. In the subsequent literature, many works [83,119,193,203,309,
372] – and many more listed by Idrees and Khan [189] – employ conceptual
models’ expressive power for explaining biological entities and their interac-
tions in terms of conceptual data structures. For example, in [56] Bornberg-
Bauer and Paton use ER modeling (and UML class diagrams) to describe pro-
tein structures and genomic sequences, with rather complex concepts aiming
at completely representing the underlying biology.

More recently there has been a solid stream of works dedicated to data
quality-oriented conceptual modeling: [322] introduces the Human Genome
Conceptual Model; [290] applies it to uncover relevant information hidden in
genomics data lakes; [294] highlights the need for reliability-driven manage-
ment of genomic data and implements an applicable solution using conceptual
modeling.

While the works cited until here can be considered ER schemas of what we
call region data in this thesis, others have targeted descriptions of experiments
(i.e., metadata) with a different purpose: providing integrated access to the un-
derlying genomic region data, deriving from heterogeneous sources. Surveys
of preliminary works are [178,240], demanding more cross-influences between
genomics and data integration efforts.

A common approach in integrated data management is data warehousing,
consisting of offline integration and reconciliation of data extracted from multi-
ple sources, such as in EnsMart/BioMart [170, 352]. Along this direction, [257]
describes a warehouse for integrating genomic and proteomic information us-
ing generalization hierarchies and a modular, multilevel global schema to over-
come differences among data sources. Older conceptual modeling-based data
warehouses includes: the GEDAW UML Conceptual schema [162] (for a gene-
centric data warehouse), the Genome Information Management System [94] (a
genome-centric data warehouse), the GeneMapper Warehouse [110] (integrat-
ing expression data from genomic sources), and BioStar [372]—a biomedical
data warehouse supporting a data model capturing the semantics of biomed-
ical data and providing some extensibility to cope with the evolution of bio-
logical research methodologies. Buneman et al. [60] described the problem of
querying and transforming scientific data residing in structured files of dif-
ferent formats. Along that work, BioKleisli [102] and K2 [101] describe early
systems supporting queries across multiple sources. BioKleisli was a federated
database offering an object-oriented model; its main limitation was the lack of
a global schema, imposing users to know the structure of underlying sources.
To improve this aspect, K2 included GUS (Genomics Unified Schema [19]), an
extensive relational database schema supporting a wide range of functional ge-
nomics data types.

Finally, conceptual models have also been used to characterize the processes
and objects during related analysis workflows in [308].

On a different perspective, the genomics community has always made great
use of specialized ontologies, that can serve different purposes than ER mod-
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els. The collective OBO Foundry [353] includes many fundamental ontologies
that support everyday biologists research (such as the Gene Ontology [313] or
the Sequence Ontology [118]). These are commonly used for annotating data
and experiments and make them interoperable (i.e., finding a common ground
between the descriptions and terminologies used in different sources); this ap-
plication will be discussed in Section 4.7, as part of our own approach.

A classic work [172] proposed a general Genomics Ontology, while a more
recent one [131] promotes the use of foundational ontologies to avoid er-
rors while creating and curating genomic domain models for personalized
medicine.

Overall, conceptual modeling has been mainly concerned with aspects of
the human genome, even when more general approaches were adopted; in Sec-
tion 3.2 we presented GCM, describing metadata associated with genomic ex-
perimental datasets available for model organisms. With our approach, we use
conceptual modeling for driving the continuous process of metadata integra-
tion and for offering high-level query interfaces on metadata for locating rele-
vant datasets, under the assumption that users will then manage these datasets
for solving biological or clinical questions.
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CHAPTER4
Integrating Genomic Data

“Problems worthy
of attack

prove their worth
by hitting back.”

— ‘Problems’, p. 2 in GROOKS, by Piet Hein

After proposing in Chatper 3 a modeling approach for genomic data, which
mediates over the most important and complex data sources, we then address
the more practical problem of integrating real-world datasets into the proposed
global schema. This chapter is focused on the process required to generate the
GCM content and on the resulting repository.1

This process encounters many challenges, including solving heterogeneity
aspects of data models among various data sources at the schema and instance
level, dealing with semantically equivalent concepts that are described differ-
ently across sources or semantically different concepts (possibly generalization-
s/specializations) that are defined by using the same description.

We propose META-BASE, a novel architecture for the integration of ge-
nomic datasets; it is deployed as a generic pipeline of six progressive steps for
data integration, applicable to arbitrary genomic data sources providing semi-
structured metadata descriptions. Four steps are driven by source-specific
modules, the others are source-independent. Two steps are assisted by tools
that help the designer in the progressive creation and adaptation of data man-
agement rules, with the general objective of minimizing the cognitive effort

1The work presented in this chapter is based on the publication [40]: © 2020 IEEE. Adapted, with permis-
sion, from A. Bernasconi, A. Canakoglu, M. Masseroli, and S. Ceri. META-BASE: a novel architecture for large-
scale genomic metadata integration. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020. DOI:
10.1109/TCBB.2020.2998954.
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Chapter 4. Integrating Genomic Data

required from integration designers. The result generated by META-BASE is a
very large integrated repository of tertiary genomic datasets. Along the theo-
retical presentation of the steps, we use examples focused on sources that we
integrated in the repository, starting from the ones that feature more complex
metadata scenarios. Some of the challenges that are specific of each source are
discussed in Chapter 5. It is our intention to make the META-BASE reposi-
tory grow continuously in the next years, responding to current and upcoming
biological and clinical needs.

Every step of the META-BASE pipeline produces a data ingestion program
that can be applied to data sources after an initial design; these programs need
to be adapted only in case of structural changes of the data sources. The process
is extensible, as the designer who wants to add a new source has just to add
new definitions and rules to the data integration framework.

Within the data enrichment step of the META-BASE pipeline, we also use
selected ontological sources for improving value matching, which is extended
from exact match to semantic match inclusive of the use of synonyms, hy-
ponyms and hyperonyms; they enable simple value conversion strategies,
which capture some value mismatches that may occur in different repositories.

Queries upon the META-BASE repository are supported by GenoSurf [63],
a user-friendly, attribute-based and keyword-based search interface (described
in Chapter 6), producing as a result the URIs of the relevant data in the source
repositories; scientists can build over them an arbitrary genomic computation,
using any bioinformatics system and resource. In this way, the META-BASE
repository provides a conceptual entry point to the supported genomic data
sources. In addition, the META-BASE pipeline and repository feed an archi-
tecture for genomic data processing, defined in [258], providing portable and
scalable genomic data management on powerful servers and clusters;2 in such
distinct environment, metadata can be queried together with their respective
datasets using the GMQL high-level domain-specific query language [260].

The most innovative aspects of this integration work are: from a com-
puter science perspective, the design and engineering of an end-to-end pipeline
whose steps make novel use of rewrite rules for data cleaning, mapping, nor-
malization, enrichment and constraint verification; from a biological perspec-
tive, the partitioning schemes for each data source, the selection of a common
genomic base unit into which different formats can be transformed, and the
selection of the ontologies providing enrichment for specific GCM attributes;
from an application perspective, the possibility to the broad community of
computational biology and bioinformatics of feeding new interfaces/systems
with a solid data architecture.

Chapter organization. Chapter 4.1 relates the theoretical framework within
which our integration effort should be set: design choices in this chapter are
properly introduced and justified. Section 4.2 describes our generalized ap-
proach to metadata management and integration. Sections 4.3-4.8 describe the
pipeline to extract metadata from original sources and to prepare it for integra-
tion, including it into a relational database, performing ontological enrichment

2Based on Apache Spark http://spark.apache.org/
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and integrity constraints checks. Section 4.9 explains the realized architecture.
Section 4.10 validates the approach and discusses its effectiveness. Section 4.11
provides an overview of other literature works on genomic data integration.

4.1 Theoretical Rationale

The integration pipeline described in this chapter is the central contribution
of this PhD thesis. As such, we provide readers with an introduction on the
theoretical bases upon which our choices have been performed.

Data Structure. The GCM schema proposed in Chapter 3.2 is an ambitious
and functional attempt of systematizing the various and disorganized world
of annotations describing genomic experiments. It is ambitious because data
sources are many and they all propose their in-house methods, it is functional
because it is designed with a an attention to the practical implementation that
immediately follows its conception.

We chose to use a data warehouse-like representation; as stated in [54, 208],
a data warehouse structures data by means of a star schema, with a central fact
table (files of genomic regions) and a set of smaller dimension tables set as a
radial pattern around the fact (specifying notable characteristics of the experi-
ment and sample from which the genomic file was derived). Typically, the fact
table establishes a one-to-many relationship from each dimension row to the
(many) fact tuples sharing the same value as the key of the dimension. Through
a classical normalization process, each dimension may be transformed into a
hierarchy of tables, yielding to a more complex schema, i.e., snowflake schema.

Our GCM design has led the foundations to address the more practical data
warehouse schema design problem: determining a suitable schema, which
started from a star, evolved towards a snowflake, then admitted two many-
to-many relationships (as files may be organized in many case studies and may
be derived from several biological replicates), with the final goal of enabling
easy search and aggregation of information on genomic datasets, while – at the
same time – being efficiently supported by the schema of the underlying opera-
tional database. Evidently, this basic schema would need further modifications
if it were to accommodate future advanced applications such as data mining
analysis.

Integration Paradigm. When evaluating different options for integrating
database systems, we observed that, differently from other data integration set-
tings, our priority was not the timeliness of available information. Instead, our
first focus should be the interoperability of offered datasets. The strength of
the proposed system is the idea of offering a self-contained database, with in-
tegrated search system and bio-computational engine, that can be employed
one after the other in continuous iterations. Under this assumption, we did not
consider the implementation of virtual non-materialized databases, as data at
the sources may change too rapidly, whereas we aim to provide users with a
consistent environment of processed genomic data to perform their analysis.
Instead, we chose to perform an Extract-Transform-Load (ETL) process that
merges data in a new materialized database, which is suitable to be maintained
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Chapter 4. Integrating Genomic Data

at our site and offers the possibility of physical optimizations and manual cu-
ration for low-quality metadata.

During this process of data integration of genomic experiments we solve
several problems connected to schema reconciliation and value-level integra-
tion via semantic enrichment, whereas we do not address data fusion [280], as
we intend to keep the specificity of terminology used in the original data. In-
deed, researchers are used to access data sources directly, thus it is important
that they can recognize the original forms. In addition, we support them with
a rich interoperability infrastructure that allows matching existing ontological
terms in well-established and validated resources (with synonym/hierarchical
mechanisms). Semantic enrichment is performed by transforming bio-ontology
portions into relational structures, rather than employing an interoperable for-
mat such as Resource Description Framework (RDF), for consistency with the
design choices that defined the GCM and its relational implementation; this
will be detailed in Section 4.7.2.

To devise the mapping function from data sources into our global schema we
employed an approach similar to Global-as-view (GAV), as opposed to Local-
as-view (LAV) or to hybrid solutions such as GLAV [228]. GAV is the typical
choice when data sources are stable, no extensions to new data sources are fore-
seen, as otherwise the global schema needs to be reconsidered every time; this
does not correspond our scenario. However, our priority was given to achiev-
ing easier mapping and query answering solutions (without including reason-
ing), which are guaranteed by GAV, as opposed to LAV/GLAV. This makes our
GCM not so flexible: if we change the model all the mappings for data sources
need to be revised; in partial mitigation of this drawback, GCM can accommo-
date new information easily in the form of unstructured 〈key, value〉 pairs.

Granularity of the Model. When modeling data, integrating databases that
observe phenomena from (even slightly) different perspectives, tailored at their
precise goals, one problem that comes to attention is that of granularity. In
our scenario we have two different problems of granularity: i) on the genomic
region data (described in Section 3.1); ii) on the genomic metadata describing
datasets of regions (see Section 3.2). We worked towards understanding what
our urelement3 is in both i) and ii) levels.

In the first case, our genomic data is organized in datasets, which contain
samples, each containing a set of genomic regions. To the benefit of integration
between different sources, we chose the GDM sample as our “genomic basic
data unit”. This choice is discussed in more detail in Section 4.4, explaining its
implications on the data transformation phase.

In the second case, the metadata Genomic Conceptual Model, the approach
is different. We refer to Keet [204], who articulates granularity based on cat-
egories of non-scale dependency (NSD), relationships between levels, set the-
ory and mereology. NSD granularity provides levels ordered through primi-
tive relations such as the part_of (structural information), the contained_in (spa-
tial information), and the is_a (subsumption information). Starting from the

3In mathematics set theory, an urelement is an object that contains no elements, belongs to some set, and is not
identical with the empty set [271].
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〈key, value〉metadata pairs deriving from a first import of data sources, we de-
fined the urelement as the GCM item (which is the same as GDM sample) and
further elaborated this level by adding synonyms and ontological hierarchies,
providing what Keet would define as four levels of granularity, allowing users
to see metadata from different (from more detailed to more general) levels.

Notably, our urelement in i), i.e., the GDM sample, and our urelement in ii),
i.e., the GCM item, coincide. They both represent conceptually a file of genomic
regions, our basic data unit for integration, search, and analysis activities.

Governance of integration process. In the following of this chapter we focus
on the formalization and implementation of a rich architecture for importing
genomic datasets from sources, transforming them into a common format and
enriching their descriptions semantically. In the discussion we do not detail the
evolution of the system; however, the governance of the process is tracked by
registering all the performed steps in a database that traces the timings and the
observed partitions of data. Such persistence layer allows us to memorize the
system at specific time points (see Section 4.9.1). Future work may exploit the
content of this database as the backbone of an “integration process governance
dashboard”, focusing on the temporal information of the process and defining
meta-queries to understand the evolution of the system; this could inform the
development of a value-based strategy of further integration efforts.

4.2 Approach Overview

The high-level description of the proposed approach to data and metadata in-
tegration is shown in Figure 4.1, articulated in the six phases of the META-
BASE framework. Through downloading, data and metadata are imported
at the repository site in their original formats (Section 4.3). During transfor-
mation, they are translated into the GDM format, i.e., data are regions with
coordinates and other properties, metadata are raw attribute-value pairs (Sec-
tion 4.4). Metadata are then cleaned, thereby producing a collection of clean
pairs for each source, to improve raw attribute names and to filter irrelevant
metadata (Section 4.5). During data mapping, a syntactic transformation is ap-
plied on cleaned metadata, which is mapped into the global relational schema
implementing the Genomic Conceptual Model (GCM) (Section 4.6). GCM val-
ues are then normalized – resorting to generic term-ids that may take specific
sets of values – and enriched of term labels, references, hyponyms, hyperonyms
and synonyms, by means of external ontologies (Section 4.7). The constraints
checker provides methods for reporting integrity constraints’ violations, based
on specifications of legal values in the repository (Section 4.8).

For exemplifying the META-BASE framework, we consider important and
complex data sources among the ones mentioned in Chapter 2. These rep-
resent consortia/players that publish open data and enforce their own data
models and data management principles, which are strict and not easily inter-
operable with different sources. Their maintained repositories are subject to
rapid changes, as each source is a continuously evolving system. Luckily, most
changes are additive and use already existing metadata in their descriptions.
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Figure 4.1: The overall data preparation and integration process.

For this reason, we approach each source with an initial activity for the produc-
tion of a source-specific set of data and metadata manipulation rules, followed
by periodic data integration sessions, where new items are discovered and their
metadata are modeled.

4.3 Data Download

The Downloader module produces files – both for the genomic data and its
metadata – in original source-specific format, at the processing site hosting our
repository. We build a collection of protocol-specific modules with few param-
eters to adapt them to new sources; tunings for each specific source may be
necessary.

All open sources generally allow for direct download from their web page,
while they offer heterogeneous protocols for programmatic access (GTEx and
GWAS Catalog are an exception): ENCODE exposes HTTPS GET requests to
retrieve a list of files corresponding to the set filters;4 GDC uses both GET and
POST requests to retrieve list of files;5 ICGC provides many API endpoints
for requesting filtered sets of files; Roadmap Epigenomics, GENCODE, RefSeq,
and 1000 Genomes store all their files on FTP websites that can be navigated
programmatically; GEO provides a variety of methods both through its own
portal and from alternative interfaces.

The Downloader addresses the issues related to the synchronization of our
local repository with the original ones. As data size is significant, downloading
everything from scratch from the original sources should be avoided. Instead,
it is necessary to precisely define metrics to compare contents: What is new,

4Other API requests can be used to retrieve files one by one.
5Consequently, each of these files can be downloaded using an HTTPS GET/POST request.
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ENCODE List of file_id Protocol HTTP GET: https://www.encodeproject.org/metadata/?type=Experiment&〈params〉/metadata.tsv
Example params assembly=hg19 & file.status=released & project=ENCODE & . . . & files.file_type=bed+narrowPeak
Download file https://www.encodeproject.org/files/〈file_id〉/@@download/〈file_id〉.bed.gz

GDC List of file_id Protocol HTTP POST: https://api.gdc.cancer.gov/files with 〈params〉 in Payload
Example params field:cases.project.project_id-value:["TCGA-ACC"], field:files.data_type-value:["Copy Number Segment"], . . .
Download file https://gdc-api.nci.nih.gov/data/〈file_id〉

Roadmap dir paths Protocol FTP: http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/dir
Epigenomics Example dir broadPeak

Download file http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/〈dir〉/〈file_name〉.〈dir〉.gz

Copyright © 2020 IEEE

Table 4.1: Endpoints for data download from sources and example invocations.

Copyright © 2020 IEEE

Figure 4.2: Selection of portions from ENCODE. In the upper area we specify parameters names, in the
two small bottom slices we specify example values, defining a partition of the source.

what has been updated, and what is not present anymore? More in general: how can
changes on genomic data sources be taken into account to be reflected on our regularly
updated repository? When targeting integrated systems up to date, the main
difficulty is to identify a specific data partitioning scheme at each source; in this
way, each partition can be repeatedly accessed and source files that are added
to or modified within the partition can be selectively recognized, avoiding the
download for those source files that are unchanged.

Suppose we are interested in downloading a certain updated ENCODE
portion (e.g., narrowPeak samples on human tissue, aligned to refer-
ence genome hg19). We then produce an API request to the endpoint
https://www.encodeproject.org/matrix/, specifying the parameters type
= Experiment, assembly = hg19, file.status = released, project =
ENCODE, replicates.library.biosample.donor.organism.scientific_name
= Homo+sapiens, and files.file_type = bed+narrowPeak. Table 4.1 illus-
trates the endpoints for data download used for three major sources, with their
protocol, request format, and example parameters for invocation. The example
partitioning scheme for the ENCODE data source is illustrated in Figure 4.2,
with its specific set of parameters used during download, corresponding to a
partition.

Formalization. For a given source i, a Downloader is a method Di = 〈Di, Pi〉
for importing genomic data and metadata from the specific partition Pi. At
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each invocation of the method, a new set Di of files (each representing region
data, metadata or both) is retrieved at the repository site, and associated with
a signature 〈dataset_name, source, endpoint, parameters〉; parameters include
the timestamp th of the download operation. In this way, future invocations of
Di at time tk > th will be used to download information from Pi and then start a
data integration session by tracking the changes that occurred to Pi at the data
source between time th and tk. The set of files Di may be allocated to a single
GDM dataset Di,j such that Di = Di,j or instead be partitioned into multiple
GDM datasets, i.e. Di,1, ..., Di,j , ..., Di,N ∈Di such that Di,1∩Di,j∩Di,N = ∅. This
decision is made by the integration designer, based on the fact that genomic
files contained in a GDM dataset must adhere to a unique schema: if all the
downloaded files can be expressed by using a same schema, then the simplest
possible solution is employed, i.e. we just produce one downloaded dataset
Di,j .

Method. Each download module first connects to the data source servers and
retrieves the list of the identifiers of the files that belong to the partition to be
downloaded. Many sources provide (semi-)programmatic methods to trans-
late a query composed on their portal visual interface into an API request or a
downloadable list of files corresponding to the search; otherwise, this step has
to be programmed ad-hoc.

For each file, the Downloader typically retrieves its Size, LastUpdate and Check-
sum, denoting identifying properties; these are provided by most sources.6 We
match these values with data that is stored in our local database – correspond-
ing to previous download session of the same partition – using the file unique
identifier. The matching allows us to pinpoint:

• New files: they are stored as genomic data files and are processed, together
with their metadata, by invoking the pipeline discussed in this section.

• Matching files: when they have same Size, LastUpdate and Checksum values
as their local values stored in the database, we reprocess just the metadata
by invoking the pipeline discussed in this section – we avoid the download
of region data, which is typically much bigger in size; when any one of the
Size, LastUpdate and Checksum values is different, we re-download also the
genomic data files.

• Missing files, i.e., files whose identifier was present at the previous invo-
cation but it is no longer present: these files are deprecated, the genomic
data and metadata is copied to an archive, which can only be inspected by
archive lookups (but they are no longer retrieved by standard queries).

Eventually, we collect into the set of files Di all data and metadata files rela-
tive to new or changed items, divided into the datasets Di,j ; these downloaded
files are then used in the next steps of the META-BASE pipeline.

Example 1. The 1000 Genomes Project stores its files in an FTP repository.7
They represent big sets of variants discovered in control population samples

6If some of them are unavailable, we either compute them at the source or accept a less precise matching by using
fewer parameters.

7http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
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(i.e., healthy individuals genomes compared against the reference one). Vari-
ants are stored in 25 enormous files in VCF format, one for each human chro-
mosome from 1 to 22, plus chromosomes X, Y and MT (i.e., mitochondrial).
Each file contains many variants (represented by rows) that may or may not be
present in each sample/patient (columns). Metadata are contained in 4 single
files (scouted around their FTP complex structure8); we save such files together
with data files inside the same dataset folder.

{"accession": "ENCSR635OSG",
"assembly": ["hg19"],
"award": {

"pi": {
"lab": {"name": "michael-snyder",...},

...},
...},
"dbxrefs": [],
"files": [

{"accession": "ENCFF134AVY",
"biological_replicates": [1],...},
{"accession": "ENCFF429VMY",
"biological_replicates": [1,2],
"file_type": "bed narrowPeak",...},
...

],
"replicates": [

{
"@id": "/replicates/4874c170-7124-4822-a058-4bb/",
"biological_replicate_number": 1,
"library": {

"biosample": {
"donor": {"age": "6",...},
"health_status": "healthy",

...},
...},
"antibody": {"lot_id": "940739",...},
...

},
{

"@id": "/replicates/d42ff80d-67fd-45ee-9159-25a/",
"biological_replicate_number": 2,
"library": {

"biosample": {
"donor": {"age": "32",...},
"health_status": "healthy with non-obstructive coronary artery disease",

...},
...},
"antibody": {"lot_id": "940739",...},
...

}
],
...}

Listing 4.1: Excerpt from example JSON file retrieved for ENCODE experiment ENCSR635OSG.

Example 2. When the ENCODE Downloader is invoked, it calls the ENCODE
data/metadata endpoint (see Table 4.1 again), extracting a list of files, each
belonging to one experiment. We then download: i) one metadata file for each
experiment (which contains information about multiple region data files); ii)

8Metadata about the indexes of the alignment files are at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_

collections/1000_genomes_project/1000genomes.sequence.index; information on the 26 population participat-
ing to the project are at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20131219.populations.tsv; charac-
teristics of the individuals donating the samples can be found at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/integrated_call_samples_v2.20130502.ALL.ped; sequencing strategies are detailed at http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_sample_info.txt.
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all region data files described in the metadata such that they satisfy the filters
set in the API call (note that experiments may also contain other kind of files
as well). After retrieval, the identifiers of the files belonging to the considered
partition are recorded together with their size, last update date and checksum.

In Listing 4.1, we observe the metadata of a genomic experimental study,
with accession ENCSR635OSG: a hierarchically structured JSON file, including
several embedded elements: information about the whole experimental study,
arrays of "files" elements (a list of items included in the experimental study)
and of "replicates" elements, along with other information. Here multiple files
are included, namely ENCFF134AVY and ENCFF429VMY, where the former
one has one replica and the latter one has two. Correspondingly, region data
files ENCFF134AVY.bed and ENCFF428VMY.bed have been downloaded.

As GDM samples correspond to files (not experiments), the unique metadata
file will be accordingly partitioned into single files, each reflecting only one
data file. We discuss this in the next step, i.e., transformation.

4.4 Data Transformation

The Transformer deals with the lack of agreement towards a standard data unit
for tertiary analysis. Can genomic data be expressed using a unique model that
is general enough to represent all analyzed formats and that also allows ease of op-
eration? We argue that such basic genomic data unit is missing in the current
practice: a single – self-contained – piece of information that contains genomic
regions with their properties and is identifiable with an entity that is interest-
ing for downstream analysis (e.g., a patient, a biological sample, a reference
epigenome...). For this purpose we propose to use the "sample" of the Ge-
nomic Data Model (GDM) [259], in contrast with other complex/hierarchical
solutions. The Transformer module takes, as its input, the data and metadata
files resulting from the download phase and transforms them into a GDM-
compliant format. When represented in this form, data and metadata from
different sources can be queried integratively, regardless of their format in the
source of origin. More specifically, this module resolves two kinds of hetero-
geneity of genomic files: 1) the different data units; 2) the different data schema
within each unit (e.g., the schema of the GDM sample). We wrote transformers
for the most used formats in origin (meta)data. Additional ones can be easily
added.

Formalization. For a given source i, a Transformer is a source-specific method
Ti = 〈Di,Ti〉. For each dataset Di,j ∈Di, it produces a corresponding dataset
Ti,j ∈Ti, including transformed sample-pairs < tdata, tmeta > such that:

• each tdata is a data file that adheres to the GDM schema (i.e., one row per
region, each with 4 genomic coordinates and other variable columns, de-
pending on the schema), which is set for dataset Ti,j .

• each tmeta is a metadata file that contains a list of 〈key, value〉 pairs, compat-
ible with the GDM format.

We split the process into two steps: 1) the transformation from each Di,j
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dataset into its related T 0
i,j dataset applies data unit transformation operations; 2)

the transformation from each T 0
i,j dataset into its related the Ti,j dataset applies

data format transformation operations. Depending on the transformation rela-
tion cardinality (i.e., 1:1, 1:N, N:1, N:M) of both data and metadata (potentially
different from one another), the adopted algorithm is different.

Method: data unit transformation. Some sources provide a data file for each
experimental event, others include more complex formats, such as MAF, VCF,
gene expression matrices. As to the associated metadata information, in some
cases they follow the same scheme as region data files (i.e., each data file has a
corresponding metadata file). In other cases, a single metadata file describes a
collection of experimental files (see Listing 4.1 shown before).

Under this evidence, we claim that any set of downloaded files – with their
input format – should be convertible through a transformation relation into a set
of genomic basic data units. We define as transformation relation cardinality the
pair X : Y , where X is the cardinality of the set of files from the input source
and Y is the cardinality of the output set of basic units into which the input is
transformed; X : Y is a fraction in lowest terms. Our Y output set is a set of
GDM samples.9

The cardinality of the transformation depends both on the data type and on
particular choices made by each data source. For example, typically gene and
miRNA expression data are provided in TSV data matrices where rows repre-
sent genes (or transcripts, exons...) and columns represent patients or sample
IDs. When the Variant Call Format (VCF) format is used, typically we find
collections of files, one for each chromosome: rows are a long list of known
variations, while columns are the sample IDs. Some sources provide a data file
for each experimental event, for example ENCODE. In this case, the transfor-
mation has a 1:1 cardinality, i.e., to each ENCODE produced file, it corresponds
one GDM sample. Other sources include everything in one big file; the trans-
formation phase takes care of compiling one single data file for each patient or
univocally identified sample in the origin data. The transformation cardinality
is thus 1:N, N being the number of patients or biological samples. An exam-
ple instance is ICGC mutation data, where data is provided in big files where
each rows records a mutation in the sequence of a given patient. A patient may
have more associated rows (i.e., mutations). From such file we build a number
of GDM samples corresponding to the amount of cancer patients.

Metadata also feature diverse data units in the analyzed sources; transfor-
mations apply with the same criteria as for region data. A metadata file is
transformed according to the following cases:

i) hierarchical formats (JSON, XML, or equally expressive) require applying
a flattening procedure to create key-value pairs—the key results from the

9Threat to validity: there is not only one correct way to transform data from the source into GDM format. Most of
the times the most convenient choice corresponds to prepare one GDM data file for each patient/donor/individual/-
cell line belonging to the source. Other times such a clear classification is not present, therefore other heuristics are
considered, such as: reasonable size of GDM data files, partition by meaningful metadata (e.g., for annotation data,
annotation type), source-specific concepts (e.g., epigenomes for Roadmap Epigenomics). As a future work, we would
like to provide a more precise – semantically sound – definition of GDM sample and of general files transformation
into this format.
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Source Data type Data format, cardinality1 Metadata format, cardinality1

ENCODE peaks BED, 1:1 JSON, 1(experiment):#samples
transcription TSV, 1:1 JSON, 1(experiment):#samples
transcription GTF, 1:1 JSON, 1(experiment):#samples

GDC mutations MAF, 4:1 JSON, 4:1
gene expression TXT, 3:1 JSON, 3:1
methylation, cnv, TXT, 1:1 JSON, 1:1
quantifications

ICGC mutation, methylation, TSV, 1:#donors TSV, 1:#donors
miRNA/gene expression

Roadmap Ep. peaks BED, 1:1 Spreadsheet, 1:(#samples×#epigenomes)2

transcription TSV, 2:#epigenomes Spreadsheet, 1:(#samples×#epigenomes)2

GENCODE annotations GTF, 1:#annotation_types region data file + webpage, X:13

RefSeq annotations GFF, 1:#annotation_types region data file + webpage, X:13

1000 Genomes variation VCF, 23:#individuals TSV, 4:#individuals

GEO expression BED, 1:1 HTML/SOFT, 1:#files_from_sample

GTEx expression GCT, 1:#donors TXT, 1:#donors

GWAS Cat. associations TSV, 1:1 -

CISTROME peaks BED, 1:1 TSV, 1:1

CCLE various GCT/TXT, 1:#cell_lines TXT, 1:#cell_lines

COSMIC various TSV, 1:#individuals TSV, X:13

1 Expressed as X : Y ; this ratio represents the number X of data (resp. metadata) units used in the origin source to compose Y data (resp. meta-
data) file(s) in GDM format. 2 Each reference epigenome is used for many data types, thus many GDM samples. The same epigenome-related
metadata is replicated into many samples. 3 In these cases it is difficult to build a numerical relation—many meta are retrieved from the data files
themselves, in addition to manually curated information.

Table 4.2: Census of 13 important data sources reporting for each: the processed data types that can
be downloaded (along with metadata), their physical formats, and the semantic cardinality of the
transformation relation with respect to the GDM output format [259].

concatenation of all JSON/XML elements from the root to the element cor-
responding to a value;

ii) tab-delimited formats (TSV, CSV or Excel/Google Spreadsheets) strictly
depend on the semantics of rows and columns (e.g., 1 row = 1 epigenome,
1 row = 1 biological sample)—they often require pivoting tab-delimited
columns into rows (which corresponds to creating key-value pairs);

iii) two-columns tab-delimited formats (such as GEO’s SOFT files) are trans-
lated into GDM straightforwardly;

iv) completely unstructured metadata formats, collected from Web pages or
other documentation provided by sources, need case-specific manual pro-
cessing.

Table 4.2 shows transformation relation cardinalities regarding both data
and metadata input formats, targeting the GDM output format. We analyzed
different data types in a number of important data sources, that possibly in-
clude files with different formats.10 In all these scenarios, our Transformer mod-
ule should produce multiple data files, one for each experimental event (or
annotated entity, such as genes, transcripts, exons), each paired with its own
metadata file.

Method: data format transformation. The Transformer also solves the hetero-
10Note that, while for descriptive purposes we indicate physical formats (e.g., TSV, TXT, JSON), the indication of

cardinalities also embeds a semantic information: how many data units are represented in one file.
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Figure 4.3: Description of transformation process for 1000 Genomes files.

geneity of data formats and prepare the GDM datasets as sets of GDM samples
that are uniform and adhere to a predefined schema. This phase applies proce-
dures such as format conversions, normalization of coordinates, re-formatting
into schema standards (e.g., narrow/broad peak), as well as data annotation,
including:

1. providing positional information (i.e., genomic coordinates) and associ-
ated known genomic regions (e.g., genes) in a standardized framework;

2. transforming 0-based coordinates into 1-based ones or viceversa;
3. allowing joined use of different data types (e.g., gene expression and

methylation) adding common gene identifiers, such as HUGO or HGNC
gene symbol, Entrez or Ensembl gene ID;

4. merging together in same files multiple expression measures obtained
through different calculations, such as RPKM, FPKM, FPKM-UQ, and
counts in gene expression data;

5. completing missing information, in case it is mandatory (e.g., missing
strand is filled with the wildcard character "*").

Example 1. The process of data unit transformation applied to 1000 Genomes
files can be appreciated in Figure 4.3. We use 25 region data files correspond-
ing to chromosomes, each representing a matrix of variants (in rows), which
are either present or absent in the individuals represented in columns; variants
also have about 10 other characterizing attributes. In addition, we consider
four files containing metadata in matrices where rows are individuals (identi-
fied by the same sample id used in region data file columns) and each column
represents one type of information (regarding the population of the individual,
parent/child relationships, instrument platforms, etc.). The Transformer builds
N GDM pairs, such that N is the number of individuals represented in the input
files. The number of rows of region files will be smaller than M (the number
of total variants represented in the input files), as obviously not every individ-
ual presents every variant. The schema of region files, defining their columns,
corresponds to the attributes characterizing variants (around 10 attributes) in-
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cluding the chromosome, position, origin and alternative nucleotide etc. As
GDM schema requires both start and stop coordinates and variants are one
base long, we add the stop position, simply as start + 1.

Example 2. The output of metadata transformation for ENCODE is shown
in Listing 4.2; it is obtained by considering as input the portion of the
JSON file from Listing 4.1 and describes the transformed content of the
specific item with accession ENCFF429VMY (with two replicates) of experi-
ment ENCSR635OSG. First-level elements are translated directly to 〈key, value〉
pairs (e.g., 〈accession,ENCSR635OSG〉); nested elements are flattened (e.g.,
"name" inside "lab", inside "pi", inside "award" becomes award__pi__lab__name,
where double underscore __ is used to separate levels of nesting); arrays
are translated in one 〈key, value〉 pair for each value in the array (e.g.,
see file__biological_replicates); empty arrays are not translated (e.g.,
"dbxrefs").

Note that several replicates can be associated with each file; in such
a case, a progressive naming scheme tracks the replicate to which each
〈key, value〉 pair relates. In the specific example, the file has two bi-
ological replicates, each with five associated key-value pairs (in List-
ing 4.2 other pairs are omitted for brevity). All elements in the repli-
cate element with id 4874c170-7124-4822-a058-4bb are transformed into
keys that start with "replicate__1__". Vice versa, elements in replicate
d42ff80d-67fd-45ee-9159-25a are transformed into keys that start with
"replicate__2__".

The corresponding region data file, ENCFF429VMY.bed is instead copied as
is, already being GDM compliant.

accession ENCSR635OSG
assembly hg19
award__pi__lab__name michael-snyder
file__accession ENCFF429VMY
file__biological_replicates 1
file__biological_replicates 2
file__file_type bed narrowPeak
replicates__1__@id /replicates/4874c170-7124-4822-a058-4bb/
replicates__1__biological_replicate_number 1
replicates__1__library__biosample__donor__age 6
replicates__1__library__biosample__health_status healthy
replicates__1__antibody__lot_id 940739
replicates__2__@id /replicates/d42ff80d-67fd-45ee-9159-25a/
replicates__2__biological_replicate_number 2
replicates__2__library__biosample__donor__age 32
replicates__2__library__biosample__health_status healthy with non-obstructive coronary

artery disease
replicates__2__antibody__lot_id 940739

Listing 4.2: Excerpt from example transformed file corresponding to ENCODE file accession
ENCFF429VMY.

4.5 Data Cleaning

After the transformation step, we dedicate our attention only to metadata,
while data files are kept in their form as obtained in Ti. A typical metadata
key is a long string, e.g., replicates__1__library__biosample__donor__age.
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As this information applies to a single data file, a simpler attribute name can
be derived, e.g., donor__1__age. Such name is later used to map values in the
conceptual schema, and is a much simpler key.

The Cleaner module applies transformation rules to complex attribute
names, so as to simplify them. For illustration purposes, rules are indicated
with the notation antecedent⇒ consequent. The antecedent of rules uses the for-
malism of regular expressions, matching a set of keys: it recognizes the strings
that compose a complex attribute. The consequent, which is an action encoded
in the form of pattern matching replacement strategy, builds a simpler output
string. The use of regular expressions brings a simple formalization of clean-
ing algorithms through language containment and language-recognizing au-
tomata. Rules are source-specific, as they depend on the specific way in which
attribute names are encoded at each source; after an initial design, they are
applied to each transformed file. Rules may require adjustments when the at-
tribute names change, or new attributes are created. We provide a tool for
rule design and ordering, which assists designers in rule creation and mainte-
nance.11

The rule’s antecedent contains parentheses, which group parts of regular
expressions in order to either apply a quantifier or to restrict alternation to the
entire group, and positionally identify the rule’s parameters, used in the rule’s
consequent as numbered capturing groups.12 Some parameters are typed, e.g.,
"[0-9]" denotes a sequence of digits; some keys may be equivalently used, e.g.,
"(age|sex)" denotes an alternative. The consequent can contain strings of char-
acters or special dollar ($) symbols, which positionally refer to the content of
the antecedent’s variables. The consequent can be empty, in which case no
cleaned key is generated for the transformed key, and the corresponing pair is
removed.

Let us now consider an example cleaning rule, to understand its mechanism:
replicates(__[0-9]__)library__biosample__(donor)__(age|sex)(.*) ⇒
$2$1$3$4. When replicates__1__library__biosample__donor__age is con-
sidered as the input key, $2$1$3$4 stands for a concatenation of the content
of the second variable "donor", with the first one "__1__", with the third one
"age" and finally with the fourth one (i.e., anything that follows the third
parenthesis) - in this case an empty string. As a result, the rule produces the
string donor__1__age.

Formalization. For a given source i, a Cleaner is a source-specific method
Ci = 〈Ti,Ci,RBi〉. For each Ti,j ∈ Ti, for every transformed sample-pair
< tdata, tmeta >, it builds a cleaned sample-pair < cdata, cmeta > in the dataset
Ci,j ∈ Ci, such that:

• cdata is a symbolyc link to tdata, with the same exact content;
• cmeta is a metadata file that contains a cleaned key-value pair 〈k′, v〉 for

each corresponding transformed key-value pair 〈k, v〉 contained in tmeta. If
k′ is empty, a related pair is not produced.

11https://github.com/DEIB-GECO/Metadata-Manager/wiki/Rule-Base-Generator
12The replacement strategy specified by a rule is implemented using the java.util.regex library (https://docs.

oracle.com/javase/8/docs/api/java/util/regex/package-summary.html), supporting full regular expressions.
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Files in the datasets Ci,j ∈ Ci are produced by running the rule engine Ci
over Ti using the set of rulesRBi.

Method. The description of the method requires the definition of relationships
between rules and of rule base.

Definition 1 (Rule Equivalence, Containment, and Partial Overlap). Given
two rules r, r′ ∈ RBi, their antecedents r.a and r′.a, and the corresponding generated
languages L(r.a) and L(r′.a):

• r is equivalent to r′ when L(r.a) = L(r′.a);
• r is contained in r′ when L(r.a) ⊂ L(r′.a);
• r partially overlaps r′ when L(r.a) 6⊂ L(r′.a), L(r′.a) 6⊂ L(r.a), and L(r.a) ∩
L(r′.a) 6= ∅

Definition 2 (Rule Base). TheRB Rule Base is a list of rules such that rule r precedes
rule r′ in RB if either 1) r is contained in r′, or 2) r partially overlaps r′ and the user
gives priority to r over r′.

By effect of the above definitions, rules that are more specific precede more
general rules. When the intersection of languages recognized by the rules is
non-empty, the user can specify the desired order in which the rules should
appear in the RB. When the intersection is empty, the rules’ order in the RB
corresponds to the order of insertion.

Algorithm 1 Rule Base Creation
1: function RBCREATION(RB,SK,AK)
2: UK ← AK − SK
3: while UK is not empty do
4: newRule← getRuleFromUser()
5: if userApprSimul(RB,newRule) then
6: RULEINSERTION(RB,newRule)
7: matched← matchAll(RB,UK )
8: SK ← SK +matched
9: UK ← UK −matched

10: end if
11: end while
12: end function

Building a Cleaner requires building the Rule Base (Algorithm 1), by calling
the function to insert a rule in the right order (Algorithm 2), which is based
on the comparison between pairs of rules performed by the function COMPARE
(Algorithm 3). When the Rule Base is prepared, it is applied to the transformed
files, in particular to the keys from the 〈key, value〉 pairs in every dataset Ti,j

of Ti,j (Algorithm 4). After the consolidation of cleaning rules, a rule base can
be repeatedly applied to transformed data, until major changes occur at the
sources.

Algorithm 1 takes as input RB, which stores the information about rules in
their order (Def. 1), SK, the set of seen keys, and AK, the set of all keys re-
trieved from the files of a given source. It first finds the unseen keys UK (those
that have not been considered for rule creation yet). Then, until all unseen keys
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Algorithm 2 Rule addition in Rule Base
1: function RULEINSERTION(RB,newRule)
2: for r in RB do
3: res← COMPARE(newRule, r)
4: if res is EQUIVALENT then
5: if userPref (newRule, r) = newRule then
6: replaceRule(newRule,RB, indexOf (r))
7: end if
8: return RB
9: else if res is CONTAINED then

10: addRule(newRule,RB, indexOf (r))
11: return RB
12: else if res is PARTIALLY_OVERLAPS then
13: if userPriority(newRule, r) = newRule then
14: addRule(newRule,RB, indexOf (r))
15: return RB
16: end if
17: end if
18: end for
19: addRule(newRule,RB,RB.size)
20: return RB
21: end function

have been considered, the user is asked to insert new rules and approve (or
not) the simulated effect of the incremented RB on all keys. When the user is
satisfied with the results, the rule is actually added to the RB and the sets of
keys are updated accordingly.

Algorithm 3 Order comparison between rules
1: function COMPARE(r, r′)
2: Ar ← NFA2DFA(RegEx2NFA(r.a))
3: A′

r ← NFA2DFA(RegEx2NFA(r′.a))
4: if L(Ar) = L(A

′
r) then

5: return EQUIVALENT
6: else if L(Ar) ⊂ L(A

′
r) then

7: return CONTAINED
8: else if L(Ar) 6⊃ L(A

′
r) ∧ L(Ar ∩ A′

r) 6= ∅ then
9: return PARTIALLY_OVERLAPS

10: end if
11: end function

Adding a new rule to the Rule Base means inserting it in the right posi-
tion with respect to the order defined in Def. 2. This is accomplished by Algo-
rithm 2, which iterates over the RB list and, based on the comparison between
each pre-existing rule with the one to be added, determines the insertion posi-
tion (in an "insertion sort" manner).

Comparing rules means evaluating the containment relationship between
the languages generated by their antecedents, as described by Algorithm 3.
Several procedures exist to convert regular expressions into equivalent Non-
deterministic Finite Automata (NFA) [261, 362]; we use the Brics Java li-
brary [269] for automata implementations, which is based on Thompson’s con-
struction algorithm [362]. Then, NFA need to be converted into equivalent De-
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Algorithm 4 Application of Rule Base to keys
1: function CLEANER(RB,Ti)
2: Ci ← []
3: for each Ti,j ∈ Ti do
4: Ci,j ← []
5: for each 〈tdata, tmeta〉 ∈ Ti,j do
6: cdata ← createSymbolicLink(tdata)
7: cmeta ← []
8: for each 〈key, value〉 ∈ tmeta do
9: newKey ← matchF irst(key,RB)

10: if nonEmpty(newKey) then
11: add(cmeta, 〈newKey, value〉)
12: end if
13: end for
14: Ci,j ← Ci,j + 〈cdata, cmeta〉
15: end for
16: Ci← Ci + Ci,j

17: end for
18: return Ci

19: end function

terministic Finite State Automata (DFA) Ar and Ar′ – this can be done with the
Rabin-Scott powerset construction [305]. Later, the two languages are checked
for equivalence, containment and partial overlapping (by using the automaton
constructed from the cross-product of states that accepts the intersection of the
languages). Algorithm 4 describes the Cleaner as application of the Rule Base
to the input set Ci, iterating over all datasets Ci,j ∈ Ci; rules are applied in the
order in which they appear in the Rule Base.

Example. Table 4.3 shows the cleaning procedure of a set of transformed EN-
CODE keys. It assumes an initial set of transformed keys from Ti; for each
key, the user produces cleaning rules, driven by Algorithm 1. Eventually, the
method produces a rule base made of a list of 7 rules; their application to keys
in Ti produces the set of cleaned keys in Ci.

As an example instance of rule base mechanism we observe that rule (2)
deletes the key: replicates__1__library__biosample__sex. Instead, rule (3),
applied to the key: replicates__1__library__biosample__biosample_type,
dictates that the key must be rewritten by concatenating the content of the sec-
ond parenthesis (i.e., biosample) with the content of the first (i.e., 1), and with
the content of the fourth (i.e., type), obtaining at the end biosample__1__type.

4.6 Data Mapping

The Mapper module is in charge of the integration at the schema-level of a set
of cleaned keys produced for each source. The method applies local-to-global
mappings using a syntax inspired to Datalog [78]. Mapping rules build rela-
tional rows from the key-value pairs output by the Cleaner step to achieve the
integration of different local schemata into a unique local one, i.e., the Genomic
Conceptual Model (see Section 3.2). Arbitrary queries on GCM can then be
propagated to sources, using the global-as-view approach [228].
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Transformed keys in Ti

replicates__1__library__biosample__donor__age 32
replicates__1__library__biosample__donor__age_units year
replicates__1__library__biosample__donor__sex male
replicates__2__library__biosample__donor__age 4
replicates__2__library__biosample__donor__age_units year
replicates__2__library__biosample__donor__sex female
replicates__1__library__biosample__sex male
replicates__1__library__biosample__biosample_type tissue
replicates__1__library__biosample__health_status healthy, CAD
file__biological_replicates 1
file__technical_replicates 1_1
file__assembly GRCh38
file__file_type bed narrowPeak
replicates__1__biological_replicate_number 1
replicates__1__technical_replicate_number 1
replicates__2__biological_replicate_number 2
replicates__2__technical_replicate_number 1
assembly hg19

↓
RuleBase RBi

(1) replicates(__[0-9]__)library__biosample__(donor)__(age|sex)(.*)⇒ $2$1$3$4
(2) replicates__[0-9]__library__biosample__sex.*⇒
(3) replicates(__[0-9]__)library__(biosample)__(biosample_)?(.*)⇒ $2$1$4
(4) file__(biological|technical)_replicates⇒
(5) (file__)(file_)?(.*)⇒ $1$3
(6) (replicate)s(__[0-9]__)(.*)⇒ $1$2$3
(7) assembly⇒

↓
Cleaned keys in Ci

donor__1__age 32
donor__1__age_units year
donor__1__sex male
donor__2__age 4
donor__2__age_units year
donor__2__sex female
biosample__1__type tissue
biosample__1__health_status healthy, CAD
file__assembly GRCh38
file__type bed narrowPeak
replicate__1__biological_replicate_number 1
replicate__1__technical_replicate_number 1
replicate__2__biological_replicate_number 2
replicate__2__technical_replicate_number 1

Copyright © 2020 IEEE

Table 4.3: Example of data cleaning process.

Note that rules capture only a portion of the data integration semantics, as
we allow for exceptions, e.g., attributes that are not in common to most sources
(e.g. all clinical diagnosis conditions available for the donor in TCGA), while
specific for few experiment types, are modeled as attribute-value pairs; the cor-
responding data is directly referenced from the ITEM entity.

The global schema G shown in Figure 4.4, is obtained as straightforward
mapping from the conceptual schema (Figure 3.3 in Section 3.2) and it resem-
bles a classic data mart [54]. It contains the central entity table ITEM, a set of
entity tables DONOR, BIOSAMPLE, REPLICATE, PROJECT, CASE, DATASET, EX-
PERIMENTTYPE, ITEM2REPLICATE, and ITEM2CASE.

All tables have a numerical sequential primary key, conventionally named
<table_name>_id and indicated as PK in Figure 4.4. Tables DONOR, BIOSAM-
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Replicate
replicate_id
biosample_id
replicate_source_id
biological_replicate_number
technical_replicate_number

int
int
str
int
int

PK
FK

N
N

Item
item_id
experiment_type_id
dataset_id
item_source_id
size
date
checksum
content_type
platform
pipeline
source_url
local_url
file_name
source_page

int
int
int
str
int
str
str
str
str
str
str
str
str
str

PK
FK
FK

N
N
N
N
N
N
N
N
N
N

Replicate2Item
item_id
replicate_id

int
int

PK FK
PK FK

Biosample
biosample_id
donor_id
biosample_source_id
biosample_type
tissue
cell
is_healthy
disease

int
int
str
str
str
str
bool
str

PK
FK

N
N
N
N
N

Case2Item
item_id
case_study_id

int
int

PK FK
PK FK

CaseStudy
case_study_id
project_id
case_source_id
source_site
external_reference

int
int
str
str
str

PK
FK

N
N

Dataset
dataset_id
dataset_name
data_type
file_format
assembly
is_annotation

int
str
str
str
str
bool

PK

N
N
N
N

Donor
donor_id
donor_source_id
species
age
gender
ethnicity

int
str
str
int
str
str

PK

N
N
N
N

ExperimentType
experiment_type_id
technique
feature
target
antibody

int
str
str
str
str

PK
N
N
N
N

Project
project_id
project_name
source

int
str
str

PK

N

Biological Dimension

Extraction Dimension

Technology Dimension

Management Dimension

Powered by Vertabelo, Design Your Database Online, http://vertabelo.com
gcm_logical_schema_thesis 2019-11-29 17:00 PostgreSQL 9.x

2

Figure 4.4: Logical schema of the GCM relational database instance.

PLE, REPLICATE, ITEM, and CASESTUDY have, in addition, a secondary unique
key <table_name>_source_id that refers to the original source; such secondary
key is used for providing backward links to the data source (and for direct
comparison of source contents with the ones in the repository during periodic
updates/reloads). A tuple of EXPERIMENTTYPE is, instead, uniquely identi-
fied by the triple technique, feature and target, with respect to the original
source.

In addition, tables have foreign keys that uniquely identify a row of another
table of the schema. Nullable attributes are indicated with N. Relationships
from the ITEM outward are functional (i.e., one ITEM has one EXPERIMENT-
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4.6. Data Mapping

Conc(s1, s2, c): concatenates s1 and s2 using c as separation string
Alt(s1, s2): outputs s1 if present and not null, else s2
Rem(s1, s2): removes the occurrences of string s2 from s1
Sub(s1, s2, s3): substitutes occurrences of s2 in s1 with the new s3
Eq(s, p): outputs true when s is equal to p, else false
ATD(a): converts a, a number followed by space and unit of measurement, into the correspondent number of days
LCase(s): converts string s into its lower case version
Int(n): casts number n to its correspondent Integer format
Id(...): generates synthetic id for faster indexing of table t from specified arguments

Copyright © 2020 IEEE

Table 4.4: Example syntactic transformations for mapping rules.

TYPE, while an EXPERIMENTTYPE may be the same for multiple ITEMs), with
the exception of two many-to-many relationships: each Item derives from one
or more REPLICATEs and belongs to one or more CASESTUDIEs, thus we in-
clude two bridge tables to express the N:N relationships. In detail we in-
clude the following referential integrity constraints. Each ITEM, correspond-
ing to a processed data file references the EXPERIMENTTYPE and DATASET ta-
bles with FKs. The bridge table REPLICATE2ITEM, by combining item_id and
replicate_id, can associate multiple ITEMs to a single REPLICATE (i.e., they
may have undergone different processing) and multiple REPLICATEs to a sin-
gle ITEM (such items are generally called "combined"). With FKs, REPLICATE
references the BIOSAMPLE table and, in turn BIOSAMPLE references the DONOR
table. The bridge table CASE2ITEM, by combining item_id and case_study_id,
can associate multiple ITEMs to a single case (which is the typical scenario), but
also multiple cases to a single ITEM (this happens when an ITEM appears in
multiple analyses and studies). CASESTUDY references the PROJECT table with
an FK.

Every source is represented by a set of datasets of cleaned files (containing,
in turn, sets of 〈key, value〉 pairs). Mapping rules assemble several values ex-
tracted from the key-value pairs into rows of the relations of a global schema.
Their format recalls deductive rules: each table of the output schema corre-
sponds to several rules for each source, whose head is a predicate named as
the table and with the same arity as the table’s grade; the body lists several
attribute-value pairs such that attribute names are matched to cleaned keys of
files in the starting set. The semantics of mapping rules is also similar to that
of deductive rules: if all the attribute names of the body are matched to input
keys (in deductive terms they unify), then the values corresponding to those
keys are assembled by the rule into relational rows.

It is possible to apply to values a set of predefined syntactic transformations
(SynTr), defined in Table 4.4, which can be freely composed in the left side of
mapping rules; transformations can be easily extended. For example, to put
into lowercase letters two values that have been first concatenated with a space,
the expression LCase(Conc(value1, value2, “ ′′)) can be used to generate a value
for a specific position of a row.

Formalization. A Mapper is a source-specific method Mi = 〈Ci,G,MBi〉.
For every metadata cleaned file cmeta in each dataset Ci,j ∈ Ci, it as-
sembles several values v present in the pairs 〈k, v〉 of cmeta into rows
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CENC = {Ci|i = ENCODE}, ∀j, cmeta|〈cdata, cmeta〉 ∈ CENC,j ∈CENC → k ≤ nc

DONOR(Id(OidD), OidD, v1, ATD(Conc(v2, v3, “ ”)), v4, v5) 
{〈donor__k__accession, OidD〉, 〈donor__k__organism, v1〉, 〈donor__k__age, v2〉,
〈donor__k__age_units, v3〉, 〈donor__k__sex, v4〉, 〈donor__k__ethnicity, v5〉} ⊆ cmeta

BIOSAMPLE(Id(OidB), Id(OidD), OidB , “tissue”, v2, NULL, Eq(v3, “healthy”), v3) 
{〈biosample__k__accession, OidB〉, 〈donor__k__accession, OidD〉, 〈biosample__k__type, “tissue”〉,
〈biosample__k__term_name, v2〉 〈biosample__k__health_status, v3〉} ⊆ cmeta

BIOSAMPLE(Id(OidB), Id(OidD), OidB , “cell line”, NULL, v2, Eq(v3, “healthy”), v3) 
{〈biosample__k__accession, OidB〉, {〈donor__k__accession, OidD〉, 〈biosample__k__type, “cell”〉,
〈biosample__k__term_name, v2〉, 〈biosample__k__health_status, v3〉} ⊆ cmeta

REPLICATE(Id(OidR), OidR, OidB , v1, v2) 
{〈replicate__k__uuid, OidR〉, 〈biosample__k__accession, OidB〉, 〈replicate__k__bio_rep_num, v1〉,
〈replicate__k__tech_rep_num, v2〉} ⊆ cmeta

ITEM(Id(OidI), Id(v1, v2, v3), Id(OidDS ), OidI , v4, v5, v6, v7, v8, Conc(“www.encodeproject.org”, v9, “/”),
Conc(“www.gmql.eu...”, OidI , “/”)) 

{〈assay_term_name, v1〉, 〈target__investigated_as, v2〉, 〈target__label, v3〉, 〈dataset_name, OidDS 〉,
〈file__accession, OidI〉, 〈file__size, v4〉, 〈file__date_created, v5〉, 〈file__md5sum, v6〉,
〈file__pipeline, v7〉, 〈file__platform, v8〉, 〈file__href, v9〉} ⊆ cmeta

ITEM2REPLICATE(Id(OidI), Id(OidR)) 
{〈file__accession, OidI〉, 〈replicate__k__uuid, OidR〉} ⊆ cmeta

Copyright © 2020 IEEE

Table 4.5: Mapping rules for biological view of ENCODE source.

of the tables of the global schema G. Rows are produced by running
the rule engine Mi over datasets of Ci one by one, using the map-
ping rules contained in the mapping base MBi. A mapping rule is a
declarative rule of the form: ENTITY(SynTr(v1),..., SynTr(vi),..., SynTr(vN))  
{〈k1, v1〉,..., 〈ki, vi〉,..., 〈kN , vN〉} ⊆ cmeta, where every vi in the left-hand side of
the rule also appears in the rule right-hand side (i.e., rule evaluations are fi-
nite), in a positive form (i.e., rules are safe [78]).

Method. Once mapping rules are fully specified, the method consists simply
in applying the rules to each file cmeta in every dataset Ci,j of the set Ci of a
data source i, in arbitrary order. Note that every file associated with a data
source as produced by the cleaning method may have several versions for the
same key, numbered from 1 to nc (as n is specific for the single file c), e.g.,
biosample__1__type and biosample__2__type. Each rule is applied for every
version, and associates with each version a distinct row. When a version is
present (e.g., in rules for DONOR, BIOSAMPLE and REPLICATE of Table 4.5), we
denote such version by generically naming the keys in the rule’s body using k,
and then generating a rule for each value of k. For each vi in the rule left-hand
side, if the corresponding 〈ki, vi〉 in the rule right-hand side exists in cmeta, then
we add SynTr(vi) to the result, i.e., a new tuple in the ENTITY table specified in
the rule left-hand side.

Example. Table 4.5 illustrates all the rules that are required to build the biolog-
ical dimension of the relational schema shown in Figure 4.4 for the ENCODE
data source.

In Table 4.6 we show two additional rules for the GDC and Roadmap Epige-
nomics data sources in order to build the DONOR table for these two sources.
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CGDC = {Ci|i = GDC}
DONOR(Id(OidD), OidD, “Homo sapiens”, v1, v2, LCase(Conc(v3, v4, “ ”)) 
{〈bcr_patient_uid, OidD〉, 〈demographic__days_to_birth, v1〉, 〈demographic__gender, v2〉,
〈demographic__race, v3〉, 〈demographic__ethnicity, v4〉} ⊆ cmeta

CREP = {Ci|i = RoadmapEpigenomics}, ∀cmeta∀j|〈cdata, cmeta〉 ∈ CREP,j ∈CREP → k ≤ nc

DONOR(Id(OidD), OidD, “Homo sapiens”, ATD(v1), v2, v3) 
{〈donor__k__id, OidD〉, 〈donor__k__age_weeks, v1〉, 〈donor__sex, v2〉, 〈donor__k__ethnicity, v3〉} ⊆ cmeta

Table 4.6: Mapping rules for DONOR table from sources GDC and Roadmap Epigenomics

Note that Oidt is the notation used for the ObjectIdentifier of table t, which is a
unique accession retrieved from the source, while Id(Oidt) indicates a numer-
ical synthetic id for faster indexing of table t; PKs and FKs are built on these
ids.

4.7 Data Normalization and Enrichment

During this step, specific values of the global schema are associated with con-
trolled terms, lists of synonyms and hyperonyms, and external references to
reference ontologies. We consider ten semantically enrichable attributes of the
global schema: Technique, Feature and Target of experiment types, Disease, Tissue
and Cell of biosamples, Ethnicity and Species of donors, ContentType and Plat-
form of items.

The adoption of a specific knowledge base for each semantically enrichable
attribute provides us with value normalization, as we transform the values of
reference knowledge bases into restricted vocabularies. Using external knowl-
edge bases (rather than creating a new one) is essential in the biomedical do-
main, where specialized ontologies are already available and well-recognized
and their use boosts interoperability.

This process is supervised and requires a preliminary selection of the most
suitable ontologies to describe each semantically enrichable attribute of the
global schema: Section 4.7.1 presents our solution to the problem of selecting
appropriate search services and ontologies to annotate metadata. Section 4.7.2
describes how the enrichment procedure works.

4.7.1 Search Service and Ontology Selection

First, we present the four most used and well-known ontology search services
in literature, and how we score them in order to select the most appropriate
one for our purpose. Next, we compare the ontologies provided by that search
service, and select the specific ontology that is most suitable to annotate values
for each ontological attribute.

Ontology Search Services

Ontological access to genomic data is well supported by several search services,
which are capable in turn to integrate a high number of ontologies. Therefore,
we are initially concerned in choosing the best search service that will be used
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within our system as broker to the underlying ontologies. We consider four
different search services.

BIOPORTAL [379] is a repository of biomedical ontologies and terminologies
whose access is provided through a Web portal and Web services. We exploit
its term search service, an endpoint which takes a free text input and provides a
result in JSON format, listing a (configurable) number of annotations to onto-
logical terms, showing different degrees of matching with the free text. These
can be considered as possible annotations for the input text. Each term is iden-
tified by the pair 〈ontology, id〉, describing the code which references the ontol-
ogy inside the BioPortal system and an identification number which references
the term inside the ontology. A term also contains a single preferred label and
its synonyms. An annotation is composed by a term and a match type: "PREF"
if the match with the term is established with the preferred label or "SYN" if the
match is with one of the term synonyms.

ONTOLOGY RECOMMENDER [253] is a BioPortal service that receives a free
text or a list of keywords and suggests a set of ontologies appropriate for an-
notating the indicated terms, considered all together. The structure of anno-
tations is identical to BioPortal’s. Additionally, Recommender provides four
scores that reflect how well the ontology (set) annotates the input data:

• Coverage: measures to which extent the ontology represents the input data
by matching (either exactly or fuzzily, e.g., with containment or stemming)
the query terms to the class and property names of the ontology. In lit-
erature coverage is also referred to as term matching [196], class match
measure [8], or topic coverage [324].

• Acceptance: indicates how well-known and trusted the ontology is by the
community of interest, i.e., the biomedical one. Criteria related to accep-
tance have to do with popularity (how much the community supports the
ontology) [256, 324], which relies on the assumption that relevant ontolo-
gies are referenced by many other ontologies (thus, they have a high con-
nectivity [196] or connectedness [58]—when also the quality of connec-
tions is assessed).

• Detail: shows the level of specification provided by the ontology for the
input data. Definitions of detail refer to semantic richness [256], struc-
ture [58] (measuring the number of properties over the number of classes
of the ontology, under the assumption that more advanced ontologies gen-
erally have a large number of properties), and granularity [249] (where the
perspective is the one of Keet [204], based on categories of non-scale de-
pendency, providing levels ordered through primitive relations like is_a
and part_of ).

• Specialization: indicates how specialized the ontology is with respect to the
domain of input data. This measure is impacted by the fact that some
biomedical ontologies aim to focus on specific sub-domains or particular
tasks; in this case they may be particularly specialized on a specific input,
if this can be fit into the same sub-domain.

ONTOLOGY LOOKUP SERVICE (OLS) [198]) provides ontology search, visu-
alization, and ontology-based services. The accepted input is a keyword, the
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provided result is a list of annotations, similar to the other services but not
including a match type. In the API request, a fieldList parameter can be used
to specify the specific elements to be included in the output along with other
formatting preferences.

ZOOMA13 is a service from OLS which provides mappings between textual
input and a manually curated repository of text-to-ontology-term mappings. If
no mappings are found, it uses the basic OLS search. In addition to the usual
annotation information, Zooma also returns a confidence label associated to the
annotation, ranging from HIGH to LOW.

We exclude other ontology search portals such as HeTOP [158] and
UMLS [50], as they are more focused on multilingual support and medical ter-
minologies, therefore do not include many ontologies that are important to an-
notate our values. Also the NCBO Annotator [197] is not considered since its
functionalities are completely covered by the Ontology Recommender.

Scoring

Every search service provides a search API, which is repeatedly used for
the score evaluation. For each API call we store: the used service; the at-
tribute from GCM characterizing the values (the "type" of the values); the
original raw value deriving from the GCM, imported through the mapping
phase; possible parsed values deriving from a simple syntactic pre-processing
of raw values (e.g., removal of punctuation, split of long expressions. . . ); the
〈ontology,ontology_id〉 pair, uniquely identifying an ontological term within
a service; pref_label and synonym, respectively the primary textual expression
used for the term and its alternative version; score, textual information regard-
ing the goodness of a match, directly retrieved from the services, if available.

In total, we performed 1,783 API calls to each of the four services, corre-
sponding to 1,299 original values to be enriched; some of these were split-
ted during a pre-processing phase. As a result, we retrieved 1,783 interesting
matches from BioPortal, 885 from Recommender, 1,782 from OLS, and 1,779
from ZOOMA, all of which were used for the following processing after calcu-
lating our scores.14

Starting from the retrieved information, we calculate the match_score as a
measure of how well a term matches a value, by using a scoring system that is
specifically designed for the task: the general formula returning the match_score
value, shown in Equation 4.1, subtracts from an initial maximum number (10,
when there is a perfect match with a pref_label, 9 with a synonym) a penalty
measuring how the raw value differs from the label retrieved from the services:

match_score(raw, label) = {10, 9} − distance(raw, label) (4.1)

To compute the distance, we originally use a modified version of
Needleman-Wunsch algorithm [281], a protein and nucleotide sequence align-
ment algorithm that is widely used in bioinformatics. In the original algorithm,
the input is represented by two strings whose letters need to be aligned. The

13https://www.ebi.ac.uk/spot/zooma/
14Count corresponds to the results retrieved at the time of experiments, i.e., October 2018.
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letters may have a "match", a "mismatch" or an "indel" (i.e., adding a gap in one
of the strings). In our modified version, we define each word as a distinct letter
of the original algorithm and we a specific type of mismatch, i.e., the swap. All
in all, the total distance is calculated as a sum of distances between words:

• Match: Two words are the same, then their distance is 0
• Swap: Two consecutive words traded places, then their distance is 0.5
• Insert: A new word is added to the raw, then their distance distance is 1
• Delete: One word is deleted from the raw, then their distance is 2
• Mismatch: Two words are different, then their distance is 2.5

The indicated distance values are chosen in such a way that the number of
deletions is minimized (i.e., we penalize a label which does not include a word
present in raw) and the swap is preferred to indel and mismatch. For example,
for the raw "breast invasive carcinoma", the label "invasive breast carcinoma"
(i.e., one swap) is considered better than "breast carcinoma" (i.e., one deletion).

Then, we assign different scores to each used ontology: i) the onto_acceptance,
a measure of how well-known and trusted the ontology is by the biomedical
community; ii) the onto_suitability, a measure of how much an ontology is ade-
quate for a given attribute (thus one ontology obtains multiple scores, one for
each attribute).

Acceptance Score. The acceptance score is a metric that reflects the appreci-
ation of the ontology give by the biomedical community. We retrieve it through
Recommender Web Services [253], where it is derived from the number of visits
to the ontology page in BioPortal and the presence or absence of the ontology
in UMLS [50].

Suitability Score. Suitability score represents how well the ontology anno-
tates the terms of a given attribute. Two measures are considered: 1. how many
terms the ontology can annotate with respect to the total number of terms in in-
put (i.e., coverage); 2. how many terms the ontology can annotate with a better
match score: the score will be higher if the ontology annotate more terms with
pref_labels rather than with synonyms.

For a given ontology o and a given attribute a, the coverage is calculated
by dividing the number of obtained annotations by the number of input raw
values belonging to the attribute a:

coverage(o, a) =
#annotations(o, a)

#inputRawV alues(a)
(4.2)

To calculate suitability, for each attribute a and ontology o, we sum the match
scores associated to all the annotations obtained from the ontology o, normalize
by the number of total annotations, and multiply the obtained value by the
coverage obtained from Equation 4.2:

onto_suitability(o, a) =

∑
n∈annotations(o,a) match_score(n)

#annotations(o, a)
∗ coverage(o, a) (4.3)

Overall Score Computation. For each annotation, i.e., the mapping between
a raw value (belonging to a specific attribute a) and a label performed by one on-
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BioPortal Recommender OLS ZOOMA

Service Properties
Search properties MT MT,MK,FT - MK
Num. of ontologies 728 728 214 214
Previous curation no no no yes

Example scoring
1st best match ncit_c4029 ncit_c4029 ncit_c4029 efo_0001416

of “cervical
2nd best match efo_0001416 None efo_0001416 None

adenocarcinoma”
3rd best match doid_3702 None ncit_c136651 None
Occurrence score 1 0.5 1 0.5
Coverage score 1 1 1 1

Aggregated scores Occurrence 83.17% 46.97% 90.54% 75.96%
Coverage 100.00% 49.88% 99.94% 99.78%

Table 4.7: Summary of Ontology Search Services.

tology o, we compute a score that summarizes all the thers available. The over-
all_score is obtained by multiplying each raw value’s match_score by a weighted
average of the onto_suitability and onto_acceptance, as shown in Equation 4.4:

overall_score(raw, label, o, a) =
match_score(raw, label, o)

5
∗
(
2 ∗ onto_suitability(o, a)

5
+ onto_acceptance(o)

)
(4.4)

Note that coefficients have been chosen as they guaranteed a reasonable dis-
tribution of scores over our dataset. Based on the overall_scores, for each pair of
attribute and parsed value (derived by syntactic pre-processing of raw values),
we informed the service evaluation phase, described next.

Service Evaluation

Table 4.7 describes the obtained results by applying Equation 4.4 over the an-
notations on all raw values performed by the ontologies in the four services.
The "Service Properties" part contains an overview of service properties. Bio-
Portal and Recommender provide a match_type (MT) in their APIs response,
which means that they specify if the input text is more similar to the preferred
label rather than to one of the synonyms associated to a term. Recommender
offers the additional function of searching for multiple key-words at the same
time (MK) and consequently suggests a minimal set of ontologies suitable for
annotating the maximum possible number of key-words. This function is also
offered by ZOOMA which, however, in practice just performs multiple single
key-word requests and lists all results at the same time. Only Recommender ex-
ecutes a good attempt of annotating free texts (FT). BioPortal’s set of ontologies
is much broader than OLS’ since minor efforts are also included. ZOOMA ex-
ploits search results from OLS but also provides results coming from previous
manual curation works as an additional service to the user.

The "Example scoring" part contains an example of how services are re-
warded based on the matching terms they find. To evaluate the match, we
use the overall_score described above. When the disease-related text "cervical
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Entity Attribute Pref. ontologies Coverage Score Suitability

EXPERIMENTTYPE Technique OBI, EFO 0.857 0.486 0.490
EXPERIMENTTYPE Feature NCIT 1.000 0.854 0.893
EXPERIMENTTYPE Target OGG 0.950 0.747 0.948
BIOSAMPLE Disease NCIT 0.978 0.784 0.802
BIOSAMPLE Tissue UBERON 0.957 0.753 0.937
BIOSAMPLE Cell EFO, CL 0.953 0.644 0.577
ITEM ContentType NCIT, SO 0.950 0.510 0.743
ITEM Platform NCIT 1.000 0.909 0.950
DONOR Ethnicity NCIT 0.962 0.907 0.912
DONOR Species NCBITaxon 1.000 0.667 1.000

Copyright © 2020 IEEE

Table 4.8: Choice of reference ontologies for semantically enrichable attributes. Definition of ontol-
ogy acronyms: Ontology for Biomedical Investigations (OBI) [21], Experimental Factor Ontology
(EFO) [251], Uber Anatomy Ontology (UBERON) [274], Cell Ontology (CL) [263], National Can-
cer Institute Thesaurus (NCIT) [104], NCBI Taxonomy Database (NCBITaxon) [127], Sequence
Ontology (SO) [118], Ontology of Genes and Genomes (OGG) [176].

adenocarcinoma" is searched, BioPortal suggests, on top of others, the three
terms "ncit_c4029", "efo_0001416", and "doid_3702", while Recommender just
provides one result, "ncit_c4029". Our algorithm for Occurrence computes the
set of terms which occur the highest amount of times in the top three matches of
the services (in this case ["ncit_c4029","efo_0001416"]) and assigns a weighted
reward (1 if the set only contains one entry, 0.5 if it contains 2, and so on) to the
services which include that term in the top results. Indeed BioPortal scores 1
since it contains both top results, while Recommender scores 0.5 since it con-
tains just one. Coverage is 1 when the service provides at least one result, 0
otherwise.

As scores for service selection, we use the average Occurrence and Coverage
over all the searched raw values. On this basis, OLS is selected as the best
suited search service to pursue the enrichment annotations in our system (see
results highlighted with bold font in Table 4.7).

Ontology Selection

Based on the overall_score described above, we aggregate results over specific
attributes and ontologies. This calculation produces, as a result, one top on-
tology for each attribute. Since most of the times only one ontology does not
provide an acceptable coverage for all the values belonging to that attribute,
we use an algorithm to compute a small set of ontologies to annotate values
from an attribute. Such algorithm first tries to match values only with the first
ontology, then tries to match only the ones left unmatched with the following
ontologies, until a fixed point for coverage is found. If the computational costs
become too high, the algorithm can be stopped at a predefined threshold cov-
erage, considered acceptable. In our case we set the threshold equal to 95%.

The results of our selection are shown in Table 4.8, where, for each seman-
tically enrichable attribute, we indicate the preferred ontology and three nor-
malized indicators. COVERAGE indicates the percentage of attribute values that
are found in the ontologies. SCORE is an average matching score of all the an-
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4.7. Data Normalization and Enrichment

notated attribute values weighted by ontology acceptance. SUITABILITY is a
measure of how much an ontology set is adequate for an attribute. Note that a
second preferred ontology is added when the first one did not reach 0.85 cov-
erage; in this case, indicators refer to the union of the ontologies In the specific
case of Technique, unfortunately, we were not able to achieve the target cover-
age threshold of 0.95 because a third added ontology did not add any matches
with respect to the second ontology.

4.7.2 Enrichment Process

The Enricher is supported by an interactive tool15 that: i) calls external services
to annotate values with concepts from controlled vocabularies or dedicated
ontologies; ii) asks for user feedback when annotations have a low matching
score; users can either accept one of the proposed solutions, or manually spec-
ify new annotations. After selecting such sets, we proceed with the enrichment
of the values contained in the ontological attributes of the GCM.

The result of the normalization is contained within the relational database
K, called Local Knowledge Base (LKB). Figure 4.5 describes the logical schema
of the relational database, whose orange part is populated from ontologies and
referenced from the global schema G. The "Knowledge Base" frame stores all
the information retrieved from OLS services and relevant to annotate our val-
ues. The main tables are:

• VOCABULARY, whose PK term identifier tid is referenced from all the
GCM tables that contain semantically enriched attributes, has the acronym
of the ontology providing the term (source, e.g., NCIT), the code used for
the term in that ontology (e.g., NCIT_C4872) and its label (pref_label,
e.g., Breast Carcinoma), in addition to an optional description and iri
(i.e., International Resource Identifier);

• SYNONYM, containing alternative labels that can be used as synonyms of
the preferred label along with their type (e.g., alternative syntax, related
nomenclature, related adjectives) – referencing the term in the vocabulary
table;

• REFERENCE, containing references to equivalent terms from other ontolo-
gies (in the form of a <source, code> pair) – referencing, with the FK tid,
the corresponding term in the vocabulary table;

• ONTOLOGY, a dimension table presenting details on the specialized on-
tologies contained (even partially) in the knowledge base – referenced
with an FK from the vocabulary table;

• RELATIONSHIP, containing ontological hierarchies between terms and
the type of the relationships (either generalization is_a or containment
part_of 16) – the primary key is composed of parent, child and type of the
relationship; the first two reference the vocabulary table with FKs.17

15The GitHub repository of the tool is https://github.com/DEIB-GECO/Metadata-Enricher
16We restricted to generalization and containment as these are the most common relationships in the involved ontolo-

gies – typical in all bio-ontologies. This choice reflects a trade-off between performance and richness of information.
17The system provides the unfolding of the hierarchies as an internal materialized view over the table relationship,

used for faster query processing.
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Figure 4.5: Relational schema for tables of the GCM, LKB and user feedback routines.

The "Expert Support" frame includes the tables used to contain information
for expert users.

The "Genomic Conceptual Model" frame contains the tables from the GCM
(of which we only show in detail the ones which have ontological attributes).
Each GCM 〈ontological_attribute〉 is equipped with a companion-attribute
〈ontological_attribute〉_tid, which references the ontological term in the
vocabulary table (e.g., Platform with value "Illumina Human Methylation
450" is associated to Platform_tid = 10, representing the vocabulary object
OBI_0001870, taken from the OBI ontology). The Vocabulary table is the cen-
tral entity of the LKB schema. The tid column is the primary key which is
referenced by all other tables in LKB and from the tables in GCM. Also tables
from the LKB and from the Expert tables are linked using tids.

Formalization. The Enricher is a source-independent method E = 〈A,O,G,K〉.
A is the set of sematically enrichable attributes of the global schema G. For each
attribute a in A and each possible value of a, E generates the corresponding
entries in the Local Knowledge Base K, extracted from the preferred ontologies
of a in O, i.e., the set of reference ontologies defined in Table 4.8.

Method. Value normalization and enrichment is a supervised procedure illus-
trated in Figure 4.6. The workflow is executed for all values of semantically
enrichable attributes, and consists of two parts: 1) For each such value asso-
ciated to a _tid column, the system initially looks for a suitable term in the
vocabulary of the LKB; if a match is available, and the term was already anno-
tated in the past, the procedure is completed. When the match is successful but
annotations are lacking, a user’s feedback is requested. 2) Terms that do not
match with the vocabulary, or whose annotations are not approved by the user,
are then searched within the specific ontologies associated with the attribute, as
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Figure 4.6: Iterative supervised normalization and enrichment procedure.

defined in Table 4.8. If matches are of high confidence (i.e., match_score – cal-
culated according to Equation 4.1 greater than 5), we select the corresponding
term and proceed with the annotation; if the confidence is low, user feedback
is requested. When feedback is negative or there is no match, users are asked
to provide a new vocabulary term.

Once the term has been selected, we populate the tables of the LKB with
all the information derived from OLS regarding the term: description, iri, syn-
onyms, xrefs, hyperonyms and hyponyms (both of IS_A and PART_OF kinds).
The depths of ancestors and descendants retrieved from the ontology are con-
figurable by constant specification. With the current implementation and data,
the automatic enrichment process successfully annotates about 83% of the to-
tal raw values, meaning that this fraction of the input values is annotated with
ontological terms that reach a match_score of at least 5 (out of 10, i.e., perfect
match with a preferred label).18 The remaining non-annotated values are han-
dled using a manual curation procedure. Indeed, we prepared two procedures
which allow experts curators to support the annotation algorithm; we assume
them to be knowledgeable about biological data management and to be expert
in genomic data curation.

In the first procedure, a curator can examine all cases in which the algorithm
is not able to provide a high quality match (i.e., the service provides either par-
tial matches with low score or no result). The low scores matches are proposed
as suggestions so that the curator may select one of them. In any case, a manual
annotation can always be provided. The procedure can be configured so that it
also shows the cases with the same score.

The second procedure is started when a pre-existing annotation is not ade-
quate (i.e., a _tid column has been filled with a wrong vocabulary term). In this
case, the curator can invalidate the annotation and provide an alternative.

So far, we enriched attribute values by linking them to 1,629 terms in the
8 specified ontologies. In addition to terms that directly annotate values we
included all terms that could be reached by traversing up to three ontology

18Note that we are not considering accuracy at this stage, as that will only be evaluated through an expert validation
in Section 4.10.2.
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Figure 4.7: Normalization and enrichment of a BIOSAMPLE tuple.

levels from the base term (12,087 concepts in total).

Example. Figure 4.7 shows a tuple of the BIOSAMPLE global schema table.
Solid line nodes include normalized attribute values. Dashed line nodes repre-
sent some of the synonyms; for example, the Disease information "Breast cancer
(adenocarcinoma)" is equipped with a synonym "Breast adenocarcinoma" and
NCIT_C5214, the corresponding concept identifier in the NCIT Ontology. Dot-
ted line nodes represent hierarchies, labeled by the relevant ontology (only a
small subset is represented for brevity). For example, the value "breast", corre-
sponding to the attribute Tissue, is enriched by both its super-concept "Female
reproductive gland" and its sub-concept "Mammary duct", among others.

4.8 Data Constraint Checking

At the end of the integration process, we introduce integrity constraints, which
define dependencies between values of the global schema G. These implement
the contextual and dependent features assigned to GCM attributes, which were
introduced in Section 3.2. We consider pairs of attributes (AS ∈ RS and AE ∈
RE), where RS and RE denote the starting and ending tables in the G global
schema, connected by a join path in G. Given that G is an acyclic schema, there
is just one join path between any two tables in G.

Definition 3 (Attribute Dependency Rule). A dependency rule between at-
tributes RS.AS and RE.AE of G is an expression of the form: Boolean(RS.AS) →
Boolean(RE.AE), where Boolean(A) is a Boolean expression over an attribute A of
G. The interpretation of the dependency rule is that: 1) when the Boolean expression in
the left part of the rule is true for a value vS ∈ AS , 2) if there exists one value vE ∈ AE

such that 〈vS, vE〉 are connected by the join path between RS and RE , 3) then the
Boolean expression on the right part of the rule must be true for vE . Boolean expres-
sions include as special cases the predicates IS NULL or IS NOT NULL.

Dependencies can be manually defined during the lifetime of the META-
BASE repository; they are manually defined and their identification is not as-
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〈eS , eE〉 in (DONOR·BIOSAMPLE·REPLICATE·ITEM·DATASET)
eS .Species = "Homo sapiens"→ eE .Assembly ∈ ["hg19", "hg38", "GRCh38"]

〈eS , eE〉 in (DONOR·BIOSAMPLE)
eS .Gender = "Male"→ eE .Disease 6= "Ovarian cancer"
eS .Gender = "Male"→ eE .Tissue 6= "Uterus"
eS .Gender = "Female"→ eE .Disease 6= "Prostate cancer"

〈eS , eE〉 in (PROJECT·CASESTUDY)
eS .Source = "ENCODE"→ eE .SourceId = "ENCSR.*"

〈eS , eE〉 in (PROJECT·CASESTUDY·ITEM)
eS .Source = "ENCODE"→ eE .SourceId = "ENCFF.*"
eS .Source = "TCGA"→ eE .SourceId = "^[0-9a-z]{8}-([0-9a-z]{4}-){3}[0-9a-z]{12}$"
eS .Source = "ENCODE"→ eE .SourceUrl is not null
eS .Source = "TCGA"→ eE .SourceUrl is not null

〈eS , eE〉 in (BIOSAMPLE)
eS .BiosampleType = "tissue"→ eE .Tissue is not null
eS .BiosampleType = "cell line"→ eE .Cell is not null
eS .isHealthy = false→ eE .Disease is not null
eS .Disease = "B-cell lymphoma"→ eE .Tissue = "Blood"
eS .Disease = "Colon Adenocarcinoma"→ eE .Tissue ∈ ["Colon", "Rectosigmoid junction"]

〈eS , eE〉 in (DATASET·ITEM)
eS .IsAnn = true→ eE .ContentType is not null

〈eS , eE〉 in (PROJECT·CASESTUDY·ITEM·DATASET)
eS .Source = "ENCODE"→ eE .DatasetName = ".*ENCODE.*"
eS .Source = "Roadmap Epigenomics"→ eE .DatasetName = ".*ROADMAP_EPIGENOMICS.*"

〈eS , eE〉 in (EXPERIMENTTYPE)
eS .Technique 6= "Chip-seq"→ eE .Target is null
eS .Technique 6= "Chip-seq"→ eE .Antibody is null

Copyright © 2020 IEEE

Table 4.9: Examples of dependency rules, including a description of the join path connecting the two
attributes used in the left and right parts of the rule.

sisted by a tool, even if we are evaluating to aid the production of such rules us-
ing an Association Rules Mining approach inspired by [254].19 Table 4.9 shows
some examples of dependency rules. For example, the first rule indicates that
if the Species of a DONOR is "Homo sapiens" and the donor is connected to a
DATASET through the only possible path in G, then the Assembly of the dataset
must be one of "hg19", "hg38", or "GRCh38". Dependency rules allow including
in the GCM relevant attributes that are not common to all data types. For ex-
ample, attributes Target and Antibody of EXPERIMENTTYPE are of great interest
in ChIP-seq experiments, but are not significant in other experiments. Thus, a
rule can specify that when Technique is not "ChIP-seq", then these attributes are
null.

Dependencies complement the conceptual model specification; when the
dependencies are specified for attributes belonging to different entities, they
hold for all the instance pairs connected with an arbitrary join path connect-
ing the two entities (this is not ambiguous because the conceptual model is
acyclic). Note that dependency rules can work on attributes of a same table
(intra-tabular) or across different tables of the G (inter-tabular).

Formalization. The Constraint Checker is a source-independent method I =

19In [254] authors try to enhance the metadata authoring process by supporting it with association rules-based sug-
gestions; we would like to use a similar automatic generation of rules to support the content check of our database a
posteriori
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Figure 4.8: Overall architecture for genomic data processing.

〈G, IB〉. It is run on the whole content of the global schema G, to which the
integrity check rule base IB is applied.

Method. The Checker is applied at the end of data mapping and enriching
phases. It produces a report of inconsistencies found in the database, with the
indication of the violated constraints. Our concept of dependency rule applica-
tion is similar to the integrity checks introduced by the ENCODE DCC [250].

4.9 Architecture Implementation

META-BASE is part of a broad architecture, whose main purpose is providing
a cloud-based environment for genomic data processing. The overall system
architecture is presented in Figure 4.8. In the left part of the figure we show
the META-BASE pipeline discussed in Sections 4.3-4.8; the whole pipeline is
configured using parameters provided as a single XML configuration file. De-
tails are provided in Appendix A. Each dataset (on the left) is progressively
downloaded, transformed and cleaned. The data mapping method transforms
cleaned attribute-value pairs into the global database GCM. The normaliza-
tion and enrichment method adds references from the semantically enrichable
attributes to the Local Knowledge Base, which is implemented by relational
tables. Interactive access to the META-BASE repository is provided by a user-
friendly interface (called GenoSurf, discussed in Chapter 6), that exploits the
acyclic structure of the global schema to support simple conjunctive queries at
the center of Figure 4.8).

As shown in the right part of the figure, the META-BASE repository can
also be queried using the GMQL System [258], which supports integrated data
managment on the cloud; the system is accessed through Web Services as a
common point of access from a variety of interfaces, including a visual user
interface, programmatic interfaces for Python [278] and R/Bioconductor, and
workflow-based interfaces for Galaxy and FireCloud. The implementation is
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Figure 4.9: META-BASE software integration process, from the download of a source partition (based
on the prior definition of a GDM dataset), to its transformation and all following phases. Cleaning,
mapping, enriching and checking are only performed on the metadata, while data are left unchanged.
Metadata are flattened from the GCM relational implementation back to the file-based GeCo reposi-
tory. Data and corresponding metadata of each dataset are loaded into the http://gmql.eu/ system
at the end.

executed using the Apache Spark engine, deployed either on a single server or
a cloud-based system.

META-BASE is a software architecture implemented in Scala,20 available
open-source at https://github.com/DEIB-GECO/Metadata-Manager/. The soft-
ware process is depicted in Figure 4.9. The Downloader and Transformer mod-
ules act both on data and on metadata at the same time. The phases of cleaning,
mapping, enriching and constraint checking, instead, only concern metadata.
After completion of the Mapper or of the Enricher, the Flattener is triggered, to re-
generate GDM attribute-value metadata files enhanced with GCM structured
information; this is done to exploit the integration effort performed on meta-
data back also in the file-based representation of the repository. The Loader
consequently prepares the datasets for GMQL interface.

All phases are recorded in the importer_db, while the metadata_db contains
all metadata of the repository samples in a relational format, referenced by sam-
ple IDs. On the right side of Figure 4.9 we can appreciate the three main access
points to our repository:

i) FTP of the file-based GeCo Repository (http://www.gmql.eu/datasets/);
ii) GMQL interface for querying datasets using our tertiary analysis data pro-

cessing environment (http://www.gmql.eu/gmql-rest/);
iii) GenoSurf metadata-based search engine (http://www.gmql.eu/

20https://www.scala-lang.org/

87

http://gmql.eu/
https://github.com/DEIB-GECO/Metadata-Manager/
http://www.gmql.eu/datasets/
http://www.gmql.eu/gmql-rest/
http://www.gmql.eu/genosurf/
http://www.gmql.eu/genosurf/
https://www.scala-lang.org/
http://www.gmql.eu/genosurf/
http://www.gmql.eu/genosurf/


i
i

“output” — 2021/1/14 — 8:34 — page 88 — #112 i
i

i
i

i
i

Chapter 4. Integrating Genomic Data

Source
source_id
name

int
str

PK

RunSource
run_id
source_id
url
output_folder
download_enabled
downloader
transform_enabled
transformer
...

int
int
str
str
bool
str
bool
str
...

PK FK
PK FK

RunSourceParameter
run_id
source_id
description
key
value
type

int
int
str
str
str
str

PK FK
PK FK

Run
run_id
datetime_start
datetime_end
download_enabled
transform_enabled
...
output_folder

int
date
date
bool
bool
...
str

PK

File
file_id
dataset_id
url
name
stage
status
last_update
hash
origin_size
date_processed

int
int
str
str
str
str
date
str
int
date

PK
FK

Dataset
dataset_id
source_id
name

int
int
str

PK
FK

RunFile
run_id
file_id
last_update
origin_last_updat
origin_size
hash
size
status

int
int
date
date
int
str
int
str

PK FK
PK FK

RunDatasetLog
run_id
dataset_id
stage
total_files
downloaded_files

int
int
str
int
str

FK
FK

RunDatasetParameter
run_id
dataset_id
description
key
value
type

int
int
str
str
str
str

FK
FK

RunDataset
run_id
dataset_id
output_folder
download_enabled
transform_enabled
...
schema_url
schema_location

int
int
str
bool
bool
...
str
str

FK
FK

Powered by Vertabelo, Design Your Database Online, http://vertabelo.com 1

Figure 4.10: Logical database schema of the importer_db.

genosurf/) – described thoroughly in Section 6.4 – that allow user-
friendly surfing upon integrated data and also builds scripts for direct file
selection in GMQL.

4.9.1 Data Persistence

The described integration process stands on top of solid persisting supports: a
relational database registers the information regarding the integration process
(importer_db); another relational database registers the metadata content in the
GCM schema, enriched by the local knowledge base and free key-value pairs
(metadata_db); both data and metadata are stored in the file-based system of
GMQL (which is out of the scope of this thesis).

The importer_db is depicted in Figure 4.10. One SOURCE contains many
DATASETs, each of which – in turn – contains many FILEs; the configurations
for the execution are saved in tables RUN, RUNSOURCEPARAMETER and RUN-
DATASETPARAMETER, storing the information input in the XML configuration
file (see Appendix A). Tables RUNFILES and RUNDATASETLOG support statis-
tics computation and reporting to the user (such as total files to download, as
well as failed, outdated and updated files after an execution). Possible values
in the attribute status of a file are [Updated, Failed, Outdated, Compare].

The metadata_db is illustrated in Figure 4.11. The core of the schema rep-
resents the Genomic Conceptual Model; it is extended by two sub-schemata
representing, respectively: the semantic enrichment for specific attributes of
four tables, i.e., the Knowledge Base, and the original unstructured metadata
– in the form of key-value pairs. Note that, out of all metadata extracted from
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Figure 4.11: Logical schema of metadata_db. Red relations represent foreign keys (FK) between core
schema tables; blue relations link core schema values to corresponding ontology vocabulary terms.
Data types are shortened: str for character varying, int for integer, bool for Boolean. PK identifies
primary keys; N marks nullable attributes.

sources, many attributes and their respective values cannot be mapped to the
GCM. In these case, in continuity with the metadata format of GDM, we store
such extra attributes in an unstructured format, i.e., a table PAIR containing
pairs of a key and a value, extended with the item_id of the ITEM which they
refer to; all attributes together form the PK, while the item_id also acts as FK.
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Chapter 4. Integrating Genomic Data

4.10 Architecture Validation

We assessed the META-BASE architecture from different perspectives:

1. Lossless integration: the import process – operated by the Downloader, Trans-
former and Cleaner – does not miss information available in the original
sources and the schema integration effort – operated by the Mapper – cor-
rectly reports the information from the sources into a global schema.

2. Semantic enrichment: the semantic information complementing original
metadata (annotated by the Enricher) effectively identifies mapping to on-
tological concepts.

3. Use evaluation: the repository is useful for the targeted bioinformatics com-
munity and contributes to making their work more efficient.

4.10.1 Lossless Integration

We propose to consider how the integration process was lossless based on two
perspectives, i.e., extensional and intentional. First, by extensional terms, i.e.,
we define our process as a process that satisfies its objective for all the imported
data, by assuming that this could be tried and checked for all the inputs (while
we only show it for a small manually checked sample).

Definition 4 (Extensional Lossless Integration). For each data source i, for each
retrieved partition Pi, for each file f in Pi, for each pair 〈key, value〉, there exists a key′
corresponding to key and a value′ corresponding to value, such that 〈key′, value′〉 is
also a pair and it is stored in the META-BASE repository.

Exploiting this definition, we tried to evaluate the goodness of the ETL pro-
cess operated by the Downloader, Transformer, and Cleaner phases of META-
BASE. This evaluation is hard due to a number of issues, including among
others the following ones: i) reproducing queries on the source just within a
partition of interest is not always possible; ii) query interfaces at sources are
different from ours (e.g., free-text search vs. attribute-based search); iii) sources
assign metadata to different entities (e.g., experiments vs. data files included
in experiments); iv) we cannot generate all possible queries and manual check
of results is time consuming.

We carefully considered all these issues: we studied the source query mech-
anisms at our best and favored an exact-match strategy for the benefit of com-
parison. As the generation of all possible queries and their manual check is not
feasible, we performed the evaluation on a restricted number of meaningful
example queries that show the effectiveness of our approach.

Table 4.10 reports the number of items resulting from seven exact-match
queries as found either in the META-BASE repository or in individual sources.
Note that the queries "H3K27me3", "fat", and "Illumina Genome Analyzer II"
returned a number of matches in our system equal to the sum of matches in the
integrated sources. However, Table 4.10 shows also some unavoidable difficul-
ties, such as semantic mismatch (i.e., items are false positives when they match
the searched string but their attribute’s semantic is different from the one in-
tended by the search). Indeed, the query "MCF-7" suffers from a problem with
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4.10. Architecture Validation

Attribute Query META-BASE ENCODE GDC Roadmap Ep. Cistrome 1000 Genomes

Target H3K27me3 1,990 814 - 381 795 -
Cell MCF-7 1,447 6,442 - - 125 -
Tissue fat 57 - - 57 - -
Tissue breast 23,729 92 24,788 94 264 -
Disease breast cancer 114 - 45 - 163 -
Platform Illumina Genome Analyzer II 981 723 - - - 258
Technique RNA-seq 56,047 5,503 55,650 399 - -

Copyright © 2020 IEEE

Table 4.10: Comparison of number of items from exact-match queries in META-BASE vs. other sources.

ENCODE matches: out of 6,442, only 1,322 (the ones found by our system for
the same source) actually refer to the value describing the cell line of the item,
while the remaining ones match with alternative information, regarding possi-
ble controls, revoked files, or summary of the experiment. Likewise, in ENCODE
the query "RNA-seq" matches 5,503 items only because this information is con-
tained in related series attributes, thus not describing the technique of the item.
Similarly, "breast" and "breast cancer" (to a lesser extent) present a consider-
able number of false positives in GDC: in the first case 1,509 items are wrongly
matched due to information regarding family members (e.g., tagged with XML
key "clinical_patient.family_history_cancer_type"), or information that do not
directly describe the sample. Note that each query to META-BASE repository
is targeted to a specific attribute; thus, it finds items that are correctly related to
the query, as we checked.

Then, we propose a definition of lossless integration in intensional terms, i.e.,
we define the necessary and sufficient conditions for our integration process to
be lossless.

Definition 5 (Intensional Lossless Integration). Given a set of data sources I to
be integrated into a global schema G: i) for every attribute a in G, a is mapped to all
and only the keys in I that express the same semantics; ii) for every value contained in
the database with schema G, this is either set manually or derived from one or multiple
values contained in I , where the corresponding keys are mapped to one attribute a of
G, as defined by i).

Using this definition, we exploit the fact that our schema mapping opera-
tion uses global-as-view-like queries to import data into a warehouse. As we
employ the same principles of the global-as-view theory [228], we also inherit
the soundness and completeness of that approach: our mapping function (as
shown in Tables 4.5 and 4.6) associates to each attribute in the GCM one query
over each of the sources.

4.10.2 Semantic Enrichment

To inform our assessment on the effectiveness of the semantic enrichment pro-
cess of META-BASE, we conducted a validation by engaging six experts with
proven biological knowledge. Manual expert validation is the most common
technique used in current biomedical literature [66, 82, 129], both because ex-
perts can provide the “optimal” outcome, and because the task of evaluating
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Chapter 4. Integrating Genomic Data

Attribute Platform Ethnicity Species Disease Tissue CellLine Technique Feature Target

#annot/total 3/4 20/33 4/4 76/97 82/121 191/282 10/14 9/22 738/787

GOOD 33.34% 74.17% 100.00% 70.84% 95.00% 88.34% 81.66% 70.37% 100.00%
FAIR 50.00% 19.17% - 10.83% 2.50% 4.17% 6.67% 12.96% -
WRONG 16.67% 5.83% - 17.50% 1.67% 6.67% 6.67% 14.81% -
DO NOT KNOW - 0.83% - 0.83% 0.83% 0.83% 5.00% 1.85% -

Table 4.11: Expert validation results.

the semantic matching goodness is not easy to automatize, particularly in a
specialized field as genomics is.

For each considered attribute, we presented to them a random set of an-
notations (i.e., matches between an original value and an ontological term,
equipped with synonyms and its descriptions) automatically produced by the
enrichment procedure. We asked them to rate the associations according to
how accurate they are with respect to their own knowledge.

The questionnaire contains up to 20 matches for each attribute (or less in the
case of Platform, Species, Technique, and Feature, for which less distinct matches
were found), selected randomly from their value pools, therefore considered
representative of the sets. The test allows four choices: 1. GOOD, 2. FAIR,
3. WRONG, 4. DO NOT KNOW.

In Table 4.11, in the first row we indicate, for each attribute, the ratio be-
tween the number of automatically annotated values and the number of their
total distinct values; the ones that are not annotated by the process are directly
assigned to the expert annotation process. In the following rows of the table
we show in detail the results from the attributes presented to experts. The av-
eraged results highlight that in 83.06% of cases the experts marked as good the
examined matches, in 8.67% fair, and only the remaining 7.18% were marked as
wrong. In the 1.08% of cases the experts declared they were not able to evaluate
the match.

This small experiment showed that, in the great majority of cases, we cor-
rectly matched original values with an appropriate ontological term, therefore
also with its synonyms and hierarchies. This brings important advantages,
such as enabling the semantic search process that will be described in Chap-
ter 6.

4.10.3 Use Evaluation

The usefulness of META-BASE can be assessed on the basis of the interfaces
that access its content and benefit from its sound integration approach. In
particular, the META-BASE integrated repository is employed – through the
GMQL Engine interface21 – by external users and within the GeCo project for
several genomic studies, some recently published,22 others still in the process
of publication preparation or review. All such works use the integrated meta-
data repository for locating data and the integrated genomic data repository
for processing genomic data; this use will continue throughout the ERC project

21http://gmql.eu/gmql-rest
22See ‘Genomic Applications’ sections at http://www.bioinformatics.deib.polimi.it/geco/?publications
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and beyond. The integrated metadata repository can be accessed also using
GenoSurf [63], as it will be described in Chapter 6, where we also discuss a
validation of the interface by means of an empirical study involving 40 experts
using the system and assessing their understanding of it with a questionnaire
of composite queries. Detailed results are shown in Section 6.4.2, overall indi-
cating positive feedback. Additionally, we will show that the queries provided
in Section 6.4.1 allow META-BASE users to perform a more efficient search pro-
cess when compared to the same process on the original sources.

4.11 Related Works

Genomic repositories are growing in number, diversity and complexity (see
last Nucleic Acid Research yearly report [319]). In this context, data integration
challenges in the omics domain are many, as reviewed in [150, 153, 221].

There have been efforts to integrate multiple projects in single initiatives
or portals, proposing a unifying data model or strategy to offer integrated ac-
cess and management of genomic data. Several general projects are focused on
offering integrated access to biomedical data and knowledge extracted from
heterogeneous sources, including BioMart [352] (for biomedical databases),
NIF [165] (in the field of neuroscience), Pathway Commons [321] (collecting
pathways from different databases into a shared repository), and ExPASy [14]
(linking many resources in life sciences).

Instead of addressing the problem of automatic integration, some works
promote methodologies to improve the process of metadata authoring (i.e., pre-
liminary preparation and submission) or the manual curation of metadata.
Among these we mention: CEDAR [276], a system for the development,
evaluation, use, and refinement of genomics and biomedical metadata, using
ontology-based recommendations from BioPortal [379]; BioSchemas.org [156],
which applies schemata to online resources making them easily searchable;
DNAdigest [214], promoting efficient sharing of human genomic datasets;
DATS [328] boosting datasets’ discoverability.

In general, we have observed a trend of initiatives that gather tools and
data structures to support interoperability among highly heterogeneous sys-
tems, to help bioinformaticians perform a set of curation and annotation op-
erations. These include community-driven efforts such as bio.tools [191] (an-
chored within ELIXIR23), service providers (EBI [292]), software suites (Bio-
conductor [187]), or lists (http://msutils.org/). By using the EDAM ontol-
ogy [192], single initiatives can build bridges among resources, while conform-
ing to well-established operations, types/formats of data and application do-
mains.

Semantic integration. Many works in the literature consider the problem of
recognizing ontological concepts to perform semantic annotation of data. Bo-
denreider proposes a (dated) survey on the use of ontologies in biomedical data
management and integration [51] and, together with Fung, in [137] surveys

23https://www.elixir-europe.org/
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a more recent use of ontologies in biomedical data management and integra-
tion. Grosjean et al. study differences among portals for bio-ontologies [159].
Oliveira et al. identify key search factors for biomedical ontologies to help
biomedical experts in selecting the best-suited ones in their search cases [286].
Malone et al. in [252] suggest ten rules for selecting a bio-ontology stressing, in
particular, coverage, acceptance (which is higher for ontologies that are under
active community development) and detail. Textual definition in classes are a
positive point, as they allow human experts to evaluate if concepts used for
specific annotations are appropriate.

In this Chapter we have presented BioPortal [379], Ontology Recommender
[253], Ontology Lookup Service [198] and Zooma, as tools that can be used to
annotate text or structured metadata with ontologicl terms. Other tools (not
suited for our purpose, but worth mentioning) are UMLS [50], HeTop [158],
and Annotator [197]. Several works [117, 195, 255, 346] capitalize on these tools
and debate solutions devoted to data integration, by using ontology-based rec-
ommendations.

We did not use any of these ready-to-use approaches; instead, as described
in Section 4.7, the enrichment of our repository required a method tailored to
its specific content.

Consortia’s efforts Integrative efforts have also involved big consortia, as we
have previously shown in Chapter 2. Among cancer-related consortia, we men-
tion the standardization work of GDC, which produced a metadata model and
several data harmonization pipelines, and ICGC [395] also providing a sophis-
ticated metadata structure and services. In the epigenomics domain we men-
tion the work of the International Human Epigenome Consortium [59], of the
Blueprint Consortium (with the curation effort of DeepBlue [9]), and of EN-
CODE, whose Data Coordination Center published interesting results regard-
ing its data curation and integration achievements [138, 179, 182, 250], respec-
tively reporting on ontologies used for annotation, metadata organization, stor-
age system, and duplication prevention.

In addition, GWAS Catalog includes metadata enrichment for the infor-
mation regarding traits,24 and some works, which further improve the single
cosortia’s efforts, have also been produced ( [148] for GEO, [129] for ENCODE).

However, all the mentioned works do not provide so far neither models nor
integration frameworks that are general enough to cover aspects falling outside
the specific focus of their scope. Differently, the META-BASE approach de-
scribed in this chapter is independent from specific sub-branches of genomics
and can be applied to a large number of heterogeneous sources by any integra-
tion designer, in a-posteriori fashion, i.e., without having to follow any guide-
lines in the preliminary production of metadata. At the best of our knowl-
edge, no one before has formally described an integration process for generic
genomic data sources as we did with META-BASE.

24https://www.ebi.ac.uk/gwas/docs/ontology
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CHAPTER5
Snapshot of the Data Repository

“The most serious outbreak on the planet earth is that of the species Homo sapiens.”
— David Quammen, Spillover: Animal Infections and the Next Human Pandemic

In July 2017 the genomic data repository of GeCo contained 18 datasets, about
80,000 GDM samples and less than 0.5 TB of data. It stored experimental
datasets and annotations collected from ENCODE (human broad and narrow
peak signlas, relevant to epigenomic research), Roadmap Epigenomics (human
epigenomic datasets for stem cells and ex-vivo tissues), and TCGA (processed
datasets for more than 30 cancer types, including mutations, copy number vari-
ations, gene and miRNA expressions, methylations); detailed statistics can be
seen in Table 5.1. In that instance, metadata were stored as attribute-value pairs.
Such arrangement was just a preliminary attempt to provide a generic solution
for metadata management.

Since then we have worked towards a much richer repository. In addition
to including other relevant sources and to describing a general framework –
that allows adding more information with minimal effort – this thesis work
has been concerned with giving more relevance, structure and semantics to ge-
nomic datasets metadata. In these years we produced the Genomic Conceptual
Model described in Chapter 3 and included it in the integration and enrichment
pipeline described in Chapter 4.

In the landscape of genomic data platforms that integrate datasets, in 2020
we propose the first solution that joins together such a broad range of hetero-
geneous data, spanning from epigenomics to all data types typical of cancer
genomics (e.g., mutation, variation, expression, etc.), until annotations. The
framework was designed starting from three important data sources: EN-
CODE, Roadmap Epigenomics and TCGA, which provided us with the most
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Chapter 5. Snapshot of the Data Repository

Data source Included datasets #samples Size (MB)

ENCODE HG19_ENCODE_BROAD 1970 23552
HG19_ENCODE_NARROW 1999 7168

Roadmap HG19_EPIGENOMICS_ROADMAP_BED 78 595
Epigenomics HG19_EPIGENOMICS_ROADMAP_BROAD 979 23244

TCGA HG19_TCGA_Cnv 2623 117
HG19_TCGA_DnaSeq 6361 276
HG19_TCGA_Dnamethylation 1384 29696
HG19_TCGA_Mirna_Isoform 9227 3379
HG19_TCGA_Mirna_Mirnaseq 9227 569
HG19_TCGA_RnaSeq_Exon 2544 31744
HG19_TCGA_RnaSeq_Gene 2544 3584
HG19_TCGA_RnaSeq_Spljxn 2544 30720
HG19_TCGA_RnaSeqV2_Exon 9217 114688
HG19_TCGA_RnaSeqV2_Gene 9217 20480
HG19_TCGA_RnaSeqV2_Spljxn 9217 105472
HG19_TCGA_RnaSeqV2_Isoform 9217 49152

Grand total 19 datasets 81012 0.44 TB

Table 5.1: Description of datasets content in old repository in July 2017.

complex integration scenarios that can be faced in genomic metadata integra-
tion. Later, exploiting the generality of the integration framework, we easily
extended our repository by adding a more updated version of TCGA (as ex-
posed by Genomic Data Commons), 1000 Genomes, Cistrome, GENCODE and
Refseq. We are currently finalizing the inclusion of GWAS Catalog, FinnGen
and working towards relevant subsets of GEO. A full list of datasets is available
in Table 5.2, divided by source and assembly. Some sources require periodical
updates of the imported content,1 therefore we distinguish versions with a date
(year_month) and we mark with × the last release included by META-BASE.
Maintaining old versions accessible is important because users may need to
reproduce their past research and computations on previously used datasets
(so we make them available through the GMQL interface (http://gmql.eu/
gmql-rest/); this is a very common practice in bioinformatics. From hereon,
we will refer to the subset of the repository that includes only the latest release
of each source; the search system (described in Chapter 6) only allows to lo-
cate the last versions of a same item, e.g., the ENCODE file ENCFF429VMY is
only available in the GRCh38_ENCODE_NARROW_2020_01, while it cannot
be accessed in the previous datasets.

Overall the repository includes now more than 9 TB of data, with more than
550,000 GDM samples. The version of the repository that considers only the last
versions of datasets currently contains more than 250k processed data items
(with average size in the order of Megabytes), fully interoperable among each
other, ranging from very small experimental files containing few regions cor-
responding to datasets linked to published papers, to huge files of about 300k
region lines. Distinct metadata attribute-value pairs reach about 50 millions.
Figure 5.1 provides a quantitative description; on the left we appreciate the dis-
tribution of MB occupied by the different sources – considering only the most

1The updates are operated in an incremental way, by selecting specific partitions at the source and by replicating
the procedure at different time points, as explained in Section 4.3.
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Data source Assembly Included datasets Last rel. #samples Size (MB)

ENCODE

GRCh38

GRCh38_ENCODE_BROAD_2017_08 366 2908.17
GRCh38_ENCODE_BROAD_2017_11 850 6869.1
GRCh38_ENCODE_BROAD_2019_01 642 5330.21
GRCh38_ENCODE_BROAD_2019_07 633 5278.92
GRCh38_ENCODE_BROAD_2020_01 × 641 4990.33
GRCh38_ENCODE_NARROW_2017_08 10222 119110.9
GRCh38_ENCODE_NARROW_2017_11 11573 128315.69
GRCh38_ENCODE_NARROW_2019_01 12559 141731.77
GRCh38_ENCODE_NARROW_2019_07 12913 142778.98
GRCh38_ENCODE_NARROW_2020_01 × 13466 146800.22

hg19

HG19_ENCODE_BROAD_2017_08 2136 25597.83
HG19_ENCODE_BROAD_2017_11 844 18382.27
HG19_ENCODE_BROAD_2019_01 909 19158.74
HG19_ENCODE_BROAD_2019_07 898 19113.27
HG19_ENCODE_BROAD_2020_01 × 859 18656.86
HG19_ENCODE_NARROW_2017_08 11468 112441.28
HG19_ENCODE_NARROW_2017_11 10342 111925.33
HG19_ENCODE_NARROW_2019_01 12601 140019.11
HG19_ENCODE_NARROW_2019_07 12733 141024.88
HG19_ENCODE_NARROW_2020_01 × 13232 144895.45

Roadmap

hg19

HG19_ROADMAP_EPIGENOMICS_BED 156 967.95
Epigenomics HG19_ROADMAP_EPIGENOMICS_BROAD 979 24332.19

HG19_ROADMAP_EPIGENOMICS_DMR 66 3060.05
HG19_ROADMAP_EPIGENOMICS_GAPPED 979 6875.22
HG19_ROADMAP_EPIGENOMICS_NARROW 1032 11787.53
HG19_ROADMAP_EPIGENOMICS_RNA_expression 399 2452.9

TCGA

GRCh38

GRCh38_TCGA_copy_number 22374 686.17
GDC GRCh38_TCGA_copy_number_2018_12 22371 701.55

GRCh38_TCGA_copy_number_2019_10 × 22627 780.76
GRCh38_TCGA_copy_number_masked 22375 337.13
GRCh38_TCGA_copy_number_masked_2018_12 22374 368.43
GRCh38_TCGA_copy_number_masked_2019_10 × 22616 453.67
GRCh38_TCGA_gene_expression 11091 56542.18
GRCh38_TCGA_gene_expression_2018_12 11092 57112.96
GRCh38_TCGA_gene_expression_2019_10 × 11092 57148.36
GRCh38_TCGA_methylation 12218 1348516.13
GRCh38_TCGA_methylation_2018_12 12218 1348528.88
GRCh38_TCGA_methylation_2019_10 × 12215 1347776
GRCh38_TCGA_miRNA_expression 10947 1502.32
GRCh38_TCGA_miRNA_expression_2018_12 10996 1529.16
GRCh38_TCGA_miRNA_expression_2019_10 × 11081 1572.81
GRCh38_TCGA_miRNA_isoform_expression 10999 5003.92
GRCh38_TCGA_miRNA_isoform_expression_2018_12 10996 4874.87
GRCh38_TCGA_miRNA_isoform_expression_2019_10 × 11081 4934.77
GRCh38_TCGA_somatic_mutation_masked 10188 2279.86
GRCh38_TCGA_somatic_mutation_masked_2018_12 10187 648.59
GRCh38_TCGA_somatic_mutation_masked_2019_10 × 10187 648.59

hg19

HG19_TCGA_cnv × 22632 796.82
HG19_TCGA_dnamethylation × 12860 247742.08
HG19_TCGA_dnaseq × 6914 285.94
HG19_TCGA_mirnaseq_isoform × 9909 4206.73
HG19_TCGA_mirnaseq_mirna × 9909 746.48
HG19_TCGA_rnaseq_exon × 3675 47667.84
HG19_TCGA_rnaseq_gene × 3675 5327.29
HG19_TCGA_rnaseq_spljxn × 3675 44376.74
HG19_TCGA_rnaseqv2_exon × 9825 124343.29
HG19_TCGA_rnaseqv2_gene × 9825 21861.72
HG19_TCGA_rnaseqv2_isoform × 4056 53081.88
HG19_TCGA_rnaseqv2_spljxn × 9825 115087.7

1000 GRCh38 GRCh38_1000GENOMES_2020_01 × 2548 1101897.38
Genomes hg19 HG19_1000GENOMES_2020_01 × 2535 1591854.63

Cistrome GRCh38 GRCh38_CISTROME_broadPeak × 1382 5406.46
GRCh38_CISTROME_narrowPeak × 4683 15875.22

GENCODE GRCh38 GRCh38_ANNOTATION_GENCODE × 24 1797.67
hg19 HG19_ANNOTATION_GENCODE × 20 739.67

RefSeq GRCh38 GRCh38_ANNOTATION_REFSEQ × 31 1324.24
hg19 HG19_ANNOTATION_REFSEQ × 30 274.61

Grand total 67 datasets 564422 9.23 TB

Table 5.2: Description of datasets content of new META-BASE repository as of October 2020.
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Figure 5.1: Partition of the integrated repository according to MB occupied by each source and belong-
ing to files of different assembly.

recent datasets of each one – and on the right the distribution of MB occupied
by files of different assemblies.

Chapter organization. In Section 5.1 we overview one by one the sources in-
cluded in the repository so far, specifying which efforts have been made and
which datasets have been produced. Genomic Data Commons – in particular
its data from The Cancer Genome Atlas – deserves particular consideration as
it required the development of a separate framework (described in Section 5.2)
prior to inclusion into META-BASE. Gene Expression Omnibus is a very com-
plex source (not yet included into META-BASE), as it is very big, heterogeneous
in data types and experiment types. We performed a first successful exercise to
systematize the describing metadata of their samples, as outlines in Section 5.3.

5.1 Included Data Sources

In the following we describe more in detail the content of the repository di-
vided by source. Descriptions are guided by Figure 5.2; each pie-chart shows
how GDM samples (belonging to the most updated versions of the datasets)
are distributed among different datasets within each source.

ENCODE. It is the result of an international collaboration of research groups,
funded by the National Human Genome Research Institute (NHGRI); it col-
lects projects regarding functional DNA sequences that intervene at the pro-
tein/RNA levels. From ENCODE we have included in our data repository all
available processed human data files in narrowPeak and broadPeak format, for
both GRCh38 and hg19 assemblies (see 4 datasets in Figure 5.2a); archived/re-
voked data are avoided. We extract datasets from the ENCODE portal;2 this is
a rapidly changing source so we periodically produce a new download, apply-
ing an API request for the same partition. The repository currently contains 5
versions since mid 2017. Size and number of files from one version to another
change because the content changes at the sources (for example ENCODE pro-
gressively moved from producing more broadPeak files, to preferring narrow-
Peak ones); it is also possible that – at the specific time of our query to their
system – some files are undergoing maintenance and manual curation there-
fore are temporarily unavailable.

2https://www.encodeproject.org/
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Figure 5.2: From top to bottom and from left to right, partition of the integrated repository according
to number of GDM samples per each dataset of: ENCODE, Roadmap Epigenomics, TCGA, TCGA-
GDC, 1000 Genomes, Cistrome, GENCODE/RefSeq annotations.

Roadmap Epigenomics. It is a public resource of human epigenomic data; as
indicated in Figure 5.2b, we included in our repository 6 datasets regarding
NGS-based consolidated processed data about: 1) broad and narrow regions
associated with protein binding sites, histone modifications or open chromatin
areas identified using ChIP-seq (called using MACS2 and producing respec-
tively broadPeak/narrowPeak/gappedPeak format files) or DNase-seq exper-
iments (BED, both narro and broad regions using HOTSPOT peak caller); 2)
differentially methylated regions (dataset DMR in BED format); 3) expression
quantification of regions associated with genes, exons, and other known ge-
nomic regions of interest (dataset RNA Expression).

The Roadmap Epigenomics Project has been concluded; we do not retrieve
datasets periodically, as they are not updated at the source.3 The data and doc-
umentation we refer to is described in [216]. Later, ENCODE included part of
the data in its portal, by reprocessing it using its normalized pipelines. Instead,

3http://www.roadmapepigenomics.org/

99

http://www.roadmapepigenomics.org/


i
i

“output” — 2021/1/14 — 8:34 — page 100 — #124 i
i

i
i

i
i

Chapter 5. Snapshot of the Data Repository

we include original data. We extract data directly from the project’s server,4
while for metadata we use the dedicated spreadsheet.5

The Cancer Genome Atlas and Genomic Data Commons. TCGA [377] is the
most relevant source for cancer genomics, with data about DNA sequencing,
RNA and miRNA expressions, copy number variations, somatic mutations,
and methylation levels. At the time of writing, we imported 12 datasets with
a total of 106,780 GDM sample-pairs partitioned as in Figure 5.2c, highlight-
ing that methylation beta levels are contained in the biggest files, in general.
Such datasets are directly derived from data available on the old TCGA por-
tal and transformed into GDM format through the TCGA2BED6 pipeline [98],
implemented by authors from the GeCo group who developed an automatic
pipeline to transform into BED format (thus GDM compliant format) the data
originally available at The Cancer Genome Atlas portal (https://tcga-data.
nci.nih.gov/), based on the hg19 reference assembly.

The TCGA portal is now deprecated and has been replaced by the Genomic
Data Commons project (GDC [160], https://gdc.cancer.gov/), which pro-
vides data for the GRCh38 assembly; we transformed into BED format also this
updated version of the TCGA data, by creating the OpenGDC tool, available
at http://geco.deib.polimi.it/opengdc/. The datasets are directly derived
from data available on the Genomic Data Commons portal and transformed
into GDM format through the OpenGDC7 pipeline [68]. At the time of writ-
ing, we imported 7 GRCh38 datasets with a total of 100,899 data files, see Fig-
ure 5.2d. OpenGDC metadata curation process is further detailed in Section 5.2.

1000 Genomes. It is a very important data source of normal population vari-
ants; they analyzed samples from around 2.5k donors of 26 different popula-
tions from all over the world (such as, e.g., Japanese in Tokyo, Japan, Esan in
Nigeria, Toscani in Italia). 1000 Genomes source files are retrieved from their
FTP repository.8 As of today, we include two very big datasets – around 1 TB
each – one for hg19 assembly (2,535 GDM samples) and one for GRCh38 assem-
bly (2,548 GDM samples). Figure 5.2e shows that the two datasets are very well
balanced, however the next phases of the project will only update the GRCh38
version.

Cistrome. We imported data relevant to ChIP-seq experiments targeted to
histone modifications (while we will include next transcription factor, chro-
matin regulator binding sites, and chromatin accessibility datasets). The in-
cluded data is origianlly from ENCODE, Roadmap Epigenomics and GEO ex-
periments, but it has been thoroughly curated and re-processed homogenous
pipelines.9 The datasets we show in Figure 5.2f are contained in our private
repository but are not publicly available on GMQL interface as they are not

4https://egg2.wustl.edu/roadmap/data/
5https://egg2.wustl.edu/roadmap/web_portal/meta.html
6Documentation is available at http://bioinf.iasi.cnr.it/tcga2bed/data/TCGA2BED_format_definition.pdf.
7Documentation is available at http://geco.deib.polimi.it/opengdc/data/OpenGDC_format_definition.pdf
8https://www.internationalgenome.org/
9The pipelines are detailed at http://cistrome.org/db/#/about/.
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5.2. OpenGDC: Integrating Cancer Genomic Data and Metadata

released publicly. However, we make their data searchable over metadata
in GenoSurf. Original files can be retrieved by interested users directly from
http://cistrome.org/db/#/bdown, upon signing their usage agreement.

Genomic Annotations from GENCODE and RefSeq. GENCODE aims to
create a comprehensive set of annotations, including genes, transcripts, exons,
protein-coding and non-coding loci, as well as variants. For the hg19 assem-
bly we included releases 10 (December 2011) and 19 (December 2013), whereas
for GRCh38 we imported versions 22 (March 2015), 24 (December 2015) and 27
(August 2017).10 RefSeq is a stable reference for genome annotation, analysis
of mutations and studies on gene expression. We imported annotation files of
GRCh38 v10 and hg19 v13 releases.11 Figure 5.2g shows the number of samples
available for different genomic elements; each file has all possible annotations
for genes, exons, CDS, UTR, etc.

Next Sources. We are currently proceeding in the analysis of other sources
to be added next. ICGC is an important addition to enrich the cancer ge-
nomics contribution of our work. It can be used together with TCGA samples
to produce interesting pan-cancer analyses [299]. We already implemented the
download and transform phase of GWAS-related sources (i.e., GWAS Catalog
and FinnGen project12). While modeling the metadata, we understood that the
concept of "study" should be mapped on our ITEM (containing all regions cor-
responding to variants reported in a single GWAS), their "publication" is our
CASESTUDY, a "trait" can be expressed using our Disease attribute. The biolog-
ical view of the GCM should be slightly modified in order to capture the con-
cepts of "cohort" (a population that is divided into case and control individu-
als, either exhibiting or not a certain trait) and "ancestry" (of donor individuals)
that are relevant for GWAS. Such need highlighted the insufficient flexibility of
our framework based on the GCM global schema. However, we accounted for
these additional information using 〈key, value〉 pairs, which our current search
infrastructure (especially GenoSurf) allows to search, match, and combine with
other data.

The Gene Expression Omnibus is certainly a very attractive data source, pos-
sibly the biggest and most various one in genomics, poor in data curation and
structure. This hinders the possibility of easily defining partitions of its con-
tent. We have made a first attempt to systematizing their metadata, by extract-
ing structured information from their experiments unstructured descriptions.
The results of such effort are reported in Section 5.3.

5.2 OpenGDC: Integrating Cancer Genomic Data and Metadata

In 2019 TCGA data has been included in the repository following a data cu-
ration process applied on the datasets retrieved from the Genomic Data Com-

10The GENCODE datasets were retrieved from https://www.gencodegenes.org/releases/.
11The RefSeq datasets were retrieved from https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/.
12https://www.finngen.fi/en
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Figure 5.3: OpenGDC metadata pipeline overview.

mons portal, which currently exposes the official and most updated TCGA data
version.

The region data files were enriched thoroughly and transformed from var-
ious formats into the unique GDM format; however the focus of this section
it on metadata (which is my personal contribution to the work). To popu-
late the OpenGDC metadata files (indexed with an opengdc_id, which identi-
fies the GDM sample-pair), we retrieve clinical/biospecimen information from
the GDC data type called Clinical and Biospecimen Supplements;13 they are a
special data type that contains data documentation; this information is stored
in two different XML format files, originally provided by Biospecimen Core
Repository (BCR) under contract of the NCI. In addition, we consider other
properties retrieved using the GDC APIs. Finally, we add manually curated
attributes computed within our standardization pipelines.

Given a converted experimental data file in GDM format, identified by an
opengdc_id, the corresponding metadata file is generated according to the
pipeline shown in Figure 5.3. Note that, for this source, the basic unit to be
mapped into the GDM sample (or the GCM item) is the aliquot,14 which is de-
rived from one input GDC file for most data types, from three files for Gene
Expression Quantification data type, and from four files for Masked Somatic
Mutation data type.

On the top left corner, we consider Biospecimen and Clinical Supplements;
they are organized by patient (identified by the bcr_patient_uuid attribute),
with a patient typically related to many aliquots. Multiple OpenGDC meta-
data files are created, one for each aliquot reported in the patient biospecimen

13A Clinical Supplement is a collection of information about demographics, medical history (i.e., diagnosis, treat-
ments, follow ups, and molecular tests), and family relationships (i.e., exposure and history) of a particular patient. A
Biospecimen Supplement instead includes information associated with the physical sample taken from a patient and
its processing.

14An aliquot is the smallest data unit of GDC, referring to the biological material analyzed from a single patient of
the study https://docs.gdc.cancer.gov/Encyclopedia/pages/Aliquot/. We consider the aliquot as the urelement for
GDC. We map it on the GCM item and GDM sample, our genomic basic data unit. We refer the reader to our discussion
on granularity in Section 4.1.
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file. We replicate the full content of the Clinical Supplement of a patient over
all metadata files regarding the aliquots of the patient. The resulting metadata
attribute keys start with the clinical__ prefix. A Biospecimen Supplement,
instead, contains a unique section on the patient, but also distinct sections on
multiple samples, their portions, and the resulting aliquots. In each aliquot
metadata file we replicate the common parts about the patient (and, in case,
about related samples/portions), while the remaining content of the biospeci-
men file is divided among the different metadata files according to the specific
aliquot each of them refers to. The resulting metadata attribute keys start with
the biospecimen__ prefix.

On the bottom left corner of Figure 5.3, we query the GDC Data Model15

content using the GDC RESTful API links. We call the API services once for
each aliquot listed in a Biospecimen Supplement and each data type of inter-
est, by specifying the aliquot_uuid and the data_type, and then associate with
each OpenGDC data file all the information retrieved in the obtained response.
The extracted attributes describe a data file along different GDC Data Model
conceptual areas (i.e., administrative, biological, clinical and analysis). Rele-
vant administrative entities include the PROGRAM (i.e., the broad framework
of goals to be achieved by multiple experiments, such as TCGA), the PROJECT
(i.e., the specifically defined piece of work that is undertaken or attempted
to meet a single requirement, such as TCGA-LAML – which refers to Acute
Myeloid Leukemia), the CASE (i.e., the collection of all data related to a specific
subject in the context of a specific project, such as a patient). Among biological
entities there is the SAMPLE (i.e., any material sample taken from a biologi-
cal entity for testing, diagnostic, propagation, treatment, or research purposes)
and the ALIQUOT (i.e., pertaining to a portion of the whole; any one of two
or more samples of something, of the same volume or weight). With the aim
of importing GDC data into META-BASE repository, all such elements have
been mapped to the GCM schema according to the mapping rules defined in
Section 4.6.

Clinical entities include TREATMENT (i.e., therapeutic agents provided, or
to be provided, to a patient to alter the course of a pathologic process) and
DIAGNOSIS (i.e., data from the investigation, analysis and recognition of the
presence and nature of disease, condition, or injury from expressed signs and
symptoms). Analysis entities include harmonization pipelines such as "Copy
Number Variation" and "Methylation Liftover", each related to one data type.
As the GCM does not include a specific space for clinical metadata – because
they are not common to all genomic data sources but source-specific – these
information are retained in the form of pairs of keys and values.

In case an OpenGDC data file corresponds to n original GDC files (e.g.,
OpenGDC gene expression data files that derive from 4 input files), the JSON
response to the corresponding API call is divided in n partitions, each contain-
ing information on one single GDC original file and on the related aliquot (the
information of the latter one is replicated in each partition). Then, in the final
OpenGDC metadata file, we group the information from the original files (by

15The GDC Data Model is available at https://gdc.cancer.gov/developers/gdc-data-model
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Preserved Different attributes Values

biospecimen__bio__analyte_type RNA
× gdc__cases__samples__portions__analytes__analyte_type RNA

× biospecimen__admin__day_of_dcc_upload 31
clinical__admin__day_of_dcc_upload 31

× gdc__cases__primary_site Ovary
gdc__cases__project__primary_site Ovary

× gdc__cases__samples__portions__analytes__aliquots__concentration 0.17
gdc__cases__samples__portions__analytes__concentration 0.17

Table 5.3: Example of choices produced by the data redundancy solver.

concatenating multiple values in a single key-value pair), while we consider the
aliquot information only once. All these metadata attribute names are prefixed
with gdc__ and obtained by flattening the hierarchical structure of the JSON
responses, i.e., through concatenation of JSON keys at each traversed level of
the response structure.

As an addition to GDC inputs, we generate a set of manually curated
key-value pairs (gathered in the group of metadata keys prefixed with manu-
ally_curated__). These contain information that is missing in GDC and derived
from other sources or specified by our system. We add the data format (e.g.,
BED file textual format), URLs of the data and metadata files on the FTP server
publicly offered by OpenGDC, the genome built (i.e., reference assembly), the
id, checksum, size and download date of the data file, and the status of the tissue,
which indicates if it is of a normal or control sample.

Combining Clinical/Biospecimen Supplement information with GDC Data
Model information leads to value redundancy, which is due to the fact that
there does not exist a specific data model for the Supplement data and it is
impossible to determine a priori which information are non-overlapping. We
ascertained the presence of attributes holding different names but same seman-
tics and associated values. We profiled all input data, obtaining sets of different
keys that present same values within a same metadata file. Example groups of
key-value pairs with different keys and same value, along with the correspond-
ing chosen candidate key preserved in each group, are shown in Table 5.3.

The preliminary profiling activity was used to provide guidance to create
a list of data redundancy heuristics — with the aim to remove the redundant
metadata attributes and their values — applied by the Data redundancy solver
(at the center of Figure 5.3).

The heuristics have been primarily devised as a result of a long email ex-
change with the GDC Support team (support@nci-gdc.datacommons.io) that
helped us to understand how their ingestion process works: a restricted num-
ber of attributes from the supplements are already provided with a defined
mapping to the data model attributes, while for others the relation is still un-
certain (i.e. not curated yet by the GDC) — for these we reconstructed com-
mon semantics through a semi-automated approach. Moreover, clinical and
biospecimen supplements cover partially overlapping semantics spaces. Thus
we make the deliberate decision of extracting only one of them. Finally, the
new data model entities are non overlapping but the APIs provide their con-

104

support@nci-gdc.datacommons.io


i
i

“output” — 2021/1/14 — 8:34 — page 105 — #129 i
i

i
i

i
i

5.3. Towards Automated Integration of Unstructured Metadata

tent in a nested fashion (a problem similar to the one of ENCODE, addressed in
the Cleaner module explanation – Section 4.5). For example, a project is related
to a case with a functional dependency, therefore the project information can be
uniquely reached through the case entity. As a consequence, any information
related to the case__project group is redundant w.r.t. the one given by a dual
attribute with the same suffix. Analogously, aliquots are comprised in analytes
(N aliquots are in 1 analyte), therefore we keep the information that is most
specific, pertaining to the aliquot.

Note that this is a classical problem of data fusion. Among well-known
strategies [112], OpenGDC problem of intra-source redundancy is resolved
with a simple rule-based method. We have summarized our approach to solve
redundancy in four rules, derived from the above mentioned heuristics, which
are executed in a specific order. At the time of writing, these cover the whole
space of possibilities; however this set will be updated as the need for new
rules will arise, in conjunction with updates of OpenGDC scheduled releases:

1. verify mappings on the official GDC GitHub repository,16 specifying
which fields from the BCR Supplements correspond to the GDC API fields:
when redundant, keep the second ones;

2. when a field from the BCR Biospecimen Supplement is redundant w.r.t. a
field of the BCR Clinical Supplement, keep the first one;

3. when a field belonging to the case group is redundant w.r.t. a
case__project group field, keep the first one;

4. when a field belonging to the analytes group is redundant w.r.t. a
analytes__aliquots group field, keep the second one.

To facilitate the use of metadata key-value pairs, in case keys are very long
and cumbersome, we simplify them through the Cleaner (Section 4.5).

The GDC data source was very complex, therefore required to be handled
separately from the META-BASE architecture. This was the result of a collab-
oration with Roma Tre University group of research who realized the practi-
cal implementation of the system. We stress the point that all the operations
performed within this pipeline are coherent with META-BASE steps (down-
load, transform, clean). The datasets produced by OpenGDC contain GDM-
compliant samples, that are integrated within the META-BASE repository and
undergo the mapping process as all other sources.

5.3 Towards Automated Integration of Unstructured Metadata

The data of the Gene Expression Omnibus is of fundamental importance to the
scientific community for understanding various biological processes, includ-
ing species divergence, protein evolution and complex disease. The number of
samples in the database is growing exponentially (see Figure 5.4), and while
tools for retrieving information from GEO datasets exist [200], large-scale anal-
ysis is complicated due to heterogeneity in the data processing across studies

16The GDC GitHub repository is available at https://github.com/NCI-GDC/gdcdatamodel/tree/develop/
gdcdatamodel/xml_mappings
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Figure 5.4: Growth over time of number of sam-
ples available in the GEO database.

Figure 5.5: Spreadsheet available to researchers to
annotate their study and data submissions in
GEO.

and most importantly in the metadata describing each experiment. When sub-
mitting data to the GEO repository, scientists enter experiment descriptions in a
spreadsheet (see Figure 5.5) where they can provide unstructured information
and create arbitrary fields that need not adhere to any predefined dictionary.17

The validity of the metadata is not checked at any point during the upload pro-
cess,18 thus the metadata associated with gene expression data, usually does
not match with standard class/relation identifiers from specialized biomedical
ontologies. The resulting free-text experiment descriptions suffer from redun-
dancy, inconsistency, and incompleteness [154, 391].

In the work hereby described, we developed automated machine learning
methods for extracting structured information from the heterogeneous GEO
metadata, with the aim to populate META-BASE repository, using the at-
tributes represented by the Genomic Conceptual Model (Section 3.2), which
recognizes a limited set of concepts supported by most genomic data sources.
In particular, from the text we extract instances that can be mapped into GCM
concepts, assuming they are interconnected by GCM’s relationships. Note that
in the specific application described in this section we focused on extracting
information that is already present in the unstructured text. However, the used
learning technique, allowed to infer also null values that are existing but un-
known [30].

Two different approaches were evaluated for the metadata extraction prob-
lem, both leveraging recent advances in Deep Learning for text analysis:

(1) The first approach builds a multi-label classifier to predict metadata at-
tribute values using a deep embedding, and will serve as our baseline for

17Gonçalves and Musen report in [154] that, in the description field, submitters have typed the concept "age" in at
least 30 ways, using different choices of upper/lower case letters (age, AGE, Age), adding special characters (Àge),
specifying measure units in many creative ways.

18Information regarding the NGS sequences submission is at https://www.ncbi.nlm.nih.gov/geo/info/seq.html.
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…

INPUT

Donor.species:

Homo Sapiens

Biosample.type:

cell line

Biosample.cell:

Peripheral blood 

mononuclear cells

Biosample.disease:

Mycobacterium 

tuberculosis

Dataset.assembly: 

hg19

ExperimentType.technique:

Chip-Seq

ExperimentType.feature:

histone mark

ExperimentType.target: 

H3K9me3

GCM SCHEMA OUTPUT
…

Figure 5.6: Example mapping task: from GEO sample GSM1565792 input text, into GCM attributes,
to finally produce output key-value pairs.

later experiments. We used RoBERTa [235], a variation on the BERT [109]
language model, a self-attention based transformer model [367].

(2) The second makes use of a novel translation-based approach where pow-
erful sequence-to-sequence models are leveraged to solve the metadata
extraction problem in a more elegant and extensible fashion. We use
the Encoder-Decoder LSTM with a Luong attention [245] mechanism and
also OpenAI GPT-2, a more powerful sequence-to-sequence pre-trained
language model [306], whose structure is based on Transformer De-
coders [367].

To train our models we made use of data from GEO, Cistrome and EN-
CODE. Each training sample is composed of input-output pairs, where input
corresponds to the textual description of a biological sample and output is a
list of attribute-value pairs. Figure 5.6 shows an example translation task: on
the left, a metadata record from GEO repository describing a human biological
sample, in the middle the target schema, and on the right the resulting output
pairs. The text output produced by the translation model should be human and
machine readable, so we used a dash-separated list of "key: value" pairs, Cell
Line: HeLa-s3 - Cell Type: Epithelium - Tissue: Cervix.

5.3.1 Experiments

We designed three experiments to validate our proposal. Two experiments
aimed to evaluate and compare results of the two translation-based models
mentioned above; a third experiment, instead, tested the performance of the
best proposed model on randomly chosen instances from GEO. For experimen-
tal setup we refer interested readers to the Appendix B.

Datasets

We make use of data from GEO, Cistrome and ENCODE for our experiments.
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Attributes %"None" #distinct values

Cell line 52 519
Cell type 19 152
Tissue type 29 82
Factor 0 1252

Table 5.4: Cistrome attributes: percentage of
"None" and count of distinct values.

Attributes %"None" #distinct values

Age 1 169
Age units 32 6
Assay Name 0 26
Assay type 0 9
Biosample term name 0 9
Classification 1 6
Ethnicity 74 15
Genome assembly 16 11
Health status 53 65
Investigated as 48 22
Life stage 1 17
Organism 1 5
Project 0 3
Sex 1 10
Target of assay 48 344

Table 5.5: ENCODE attributes: percentage of
"None" and count of distinct values.

• GEO: Input text descriptions were taken from the GEOmetadb
database [399]. We extracted the Title, Characteristics_ch1, and Descrip-
tion fields, which include information about the biological sample from
the gsm table. We formatted the input by alternating a field name with its
content and separating each pair with the dash "-" character, e.g., Title:
[...] - Characteristics: [...] - Description: [...], thus al-
lowing the model to learn possible information patterns, for example,
information regarding "Cell Line" is often included in the "Title" section.
Syntactical pre-processing was also performed.

• Cistrome: We selected this source as its samples have been manually
curated and annotated with the cell line, cell type, tissue type, and factor
name. We downloaded in total 44,843 metadata entries from Cistrome Data
Browser19 with the four mentioned attributes. As indicated in Table 5.4,
three of the fields contain many "None" values, but these should not be in-
terpreted as missing, since they actually indicate that the specific sample
does not carry that kind of information.

• ENCODE: we downloaded 16,732 metadata entries from ENCODE web
portal,20 by requesting the fields listed in Table 5.5 for each experiment
sample. The free text input related to each sample was retrieved by either:
(i) exploiting a reference to the GEO GSM (only available for 6,233 entries)
or (ii) concatenating the additional ENCODE fields Summary, Description
and Biosample Description.

Setup and Results

Experiment 1 and 2 allowed to compare performances of the three analyzed
models on two different datasets: Cistrome (with input from GEO) and EN-
CODE (with input both from GEO and ENCODE itself). We evaluated the
performances of LSTM (with attention mechanism) and GPT-2 seq2seq models

19http://cistrome.org/db/#/bdown
20https://www.encodeproject.org/
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Figure 5.7: Experiment 1: per-class accuracy for the three models on Cistrome data.

Model # Epochs Accuracy Precision Recall
RoBERTa 69 0.90 0.89 0.91
LSTM + Attention 15 0.62 0.65 0.62
GPT-2 47 0.93 0.93 0.93

Table 5.6: Experiment 1: overall accuracy, precision, and recall. Precision and recall are weighted by
the number of occurrences of each attribute value.

against RoBERTa, using samples from Cistrome (Experiment 1) and samples
from ENCODE (Experiment 2).

In both experiments, overall GPT-2 outperforms both Encoder-Decoder
LSTM and RoBERTa, as it can be observed in Tables 5.6-5.7. Results divided
by class are shown in in Figure 5.7 for Experiment 1 and in Figure 5.8 for Ex-
periment 2.

Experiment 1 considerations. From Figure 5.7, RoBERTa seems to perform
better for classes that contain a low number of distinct values, i.e. cell type
and tissue type (which contain 380 and 249 possible values). Instead, for cell
line and factor (both with more than a thousand possible values) GPT-2 out-
performs RoBERTa. The number of "None" values is taken into consideration
(Table 5.4), the classes cell line, cell type and tissue type present a relevant per-
centage of "None", the weighted precision and recall analysis, however, shows
high scores, despite the unbalance of values count; this implies that the models
were able to correctly classify samples which lack of labels for certain classes.

Experiment 2 considerations. From Figure 5.8, we appreciate a similar be-
haviour as in Experiment 1, i.e., translation models perform better for attributes
with larger amount of distinct values. The attributes target of assay and biosam-
ple term name present the highest number of distinct values and GPT-2 far ex-
ceeded RoBERTa in terms of accuracy. Instead, this experiment highlights how
the LSTM model with attention does not perform well for a larger amount of
target attributes, at least with the tested model size. The labels health status and
ethnicity presented several "None" values (74% and 53%), but both RoBERTa
and GPT-2 were able to predict correctly almost the totality of samples, pro-
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Figure 5.8: Experiment 2: per-class accuracy of the three models on ENCODE data.

Model # Epochs Accuracy Precision Recall
RoBERTa 71 0.90 0.89 0.90
LSTM + Attention 22 0.19 0.19 0.19
GPT-2 48 0.96 0.96 0.96

Table 5.7: Experiment 2: overall accuracy, precision, and recall. Precision and recall are weighted by
the number of occurrences of each attribute value.

ducing results with high weighted precision and weighted recall.
Previous works aimed to extract a restricted set of labels (such as age and sex)

with unsatisfactory results; they often limited the target age unit to "years" or
"months" and the target sex to only "Male" and "Female". A lot of different sce-
narios for the input text made it impossible – for previous work – to extract cor-
rectly the target attributes (for example cases for which the information needs
to be inferred, or when the experiment presents multiple cells, consequently
multiple ages and multiple sex). This experiment shows that a our proposed
translation approach can outperform state-of-the-art approaches, additionally
handling a different number of non-standard cases.

Experiment 3. With the last experiment we studied the behaviour of GPT-2
on a realistic scenario involving randomly chosen samples from GEO. These
samples were not selected based on presence in a database (Cistrome or EN-
CODE) and thus provide a realistic test scenario for the proposed use-case of
the system. No reference labels were available for the randomly selected set
of 200 input descriptions, so each instance was manually checked to provide
ground-truth labels. The system was trained using both the Cistrome and EN-
CODE datasets We note the heterogeneity between the training and test exam-
ples for this experiment.

Table 5.9 shows examples of input and output of our procedure. Overall,
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Condition Accuracy Precision Recall
Label present in the input 0.83 0.70 0.68
Label absent from the input 0.062 0.038 0.038

Table 5.8: Experiment 3: Results of prediction of 200 manually labelled samples for ENCODE class
biosample term name.

Input Sentence Output Sentence

DNase-seq on 91 day old male fetal human
kidney tissue left kidney female embryo (59
days) and male embryo (91 day)

Assay name: DNase-seq - Assay type: DNA acces-
sibility - Target of assay: None - Genome assem-
bly: GRCh38 - Biosample term name: left kidney -
Project: ENCODE - Organism: Homo sapiens - Life
stage: embryonic - Age: 91,59 - Age units: day - Sex:
male,female - Ethnicity: None - Health status: None
- Classification: tissue - Investigated as: None

RNA Bind-n-Seq (RBNS) pulldown experi-
ment against PUM1

Assay name: RNA Bind-n-Seq - Assay type: RNA
binding - Target of assay: PUM1 - Genome assem-
bly: hg19 - Biosample term name: cell-free sample
- Project: ENCODE - Organism: None - Life stage:
None - Age: None - Age units: None - Sex: None -
Ethnicity: None - Health status: None - Classifica-
tion: None - Investigated as: RNA binding protein

ChIP-seq against eGFP-efl-1 in L1 larva
worms. strain YL418 (unc-119(ed3)III; vrIs65
[ pGES-1::EFL-1::GFP FLAG:EFL-1 3’UTR,
unc-119 (+) ] ) whole organism L1 larva ge-
netically modified using bombardment

Assay name: ChIP-seq - Assay type: DNA binding -
Target of assay: efl-1 - Genome assembly: ce11,ce10
- Biosample term name: whole organism - Project:
modENCODE - Organism: Caenorhabditis elegans
- Life stage: L1 larva - Age: unknown - Age units:
None - Sex: mixed - Ethnicity: None - Health sta-
tus: None - Classification: whole organisms - Inves-
tigated as: cofactor,transcription factor

datatype: DnaseSeq; datatype descrip-
tion: DNaseI HS Sequencing; labver-
sion: baseAlignCounts.pl v 1,fseq v 1.84,
iff_generic_male,p-value cutoff: 0.05; repli-
cate: 1,2; cell: Colo829; cell organism: hu-
man; cell description: malignant melanoma;
cell karyotype: cancer; cell sex: M; lab-
version: baseAlignCounts.pl v 1 Duke hu-
man Colo829 DNase-seq COLO829 malig-
nant melanoma

Assay name: DNase-seq - Assay type: DNA acces-
sibility - Target of assay: None - Genome assembly:
GRCh38,hg19 - Biosample term name: COLO829 -
Project: ENCODE - Organism: Homo sapiens - Life
stage: adult - Age: 45 - Age units: year - Sex: male
- Ethnicity: Caucasian - Health status: metastatic
melanoma - Classification: cell line - Investigated as:
None

Table 5.9: Examples of GPT-2 translations of randomly selected GEO descriptions

the results showed that the OpenAI GPT-2 performed considerably better than
others. In addition to surprising performances, we noted interesting findings
regarding particular cases. In particular we found cases in which the output
contains a label that is:

1. unseen in training data, e.g., no sample contained target of assay: MYC-1.
2. absent from input description, e.g., for the input "HNRNPK ChIP-seq in

K562 K562 HNRNPK ChIP-seq in K562" the output correctly contained: Or-
ganism: Homo sapiens - Age: 53 - Age units: year - Sex: female - Health status:
chronic myelogenous leukemia (CML), etc.

3. multi-valued: e.g., a particular GEO record contained samples from both
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male and female donors21, and the output correctly noted both genders:
"Sex: male,female ...".

4. reordered with respect to the input, e.g., an input containing "Tfh2_3 cell
type: Tfh2 CD4+ T cell; ..." correctly produced the output "Biosample term
name: CD4-positive Tfh2".

This preliminary experimentation showed that this is a very promising ap-
proach to address structured metadata extraction from data sources such as
GEO where no data model is imposed a priori. We are working towards em-
bedding this procedure in the META-BASE pipeline, which will require also
transformation of region data files.

5.3.2 Related Works

There is a compelling need to structure information in large biological datasets
so that metadata describing experiments is available in a standard format and
is ready for use in large-scale analysis [184]. In recent years, several strate-
gies for annotating and curating GEO database metadata have been developed
(see Wang et al. [375] for a survey). We group the approaches into five non-
exclusive categories: 1) manual curation, 2) regular expressions, 3) text classi-
fication, 4) named-entity recognition, and 5) imputation from gene expression.
Their limits have been overcome using the method described in this Section,
where translation models are used in a completely novel manner to translate
free text into a well structured schema.
Manual curation. Structured methods for authoring and curating metadata have
been promoted by numerous authors [169,232,277]. Moreover, a number of bio-
logical metadata repositories (e.g. RNASeqMetaDB [164], SFMetaDB [230] and
CREEDS [376]) manually annotate their datasets, guaranteeing high accuracy.
This option is however, highy time-consuming and hardly practicable as the
volume and diversity of biological data grows.
Regular expressions. The use of regular expressions for extracting structured
metadata fields from unstructured text is common [148]. This simple technique
is limited, however, to matching patterns that are:

• expressible: yet identifiers for biological entities often do not follow any
particular pattern (e.g., IMR90, HeLa-S3, GM19130 all represent cell lines);

• explicit: therefore matching, e.g., the cell line K562 cannot possibly produce
the implied (non-appearing) knowledge on sex, age, or disease informa-
tion;22 and

• unique: i.e., the technique cannot discern between multiple string matches
in the same documentwith possibly different semantics (breast tissue vs.
breast cancer).

Text classification. Machine learning techniques can be used to predict the value
of metadata fields based on unstructured input text. Posch et al. [300] proposed

21The input in this case was: microRNA profile of case NPC362656 survival status (1-death,0-survival): 0; gender (1-male,2-
female): 1; age (years): 56; ...

22K562 is a widely known cell line originally extracted from tissue belonging to a 53 year-old woman affected by
myeloid leukemia
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a framework for predicting structured metadata from unstructured text using
tf-idf and topics modeling based features. The limitations of the classification
approach include that a separate model needs to be trained for each attribute
to extract and that values of the attribute need to be known in advance.
Named-entity recognition. NER models are often used to extract knowledge from
free text data including medical literature. They work by identifying spans
within an input text that mention named entities, and then assigning these
spans into predefined categories (such as "Cell Line", "Tissue", "Sex", etc.). By
learning their parameters and making use of the entire input sentence as con-
text, these systems overcome the limitations of simple regular expression based
approaches. In particular, certain works [139, 184, 327] have employed NER to
to map free textual description into existing concepts from curated specialized
ontologies that are well-accepted by the biomedical community to improve the
integrated use of heterogeneous datasets. In practice, training NER models
can be difficult, since the training sequences must be labelled on an individual
word level. This is especially time consuming in the genomics domain, where
biomedical fields require specific and technical labels.
Imputation from gene expression. The automated label extraction (ALE) plat-
form [148], trains ML models based on high-quality annotated gene expression
profiles (leveraging on text-extraction approaches based on regular expression
and string matching). However, the information is limited to a small set of
patient’s characteristics (i.e., gender, age, tissues). Authors in [122] also pre-
dict sample labels using gene expression data; a model is built and evaluated
for both biological phenotypes (sex, tissue, sample source) and experimental
conditions (sequencing strategy). The approach is applied on repositories al-
ternative to GEO (i.e., training from TCGA samples, testing on GTEx [238] and
SRA).
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CHAPTER6
Searching Genomic Data

“When someone seeks – said Siddhartha – then it easily happens that his eyes see only the thing that he seeks, and
he is able to find nothing, to take in nothing. [...] Seeking means: having a goal. But finding means: being free,

being open, having no goal.”
— Herman Hesse

In our ongoing effort to provide the genomics community with useful con-
cepts and tools, our next challenge is to make the content of the META-BASE
repository searchable. We act in a context that shows growing interest for ex-
ploiting the richness of ontological knowledge and facilitate the exploration of
scientific datasets and their features; therefore we put a strong effort on allow-
ing semantic search over metadata.

As described in Section 4.7, along with the Genomic Conceptual Model we
implemented the multi-ontology semantic knowledge base of genomic terms
and concepts. The union of GCM and the related ontological Knowledge Base
has given birth to the Genomic Knowledge Graph (GKG). We selected ten at-
tributes from GCM; values associated to each of the ten attributes were seman-
tically enriched by using the respective best ontologies, after a careful domain-
specific selection process. We assigned an ontological term, we described syn-
onyms and other syntactic or semantic variants, and provided a hierarchy of
hyperonyms and hyponyms.

Semantic search technology, which is fueling the main search engines devel-
oped by Google, Microsoft, Facebook and Amazon, is empowered by the use of
large knowledge graphs, supporting search at the semantic level. In these sys-
tems, when the query string can be reliably associated to a given entity, other
similar instances which are associated with that entity are also retrieved and
displayed together with the entity properties. For instance, if the query string
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Chapter 6. Searching Genomic Data

is associated with a book, then the semantic interpretation allows search en-
gines to retrieve similar books and to display the book’s properties.

Inspired by the successful exploitation of knowledge graph in search en-
gines, we envisioned a semantic search approach empowered by our Genomic
Knowledge Graph. However, our approach to semantic search differs from
the above paradigm; we focus only on domain specific outputs, and take into
account that the target scientific community requires that users have control
on inference, by choosing the appropriate data description level: from original
values to normalized values, synonyms, and hyponyms. With this goal, we
propose two different search interfaces that target different audiences:

• GeKnowGraph, a Neo4j graph-based database with visual interface,
equipped with explanation and exploration mechanisms for supporting
semantic queries (specific for scientific domain, where users are experts
and need full control on inference);

• GenoSurf, a simpler interface where the graph is not explicit but multiple
semantic levels can be set to tune the search needs of non-expert users.

Chapter organization. In Section 6.1, we hint at the power of knowledge ex-
pression in the genomic domain. Section 6.2 describes how we explain infer-
ences that are performed in order to extract matching items for a given query.
Section 6.3 briefly discuss the Neo4j data conversion from tabular format into
the GKG and overviews how a user can drive more inferences through ex-
plicit navigation of the GeKnowGraph; we show significant patterns of inter-
action enabled by the use of the graph. Section 6.4 presents GenoSurf interface,
overviewing the functionality and interplay of all its sections, presenting exam-
ple use cases and providing a validation of the system, executed on a group of
40 users. Sections 6.5 mentions related work on genomic and biological search
systems.

For ease of explanation, in the following we employ many examples using
counts of items that match specific conditions. Please note that these counts
refer to the version of the META-BASE content of July 2019, which in the mean-
time has been updated several times; readers may notice some mismatch with
counts retrieved from the system, as of today.

6.1 Issues in Exploiting Semantic Knowledge in Genomics

We discuss the intricacies of exploiting biological enrichment by focusing on
three attributes which represent the biological aspects of the analyzed sam-
ples, namely Disease, Tissue, and Cell. Indeed, although semantic enrichment
search applies to ten attributes, most of the complexity has to do with these
three attributes, as many search values match all of them; these values are
substantially enriched, hence providing both opportunities (finding connected
concepts) and risks (finding inappropriate concepts). We provide two typical
examples of search, the former shows that terms may match distinct entities,
the latter shows that term hierarchies enable widening the search.

Search example 1 (based on GCM). As shown in the examples of Table 6.1,
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Keyword Tissue: #items Cell: #items Disease: #items

“brain” midbrain: 4 brain pericyte: 5 Brain Lower Grade Glioma: 9188

“lung” Embryonic lung: 13 fibroblast of lung: 159 large cell lung cancer: 6

“cervical” cervical: 1 HeLa-S3 Cervical Carcinoma Cell Line: 41 cervical cancer: 10

Table 6.1: Keywords spanning multiple attribute domains and possible interpretations.

by using the same search keyword the user can reach various subsets of items,
according to the different interpretations of the input keyword "brain":

• When it is understood as the tissue of provenance of a a biological sample,
4 items originated from the "midbrain" tissue are extracted.

• When it is understood as the particular location of an organism’s cells, 5
items from pericytes (i.e., multi-functional cells sustaining formation and
functionality of the blood-brain barrier) are extracted.

• When it is understood as a pathology, 9,188 items are extracted, related to
a brain cancer that has its material basis in glial cells.

Similar alternative interpretations are associated with the terms "lung" or
"cervical". Different interpretations must be explained, as they may or may not
be matching the user’s intended query.

Search example 2 (based on GKG). The capability of extracting data is ampli-
fied by normalization (using ontological terms and exact/broad/related syn-
onyms) and enrichment (using ontological hierarchies). Thus, we can support a
much more powerful search. To clarify this, we briefly discuss the case of search
keywords related to the broad "uterus" concept. Figure 6.1 is an excerpt of the
Uberon ontology [274], useful to grasp the ontological structure that contains
the concepts interesting for this example. The "uterus" concept (ID:0000995)
includes, among others, three parts: "body of uterus" (ID:0009853), "uterine
cervix" (ID:0000002), and "uterine wall" (ID:0000459). The last one has the "en-
dometrium" part (ID:0001295). Each concept can be related to exact or broad
synonyms, related adjectives, and alternative syntax.

Table 6.2 reports which values (Search keyword) in our system have been
clustered using an ontological Term ID and how many data items they allow
to retrieve when the search uses only the original values (Orig.), the normal-
ized values (Syn.), or the hierarchical hyponyms deriving from "uterus" (Exp.).
Depending on the interpretation, the number of matches changes significantly.

By concentrating on the first entry, the search of "uterus" using plain term in-
terpretation of GCM retrieves 57 data items; when the Syn. search is enabled, it
returns 1708 items (as it matches also "uterus nos", which stands for "uterus, not
otherwise specified"); when the Exp. search is enabled, it returns 16851 items
(as it matches also all other terms in Table 6.2). Table 6.2 shows the matches of
eleven terms originating from the "uterus" root in Uberon, at the three levels of
enabled search.

The user thus reaches documents relevant for her search by setting the levels,
without knowing the specific nomenclature used in the various integrated data
sources. However, knowing the actual matches is critical, as the user may not
wish to extract all matched items; it depends on the specific needs.
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Term ID Search keyword Orig. Syn. Exp.

0000995 uterus 57 1708 16851
uterus nos 1651 1708 16851

0009853 body of uterus 0 9535 9535
corpus uteri 9535 9535 9535

0000002

uterine cervix 0 5585 5585
cervix uteri 5417 5585 5585
cervix 167 5585 5585
cervical 1 5585 5585

0000459 uterine wall 0 0 23

0001295 endometrium 21 23 23
endometrial 2 23 23

Table 6.2: Number of retrieved items using different
keywords from the "uterus" concept area. Orig.
stands for search at the basic level, Syn. for search
enriched by equivalent terms and synonyms, Exp.
for search on the ontological descendant hierarchy.

Figure 6.1: Excerpt of the Uberon sub-tree origi-
nating from the "uterus" root. For space rea-
sons, we only report the elements that are rele-
vant to our example.

6.2 Inference Explanation

Users should be provided with system’s explanations, giving evidence of the cog-
nitive process involved in the inference, so that they can verify it (they may ac-
tually provide corrections when inference is wrong). Therefore, for any inferred
results, we must show the chain of deductions followed to infer the informa-
tion.

Behind the scenes, the implemented keyword-based search is driven by a
precise inference mechanism, which is tuned according to the user’s choice
of query option (Original, Synonym and Expanded) and is based on semantic
enrichment. To illustrate the relational links that are traversed in the different
kinds of searches over our system, we introduce the concept of deduction chain,
which describes the internal path in the database that links the retrieved ITEM
to the table where the match with the search keyword is found. The deduction
chain shows the steps of the inference process that are activated according to
the requested search level. A search may be performed considering:

1. the source original metadata key-value pairs;
2. the GCM attributes;
3. additionally, the ontological synonym annotations;
4. additionally, the ontological hierarchical expansions.

The best way to illustrate deductive chains is by showing an example of
use. A biologist or bioinformatician may be interested in the keyword "brain",
intending to request all data items related to this concept (i.e. those that con-
tain this string in their metadata). Table 6.3 shows how quantitative results in
our system (i.e. numbers of items) can be explained: according to the different
search levels (first column), we indicate the number of found data files (sec-
ond column), and we show the deduction chain (third column). At the first
level, the search produces key-value pairs corresponding to unchanged origi-
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Level #ITEMs Deduction chain

1

789 〈ITEM〉-〈KEY: biosample__organ_slims, VALUE: brain〉
4,670 〈ITEM〉-〈KEY: gdc__project__disease_type, VALUE: Brain Lower Grade Glioma〉

126 〈ITEM〉-〈KEY: clinical__lgg__family_history_of_primary_brain_tumor, VALUE: NO〉
2,463 〈ITEM〉-〈KEY: clinical_patient__history_lgg_dx_of_brain_tissue, VALUE: yes〉

2
15,714 〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Tissue: Brain〉
9,188 〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Disease: Brain Lower Grade Glioma〉

10 〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Cell: smooth muscle cell of the brain vascula〉

3 13 〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Cell: Fetal brain〉
-〈VOCABULARY: brain, UBERON_0000955〉

4

10
〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Tissue: Pons〉
-〈VOCABULARY: pons, UBERON_0000988〉
-〈VOCABULARY: regional part of brain, UBERON_0002616〉

8

〈ITEM〉-〈REPLICATE〉-〈BIOSAMPLE.Tissue: globus pallidus〉
-〈VOCABULARY: globus pallidus, UBERON_0001875〉
-[PART_OF]-〈VOCABULARY: pallidum, UBERON_0006514〉
-[IS_A]-〈VOCABULARY: brain gray matter, UBERON_0003528〉
-[PART_OF]-〈VOCABULARY: brain, UBERON_0000955〉

Table 6.3: Available search levels and examples of their results for the "brain" search keyword.

nal metadata directly linked to the 〈ITEM〉. Thus, the first four rows of Table 6.3
link an 〈ITEM〉 directly to a 〈KEY,VALUE〉; at this level, term matching can be
performed on either keys or values. For instance, the first row indicates that 789
found items are associated with the pair 〈biosample__organ_slims, brain〉.

At the second level, the search is performed on the attributes of the core
schema; results in Table 6.3 match values contained either in the Tissue, Disease
or Cell attributes. 〈REPLICATE〉, further connected to a 〈BIOSAMPLE〉, which
contains the "Brain" value for the Tissue attribute. Instead, by looking at the
last row, the user learns that there exist ten additional items connected to a
〈REPLICATE〉, further connected to a 〈BIOSAMPLE〉, whose Cell field is "smooth
muscle cell of the brain vascula".

At the third level, the search is based on ontological vocabularies plus their
synonyms. The example in Table 6.3 shows that we found 13 items whose
original Cell value is "fetal brain", a synonym of "brain" annotated with the
Uberon ontology term 0000955.

At the fourth level, the search is based on ontological vocabularies, their
synonyms, plus their hyponyms, with more complex chains, where ontologi-
cal terms are linked by relations expressing containment or generalization (i.e.,
IS_A and PART_OF relationships). For instance, the first row in Table 6.3 for
the fourth search level indicates that 10 items are associated with the term
"pons", which is a "regional part of brain" according to the Uberon ontology
terms 0000988 and 0002616.

6.3 GeKnowGraph: Exploration-Based Interface

The structure of the knowledge graph should be exposed to knowledgeable
users; these should be provided with exploration capabilities for accessing enti-
ties and relationships, e.g., by navigating from given experiments to the cell
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lines or tissues of provenance, to the donors with their demography and phe-
notypes, and to the extraction process with the used technology and device,
explicitly indicating the enrichment level of the terms of GKG. GeKnowGraph
is a Neo4j-based query answering system that responds to this need.

Among many available graph databases (e.g., Neptune,1 Cosmos2 or Titan3)
we have chosen Neo4j,4 currently the leading open source graph database, used
by several companies also in the bioinformatics domain (e.g., EBI,5 Intermine6

and Reactome7). Neo4j implements the property graph model at the logical and
the storage level. Nodes are entities in the graph: they can hold any number
of attributes, called properties, and can be tagged with labels, which represent
different roles. Relationships provide connections between two node entities
which are directed, named and semantically-relevant.

We employ a pipeline that extracts data from the relational database repre-
sented in Figure 4.11 and builds a Neo4j property graph instance. Specifically,
we map: GCM entities onto Neo4j node labels (with a 1:1 correspondence);
GCM entity attributes onto node properties; GCM foreign keys onto directed
relationships. We associate just one label to nodes and edges.

With a bash script we input the information useful to define nodes’ labels,
edges’ labels, properties and how the results of the relational queries should
be converted as elements of the graph. The specific transformation is applied
using a batch loader tool into the property graph.

The graph schema is represented in Figure 6.2, covering four layers of se-
mantic detail, with growing level of abstraction from the bottom towards the
top. These four layers correspond also to the semantic search levels explained
in Section 6.2. Original metadata, GCM schema, and ontology terms have been
thoroughly described in the previous chapters. Here we highlight that terms
are linked through relationships that represent subsumption (IS_A) – thus in-
cluding hyperonyms and hyponyms of the stored terms – and containment
(PART_OF) – thus including their holonyms and meronyms.

The current instance presents: 250K item nodes in Genomic Conceptual
Model, 320K nodes for Genomic Conceptual Model (including Items, Biosam-
ples, Donors, Datasets, ExperimentTypes. . . ), 1.6M relationships among GCM
nodes, 100K nodes for Ontological Terms (including annotation to ten proper-
ties on GCM nodes, up to 3 levels on the hierarchy), and 45M original metadata
key-value pairs. The most updated version of the Neo4j database is made avail-
able on our servers at http://geco.deib.polimi.it/dump-gkg/.

For visualization purposes we exploit the Neo4j native browser, which al-
lows to query the underlying graph database through the Neo4j’s query lan-
guage (i.e., Cypher [135]) and gives the possibility to browse query results in
tabular form and in a graphical, customizable, format. In the current instance,
we exploit the graph layout automatically obtained in the native Neo4j con-

1https://aws.amazon.com/neptune/
2https://docs.microsoft.com/en-us/azure/cosmos-db/
3http://titan.thinkaurelius.com/
4https://neo4j.com/
5https://www.ebi.ac.uk/ols/docs/neo4j-schema
6https://github.com/intermine/neo4j
7https://reactome.org/dev/graph-database
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Ontology Hierarchy

Ontology Terms

Genomic 
Conceptual Model

Original Metadata

IS_A|PART_OF

Figure 6.2: Visual representation of the GKG components in a Neo4j graph schema.

solle, which is a force directed algorithm [31], with the aim to position the
nodes in the two dimensional screen so that the edges are of similar length and
the number of crossing edges are minimized. However, as the layout of inter-
mediate and final graphs may considerably impact the comprehensibility of the
graph, in the future we will explore more sophisticated layout algorithms and
libraries.8 Additionally, there is a problem of scalability of the graph, as it can
become quickly very big, considering the size of source-specific attribute pairs
and of ontological layers. At this moment, this is handled by a default limit
imposed by the Neo4j browser. However, in following works this issue may
be addressed by clustering the nodes and their relationships at different levels
of abstraction (as it was proposed in [358]), or by enforcing fish-eye views on
the full graph (see [140]). Such extension may be investigated on both syntactic
and semantic levels, by proposing several types of abstraction [6].

6.3.1 Exploration Interaction

The most interesting use of the GeKnowGraph occurs with a visual exploration,
that however requires a user to understand the entities and relationships of
GCM, as well as their linking to the vocabulary and then to navigate the gen-
eralization IS_A and the containment PART_OF relationships. The user explo-
ration may start from GCM entities or from the vocabulary terms. We next
explain 4 typical patterns of exploration: finding items of a given dataset, of a
given patient, of a given case study and associated with a given term.

Finding other items from the same datasets. A typical three-step exploratory
8Many libraries of front-end programming languages – such as HTML and JavaScript – are avail-

able to employ sophisticated layout algorithms. See, for example, yFiles (https://www.yworks.com/pages/
visualizing-a-neo4j-graph-database.html), Linkurious (https://linkurio.us/), or d3.js (https://github.com/
eisman/neo4jd3).
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A B C

Item <id>: 27927, item_id: i294556, source_id: ENCFF429VMY, size: 5289591 bytes, last_update_date: 2017-04-14, checksum: 
a57a4056427e0f1d8324c2e952462a21, platform: Illumina Genome Analyzer IIx, pipeline: Transcription factor ChIP-seq, content_type: peaks 
and background as input for IDR, source_url: https://www.encodeproject.org/files/ENCFF429VMY/@@download/ENCFF429VMY.bed.gz, 
local_url: http://www.gmql.eu/gmql-rest/datasets/public.GRCh38_ENCODE_NARROW_2019_01/ENCFF429VMY/region

Legend

Donor

BioSample

Replicate

Item

Project

CaseStudy

ExperimentType

Dataset

Figure 6.3: Sequential interaction, from panel (A)—centered on ITEM ENCFF58—to panel (B)—
centered on GRCh38 narrowPeak DATASET—to panel (C)—centered on ITEM ENCFF42. Note
that the items in (A) and (C) share the same PROJECT, ENCODE.

interaction from an Item to a different ITEM of the same DATASET is shown
in Figure 6.3. Entity instances are represented as circles that include the value
of entity identifiers or some relevant properties; directed edges, carrying the
relationship names, connect entity instances. At all times, one of the entity
instances is the navigation handler, and its attributes can be (on request) exten-
sively represented in a box presented below the diagram. The end of the navi-
gation is shown in Figure 6.3 (C), where the navigation handler points to entity
ITEM ENCFF42, but the navigation starts from ITEM ENCFF58 in Figure 6.3 (A).

We use Figure 6.3 (A) to illustrate the typical organization of a GCM in-
stance, centred of the ITEM ENCFF58 (gray color, in the center), connected to
the other entities REPLICATE, BIOSAMPLE, DONOR (colors from pink to dark
red, along the biological view), to CASESTUDY and PROJECT (yellow colors,
along the management view) and to EXPERIMENTTYPE (green color, along the
technology view). In Figure 6.3 (B) we show that the user navigates to the
DATASET entity (blue color, along the extraction view), where several other
ITEM instances of the same DATASET are illustrated; then, Figure 6.3 (C) shows
the end of the navigation. Navigation occurs by double-clicking on entity in-
stances, while attributes of a given entity instance (in this case, of ITEM) are
displayed by single-clicking.

Finding all the datasets of a given patient. Another typical search query asks
for all data types pertaining to a specific cancer patient; associating the same
patient with heterogeneous data types is highly valuable in order to under-
stand the possible research questions that can be asked to the underlying data
repository. However, this query must be explored patient by patient, as each
patient may be associated to a highly variable number of data types.

As shown in Figure 6.4, we represent DONORS through their ethnicity, gen-
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Figure 6.4: Exploration starting from a DONOR, providing tumoral and normal tissues, which are used
to provide Items belonging to different DATASETS. Note that here we omit REPLICATE nodes for
space reasons; they have 1:1 correspondence with BIOSAMPLES.
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Figure 6.5: From bottom to top: a CASESTUDY contains multiple ITEMS, which derive from two
different REPLICATES/BIOSAMPLES/DONORS and are contained in two DATASETS based on the
reference assembly of the genome.
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A B C

Figure 6.6: Search starting from ontological terms. Essentially, (A) contains the ontological terms, (B)
contains annotated BIOSAMPLES, and (C) the REPLICATES (pink) and derived ITEMS (grey). This
example shows the intricacy of how BIOSAMPLES, REPLICATES and ITEMS connect to each other.

der, and age (in this specific case through values [asian, male, 49y]). The
database stores two biological samples extracted from this patient, who is af-
fected by "Liver Hepatocellular Carcinoma". One sample is tumoral and the
other one is healthy (i.e., a control). By further expanding the nodes, the user
reaches the Item level, thereby extracting 9 data Items which belong to 7 differ-
ent DATASETS, each showing the type of data described in the region files (e.g.,
mutations, methylation levels, copy number variations, and RNA or miRNA
gene expression).

Exploring the organization of a given case study. Figure 6.5 shows another
typical exploration. Assume that a user is not aware of what constitutes a case
of study in the ENCODE data source and wants to discover it. Thus, she starts
with a given CASESTUDY entity ENCSR63, shown at the bottom of the figure.
This entity represents a set of ITEMS that are gathered together, because they
contribute to the same research objective. The interaction first allows to visu-
alize the group of eight ITEMS associated with this case study, belonging to the
hg19_narrowPeak and GRCh38_narrowPeak DATASETS (respectively having
cardinality five and three). Then, the underlying biological views are revealed,
by showing that all the ITEMS are associated with chains originating from two
distinct DONORS.

Ontological exploration. Another powerful use of the GeKnowGraph starts
from ontological terms; this search allows a user to take advantage of the stan-
dardization and enrichment efforts performed on the different integrated data
values. By starting from terms, the user may see how each term is connected to
different entities, thereby typically exploring the hierarchical structure of onto-
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logical terms.
The visual representation is of great help to understand the complex rela-

tionships among data, otherwise hard to describe. Figure 6.6 shows how mul-
tiple ITEMS (grey nodes on the right) can be retrieved by using different de-
duction chains starting from the same hierarchical ancestor, 〈brain〉. A typical
search may start from this entity, which already has a number of connected
BIOSAMPLES (i.e., samples which have been annotated, as related to brain con-
cept) and progressively discover all its sub-concepts up to the level where terms
annotate other BIOSAMPLES. Then, the exploration connects BIOSAMPLES to
their REPLICATES and eventually to Items.

Note that, in the figure, 〈brain〉 directly annotates a BIOSAMPLE and is an
indirect hyperonym of 〈pons〉 and 〈globus pallidus〉, each connected to two
BIOSAMPLES. Note also that five BIOSAMPLES give rise to six REPLICATES and
then to seven ITEMS, and also note that some Items are associated with two
REPLICATES. Once ITEMS are reached, the user may be interested in under-
standing from which datasets or experiment types they derive; this is possible
by further exploring from the ITEM nodes, using the first pattern of exploration
discussed in this Section.

6.4 GenoSurf: a Web-Based Search Server for Genomic Datasets

The META-BASE repository can be searched with a friendly web user inter-
face called GenoSurf, publicly available at http://www.gmql.eu/genosurf/, ex-
ploiting metadata to locate interesting dataset for genomic research. Through
the interface, a user can: 1) select search values from the integrated attributes,
among predefined normalized term values optionally augmented by their syn-
onyms, and hyperonyms; 2) obtain a summary of sources and datasets that
provide matching items (i.e., files containing genomic regions with their prop-
erty values); 3) examine the selected items’ metadata in a tabular customizable
form; 4) extract the set of matching references (as back-links to the original
sources and links to data and metadata files); 5) explore the raw metadata ex-
tracted for each item from its original source, in the form of key-value pairs;
6) perform free-text search on attributes and values of original metadata; 7)
prepare data selection queries ready to be used for further processing.

Search is facilitated by drop-down lists of matching values; aggregate
counts, describing resulting files, are updated in real time. The metadata con-
tent is fueled by the META-BASE automatized pipeline thoroughly described
in Chapter 4 and is stored in a PostgreSQL database whose logical schema was
previously shown in Section 4.9 – containing the GCM (hereon called "core
schema"), the knowledge base, as well as original metadata – including for each
item a link to the original source storing the referenced data.

GenoSurf data items are in one-to-one mapping with the most recent version
of the data files in the GMQL repository and share the same identifiers. Hence,
the result of a GenoSurf search can be immediately used within the GMQL en-
gine to extract and directly process comprehensively relevant genomic region
data files and their metadata.

Users can search the integrated content exploiting its describing metadata
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Figure 6.7: Sections of GenoSurf web interface: 1) Top menu bar; 2) Query utilities; 3) Data search; 4)
Key-value search; 5) Results visualization.

(enhanced with synonyms and hyperonyms) and retrieving a corresponding
list of matching genomic data files. The interface is composed of five sections,
described in Figure 6.7:

1) the Menu Bar to navigate the different services and their documentation;
2) intuitive Query Utilities;
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6.4. GenoSurf: a Web-Based Search Server for Genomic Datasets

3) the Data search: a search interface over the core database (i.e., , whose con-
tent can be set on three levels: original metadata, synonyms/alternative
syntax, and hierarchical ontological expansion;

4) the Key-value search: a search interface over key-value pairs, for searching
over original metadata from the imported sources;

5) a Result Visualization section, showing the resulting items in three different
aggregation sections.

The interface also enables an interplay between the core Data search and
Key-value search, thereby allowing to build complex queries given as the log-
ical conjunction of a sequence of core metadata and key-value search steps of
arbitrary length; results are updated at each step to reflect the additional search
conditions, and the counts are dynamically displayed to help users in assess-
ing if query results match their intents. In the following we describe the main
GenoSurf sections more in detail.
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Figure 6.8: Correspondence between the GCM (i.e., core schema) views with the section of the Data
Search interface of GenoSurf.

Data Search

The Data search section (part 3 of Figure 6.7) serves as a primary tool for query-
ing the integrated repository with GenoSurf and is based on the Genomic Con-
ceptual Model. It has four parts to reflect the four dimensions of GCM, i.e.,
Management, Extraction, Biology, and Technology (see Figure 6.8 to appreciate
the correspondence). To improve usability we opted for a drastic simplification
of the underlying GCM model. We merged the ITEM entity with the extraction
dimension and we denormalized all many-to-many relationships; denormal-
ization was applied to items having multiple replicas and to items appearing
in the same case study. We also selected some of the attributes – the ones that
are most relevant for search purposes – from the entities of each dimension (26
out of 38 attributes in the current GCM) based on typical use, while the other
attributes were re-inserted as key-value pairs; attribute names in the interface
are slightly changed w.r.t. relational table fields, with the purpose of facilitat-
ing their understanding. For each attribute, matching values are presented for
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Figure 6.9: Data search section of the GenoSurf web interface, highlighting attributes within the four
dimensions of the repository core schema; values are entered by users and appear in drop-down menus
for easing their selection.

selection in a drop-down list; each value has – on its side – the number of items
connected in the star schema to that value. Multiple values chosen for the same
attribute are considered as possible alternatives (in disjunction); values chosen
over different attributes are considered as conditions that should all be satis-
fied (in conjunction) by the resulting items. The special value "N/D" indicates
null values and allows to select items for which a particular attribute is unde-
fined. After each selection, a running query is progressively built and shown
in the interface field "Selected query"; the current query is evaluated, and the
number of matching items is displayed. The interface allows setting different
levels of semantic enrichment: the Original option (search using metadata val-
ues provided by original data sources), the Synonym option (adding synonyms)
and the Expanded option (adding hyperonyms and hyponyms). On the basis
of our experience, too many levels of ontological enrichment would bring to
unnecessary sophistication, which would not be appreciated by users. Thus,
we included ontology terms’ hyperonyms and hyponyms up to a three of lev-
els of depth, as a reasonable trade-off that also guarantees acceptable query
performances.

In the example shown in Figure 6.9, the user is searching for all items that
have Data type either "copy number segment" or "masked copy number seg-
ment", and that have Assembly "grch38" and Tissue "kidney"; the query option
is set to Original. As a consequence of the attribute value selection, the field
"Selected query" is compiled as follows.
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assembly: [’grch38’], data_type: [‘copy number segment’, ‘masked copy number segment’],
tissue: [‘kidney’]

Counts of items associated to attribute values are changed dynamically. For
example, if initially the Data type drop-down menu shows 22,371 items for
"copy number segment" and 22,374 for "exon quantification", when the user
selects the Tissue "kidney" (with count 19,357), then the Data type drop-down
menu shows 1,862 items for each of the two mentioned Data types, reflecting
the reduction of matching items.

As an example of query with Data search option set to Synonym, when we
only select the value "k562" for the Cell/Cell line attribute (which at the Original
level had a 5,942 count), we obtain a count of 5,986 items, which is the same for
all equivalent syntactic variants "k-562", "k562 cell", "k-562 cell" of the attribute.
Indeed, the additional 44 items derive from a small set of items labelled with
"k562 leukemia cells", which have been annotated with such synonym con-
cept corresponding to the term EFO_0002067 in the Experimental Factor On-
tology [251]. As a second example, assuming we are interested in the antibody
Target "BORIS" (i.e., Brother of Regulator of Imprinted Sites), at the Original
level we cannot find any match in the repository. However, when we enable
the Synonym level search, we find 10 items (which were originally annotated
with the transcriptional repressor "CTCFL"), since in the Ontology of Genes
and Genomes the concept OGG_3000140690, with preferred label "CTCFL", has
the alternative term "BORIS".

As an example of Expanded search, if we select the value "eye" for Tissue we
find 1,473 items by exploiting the expansion offered by the Uberon ontology.
Specifically, we retrieve: 13 items annotated exactly with "eye", 1,440 items an-
notated with "Eye and adnexa" (all from TCGA), which is an alternative form
of "eye", and also 20 ENCODE items annotated with "retina", which IS_A "pho-
toreceptor array", which is in turn a PART_OF "eye".

Key-Value Search

The Key-value search section (part 4 of Figure 6.7) allows searching metadata
without having previous knowledge of the original metadata attribute names
and values, or of the attribute names and data content of the GCM core schema,
which stands behind the integration effort. In the Key-value search, the user
can perform a case-insensitive search either over all metadata attributes (using
the Key option) or over all metadata values (using the Value option). Users can
search both keys and values that either exactly match or only contain the input
string.

When input strings are searched within keys, in case a match is found among
the core attributes of the Genomic Conceptual Model (which can also be con-
sidered as ‘keys’), we provide an informative result: example values of each of
the matched attributes and the number of distinct values available for that at-
tribute. Conversely, when showing the results of a match on original attributes
(i.e., keys), a list of all matching keys is provided in output, equipped with the
number of distinct values available for each of such keys; the user can then ex-
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Figure 6.10: Key-value search result using input string "disease" as a Key. The keyword is matched both
in the GCM attributes (for each matching attribute we present the number of available distinct values
and some example values) and in the original source attributes (each matching attribute enables
exploration and selection of any corresponding values).

plore these values and select any of them. Figure 6.10 shows a search with Key
option and input string "disease".

Value search has a simpler interface, showing all possible matches in values,
both for core attributes and original key-value pairs. Users can directly select
desired key-value pairs among the ones shown in the result.

Query Sessions

A query consists of a sequence of search sessions, performed by alternating
simple Data search and Key-value search; a sequence of searches produces
items resulting from the conjunction of search conditions. Within each search
session, multiple options for values (either for core attributes or as keys/val-
ues in Key-value search) are considered in disjunction. Figure 6.11 shows how
a query can be composed using a sequence of two Key-value search sessions;
steps can be deleted by rolling them back in any order. The query of Figure 6.11
corresponds to the predicate:

("biospecimen__admin__disease_code" = "chol" OR "biospecimen__admin__disease_code" = "kich
" OR "clinical_patient__history_immunological_disease" = "hashimoto’s thyroiditis")
AND "biospecimen_sample__sample_type" = "primary tumor"

Every choice in the Data search and Key-value search sections impacts the
results and their visualization at the bottom of the web interface page (part 5
of Figure 6.7). Acting on the Data search section, the result table is updated
whenever the user either adds or removes a value from a drop-down menu or
types/deletes text directly in a text field. In the Key-value search section, fil-
ters are instead applied/deleted by selecting the corresponding options – due
to their greater complexity they are typically applied one-by-one, hence a dy-
namic update is not useful.
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Figure 6.11: Example of composition of two Key-value search sessions.

Result Visualization

As shown in Figure 6.12, the result visualization includes three sections (see
the blue bar at the top): 1) Source count, containing the number of found items
aggregated by origin data source; 2) Dataset count, containing the number of
found items aggregated by dataset name; 3) Result items, reporting the core
metadata values of resulting items (to be navigated in batches of chosen cardi-
nality, with suitable scroll options). Within the last section, a table is presented
with one row for each item; for all found items, we also provide links to the
data description page at the source location, and to data files at their source
location (‘Source URI’) and at our repository location (‘Local URI’). The user
can visualize the original metadata key-value pairs of a data file by clicking on
the row’s ’Extra’ button. In the bottom part of the table the user can select how
many rows should be visible in the page, up to a 1,000 limit; other pages can be
scrolled using the left/right arrows. Fields can be arbitrarily sorted, included
or excluded from the tabular visualization (‘Sort fields’ button).

The user can change the one-item-per-row default view by using the
’Replicated/Aggregated’ switch button; when items match many Repli-
cates/Biosamples/Donors, with the ‘Aggregated’ option, related information
is aggregated by concatenating the possible distinct values through the pipe
symbol "|".

Additional Functionalities

To provide a complete and useful environment to users, we allow to modify,
save and load queries, as well as search results, in a customizable way; other
functionalities allow to use results produced by GenoSurf within the GMQL
engine.

Interaction with Queries. To support re-use of queries, we provide the possi-
bility to download and upload text files in JSON format containing the query,
or directly copy, paste and modify JSON queries on the web interface. Further-
more, ten predefined queries are available to demonstrate practical uses of the
interface.

Use of Results. The genomic region data files retrieved by the performed
search can be downloaded individually from the GenoSurf web interface using
the ‘Source URI’, a clickable link to download the region data file from the ori-
gin source, or the ‘Local URI’, to download the region data file corresponding
to the selected item from the GMQL system, when available (see Figure 6.12).
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Figure 6.12: Excerpt of the Result items table resulting from a search session. Red ellipses highlight
relevant features. Top left: GMQL button to generate queries to further process related data files;
DOWNLOAD buttons for Result items table and data file links; Replicated/Aggregated switch. Top
right: SORT FIELDS button to customize the columns visualized in the table. Center: Extra, Source
URI, and Local URI columns with clickable links. Bottom right: component to set the number of
rows visible at a time; indication of the total items corresponding to the performed query.

Additionally, for each search query we provide (through the buttons ‘DOWN-
LOAD TABLE’ and ‘DOWNLOAD LINKS’ in Figure 6.12): a text file containing
all the URLs to download all the genomic region data files from our system, and
a comma-separated file to download the entire results table.

Finally, the user can generate a GMQL query (button ‘GMQL’ in Figure 6.12)
that can be used directly in our GMQL engine in order to select specifically the
items found with a GenoSurf search for further processing.

RESTful API. All services used in the GenoSurf web interface are imple-
mented using our GenoSurf API available at http://geco.deib.polimi.it/
genosurf/api/. All POST services are based on the principle of setting a JSON
payload that establishes the context for the next query. As an example, consider
the JSON payload that follows.

{
"gcm": {
"disease": ["prostate adenocarcinoma"],
"assembly": ["grch38"]

},
"type": "original",
"kv": {}

}

This means that the next query (i.e., API request) is performed only on the
set of GRCh38 prostate adenocarcinoma items, which are 4,821. Suppose we
are interested in knowing how many of these samples are healthy and how
many are non-healthy. We can thus call the /field/field_name API service
(with field_name equal to is_healthy) providing the just mentioned payload.
The output, which follows next, indicates that roughly 75% of the results regard
tumor samples and about 25% healthy samples.
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{
"values": [
{"value": false, "count": 3543},
{"value": true, "count": 1278}

],
"info": {
"shown_count": 2,
"total_count": 2,
"item_count": 4821

}
}

6.4.1 Use Cases

In this section, we show typical data retrieval queries performed by a hypothet-
ical user of GenoSurf to select interesting subsets of the integrated repository.9

Extracting Cancer Patient Data. Suppose we are interested in extracting data
of different types divided by patient for a specific cancer type. Evaluating ge-
nomic, epigenomic and transcriptomic data of cancer patients in a compre-
hensive way provides a general view of their biomolecular system, possibly
leading to novel findings. Let us consider as an example GRCh38 TCGA data
for disease "Cholangiocarcinoma". In total, the repository contains 401 related
items divided in seven datasets, each of which contains between 45 and 85 dif-
ferent items, as it can be observed in Figure 6.13.

Figure 6.13: Available datasets for the performed GRCh38 TCGA Cholangiocarcinoma data search.

In the ‘RESULT ITEMS’ table, the order of columns can be customized. For
this particular query it is useful to arrange Source ID, Donor ID, Data Type, and
Healthy as first columns. The resulting table can be sorted by Donor ID and

9More examples of interest can be found in the GenoSurf WIKI page at http://www.gmql.eu/genosurf/.
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Source ID Donor ID Data Type Healthy Technique Source Site

3787a... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Copy Number Segment FALSE Genotyping Array Sapienza University of Rome
e6443... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Copy Number Segment TRUE Genotyping Array Sapienza University of Rome
f36ef... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Gene Expression Quantification FALSE RNA-Seq Sapienza University of Rome
f7b6d... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Isoform Expression Quantification FALSE miRNA-Seq Sapienza University of Rome
3787a... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Masked Copy Number Segment FALSE Genotyping Array Sapienza University of Rome
e6443... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Masked Copy Number Segment TRUE Genotyping Array Sapienza University of Rome
9aa16... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Masked Somatic Mutation FALSE WXS Sapienza University of Rome
1ba92... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 Methylation Beta Value FALSE Methylation Array Sapienza University of Rome
f7b6d... 0775583e-c0a0-4f18-9ca2-8f89cedce3d6 miRNA Expression Quantification FALSE miRNA-Seq Sapienza University of Rome
2cbc6... 20bf79af-3b0f-477d-b619-5597d42f5d5e Copy Number Segment TRUE Genotyping Array Mayo Clinic Rochester
c2d57... 20bf79af-3b0f-477d-b619-5597d42f5d5e Copy Number Segment TRUE Genotyping Array Mayo Clinic Rochester
d3b1d... 20bf79af-3b0f-477d-b619-5597d42f5d5e Gene Expression Quantification FALSE RNA-Seq Mayo Clinic Rochester
2649a... 20bf79af-3b0f-477d-b619-5597d42f5d5e Gene Expression Quantification TRUE RNA-Seq Mayo Clinic Rochester
016fd... 20bf79af-3b0f-477d-b619-5597d42f5d5e Isoform Expression Quantification FALSE miRNA-Seq Mayo Clinic Rochester
f002e... 20bf79af-3b0f-477d-b619-5597d42f5d5e Isoform Expression Quantification TRUE miRNA-Seq Mayo Clinic Rochester
5150... 20bf79af-3b0f-477d-b619-5597d42f5d5e Masked Copy Number Segment FALSE Genotyping Array Mayo Clinic Rochester
2cbc6... 20bf79af-3b0f-477d-b619-5597d42f5d5e Masked Copy Number Segment TRUE Genotyping Array Mayo Clinic Rochester
c2d57... 20bf79af-3b0f-477d-b619-5597d42f5d5e Masked Copy Number Segment TRUE Genotyping Array Mayo Clinic Rochester
80052... 20bf79af-3b0f-477d-b619-5597d42f5d5e Masked Somatic Mutation FALSE WXS Mayo Clinic Rochester
33585... 20bf79af-3b0f-477d-b619-5597d42f5d5e Methylation Beta Value FALSE Methylation Array Mayo Clinic Rochester
d8106... 20bf79af-3b0f-477d-b619-5597d42f5d5e Methylation Beta Value TRUE Methylation Array Mayo Clinic Rochester
016fd... 20bf79af-3b0f-477d-b619-5597d42f5d5e miRNA Expression Quantification FALSE miRNA-Seq Mayo Clinic Rochester
f002e... 20bf79af-3b0f-477d-b619-5597d42f5d5e miRNA Expression Quantification TRUE miRNA-Seq Mayo Clinic Rochester

Table 6.4: Excerpt of result table from the extraction of GRCh38 TCGA Cholangiocarcinoma data,
grouped by patient (i.e., Donor ID).

downloaded as a CSV file. Groups of rows with same Donor ID represent
all available genomic region data files for each specific donor, with different
data types and normal/tumor characterization. Table 6.4 shows an excerpt of
the result, relative to two different patients having 9 and 14 items each. The
first patient has normal/tumor data pairs for the Copy Number Segment and
Masked Copy Number Segment data types, while the second patient has nor-
mal/tumor data for all available data types except for Copy Number Segment
and Masked Somatic Mutation (in some cases normal data is even repeated).
This kind of quick data extraction can be conveniently used to understand how
many same-patient data items are available for performing differential data
analysis (i.e., comparison between certain characteristics of normal vs. tumor
patients’ signals and sequences).

The datasets can be analyzed using a genomic data analysis tool such as
GMQL. By clicking on the ‘GMQL’ button (Figure 6.12) the user can retrieve
the selection query ready to be pasted into the GMQL web interface publicly
available at http://www.gmql.eu/gmql-rest/; there, results can be aggregated
by patient using specific operations such as JOIN or GROUP BY.10

Combining ChIP-seq and DNase-seq Data in Different Formats and Sources.
Suppose the data analysis goal is to extract genomic regions of enriched bind-
ing sites that occur in open chromatin regions, e.g., focusing on H1 embryonic
stem cells. This example shows how to improve the quality of the peaks called
within ChIP-seq experiments by filtering out the peaks that are not in open
chromatin regions (as required by molecular biology). In order to find data
available on GenoSurf related to such cells, also considering possible termino-
logical variants, we select the Synonym semantic option in the Data search phase.
As a first step, we look for ENCODE (Source) ChIP-seq (Technique) experiment
items with narrowpeak format (File format) and regarding H1 cells (Cell/Cell
line). We find 601 items as a result. As a second step, we select Roadmap
Epigenomics (Source) DNase-seq (Technique) HOTSPOT (Pipeline) open chro-

10For more details please refer to [258] and to the "GMQL introduction to the language" document at http://www.
bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/documentation.html.

134

http://www.gmql.eu/gmql-rest/
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/documentation.html
http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQLsystem/documentation.html


i
i

“output” — 2021/1/14 — 8:34 — page 135 — #159 i
i

i
i

i
i

6.4. GenoSurf: a Web-Based Search Server for Genomic Datasets

matin regions in H1 cells (Cell/Cell line). Such selection produces as a result
4 items. For this set, we decide to further restrict the selection to items with a
false discovery rate (FDR) threshold of at least 0.01 (note that the HOTSPOT
peak caller was used to call domains of chromatin accessibility both with an
FDR of 1% and without applying any threshold). Since this is a source-specific
metadata information, we apply this filter by using the Key-value search inter-
face: we first search metadata keys that contain the "FDR" string, obtaining the
manually_curated__fdr_threshold key with values "0.01" and "none"; we then
chose to apply the manually_curated__fdr_threshold = 0.01 filter, which re-
duces our results to only one item, with the desired content. The obtained JSON
query corresponding to this second step looks as follows.
{
"gcm":{
"source":["roadmap epigenomics"], "technique":["dnase-seq"],
"pipeline":["hotspot"], "cell":["h1 cells"]

}
"type":"synonym",
"kv":{
"fdr_0":{
"type_query":"key",
"exact":false,
"query":{
"gcm":{},
"pairs":{ "manually_curated__fdr_threshold": ["0.01"] }

}
}

}
}

Such JSON document can be retrieved by selecting ‘MODIFY’ or ‘DOWN-
LOAD’ (at the top of the GenoSurf web interface) and can also be used as a
payload in the RESTful API services.

The located data files can be either downloaded to be further processed, or
directly selected in GMQL. Indeed, the objective of this use case corresponds to
performing a JOIN operation in GMQL between the regions in the data items
found with the first step and those in the item from the second step.
Extracting Triple-Negative Breast Cancer Cases. Suppose we are working on
comparative Triple-Negative Breast Cancer analysis. This means we need to
select breast tissue data from the TCGA-BRCA project characterized by the
absence of all the three types of receptors known to fuel most breast cancer
growth: estrogen, progesterone, and HER2. Such absence can be encoded in
the data as a negative status of the receptors. To do so, first, in the GenoSurf
Data search section we select: project_name: [‘tcga-brca’] and tissue:
[‘breast’], which reduces the result to 23, 581 items. Then, in the Key-value
search section, we need to set the following conditions in conjunction.

"clinical__brca_shared__breast_carcinoma_estrogen_receptor_status":["negative"]
AND
"clinical__brca_shared__breast_carcinoma_progesterone_receptor_status":["negative"]
AND
"clinical__brca_shared__lab_proc_her2_neu_immunohistochemistry_receptor_status":["negative"]

Note that the exact name of the keys/attributes to query can be identified
by previously performing a Key search for estrogen, progesterone, or HER2,
respectively.
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Figure 6.14: Example of the key-value filters needed to select Triple-Negative Breast Cancer items after
using the Data search interface to preliminarily select TCGA-BRCA breast items.

Figure 6.14 shows such search on the GenoSurf Key-value interface, lead-
ing to the desired result. Note that for building conjunctive conditions each
one must be in a separate panel; filters selected in the same panel result in a
disjunction.

Extracting from Multiple Sources at a Time. Suppose we need to retrieve
items of hg19 assembly from healthy brain tissue (and possibly its subparts)
of male individuals up to 30-years-old. In total, hg19 items in the repository
are 123,965. Healthy tissue corresponds to choosing "true" in the Healhty/Con-
trol/Normal filter, which reduces the result to 18,090 items. Since Tissue is an
attribute that benefits from ontological expansion, we select the Expanded se-
mantic option, to be able to find items connected also to hyponyms of "brain".
This filter selects 1,046 items (annotated with "brain" or "cerebellum"). Gender
"male" gets 604 items, and finally the condition Max.age = 30 years (correspond-
ing to 10,950 days in the API call performed by the system) finds 56 items. As
it can be observed in the ‘SOURCE COUNT’ tab, such output derives from the
ENCODE (2 items) and TCGA (54 items) sources.

Combining Mutation and ChIP-seq Data. Suppose we are interested in iden-
tifying DNA promotorial regions bound by the MYC transcription factor and
that present somatic mutations in breast cancer patients with tumor recurrence.
To answer such typical biological question a user can concentrate on hg19 as-
sembly and perform three separate search sessions:

(i) selection of ENCODE (Source), hg19 (Assembly), ChIP-seq (Technique), nar-
rowPeak (File format), MCF-7 (Cell/Cell line) – a breast cancer cell line, and
MYC binding sites (Target);

(ii) selection of TCGA (Source), hg19 (Assembly), BRCA (Project name), DNA-
seq data (Technique) of patients who encountered a new tumor occurrence
– such latter information can be selected from the Key-value search part,
for example using the value search string "new tumor";

(iii) selection of hg19 genomic region annotations describing promoter loca-
tions from RefSeq.

The first result set amounts to 16 items; these can be retrieved by using the
filters in the GenoSurf Data search section. The second result set contains 3
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items (first, 993 items are extracted in the Data search section; then, they are
reduced to 3 items by the Key-value search of the additional tumor event). The
third result set contains two annotation items, one specific for each assembly.

Such results can be later analyzed in GMQL by using a chain of GenoMetric
JOINs first between the sets resulting from selection (i) and (iii) to extract the
MYC-binding promoters, and then with the set from selection (ii), to extract
the BRCA-mutated MYC-binding promoters. Along the way, GMQL operators
can be used to remove genomic regions replicated in the data and add new
metadata attributes counting the number of investigated promoters for each
patient.
Overlapping TF with HM in the Sites of Known Enhancers. Pretend we
are interested in overlapping transcription factors (TF) and histone modifica-
tions (HM) regions in a same cell line, corresponding to the locations of known
enhancers and with specific distal requirements from transcription start sites.
First, we need hg19 (Assembly) narrowpeak (DataFormat) data of the CTCF tran-
scription factor (Target) in ChIP-seq analysis (Technique) from the GM12878 Cel-
lLine. Second, we need hg19 narrow peak data from the H3K4me1 histone mod-
ification (Target) in ChIP-seq analysis from the GM12878 cell line (using Synonym
semantic option in the Data search phase). Third, we look for annotation data
about gene and enhancer locations (two possible values in ContentType). This
use case is performed on the hg19 reference genome. The three search actions
retrieve respectively 14, 5, and 5 items each. These datasets can then be used
for a query in GMQL, with specific genomic distal operators.

6.4.2 Validation of GenoSurf

We here report our evaluation of the GenoSurf interface and henceforth of the
previous process of data integration that resulted in the META-BASE reposi-
tory. Specifically, we target the following research questions:

[RQ1] Usability and Understandability. How easy is to understand and use the
interface for an interdisciplinary user base?

[RQ1.BIO] for users with biology background?
[RQ1.CS] for users with computer science background?

[RQ2] Effectiveness. How effective is the interface in providing data integration
results without errors?
[RQ3] Efficiency. How much does the interface lower the effort required to per-
form the same search queries on original systems?

RQ1: Usability and Understandability Experiment

We here report the results of a compendious empirical study whose target is
a population composed by biologists, bioinformaticians and computer scien-
tists. The same setting was employed first to answer to RQ1, addressing the
general mixed population, second to answer to RQ1.BIO (only involving users
with knowledge in Biology) third to answer to RQ1.CS (only with users in the
Computer Science field). Most users were totally unaware of conceptual mod-
elling guidelines and, as such, well represented the typical GenoSurf target
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Feedback

Questionnaire
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WIKI manual

Web interface
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Show results

Figure 6.15: Overview of empirical validation process for GenoSurf.

user. Their feedback was particularly useful to plan future improvements of
the interface.

Study Rationale. For evaluating the usability and understandability of our
interface, we planned the empirical study process that is shown in Figure 6.15;
it consists of presenting a questionnaire to a group of biologists, bioinformati-
cians, and computer scientists/software developers with interest in Genomics.
Before being engaged with the search system, users were provided with WIKI
documentation and video tutorials. We planned questions of progressive lev-
els of difficulty; each question presents a specific research scenario and partic-
ipants are asked to use our interface for extracting items, thereby simulating
the typical search task. After the submission of answers, we show the right an-
swers to users, and provide explanations of each answer; we expect that during
the process users can develop a better understanding and progressively master
the search system. After such training, we ask the users to evaluate the overall
experience and specify the degree of expertise in the domain.

Experiment Design. During the conception of the survey, we followed a num-
ber of study design principles. We attempted to lower the ambiguity of the
questions and to provide guidance to the users; when asking users to resolve a
search problem, we used questions that could have exact answers (i.e., num-
bers), to lower the possible interpretation biases; we stratified questions by
complexity, to capture different levels of understanding of the interface and its
structure; we diversified the challenges addressed in the questions, to overview
all search possibilities encompassed by our system.

In Table 6.5 we show the complete list of 10 proposed questions (some of
which contain two or three sub-questions). We divided the questionnaire ac-
cording to three groups of questions, in order of complexity: the first provides
a simple scenario with incremental addition of filters: first a source with the
assembly (Q1), then selection of normal/tumor patients (Q2) and of specific
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Q1. How many datasets do we provide from the source TCGA with assembly GRCh38?
Q2. How many items do we provide for TCGA, assembly GRCh38, in the normal (a) / tumoral (b) cases?
Q3. Which TCGA GRCh38 project among COAD (Colon adenocarcinoma), LUAD (Lung adenocarcinoma), and STAD (Stomach
adenocarcinoma) has more gene expression data?

Q4. How many sources contain data annotated with the human fetal lung cell line IMR-90 (both using original spelling (a) and
alternative syntaxes (b))?
Q5. How many sources contain data annotated with the tissue uterus (both using original spelling (a) and the broadest possible
intepretation (b))?
Q6. In ENCODE, how many items of ChIP-Seq can you find for the histone modifications H3K4me1, H3K4me2, and H3K4me3?
Q7. Assume you want to retrieve items from the TADs source that correspond to combined replicates (i.e., they belong to at least 2
biological replicates). How many items can you find?

Q8. We would like to retrieve items of hg19 assembly from healthy brain tissue (and possibly its subparts) of male gender, up to 30
years old. How many items can you find with these characteristics in the sources ENCODE (a) and TCGA (b)?
Q9. We are interested in ovarian cancer patients at clinical Stage III and IV. Select TCGA-OV project data. Then, select pairs with
the key ‘clinical_patient__clinical_stage’ corresponding to the stage iii and iv (e.g., stage iiia, stage iiib, ...). How many items can
you retrieve?
Q10. Suppose you need to identify DNA promotorial regions bound by the MYC transcription factor that present somatic mutations
in breast cancer patients. For each of the following steps, provide the number of retrieved items. First, get from ENCODE source,
ChIP-seq narrowpeak data from the cell line MCF-7, regarding MYC binding sites (a). Second, DNA-seq data is needed from TCGA
BRCA patients which encountered a new tumor occurrence (b). Third, genomic region annotations describing promoters locations
should be retrieved from RefSeq (c).

Table 6.5: Proposed survey questions.

Group Question Sub-
questions

Desired
output

Cross-dimension
attributes

Logical
disjunction

Semantic
enrichment

Combination
original/integr.

Complete
study

1
Q1 1 #D ×
Q2 2 #I ×
Q3 1 #I ×

2

Q4 2 #S ×
Q5 2 #S ×
Q6 1 #I × ×
Q7 1 #I ×

3
Q8 2 #I × ×
Q9 1 #I × ×
Q10 3 #I × × ×

Table 6.6: Input features tested in the survey. Desired output column contains numbers of items (#I),
datasets (#D), or sources (#S).

disease projects (Q3); the second explores peculiar (i.e., less standard) features
of the search, e.g., semantic enrichment with synonyms (Q4), ontological hier-
archies (Q5), disjunction of attribute values (Q6), and aggregate attributes (Q7);
the third builds three more complex cases: combination of many filters (Q8),
joined use of original metadata (in key-value format) and structured metadata
(Q9), composition of three selections from data sources to simulate a complete
study (Q10). Figure 6.16 visually explains the process of attribute selection and
value provisioning required by questions Q2, Q5, and Q9.

As depicted in Figure 6.17 we tested: the ability to compose queries by com-
bining attribute filters coming from different dimensions, the use of value filters
in disjunction one with the other, the understanding of semantic enrichment
options, the combined used of original metadata filters – using a key-value-
based interface – with structured integrated metadata—based on the GCM, the
execution of a complete study. In Table 6.6 we map these challenges into the
different questions that allowed to test them. With respect to the interplay be-
tween original and structured metadata: the query interface must enable in-
teraction with both (in the key-value pairs it is important that people can ask
separately what are the key — typically defining the property associated to the
item — and what are the values — associated to the specific property). In dif-
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GRCh38 
hg19

ASSEMBLY
TCGA 
ENCODE 
CISTROME 
Roadmap Epigenomics 
…

SOURCE

Q9 TCGA-BRCA 
TCGA-OV 
TCGA-LUAD 
…

PROJECTNAME

Q5

True 
False

ISHEALTHYQ2

Lung 
Uterus 
Cervix uteri 
Cervix 
Endometrium 
…

TISSUE

… 
Stage IIIA 
Stage IIIB 
Stage IV

Value

clinical_patient__clinical_stage 
clinical_patient__ecog_score 
…

Key

Figure 6.16: Q2 describes a case in which the user selects from the IsHealthy attribute list first the
value "True" and then the value "False", corresponding to two sub-questions. Then, she selects
"GRCh38" among the possible values in the Assembly attribute list and "TCGA" as a Source. Q5
presents an enriched list of values for the attribute Tissue — note that "Cervix uteri" and "Cervix"
are synonyms and, together with "Endometrium", they are hyponyms of uterus. For Q9, after
selecting the ProjectName, the user explores keys and values through a specific interface.

Figure 6.17: Graphic representation of tested user operations: the red stamp (1) and (2) represent the
combination of attribute filters coming from different dimensions; (2) uses value filters in disjunction;
(3) indicates the semantic enrichment options; (1), (2), and (4) allow to combine selection on the key-
value-based interface with metadata from the GCM.
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Figure 6.18: Histograms showing the user’s expertise on genomic data analysis.

ferent questions we alternatively asked to report the number of items, datasets,
or sources.

Study Execution. The experiment target users were sourced from within our
research group (GeCo) and from several collaborating institutions (such as Po-
litecnico di Torino, Istituto Nazionale dei Tumori, Università di Torino, Uni-
versità di Roma Tre, Istituto Italiano di Tecnologia, Radboud Universiteit Ni-
jmegen, Freie Universität Berlin, Harvard University, Broad Institute, National
University of Singapore, University of Toronto), including researchers with dif-
ferent backgrounds (computational and molecular biology, bioinformatics, and
computer science) but also students and pure software developers with interest
in Genomics. Out of about 60 invitations, we received 40 completed responses.

Results. First of all we consider the self-assessment of users about their expe-
rience in the field of genomic data analysis (see histograms in Figure 6.18), high-
lighting that our sample was roughly divided into two balanced sets with dif-
ferent expertise. Overall, users present expertise scores that range from "None"
to "Expert". When asked about their use of platform to find data for analy-
sis and about their need to combine inter-sources data, answers ranged from
"Never" to "Daily", confirming that our users’ test-set was well-assorted.

Based on these results, we formed one BIO group, with users who answered:
"Bioinformatician", "Biologist", "Computational Biologist", "Molecular Biolo-
gist", "Biostatistician", or "Biomedical Engineer" and one CS group, with users
who answered: "Computer Scientist with interest in Genomics", "Pure Com-
puter Scientist", or "Software Developer".

To answer RQ1 we first considered the general population of 40 individuals
and then repeated the same analysis by considering only users with computer
science background (20) or with biology background (20). As a threat to valid-
ity of this partition of the user base, we point to the fact that self-assessment is
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Question Semantic
level #dim. #integr.

attributes
#orig.
keys Scores Group

score Typical errors

Q1 O 2 2 - 97.50%

93.33%

#items instead of datasets
Q2a O 3 3 - 97.50%
Q2b O 3 3 - 92.50%
Q3 O 3 2 - 87.50%

Q4a O 1 1 - 72.50%

75.94%

#items instead of sources
and wrong spelling

Q4b S 1 1 - 82.50% #items instead of sources
Q5a O 1 1 - 82.50% #items instead of sources
Q5b E 1 1 - 70.00% #items instead of sources
Q6 O 2 3 - 67.50%
Q7 O 2 2 - 82.50% wrong use of replicate count

Q8a E 3 6 - 50.00%

68.47%

wrong use of age selector
Q8b E 3 5 - 52.50% wrong use of age selector
Q9 O 1 1 1 75.00%
Q10a O 4 5 - 82.50%
Q10b O 2 2 1 70.00%
Q10c O 2 3 - 85.00%

Table 6.7: Result features. Semantic levels include original values (O), synonyms and vocabulary terms
(S), or the expanded option, with also hierarchical hyponyms (E).

not always accurate. We did include some queries to understand the user pro-
file, however we did not consider these information sufficient to build a strictly
balanced number of partitions of the user base.

Correct Answers. In Table 6.7 we report: the required semantic level to set at
the beginning of the query, the numbers of dimensions, integrated attributes
and original keys involved in the query. Then we show percentages of cor-
rect answers (scores) of each specific sub-question and aggregated by group of
questions. The correctness of answers is established on an exact-match base. In
this assessment, we chose not to consider a finer concept of distance between
the correct number and other numbers, possibly accounting for typos or wrong
choices of the users.

Note that, if we consider together the performances of each group, as ex-
pected, group 1 reached a high percentage of correct answers (93.33%), group
2 a little less (75.94%), while group 3 had the worse score (68.47%). Some typ-
ical errors spotted in many answers are also reported. Question 8 had a low
rate of correct answers (50% and 52.63%); we asked to retrieve the number of
items in two sources for a specific assembly from a healthy tissue (using the se-
mantic option that includes ontological hierarchy) of one gender in a restricted
age range. Such question combined many elements (six data search filters, use
of semantic expansion, age feature). Overall, users replied correctly to 78.92%
of the questions (grouping together the sub-questions of a same entry). Five
users answered correctly to all questions. On average, it took them less than 44
minutes to answer all the 10 questions.

In Figure 6.8, instead, we appreciate the results divided by user groups.
Overall, all three groups of questions, as well as the total calculated as an av-
erage of all questions, highlighted that users with a Biology background per-
formed better than the ones with a Computer Science background.
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Question Scores BIO Group score BIO Scores CS Group score CS

Q1 100.00%

95.00%

95.00%

91.67%Q2a 100.00% 95.00%
Q2b 90.00% 95.00%
Q3 90.00% 85.00%

Q4a 85.00%

86.88%

60.00%

65.00%

Q4b 90.00% 75.00%
Q5a 90.00% 75.00%
Q5b 80.00% 60.00%
Q6 80.00% 55.00%
Q7 95.00% 70.00%

Q8a 55.00%

74.17%

45.00%

62.78%

Q8b 60.00% 45.00%
Q9 75.00% 75.00%
Q10a 100.00% 65.00%
Q10b 75.00% 65.00%
Q10c 95.00% 75.00%

Total 85.00% 70.94%

Table 6.8: Results divided by user profile: 20 users with Biology background (BIO), 20 users with
Computer Science background (CS).

Lessons Learned. In retrospective, we made mistakes in the formulation of some
of our queries. Users were confused when we asked them to count the con-
tainers of data (e.g. sources or datasets) instead of the data items, probably
because they did not understand the notions of sources and of datasets: dis-
tinguishing the dataset and data source storing the items probably requires a
computer science background that was not present in many users. As in these
cases users made the exact choices of attributes and values and just provided a
wrong numerical answer, we considered their answers as valid. In two ques-
tions (Q6 and Q8) users did not reach a satisfying percentage: in one case, this
was probably due to the misunderstanding between the use of "comma" in nat-
ural language and the correspondence with a logical AND; in the other case,
to the misinterpretation of some filters. These observations provided us with
important insights on the low usability of some parts of the interface. We made
an effort to understand what caused the errors in the answers and reported the
most obvious reasons in the last column of Table 6.7. In the future we shall
produce a more advanced evaluation framework that allows to infer or exactly
link each wrong answer to its causative action by the user.

In spite of these mistakes, our user study provided us with an important
feedback. We were forced to de-normalize and simplify the conceptual schema,
but the logical organization of our simplified schema, centered on the item with
selected attributes and organized along four dimensions, still proved to be ef-
fective; it facilitated both the training and the search interface organization.
Clustering attributes along the four dimensions allowed us to explain them
first collectively and then individually; users understood well their meaning
and in most cases were able to translate narrative questions into the correct
choice of attributes embedding the questions’ semantics.

143



i
i

“output” — 2021/1/14 — 8:34 — page 144 — #168 i
i

i
i

i
i

Chapter 6. Searching Genomic Data

How easy it was to answer the proposed questions? 

0 5 10 15 20

Extremely
Very

Moderately
Slightly

I did not use it
I did not know…

0 5 10 15

Extremely
Very

Moderately
Slightly

I did not use it
I did not know…

0 5 10 15

Extremely likely
Quite likely

Moderately likely
Slightly likely

Not at all likely
I am not sure

0 5 10 15

Very easy
Moderately easy

Neither easy nor difficult
Moderately difficult

Very difficult
No answer

0 10 20 30

Very satisfied
Satisfied

Neither satisfied nor dissatisfied
Moderately dissatisfied

Very dissatisfied

0 5 10 15

Very easy
Moderately easy

Neither easy nor difficult
Moderately difficult

Very difficult
Did the documentation help with the task? Did the video tutorials help with the task?

How easy is it for you to find the information 
you are looking for on our platform?

Are you satisfied with the number and type 
of data sources contained in the interface?

How likely are you to recommend our platform 
to colleagues or other researchers in your field?

Figure 6.19: Histograms showing the user’s evaluations of the search system.

RQ2: Effectiveness

Effectiveness referred to the data integration process was answered in Sec-
tion 4.10, where we addressed the aspect of lossless integration (both on the
intensional and extensional perspective) as well as the semantic enrichment
correctness. Here we propose to measure the effectiveness of the GenoSurf
search system based on the users’ satisfaction after its use.

After filling the first part of the questionnaire, we asked users if they learned
from the system and if they liked it, and to give us hints on how to proceed in
our work (possibly with open suggestions on how to improve it). Answers to
this part of the questionnaire are shown in Figure 6.19.

Two thirds of users declared that answering to the proposed questions was
"Moderately easy" or "Neither easy nor difficult". Most users either did not
use the documentation or found it moderately/very useful, while users who
watched the video tutorials were generally satisfied with them. When asked
to perform a query to reach items useful to their own research, most users de-
clared it was moderately easy. The majority was satisfied with the data sources
available in the interfaces and was quite likely to recommend the platform to
colleagues and researchers in the field.

These few results may further support the positive evidence upon usability
and readability of the system shown in RQ1. For a more precise assessment,
obviously, users response may have been measured by means of efforts and
time spent in learning GenoSurf usage; however, in this evaluation we did not
collect this kind of data.

Some specific feedback and the observation of users’ mistakes allowed us to
improve the instructions for using the search interface, as we eliminated some
sources of ambiguities and misunderstanding. We also received important in-
dications about missing data sources according to users’ experience; this infor-
mation has driven us in selecting the next sources to be integrated in the META-
BASE repository. A representative taxonomy of received comments is provided
in Table 6.9, including user suggestions on addition of sources, comments on
usability of specific features, hints for future work and general criticisms.
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Suggestions for sources to be added in the future

� 1000 genomes
� CCLE (3 occurrences)
� Genomics of Drug Sensitivity in Cancer projects (including also pharmacological)
� ICGC
� GTEX
� GWAS Catalog

Feature: Genomic Data Model search

� Search attributes are clear and powerful
� Very intuitive and easy to use
� Selection of items takes some time
� Too many fields; highlight fields that contain a certain keyword
� Request for allowing to copy content of single fields

Feature: Original-Synonym-Expanded search options

� Good (2 occurrences)
� Very useful
� "Expanded" option not completely clear
�May be confusing, but once understood they are very useful
�Why is original the default?
� Synonyms could be somehow shown grouped

Feature: Key-Value search

� Consider adding a search feature on both keys and values simultaneously (3 occurrences)
� Good (2 occurrences)
� Useful
� Sorting of value items seems strange
� Results appear in a bit complicated way

Feature: GMQL query builder

� Very good
� Not used

Feature: Download of data files links

� Good (2 occurrences)
� Very good
� Useful and easy
� Downloading sometimes is very slow

Hints for future work

� Focusing more on the metadata search through text
� Enabling the search directly through known ontologies
� Implementing queries history or undo/redo
� Providing more practical examples of the combined use of the various parts
� Providing a complete use case to follow

Criticisms

� Tool useful for people with bioinformatic background, difficult for doctors or biologists
� User experience quite overwhelming: a user should see a window only when needed
� Interface is not intuitive, especially the possibility to use it jointly with GMQL

Table 6.9: Taxonomy of suggestions provided by study participants of the questionnaire.

RQ3: Efficiency

To evaluate efficiency of our integration process supported by the search in-
terface, we compared the effort made by a user to query original sources as
opposed to our integrated system. As benchmarks we employed six complex
queries described in the Use Cases (see Section 6.4.1).

For these examples, we assume that the goal of a user of our system is to find
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Benchmark DS #Actions GenoSurf Expressible outside GenoSurf

Extracting Cancer Patient Data 1 3 filters, reordering table 7: TCGA does not allow to order by aliquot

Combining ChIP-seq and DNase-seq Data 2 4 filters (ENCODE), 7: Roadmap does not have an interface
with metadata filters

4 filters + 1 kv (Roadmap)

Extracting Triple-Negative 1 1 filter + 3 kv 7: TCGA does not allow filters
Breast Cancer Cases on XML clinical information

Extracting from Multiple Sources at a Time 2 5 filters (1 with Exp.) 7: Filters available in both sources,
but no ontological expansion possible,
health status filter not available in ENCODE,
user extracts experiments, not files

Combining Mutation and ChIP-seq Data 3 5 (ENCODE), 3: Filters available on ENCODE and TCGA,
4 + 1 kv (TCGA), files to be parsed for annotations (no interface)
3 (annotations)

Overlapping TF with HM in the sites 3 5 (ENCODE), 3: Filters available on ENCODE and TCGA,
of known enhancers 5 (1 with Syn.) (ENCODE), files to be parsed for annotations (no interface)

2 (annotations)

Table 6.10: Results of efficiency assessment.

data for her data analysis. She measures the value of her search by considering
it successful when a number of items useful to her data analysis are returned
by the system, as opposed to a search that does not produce results.

Table 6.10 shows our findings on these six example queries: we indicate the
number of data sources involved in the results of the query, the number of
filters set on the GenoSurf Data Search (filter) and Key-Value Search (kv), and
our assessment on the possibility of performing the same query on original
data sources systems. Note that the shown examples demonstrate the added
value provided by our integration effort, which is materialized in META-BASE
and provided through GenoSurf. The first four listed examples could not be
performed on any of the original sources, because: i) the source system did
not allow to sort or search by a given attribute; ii) there was no interface for
choosing filters on metadata; iii) the results of a source query are not files/items
ready to be processed (instead, lists of experiments).

In addition to these, we point to other reasons why GenoSurf provides users
with a more efficient environment with respect to having to query all sources
separately:

i) querying multiple sources together, with same filters saves time;
ii) original sources do not include (or in a very limited way) ontological sup-

port, resulting in additional effort to navigate parts of ontologies sub-trees
and to perform queries to match hyponyms;

iii) original sources are not directly integrated with the GMQL analysis
environment—this is an indirect advantage provided by GenoSurf, which
outputs files ready to be processed in a Bioinformatic Tertiary Analysis
computational environment.

Overall, we can ascertain that GenoSurf offers users a wide set of instru-
ments to perform easier search sessions than from the original sources. Starting
from the original sources users would have to apply many more transforma-
tions and perform a much greater effort to achieve similar results. Future work
may address more specifically the added value to users’ interests, trying to as-
sign a cost to actions, as it was done in more business-oriented contexts, e.g., by
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Even and Shankaranarayanan [123, 124], even if our domain concerns research
and does not seem directly monetizable.

6.5 Related Works

Graphs for Genomics. As described in a survey by Angles and Gutierrez [12],
Graphs have been investigated in the past as a means to store genome maps.
Such approaches [155, 172] were mostly theoretical and did not use the meta-
data information as a driver for genomic data selection. Among various in-
tegrated databases in the bioinformatics domain that employ graph-based
paradigms, we cite: BioGraphDB [266], a resource to query, visualize and an-
alyze biological data belonging to several online available sources (focused on
genes, proteins, miRNAs, pathways); Bio4j [291], a platform integrating se-
mantically rich biological data (focused on proteins, functional annotations);
ncRNA-DB [55], integrating associations among non-coding RNAs and other
functional elements. In [388] the authors demonstrate that graph databases
efficiently store complex biological relationships (such as protein-protein inter-
action, drug-target, etc.) and have the potential to reveal novel links among
heterogeneous biological data.

Semi-automatic generation of knowledge graphs is discussed extensively in
the Semantic Web community [111, 143]. For the generation of GeKnowGraph
we did not use these techniques because genomics data sources are very hetero-
geneous and for many of them we were not able to learn a schema (sometimes
the metadata is not even exposed with APIs or structured HTML pages). Since
a priori we cannot assume regularity in the metadata structure of sources, we
strongly believe that a curated approach, driven by a sound conceptual schema
such as GCM, leads to better and more useful results, for the biology commu-
nity.

Browsing interfaces for genomics. DNADigest [214] investigates the problem of
locating genomic data to download for research purposes. The study is also
documented more informally in a blog.11 This work differs from our since,
while allowing the dynamical and collaborative curation of metadata, they only
provide means to locate raw data, while we provide data to be used by our
genomic data management system (described in Section 4.9).

UCSC Xena [151] provides a strong browsing interface, with more power-
ful tools than GenoSurf, as it also includes multiple visualization features and
possibility to store private datasets. However, it only encompasses data sources
relevant for cancer genomics.

Terra12 of the Broad Institute is a new platform that aggregates genomic
data from different sources, also including cloud computational environments.
Metadata are curated but datasets can only be browsed source by source, there-
fore without benefiting from an integrative view. Their integration pipeline is
not a general framework but a set of different ETL scripts that are written ad
hoc for each new imported source.

11https://blog.repositive.io/
12https://terra.bio/
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qcGenomics [49] is a platform for retrieving, transforming (using quality as-
sessments), and visualizing genomic datasets in comparative views; the focus
is on allowing users to perform multidimensional data integration online.

We consider DeepBlue [9] as the most similar easy-to-use platform with re-
spect to GenoSurf. This data server was developed to search, filter, and also
process epigenomic data produced within a multi-center research consortium.
Some of its modeling choices are similar to ours (e.g., distinction between re-
gion data and metadata, management of both experimental and annotation
datasets, a set of mandatory attributes and key-value pairs to store additional
metadata). However, DeepBlue focuses on epigenomics (i.e., study of epige-
netic modifications on the cell), a limited branch of genomics. Instead, Geno-
Surf allows to browse a repository resulting from a much broader integration
effort, as we consider a larger spectrum of different data/experiment types.
The DeepBlue database identifies five mandatory metadata attributes (three of
them are standardized to external controlled vocabularies and equipped with
synonyms and hierarchies), while GenoSurf accounts for eight entities with
thirty-nine attributes (ten of which are normalized, also including synonyms,
hierarchies and external references). The look-and-feel of the platform is sim-
ilar to ours, with the possibility to select specific values for each attribute and
a table of results; however we give users the possibility to select many more
aspects and provide dynamically updated counts of items available for each
specific value.

As opposed to DeepBlue, GenoSurf does not provide functionalities to pro-
cess region data, but it is well-coupled with GMQL, which is a powerful tool for
genomic region manipulation. GenoSurf builds extraction queries to be used
directly in GMQL.

Empirical Studies. In the last few years, the focus of empirical studies dedicated
to conceptual modelling has ranged from works on tools based on CM [394], to
process mining [20] and to artifact sampling [244]. A broad experiment has
compared traditional conceptual modeling with ontology-driven conceptual
modeling [368]. Empirical studies on conversational interfaces-based systems
for biology or data science have been conducted in [97, 126, 194].
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CHAPTER7
Future Directions of the Data Repository

“You got to have a problem that you want to solve, a wrong that you want to right, it’s got to be something that
you’re passionate about because otherwise you won’t have the perseverance to see it through.”

— Steven Paul Jobs

In the previous chapters we have presented our approach to modeling genomic
data (Chapter 3), building a sound repository of genomic datasets using data
integration techniques (Chapters 4-5), and exposing its content through user
interface that are rich in functionalities and data complexity (Chapter 6). Ex-
citingly, the realized work opens up many interesting challenges, which are
briefly described in the following, pointing at next research directions:

• We aim to include other data sources and data types (among both well-
established sources and just born initiatives). As expected, while up to
now we only targeted open sources, some of the new ones raise problems
of privacy protection in genomic data (Section 7.1).

• We are working towards the proposal of solutions that help achieving bet-
ter data quality during the process of integration, i.e., while building the
integrated repository (Section 7.2).

• We are aware that there exist many interoperability issues that could be
addressed by using tools made available from the active community of
semantic web technologies for life sciences; this aspect will be further in-
vestigated (Section 7.3).

• In the broader context of the GeCo project, which includes the reposi-
tory described in this thesis, but also a query language and engine for
answering complex biological queries (i.e., GMQL), our next purpose is
to simplify the use of these tools and connect them within an integrated
environment that can be used by biologists and clinicians, even with a lim-
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ited technological background; this will be realized in the new GeCoAgent
project (Section 7.4).

• As a specific addition to GeCoAgent, we envision the creation of a reposi-
tory of best practices that can be selected by users within our environment
or also offered as an external service in the form of a marketplace of bioin-
formatic tertiary analysis procedures (Section 7.5).

7.1 Including New Data Sources

In Chapter 2 we discussed the main genomic data players such as repositories,
international consortia and integrators focused on given diseases (e.g., can-
cer for TCGA), or on scientific aspects (e.g., epigenetics for Roadmap Epige-
nomics). The next obvious target are other sources that are most commonly
accessed in bioinformatics/biologists every day work; we will start from the
ones suggested by GenoSurf evaluation participants described in Section 6.4.2
(i.e., ICGC, GTEx, GEO, COSMIC, CCLE). Then, we would like to investigate
the possibility of determining new suitable additions in an automatic way, pos-
sibly setting up a service that is able to suggest and orient a stream of data
sources acquisitions. Such a service requires, as a prerequisite, the provision of
a more accurate methodology to measure the value achieved by adding new
datasets incrementally, impacting the results of both pure search activities and
downstream analysis not detailed in this thesis.

Such measure could be based on several factors, such as the dimension of
the source, the geographical area (or population ethnicity/race) covered by the
sample collection, the type of samples (e.g., from healthy or non-health tissues,
case or control populations), or the type of data (i.e., we have many epige-
nomics sources but only one – even if it is considered the most important in the
community – regarding cancer genomics). Notably, it would be important to
measure the value of adding a new source with respect to given search goals
provided by different classes of users, either driven by their typical profiles or
by shared sets of queries of interest.

This service would greatly improve the variety of datasets offered in META-
BASE and GenoSurf, but could be of great interest also for external systems, if
offered as an API, actively orienting collaborative streams of acquisitions.

Considering new trends, in recent years we are assisting to the world-
wide emergence of a new generation of large-scale genomic national initia-
tives [355]. Some employ population-based sequencing, such as All of US [92]
from NIH in the United States (aiming at sequencing 1 million American vol-
unteers’ genomes), the Million Veteran Program (>1 million participants) [144],
the China’s Precision Medicine Initiative [99], GenomeDenmark [108], the Estonian
Genome Project [226], the Qatar Genome Programme [304], and the Korean Ref-
erence Genome Project [87]. Others are testing large numbers of cancer or rare
disease patients, for example the 100,000 Genomes Project [72] (a UK Govern-
ment project that is sequencing whole genomes from UK National Health Ser-
vice patients), the Saudi Human Genome Program [3], and the Turkish Genome
Project [10]. Still, other nations are focused on developing infrastructure to
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Australia
Australian Genomics
2016 - 2021

Canada
Genome Canada
2018-2023

USA
National Human 
Genome Research 
Institute
All of Us 2016 - 2025

2007 - pres

Brasile
Brazilian Initiative on 
Precision Medicine 

2015 - pres

China
Precision Medicine 
Initiative

Switzerland
Swiss Personalized 
Health Network

2017 - 2020

Denmark
Genome Denmark
FarGen 2011 - 2017

2012 - pres

Iceland
deCode genetics

Estonia
Estonian Genome 
Project 2000 - pres

Finland
National Genome 
Strategy 2015 - 2020

Japan
Japan Genomic 
Medicine Program

2015 - pres

United Kingdom
Genomics England
Scottish Genomics
Welsh Genomics for 
Precision Medicine
Northern Ireland Genomic 
Medicine Center
2012 - pres

France
Genomic Medicine 
Plan 2016 - 2025

Turkey
Turkish Genome 
Project 2017 - 2023

Netherlands
RADICON-NL

2016 - 2025

Saudi Arabia
Saudi Human Genome 
Project 2015 - pres

Qatar
Qatar Genome

2015 - pres

2013 - 2020
51 Africa projects
H3Africa

1996 - pres

South Korea
Korean Genome 
Project 2006 - pres

Figure 7.1: Map of currently active government-funded national genomic-medicine initiatives; inspired
from [47].

later achieve similar results (for instance FinnGen [132] and GenomeCanada [62]).
Also private companies are participating in this race: the Icelandic project (now
deCODE Genetics [171]) that has been bought by the U.S. biotechnology firm
Amgen, 23andMe,1 and Human Longevity Inc.2

Figure 7.1 describes recently born initiatives in different countries world-
wide. Their data access models are still unarguably not open for research (shar-
ing issues of data governance and privacy protection [100]), therefore we do not
discuss them in this thesis; no integrators include them yet either. However, all
these projects certainly represent a wealth of information, which will need to
be considered within the scope of future data integration efforts, giving a new
and substantial boost to the potential of genomic data analysis.

7.2 Improving Genomic Data Quality Dimensions

The integrated use of data coming from different data sources is very challeng-
ing, as heterogeneity is met at multiple stages of data extraction (e.g., download

1https://www.23andme.com/
2https://www.humanlongevity.com/ to mention a few
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Figure 7.2: Taxonomy of heterogeneity loci and affected data quality dimensions during genomic data
integration. Pink rectangles refer to quality-aware methods for data integration.

protocols, update policies), integration (e.g., conceptual arrangement, values
and terminologies), and interlinking (e.g., references and annotation). While
integrating genomic datasets, either for ad hoc use in a research study, or for
building long-lasting integrated data warehouses, we deal with various com-
plexities that arise during three phases: i) download and retrieval of data from
the (potentially multiple) sources; ii) transformation and manipulation, provid-
ing fully or partially structured data in machine-readable formats; iii) enrich-
ment, improving the interoperability of datasets.

With heterogeneity locus we refer to an activity or phase within the genomic
data production/integration process of multiple sources that exhibits hetero-
geneity issues, thus undermining the quality of resulting resources and hinder-
ing seamless reconciliation of records and information. The taxonomy in Fig-
ure 7.2 keeps track of all the phases in which a genomic data user may need to
resolve problems related to non-standardized ways of producing data, making
it accessible, organizing it, or enhancing its interoperability; the heterogeneity
loci (listed in the central column) are grouped by production and integration
phases (on the left) and are related to data quality dimensions on the right
(such as accuracy, consistency, currency, and reliability) that are critical in the
represented heterogeneity aspects.3 We have here focused on the specific case
of semi-structured data extraction. It has to be noted that, in cases in which the

3We refer to widely used state-of-the-art definitions of data quality dimensions [310, 374] as well as to more recent
ones [16, 30].
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downloaded information is unstructured text, the dimensions become more
complex, possibly including lexical and syntactic accuracy, "readability" and
text comprehension, and local/global coherence [30]. Instead of considering
the quality of genomic signals extracted from raw data (as this problem is ex-
tensively studied for each signal extraction technology), we are planning to ap-
proach a novel angle: addressing data quality dimensions while diverse data
sources are being integrated together to enable further applications. A start-
ing point could be that of conceiving a measure for the degree of heterogeneity
between two sources (or between one new source and the global META-BASE
repository) so that the effort required to reconcile such different datasets could
be defined as a function of this measure. Aside being of great contribution for
our framework, this service could be exploited by any company wishing to sell
integration services, based on a systematic calculation of their price.

7.3 Towards Better Interoperability

While in this thesis we have approached data integration as a low-level effort,
based on our experience on building solid data warehouses, we are aware of
the trend that is emerging in many applied informatics communities, includ-
ing the bioinformatics one: on-the-fly data integration based on interoperability
of systems. Many initiatives are targeting the production of Findable, Accessi-
ble, Interoperable, Reusable (FAIR) data. Fairness is a broad concept that has
been addressed by different communities and several definitions have been
provided. In particular, the bioinformatics community embraces the princi-
ples drafted in [382] by a big group of researchers that produced the first for-
mal publication on this topic. Findability has to do with unique and persistent
identifiers, rich metadata that explicitly references the described data and is in-
dexed in searcheable resources. Accessibility refers to the possibility of retriev-
ing data through standard communications protocol, that is generally open
or allows for authentication procedures, while metadata is always accessible
even when data is not anymore. Interoperability represents the adoption of a
broadly used knowledge representation language, vocabularies that are FAIR
themselves, references to other (meta)data. Reusability ensures availability of
rich documentation, data usage licences, detailed provenance and community
standards relevant in the domain of data. Optimizing these four characteristics
in genomics data and bio-repositories is becoming key to successful resources
in the genomic research community.

Some initiatives are starting to promote FAIRness and open/sharable sci-
ence: FAIRsharing [329]; CEDAR [276], a system for development, evalu-
ation, use, and refinement of genomics (biomedical in general) metadata;
BioSchemas.org [156], that applies schemata to online resources to make them
easily findable; DNAdigest [214], promoting efficient sharing of human ge-
nomic datasets; DATS [328] to boost their discoverability.

From these baselines, we envision a data integration process that includes
a seamless evaluation of quality parameters, relating them to the specific ge-
nomic analyses that are targeted time by time (see Batini and Scannapieco [30]
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Chapter 7. Future Directions of the Data Repository

for a comprehensive discussion on the dependency of quality dimension met-
rics from the addressed goal), preparing data that are more directly employable
in biological discovery.

Predictably, future data integration approaches will include more and more
a data quality-aware modus operandi with the following characteristics:

i) currency-driven synchronization with sources;4
ii) concise, orthogonal, and common data representations;

iii) light and interoperable data descriptions;
iv) reliability-tailored dataset linkage.

7.4 Simplifying Data and Tools for End Users

So far, GeCo’s building blocks have been used in about 50 research studies with
very positive feedback. However, its achievements have employed principally
a model/system-driven approach, leading to significant limitations of usability
and intuitiveness of the interfaces. Above all, to fully exploit computational
strategies as well as GeCo technology, a bioinformatics background and hands-
on attitude towards computational resources are needed.

We have become aware that bioinformatics has to translate research objec-
tives into "customized" search routines and identify the suitable tools to get out
actionable genomics information. We need to treat applications as first-class
citizens and direct major efforts to produce a workflow-driven approach that
makes data search and analysis processes more attractive for domain experts
(with strong competence on the field, but low computer science and program-
ming knowledge).

To achieve this goal, we have started the development of GeCoAgent, a fully
integrated, user-centred web platform aimed at empowering end-user compe-
tences for building cloud-based big data applications. To make GeCo resources
accessible to a wide audience – including clinicians and biologists – GeCoA-
gent uses: dialogues to interact with computational tools, a grammar-driven
conversational agent translated in a chatbot, and a dashboard where several
data summarization/analysis visual objects – progressively built by the system
– are shown to the user. A dialogic interface is the easiest form of interaction,
both in terms of time required to accomplish the operations and of minimizing
the user’s errors; a sort of soft virtual bioinformatics assistant that works like
"Ok Google/Alexa".

The overall process supported by GeCoAgent can be appreciated in Fig-
ure 7.3, where four phases are identified in a typical genomic data-extraction-
and-analysis pipeline. The phases resulting from our high-level conceptualiza-
tion are concerned with data extraction, exploration, analysis, and visualiza-
tion.

4Note that in genomics it is essential that a centralized integrated repository is updated with respect to sources as
the richest and best-quality data files must be captured (see our Downloader implementation in Section 4.3). Instead,
addressing the temporal dimension of integration is typically less relevant, as data that is related to different times-
tamps from various sources, is usually not referring to pre-existing individuals/entities. Longitudinal studies are an
exception, however we do not discuss them in this thesis.
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7.4. Simplifying Data and Tools for End Users

Figure 7.3: Overall tertiary data analysis process adopted by GeCoAgent, which consists of data extrac-
tion followed by data analysis. Data extraction includes the two macro phases of defining objectives,
for constructing the "universe of interest" out of a wider information basis, and of inspection of that
universe by means of data visualization tools. Data analysis includes the two macro phases of defin-
ing the data analysis procedures out of a repository of techniques, and then inspecting the results
produced by those techniques, typically through data visualizations.

For extracting the data of interest, the researcher should define a set of involved
resources: which data, how organized, how retrieved. As a result, users define
a universe of interest that can be further explored and evaluated. A second
data exploration phase consists of inspecting the obtained universe, taking ad-
vantage of many possible statistical qualitative/quantitative visualization tech-
niques. Once the data is extracted, it can be analyzed. The third phase involves
defining an analysis procedure, i.e., understanding suitable procedures/tools, ap-
propriate parameters to be set, taking advantage of an existing repository of
methodologies (e.g., Statistics, Machine Learning, and Deep Learning libraries)
and commonly employed solutions, ranked accordingly to their suitability for
the problem at hand. When the result of interest has been generated, the fourth
phase of result inspection can be performed with the support of other visualiza-
tion tools.

As it can be observed in Figure 7.3, various paths can combine the four
phases in many ways; the user may first observe the whole universe – rep-
resented through appropriate abstractions that relieve the possible information
overload – to get inspiration from all the available data and their interactions,
then focus on a specific portion of it; or instead select datasets one by one and
evaluate their characteristics. During the analysis, algorithms and parameters
are progressively adapted until the user is confident with the results; at any
stage, the user can also decide that the initial datasets do not fit the needs of the
analysis anymore and thus go back to the data extraction phase to re-iterate the
process.
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7.5 Monitoring Integration and Search Value

As a specific sub-project of GecoAgent, we would like to target the most com-
mon (or best) practices of users, so to provide a repository of services that en-
capsulate useful bioinformatics procedures. In order to feed this repository
with valuable content we are currently evaluating different strategies, which
can possibly complement each other. We considered:

• a data-driven approach: we have put in place a mechanism to trace searches
performed on GenoSurf. We save the API requests that are performed on
the system when the user clicks on various functionalities of the interface.
Such queries can be saved by grouping them by IP address (i.e., single
user session), keeping the temporal information (how much the user waits
between one another) and the order (the sequence is explicit, based on a
same IP address). We plan to use this data to model the search process on
our systems, building a meta-repository that traces all performed queries
(plus the involved attributes/values), clustered by kind of research.

• a model-driven approach: we reviewed a number of publications, technical
reports and master students’ theses completed within the GeCo group and
outside (so far about 50 units), and categorized them according to the re-
search objective, the single performed tasks – both of data extraction and
of data analysis – and the sets of tasks combined together to achieve the re-
search goal. This led us to specify "macros", consisting of different queries
that are typically performed together (or in sequence) to achieve common
extraction/analysis tasks.

• an empitical-study-driven approach, running an interview-based user study
to elicit a hierarchical task tree of the tertiary bioinformatics research pro-
cess. This aspect is currently being investigated by other members of the
GeCo group [97].

We are considering to use a formalism such as Business Process Model and
Notation (BPMN) to better capture the concept of bioinformatic search and
analysis as a process, which is different between different user profiles. This
would allow to look for interesting patterns and also enforce process mining
(by, for example, employing frequency-driven usage metadata for recommenda-
tion [30]).

This kind of research will be of great interest both for internal use within
GeCoAgent – achieving better results of usability and effectiveness – but even
more for a general public of researchers: a "queries marketplace service" that
includes a library of best-practice BPMN processes, assisting users in selecting
the appropriate process for their goal, based on maximizing the value of their
queries.
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CHAPTER8
Viral Sequences Data Management Resources

“The basic point is so important I’ll repeat it: RNA viruses mutate profligately. [...] A mutation in that strain
might have made it especially aggressive, efficient, transmissible, and fierce.”

— David Quammen, Spillover: Animal Infections and the Next Human Pandemic

The outbreak of the COVID-19 disease has presented novel challenges to the
research community, which is rushing towards the delivery of results, pushed
by the intent of rapidly mitigating the pandemic effects. During these times,
we observe the production of an exorbitant amount of data, often associated
with a poor quality of describing information, sometimes generated by insuffi-
ciently tested or not peer-reviewed efforts. But we also observe contradictions
in published literature, as it is typical of a disease that is still at its infancy, and
thus only partially understood.

In this context, the collection of viral genome sequences is of paramount im-
portance, in order to study the origin, wide spreading and evolution of SARS-
CoV-2 (the virus responsible for the COVID-19 disease) in terms of haplotypes
(i.e., clusters of inherited variations at single positions genomic sequence), phy-
logenetic tree (i.e., a diagram for representing the evolutionary relationships
among organisms) and new variants. Since the beginning of the pandemic, we
have observed an almost exponential growth of the number of deposited se-
quences within large shared databases, from few hundreds in March 2020, up
to thousands; indeed, it is the first time that Next Generation Sequencing tech-
nologies have been used for sequencing a massive amount of viral sequences.
In August 2020 the total number of sequences of SARS-CoV-2 available world-
wide reached about one hundred thousand. In several cases, also relevant as-
sociated data and metadata are provided, although their amount, coverage and
harmonization are still limited.
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Several institutions provide databases and resources for depositing viral se-
quences. Some of them, such as NCBI’s GenBank [338], preexist the COVID-
19 pandemic, as they host thousands of viral species – including, e.g., Ebola,
SARS and Dengue, which are also a threat to humanity. Other organizations
have produced a new data collection specifically dedicated to the hosting of
SARS-CoV-2 sequences, such as the Global Initiative on Sharing All Influenza
Data (GISAID) [120, 350] – originally created for hosting virus sequences of in-
fluenza – which is soon becoming the predominant data source.

Most data sources hereby reviewed, including GenBank, the COronavirus
disease 2019 Genomics UK Consortium (COG-UK) [317] and some new data
sources from China, have adopted a fully open-source model of data distribu-
tion and sharing. Instead, GISAID is protecting the deposited sequences by
controlling users, who must login from an institutional site and must observe
a Database Access Agreement;1 probably, such protected use of the deposited
data contributes to the success of GISAID in attracting depositors from around
the world.

Given that viral sequence data are distributed over many database sources,
there is a need for data integration and harmonization, so as to support integra-
tive search systems and analyses; many such search systems have been recently
developed, motivated by the COVID-19 pandemic.

This Chapter provides readers with a complete background representation
of the context where the contribution of this Part II of the thesis should be set.

Chapter organization. We start from describing the database sources hosting
viral sequences and related data and metadata, distinguishing between fully
open-source and GISAID (Section 8.1). We then discuss the data integration is-
sues that are specific to viral sequences, by considering schema integration and
value harmonization (Section 8.2). Then, we present the various search systems
that are available for integrative data access to viral resources (Section 8.3); our
own final product, ViruSurf – that will be described along Chapters 9, 10, and
11 – is already mentioned, positioned among other available integrated search
systems.

Finally, we discuss the current obstacles to the goals of integration (Sec-
tion 8.4).

Readers should note that, when describing viral sequences available in
databases and search systems, this review chapter refers to a freezed snapshot
of available resources, captured at the beginning of August, 2020, correspond-
ing to a stage of COVID-19 pandemic that was less critical than the period of
March-June 2020, and in which resources had started to be more data-rich and
organized. For consistency and benefit of comparison, we do not update the
reported counts to later dates.

8.1 Landscape of Data Resources for Viral Sequences

The panorama of relevant initiatives dedicated to data collection, retrieval and
analysis of viral sequences is broad. Many resources previously available for

1https://www.gisaid.org/registration/terms-of-use/
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Figure 8.1: Current relevant resources and initiatives dedicated to data collection, retrieval and analysis
of virus sequences, divided by open and registered access.

viruses have responded to the general call to arms against the COVID-19 pan-
demic and started collecting data about SARS-CoV-2.

According to the WHO’s code of conduct [380], alternative options are avail-
able to data providers of virus sequences. The providers who are not concerned
about retaining ownership of the data may share it within the many databases
that provide full open data access. Among them, GenBank assumes that its sub-
mitters have "received any necessary informed consent authorizations required
prior to submitting sequences," which includes data redistribution. However,
in many cases data providers prefer data sharing options in which they retain
some level of data ownership. This attitude has established since the influenza
pandemics (around 2006), when the alternative model of GISAID EpiFluTM has
emerged as dominant.

A general view of relevant resources and initiatives dedicated to data collec-
tion, retrieval and analysis of virus sequences is shown in Figure 8.1. Rectan-
gles represent resources identified using their logo. We partitioned the space
of contributors by considering: institutions that host data sequences (1), pri-
mary sequence deposition databases (2), tools provided for directly query-
ing and searching them (3), secondary data analysis interfaces that also con-
nect to viral sequence databases (4) portals directly exposing NCBI/GISAID
databases (5). Below, we include the integrative search systems (6) – also our
own ViruSurf and its GISAID-specific version – that are transversal to the above
divisions. Satellite resources (7) are growing, linked externally by viral se-
quences databases.

We next focus on the four upper levels depicted in Figure 8.1, by starting
with the sources that provide full open access, and then presenting GISAID.
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8.1.1 Fully Open-Source Resources

Resources Coordinated by INSDC

The three main organizations providing open-source viral sequences are
NCBI (US), DDBJ (Japan), and EMBL-EBI (Europe); they operate within the
broader context of the International Nucleotide Sequence Database Collabo-
ration (INSDC2). INSDC provides what we call an integration by design of se-
quences (i.e., three institutions provide agreed submission pipelines, curation
process, and points of access to the public, coupled by the use of the same iden-
tifiers and a rich interoperability between their portals).

NCBI hosts the two most relevant sequence databases: GenBank [338] con-
tains the annotated collection of publicly available DNA and RNA sequences;
RefSeq [284] provides a stable reference for genome annotations, gene iden-
tification/characterization, and mutation/polymorphism analysis. GenBank
is continuously updated thanks to abundant submissions3 from multiple lab-
oratories and data contributors around the world; SARS-CoV-2 nucleotide se-
quences have increased from about 300 around the end of March 2020, to 13,303
by August 1st, 2020. EMBL-EBI hosts the European Nucleotide Archive [11],
which has a broader scope, accepting submissions of nucleotide sequenc-
ing information, including raw sequencing data, sequence assembly informa-
tion and functional annotations. Several tools are directly provided by the
INSDC institutions for supporting the access to their viral resources, such as
E-utilities [336] and Pathogens.4 A number of databases and data analysis tools
refer to these viral sequences databases: ViralZone [188] by the SIB Swiss Insti-
tute of Bioinformatics, which provides access to SARS-CoV-2 proteome data
as well as cross-links to complementary resources; viruSITE [354], an inte-
grated database for viral genomics; the Viral Genome Organizer,5 implemented
by the Canadian Viral Bioinformatics Research Centre, focusing on search for
sub-sequences within genomes; Virus-Host DB [268], interrelating viruses with
their hosts (represented as pairs of NCBI Taxonomy IDs), manually curated
with dditional information from literature surveys; Wolfram Data Repository,
providing access to targeted workspaces6 for executing computations using cu-
rated contributed data.

COG-UK

The COronavirus disease 2019 Genomics UK Consortium (COG-UK) [317] is
a national-based initiative launched in March 2020 thanks to a big financial
support from three institutional partners: UK Research and Innovation, UK
Department of Health and Social Care, and Wellcome Trust. The primary goal
of COG-UK is to sequence about 230,000 SARS-CoV-2 patients (with priority
to health-care workers and other essential workers in the UK) to help tracking

2http://www.insdc.org/
3Users and laboratories can submit their data to GenBank through https://submit.ncbi.nlm.nih.gov/.
4https://www.ebi.ac.uk/ena/pathogens/
5https://4virology.net/virology-ca-tools/vgo/
6The Genetic Sequences for the SARS-CoV-2 Coronavirus are provided at https://datarepository.wolframcloud.

com/resources/Genetic-Sequences-for-the-SARS-CoV-2-Coronavirus/.
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the virus transmission. They provide data directly on their webpage, open for
use, as a single FASTA7 file;8 this is associated with a CSV file for metadata. As
of August 1st, 2020, the most updated release is dated 2020-07-28, with 38,124
sequences (as declared on the Consortium’s web page).

Chinese Sources

Since the early outbreak of COVID-19, several resources were made available
in China:

• The Chinese National Genomic Data Center [314] provides some data re-
sources relevant for COVID-19 related research, including the Genome
Warehouse,9 which contains genome assemblies with their detailed de-
scriptive information: biological sample, assembly, sequence data and
genome annotation.

• The National Microbiology Data Center (NMDC10) provides the "Novel
Cov National Science and Technology Resource Service System" to publish
authoritative information on resources and data concerning 2019-nCoV
(i.e., SARS-CoV-2 virus) to provide support for scientific studies and re-
lated prevention/control actions. The resource is provided in Chinese
language with only some headers and information translated to English.
Its FTP provides a collection of sequences from various coronaviruses, in-
cluding many from NCBI GenBank, together with a restricted number of
NMDC original ones.

• The China National GeneBank DataBase [91] (CNGBdb11) is a platform
for sharing biological data and application services to the research com-
munity, including internal data resources; it also imports large amounts of
external data from INSDC databases.

Around the world there are many other sequence collections not yet included
within international repositories, which are hardly accounted; one of them
is the CHLA-CPM dataset collected by the Center for Personalized Medicine
(CPM12) at the Children’s Hospital, Los Angeles (CHLA), resulting from an
initiative launched in March 2020 to test a broad population within the Los
Angeles metropolitan area.

8.1.2 GISAID and its Resources

During the COVID-19 pandemic, GISAID has proposed again its solution in
the form of the new database EpiCoVTM, associated with similar services as
the ones provided for influenza. The GISAID restricted open-source model has
greatly facilitated the rapid sharing of virus sequence data, but it contemplates
constraints on data integration and redistribution, which we later describe in

7A text-based format for representing either nucleotide sequences or amino acid (protein) sequences, in which
nucleotides or amino acids are represented using single-letter codes.

8The COG-UK data is available at https://www.cogconsortium.uk/data/
9https://bigd.big.ac.cn/gwh/

10http://nmdc.cn/
11https://db.cngb.org/
12https://www.chla.org/center-personalized-medicine
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Section 8.4. At the time of writing, GISAID has become the most used database
for SARS-CoV-2 sequence deposition, preferred by the vast majority of data
submitters and gathering 75,507 sequences by August 1st, 2020.

It is also the case that GISAID formatting/criteria for metadata are generally
considered more complete and are thus suggested even outside of the direct
submission to GISAID; the SARS-CoV-2 sequencing resource guide of the US
Centers for Disease Control and Prevention (CDC13) reports, in the section re-
garding recommended formatting/criteria for metadata [74], that the user is in-
vited to submit always using the submission formatting of GISAID EpiCoVTM

"which tends to be more comprehensive and structured". However, in order to
check such format, the user is invited to create an account on GISAID, which
probably leads to using GISAID directly instead of going back to GenBank.

Some interesting portals are "enabled by data from GISAID", as clearly
stated on the top of their pages, with different focuses. NextStrain [168]14

overviews emergent viral outbreaks based on the visualization of sequence
data integrated with geographic information, serology, and host species. A
similar application for exploring and visualizing genomic analysis has been im-
plemented by Microreact, which has a portal dedicated specifically to COVID-
19.15 CoVsurver,16 which had a corresponding system for influenza virus called
FluSurver,17 enables rapid screening of sequences of coronaviruses for muta-
tions of clinical/epidemiological importance. CoV Genome Tracker18 [7] com-
bines in a dashboard a series of visualizations based on the haplotype network,
a map of collection sites and collection dates, and a companion tab with gene-
by-gene and codon-by-codon evolutionary rates.

8.2 Integration of Sources of Viral Sequences

Next Generation Sequencing is successfully applied to infectious
pathogens [166], with many sequencing technology companies develop-
ing their assays and workflows for SARS-CoV-2 (see Illumina [190] or
Nanopore [279]). Some sources provide the corresponding raw data (see
European Nucleotide Archive [11] of the INSDC network), but most sources
present just the resulting sequences, typically in the form of FASTA, together
with some associated metadata. In this section we do not address the topic
of sequence pipeline harmonization (we refer interested readers to forum
threads [106] and recent literature contributions [207]). We focus instead on
the data integration efforts required for their metadata and value integration.

8.2.1 Metadata Integration

Metadata integration is focused on provisioning a global, unified schema for
all the data that describe sequences within the various data sources [29]. In

13https://www.cdc.gov/
14https://nextstrain.org/ncov/
15https://microreact.org/project/COVID-19/
16https://corona.bii.a-star.edu.sg
17http://flusurver.bii.a-star.edu.sg
18http://cov.genometracker.org
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the context of viral sequences, as the amount of data is easily manageable, it
is common to import data at the integrator site; in this way, data curation/re-
processing can be performed in homogeneous way. In such context, one pos-
sible solution is to apply conceptual modeling (i.e., the entity-relationship ap-
proach [28]) as a driver of the integration process. In the variety of resources
dedicated to viruses [347], very few works relate to conceptual data model-
ing. Among them, [357] considers host information and normalized geograph-
ical location, while [242] focuses on influenza A viruses. CoV-GLUE [351] in-
cludes a basic conceptual model for SARS-CoV-2.19 In comparison, the Viral
Conceptual Model (VCM, [43]), which will be extensively described in Chat-
per 9, works seamlessly with any kind of virus, based on the molecule type,
the species and the taxonomic characteristics. VCM has many dimensions and
attributes, which are very useful for supporting research queries on virus se-
quences; it uses the full power of conceptual modeling to structure metadata
and to organize data integration and curation.

8.2.2 Value Harmonization and Ontological Efforts

Besides schema unification, data values must be standardized and harmonized
in order to fully support integrated query processing. The following value har-
monization problems must be solved:

• Virus and host species should refer to dedicated controlled vocabularies
(the NCBI Taxonomy [127] is widely recognized as the most trusted, even
if some concerns apply to the ranking of SARS-CoV-2 as a species or just
an isolate/group of strains).20

• Sequence completeness should be calculated using standard algorithms,
using the length and the percentage of certain indicative types of basis
(e.g., unknown ones = N).

• The information on sequencing technology and assembly method should
be harmonized, especially the coverage field, which is represented in
many ways by each source.

• Dates – both collection and submission ones – must be standardized; un-
fortunately, they often miss the year or the day, and sometimes it is not
clear if the submission date refers to transmission of the sequence to the
database or to a later article’s publication.

• Geographical locations, including continent, country, region, and area
name, are encoded differently by each source.

• In some rare cases, sequences come with gender and age information, hid-
den in the middle of descriptive fields.

A number of efforts have been directed to the design of ontologies for solving
some of these problems:

• The Infectious Disease Ontology (IDO) has a focus on the virus aspects; its
19http://glue-tools.cvr.gla.ac.uk/images/projectModel.png
20The problem of organizing viruses in a taxonomy is far from being solved, as reported by Koonin et al. [212], who

propose a megataxonomy of the virus world.
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curators have proposed an extension of the ontology core to include terms
relevant for COVID-19 [18, 46].

• CIDO [177] is a community-based ontology to integrate and share data
on coronaviruses, more specifically on COVID-19. Its infrastructure aims
to include information about the disease etiology, transmission, epidemi-
ology, pathogenesis, host-coronavirus interactions, diagnosis, prevention,
and treatment. Currently, CIDO contains more than 4,000 terms; in ob-
servance of OBO Foundry principles, it aggregates already existing well-
established ontologies describing different domains (such as ChEBI [174]
for chemical entitites, Human Phenotype Ontology [211] for human host
phenotypes, the Disease Ontology [341] for human diseases including
COVID-19, the NCBI taxonomy, and the IDO itself) – so to not create un-
necessary overlaps. New CIDO-specific terms have been developed to
meet the special needs arising in the research of COVID-19 and other coro-
navirus diseases. The work on host-pathogen interactions is described in
depth in [390], while the inclusion in CIDO of aspects related to drugs and
their repurposing is described in [234].

• The COVID-19 Disease Map [287] is a visionary project by Elixir Lux-
embourg, that aims to build a platform for exploration and analyses of
molecular processes involved in SARS-CoV-2 interactions and immune re-
sponse.

For the sequence annotation process there are two kinds of ontologies that
are certainly relevant: the Sequence Ontology [118], used by tools such as
SnpEff [89] to characterize the different subsequences of the virus, and the
Gene Ontology [15], which has dedicated a page to COVID-1921 that provides
an overview of human proteins that are used by SARS-CoV-2 to enter human
cells, divided by the 29 different virus’ proteins.

8.2.3 Replicated Sequences in Multiple Sources

Record replication is a recurrent problem occurring when integrating different
sources; it is solved by "Entity Resolution" tasks, i.e., identifying the records
that correspond to the same real world entity across and within datasets [146].
This issue arises for SARS-CoV-2 sequences, as many laboratories use to sub-
mit sequences to multiple sources; in particular, sequences submitted to NCBI
GenBank and COG-UK are often also submitted to GISAID.

Such problem is resolved in different manners by the various integrative
systems. The main approaches – detailed for specific sources in the following
– aim to either resolve the redundancy by eliminating from one source records
that appear also in another one or by linking records that represent the same
sequence, adding to both records an "external reference" pointing to the other
source. Along this second solution, a template proposal for data linkage (de-
fined in [88]) is provided by the CDC [73]: a simple lightweight line list of
tab-separated values to hold the name of the sequence, as well as IDs from GI-
SAID and GenBank. Note that no advanced methodologies of record linkage

21http://geneontology.org/covid-19.html
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are requested in this case since, to find correspondence between two records,
an exact match algorithm between sequences could be run at any time.

8.3 SARS-CoV-2 Search Systems

In this section, we compare the systems that provide search facilities for SARS-
CoV-2 sequences and related metadata, possibly in addition to those of other
viruses. With respect to Figure 8.1, we here discuss the initiatives related to
levels (5) and (6). In Table 8.1 we summarize the content addressed by each
system; in the first section we indicate the target virus species, which either
includes the SARS-CoV-2 virus only, or also similar viruses (e.g., Coronavirus,
other RNA single stranded viruses, other pandemic-related viruses), or an ex-
tended set of viruses. In the second section, the table shows which sources are
currently integrated by each system. The first five columns refer to portals to
resources gathering either NCBI or GISAID data (level 5), while the following
ones refer to integrative systems over multiple sources (level 6). These are de-
scribed in the next two sections.

8.3.1 Portals to NCBI and GISAID Resources

Native portals for accessing NCBI and GISAID resources are hereby described
even if they do not provide integrative access to multiple sources, as they are
recognized search facilities for SARS-CoV-2 sequences collected from laborato-
ries all around the world:

• An interesting and rich resource (Virus Variation Resource [175]) is hosted
by NCBI, targeting many viruses relevant to emerging outbreaks. At the
time of writing, a version for coronaviruses – and SARS-CoV-2 in the spe-
cific – has not been released yet. Instead, for this virus users are forwarded
to the NCBI Virus resource;22 this portal provides a search interface to
NCBI SARS-CoV-2 sequences, with several filter facets and a result table
where identifiers are links to NCBI GenBank database pages. It provides a
very quick and comprehensive access to SARS-CoV-2 data, but is not well
aligned with the API provided for external developers, making integration
efforts harder, as differences need to be understood and synchronized.

• COVID-19 Data Portal23 joins the efforts of ELIXIR and EMBL-EBI to pro-
vide an integrated view of resources spanning from raw reads/sequences,
to expression data, proteins and their structures, drug targets, literature
and pointers to related resources. Coupling raw and sequence data in the
same portal can be very useful for users who wish to resort to original
data and recompute sequences or compare with existing ones. We focus
on their contribution to data search, which is given through a data table
containing different data types (sequences, raw reads, samples, variants,
etc.). The structure of the table changes based on the data types (the meta-
data provided for nucleotide sequence records are overviewed next).

22https://www.ncbi.nlm.nih.gov/labs/virus/
23https://www.covid19dataportal.org/
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Portals to NCBI/GISAID resources Integrative search systems

NCBI Virus COVID-19DP ViPR EpiCoVTM CoV-GLUE 2019nCoVR VirusDIP CARD CoV-Seq ViruSurf

C
on

te
nt SARS-CoV-2 specific × × × × × ×

SARS-CoV-2 + similar × ×
Extended virus set × ×

In
cl

ud
ed

so
ur

ce
s

GenBank × × × × × × × ×
RefSeq × × × × × × ×
GISAID × × × × × × ×
COG-UK ×
NMDC × × ×
CNGBdb × × × ×
Genome Warehouse × ×
CHLA-CPM ×

Table 8.1: Top part: characterization of each system based on its focus on general SARS-CoV-2 virus
only, SARS-CoV-2 and similar viruses (e.g., other Coronavirus or pandemic-related viruses), or an
extended set of viruses. Bottom part: integration of sequences by each portal (columns) from each
origin source (rows).

• The Virus Pathogen Database and Analysis Resource (ViPR24 [298]) is a
rich repository of data and analysis tools for multiple virus families, sup-
ported by the Bioinformatics Resource Centers program. It provides Gen-
Bank strain sequences with UniProt proteins, 3D protein structures and
experimentally determined epitopes from the Immune Epitope Database
(IEDB [369]). For SARS-CoV-2 many different views are provided for
genome annotation, comparative genomics, ortholog groups, host factor
experiments, and phylogenetic tree visualization. It provides the two
functions "Remove Duplicate Genome Sequences" and "Remove Identical
Protein Sequences" to resolve redundancy respectively of nucleotide and
amino acid sequences.

• GISAID EpiCoVTM portal provides a search interface upon GISAID meta-
data. Nine filters are available to design the user search, while the results
table shows 11 metadata attributes. By clicking on single entries, the user
accesses a much richer information, consisting of 31 metadata attributes.
The browsing power of the interface is limited by the use of few attributes.
While more information is given on single entries, the users are prevented
to take advantage of these additional attributes to order results or see dis-
tinct values.

• CoV-GLUE25 [351] has a database of replacements, insertions and dele-
tions observed in sequences sampled from the pandemic. It also provides
a quite sophisticated metadata-based search system to help filtering GI-
SAID sequences with mutations. While other systems are sequence-based,
meaning that the users can select filters to narrow down their search on
sequences, CoV-GLUE is variant-based: the user is provided with a list of
variants (on amino acids); by selecting given variants, the sequences that
present such variants can be accessed.

8.3.2 Integrative Search Systems

The following systems provide integrative data access from multiple sources
(see Figure 8.1, level 6), as indicated in Table 8.1:

24https://www.viprbrc.org/
25http://cov-glue.cvr.gla.ac.uk/
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• 2019nCoVR26 [397] at the Chinese National Genomics Data Center (at the
Beijing Institute of Genomics) is a rich data portal with several search
facets, tables and visual charts. This resource includes most sources pub-
licly reachable, including GISAID; however, it is unclear if this is compli-
ant with the GISAID data sharing agreement (see Section 8.4 for a related
discussion). 2019nCoVR handles sequence records redundancy by conve-
niently providing a "Related ID" field that allows to map each sequence
from its primary database to others that also contain it.

• The Virus Data Integration Platform (VirusDIP27 [371] is a system devel-
oped at CNGBdb to help researchers find, retrieve and analyze viruses
quickly. It declares itself as a general resource for all kinds of viruses;
however, to date includes only SARS-CoV-2 sequences.

• The COVID-19 Analysis Research Database (CARD28 [348]) is a rich and
interesting system giving the possibility to rapidly identify SARS-CoV-
2 genomes using various online tools. However, the data search engine
seems to be still under development and to date does not allow to build
complex queries combining filters yet.

• CoV-Seq29 [233] collects tools to aggregate, analyze, and annotate genomic
sequences. It claims to integrate sequences from GISAID, NCBI, EMBL
and CNGB. It has to be noted that sequences from NCBI and EMBL are the
same ones, as part of the INSDC. The search can only be done on very basic
filters directly on the columns of the table, providing poor functionalities.
It also provides a basic search system over a few metadata and compute
the "Identical_Seq" field, where a sequence is mapped to many identical
ones.

• ViruSurf30 [64] is based on a conceptual model [43] that describes se-
quences and their metadata from their biological, technical, organiza-
tional, and analytical perspectives. It provides many options for building
search queries, by combining – within rich Boolean expressions – meta-
data attributes about viral sequences and nucleotide and amino acid vari-
ants. Full search capabilities are used for open-source databases, while
search over the GISAID database is suitably restricted to be compliant with
the GISAID data sharing agreement. ViruSurf also solves the problem of
record redundancy among different databases by using different external
references IDs available and by exploiting in-house computations. While
here it is presented among other systems for comparison, we will describe
it thoroughly in Chapter 11.

8.3.3 Comparison

Table 8.2 shows a comprehensive view of which metadata information is in-
cluded by each search system. Attributes are partitioned into macro-areas con-
cerning the biology of the virus and of the host organism sample, the technology

26https://bigd.big.ac.cn/ncov/
27https://db.cngb.org/virus/ncov
28https://covid19.cpmbiodev.net/
29http://covseq.baidu.com/
30http://gmql.eu/virusurf/
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Attribute description NCBI Virus COVID-19DP ViPR EpiCoVTM CoV-GLUE 2019nCoVR VirusDIP CARD CoV-Seq ViruSurf

S T S T S T S T E S T E S T E S T S T S T

Bi
ol

og
y:

V
ir

us

Accession × × × × × × × × × × × × × × × × × × ×
Related ID × × × ×
Strain × × × × × × × × × × × × × × × ×
Virus Taxonomy ID × × × ×
Virus Species × × × × × × ×
Virus Genus × × × × ×
Virus Subfamily × ×
Virus Family × × × ×
Lineage × × × × × ×
CoV-GLUE Lineage ×
Pangolin Lineage ×
Total LWR ×
MoleculeType × × ×
SingleStranded ×
PositiveStranded ×
Passage detail × ×

Bi
ol

og
y:

Sa
m

pl
e

Collection date × × × × × × × × × × × × × × × × × × × × ×
Location × × × × × × × × × × × × × × × × × × × ×
Origin lab × × × × × × × ×
Host Taxonomy ID × ×
Host organism × × × × × × × × × × × × × × × ×
Host gender × × × ×
Host age × × × ×
Host status × ×
Environmental source ×
Specimen source × × × × ×
BiosampleId ×

Te
ch

no
lo

gy

Sequencing Technology × × × ×
Assembly method × × × ×
Coverage × × × ×
Quality Assessment × × × × ×
Sequence Quality × ×
SRA Accession ×

Se
qu

en
ce

Complete × × × × × × × × × ×
Length × × × × × × × × × × ×
IsReference × × ×
GC bases % × ×
Unknown bases % × × ×
Degenerate bases % ×

O
rg

an
iz

at
io

n

Authors × × × × × × ×
Publications × ×
Submission date × × × × × × × × ×
Submission lab × × × × × × × × × ×
Submitter × ×
Release date × × × ×
Data source × × × × × × × × × ×
Last Update Time ×
Bioproject ID × ×

Table 8.2: Inspection of metadata fields in different search portals for SARS-CoV-2 sequences. × is used
when the attribute is present in the Search filters (S), in the Table of results (T), in single Entries (E).

producing the sequence, the sequence details and the organization of sequence
production. For each of them we provide three kinds of columns: S = Search fil-
ters (attributes supporting search queries, typically using conjunctive queries),
T = columns in result Tables (providing direct attribute comparisons), and E =
columns of single Entries or records (once a record is clicked, search systems en-
able reading rich metadata but only for each individual sequence entry).

The different systems provide the same attribute concepts in very many ter-
minology forms. For example:

• "Virus name" in EpiCoVTM is called "Virus Strain Name" in 2019nCoVR,
just "Virus" in CoV-Seq, "Strain" or "Title" CARD (as they provide two sim-
ilar search filters), and "StrainName" in ViruSurf.

• Geographic information is named "Geo Location" in NCBI Virus results
table and "Geographic region" in the search interface; it is given using the
pattern Continent/Country/Region/SpecificArea in GISAID EpiCoVTM,
while the four levels are kept separate in CARD and ViruSurf.
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Data features Portals to NCBI/GISAID resources Integrative search systems

NCBI Virus COVID-19DP ViPR EpiCoVTM CoV-GLUE 2019nCoVR VirusDIP CARD CoV-Seq ViruSurf

Haplotype network ×
Pylogenetic tree × × × × × ×
Nucl. sequences × × × ×
Aa sequences × × × ×
Prec. nucl. variants × × × ×
Prec. aa variants × × ×

Table 8.3: Additional features provided by search systems in addition to standard metadata.

• The database source is referred to as "Sequence Type", "Data Source", "Data
source platform", "Data_source", "Data_Source", or "DatabaseSource".

It must be mentioned that some systems include additional metadata that we
did not added here, as they were not easily comparable. For example, GISAID
has a series of additional location details and sample IDs that can be provided
by submitters (but normally they are omitted), whereas NCBI Virus adds info
about provirus, lab host and vaccine strains (but these are omitted for SARS-
CoV-2 related sequences).

Table 8.3 provides a quick report on which additional data features are pro-
vided in each search system, beyond classic metadata; they include haplotypes,
philogenetic tree, nucleotide (nuc.) and protein sequences (aa = amino acid)
and their pre-calculated variants.

8.4 Discussion

We articulate the discussion along a number of directions: impact of GISAID’s
model, lack of metadata quality, (un)willingness of sequence sharing.

8.4.1 GISAID Restrictions

While most of the resources reviewed in this paper, and in particular all the
open data sources and search engines, are available through public Web inter-
faces, the GISAID portal can be accessed just by using a login account; access
is granted in response to an application, which must be presented by using
institutional emails and requires agreeing to a Database Access Agreement.31

Registered users are invited to "help GISAID protect the use of their identity
and the integrity of its user base".

Thanks to this controlled policy, GISAID has been able to gather the general
appreciation of many scientists, who hesitate to share data within fully open-
source repositories. Some concerns are actually legitimate, such as not being
properly acknowledged; acknowledgement of data contributors is required to
whoever uses specific sequences from the EpiCoVTM database. However, GI-
SAID policies impose limitations to data integrators. Sequences are not com-
municated to third parties, such as integration systems; interested users can
only access and download them one by one from the GISAID portal. As the
reference sequence can be reconstructed from the full knowledge of nucleotide
variants, these are similarly not revealed.

31https://www.gisaid.org/registration/terms-of-use/
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8.4.2 Metadata Quality

Another long-standing problem is the low quality of input metadata. A com-
mentary [340] from the Genomic Standards Consortium board (GSC32) alerts
the scientific community of the pressing need for systematizing the metadata
submissions and enforcing metadata sharing good practices. This need is even
more evident with COVID-19, where the information on geo-localization and
collection time of a sample easily becomes a "life and death issue"; they claim
that the cost paid for poor descriptions about the pathogen host and collection
process could be greater than the cost paid for poor quality of nucleotide se-
quence record itself. To this end, EDGE COVID-1933 [237] has made an attempt
to facilitate the preparation of genomes of SARS-CoV-2 for submission to public
databases providing help both with metadata and with processing pipelines.

For what concerns variant information, it is important that they refer to the
same reference sequence. We found that in some cases a different sequence
was used as reference for SARS-CoV-2 with respect to the one of NCBI Gen-
Bank, commonly accepted by the research community. If different reference
sequences are used and original sequence data are not shared, it becomes very
hard to provide significant statistics about variant impact.

The insufficient submission of enriched contextual metadata is generally im-
puted to the fact that individual researchers receive little recognition for data
submission and that probably they prefer withholding information, being con-
cerned that their data could be reused before they finalize their own publi-
cations. This is not only a problem of submission practice, but also of data
sharing, as discussed next.

8.4.3 (Un)Willingness to Share Sequence Data

In times of pandemic, there is – as discussed next – a strong need for data
sharing, creating big databases that can support research. Regardless of this
necessity, many researchers or research institutions do not join the data sharing
efforts. For example, it looks strange to us that searches for SARS-CoV-2 se-
quence data from Italy, witnessing one of the first big outbreaks of COVID-19
in the world, return only a few sequences (27 on GenBank and 239 on GISAID,
of which only 117 with patient status information, as of August 1st, 2020); sim-
ilar numbers apply to many other countries.

Successful provisioning of sequences is the result of a number of conditions:
having funds for sequencing, high quality technology to retrieve useful results,
willingness to join the FAIR science principles [382]. Sampling activity in the
hospitals is essential, as well as its timely processing and sequencing pipelines
in laboratories; however, nowadays the most critical impasse is met at the stage
of submitting sequences and associated metadata (if not even clinical informa-
tion regarding the host), which has become almost a deliberate political act in
the current times [301].

We also observed the opposite attitude: consortia such as the COVID-19
Host Genetics Initiative have been assembled around the objective and prin-

32https://www.gensc.org/
33https://edge-covid19.edgebioinformatics.org/
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ciples of open data sharing. As another significant case, the E-ellow Subma-
rine [116] interdisciplinary initiative for exploiting data generated during the
COVID-19 pandemic is fully committed to open data. Practical ecosystems for
supporting open pathogen genomic analysis [48] will become more widespread
if proactively encouraged by a strong institutional support. We hope and trust
that events such as the COVID-19 pandemic will move scientists towards open
data sharing, as a community effort for mitigating the effects of this and future
pandemic events.
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CHAPTER9
Modeling Viral Sequence Data

“Fear, left unchecked, can spread like a virus.”
— Lish McBride, Necromancing the Stone

Despite the advances in drug and vaccine research, diseases caused by viral in-
fection pose serious threats to public health, both as emerging epidemics (e.g.,
Zika virus, Middle East Respiratory Syndrome Coronavirus, Measles virus, or
Ebola virus) and as globally well-established epidemics (such as Human Im-
munodeficiency Virus, Dengue virus, Hepatitis C virus). The pandemic out-
break of the coronavirus disease COVID-19, caused by the "Severe acute res-
piratory syndrome coronavirus 2" virus species SARS-CoV-2 (according to the
GenBank [338] acronym1), has brought unprecedented attention towards the
genetic mechanisms of coronaviruses. Thus, understanding viruses from a con-
ceptual modeling perspective is very important. The sequence of the virus is
the central information, along with its annotated parts (known genes, coding
and untranslated regions...) and the nucleotide/amino acids variants, com-
puted with respect to the reference sequence chosen for the species. Each se-
quence is characterized by a strain name, which belongs to the virus that has
been isolated (obtained) from an infected indivisual, rather than grown in a
laboratory. Viruses have complex taxonomies (as discussed in [212]): a species
belongs to a genus, to a sub-family, and finally to a family (e.g., Coronaviridae).
Other important aspects include the host organisms and isolation sources from
which viral materials are extracted, the sequencing project, the scientific and
medical publications related to the discovery of sequences; virus strains may
be searched and compared intra- and cross-species. Luckily, all these data are

1SARS-CoV-2 is generally identified by the NCBI taxonomy [127] ID 2697049.
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made available publicly by various resources, from which they can be down-
loaded and re-distributed.

Chapter organization. Section 9.1 proposes the Viral Conceptual Model
(VCM), a general conceptual model for describing viral sequences (represent-
ing the central entity), organized along specific groups of dimensions that high-
light a conceptual schema similar to our previously proposed model for hu-
man genomics datasets. In Section 9.2 we provide a list of interesting queries
replicating newly released literature on infectious diseases; these can be easily
answered by using VCM as reference conceptual schema. We review related
works in Section 9.3.

9.1 Conceptual Modeling for Viral Genomics

In Section 3.2 we described the Genomic Conceptual Model (GCM, [44]), an
Entity-Relationship diagram that recognizes a common organization for a lim-
ited set of concepts supported by most genomic data sources, although with
different names and formats. In that case, the model is centered on the ITEM
entity, representing an elementary experimental file of genomic regions and
their attributes. Four views depart from the central entity; they respectively
describe the biological elements involved in the experiment, the technology used
in the experiment, the management aspects and the extraction parameters used
for internal selection and organization of items.

The lessons we learnt from the GCM experience include the benefits of hav-
ing: a central fact entity that helps structuring the search; a number of sur-
rounding groups of dimensions capturing organization, biological and experi-
mental conditions to describe the facts; a direct representation of a data struc-
ture suitable for conceptually organizing genomic elements and their describ-
ing information. a data layout that is easy to learn for first-time users and that
helps the answering of practical questions (demonstrated in Section 6.4.2).

We hereby propose the Viral Conceptual Model (VCM), which is influenced
by our past experience with human genomes, with the comparable goal of pro-
viding a simple means of integration between heterogeneous sources. How-
ever, there are significant differences between the two conceptual models. The
human DNA sequence is long (3 billions of base pairs) and has been under-
stood in terms of reference genomes (named h19 and GRCh38) to which all other
information is referred, including genetic and epigenetic signals. For human
genomes we had chosen ITEMs as a central entity because this is the basic data
unit employed for bioinformatic tertiary analysis (i.e., a small portion of data
that provides a meaningful information on an individual and can be handled
easily in terms of computational effort). Human genomes could also be rep-
resented as sequences, but the amount of information would be huge and it
would be impossible to compare different individuals, aggregate, compute in-
teresting properties. Therefore, to represent them we chose the abstraction of
genomic regions, collected in GDM samples (or GCM items, as explained in Sec-
tion 4.1, where we dedicated a paragraph to granularity). Instead, viruses are
many; extracted samples are associated to a host sample of another species.
Moreover, their sequences are short (order of thousands of base pairs) and each
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Figure 9.1: The Viral Conceptual Model: the central fact SEQUENCE is described by four groups of
dimensions (biological, technical, organizational and analytical).

virus has its own reference sequence, thus we deem nucleotide sequences to be
a suitable representation to be used as a central information in our new concep-
tual model. The different choice is driven by the specific use and computational
pipelines that can be used on these kinds of data.

With a bird’s eye view, the VCM conceptual model is centered on the SE-
QUENCE entity that describes individual virus sequences; sequences are ana-
lyzed from four groups of dimensions:

1. The Biological group (including the VIRUS and HOSTSAMPLE tables) is con-
cerned with the virus species characterization and the host organism, in-
cluding the temporal/spatial information regarding the extraction of the
biological sample.

2. The Technological group (EXPERIMENTTYPE table) describes the sequenc-
ing method.

3. The Organizational group (SEQUENCINGPROJECT table) describes the
project producing each sequence.

4. The Analytical group provides annotations for specific sub-sequences and
characterizes the variants in the nucleotide sequence and in the amino acid
sequence with respect to reference sequences for the specific virus species.
It includes the ANNOTATION, AMINOACIDVARIANT, NUCLEOTIDEVARI-
ANT and VARIANTIMPACT.

We next illustrate the central entity and the four groups of dimensions.
Central Entity. A viral SEQUENCE can regard DNA or RNA; in either cases,
databases of sequencing data write the sequence as a DNA NucleotideSequence:
possible characters include guanine (G), adenine (A), cytosine (C), and thymine
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Chapter 9. Modeling Viral Sequence Data

(T),2 but also eleven "ambiguity" characters associated with all the possible
combinations of the four DNA bases [316]. The sequence has a specific Strand
(positive or negative, strictly dependent on the type of virus—that could be
single/double strand), Length (ranging from hundreds to millions, depend-
ing on the virus), and a percentage of read G and C bases (GC%). As qual-
ity of sequences is very relevant to virologists, we also include the percentage
of ambiguous bases (i.e., N%)3 to give a more complete information on relia-
bility of the sequencing process. Each sequence is uniquely identified by an
AccessionID, which is retrieved directly from the source database (GenBank’s
are usually formed by two capital letters, followed by six digits, GISAID by
the string "EPI_ISL_" and six digits) and is used to backtrack the sequence
in its original database. Sequences can be complete or partial4 (as encoded
by the Boolean flag IsComplete) and they can be a reference sequence (stored
in RefSeq) or a regular one (encoded by IsReference). Sequences have a corre-
sponding StrainName (or isolate) assigned by the sequencing laboratory, some-
how hard-coding relevant information (e.g., hCoV-19/Nepal/61/2020 or 2019-
nCoV_PH_nCOV_20_026). For genomic epidemiology studies of active viruses
(in this particular time, SARS-CoV-2), it is relevant to characterize a strain using
other two classifications:

• Clade representing the specific branch of the phylogenetic tree of the
species where that strain is positioned. For now, we express clades with
the nomenclature defined in GISAID (informed by the statistical distribu-
tion of genome distances in phylogenetic clusters [173]).

• Lineage, a more specific level of detail on the phylogenetic tree. For ex-
ample this can be computed by the Phylogenetic Assignment of Named
Global Outbreak LINeages (PANGOLIN) tool [307], which can aid in the
understanding of patterns and determinants of the global spread of the
SARS-CoV-2 virus.

These measures are important from the point of view of public health, as they
can be used to track how the virus moved around the world, entering or re-
entering various areas.

Technological Group. The sequence derives from one experiment or assay,
described in the EXPERIMENTTYPE entity (cardinality is 1:N from the dimen-
sion towards the fact). It is performed on biological material analyzed with a
given SequencingTechnology platform (e.g., Illumina Miseq) and an Assembly-
Method, collecting algorithms that have been applied to obtain the final se-
quence, for example: BWA-MEM, to align sequence reads against a large refer-
ence genome; BCFtools, to manipulate variant calls; Megahit, to assemble NGS
reads. Another technical measure is captured by Coverage (e.g., 100x or 77000x),

2In RNA sequencing databases uracil (U) is replaced with thymine (T).
3N is the IUPAC character to represent the ambiguity between the four possible bases A, C, T, and G. See https:

//genome.ucsc.edu/goldenPath/help/iupac.html.
4At the time of writing, the algorithm used to compute viral sequence completeness is not made available by

sources; reasonably, it should include checks on the length of a sequence, the completeness of each protein it codes
for, and the number of N’s and gaps it contains. Until more precise information are released, we only import the
information provided by sources, leaving the field empty when this is not available.
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9.1. Conceptual Modeling for Viral Genomics

representing the number of unique reads that include a specific nucleotide in
the reconstructed sequence.
Biological Group. VIRUS captures the relevant information of the analyzed
pathogen, summarizing the most important levels of the taxonomy branch
it belongs to (viruses are described by complex taxonomies [212]. The most
precise definition is given by the pair 〈 TaxonName,TaxonID 〉 (e.g., 〈 Severe
acute respiratory syndrome coronavirus 2, 2697049〉, according to the NCBI
Taxonomy [127]), related to a simpler GenBankAcronym (e.g., SARS-CoV-2) and
to many comparable forms, contained in the EquivalentList (e.g., 2019-nCoV,
COVID-19, SARS-CoV2, SARS2, Wuhan coronavirus, Wuhan seafood market
pneumonia virus, ...), as these are the names given to the virus at different time
points and considered synonyms within the NCBI Taxonomy. This term in the
taxonomy is contained in a broader category called Species (e.g., Severe acute
respiratory syndrome-related coronavirus), which belongs to a Genus (e.g., Be-
tacoronavirus), part of a SubFamily (e.g., Orthocoronavirinae), finally falling
under the most general category of Family (e.g., Coronaviridae). Each virus
species corresponds to a specific MoleculeType (e.g., genomic RNA, viral cRNA,
unassigned DNA), which has either double- or single-stranded structure; in
the second case the strand may be either positive or negative. These possi-
bilities are encoded within the IsSingleStranded and IsPositiveStranded Boolean
variables.

An assay is performed on a tissue extracted from an organism that has
hosted the virus; this information is collected in the HOSTSAMPLE entity. The
host is defined by the pair 〈 HostTaxonName, HostTaxonID 〉 (e.g., 〈 Homo Sapi-
ens, 9606 〉, according to the NCBI Taxonomy). The sample is extracted on
a CollectionDate, from an IsolationSource that is a specific host tissue (e.g., na-
sopharyngeal or oropharyngeal swab, lung), in a certain location identified by
the quadruple OriginatingLab (when available), Region, Country, and GeoGroup
(i.e., continent) – for such attributes ISO standards may be used. In some cases
information related to the Age and Gender of the individual donating the HOST-
SAMPLE may also be available. Both dimensions of this group are in 1:N cardi-
nality with the SEQUENCE.
Organizational Group. The entity SEQUENCINGPROJECT describes the man-
agement aspects of the production of the sequence. Each sequence is connected
to a number of studies, usually represented by a research publication (with Au-
thors, Title, Journal, PublicationDate and eventually a PubMedID referring to the
most important biomedical literature portal5). When a study is not available,
just the SequencingLab (or submitting laboratory) and SubmissionDate (different
from the date of collection, captured in the HOSTSAMPLE entity) are provided.6
In rare occasions, a project is associated with a PopSet number, which identifies
a collection of related sequences derived from population studies (submitted
to GenBank), or with a BioProjectID (an identifier to the BioProject external
database7). We also include the name of DatabaseSource, denoting the orga-

5https://www.ncbi.nlm.nih.gov/pubmed/
6Note that this condition could have been represented with an is-a hierarchy where a new entity STUDY specializes

the SEQUENCINGPROJECT entity.
7https://www.ncbi.nlm.nih.gov/bioproject/
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Chapter 9. Modeling Viral Sequence Data

nization that primarily stores the sequence, from which integration pipelines
can retrieve the information. The cardinality of the relationship between the
two involved entities is many-to-many as sequences can be part of multiple
projects; conversely, sequencing projects contain various sequences.
Analytical Group. This group of entities allows to store information that is
useful during the secondary analysis of genomic sequences. The NUCLEOTIDE-
VARIANT entity contains sub-parts of the main SEQUENCE that differ from the
reference sequence of the same virus species. They can be identified just by us-
ing the AlternativeSequence (i.e., the nucleotides used in the analyzed sequence
at position Start for an arbitrary Length, typically just equal to 1) and a spe-
cific Type, which can correspond to insertion (INS), deletion (DEL), substitu-
tion (SUB) or others. The content of the attributes of this entity is not retrieved
from existing databases; instead it is computed in-house by our procedures. In-
deed, we use the well-known dynamic programming algorithm of Needleman-
Wunsch [281], that computes the optimal alignment between two sequences.
From a technical point of view, we compute the pair-wise alignment of every
sequence to the reference sequence of RefSeq (e.g., NC_045512 for SARS-CoV-
2); from such alignment we then extract all insertions, deletions, and substitu-
tions that transform (i.e., edit) the reference sequence into the considered se-
quence.

Each mutation at the nucleotide sequence level is connected to its own IM-
PACT, an entity which contains annotations of the variant computed using
SnpEff tool [89]; it calculates the Effect that the variant produces on a certain
ImpactedGene (a variant may, for example, be irrelevant, silent, produce small
changes in the transcript or be deleterious for the transcript), with a measure of
the generated PutativeImpact (high, moderate, low...).

The ANNOTATION entity contains information on the structure of the full
sequence; it defines a number of sub-sequences, each representing a segment
(defined by Start and Stop coordinates) of the original sequence, with a partic-
ular FeatureType (e.g., gene, protein, coding DNA region, or untranslated re-
gion, molecule patterns such as stem loops and so on), the recognized Gene-
Name to which it belongs (e.g., gene "E", gene "S" or open reading frame genes
such as "ORF1ab"), the Product it concurs to produce (e.g., leader protein, nsp2
protein, RNA-dependent RNA polymerase, membrane glycoprotein, envelope
protein...), and eventually related ExternalReference when the protein is present
in a separate database such as UniProtKB. Additionally, for each ANNOTATION
we also store the corresponding AminoacidSequence (encoded according to the
notation of the International Union of Pure and Applied Chemistry8). Example
codes are A (Alanine), D (Aspartic Acid), F (Phenylalanine).

The AMINOACIDVARIANT entity contains sub-parts of the AminoacidSe-
quence stored in the specific ANNOTATION, which differ from the reference
amino acids of the same virus species. These variants are calculated similarly
to the NUCLEOTIDEVARIANTs (note that a comparable approach is used within
CoV-GLUE [351]). Also here we include the AlternativeSequence, the Start posi-
tion, the Length, and a specific Type (SUB, INS, DEL...).

8https://en.wikipedia.org/wiki/Nucleic_acid_notation#IUPAC_notation
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Figure 9.2: Location of major structural protein-encoding genes (as red boxes: S = Spike glycoprotein, E
= Envelope protein, M = Membrane glycoprotein, N = Nucleocapsid phospoprotein), accessory pro-
tein ORFs = Open Reading Frames (as blue boxes), and RNA-dependent RNA polymerase (RdRp)
on the sequence of the SARS-CoV-2.

9.2 Answering Complex Biological Queries

In addition to very general questions that can be easily asked through our con-
ceptual model (e.g., retrieve all viruses with given characteristics), in the fol-
lowing we propose a list of interesting application studies that could be backed
by the use of our conceptual model. In particular, they refer to the SARS-CoV-2
virus, as it is receiving most of the attention of the scientific community. Fig-
ure 9.2 represents the reference sequence of SARS-CoV-2,9 highlighting the ma-
jor structural sub-sequences that are relevant for the encoding of proteins and
other functions. It has 56 region ANNOTATIONS, of which Figure 9.2 repre-
sents only the 11 genes (ORF1ab, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8,
N, ORF10), plus the RNA-dependent RNA polymerase enzyme, with approxi-
mate indication of the corresponding coordinates. We next describe biological
queries supported by VCM, from the easy to complex ones, typically suggested
by existing studies.
Q1. The most common variants found in SARS-CoV-2 sequences can be se-
lected for US patients; the query can be performed on entire sequences or only
on specific genes.
Q2. COVID-19 European patients affected by a SARS-CoV-2 virus can be se-
lected when they have a specific one-base variant on the first gene (ORF1ab),
indicated by using the triple 〈start, reference_allele, alternative_allele〉. Patients
can be distributed according to their country of origin. This conceptual query
is illustrated in Figure 9.3, where selected attribute values are specified in red,
in place of attribute names in the ER model; values in NUCLEOTIDEVARIANT
show one possible example. Country is in blue as samples will be distributed
according to such field.
Q3. According to [93], E and RdRp genes are highly mutated and thus crucial
in diagnosing COVID-19 disease; first-line screening tools of 2019-nCoV should
perform an E gene assay, followed by confirmatory testing with the RdRp gene
assay. Conceptual queries are concerned with retrieving all sequences with mu-
tations within genes E or RdRp and relating them to given hosts, e.g. humans
affected in China.

9It represents the positive-sense, single-stranded RNA virus (from 0 to the 29903th base) of NC_045512 RefSeq staff-
curated complete sequence (StrainName "Wuhan-Hu-1"), collected in China from a "Homo Sapiens" HOSTSAMPLE in
December 2019.
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Figure 9.3: Visual representation of query Q2.
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Figure 9.4: Illustration of the selection predicate for the A clade [161], used in query Q4.

Q4. To inform SARS-CoV-2 vaccine design efforts, it may be needed to track
antigenic diversity. Typically, pathogen genetic diversity is categorized into
distinct clades (i.e., a monophyletic group on a phylogenetic tree). These clades
may refer to "subtypes", "genotypes", or "groups", depending on the taxo-
nomic level under investigation. In [161], Gudbjartsson et al. use specific se-
quence variants to define clades/haplogroups (e.g., the A group is character-
ized by the 20,229 and 13,064 nucleotides, originally C mutated to T, by the
18,483 nucleotide T mutated to C, and by the 8,017, from A to G). VCM sup-
ports all the information required to replicate the definition of SARS-CoV-2
clades requested in the study. Figure 9.4 illustrates the conjunctive selection
of sequences with all four variants corresponding to the A clade group defined
in [161].

Q5. Morais Junior at al. [272] propose a subdivision of the global SARS-
CoV-2 population into sixteen subtypes, defined using "widely shared poly-
morphisms" identified in nonstructural (nsp3, nsp4, nsp6, nsp12, nsp13 and
nsp14) cistrons, structural (spike and nucleocapsid), and accessory (ORF8)
genes. VCM supports all the information required to replicate the definition
of all such subtypes.
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9.3 Related Works

In the variety of types of genomic databases [105], aside the resources dedi-
cated to humans [41], several ones are devoted to viruses [145, 347], including
databases, web servers, tools.

During the years, several epidemics have triggered the necessity for par-
ticular virus-centered resources; see the ones for Influenza (NCBI-IVR [22],
IVDB [80], EpiFluTM [350]), HIV (Stanford HIV drug resistance DB [345], LANL
HIV database 10), Dengue (NCBI-VVR [175]). The conception of these sys-
tems has been mostly driven by the urgent need – arisen time by time – for
a computational resource (and relative storage) that was able to handle specific
data types as rapidly as possible. Works in this field indeed require a consid-
erable effort of data modeling and integration in the background. However
this is hardly ever described in publications; instead, the focus is on describing
database content and interface functionalities.

From a computer science point of view, conceptual modeling (i.e., the entity-
relationship approach [28]) can be used as a driver of the integration process –
concerned with providing a global, unified schema for all the data that describe
some kind of data within various sources [29]. In the context of viral sequences,
as the amount of data is easily manageable, it is common to import data at the
integrator site; then, data curation/reprocessing can be performed in homoge-
neous way.

Even if the use of conceptual modeling to describe genomics databases dates
back to more than 20 years ago [295], we found very few works regarding virus
database relate to conceptual data modeling. Among these, [357] considers
host information and normalized geographical location and [242] focuses on
influenza A viruses. The closest work to ours, described in [351], is a flexible
software system for querying virus sequences; it includes a basic conceptual
schema for SARS-CoV-2.11

In comparison, VCM uses the full power of conceptual modeling to structure
metadata and to organize data integration and curation; it covers many dimen-
sions and attributes, which are very useful for supporting research queries on
virus sequences; it provides an extensible database and associated query sys-
tem that works seamlessly with any kind of virus, as we will detail in the next
two chapters.

10http://www.hiv.lanl.gov/
11http://glue-tools.cvr.gla.ac.uk/images/projectModel.png
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CHAPTER10
Integrating Viral Sequence Data

“I have been impressed with the urgency of doing. Knowing is not enough; we must apply. Being willing is not
enough; we must do.”

— Leonardo da Vinci

The pandemic outbreak of the coronavirus disease COVID-19, caused by the
virus species SARS-CoV-2, has created unprecedented attention towards the
genetic mechanisms of viruses. The sudden outbreak has also shown that the
research community is generally unprepared to face pandemic crises in a num-
ber of aspects, including well-organized databases and search systems. We re-
spond to such urgent need by means of a novel integrated database collecting
and curating virus sequences with their properties. Data is captured, standard-
ized, organized, so as to facilitate current and future research studies.

In our work, we are driven by the Viral Conceptual Model for virus se-
quences, described in Chapter 9, which was recently developed by interview-
ing a variety of experts of the various aspects of virus research (including clin-
icians, epidemiologists, drug and vaccine developers). The conceptual model
is general and applies to any virus. The sequence of the virus is the central in-
formation; sequences are analyzed from a biological perspective describing the
virus species and the host environment, a technological perspective describing
the sequencing technology, an organizational perspective describing the project
which was responsible for producing the sequence, and an analytical perspec-
tive describing properties of the sequence, such as known annotations and vari-
ants. Annotations include known genes, coding and untranslated regions, and
so on. Variants are extracted by performing data analysis and include both nu-
cleotide variants – with respect to the reference sequence for the specific species
– with their impact, and amino acid variants related to the genes.
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Chapter 10. Integrating Viral Sequence Data

We built an integration pipeline and corresponding repository – called
ViruBase in the following – to feed the content of a novel database, includ-
ing viral sequences of several viruses (giving priority to viruses causing recent
epidemics) enriched by annotations and their mutations with respect to the
species-specific reference sequence (established by the research community or
– more commonly – by the NCBI RefSeq [303]).

Chapter organization. In the following we provide complete descriptions of
the content of ViruBase (Section 10.1), the logical schema of the corresponding
relational database (Section 10.2), the process used to import data at our site
(Section 10.3), the in-house computed content regarding annotations, variants,
and their impact (Section 10.4), and finally the data curation efforts performed
during our pipeline (Section 10.5).

10.1 Database Content

Currently, ViruBase includes reference sequences from RefSeq [284] and regular
sequences from GenBank [338] of SARS-CoV-2 and SARS-related coronavirus,
as well as MERS-CoV, Ebola and Dengue viruses; the pipeline is generic and
other virus species will be progressively added next, giving precedence to those
species which are most harmful to humans. For what concerns SARS-CoV-
2, we also include sequences from COG-UK [317] and NMDC.1 GenBank and
COG-UK data are made publicly available and can be freely downloaded and
re-distributed. Special arrangements have been agreed with GISAID [120,350],
resulting in a GISAID-enabled version of ViruBase. Due to constraints im-
posed by GISAID, the database exposed in this version lacks the original se-
quences, certain metadata and nucleotide variants; moreover, GISAID requires
their dataset not to be merged with other datasets. Hence, the two versions
of ViruBase should be used separately, and a certain amount of integration ef-
fort must be carried out by the user. We also reviewed other available sources
(GenomeWarehouse and CNGdb) but observed that they do not add substan-
tial value to the integration effort, as most of their sequences overlap with those
stored in the four cited sources.

Table 10.1 provides a quantitative description of the current ViruBase con-
tent: for each virus we report the rank, ID and name from NCBI Taxonomy, the
number of sequences included from each source and the reference sequence.
We next provide the average number per sequence of each annotation and nu-
cleotide/amino acid variants computed against the reference sequence. Note
that, although GISAID uses a different reference sequence, provided amino
acid variants are relative to protein sequences (which are the same as in other
sources), hence they can be compared with other variants.

Some content of ViruBase is extracted from the sources and used without
changes, some is curated by tailored pipelines, and some is computed in-house
(nucleotide and amino acid variants, impact, quality measures). The current
content corresponds to data available at the sources on August 4th, 2020.

We have an overall strategy for content updates, summarised as follows.
1http://nmdc.cn/
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10.2. Relational Schema

Computed content

Taxon rank Taxon ID Taxon name (or equiv.) Source #Seq. Reference Avg Annot. Avg Nuc. Var. Avg AA Var.

No rank 2697049 SARS-CoV-2 GISAID all 76,664 EPI_ISL_402124 - - 4.8
No rank 2697049 SARS-CoV-2 GISAID only 46,366 EPI_ISL_402124 - - 4.7
No rank 2697049 SARS-CoV-2 GenBank + RefSeq 13,309 NC_045512.2 28.0 17.6 24.0
No rank 2697049 SARS-CoV-2 COG-UK 38,124 NC_045512.2 28.0 25.5 58.0
No rank 2697049 SARS-CoV-2 NMDC 295 NC_045512.2 28.1 28.8 56.5
Species 694009 SARS virus GenBank + RefSeq 673 NC_004718.3 14.0 91.6 19.7
Species 1335626 MERS-CoV GenBank + RefSeq 1,381 NC_019843.3 27.0 104.0 87.4

Species 2010960 Bombali ebolavirus GenBank + RefSeq 5 NC_039345.1 9.0 126.8 41.6
Species 565995 Bundibugyo ebolavirus GenBank + RefSeq 22 NC_014373.1 9.0 130.5 40.9
Species 186539 Reston ebolavirus GenBank + RefSeq 57 NC_004161.1 9.0 126.1 29.4
Species 186540 Sudan ebolavirus GenBank + RefSeq 40 NC_006432.1 9.0 368.6 51.0
Species 186541 Tai Forest ebolavirus GenBank + RefSeq 9 NC_014372.1 9.0 4.6 2.8
Species 186538 Zaire ebolavirus GenBank + RefSeq 2,938 NC_002549.1 9.0 503.7 66.3

Strain 11053 Dengue virus 1 GenBank + RefSeq 11,185 NC_001477.1 15.0 469.7 200.9
Strain 11060 Dengue virus 2 GenBank + RefSeq 8,692 NC_001474.2 15.0 410.0 117.7
Strain 11069 Dengue virus 3 GenBank + RefSeq 5,344 NC_001475.2 15.0 269.3 118.6
Strain 11070 Dengue virus 4 GenBank + RefSeq 2,492 NC_002640.1 15.0 265.1 147.2

Table 10.1: Summary of ViruBase content as of August 4th, 2020. For each taxon name (identified by
a taxon ID and rank) and each source, we specify the number of distinct sequences and the reference
genome; we also provide the average number of annotations, nucleotide variants and amino acid
variants per sequence. The GISAID-only entry refers to those GISAID sequences that are not also
present in the other three sources.

Data is updated and integrated automatically; updates are performed accord-
ing to different strategies which depend on the source. For what concerns
GenBank, which is the most critical as we consider adding other viral species,
updates can be done incrementally, as new AccessionIds are generated at each
sequence change; thus, it is possible to identify the sequences that should be
added or deleted at every update. For what concerns COG-UK, instead, Ac-
cessionIds are reused; we monitored the sequences at different times and found
that a large fraction was changed while keeping the same identifier. Thus, it is
preferable to reload the entire database and reprocess it. NMDC sequences are
very few and can also be reloaded. Finally, GISAID provides an interchange
format which is frequently updated at the source, and also in this case reload
is preferred, but this is not computationally demanding as GISAID provides
amino acid variants.

The automatic loading procedure currently requires about 2 days, it includes
Python scripts to complete the database with indexes, views and constraints.
At the end, we manually check the execution log for errors, and we run testing
queries. Finally, we switch the production database with the development one.
We will synchronize the automatic management so that update occurs monthly
at a fixed date, e.g. the first day of the month.

10.2 Relational Schema

The relational schema of ViruBase is a direct translation of the Viral Concep-
tual Model shown in Chapter 9. Represented in Figure 10.1, it is inspired to
classic data marts [54], with a central fact table describing the SEQUENCE, fea-
turing several characterizing attributes, and then four groups of dimensions,
regarding – respectively – biological, technological, organizational and analyt-
ical aspects.

All tables have a numerical sequential primary key (PK), conventionally
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Sequence
sequence_id
experiment_type_id
virus_id
host_sample_id
sequencing_project_id
accession_id
alternative_accession_id
strain_name
is_reference
is_complete
nucleotide_sequence
strand
length
gc_percentage
n_percentage
lineage
clade

int
int
int
int
int
str
str
str
bool
bool
str
str
int
float
float
str
str

PK
FK
FK
FK
FK

Virus
virus_id
taxon_id
taxon_name
family
sub_family
genus
species
equivalent_list
molecule_type
is_single_stranded
is_positive_stranded

int
int
str
str
str
str
str
str
str
bool
bool

PK

HostSample
host_sample_id
host_taxon_id
host_taxon_name
collection_date
isolation_source
originating_lab
country
region
geo_group
age
gender

int
int
str
str
str
str
str
str
str
int
str

PK

SequencingProject
sequencing_project_id
sequencing_lab
submission_date
database_source
bioproject_id

int
str
date
str
str

PK

Annotation
annotation_id
sequence_id
feature_type
start
stop
gene_name
product
external_reference
aminoacid_sequence
annotation_nucleotide_sequence

int
int
str
int
int
str
str
str
str
str

PK
FK

ExperimentType
experiment_type_id
sequencing_technology
assembly_method
coverage

int
str
str
str

PK

NucleotideVariant
nucleotide_variant_id
sequence_id
sequence_original
sequence_alternative
start_original
start_alternative
variant_length
variant_type

int
int
str
str
int
int
int
str

PK
FK

AminoacidVariant
aminoacid_variant_id
annotation_id
sequence_aa_original
sequence_aa_alternative
start_aa_original
variant_aa_length
variant_aa_type

int
int
str
str
int
int
str

PK
FK

VariantImpact
variant_impact_id
nucleotide_variant_id
effect
putative_impact
impact_gene_name

int
int
str
str
str

PK
FK

Biological perspective

Analytical perspective

Technological perspectiveOrganizational perspective

Powered by Vertabelo, Design Your Database Online, http://vertabelo.com 1

Figure 10.1: Logical schema of the ViruBase relational database.

named using the table name and the post-fix "_id", and indicated as PK in
Figure 10.1; we indicate with foreign keys (FK) the relationships from a non-
key attribute to a primary key attribute of a different table. Note that, being
the central table of the schema, SEQUENCE contains four foreign keys fields to
connect to Virus, HostSample, SequencingProject and ExperimentType tables.
Relationships from the SEQUENCE towards VIRUS, HOSTSAMPLE, SEQUENC-
INGPROJECT and EXPERIMENTTYPE are functional (e.g. one SEQUENCE has
one EXPERIMENTTYPE, while an EXPERIMENTTYPE may be the same for mul-
tiple SEQUENCE); instead, relationships in the analytical perspective are 1:N
(e.g. one SEQUENCE has many ANNOTATIONS, and an ANNOTATION has many
AMINOACIDVARIANTS).

The attributes of tables directly interpret the conceptual model attributes; we
highlight some slight changes/additions that are convenient for practical use
of the database. In SEQUENCE we also store an alternative_accession_id,
in case the sequence is also present in a second public database. The
SEQUENCINGPROJECT table has been reduced to only three attributes,
given the limitations of data input from external sources and the car-
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10.3. Data Import

dinality of the relation with the SEQUENCE table has been reduced to
one-to-many as this was enough to capture real data. In the ANNOTATION
table we store the corresponding pre-computed nucleotide_sequence and
aminoacid_sequence. In NUCLEOTIDEVARIANT characterizing fields include
sequence_original and sequence_alternative, referring respectively to
the positions start_original and start_alternative, variant_length
and variant_type and, consequently, AMINOACIDVARIANT contains
sequence_aa_original, sequence_aa_alternative, start_aa_original,
variant_aa_length, variant_aa_type.

We built one additional materialized view to improve performances of rel-
evant queries on the database: NUCLEOTIDEVARIANTANNOTATION joins the
two tables ANNOTATION and NUCLEOTIDEVARIANT by directly reporting, for
each variant identifier, the type of feature, gene in which it is contained and
related protein A number of indexes has been created on critical attributes of
the tables that are most used in heavy computations. Specifically, all FK fields
have corresponding indexes; moreover, in the tables of nucleotide and amino
acid variants, we index original and alternative sequences, their length and
types; of annotations we index start-stop coordinates.

10.3 Data Import

The pipeline used to import the content of the ViruBase database from sources
is shown in Figure 10.2. We use different download protocols for each source:

• For NCBI data (including GenBank and RefSeq sequences), we employ the
extraction tools available in the E-utilities [336]: the Python APIs allows to
retrieve one complex XML file for each sequence ID available in NCBI.

• COG-UK instead provides a single multi-FASTA file on its website;2 this is
associated with a text file for metadata.

• NMDC exposes an FTP server with FASTA files for each sequence, while
metadata are captured directly from the HTML description pages.

• GISAID provides to us an export file in JSON format, updated every 15
minutes. The file is produced by GISAID technical team in an ad-hoc
agreed form for ViruBase.

Automatic pipelines have been implemented to extract metadata and fill the
SEQUENCE, VIRUS, HOSTSAMPLE, SEQUENCINGPROJECT, and EXPERIMENT-
TYPE tables; some attributes require data curation, as next described.

10.4 Annotation and Variant Calling

In order to provide homogeneous information for sequence annotations and
variants, we use a unique annotation procedure for GenBank, COG-UK and
NMDC; resulting variants for amino acid sequences are consistent with those
provided by GISAID. We extract: structural annotations, nucleotide and amino

2https://www.cogconsortium.uk/data/
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Figure 10.2: General pipeline of the ViruBase platform. For given sources and species, we use down-
load procedures to construct content, perform data curation, and load the content into two distinct
databases, for GISAID and for the other sources, which are schema-compatible (the former is a subset
of the latter).

acid sequences for each annotated segment, nucleotide variants and their im-
pact, amino acid variants for the proteins, and other information such as per-
centage of specific nucleotide bases.

For each virus, we manually select a reference sequence and a set of anno-
tations, comprising coordinates for codifying and structural regions, as well
as the amino acid sequences of each protein. Usually, such data are taken
from the RefSeq entry for the given virus (e.g., NC_045512 for SARS-CoV-
2). For each imported sequence, the pipeline starts by computing the opti-
mal global alignment to the reference by means of the dynamic programming
Needleman-Wunsch (NW) algorithm [281]. The time and space complexity of
NW is quadratic in the length of the aligned sequences, which often hinders its
adoption in genomics, but viral sequences are relatively short, thus we can use
NW rather than faster heuristic methods. We configured the algorithm to use
an affine gap penalty, so as to favor longer gaps which are very frequent at the
ends of sequences.

Once the alignment is computed, all the differences from the reference se-
quence are collected in the form of variants (substitutions, insertions or dele-
tions). Using the SnpEff tool [89] we annotate each variant and predict its im-
pact on the codifying regions; indeed, a variant may, for example, be irrelevant
(e.g, when the mutated codon codifies for the same amino acid of the origi-
nal codon), produce small changes, or be deleterious. Based on the alignment
result, the sub-sequences corresponding to the reference annotations are iden-
tified within the input sequence.

Coding regions are then translated into their equivalent amino acid
sequences; the translation takes into consideration annotated ribosomial
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10.5. Data Curation

frameshifts events (e.g., within the ORF1ab gene of SARS-CoV-2). When trans-
lation fails (e.g., because the nucleotide sequence retrieved from the alignment
is empty or its length is not a multiple of 3), we ignore the amino acid prod-
uct; failures are due to incompleteness and poor quality of the input sequence,
further computation of amino acid variants would produce erroneous infor-
mation. Instead, when an aligned codon contains any IUPAC character am-
biguously representing a set of bases,3 it is translated into the X (unknown)
amino acid, which automatically becomes a variant. Note that queries select-
ing known amino acids are not impacted; unknown amino acids are usually
not of interest. Translated amino acid sequences are then aligned with the cor-
responding amino acid sequences (using NW), annotated with the reference,
and amino acid variants are inferred.

Alignment, variant calling, and variant impact algorithms are computation-
ally expensive, so we decided to parallelize this part of the pipeline, taking ad-
vantage of Amazon Elastic Compute Cloud (Amazon EC2). We implemented
a chunked and parametrized execution modality for distributing the analysis
of the sequences associated to each virus to multiple machines, so that the to-
tal execution time of the process can be divided by the number of available
machines.

10.5 Data Curation

Our first curation contribution is to provide a unique schema (the VCM) for
different data sources. Each source comes with different terminological choices
when describing the different metadata. We have surveyed the the terms used
in many sources to come up with appropriate reconciling solutions. The map-
pings between VCM attribute names and those used at the original sources are
in the Tables C.1-C.4 reported in Appendix C for space reasons.

Specific value curation efforts have been dedicated to: location information
(to properly divide information among region, country and continent—also
using external maps); collection and submission dates (which very often miss
day/month/year parts or use different formats); completion of virus and host
taxonomy names/identifiers (using NCBI Taxonomy services and a specific
module to resolve misspellings); choice of the appropriate reference sequence
(cross-checking with several research papers to ascertain that the typical refer-
ence sequence used for variant calling is defined); coverage of the sequencing
assay (indicated in very heterogeneous ways, possibly with different seman-
tics and measure units). We also compute metrics regarding the percentage of
G and C bases, of unknown bases and the information about sequence com-
pleteness. Between the two versions of the database, the one that integrates
different sources and the one dedicated to GISAID, we also homogenized the
nomenclature used for proteins.

Some sequences are deposited to multiple sources; we detect such redun-
dancy by matching sequences based on their strain name or the pair of strain
name and length. Overlaps among sources is illustrated in Figure 10.3. As

3https://genome.ucsc.edu/goldenPath/help/iupac.html
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GenBank COG-UK NMDC

GISAID

22,198 strain+length
7,198 strain

1,001 strain+length
185 strain

117 strain+length

45,963

12,122 8,728 165

13 strain+length

Figure 10.3: Counts of SARS-CoV-2 overlapping sequences from each source. Overlaps are computed
by means of either the strain name, or both strain name and length.

all overlaps occur between GISAID and the other sources, we store the infor-
mation about overlaps within the GISAID database to allow the possibility of
performing "GISAID only" queries, i.e., restricted to GISAID sequences that are
not present in GenBank, COG-UK or NMDC. As a consequence of this dupli-
cate detection procedure, the records of COG-UK, which tipically only contain
few metadata, can be enriched with 5 additional metadata (OriginatingLab, Sub-
missionDate, SubmissionLab, IsolationSource, IsComplete) when they correspond
to GISAID records that hold such information.

192



i
i

“output” — 2021/1/14 — 8:34 — page 193 — #217 i
i

i
i

i
i

CHAPTER11
Searching Viral Sequence Data

“What we see depends on mainly what we are looking for.”
— Sir John Lubbock

The content of ViruBase, a novel integrated and curated database for virus se-
quences, has been made searchable thorugh a flexible and powerful query in-
terface called ViruSurf, available at http://gmql.eu/virusurf/. ViruSurf has a
companion system, ViruSurf-GISAID, available at http://gmql.eu/virusurf_
gisaid/ that offers a subset of the functionalities and operates on a GISAID-
specific database.1 ViruSurf can be employed for searching sequences using
their describing metadata, but it also exposes a sophisticated search mecha-
nism upon nucleotide and amino acid variants, as well as their genetic impact,
where each condition can be combined with others in powerful ways.

While continuous additions are being made to ViruBase (as we will explain
in Chapter 12) – by enlarging its scope in terms of included species but also
of kind of represented data (requiring changes in the schema) – the ViruSurf
interface will be consistently updated, offering more practical functionalities to
users.

Chapter Organization. Section 11.1 briefly describes the requirements elici-
tation process that was conducted before and during the design of ViruSurf.
Section 11.2 explains the various modules of the ViruSurf one-page web ap-
plication; Section 11.3 shows example queries that can be performed on the
interface—these are relevant for virology research recent studies; Section 11.4
discusses the usefulness of ViruSurf in the critical times of COVID-19 pan-
demic; finally, Section 11.5 reviews concurrent related works.

1The two versions were kept separate as a requirement from GISAID data sharing agreement, which prevented us
to merge together the datasets.
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ID #Interv. Title/Expertise Level Research Area/Specialization Location Institution Type

I1 3 Associate Professors/Clinicians + Researcher Emergency medicine/Hepatology IT Hospital
I2 1 Full Professor Virology US University
I3 1 Researcher Molecular Biology IT University
I4 1 R&D Manager Bioinformatics IT Private Company
I5 1 Full Professor Molecular Microiology US University
I6 1 Senior Researcher Epidemiology UK Research Center
I7 2 Researchers Veterinary Virology/Veterinary Medicine IT Research Center
I8 1 Researcher Bioinformatics US Private Company
I9 1 Researcher Veterinary Virology IT Research Center

I10 2 Full Professor + Associate Professor Medical Genetics IT University/Hospital
I11 1 Researcher Virology US University
I12 1 Research Associate Medical Genetics BE University/Hospital
I13 2 Full Professor + Researcher Molecular Biology IT University
I14 1 Full Professor Molecular Virology HK University
I15 1 Full Professor Computational Biology SI University

Table 11.1: Groups of interviewees with their characterization. #Interv. indicates the size of the group;
for each group we specify the titles or expertise levels demonstrated by its components, their research
areas or specializations, the location and type of their institution at the time of the interview.

11.1 Requirements Analysis

The ViruSurf development team included six members – holding mixed ex-
pertise in Computer Science and Bioinformatics – led by a Principal Investi-
gator, two senior researchers, and three PhD students. Given my background
in interviewing experts in human genomics for understanding requirements of
exploratory software (during collaborations with IEO, www.ieo.it, and IFOM,
www.ifom.eu), and in evaluating their usability with empirical studies (see Sec-
tion 6.4.2), I was responsible for the requirement elicitation design and the di-
rection of the methodological framework.

In total, twenty researchers were interviewed, knowledgeable in various
fields, related to the virus from different points of view: the specific mecha-
nisms of its biology, the pathogenesis, its interaction with human or animal
hosts. Interviewees had different levels of expertise and were sourced from
different locations from both public and private institutions (as shown in Ta-
ble 11.1). All participants were interviewed individually except for I7, I10, I13
(in pairs) and I1 (in three).

We conducted lightly structured interviews; the typical setting included an
introductory 1.5 hours video call session where the participants were inter-
viewed jointly by the PI, myself as the requirements analysis designer, and
other two members of our team, supported by slide presentations. All such
sessions were approximately divided in three parts of 30 minutes each. First,
we explained our interest in the topic, showing the progress of our systems
thus far. Then, we made questions to gather the participants attention towards:
i) particular areas/questions of interest, or ii) specific functionalities, using a
more technical attitude.

In some cases, participants showed particular interest in follow ups of our
research and offered their availability for successive sessions, organized with
a more "hands-on" angle. In particular, with I2, I3, I7, I8, and I11 we were
able to perform other two sessions of 1 hour each, joined by other members of
the development team: (1) a "mock-up session", using prototypes of the sys-
tem or slides with simulated user workflows, allowing a "satisfied/non-satis-
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11.1. Requirements Analysis

fied" answer from participants, with an open discussion to formulate variations
with respect to the proposed design; (2) a "demonstration session" for the im-
plemented features, with the presentation of small application use case, and
finally request for feedback on the compliance with previously formulated re-
quirements and on the usefulness of the functionality in real case scenarios.

11.1.1 Lessons Learnt

Our exercise did not follow any predefined requirement elicitation framework
but was of great importance to learn a series of lessons: in spite of our expertise
in developing software for genomics, we were lacking a substantial amount of
domain knowledge. The work proceeded continuously, in an agile setting that
alternated data and software design sessions with interviews to experts in the
domain, to understand their requirements in what we call an Extreme Require-
ments Elicitation (ERE) process. We here summarize the main understandings
gathered from this experience, characterized by the urgency of the pandemics
and the domain knowledge gap with the virology experts, addressed with a
"show, don’t tell" approach to transfer our need of understanding.

Deal with diversity. Domain-knowledge understanding has been addressed
in general [167] and in contexts related to bionformatics [53, 320] or ge-
nomics [96, 97]. However, the domain experts involved in COVID-19 research
represent a novel scenario: a plethora of different specializations exist (biolo-
gists, clinicians, geneticists, virologists – focusing on philogenesis, epidemiol-
ogy, veterinary, etc.). It is important to capitalize on the diversity of interviewed
people and also on the fact that a similar diversity is present in the many stake-
holders who could take advantage of our system. Note that some features may,
for example, be useful to both virologists and clinicians: however, each single
functionality is described by experts in different ways, and each type of expert
must be approached differently.

Diversity characterizes not only disciplines of specialization but also the
level of expertise and personal talents (e.g., how to address young researchers
and senior professors). For example, during interviews we observed that
young researchers appreciated prototypes/mockups-driven presentations (al-
lowing them to gain insight in the details of the user interaction and imple-
mentation), while professors appreciated high-level presentations, as they were
able to highlight completely new directions from more abstract descriptions.

Investing in short, just-in-time pre-interview meetings. While requirements
engineering usually features a long and controlled process of steps – including
the interpretation, analysis, modeling, and validation of requirements’ com-
pleteness and correctness [282] – we argue that, in the specific setting described
in this work, exceptions should be allowed. Domain experts have limited time
available; they allow it for interviews if they see potential in the proposal, so
interaction should be as productive as possible.

For successfully conducting the interviews, we understood that organizing
quick preparatory meetings preceding the call was essential to: i) refresh the
foundational aspects of the specific research expertise of the person to be inter-
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viewed;2 ii) discuss it within the team; iii) quickly agree a clear scheme for the
interview; and iv) identify/plan roles for each member of the team.

Being use-case driven. When speaking different domain languages, one quite
successful approach is that of "show, don’t tell" [383] (typical of design think-
ing mindsets [57]), e.g., to bridge the knowledge gap between computer scien-
tists and virologists. Interactions need to be driven by specific problems and
use cases: proposing examples, small prototypes, showcasing alternatives, and
mimicking a live interface – by using slides with animations on specific mod-
ules and objects – led to promising results of transferring our need of knowing
or understanding.

Being curious. Using all possible means to facilitate discovery. While collect-
ing requirements, we were continuously reasoning about new resources, new use
cases, new experts that could broaden our views; this has produced new inter-
esting data sources and data analysis methods that were not envisioned at the
beginning of the project and that were integrated within our data ingestion and
curation pipelines. In parallel, we activated a continuous monitoring of liter-
ature and news of interesting facts, so as to enrich our interviews with every
novel aspect that could create stimulating interaction niches (e.g., the emer-
gence of a given important mutation, the publishing of a study with broad
societal impact...). Finding new experts was essential: in our case next contacts
were often suggested during previous interviews.

Being aware that a second opportunity of interaction is worthwhile. A chal-
lenging aspect was to identify the right moment in which developments had
made a big enough step for the next interview: a second round of discussion
with the stakeholders was used to show progress, ask feedback, and proceed
with following requirements, embracing a similar approach to the one of agile
requirements analysis [339].

11.2 Web Interface

The web interface of ViruSurf is composed of 4 sections, numbered in Fig-
ure 11.1: (1) the menu bar, for accessing services, documentation and query
utilities; (2) the search interface over metadata attributes; (3) the search inter-
face over annotations and nucleotide/amino acid variants; (4) the result vi-
sualization section, showing resulting sequences with their metadata. Results
produced by queries on the metadata search interface (2) are updated to re-
flect each additional search condition, and counts of matching sequences are
dynamically displayed to help users in assessing if query results match their
intents. The interface allows to choose multiple values for each attribute at the
same time (these are considered in disjunction); it enables the interplay between
the searches performed within parts (2) and (3), thereby allowing to build com-
plex queries given as the logical conjunction – of arbitrary length – of filters set

2Even if, in some cases, prior domain knowledge may introduce negative bias in interviews [167], in this context
it is vital that requirements analysts have some (flexible) experience in the domain. This is helpful in view of time
scarcity and also because most of the interviewed experts interacted under the implicit assumption that explanations
of basic concepts of their discipline was not needed.
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in parts (2) and (3).

Menu Bar. The menu bar includes links to the GISAID-specific ViruSurf sys-
tem, to the GenoSurf system, and pointers to the data curation detail page,
to the wiki, to a video compilation, and to a pedagogical survey supporting
the user by documenting the aspects of search queries. Below, users can use a
button to clear the current set query and on the right they can select various
"Predefined queries" from a drop-down menus.

Metadata Search. The Metadata search section is organized in four parts:
Virus and Host Organism (from the biological dimension), Technology and Or-
ganization (from the respective dimensions). Its functioning is analogous to the
one of the "Metadata search" of GenoSurf described in Chapter 6. It includes
attributes which are present in most of the sources, described by an informa-
tion tab that is opened by clicking on blue circles; values can be selected using
drop-down menus. At the side of each value we report the number of items in
the repository with that value. The field Metadata search is dynamically com-
piled to show in a single point which values have been selected in the table
below. We allow to choose multiple values in one attribute drop-down list at
the same time (these are considered as alternative). Values chosen over differ-
ent attributes, instead, are considered as conditions that should coexist in the
resulting items.

The user can compose desired queries by entering values from all the drop-
down menus; the result is the set of sequences matching all the filters. Note
that the special value N/D (Not Defined) indicates the null value, that can also
be used for selecting items.3 For numerical fields (age, length, GC% and N%)
the user must specify a range between a minimum and maximum value; in ad-
dition, the user can check the N/D flag, thereby including in the result those
sequences having the value set to N/D. Similarly, collection date and submis-
sion date have a calendar-like drop-down components, supporting a range of
dates and the N/D flag.

Variant Search. The Variant search section allows searching sequences based
on their nucleotide variants (with their impact) and the amino acid variants.
When the user selects "ADD CONDITION ON AMINO ACIDS" or "ADD
CONDITION ON NUCLEOTIDES" buttons, a dedicated panel is opened, with
a series of drop-down menus for building search conditions. A user can add
multiple search conditions within the same panel; these are considered in dis-
junction. Once the panel is completed, it is registered; registered panels can
be then deleted from a query, if needed. Variants selected in different panels
are intended in conjuction. Heterogeneous variant searches (i.e., on amino acid
and nucleotide ones) can only be combined in panels, thus in conjunction.

In the example shown in Figure 11.1 (which represents the construction of
the "Predefined query 8", from Pachetti et al. [289]) the user is choosing all

3This corresponds to a simplifying choice made to have a first system up and running soon. In future we may
consider different kinds of nulls [30], differentiating between what is not known and what is not available.
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Figure 11.1: Overview of ViruSurf interface. Part 1 (Top bar) allows to reset the previously chosen
query or select predefined example queries. Queries are composed by using Part 2 (Metadata search)
and Part 3 (Variants search). In our example, Part 2 includes three filters on Virus taxon name,
Is complete, and N%. Part 3 includes three panels. Panel "A" is a query on amino acid variants,
selecting sequences with RK and GR changes in gene N; Panel "B" is a query on nucleotide variants,
selecting sequences with a variant at position 28,881. Panels "A" and "B" are closed, they can be
removed but not changed. Panel "C" is another query on amino acid variants, currently open; it
includes two filters selecting given positions of the Spike protein, and visualizes available values for
the original amino acid involved in the change. Part 4 shows the Result Visualization. Resulting
sequences already reflect the filters of Parts 2 and the queries of the closed panels "A" and "B" of Part
3, applied in conjunction. Results can be downloaded, in CSV or FASTA format; they can be selected
as either cases (default) or controls (switch), and both the nucleotide and amino acid sequences can
be projected on a specific protein; table columns can be omitted and reordered. On the bottom right
corner, the number of sequences resulting from the search is visualized (in the Figure we show only
three sequences out of 14 sequences found).
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SARS-CoV-2 sequences that are complete, have a maximum percentage of un-
known bases of 0.5%, and have R to K or G to K amino acid changes in gene N
and a nucleotide variant at position 28,881. The filters set up to this point have
selected a set of 14 sequences (as indicated at the bottom right of the page) In
the represented snapshot, a third variant panel is in the process of being com-
piled with an amino acid condition that could be added to the two existing
ones by pressing "APPLY". This holds a filter on the spike protein and on the
position of the variant on the protein (> 1000); the filter on original amino acid
allows to select P (3 sequences available) or APHG (1 sequence). In addition,
the user could add other amino acid queries that can be disjoint to the current
open one.

Result Visualization and Download. The result table describes the sequences
resulting from the selections of the user. The columns of the table can be or-
dered/included/excluded from the visualization; the resulting table can be
downloaded for further processing. Whenever the user either adds or removes
a value in the Metadata search, by clicking on a drop-down menu, the results
table is updated; instead, it is updated only when a panel of the Variant search
section is complete.

The "Show control" switch allows to visualize the sequences of the control
group, defined by those sequences selected by the Metadata search filters for
which: 1) there exist some variant and 2) the variant filters set by the users are
not satisfied. This option, suggested to us by virologists, is the very sensible for
describing the effects of variant analysis.

A user can select from a drop-down menu which sub-part of a nucleotide
or amino acid sequence should be visualized; the default returns a "FULL" nu-
cleotide sequence (leaving the amino acid field empty), but with this menu
option it is possible to return in the result the specific segment of interest. The
whole result table – as it is visualized, inclusive of selected metadata and nu-
cleotide or amino acid sequences – can be downloaded for further analysis as a
CSV. Alternatively, the user may download either full or selected sequences by
using their accession ID, either as CSV or FASTA files. Note that, most of the
times, bioinformaticians specifically require data in these common formats so
that they can further develop the analysis by employing off-the-shelf libraries.

GISAID-Specific ViruSurf. ViruSurf presents a version that is specific for
data imported from GISAID (available at http://gmql.eu/virusurf_gisaid/),
as requested by a specific Data Agreement. This interface presents limited func-
tionalities but is nevertheless powerful and allows for combining its results
with the ViruSurf main interface. Notable differences are here summarized: 1)
After selecting filters, a user must explicitly apply her search by pressing an ex-
ecution button. 2) Searches may be performed on the full dataset from GISAID
or on the specific subset of sequences that are only present on GISAID (button
"Apply GISAID specific") – this may result particularly useful when the user
wishes to compare or sum up results from the two interfaces (see Q5 in the
following for an example). 3) Both drop-down menus and the result table’s
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Chapter 11. Searching Viral Sequence Data

columns hold the original GISAID attribute name, when available – when this
differs from ViruSurf’s, the second one is provided in second position inside
parentheses.

11.3 Example Queries

ViruSurf enables simple queries to retrieve sets of sequences that adhere to
filters set on metadata such as "How many sequences were collected in China
in January 2020?" or "How many sequences were retrieved using either Ion
Torrent or Ion Torrent X5Plus sequencing technology and have a maximum of
10% of unknown bases?".

Moreover, by means of more complex search queries over the database it is
possible to help virus research, according to the requirements provided by sev-
eral domain experts; this is not currently supported by other existing systems,
which typically offer very nice visual interfaces reporting results of data anal-
ysis but limited search capabilities. We cite some examples inspired by recent
research works.4

Q1. Artesi et al. [13] studied how the failure of the cobas®SARS-CoV-2
(Roche) E-gene assay is associated with a C-to-T transition at position 26340
of the SARS-CoV-2 genome. ViruSurf can be used to quickly retrieve 1,104
SARS-CoV-2 sequences with such mutation (original base C, alternative base T
at position 26340 of the virus) in different time periods.

Q2. Khailany et al. [206] have proposed a characterization of the novel SARS-
CoV-2 genome; they show a list of non-coding mutations detected in SARS-
CoV-2 genomes. ViruSurf may be employed to select such mutations one by
one (or in sets) and correspondingly check what are the annotated effects of
such mutations. For example the mutation from C to T at the 241st nucleotide
is an "intergenic region" and an "upstream gene variant".

Q3. Yi et al. [387] proposed to create synthetic single amino acid substitu-
tions in the SARS-CoV and SARS-CoV-2 Receptor-Binding Domains,5 to either
enhance or diminish the specific binding activity of the RDB with the functional
receptor human ACE2. ViruSurf may be used to programmatically check if
there are any publicly available sequences that naturally present at least some
of the changes that bring increased infectivity (i.e., P499, Q493, F486, A475 and
L455) or the ones that lead to decreased infectivity (i.e., N501, Q498, E484, T470,
K452 and R439) in the Spike protein. These counts may be studied in combi-
nation with space and time information, so as to understand in which kind of
host population they are found.

Q4. Tang et al. [359] claim that there are two clearly definable major types
(S and L) of SARS-CoV-2 in the COVID-19 outbreak, which can be differen-
tiated by transmission rates. The S and L types can be distinguished by two
tightly linked variants at positions 8782 (within the ORF1ab gene from T to C)

4Note that counts reported as results of the queries correspond to the first released version of ViruSurf, on August
4th, 2020.

5The Receptor-Binding Domain (RBD) is a key part of the virus located in its spike protein – it allows it to dock to
body receptors to gain entry into the host’s cells and lead to infection. For this reason, it is believed to be a major target
to block viral entry. Both SARS-CoV-2 and SARS-CoV share this mechanism.
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and 28144 (within ORF8 gene from C to T, resulting into a change from Serine
to Leucine at the 84 position of the ORF8 protein). MacLean et al. [247] later
discredited the claims made in [359] stating the difficulty in demonstrating the
existence or nature of a functional effect of a viral mutation. Anyways, ViruSurf
can be used to perform a query to isolate the "S" type, based on the amino acid
change in position 84 of gene ORF8, which returns 1,947 sequences in our main
database and 5,026 from the GISAID-specific one (by choosing the option to
only retrieve sequences that are not present in the other database).

Tang et al. also suggest that patients that have the genotype Y (ambiguous
base representing either C or T6) at both positions 8782 and 28144 (differing
from the general trend of having respectively C and T in the two distinct posi-
tions) could have been infected with viruses from multiple strains of different
types. We perform on ViruSurf a query that searches for sequences that have
both 1) a variant with original nucleotide C, alternative one Y, at position 8782,
and 2) a variant that has original nucleotide T, alternative Y, in position 28144.
We thus extract 5 sequences with such characteristics, which may be useful for
downstream studies regarding heteroplasmy7 of SARS-CoV-2 viruses in SARS-
CoV-2 patients.

Q5. A study from Scripps Research, Florida, found that the mutation D614G
stabilized the SARS-CoV-2 virus’s spike proteins, which emerge from the viral
surface. As a result, the viruses with D614G seem to infect a cell more likely
than viruses without that mutation; the G genotype was not present in Febru-
ary and was found with low frequency in March; instead, it increased rapidly
from April onward. The scientific manuscript by Zhang et al. [396], cited by
mass media,8 has not been peer reviewed yet, but others on the same matter
are [32, 213]).

ViruSurf can be used to illustrate this trend. Let us consider two queries
on complete sequences. Sequences with the D614G mutation collected before
March 30 are 6,592, against 4,664 without the mutation; sequences with the
D614G mutation collected after April 1 are 23,649, against 3,331 without the
mutation. In both queries, case/control checks are obtained by using the "Show
control" switch, which retrieves – for the population specified by metadata fil-
ters – sequences that either have or do not have the chosen variants. This allows
to answer questions such as "In the user-defined population of virus sequences
extracted from SARS-CoV-2 in Wuhan from 01-Jan-2020 till 31-Mar-2020, how
many did have the variants V1 and V2 and how many had neither V1 nor V2?".

The same queries can be repeated on the GISAID-specific version of
ViruSurf. Sequences with the D614G mutation collected before March 30 are
15,034, against 8,821 without the mutation; sequences with the D614G muta-
tion collected after April 1 are 18,421, against 3,369 without the mutation. By
summing up the query results from the two non-overlapping databases, we ob-
tain that the sequences with the D614G mutation are 61.6% of those collected
before March 30 and 86.3% of those collected after April 1.

6https://genome.ucsc.edu/goldenPath/help/iupac.html
7Heteroplasmy is the presence of more than one type of organellar genome (mitochondrial DNA, plastid DNA, or

viral RNA) within a cell or individual.
8https://www.nytimes.com/2020/06/12/science/coronavirus-mutation-genetics-spike.html

201

https://genome.ucsc.edu/goldenPath/help/iupac.html
https://www.nytimes.com/2020/06/12/science/coronavirus-mutation-genetics-spike.html


i
i

“output” — 2021/1/14 — 8:34 — page 202 — #226 i
i

i
i

i
i

Chapter 11. Searching Viral Sequence Data

Q6. In SARS-CoV-2, the G-T transversion at 26144, which caused an amino
acid change in ORF3 protein (G251V), is investigated in Chaw et al. [81]. The
paper claims that this mutation showed up on 1/22/2020 and rapidly increased
its frequency. We can use ViruSurf to find out that GenBank currently provides
3 complete sequences with such mutation collected before 1/22/2020, while
GISAID provides other 13 sequences, non-overlapping with GenBank ones.

Q7. Pachetti et al. [289] report about a mutation located in SARS-CoV-2 gene
N at position 28,881, which is related to a double codon mutation, inducing the
substitution of two amino acids, namely 28881 (R to K) and (G to R). We re-
produce this on ViruSurf by first looking for complete sequences that have two
alternative amino acid changes in gene N and then filtering only the sequences
that have a nucleotide variation specifically at position 28881. We extract 45
sequences from ViruSurf (5 GenBank, 40 COG-UK).

11.4 Discussion

Note that ViruSurf increases the possibilities available to users with respect
to existing resources: queries Q1-Q7 could not be asked directly to the native
sources. Indeed, while these provide fairly advanced filters concerning meta-
data describing sequences, they do not provide much support for variants:
GenBank, COG-UK, NMDC have no in-house computed variants (either on
nucleotides or on amino acids), while GISAID (since the last version released
in December 2020) provides filters on around 40 single or combined amino acid
variants. More precisely, not all possible variants can be searched for; no dis-
junction filters can be built; no nucleotide variant can be requested; no ques-
tion on variants present in position ranges can be posed; and no query on
insertion/deletion length can be asked. ViruSurf offers all these possibilities.
Moreover, ViruSurf provides an integration between four sources (GISAID,
GenBank and COG-UK, plus a tiny dataset from the chinese NMDC), with
duplicate elimination, thus it provides a good estimate of the sizes of results
matching a given query. Note that most COG-UK sequences are already in-
cluded in GISAID, but as such they are "blinded" to the few degrees of freedom
offered by that system. We thus reprocess all UK data and offer full ViruSurf
functionality over it. To account for data duplication, we cross-check COG-UK
sequences with GISAID ones and flag as gisaid_only = false the repeated en-
tries. In this way, counts obtained on ViruSurf and on ViruSurf-GISAID can be
seamlessly summed up for a complete representation of all currently available
SARS-CoV-2 data. In addition, in the ViruSurf a virus-independent infrastruc-
ture; thus in the future it may be used to compare characteristics of different
virus species in parts with similar functions; as an example a virologist may
be interested in the number of SARS-CoV-2 sequences that have amino acid
variants in the specific range 438-488 of spike protein, opposed to SARS-CoV
sequences that have variants in 425-474 of the same protein in this other species
(as these ranges define the RDBs of the two species, when considering their
genes aligned [219]).

For a more tangible evidence of ViruSurf value, we refer to Table 11.2, where
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ViruSurf ViruSurf-GISAID

Mutation COG-UK GenBank NMDC all gisaid_only all VS+VSG GISAID NCBI COG-UK

Spike_A222V 53394 395 0 53789 6526 46054 60315 46357 - -
Spike_D614G 138811 39138 125 178074 130156 240811 308230 242562 - -
Spike_H69- 5740 29 0 5769 2022 4906 7791 5346 - -
Spike_H69-,N501Y 3301 0 0 3301 58 1437 3359 1489 - -
Spike_H69-,N501Y, A570D 3231 0 0 3231 57 1436 3359 - - -
Spike_S477N 2880 10381 0 13261 12774 15394 26035 15417 - -
NS3_G251V 4296 488 13 4797 3325 6312 8122 6328 - -
N_S197L 311 258 0 569 1924 2212 2493 - - -
1 nuc. sub. in [27848,28229] 659 94 2 755 - - 755 - - -
15/30-long nuc. del. 2547 1696 19 4262 - - 4262 - - -

Table 11.2: Comparison of sequences matched by queries for specific mutations, in our system versus
original sources (GISAID, NCBI, COG-UK). VS + VSG represents the sum of sequences matched
in ViruSurf and in ViruSurf-GISAID, considering only the onse that are specific to GISAID (i.e.,
"gisaid_only").

we show, for a small number of interesting queries, the counts that can be re-
trieved from different systems, considering submissions up to December 15th,
2020. As can be observed, only queries for notable amino acid mutations (even
combined among them) can be performed on GISAID, while on other sys-
tems this is not possible. First, we show the number of sequences matched
in ViruSurf, splitting them by source of origin (in order: COG-UK, GenBank,
NMDC). Then we show the sequences matched within ViruSurf-GISAID In
the two columns dedicated to ViruSurf-GISAID we provide the number of
"gisaid-only" sequences and the number of total sequences matched in the
database that we retrieve directly from GISAID. VS+VSG column shows the
total amount of sequences that can be retrieved in our system, by summing the
column ViruSurf/all with the column ViruSurf-GISAID/gisaid_only. Matches
found in our system are consistently greater than what can be found on GI-
SAID.

ViruSurf provides a single point of access to curated and integrated data re-
sources about several virus species. Example queries show that ViruSurf is able
to replicate research results and to monitor how such results are confirmed over
time and within different segments of available viral sequences, in a simple and
effective way. The relevance of ViruSurf as a tool for assisting the research com-
munity will progressively increase with the growth of available sequences and
of the knowledge about viruses (we can see this as a "network effect" applied
to the data integration problem).

While today’s efforts are concentrated on SARS-CoV-2, ViruSurf can sim-
ilarly be useful for studying other virus species, such as other Coronavirus
species, the Ebola Virus, the Dengue Virus and MERS-CoV, epidemics which
are a current threat to mankind; ViruSurf will also enable faster responses to
future threats that could arise from new viruses, informed by the knowledge
extracted from existing virus sequences available worldwide.

11.5 Related Works

Resources to visualize viral sequence data (and most importantly SARS-CoV-2
related data) are springing up in these critical times in which the COVID-19
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pademic has not been put under control yet. We briefly mention some systems
that are at their early stages and are trying, as ViruSurf, to support viral re-
search and provide insights on sequence variants and their characteristics or
distribution:

• The COVID-19 Viral Genome Analysis Pipeline [213] provides an environ-
ment to explore the most interesting mutations of SARS-CoV-2, by com-
bining time and geographic information;

• GESS [125] aims to uncover single nucleotide variants behavior in the
virus;

• coronApp [265] serves the double purpose of monitoring wrldwide muta-
tions and annotating user-provided mutations of SARS-CoV-2 strains;

• WashU [134] is a web-based portal that provides different ways to visual-
ize viral sequencing data;

• The UCSC SARS-CoV-2 browser [128] extends the functionalities of the
classical UCSC genome-browser visualization tool [205] for this virus;

• 2019nCoVR [397], already discussed in Chapter 8, not only provides in-
tegrated data but also a visualization-based dashboard for mutations in-
spection.
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CHAPTER12
Future Directions of the Viral Sequence

Repository

“Science appears calm and triumphant when it is completed; but science in the process of being done is only
contradiction and torment, hope and disappointment.”

— Pierre Paul Émile Roux, French bacteriologist and developer of the first effective diphtheria treatment

In the previous chapters we have presented our approach to modeling viral
sequences (Chapter 9), building a repository collecting data from different vi-
ral data sources (Chapter 10), and exposing its content over a web interface,
with enhanced functionalities on variant selection and filtering (Chapter 11).
This work has been realized in the last nine months, during the spreading of
SARS-CoV-2 epidemic worldwide. After setting the first milestones (the con-
ceptual model, the integrated database, the web entry point), we are now mov-
ing forward, considering the next challenges of this new domain with growing
interest. In the close future, we plan consistent additions to our project:

• We are carrying on our process of continuous requirements elicitation,
constantly improving our understanding of the domain and aiming at a
systematization of our interviews to experts (Section 12.1).

• We aim to progressively extend and consolidate ViruSurf so as to make it
a strong resource for supporting viral research (Section 12.2).

• We are producing VirusViz, an interface to provide visualization support
to the results generated by ViruSurf (Section 12.3).

• We will add data analysis services that can provide sophisticated use of
our big data collection, with a focus on variations monitoring, data sum-
marization, and data mining tailored to specific biological questions (Sec-
tion 12.4).
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• We will consider the connection between the phenotype and genotype of
the pathogen host organism and the viral genome, opening new research
directions, in search of dependencies between sequence variants, genome
signals, and their impact on clinical outcomes of the disease (Section 12.5).

12.1 Research Agenda

We aim to develop a systematic interviewing method driven by three princi-
ples: i) overcoming strong initial differences in the understanding of a given
domain; ii) converging towards a solution in a short time; iii) conducting ex-
treme requirements elicitation (ERE) sessions in parallel with design and de-
velopment, neglecting the typical precedence between phases and enforcing
cycles of ERE sessions that instrument design and vice versa. After experiment-
ing these concepts during the first COVID-19 pandemic wave for ViruSurf, in
our agenda we are planning to produce many significant research additions,
including the support for: queries for testing the stability of viral regions (use-
ful for vaccine design), emerging knowledge about the mutations’ impact, ef-
fective visualization for data analysis, and ad-hoc services for covering needs
of hospitals and other parties who are not interested in publishing their se-
quences. To support all these directions, the ERE design shall pursue several
research questions:

RQ1. How could we train groups of system designers and developers to manage extreme
requirements? Scenarios which are driven by urgency can be simulated or
reproduced by means of training exercises, where urgency is artificially
created by simulating a disaster and then instructors play the role of do-
main experts, also setting artificial goals that represent the need for rush-
ing towards the definition of requirements, with strict submission dead-
lines and fixed time schedules.

RQ2. Could it be worth applying the ERE method proposed for ViruSurf – conceived to
manage developing knowledge in an interdisciplinary setting – within a known
disciplinary context? The method was created to cover two kinds of emer-
gencies, besides urgency we were also driven by the need of dynamically
creating enough knowledge within the group in order to manage the forth-
coming interviews one after the other. We should put the ERE method at
work for collecting requirements within a known domain, shared between
designers and interviewed experts, and compare its performance with a
structured and conventional plan of interviews.

RQ3. How will we diversify our portfolio of ERE use cases in the forthcoming design
experiences? After the lockdown period we managed to hire new people in
the group, including a biologist, a communication designer and a UI ex-
pert. We will test if our performance in dealing with extreme requirements
will increase or decrease in the context of this new group.
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12.2 ViruSurf Extensions

The Web interface of ViruSurf has been planned with virologists so as to facil-
itate their routine interaction with sequence data, including provisions for fast
extraction of result subsequences in various formats and for easing the com-
parison of search results with their controls. We briefly discuss short-term im-
provements that we are already designing for ViruSurf.

Schema Additions. We are adding epitopes, i.e., short amino acid sequences
that are recognized by the host immune system antigens – a substance capa-
ble of stimulating antibody responses in the organism invaded by the virus;
epitopes, described by their location in the sequence, evidence, and type of
response, are thus candidate binding sites for vaccine design.

We do not dedicate our efforts to epitope design, as this topic is covered by
specialists; instead, we capitalize on Immune Epitope Database and Analysis
Resource (IEDB) [369], an open resource where we expect epitope sequences
will continue to be deposited and curated through literature review. While, as
of August 2020, there are only 283 epitopes specifically deposited for SARS-
CoV-2, IEDB has several thousand sequences deposited for species which are
already loaded in ViruSurf. In the case of a new virus spread, information sys-
tems to integrate and elaborate available data acquire an enormous relevance.
Indeed, wet-laboratory experiments to discover novel biological knowledge or
validate hypotheses require, among other resources, a considerable amount of
time, that may not be available under the pressure of a pandemic event. Thus,
computational methods and frameworks to both prioritize biological experi-
ments and computationally infer new insights are effective resources to speed-
up the research.

As pointed out by Prof. Limsoon Wong of National University Singapore, of
particular importance are those methods capable of transferring consolidated
knowledge from related virus species to the one of interest. A significant exam-
ple is provided by Grifoni et al. [157], a bioinformatics method to infer putative
epitopes of SARS-CoV-2 from similar viruses, namely Severe Acute Respira-
tory Syndrome-related CoronaVirus (SARS-CoV) and MERS-CoV. An interest-
ing transfer learning could concern the adoption of future COVID-19 vaccines
to other existing or future virus species.

We will also add haplotype descriptors (such as clades and lineages); we
plan to use several approaches proposed in literature: GISAID system,1 PAN-
GOLIN system [307], and the operational classification system described by
Chiara et al. in [85, 86]. The last one is a new clustering method for viral se-
quences based upon common variants; the method has the advantage of pro-
ducing a sequence classification reliably indicating the sequence’s country of
origin, so as to trace viral outbreaks that may occur within a small group and
linking it to their recent travels.

1https://www.gisaid.org/references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-
epidemiology-of-active-hcov-19-viruses/
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Content Additions and Optimizations. ViruSurf already stores, in addition
to about 300K sequences of SARS-CoV-2 collected as of December 2020, also the
sequences of other Coronaviruses (i.e., SARS-CoV and MERS-CoV), of Ebola
and Dengue. We plan to progressively enrich ViruSurf with other virus species.

The loading of ViruSurf sequences and their incremental maintenance is a
huge parallel process, as we engage in computing the sequence-specific anno-
tations and both nucleotide and amino acid variants; loading occurs in parallel
and takes advantage of Amazon Cloud services. Similarly, the storage of Vis-
uSurf sequences is optimized with classic data warehousing methods (materi-
alized views, database indexes) so as to enable real-time production of query
results. Both aspects will be stressed with the schema and content additions.

12.3 Visualization Support: VirusViz

We are building a Web application (available at http://genomic.deib.polimi.
it/virusviz/) for analyzing viral sequences and visualizing and their variants
and characteristics. VirusViz analyses sequences (FASTA files) and their meta-
data (CSV files) and produces a JSON file that comprises for each sequence:
alignment to the reference genome using the Needleman-Wunsch algorithm
with affine gap penalty; ranked list of 20 most similar sequences from ViruSurf
database using BLASTN;2 nucleotide variants with associated putative impact
computed using SnpEff;3 amino acid variants; for SARS-CoV-2 sequences, lin-
eage assignment using Pangolin.4

VirusViz projects can be created either (i) by submitting FASTA+CSV files
(for long processing, the user is notified of completion by email); or (ii) by
generating a query on ViruSurf/ViruSurf-GISAID and then invoking VirusViz
from the result panel. Projects can be saved in local files, reloaded, and merged.

The Web application has five pages, respectively for: defining sub-
populations (groups), inspecting each sub-population, visualizing and export-
ing single sequences, visualizing the distribution of variants of single sub-
populations, and comparatively visualizing the variant distributions of differ-
ent sub-populations. By using VirusViz it is possible to build simple visual-
izations for detecting and tracing emerging mutation patterns. In particular,
we have focused on variant diffusion events that attracted high attention in the
press. Next we show four screens that allow to compare the variants distribu-
tions of different populations, each represented by one track. Each track is a
histogram where the X-axis represents positions along the nucleotide or amino
acid sequence (of a specific protein) and the Y-axis represents the count of se-
quences in the selected population that exhibits a mutation in that X position.
While comparing tracks, it is the user’s responsibility to contextualize differ-
ent observed behaviours and percentages with respect to the size of the sample
represented in a track.

Figure 12.1 illustrates that Italians acquired numerous mutations after trav-
eling during summer; the user can grasp at first sight that the track named "Af-

2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://pcingola.github.io/SnpEff/
4https://github.com/cov-lineages/pangolin

208

http://genomic.deib.polimi.it/virusviz/
http://genomic.deib.polimi.it/virusviz/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://pcingola.github.io/SnpEff/
https://github.com/cov-lineages/pangolin


i
i

“output” — 2021/1/14 — 8:34 — page 209 — #233 i
i

i
i

i
i

12.3. Visualization Support: VirusViz

Figure 12.1: VirusViz screen that compares the variants distribution of a set of italian sequences before,
during, and after summer 2020.

Figure 12.2: VirusViz screen that compares the variants distribution in Spike protein, highlighting the
presence of the A222V mutation, with different percentages before and after summer in Italy vs.
Spain.

ter_Summer" (Sept-Nov) has many more black bars than the ones named "Be-
fore_Summer" (Feb-May) or "Mid_Summer" (June-Aug). These groups have
been previously prepared by dividing the general population by the metadata
collection_date values.

Figure 12.2 shows that a specific Spike mutation, i.e., A222V, had not been
observed in Italy before summer, whereas its presence increased considerably
after. On the contrary, this mutation was already present in Spain since before
summer. This may suggest that the specific strains of SARS-CoV-2 featuring
this mutation were imported by tourists returning back to their home countries,
as observed in [181].

The public debate on possible spillovers of SARS-CoV-2 virus infection from
humans to other animals and back has heated in the last months. Two cases
are worth mentioning: the infection in the Netherlands of the minks species
Mustela Lutreola in June5 and the infection in Denmark of the minks species

5https://www.sciencemag.org/news/2020/06/coronavirus-rips-through-dutch-mink-farms-triggering-culls-
prevent-human-infections
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Figure 12.3: VirusViz screen that compares the variants distribution in the NSP3 protein, highlighting
the presence of two mutations highly present in minks, while increasing in humans possibly after the
spillover.

Figure 12.4: VirusViz screen that compares the variants distribution in the Spike protein in four tracks
corresponding to viruses collected in UK in four different periods, starting from the second half of
October, 2020 till the first half of December, 2020. The three highlighted in blue were observed since
October, while the orange ones are emerging and increasing lately.

Neovison vison in November.6 Figure 12.3 suggests that some viruses found in
humans in November acquired frequent mutations from minks, for example in
the ORF1ab protein, where two mutations at the amino acids 1244 and 1263 of
the NSP3 sub-protein increased notably their presence w.r.t. before November.

According to recent press release in major mass media,7 a new strain has
started spreading from the UK. Figure 12.4 illustrates spreading of mutations
of this new UK cluster with high transmissibility. H69-, V70-, and N501Y were
anticipated by a post on Twitter8 on December 14th, 2020, while a post on Viro-
logical9 on December 19th, 2020 uncovered several other mutations. We illus-
trate the distribution of nine such mutations on the Spike protein comparing
four time periods since October.

6https://www.aa.com.tr/en/europe/mutated-variety-of-coronavirus-found-in-danish-mink/2032390
7https://www.bbc.com/news/health-55308211
8This tweet https://twitter.com/firefoxx66/status/1338533710178775047 was posted by Emma Hodcroft who

is part of the Neher’s lab https://nextstrain.org/groups/neherlab/ncov/
9This post is by Rambaut’s group at COG-UK: https://virological.org/t/preliminary-genomic-

characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/
563/5
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12.4 Active Monitoring of SARS-CoV-2 Variations

As we observed in ViruSurf, SARS-CoV-2 sequences can be connected with
their genetic variation (defined by coordinates, size and site along the genome).
These variations may affect not only the genetic interaction of particular genes,
but also proteomic aspects (e.g., change or deletion of relevant amino acids due
to missense or frameshift mutations) that, in turn, correspond to phenotypic
behaviours (i.e., a particular deletion may attenuate the pathological pheno-
type [389] or the ability of the virus to replicate itself [225]).

At present there is no consolidated knowledge about such impacts of muta-
tions: neither of their role in increasing/decreasing pathogenicity, nor of their
correlation with viral transmission. However, a wealth of studies started be-
ing published (or just submitted as preprints) targeting on particular aspects
of the virus regarding, for example, sub-proteins of the long ORF1ab polypro-
tein [218, 363], ORF3a gene [67], as well as the widely-studied D614G muta-
tion in the spike protein [33, 213]. Some works are claiming particular effects
of amino acid variants, such as lower or higher disease severity [5], fatality
rate [288], infectivity [332], protein stability [293], sensitivity to convalescent
sera or monoclonal antibodies [231], viral transmission [370]. To each of these
mutations we link its effect, a characterization (higher, lower, or null), and the
publications that are claiming this result. Surprisingly, we found that in some
cases effects provided by papers are contrasting or different in their signifi-
cance. We are aware that such annotations should only be considered after
careful examination of the publications and evaluation of their methods. We
are considering to assign them a weight based on the relevance of the publi-
cation venue, as in this hectic times attention is given also to results that are
still under submission as preprints and low quality studies could be published
under accelerated review processes.

This collection of mutation effects is growing day by day into what we call
a Knowledge base, which from semantic annotations on single mutations is ex-
tended also to co-occurrence of mutations (it is already known that particular
pairs or triplets of variants are commonly present together in sequences [231]).

This loose integration with papers is so far manually curated, by tagging pa-
pers with a set of labels that we deem fundamental and orthogonal. However,
we will compare our terminology with the ones used in pre-existing resources,
especially community-driven efforts that are systematizing COVID-19-related
knowledge (see VODAN [270], CORD-19 [149], and CIDO [177]). We have not
considered to extract entities with natural language/ontology supported tech-
niques as this is a too hard task to be automatized yet. However, using text min-
ing on COVID-19-related literature could be doable in the future. There have
been some efforts reporting encouraging results (see worldwide challenges e.g.,
CORD-19 [373]) which could be exploited by our work.

We envision an integrative reactive system that may, for instance, put in
place a daily surveillance of consensus sequences that are published on the
sources described earlier. This system could then extract the sequence vari-
ants and compare them with a knowledge base of literature-based manually
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curated information on the impact of the mutations; by such means, it could
connect each change in the virus to the implications on its spread, properly con-
textualized using statistics on the temporal/spatial coordinates of the collected
sample and on the variant’s representativeness in the observed population.

This same paradigm could then be used to monitor the spread of the virus
also in hosts different from humans [107], as it should not be excluded that the
pandemic could turn into a panzootic [152].

Some form of watch of these variations is already put in place by GISAID,
but results are not made publicly available; bulletins from the WHO [215] only
give a static picture. Online applications – such as the COVID-19 Viral Genome
Analysis Pipeline [213], GESS [125], and coronApp [265] – provide environ-
ments to explore mutations of SARS-CoV-2. So far, in ViruSurf we only present
queries that replicate the results of research papers for demonstration purposes,
so that results deposited at given dates can be continuously checked. However,
the user still needs to drive the search while we plan to produce an automatic
monitoring mechanism that could be used in the future as a means to pro-
vide alerts to the general scientific community on the emergence of potentially
dangerous mutations in selected regions or in otherwise refined clusters of col-
lected sequences.

In addition, ViruSurf will be equipped with data warehousing tools capable
of producing continuous summarization, with expressive power ranging from
descriptive statistics to complex data mining tasks, concerned for example with
distribution of mutations over relevant locations of the virus.

We will combine database expertise with a dynamic semi-automatic learn-
ing approach to build reactive reports on sequence characteristics and distri-
bution; these will be of uttermost importance for clinics, hospitals, or triage
centers, providing them with quasi-real-time feedback to respond to relevant
clinical questions that will be either automatically generated by internal data
mining methods or provided to us by the virus research community: What are
the infection clusters? Where are isolates with specific characteristics coming from?
Which are the most common variants? What can we say on co-occurring variants?

12.5 Integrating Host-Pathogen Information

Together with virus sequences and their metadata, it is critical to integrate also
information about the related host phenotype and genotype; this is key to allow
supporting the paramount host-pathogen genotype-phenotype analyses and
the related pathogenesis [273]. In this section we briefly mention how these
crucial aspects are being investigated.

12.5.1 The Virus Genotype – Host Phenotype Connection

At the time of writing, big integration search engines are only starting to pro-
vide clinical information related to hosts of virus sequences. 2019nCoVR [397]
has currently 208 clinical records10 related to specific assemblies (as FASTA

10https://bigd.big.ac.cn/ncov/clinic
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files), including information such as the onset date, travel/contact history, clini-
cal symptoms and tests in a semi-structured format (i.e., attribute-value), where
values are free-text and not homogeneous with respect to any dictionary. GI-
SAID is also progressively adding information regarding the "patient status"
(e.g., "ICU; Serious", "Hospitalized; Stable", "Released", "Discharged") to its
records (in 5,126 out of 75,507 on August 1st, 2020).

So far this kind of effort has not been systematized. Some early findings
connecting virus sequences with the human phenotype have been already pub-
lished, but these include very small datasets (e.g., [229] with only 5 patients,
[243] with 9, [52] with 16, and [359] with 103 sequenced SARS-CoV-2 genomes).
We are not aware of big sources comprising linked phenotype data and viral
sequences, where the link connects the phenotype (or clinical aspects) of the
virus host organism to the viral genome. There is a compelling need for the
combination of phenotypes with virus sequences, so to enable more interesting
queries, e.g., concerning the impact of sequence variants. We are confident that
in the near future there will be many more studies like [52, 229, 243, 359]. Ad-
ditional comprehensive studies, linking the viral sequences of SARS-CoV-2 to
the phenotype of patients affected by COVID-19, should be encouraged.

12.5.2 The Host Genotype – Host Phenotype Connection

In addition to investigating the relationship between viral sequences and host
conditions, much larger efforts are being conducted for linking the genotype of
the human host to the COVID-19 phenotype.

COVID-19 is a multi-organ systemic disease differentially affecting humans,
and for understanding it we must primarily focus on the human host; sev-
eral studies demonstrate the influence of inherited variants or expressed genes.
Compared to viral sequences (e.g., of about 30K bases in SARS-CoV-2), the hu-
man genome is huge (3 billion bases) and several sequencing technologies sup-
port the extraction of different types of information, including variants, gene
expression, copy number alterations, epigenomic signals, contact maps, and so
on. Genomic information is collected at several open sources, including EN-
CODE, Roadmap Epigenomics, TCGA, 1000 Genomes (as described in Chap-
ter 2).

Current COVID-19 research is focusing on understanding which human
genes are mostly responsible for clinical severity, e.g., the "genetic variability
of the ACE2 receptor is one of the elements modulating virion intake and thus
disease severity" [35]. In this direction, an important proposal is the COVID-19
Host Genetics Initiative (HGI),11 aiming at bringing together the human genetics
community to generate, share and analyze data to learn the genetic determinants of
COVID-19 susceptibility, severity and outcomes.

To find important genotype-phenotype correlations, well-characterized phe-
notypes need to be ascertained in a quantitative and reproducible way [275];
also the activity of sampling from clearly defined case and control groups is
fundamental. For this reason, many efforts in the scientific community have
been dedicated to harmonizing clinical records of COVID-19 patients. We next

11https://www.covid19hg.org/
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Figure 12.5: Entity-Relationship diagram of patient phenotype for a viral disease that may lead to hos-
pitalization, such as COVID-19, linked to heterogeneous genomic information and to the sequence
of the infecting virus. Patient information is collected at admission and during the hospitalization
course, within groups: Demography, RiskFactors, Comorbidities, AdmissionSymptoms, Hospital-
izationCourse. Each patient has multiple Encounters, with Treatments, Symptoms, and LabResults.

illustrate the data dictionary we produced within the context of the COVID-19
HGI;12 it was contributed by about 50 active participants and is under continu-
ous improvement; the connected genotype data is currently being collected and
hosted by EGA [133], the European Genome-phenome Archive of EMBL-EBI.

The dictionary is illustrated by the Entity-Relationship diagram in Fig-
ure 12.5; the PATIENT phenotype information is collected at admission and
during the course of hospitalizations, hosted by a given HOSPITAL.

Attribute groups of patients (grouping about 200 clinical variables that
have been progressively consolidated and annotated) describe: DEMOG-
RAPHY&EXPOSURE, COMORBIDITIES, ADMISSIONSYMPTOMS, RISKFACTORS,
HOSPITALIZATIONCOURSE; For ease of visualization, attributes are clustered
within attribute groups, indicated with white squares instead of black circles.13

For instance, COMORBIDITIES include the subgroups ImmuneSystem, Respira-
tory, GenitoUrinary, CardioVascular, Neurological, Cancer; for brevity, these are
not further expanded into specific attributes. Each patient is characterized
by multiple ENCOUNTERS; attribute groups of encounters describe ENCOUN-
TERSYMPTOMS, TREATMENTS, and LABORATORYRESULTS. The patient is con-
nected to her human genome information (e.g., single nucleotide variations).

Researchers can extract the patient phenotype and differentiate cases and
controls in a number of ways. For example, one analysis performed within the
COVID-19 HGI will discriminate between mild, severe or critical COVID-19

12The COVID-19 Host Genetics initiative Data Dictionary is available at http://gmql.eu/phenotype/. The FREEZE
1 version was released on April 16th, 2020 and the FREEZE 2 version on August 16th, 2020.

13Note that the dictionary representation deviates from a classic Entity-Relationship diagram as some attribute
groups would typically deserve the role of entity; however, this simple format allows an easy mapping of the dic-
tionary to questionnaires and an implementation by EGA in the form of spreadsheet.

214

http://gmql.eu/phenotype/


i
i

“output” — 2021/1/14 — 8:34 — page 215 — #239 i
i

i
i

i
i
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disease severity, based on a set of ENCOUNTERSYMPTOMPS and HOSPITALIZA-
TIONCOURSE conditions; another analysis will distinguish cases and controls
based on COMORBIDITIES and ADMISSIONSYMPTOMS.

Many other efforts to systematize clinical data collection and harmoniza-
tion are proposed by international organizations (e.g., WHO [381]), national
projects (e.g., AllOfUs [92]), or private companies (e.g., 23AndMe14).

In these recent months, a number of studies are concerned with associations
of human genetic variants with severe COVID-19 [70]. Genome Wide Asso-
ciation Studies are being conducted massively, in the attempt to find genetic
determinants of COVID-19 severity in specific human genes: a recent study
published in the New England Journal of Medicine [121] analyzed the genetic
data of almost 2,000 Italian and Spanish patients in Italy and Spain with severe
respiratory failure due to COVID-19. The authors of the study found that in
the ABO gene, a marker identifying type A blood was statistically linked to
severe COVID-19; by further dividing patients by blood type, they observed
that people with type A blood are more likely to have a severe course with
COVID-19 than people with type O blood. An interesting preprint paper [392]
(not peer-reviewed yet) reports that the risk factors found in [121] is located
in an area of chromosome 3 inherited from Neanderthals; note that this could
explain statistical differences pointing to population groups (European, Asian)
that are hit harder by COVID-19 than others. UK Biobank15 is playing a very
active role in the research to fight COVID-19, as proved by their letters to the
Editors of Primary Care Diabetes [386] (relating to illness severity lifestyle fac-
tors such as obesity, associated with impaired pulmonary functions) and of the
Journals of Gerontology [217] (reporting on ApoE e4e4 genotype being asso-
ciated with COVID-19 test positivity). Another study [241] (still in preprint)
analyzed the genetic variation between the genomes of 180 people – dead be-
cause of COVID-19 – compared to a control group (1000 people); they found
that non-common mutations (in less than 1% of the population) in 4 genes, i.e.,
BRF2/ERAP2/TMEM181/ALOXE3, were statistically significant in the people
who died compared with controls. Other studies are trying to understand the
genetic variants associated with the disease by considering sex-related genetic
differences [297, 366].

Vision. Note that Figure 12.5 illustrates the possibility of connecting each pa-
tient also to the viral sequence of the SARS-CoV-2 virus (of which she is the
host organism providing the HOSTSAMPLE in the previously presented Viral
Conceptual Model, in Figure 9.1). In general, there is a strong need to connect
human genotype, human phenotype and viral genotype, so as to build a com-
plete and fully encompassing scenario for data analysis. For now, very few
works relate the three systems of viral genomics, host genotype and phenotype
in recent literature. An interesting approach to study the interactome of viruses
with their host is proposed in [267]. A number of works are instead reviewing
host-pathogen interactions in SARS and SARS-CoV-2 mainly on experimental

14https://www.23andme.com/
15https://www.ukbiobank.ac.uk/
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animals [79, 334], but we are not aware of similar works on humans.
When the three systems will be connected, we will be able to generate ser-

vices to hospitals for associating patients or patient groups with reports indi-
cating the most significant information about isolated viruses from a clinical
perspective, also considering the patient genetic characteristics.
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CHAPTER13
Conclusions and Vision

“I am still learning.” — Michelangelo di Lodovico Buonarroti Simoni

Thousands of new experimental genomic datasets are becoming available ev-
ery day; in many cases they are produced within the scope of large cooperative
efforts, involving a variety of laboratories and world-wide consortia, who are
important enablers of biological research as they in general share these datasets
openly for public use. Moreover, all experimental datasets leading to publica-
tions in genomics must be deposited to public repositories and made available
to the research community. Thus, the potential collective amount of available
information is huge; these datasets are typically used by biologists for validat-
ing or enriching their experiments; their content is documented by metadata.

However, the effective combination of such public sources is hindered by
data heterogeneity, as the datasets exhibit a wide variety of notations, proto-
cols, and formats, concerning experimental values and, especially, metadata,
which are not homogenized across the sources and are often unstructured and
incomplete. Thus, data integration is becoming a fundamental activity, to be
performed prior to data analysis and biological knowledge discovery, consist-
ing of subsequent steps of data extraction, normalization, matching, enrich-
ment, reconciliation, and fusion; once applied to heterogeneous data sources,
it builds multiple perspectives over the genome, leading to the identification
of meaningful relationships that could not be perceived by using incompatible
data formats. As a consequence to the underlying data disorganization, access
datasets at each distinct repository becomes problematic, with heterogeneous
search interfaces, not interoperable and often with limited capabilities.

Similar issues have been observed in the last months, immediately preced-
ing the submission of this thesis. When COVID-19 hit, the world was unpre-

219



i
i

“output” — 2021/1/14 — 8:34 — page 220 — #244 i
i

i
i

i
i

Chapter 13. Conclusions and Vision

pared. Scientists had to fill in, under pressure, information about the virus
(how it spreads, how much it is contagious, how/when to test for it in human
hosts), the disease (which organs are affected, how to care of it – it has been
long interpreted as a respiratory disease while now we consider it mostly as
a vascular one, with long-term effects largely still unknown). The world was
flooded by huge amounts of information, often unstructured, from which it is
hard to extract and maintain solid knowledge.

13.1 Summary of Thesis Contributions

In the first part of this thesis, we have analyzed and proposed solutions for the
domain of Human Genomics Data.

• In Chapter 2 we have described the panorama of genomic actors that play
an important role in production and integration of data, usually providing
interfaces to allow domain researchers to download and use such data for
analysis; our own system has been already put in perspective of a precisely
described dynamic environment that includes consortia, independent ini-
tiatives, academic and research – public or private – institutions.

• In Chapter 3 we have stressed the need for a unifying data model and a
structured proposal for metadata organization (the Genomic Conceptual
Model), that also allows to take into consideration the semantics of data
descriptions; we have thus proposed a general conceptual model to drive
integration of heterogeneous datasets of many genomic signals described
by their metadata.

• In Chapter 4 we have described a full integration pipeline that starts from
the extraction of controlled partitions of content from origin genomic data
sources, transforms formats and cleans metadata keys into a uniform sim-
ple model, imports the metadata into a relational representation driven by
the Genomic Conceptual Model and connects the stored values to special-
ized ontological knowledge, which is well-recognized in the genomics and
biomedical domains.

• In Chapter 5 we have shown the product realized by the application of the
previously overviewed pipeline: the META-BASE repository contains sev-
eral datasets of important genomic sources, fully interoperable both at the
level of region data and of metadata, which are enriched with many lev-
els of ontological expansion. Specific efforts dedicated to the most critical
sources are also explained.

• In Chapter 6 we have described the features of semantic search targeted
to the specific domain of genomic data; we have then proposed interfaces
that allow such augmented search experience. Users can access all the
datasets of our repository by choosing metadata from easy-to-use drop-
down menus that report dynamically the number of genomic region data
files available for given selected characteristics.

• In Chapter 7 we have hinted at future directions initiated by this the-
sis’ work: i) inclusion of new data sources and types; ii) introduction of
quality-aware metrics to evaluate our integration and search process; iii)
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adoption of community-driven interoperability practices; iv) extension of
GeCo tools through the support of a conversational agent; v) creation of a
repository of best practices of data extraction and analysis in the form of a
publicly available marketplace service.

We here summarize the main threats to wide adoption of the work presented
in this first part. These points should be complemented with the content of the
’Theoretical rationale’ provided in Section 4.1 for an introduction to our mod-
eling and integration choices, which are to be considered assumptions upon
which this thesis builds its contribution.

• Granularity. The Genomic Conceptual Model and the integration pipeline
include few attributes, which do not allow to capture specific aspects
of given sources (such as Cancer Genomics clinical metadata in TCGA).
However, we point out that GCM purposefully contains a restricted num-
ber of metadata, as they are the only ones shared by most data sources.
Other source-specific (or area-specific) attributes are instead stored as key-
value pairs, easily reachable through the interface search engine. In the
future, we do not exclude to use other sub-models that represent specific
areas of interest connected to the central GCM (performing some sort of
area-driven integration).

• Generality. As an abstract idea, the model we proposed applies to ge-
nomic datasets including processed data belonging to donors of any an-
imal species. However, in practice it is easily applicable to human ge-
nomics, while it needs further tuning and addition of attributes for other
species (as demonstrated by the need of a new conceptual model for viral
sequences). In the future, we may consider integration with more general
models (as suggested in [142]).

• Offline process. The low-level integration performed by our process could
be criticized bringing the argument that our application domain includes
many resources that change almost on a daily basis, both in their schemata
and in their values. Records soon become deprecated, or are updated
without holding a proper tag/date to inform our integration process. In
the community many works are addressing similar problems with on-the-
fly approaches, as we hinted in Chapter 7. However, we debate that an
offline process like ours holds the considerable advantage of building a
stable resources of datasets that, at a certain timestamp, are homogeneous
and can be employed seamlessly together for analysis. Our pipelines al-
low for periodical update of the repository content that can be done in a
modular way, such that failed executions can be repeated only on the spe-
cific modules that caused problems (usually due to unexpected changes in
the sources).

• Scalability. Our integration process requires a considerable manual work
prior to inclusion of a new data source (specifically for the phases of down-
load, transformation, cleaning and mapping). This hinders scalability
but only in terms of adding new sources and data types; instead, ones
the modules are developed, datasets can be updated (potentially includ-
ing more and more files) very often and changes are only required when
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sources renovate consistently.
• Reliability of results. As briefly discussed in Chapter 4, our pipeline pro-

duces a lossless integration. Once a specific partition of interest is defined
over the source, our download process, followed by transformation, clean-
ing and mapping, does not loose information, while it represents it in a
more suitable form for subsequent use.

• Reliability of values. We do not address quality problems in the data (as
done instead in [290]). This limit will be addressed as a future work of this
thesis, currently hinted in Chapter 7, by considering quality checks and
improvements that can be performed directly while integrating datasets.

In the second part of this thesis, we have analyzed and proposed solutions for
the domain of Viral Sequence Data, produced in a timely manner to quickly
contribute to the general call to arms to the scientific community, made neces-
sary by the COVID-19 pandemic:

• In Chapter 8 we have reviewed the data integration efforts required for
accessing and searching genome sequences and metadata of SARS-CoV-
2, the virus responsible for the COVID-19 disease, which have been de-
posited into the most important repositories of viral sequences.

• In Chapter 9 we have presented the Viral Conceptual Model, centered on
the virus sequence and described from four dimensions: biological (virus
type and hosts/sample), analytical (annotations, nucleotide and amino
acid variants), organizational (sequencing project) and technical (experi-
mental technology).

• In Chapter 10 we have detailed the integration pipeline that feeds our
ViruBase, a large public database of viral sequences and integrated/cu-
rated metadata from heterogeneous sources (RefSeq, GenBank, COG-
UK, NMDC, and GISAID), which also exposes computed nucleotide and
amino acid variants, called from original sequences. Given the current
pandemic outbreak, SARS-CoV-2 data are collected from the four sources;
but ViruSurf contains other virus species harmful to humans, including
SARS-CoV, MERS-CoV, Ebola, and Dengue.

• In Chapter 11 we have shown the web interface realized to enable express-
ing complex search queries in a simple way; arbitrary queries can freely
combine conditions on attributes from the four dimensions, extracting the
resulting sequences. Effective search over large and curated sequence data
may enable faster responses to future threats that could arise from new
viruses.

• In Chapter 12 we have hinted at ongoing and future directions suggested
by this second part of the thesis: i) a systematization of our requirement
elicitation process with virologists; ii) schema and content extensions of
ViruSurf; the provision of visualization support for variants analysis with
VirusViz; iii) the design of a monitoring mechanism for notable (groups of)
variants, based on a semantic knowledge base that predicates on their ef-
fects; iv) the integration of genomic and phenotype information regarding
the host of the viral disease.
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The main threats to wide adoption of the presented work are:

• ER semantics. We are aware that our ER diagram representation for Viral
Data is atypical with respect to conceptual modeling best practices: some
properties have been assigned to a host sample, while conceptually they
belong to a host species. Authors, publication data are properties of a bibli-
ographic entry rather than of a sequencing project. However, the purpose
of the proposed ER model is to facilitate the retrieval of data from practical
web interfaces, thus we aim to keep dimensions and schema complexity to
a minimum. Our proposal is a starting point that is undergoing changes
day by day, as we develop data structures to contain physical data; we
already applied many changes following received suggestions.

• Lack of visual support. ViruSurf still lacks data summarization indicators
and graphical representation of data’s most relevant aspects (e.g., number
of variants in sequences by time and space). We are working towards the
addition of such features, as indicated in Chapter 12.

• Lack of connection with relevant information. At the moment, ViruSurf infor-
mation on variants can only be connected to coarse-grained information
on time and space and some quality measure. More interesting queries
concerning the status of the infected patient or her habits, social back-
ground, etc. cannot be asked. This limitation comes from the external
context: unfortunately linked data to enable such inferences is missing in
open source databases.

13.2 Achievements within GeCo Project

The work presented in this thesis has been included in the achievements of the
ERC AdG GeCo Project, covering an entire Working Package and setting the
basis for future developments. The full GeCo platform, under development
since 2015, is fully dedicated to tertiary data analysis. It now comprises two
main components: the data repository we have described, which integrates
heterogeneous genomic and epigenomic data from various public sources and
the GenoMetric Query Language, to perform complex queries on such data. A
bird’s-eye view of GeCo components is presented in Figure 13.1.

In discontinuity with the common practice of accessing many different data
sources interfaces, with a variety of access modes, download protocols and
terminologies, GenoSurf [63] offers to bioinformaticians (and more in gen-
eral experts of biology/genomics domain) a unique entry-point to the META-
BASE repository (containing datasets organized by using the Genomic Data
Model [259], which couples the outcome of a biological experiment with clin-
ical and biological information of the studied sample). A portion of the meta-
data, which has been identified to be the most valuable and frequently used,
has further been modeled using a relational schema, namely the Genomic Con-
ceptual Model [44], and stored in a relational relational database. Open data
are retrieved from different sources by using the data integration pipeline of
META-BASE, described in [40]. Our repository can be accessed also by the
Genometric Query Language system [258]), so that genomic data can be ana-
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Figure 13.1: Bird’s eye view of the GeCo platform

lyzed using a high-level language for querying genomic datasets; this part is
not discussed in this thesis.

As observed in the review Section 2.3, among the integrators currently avail-
able in the lanscape of genomic players, the GeCo approach is the only one
that joins together a broad range of genomic data, which spans from epige-
nomics to all data types typical of cancer genomics (e.g., mutation, variation,
expression, etc.), until annotations, including all the integration steps for data
and metadata that follow genomic secondary analysis. The META-BASE ap-
proach is independent from specific sub-branches of genomics and can be ap-
plied to a large number of heterogeneous sources by any integration designer,
in a-posteriori fashion, i.e., without having to follow any guidelines in the pre-
liminary production of metadata.

13.3 Outlook

After concentrating on human genomics for several years, we have now moved
to a new and broader perspective, which includes also pathogens data such
as viruses. A viral disease is a complex system including the virus’s and the
host’s genotype and phenotype. The databases for each of these systems are
so far curated by different communities of scientists; links connecting a patient
to its phenotype and viral sequence are normally missing. Short summaries
of the clinical story may be hosted as metadata of the genomic and viral data
sources, e.g., TCGA (The Cancer Genome Atlas) includes selected variables de-
scribing the tumor’s course, and viral sequences deposited in GISAID recently
started to include variables describing the clinical status of the donor. When
links exist, each patient is typically linked to her genetic profile and to her sin-
gle virus sequence, yielding at most to one-to-one relationships between the
corresponding databases, as described in Figure 13.2. However, genome evo-
lution can be traced, as it happens for tumors, and longitudinal studies of viral
sequences start to emerge for COVID-19, showing how the virus mutates when
repeatedly sampled from the same human [323]. Therefore, the clinical course
of a patient should be linked to multiple sequencing events of both the human
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Figure 13.2: Schema of patient phenotype for a viral disease linked to heterogeneous genomic informa-
tion and to the sequence of the infecting virus, bridging Part I and Part II of this thesis.

genome and the virus. Possibly, also geopolitical and social data may be linked,
exploiting the connection with the information referring to the location where
the viral sample was collected.

We are in the unique position of having strong experience on the three sys-
tems, as we developed both GenoSurf (Chapter 6) and ViruSurf (Chapter 11),
resulting from recent reviews of available data sources in the respective do-
mains (Chapters 2 and 8); within the COVID-19 Host Genetics Initiative,1 we
coordinated about 50 clinicians for cooperatively designing COVID-19’s pa-
tient phenotype, by curating the format for submitting the clinical/phenotype
data, illustrated in Figure 13.2.

We will work on building the missing links between databases, either ex-
plicitly collected or learned through sound computational methods. With such
connections available, viral mutations could be linked to specific organs or to
global severity (e.g., requiring intensive care) and be seen as an aspect of clini-
cal practice.

It is quite possible, according to [246], that infections by emerging viral pop-
ulations will lead to more severe and/or longer-lasting symptoms, as it has
been suggested for other viruses. While some ongoing studies connect human
genetics to COVID-19 (e.g., [35]), few studies so far connect COVID-19 to the
viral sequence, each with very few patients (e.g., [52,229]); studies encompass-
ing combinations of variables from the three systems have not been performed
yet. We conclude this thesis by proposing a long term vision: better linking
among databases (and, correspondingly, improved communication between specialists
in the various disciplines) will help us in better understanding infectious diseases and
empowering a richer precision medicine. For example, it has been studied that the
co-occurrence of certain lab-generated mutations modifies the antigenicity of
the SARS-CoV-2 virus, therefore its sensitivity to specific neutralizing mono-
clonal antibodies [231]. This kind of knowledge, when properly structured and
applied in a hospital context dealing with COVID-19 patients, can practically
inform treatment decisions of clinicians on given sets of patients, of which ei-
ther the clinical profile or the infecting viral strain is known.

Figure 13.3 attempts to visualize a possible future architecture: we will need
to adapt GenoSurf to become more supportive of viral research, so as to cre-

1https://www.covid19hg.org/
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Figure 13.3: Vision of main data sources and data receiving/processing steps yielding to the project’s
main results: ViruSurf, GenoSurf, and ClinSurf, and the impact knowledge base.

ate a COVID-19 specific section of the system; we will use ViruSurf with its
enhanced functionalities and we will also produce a large database of clinical
cases, inspectable through a web-based interface (provisionally named Clin-
Surf), allowing access to those clinical cases that are linked to viral sequences
and to genomic signals. We will also continuously feed a knowledge base about
the impact of these features upon COVID-19 phenotype. We can easily link
new viral mutations to all deposited sequences, e.g. by searching along time
and space. We could then provide big data-driven services, based on a large
curated repository of viral sequences so far available, giving real-time insights
into the spread of SARS-CoV-2 and how it affects the COVID-19 disease, possi-
bly driving therapeutic strategies.
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APPENDIXA
META-BASE tool configuration

A.1 User Manual

META-BASE, described in Chapter 4 is a software architecture implemented in Scala,1 available open-
source at https://github.com/DEIB-GECO/Metadata-Manager/. Assuming that the compiled code is in
the executable Metadata-Manager.jar, running the sotware requires invoking the following line from the
command line:

java -jar Metadata-Manager.jar <configuration_xml_path> <gmql_conf_folder>

where:

• configuration_xml_path is the location of the configuration file;
• gmql_conf_folder contains the path to the folder with corresponding variables to start GMQL-

Repository service.

Optional following arguments are:

• log: shows the number of executions already performed and stored in the database;
• log -n: shows the statistical summary for the n-th run—multiple runs can be requested at the same

time by separating them with comma;
• retry: Metadata-Manager tries to download the files whose download has failed in previous runs.

Inside the project, we also provide another small tool, i.e., the Rule Base Generator (described in Sec-
tion 4.5, which can be run with the following command:

java -cp Metadata-Manager.jar it.polimi.genomics.metadata.cleaner.RuleBaseGenerator
<transformed_files_directory> <rules_file> <key_files_directory>

where:

• transformed_files_directory is the folder of the transformed files;
• rules_file is the file that contains the Rule Base;
• key_files_directory contains the seen keys, all keys and unseen keys files.

1https://www.scala-lang.org/
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Appendix A. META-BASE tool configuration

<Downloader> Download query parameters
List of file filters
Dataset name
Downloaded files output path

<Transformer> File selection parameters
Input format
Downloaded files input path
Transformed files output path

<Cleaner> Cleaning rules file path
Transformed files input path
Cleaned files output path

<Mapper> Mapping rules file path (see Section A.3)
Cleaned files input path
Relational database connection
Flag for importing or excluding key-value pairs metadata

<Enricher> Relational database connection
Ontology search service
Specific API keys for external services calls, when required
Preferred ontologies for annotation
Match score threshold fort values annotation
Depth of considered ancestors/decendants in ontology (e.g., three is the default)

<Checker> Relational database connection
Integrity rules file path

<Flattener> Relational database connection
Flattened files output path
Dataset name
Separation characters
Prefix for new attributes resulting from flattening

Table A.1: Configurable parts of the framework, which can be changed in the settings.

A.2 Process Configuration

Metadata-Manager is designed to receive a configuration XML file with the needed parameters to prepare
all its steps: downloading, transforming, cleaning, mapping, enriching, checking, flattening and loading.
The inputs required to run each step are summarized in Table A.1; they can be run alltogether in a single
sequential workflow or one at a time.

An XML Schema Definition (XSD) schema file is designed to validate configuration XML files used as
input to the tool. The schema is organized in a tree structure, starting from a root node where general set-
tings and a list of sources are stored; sources represent NGS data providers which provide those genomic
data and experimental metadata divided in datasets (examples are ENCODE, TCGA, GDC, Roadmap
Epigenomics). Each source contains, in turn, a list of datasets. After processing, each dataset represents
a GDM dataset where every sample has a region data file and a corresponding metadata file; moreover
every sample share the same region data schema.

In Figure A.1 we show the details of the three levels of the schema. Note that we allow
for enabling/disabling each step of the process at different granularity. E.g., the XML element
downloader_enabled is present at the level of the entire repositories (i.e., for all sources), at the level
of a single source (i.e., for all the datasets from that origin), and at the level of a single dataset (i.e., the
smallest organizational unit in this project).

First level elements. root contains general settings and a list for sources to import. It contains:

• settings:

– base_working_directory: folder used to save downloaded, transformed, cleaned and flat-
tened files;

– download_enabled, ..., load_enabled: flags used to enable separate steps of the overall pro-
cess;

– parallel_execution flag to enable execution with single thread processing or multi-thread
processing.

• source_list: collection of sources to be imported.

Second level elements. source: represents an NGS data source, contains basic information for the process:

• name: use as an identifier of the source;
• url: base endpoint of the source;
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A.3. Mapper Configuration

root settings base_working_directory (string)
gcm_config_file (string)

download_enabled (boolean)
transform_enabled (boolean)

mapper_enabled (boolean)

enricher_enabled (boolean)
checker_enabled (boolean)

load_enabled (boolean)
flattener_enabled (boolean)

cleaner_enabled (boolean)

parallel_execution (boolean)

source_list source

name (string)
url (string)

source_working_directory (string)
downloader (string)

loader (string)
downloader_enabled (boolean)

load_enabled (boolean)

parameter_list

dataset_list

…

parameter

dataset

transformer (string)

name (string)
dataset_working_directory (string)

schema_url (string)
schema_location(string)

load_enabled (boolean)
parameter_list

…download_enabled (boolean)

Figure A.1: First level (root), second level (source), and third level (dataset) of the XML configuration
XSD.

• source_working_directory: sub-directory for processing the source’s files;
• downloader, transformer, loader: indicate the specific classes to be used to perform respectively

downloading, transforming and loading;
• download_enabled, ..., load_enabled: flags used to enable separate steps of the overall process for

a specific source;
• parameter_list: collection of parameters regarding different steps of the process; example param-

eters include metadata separation characters, sub-parts of URLs to download the list of files, filters
for non-relevant or wrong files, extensions of produced files, location of Rule Base for Cleaning step
and location of Mappings Base for Mapping step;

• dataset_list: collection of datasets to import from the source.

Third level elements. A dataset represents a set of samples that share the same region data schema and the
same types of experimental or clinical metadata. It is parametrized by:

• name: identifier for the dataset.
• dataset_working_directory sub-folder where the download and transformation of the dataset is

performed;
• schema_url location of the dataset-specific schema file;
• schema_location: indicates whether the schema is located in FTP, HTTP or LOCAL destination;
• download_enabled, ..., load_enabled flags used to enable separate steps of the overall process for a

specific dataset;
• parameter_list list of dataset specific parameters. Each parameter defines specific information

using the quadruple 〈key, value,
• description, type〉; example parameters are used to specify loading name and description for the

dataset, the source URL to retrieve the files do be included in the dataset.

Note that newer modules can be added to configurations and different parameters could emerge in the
future as addition of other sources and datasets to the project is ongoing.

A.3 Mapper Configuration

The mappings used in the Mapper step are stored in a separate XML file, whose XSD schema is represented
in Figure A.2. These create a mapping rule between a source cleaned keys (i.e., produced during the
Cleaner phase) and attributes of the global schema (i.e., the GCM).

The first level contains a number of table elements, one for each entity in the GCM, which is iden-
tified by the name attribute and contains an arbitrary number of mapping elements, i.e., a single map-
ping between a row in the source file (source_key) and the corresponding attribute of the GCM table
(global_key). A mapping can be of different kinds, as specified by the method. Whenthe method is not
specified, the default choice is a direct copy of the source key into the set GCM attribute value.

Available alternatives include "MANUAL" (i.e., a user-defined fixed value); "CONCAT" (which al-
lows to concatenate multiple source key values), "CHECKPREC" (to define a second choice source key, in
case the first corresponds to a null value), "REMOVE" (to remove a string from the value corresponding
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Appendix A. META-BASE tool configuration

Figure A.2: Schema of configuration XSD for mapping settings.

to the source key), "SUB" (to replace an existing string with an alternative one), "UPPERCASE/LOWER-
CASE" (which transform the case of the input). These methods can be composed and used together
on a same mapping by using a dash character. For example, to concatenate uppercase words after,
the user can write: metod = "CONCAT-UPPERCASE". Depending on the method choice, other attributes
may be required to further define the behavior of the function (CONCAT_CHARACTER for concatenation;
SUB_CHARACTER, NEW_CHARACTER, and REM_CHARACTER for specifying replacements).
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APPENDIXB
Experimental setup GEO metadata extraction

This short appendix complements the description of the experiments setup reported in Section 5.3, where
we designed three experiments to validate our proposal. Experiment 1 and 2 allow to compare per-
formances of the three analyzed models on two different datasets: Cistrome (with input from GEO) and
ENCODE (with input both from GEO and ENCODE itself). Experiment 3, instead, tested the performance
of the best proposed model on randomly chosen instances from GEO.

The Transformer library from HuggingFace was used for the GPT-2 model, while the SimpleTrans-
formers library;1 was used for the RoBERTa model. The LSTM encoder-decoder was built with Tensor-
flow [2] version 2.1 using the Keras API. For the LSTM model, we performed the tokenization process
using the default Keras tokenizer, setting the API parameters to convert all characters into lower case,
using empty space as a word separator, and disabling character-level tokenization. We added a space be-
fore and after the following characters: opening/closing parenthesis, dashes, and underscores.2 We also
removed equal signs. For the LSTM models, the resulting vocabulary had a size of 36,107 for Experiment
1 and 17,880 for Experiment 2.

RoBERTa and GPT-2 were trained using a Tesla P100-PCIE-16GB GPU, while the LSTM model was
trained on Google Colaboratory3 with GPU accelerator. Table B.1 lists the configurations for the systems.
All models were subject to early stopping method to avoid over-fitting.

Model Batch size Loss function Tokenizer Optimizer LR beta_1 beta_2 epsilon
RoBERTa 10 Cross Entropy BPE Adam 2e-4 0.9 0.999 1e-6
LSTM 64 Sparse Cross Entropy keras Adam 1e-3 0.9 0.999 1e-7
GPT-2 5 Cross Entropy BPE Adam 1e-3 0.9 0.999 1e-6

Table B.1: Setup of the three different models for each experiment. BPE = Byte Pair Encoding; LR =
learning rate
For Experiment 1 and 2, data was split into training set (80%), validation set (10%) and test set (10%).

Some text cleaning and padding processes were adopted: Encoder-Decoder requires input-output pairs
that are padded to the maximum length of concatenation of input and output; GPT-2 requires single
sentences that are padded to a maximum length of 500 characters. We excluded sentences exceeding the
maximum length.

1https://github.com/huggingface/transformers https://github.com/ThilinaRajapakse/simpletransformers
2Pre-processing was motivated by the fact that important character ngrams often appear in sequences separated by

special characters, e.g., “RH_RRE2_14028”.
3https://colab.research.google.com/
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APPENDIXC
Mappings of viral sources attributes into ViruSurf
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Appendix C. Mappings of viral sources attributes into ViruSurf

ViruSurf NCBI Nuccore NCBI Virus HTML

Sequence.AccessionId INSDSeq_accession-version Accession
Sequence.AlternativeAccession × ×
Sequence.StrainName INSDQualifier_value/isolate GenBank_Title
Sequence.IsReference INSDKeyword ×
Sequence.IsComplete INSDSeq_definition Nuc_Completeness
Sequence.Strand X ×
Sequence.Length INSDSeq_length Length
Sequence.GC% X ×
Sequence.N% X ×
Sequence.Clade × ×
Sequence.Lineage × ×
Virus.TaxonomyID X ×
Virus.TaxonomyName INSDSeq_organism GenBank_Title
Virus.Species X Species
Virus.Genus X Genus
Virus.Subfamily X ×
Virus.Family X Family
Virus.EquivalentList X ×
Virus.MoleculeType INSDSeq_moltype ×
Virus.SingleStranded INSDSeq_strandedness ×
Virus.PositiveStranded X ×
HostSample.TaxonomyID X ×
HostSample.TaxonomyName INSDQualifier_value/host Host
HostSample.CollectionDate INSDQualifier_value/collection_date Collection_Date
HostSample.IsolationSource INSDQualifier_value/isolation_source Isolation_Source
HostSample.Originating Lab × ×
HostSample.GeoGroup X ×
HostSample.Country INSDQualifier_value/country Geo_Location
HostSample.Region INSDQualifier_value/country Geo_Location
HostSample.Age INSDQualifier_value/host ×
HostSample.Gender INSDQualifier_value/host ×
ExperimentType.SequencingTechnology INSDSeq_comment/Sequencing Technology ×
ExperimentType.AssemblyMethod INSDSeq_comment/Assembly Method ×
ExperimentType.Coverage INSDSeq_comment/Coverage ×
SequencingProject.SubmissionDate INSDReference_title/Direct Submission ×
SequencingProject.SequencingLab INSDReference_title/Direct Submission ×
SequencingProject.DatabaseSource X Sequence_Type
SequencingProject.BioprojectId INSDXref_id/BioProject ×

Table C.1: Mappings between variables of ViruSurf and variables of NCBI direct sources (API Nuccore
https://www.ncbi.nlm.nih.gov/books/NBK25497/ and HTML interface https://www.ncbi.
nlm.nih.gov/labs/virus/vssi/#/virus). For NCBI we specify both the terminology used in
the xml/json export files and the one used in their interfaces. In each cell we specify the mapped
field, or Xif that field is calculated by our pipelines (for example most information about the Virus
are computed using the NCBI Taxonomy services), or × when that information is not available.
Sometimes we report the double values (e.g., INSDCQualifier/host), this notation indicates that the
same information is available under two different elements.
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ViruSurf COG-UK metadata csv

Sequence.AccessionId sequence_name
Sequence.AlternativeAccession ×
Sequence.StrainName sequence_name
Sequence.IsReference X
Sequence.IsComplete X
Sequence.Strand X
Sequence.Length X
Sequence.GC% X
Sequence.N% X
Sequence.Clade ×
Sequence.Lineage lineage

Virus.TaxonomyID X
Virus.TaxonomyName X
Virus.Species X
Virus.Genus X
Virus.Subfamily X
Virus.Family X
Virus.EquivalentList X
Virus.MoleculeType X
Virus.SingleStranded X
Virus.PositiveStranded X

HostSample.TaxonomyID X
HostSample.TaxonomyName X
HostSample.CollectionDate sample_date
HostSample.IsolationSource ×
HostSample.Originating Lab ×
HostSample.GeoGroup X
HostSample.Country country
HostSample.Region adm1
HostSample.Age ×
HostSample.Gender ×
ExperimentType.SequencingTechnology ×
ExperimentType.AssemblyMethod ×
ExperimentType.Coverage ×
SequencingProject.SubmissionDate ×
SequencingProject.SequencingLab ×
SequencingProject.DatabaseSource X
SequencingProject.BioprojectId ×

Table C.2: Mappings between variables of ViruSurf and of COG-UK metadata file, provided in CSV
format on their web page (https://www.cogconsortium.uk/data/). The notation used is the
same as for Table C.1
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Appendix C. Mappings of viral sources attributes into ViruSurf

ViruSurf NMDC json NMDC HTML

Sequence.AccessionId seqName NMDC Accession
Sequence.AlternativeAccession gisaid Gisa Id
Sequence.StrainName isolate Isolation Strain
Sequence.IsReference X ×
Sequence.IsComplete X ×
Sequence.Strand X ×
Sequence.Length glength/X Length/X
Sequence.GC% X ×
Sequence.N% X ×
Sequence.Clade × ×
Sequence.Lineage × ×
Virus.TaxonomyID X ×
Virus.TaxonomyName spciesname Organism
Virus.Species X ×
Virus.Genus X ×
Virus.Subfamily X ×
Virus.Family X ×
Virus.EquivalentList X ×
Virus.MoleculeType X ×
Virus.SingleStranded X ×
Virus.PositiveStranded X ×
HostSample.TaxonomyID X ×
HostSample.TaxonomyName host Host
HostSample.CollectionDate collectionDateFormat Collection Date
HostSample.IsolationSource isolationSource Isolate Name
HostSample.Originating Lab samplingPlace Sampling Place
HostSample.GeoGroup X/Country Country
HostSample.Country country Country
HostSample.Region country Country
HostSample.Age × ×
HostSample.Gender × ×
ExperimentType.SequencingTechnology sequencingMethods Sequencing Methods
ExperimentType.AssemblyMethod jointMethods Joint Methods
ExperimentType.Coverage × ×
SequencingProject.SubmissionDate submitDateFormat ×
SequencingProject.SequencingLab dept Organization
SequencingProject.DatabaseSource X ×
SequencingProject.BioprojectId × ×

Table C.3: Mappings between variables of ViruSurf and of NMDC metadata file, provided in JSON
and HTML format on their Web page (http://nmdc.cn/nCov/globalgenesequence/detail/, followed by
the sequence id, e.g., “NMDC60013002-07”). The notation used is the same as for Table C.1. Some-
times we report the double values (e.g., glength/X), this notation indicates that when information is
missing in the input file, it is computed by our pipeline.
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ViruSurf EpiCoV export json EpiCoV HTML

Sequence.AccessionId covv_accession_id Accession ID
Sequence.AlternativeAccession × ×
Sequence.StrainName covv_virus_name Virus name
Sequence.IsReference is_reference ×
Sequence.IsComplete is_complete Complete
Sequence.Strand covv_strand ×
Sequence.Length sequence_length Length
Sequence.GC% gc_content ×
Sequence.N% n_content ×
Sequence.Clade covv_clade Lineage (GISAID Clade)
Sequence.Lineage covv_lineage Lineage (GISAID Clade)

Virus.TaxonomyID X X
Virus.TaxonomyName X ×
Virus.Species X ×
Virus.Genus covv_type Type
Virus.Subfamily X ×
Virus.Family X ×
Virus.EquivalentList X ×
Virus.MoleculeType X ×
Virus.SingleStranded X ×
Virus.PositiveStranded X ×
HostSample.TaxonomyID X ×
HostSample.TaxonomyName covv_host Host
HostSample.CollectionDate covv_collection_date Collection date
HostSample.IsolationSource covv_specimen Specimen source
HostSample.Originating Lab covv_orig_lab Originating lab, Address
HostSample.GeoGroup covv_location
HostSample.Country covv_location
HostSample.Region covv_location Location
HostSample.Age × Patient age
HostSample.Gender × Gender

ExperimentType.SequencingTechnology × Sequencing Technology
ExperimentType.AssemblyMethod × Assembly method
ExperimentType.Coverage × Coverage

SequencingProject.SubmissionDate covv_subm_date Submission date
SequencingProject.SequencingLab covv_subm_lab Submitting lab, Address
SequencingProject.DatabaseSource X ×
SequencingProject.BioprojectId × ×

Table C.4: Mappings between variables of ViruSurf and of GISAID metadata file, provided in JSON
(as an export file prepared for ViruSurf ad-hoc) and HTML format on GISAID portal, via authorized
login. The notation used is the same as for Table C.1
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