
Nubes+: Fault-Tolerant Object-
Oriented Programming for Stateful
Serverless Functions

Tesi di Laurea Magistrale in
Computer Science and Engineering
Ingegneria Informatica

Author: Sanja Kosier

Student ID: 930834
Advisor: Prof. Alessandro Margara
Academic Year: 2022-23

i

Abstract

The development of cloud computing significantly changed the technological environment
and business models of tech companies. Cloud computing and the serverless model are
becoming more and more popular due to their availability, and convenient pay-as-you-go
model. Until today, they have reached a large number of applications, allowing develop-
ers to spend more time focusing on their product development rather than infrastructure
management. However, despite these advantages, managing the state in serverless en-
vironments is complex and requires careful design from developers to achieve effective
execution.

This thesis tackles the issues of stateful serverless services (SSFs) that preserve their state
on external storage. The main problems highlighted in the context of SSFs are state man-
agement and fault tolerance. State management introduces complexity and overhead and
requires developers to design database interactions carefully. This thesis presents Nubes+,
an improved version of the Nubes programming model that adds object-oriented abstrac-
tions to serverless programming with an exactly-once guarantee. Nubes+ improves the
robustness, consistency, and reliability of Nubes by addressing the problem of unreliable
executions.

Keywords: Fault tolerance, cloud computing, serverless, Function as a Service

Abstract in lingua italiana

Lo sviluppo del cloud computing ha cambiato in modo significativo l’ambiente tecno-
logico e i modelli di business delle aziende tecnologiche. Il cloud computing e il modello
serverless stanno diventando sempre più popolari grazie alla loro disponibilità e al con-
veniente modello pay-as-you-go. Fino ad oggi hanno raggiunto un gran numero di appli-
cazioni. Gli sviluppatori trascorrono il tempo concentrandosi maggiormente sullo sviluppo
del prodotto piuttosto che sulla gestione dell’infrastruttura. Tuttavia, la gestione dello
stato in ambienti serverless è complessa e richiede un’attenta progettazione da parte degli
sviluppatori per ottenere un’esecuzione efficace.

Questa tesi affronta i problemi causati dai servizi stateful serverless (SSF), che preser-
vano il loro stato su storage esterno. I principali problemi evidenziati nel contesto di gli
SSF sono gestione statale e tolleranza ai guasti. La gestione dello stato introduce comp-
lessità e sovraccarico e richiede agli sviluppatori di progettare attentamente le interazioni
del database. Questa tesi presenta Nubes+, una versione migliorata del modello di pro-
grammazione Nubes che aggiunge astrazioni orientate agli oggetti alla programmazione
serverless con una garanzia esattamente una volta. Nubes+ migliora la robustezza, la
coerenza e l’affidabilità di Nubes risolvendo il problema delle esecuzioni inaffidabili.

Parole chiave: Tolleranza agli errori, cloud computing, serverless, Function as a Service

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background 3
1.1 Cloud Computing . 3
1.2 Serverless vs Function-as-a-Service . 4
1.3 Faults, Failures and Fault tolerance . 6
1.4 Object-Oriented Programming . 6

1.4.1 Golang and OOP . 8
1.5 Used Technologies . 9

1.5.1 Nubes . 9
1.5.2 Beldi . 11
1.5.3 Amazon Web Service . 13

2 Implementation Details 17
2.1 Architecure and General Overview . 17
2.2 Differences with Nubes . 19

2.2.1 Database - tables and queries . 20
2.2.2 SSFs, handlers and client library . 25
2.2.3 Generator . 27

2.3 Limitations . 28
2.4 Lifecycle . 29

3 Evaluation 31
3.1 Testing setup . 31

3.2 Testing models . 33
3.3 Environment setup . 33
3.4 Performance review . 34
3.5 Discussion . 36

4 Related Work 39
4.1 Serverless Workflows . 39
4.2 Fault tolerance for stateful serverless systems 40

5 Conclusions 43
5.1 Review and Critique of Beldi library . 43
5.2 Future Work . 46
5.3 Overall Conclusion . 47

Bibliography 49

List of Figures 55

List of Tables 57

Listings 59

Acknowledgements 61

1

Introduction

Cloud computing profoundly changed the technological world and how tech companies
base their business model. The use of resources and resources of great power has never
been more accessible and more affordable. It reached the point where it would be almost
impossible to count and list all its use cases. Developers are more focused on building
their products rather than managing infrastructures.

The serverless model that cloud computing offers opened doors to a new set of possibilities.
Due to their huge possibilities and the benefits they offer and come with, their usage has
been included in the flow that requires storing and managing state. State management
in serverless environments brings a new layer of complexity, and its effective execution is
subject to innovative solutions.

Problem Statement

Although serverless functions offer many benefits, they have certain limitations that need
to be considered if one proceeds with their usage for development. The state is one of
them. Stateless serverless functions, as their name says, do not persist state between their
invocations. They can use in-memory storage or may have access to temporary local file
systems and write to disk. Still, this type of storage is only ephemeral and unsuitable
for cross-function invocations. To explain this more, we must put it in the context of
distributed systems and cloud platforms. Developers do not have control over creating
or removing new containers; hence, one can not know if the function invocation will have
access to the same local disk. Restart is also a valid use case that may happen. Thus,
since they can not rely on local storage, serverless functions are viewed as stateless as
they are not designed to persevere the state between invocations.

On the other hand, stateful serverless functions (SSFs) rely on external storage solutions
to manage and preserve state across multiple function invocations. In the context of the
stateful serverless function, we will point out two main problems: state management and
fault tolerance.

2 | Introduction

Managing the state adds a layer of complexity and overhead. Developers must carefully
design and model database interactions to perform them correctly. Managing a state
often means using storage services, which come with additional costs and is often impor-
tant factors that need to be considered. Due to state management, SSFs can be viewed as
clients of storage services rather than stateful service itself when putting stateful serverless
functions and storage services in the same context. Since the stateful function executions
are dynamic and distributed, exactly-once execution presents itself as a main challenge.
External factors like network issues, infrastructure failures like an individual machine and
data center failures, scheduled downtimes or maintenance, hardware resources, electric-
ity, power supply, and transient errors can affect the execution flow. All of them cause
risks of duplication or unintended repetitions. Suppose the exactly-once execution is not
guaranteed, and the risk of repetition is present. In that case, faults can lead to data
corruption, inconsistent data states, unreliable executions, invalid data consumption, and
make the whole application flow unreliable.

Thesis Objectives and Outline

The aim of this thesis is to enrich an already existing programming model that uses state-
ful serverless invocations with exactly-once guarantee. We tackled the issue of unreliable
executions that may occur in Nubes, an already existing programming model that intro-
duced object-oriented abstractions into serverless. Nubes hides all the state management
from the developers and, using object-oriented concepts, allows them to represent the
state in terms of object types. The state can be further accessed and changed by calling
the object methods defined by the developers.

By addressing the problem of unreliable executions and providing exactly-once semantics,
we enriched Nubes, gave it an additional feature, and packed it under the name Nubes+.
In Nubes+, we improved Nubes by making it more robust, reliable, and consistent.

This thesis is divided into five chapters. It starts with Chapter 1, which presents the
background and technological context. Chapter 2 gives implementation details, starting
from the architectural overview. Chapter 2 describes the differences between Nubes, the
limitations we encountered, and how one can develop with Nubes+. Chapter 3 analyses
the performances of the developed solution. Chapter 4 presents related work in fault
tolerance for stateful serverless functions and serverless workflows. Finally, Chapter 5
concludes the findings and highlights potential avenues for future research.

3

1| Background

This chapter presents the background and technological context to understand how Nubes+
operates. It starts by giving an overview of cloud computing, the serverless model and the
service concept called Function-as-a-Service. Understanding such concepts is necessary
to comprehend the thesis’s goal. The chapter follows by giving a short introduction to
faults, failures, and fault tolerance to explain the term from the title and its challenges.
Lastly, the chapter provides a concise overview of object-oriented concepts and puts them
in the context of the Golang programming language.

1.1. Cloud Computing

Cloud computing [30, 33, 35, 44] is the on-demand delivery of computing resources. Com-
puting resources, including storage, software, servers, networking capabilities, computing
power (and many others), are delivered as services over the Internet. It generally comes
with a pay-as-you-go pricing model.

The pay-as-you-go pricing model means paying only for those resources used for as long as
they are used. When the client stops with the service usage, the billing also stops. There
is no need for long-term contracts or licensing. It is important to note that the pricing
depends on the cloud provider and differs from one cloud provider to another. The prices
for using different services are also mutually different and are determined by the provider.
The pay-as-you-go pricing model is convenient, often helps lower operating costs and is
one of the convincing reasons to migrate to the cloud.

Cloud computing offers its users many benefits. Firstly, it is accessible. To access their
cloud services, users need only an internet connection. It is agile as it comes with a
wide range of different services and technologies that can be provisioned and used within
minutes, with just a few mouse clicks. It is elastic when it comes to resource provisioning.
If one is unsure about the right amount of resources needed, there is no need for over-
provisioning and purchasing great capacities that will not be used. Instead, resources
can always be scaled up or down later depending, e.g., on the spikes or dips in traffic.

4 1| Background

Cloud offers global deployment. As cloud providers have infrastructures all over the world,
underlying physical resources provided in physical data centers are abstracted in so-called
cloud regions. Users have the possibility to deploy their applications in regions that cover
different parts of the globe and provide application users in these areas with lower latency
and, consequently, better user experience. Also, in other cloud regions, users can provision
different amounts of service resources.

There is no need to build and buy all the necessary hardware, software, data centers,
and all the other equipment needed for their management. Users can provision resources
instead and pay for their usage following the mentioned pay-as-you-go pricing model,
which presents itself as another benefit.

Because of its benefits, there is a wide variety of cloud computing use cases, and it would
be impossible to count them all. With cloud services from a cloud provider, one can create
web and mobile applications that can be easily deployed and scaled. Many people keep
their phone and laptop data in cloud storage. With the cloud, USBs and external hard
disks are no longer needed to transfer data from one user’s machine to another. Orga-
nizations often use cloud computing for application development, data storage, disaster
recovery, or, in other words, to safely back up digital assets, for infrastructure scaling,
etc.

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) are three main types of cloud computing services. They offer different levels of
flexibility, control, and management.

1.2. Serverless vs Function-as-a-Service

The term serverless, although it can give the impression there is no server running under-
neath, is a cloud computing application model where developers and users of serverless
services do not have to think about and handle server management since cloud providers
abstract all the underlying infrastructure [28, 46]. Server management and interac-
tion are entirely hidden from the developer. Developers deploy their code to containers
fully managed by cloud providers where the cloud provider takes responsibility for all
infrastructure management and maintenance such as OS updates and patches, system
monitoring, security management, capacity planning, etc. Using serverless functionalities
allows developers to focus more on the code and application development and speeds up
the development process.

Other benefits of serverless functionalities are built-in availability, automatic scaling de-

1| Background 5

pending on the traffic, and a pay-as-you-go pricing model. When the code executes, the
cloud provider provisions needed resources and scales the infrastructure if needed. Once
the execution ends, resources are scaled down (so-called scaling to zero), and pricing
stops. There are no idle resources and no unnecessary costs. The cost usually depends
on execution time and the amount of resources used.

Function-as-a-Service (FaaS) [45] is the central technology in serverless architecture. Al-
though it is often used as a synonym for serverless, FaaS is, in reality, a subset of it.
Serverless can be any service category whose configuration and server management are
handled by the cloud provider and hidden from its users [46]. Serverless database and
storage, API gateways, event streaming, and messaging are some of them.

As mentioned, FaaS is the main serverless technology and comes with its benefits. It is
event-driven, which means code execution runs as a response to events (e.g., file uploads,
database changes), requests (HTTP requests), or other configurable triggers.

FaaS has many usages. Their true strength lies in the serverless benefits that transac-
tions can be easily separated and scaled, which makes them a good fit for high-intensity
workloads that can be completed in parallel. They are widely used in data processing
pipelines as well. It is a good practice to design a function to perform only one action to
respond to an event. Following this approach, developers design and chain several func-
tions in a processing pipeline. Apart from those, FaaS finds its usage in web development,
machine learning and microservice architectures, where each microservice is represented
as its function.

All leading cloud providers come with FaaS platforms: Amazon Web Services [20] has
AWS Lambda [25], Google Cloud [41] has Google Cloud Functions [42], IBM Cloud [43]
has IBM Cloud Functions [36] and Microsoft Azure [47] has Azure Functions [32].

Once developers have their code ready, they need to upload it to the FaaS platform of
their cloud provider, usually as a .zip file or container image. Invoking the function
depends on the cloud provider and configured type of event or trigger.

Depending on external storage usage, functions can be stateless or stateful. We mentioned
peculiarities and differences between stateless serverless functions and stateful serverless
functions earlier in the problem statement. Stateful serverless functions most commonly
keep state in the low latency database of their cloud provider [55]. AWS Lambda serverless
functions store state in DynamoDB, BigTable serves as state storage in Google Cloud
Functions and Azure Functions use CosmosDB.

6 1| Background

1.3. Faults, Failures and Fault tolerance

Let’s start by connecting the terms from the heading. A system fails when it is not able
to provide the services it was designed for. Failure is the result of an error that is a part
of a system’s state and the cause of an error is called a fault [53]. A system that can
provide its services adequately and continue to operate even in the presence of fault is
said to be fault-tolerant.

For a system to be fault-tolerant, it needs to meet dependability requirements. Some
dependability requirements are availability, reliability, safety, maintainability and security.
An available system is a system that is able to, or better, that is available to provide its
services as soon as it is needed. Reliability describes how reliable the system is during an
interval of time. It is important to emphasize a different time-measuring scale here, as a
system can be highly available but very unreliable. For example, if a system goes down
every hour for one millisecond, it has an availability of (60∗60∗1000−1)/(60∗60∗1000) =
99.9999%, but the fact it fails every hour makes it very unreliable.

Safety answers the question of how safe it will be if the system fails. For example, aviation
systems must have a high level of safety guaranteed. Maintainable system is a system
that can be easily fixed in case of failures. Security is often connected with the integrity
of the data system provides. The main technique used to deal with failures is redundancy.

Let’s say that the system is able to continue to operate in the presence of failures. Still,
if the failure happens, the component where the failure occurred needs to recover to a
correct state. Recovery from an error is fundamental to fault tolerance.

How to deal with failures and approach fault tolerance is a broad topic and depends on
the types of failures that may occur in the system and its function in general.

1.4. Object-Oriented Programming

Object-oriented programming is a programming paradigm based on the concept of objects.
The fundamental idea behind it is to combine both data and the functions that operate
on that data in a single unit called an object [7]. We say that an object is an instance of
a class, as classes are used to define objects. Let us briefly describe key concepts around
object-oriented programming.

Unlike some other programming paradigms, where development starts from organizing
a code into functions, in the object-oriented paradigm development starts from object
modeling. As in real life, objects have their attributes and behavior. To emphasize, the

1| Background 7

fundamental idea around objects is that they combine, or better, encapsulate the two
together, as by themselves neither data nor functions would model real-world objects in
an effective way. Encapsulation of data and methods that operate on that data is essential
for several reasons. It hides internal implementation details and the object’s state from
external access and instead exposes an interface to interact with it (the object’s public
methods). Moreover, it provides control over data access and modification as methods
can be declared as e.g. read-only.

The importance of the inheritance concept in the object-oriented paradigm can be seen in
the fact that Bjarne Stroustrup, also known as the father of C++ programming language,
in the conclusion of his paper called What is "Object-Oriented Programming"? states:
Object-oriented programming is programming using inheritance [52].

Object classes, just like in real life, can share common characteristics. They can take the
position of superclass (base class) or subclass (derived class). For example, an animal is
a superclass of a lion, a tiger, and a giraffe. By deriving subclasses from the superclass,
classes are put into a hierarchy and are inheriting the attributes and behavior of their
superclass. This way, derived classes can use methods included in the base class and do
not need to define them again. Inheritance promotes code reusability and is one of the
core principles of good object-oriented programming.

The last core feature of object-oriented programming we will mention is polymorphism,
which relates to Barbara Liskov’s Substitution Principle [10]. The Liskov Substitution
Principle is one of the five SOLID principles of object-oriented programming, it puts the
requirement on the subclass and is formally defined like this:

Subtype Requirement: Let ϕ(x) be a property provable about objects x of type T . Then
ϕ(y) should be true for objects y of type S where S is a subtype of T .

In other words, an instance of a subclass should be able to replace the superclass ob-
ject, and the correctness of the program should not be affected. Supporting the Liskov
Substitution Principle is usually done through polymorphism. As we mentioned for in-
heritance, the superclass contains methods common to all derived classes in the hierarchy.
However, a single derived class may be able to override a method with its own implemen-
tation. That method then becomes polymorphic, and its action depends on the class of
object it is applied to. Thus, through method overriding and interfaces, polymorphism
allows objects of different classes to be treated as objects of a common superclass. Poly-
morphism allows us to write and design more flexible, more maintainable object-oriented
systems with higher levels of abstraction.

8 1| Background

Some of the most common programming languages that support object-oriented paradigms
are Java, C++, C#, Python and others.

1.4.1. Golang and OOP

Nubes was written in the Golang [40] programming language; therefore, Nubes+ as well.
One can not say that Golang is a purely object-oriented language, as it misses some of the
core concepts we mentioned previously. There are no classes. Developers can define data
types as structures and associate methods to define their behavior. However, this concept
is different from having an object class with its methods. Inheritance is also not possible;
instead, Go promotes object composition. Another peculiarity is that the type does not
explicitly state it implements an interface but implicitly if it implements all the methods
stated in the interface contract. Interfaces are used to provide a level of abstraction as
polymorphism is possible in Go.

Go uses a combination of naming conventions and visibility rules to achieve encapsula-
tion [39]. Methods and structure members that start with capital letters are exported,
which means they are accessible from outside of the package. On the other hand, struc-
ture attributes that begin with lowercase letters are unexported and their scope is limited
to package visibility. Listing 1.1 demonstrates the mentioned peculiarities.

1 type Vehicle interface {
2 GetMaxSpeed () int
3 }
4

5 type Car struct {
6 name string
7 MaxSpeed int
8 }
9

10 func (c *Car) GetMaxSpeed () int {
11 return c.MaxSpeed
12 }

Listing 1.1: Example of naming convention and encapsulation in Go

We defined a type Car with two member attributes and one method. Type implements
interface Vehicle as it implements a method GetMaxSpeed defined in the Vehicle contract.
Between two member attributes, name and MaxSpeed, MaxSpeed is exported and can be
accessed from outside of the package. On the other hand, the member attribute name is

1| Background 9

not accessible from outside the package as it is unexported.

We want to note that Go supports multiple return values and encourages developers to
use explicit error handling. Usually, an error is returned as a last return value.

1.5. Used Technologies

This section covers the most important technologies and cloud services used for the pur-
poses of this thesis.

1.5.1. Nubes

Nubes [11] is an object-oriented programming model for serverless computing. The model
translates the defined types into serverless functions that may be automatically deployed
into the client’s AWS account. In addition, all the state management is hidden from
the developer. It generates a client library that acts as an interface for interaction with
the stateful serverless functions made using Nubes by exposing the previously defined
object types. This thesis enhances Nubes with fault tolerance, therefore, we will provide
a detailed overview of the model.

Object relationships

It is possible to define object relationships with Nubes. Objects can be in one-to-one,
one-to-many and many-to-many relationships. Relationships can be unidirectional and
bidirectional. The developer must use the appropriate reference type defined in the Nubes
library to define object relationships. Reference and ReferenceList are used for unidirec-
tional declarations. ReferenceNavigationList is used in bidirectional relations. Further-
more, to define the direction in bidirectional relationships, the developer must put a
proper tag next to the type attribute, either hasMany or hasOne.

1 func (r ReferenceNavigationList[T]) GetIds () ([] string, error)
2 func (r ReferenceNavigationList[T]) Get() ([]*T, error)
3 func (r ReferenceNavigationList[T]) GetStubs () ([]T, error)
4 func (r ReferenceNavigationList[T]) AddToManyToMany(newId string) error
5 func (r ReferenceNavigationList[T]) DeleteBatchFromManyToMany(ids []

string) error

Listing 1.2: Methods defined in ReferenceNavigationList object type.

10 1| Background

Methods

Certain rules must be followed when defining custom methods in Nubes. All methods
must return an error. Methods can return up to one optional return value. If the method
returns a value, the value must be returned as the first value, error as the second. Meth-
ods can be defined with up to one input argument. The method can both have an input
argument and return a value. The method needs to be defined as an object method and
needs to be exported.

1 func (s *<ObjectName>)<MethodName> () error
2 func (s *<ObjectName>)<MethodName>(<InputArgument>) error
3 func (s *<ObjectName>)<MethodName> () (<ReturnType>, error)
4 func (s *<ObjectName>)<MethodName>(<InputArgument>) error
5 func (s *<ObjectName>)<MethodName>(<InputArgument>)(<ReturnType>, error)

Listing 1.3: Allowed method signatures.

Generator

The generator has an essential role in developing with Nubes. Once the developer finishes
with the type definitions, the generator steps in. The generator is a command line interface
(CLI) that parses Go files where the developer has defined types into abstract syntax
tree (AST) structures. Once the files have been parsed, the generator puts the correct
logic in place to determine, e.g., which handler function needs to be generated, where
the additional logic needs to be put in place, which databases need to be created, etc.
It understands mutual object relationships, which are necessary to provide the proper
methods for object handling. Once the files have been parsed, generator prints translated
types’ definitions, serverless handlers, deployment file, or the client’s library, depending
on the input flags.

The generator expects one of the two modes to be provided as a first input parameter:
handlers or client. Other possible parameters are:

• -t path to folder with types definitions

• -o path to output folder

• -m module name of the project

• -g boolean flag that indicates if the deployment files should be created

• -i boolean flag that indicates if the database tables should be created

1| Background 11

Additional features

Nubes offers additional features that can be annotated with the appropriate tag. The
tag must be annotated next to an attribute value in the type definition. Attributes can
be tagged as read-only or used as a custom ID. Both can be achieved via adding ’nubes:
"id,readonly"’ next to the attribute declaration.

1.5.2. Beldi

Nubes+ relies on the use of the Beldi library to ensure fault tolerance guarantees. Beldi is
a library and a runtime system for writing and composing fault-tolerant and transactional
stateful serverless functions [55]. Stateful serverless functions, although they can preserve
the state themselves, usually preserve the state in the database of the local cloud provider.
From this perspective, SSFs are not so much stateful services as they might be seen
as clients of scalable, fault-tolerant storage services. Beldi’s purpose is to guarantee
exactly one semantics for SSF processes that fail in execution in this type of client-service
communication, where clients are SSF workflows.

Beldi’s API is one of its four main components. Beldi offers read and write methods for
database interaction purposes as well as a condWrite method that writes to the database
only if the condition given as a parameter is true. Beldi offers synchronization mech-
anisms like transactions; thus, operations between beginning and end transaction calls
enjoy ACID semantics. Beldi allows its users to chain SSFs in a workflow as it comes
with synchronous and asynchronous lambda function invocations (syncInvoke and async-
Invoke). Let’s emphasize that all the complexity of logging, replaying, and concurrency
control protocols that enable exactly-once execution and transaction semantics are hidden
from the developer. Once the SSF that is using Beldi’s API is executed, it can automat-
ically determine the context in which it was executed, e.g., is it part of the transaction,
what is its step number, etc.

Another component of Beldi’s is a set of database tables where logs of database inter-
actions and function invocation are stored, as well as their state. Beldi keeps four logs
for each SSF. The result of every read operation is kept in the ReadLog. WriteLog de-
scribes performed write operation and is stored in the same table as data being written
to avoid cross-table transactions. The InvokeLog is a Beldi novelty and ensures at-most-
once semantics for calls to other SSFs. The IntentLog describes the completion status of
an instance ID, its return value, arguments, type of invocation and timestamp from the
garbage collector.

12 1| Background

The last two components of Beldi’s are Intent Collector (IC) and Garbage Collector (GC).
Both are stateful serverless functions periodically triggered by a timer. The purpose of IC
is to scan SSF’s intent table and check if there are instances that have not yet finished,
i.e., ones missing the done flag in the completion status. If so, IC restarts those unfinished
SSFs with the original arguments and instance ID. Even if the actual instance is still in
the execution process, due to Beldi’s IntentLog that ensures at-most-once semantics for
each step of the SSF, SSF restart is safe to perform.

Beldi guarantees exactly-once semantics by extending the log-based approach from Olive [51].
Olive introduced Distributed Atomic Affinity Logging (DAAL), a technique that puts an
item’s log entries in the same atomicity scope as the item’s data. Its purpose was to make
performing operations (e.g., writing to the database) and intent logging atomic. Once the
client performs those two operations atomically, at-most-once execution semantics can be
ensured. To bypass database limitations in the atomicity scope and to allow Beldi to be
compatible with and support all standard databases, Beldi introduces a new structure
called linked DAAL. Linked DAAL enables logs to exist on multiple atomicity scopes.
They are types of non-blocking linked lists and can be traversed as such. A few optimiza-
tions are put in place here. To reduce the overhead of unnecessarily returning the full
content of each log row, Beldi applies projection and filters out all unneeded columns. In
order to keep all the logs and linked DAALs from growing indefinitely, GC prunes old
rows and log entries, ensuring linked DAALs are kept shallow. This way, Beldi prevents
overheads and unwanted storage costs.

As already mentioned, apart from execution guarantee, Beldi offers its users synchroniza-
tion mechanisms such as transactions and locks to prevent unsafe handling of state in
case of concurrency. To give a more detailed overview, Beldi borrowed another approach
from Olive, called Locks with intent, where not a client, but intent is the one owning the
data locks. In case of SSF crashes, the lock will not be instantly lost. Instead, IC will
restart the instance as it will miss the done flag in its completion status. Upon reaching
the lock (item) part, the restarted instance will detect it has already acquired the lock
and will continue carrying out the remaining operations. Beldi goes with opacity as the
isolation layer in the context of transactions.

Although Beldi allows developers to build fault-tolerant and transactional workflows of
stateful serverless functions on existing serverless platforms, it should be noted that pre-
venting deadlocks, infinite loops and other unwanted behaviors is the developer’s respon-
sibility.

1| Background 13

1.5.3. Amazon Web Service

Amazon Web Services [20] is a cloud computing platform developed by Amazon. It is
one of the leading and most influential cloud providers in the cloud computing industry.
It offers a wide range of services (more than 200) and tools for computing power, data
storage, analytics, data processing, machine learning, etc. Their data centers are dis-
tributed worldwide, making low latency and high availability essential characteristics of
their services. Because of using a pay-as-you-go model, cost is optimized, and their users
pay only for the resources they consume.

One of the advantages of using AWS services is the same as that of cloud computing: users
are free from worrying about where their data is physically kept or how to interact with
the servers that run their applications. AWS handles the entire hardware management,
which is already in place and ready to be used.

Due to the broad range of service frameworks and programming languages supported,
AWS enables a wide variety of developers to integrate third-party services with the services
they offer, which also explains the reason behind being so widely used.

Nubes+ deeply relies on Amazon Web Services. Both components that make Nubes+,
namely Nubes and the Beldi library, use the features of Amazon Web Services under the
hood. The services that Nubes+ uses are listed below.

Amazon DynamoDB [3, 16, 37]

DynamoDB is a fault-tolerant, low-latency, NoSQL database. Since this thesis is greatly
based on fault tolerance, it is worth discussing how DynamoDB generally manages fault
tolerance.

Fault tolerance, but also high availability and durability of data, are achieved in several
ways [48]. The first of them worth mentioning are replication and redundancy of data.
Data in DynamoDB is automatically replicated across many Availability Zones (AZs), ge-
ographically distributed data centers. To maintain data redundancy and high availability
even in the case of AZ failures, each write is concurrently written to many copies inside
an AZ. In case of failure of one AZ, the other can continue to serve requests.

Besides data replication within multiple AZs, DynamoDB provides an option for global
tables. As the name says, global tables allow the user’s DynamoDB tables to be replicated
across multiple AWS regions, thus allowing fault tolerance during (unlikely) regional out-
ages. This is not the only benefit, however. In environments of large-scale applications
with massively scaled applications with globally distributed users, global tables enable

14 1| Background

applications to stay highly available and deliver low-latency data.

DynamoDB uses a quorum-based strategy to keep data consistency and fault tolerance
against replica or node failures. In a quorum-based strategy, an operation writing or
reading the data is considered successful when a certain number of replicas (quorum)
acknowledge the operation. However, DynamoDB uses a so-called sloppy quorum where
all read and write operations are not necessarily performed on the first N encountered
nodes but on the first N healthy nodes, where N is the decided quorum. This approach
does not reduce durability during server failures or other failure conditions.

In case of data corruption or clumsiness of the user, DynamoDB provides point-in-time
recovery [18]. Users can restore their table data to the previous state (based on time and
date) within a 35-day retention period. In the case of transient errors caused by network
issues or similar, DynamoDB puts a retrying mechanism with exponential backoff and
jitter in place. Once the system is up again, the next retry attempt is expected to execute
successfully.

There are a few more ways DynamoDB assures fault tolerance. Automatic partitioning
distributes data across several servers to maintain high performance, and load balancing
ensures that requests are spread equally throughout the partitions and prevents overload
on specific nodes [17]. Users can configure automatic monitoring tools on CloudWatch and
get notified when something is wrong, as well as manually check DynamoDB dashboards
and track service health.

In Nubes+, we are using DynamoDB to store our data. Therefore, its core components
are worth mentioning. Those are tables, items, and attributes. A table is a collection of
items with a concept similar to rows in other database systems. Similarly, an item is a
collection of attributes, and those can be compared to columns or fields in other database
systems. For the purpose of this thesis, we will use the official nomenclature: tables, items
and attributes.

AWS Lambda [25, 26]

AWS Lambda is a serverless computing service and is Amazon’s implementation of the
FaaS (Function-as-a-Service) model. In Nubes+, we are using AWS Lambda to deploy
all of our functions required for handling an object’s state; in other words, we are using
it to deploy our stateful serverless functions. When an end client of Nubes+ calls object
functions, they invoke the deployed lambda function in their AWS account. Since we are
saving an object’s state in DynamoDB, we are integrating two AWS services, making our
architecture more complex.

1| Background 15

Amazon S3 [19]

Amazon Simple Storage Service, or simply Amazon S3, is, as the name says, an object
storage service. It allows users to store and retrieve any amount of data. Users can
upload data manually, use S3 to store internal cloud trail logs of their AWS account, or
build applications and store data automatically. Prior to inserting data, users need to
create a bucket, a place where objects are stored. We use Amazon S3 during the function
deployment phase. Once we build function executables and compress them, we store them
in an S3 bucket together with a compiled cloud formation template file in JSON format.

Amazon CloudWatch [13, 14]

We mentioned Amazon CloudWatch when talking about configuring monitoring tools for
DynamoDB. Needless to say, it is not limited only to DynamoDB. CloudWatch is a service
used for monitoring and observability. It collects real-time metrics, logs, and event data
from various AWS resources. Users can set alarms and receive notifications if a certain
metric threshold is reached. With Nubes+, we use CloudWatch Logs to monitor and
store log files from our AWS resources. We integrated it with deployed lambda functions
and during the deployment phase, we create a log group [15] per each deployed function.
We used CloudWatch Logs mostly during the development phase for troubleshooting and
optimization.

AWS CloudFormation [21, 22]

CloudFormation is a service that helps users model, provision, and configure all of the
AWS resources they need. Users create a CloudFormation template that describes the
resources they want, and CloudFormation then provisions and configures them, freeing
users from the manual setup. In order not to provision all resources and services needed
for Nubes+ individually and manually, we used the AWS CloudFormation template. We
also grouped our resources into a stack [23] to manage them as a single unit. An ap-
proach where one describes needed infrastructure is called Infrastructure-as-Code (IaC)
and comes with many benefits. Some of those are automation, repeatability, consistency,
and version control.

AWS IAM [24]

AWS Identity and Access Management is a service for securely managing identities and
access to services and resources. Core components are users, groups, roles, policies and
permissions. Since we are building Nubes+, an abstraction layer that will use and create

16 1| Background

resources on other’s AWS accounts, it is essential to configure security permissions prop-
erly and accordingly. Considering we are integrating a few AWS services with Nubes+,
we are provisioning roles that grant permissions to services to communicate with each
other as needed.

17

2| Implementation Details

To gain a deeper understanding of the differences between Nubes+ and Nubes, specifi-
cally, the changes made and the reasons behind them to ensure exactly-once execution
guarantees, the chapter begins by providing a general overview of the architecture. The
subsequent section offers a detailed overview of all introduced changes, followed by a sec-
tion that discusses encountered limitations. Finally, the last section explains the lifecycle
process of the development with Nubes+.

2.1. Architecure and General Overview

A high-level architectural overview of Nubes+ and its related components is presented in
Figure 2.1. The full execution flow includes several components. The client user has the
role of the main actor. The Nubes+ abstraction layer serves as a library interface for the
client user. AWS serves as a cloud provider. Stateful serverless functions are deployed
on AWS Lambda and since stateful, storing and retrieving the state is obtained from
DynamoDB, that serves as the main database.

Figure 2.1: Architectural overview of an execution flow.

The flow begins with the client user calling the object functions from the client library

18 2| Implementation Details

generated with Nubes+. Under the hood, the function performs an invocation to the
Lambda method deployed on the client’s AWS account. Deployed serverless functions
are stateful; thus, when needed, Lambda performs read and write operations to the Dy-
namoDB. It is worth noting that the types and methods in the client library adhere to
the object-oriented programming paradigm.

Figure 2.2: Full invocation flow when Nubes is used as an abstraction layer. Communi-
cation with the DynamoDB is put in place in the deployed Lambda function.

The presented architectural overview has stayed the same with respect to previous Nubes
implementation. To better explain the main difference between Nubes and Nubes+, we
must look closely at the sequential diagrams in Figures 2.2 and 2.3. In both sequential
diagrams, actors start the execution flow by calling a function from the generated client
library obtained with the abstraction layer. It is followed by the invocation call to the
Lambda function deployed on the client AWS account. The line of distinction between
two diagrams, or better, two approaches, lies in the final stage, communication with
the DynamoDB. In the scenario where Nubes is used as an abstraction layer, this step is
orchestrated by the Lambda function. All the state management used within the function
came from and was developed by Nubes.

On the other hand, looking at the second diagram, the responsibility of communicating
with the database shifts to the Beldi library. This choice allows us to implement fault tol-
erance effectively as the library is now in charge of handing the invocations to DynamoDB

2| Implementation Details 19

and carries out the role of tracking and performing database requests.

Figure 2.3: Full invocation flow when Nubes+ is used as an abstraction layer. The
DynamoDB communication responsibility lies within the Beldi library.

2.2. Differences with Nubes

Nubes+ enriches Nubes with exactly-once execution guarantees and to achieve it, it lever-
ages Beldi’s library we already described. Introducing Beldi’s library came with the re-
quired changes we had to follow to stay compatible. Since Nubes is an abstraction layer
that provides state management, or in other words, frees developers from state man-
agement, we had to migrate and adjust all the database interactions to use Beldi’s API
instead. Beldi’s API provided within the library determines from the SSF’s input whether
SSF is a part of the transaction, its step number, which lambda is called and other param-
eters needed to achieve its functionalities. Therefore, apart from database call functions,
a few additional changes had to be implemented for us to stay compatible. We needed to
change how serverless functions are invoked from the client side and how they are handled
on the backend side. While the invocation logic and logic on the backend side needed
to be adjusted, it is essential to note that those are hidden from the end client. On the
client’s library side, changes are kept to a minimum concerning the client’s existing inter-
faces. This chapter provides a detailed overview of the changes we needed to introduce
with Nubes+, the limitations we faced, and the approaches we needed to take to overcome
them.

20 2| Implementation Details

2.2.1. Database - tables and queries

A few factors come into play when it comes to database initialization and the creation of
needed tables. As before, we create a table per each detected Nobject type. Furthermore,
as detailed in Section 1.5.2, to provide exactly-once execution guarantees, Beldi stores
different types of logs depending on the behavior of a stateful serverless function. Those
logs are function-specific. Therefore, each stateful serverless function needs its log tables
in DynamoDB. In other words, additional tables need to be created for each deployed
stateful serverless function that leverages Beldi. To be precise and give an example, for
the deployed function Export, we need to create an Export-collector table that will keep
logs from the intent collector and an Export-log table that will keep read, write and invoke
logs. Moreover, if one wants to use transactions inside of a serverless function or, in other
words, to put SSF in a transactional context, an additional shadow table with the sufix
-local needs to be created. In our example, it would be called an Export-local table and
would act as a local copy of the state for the transaction. To ensure ACID semantics
and fault tolerance, we put a transaction in each stateful serverless function we deploy,
as some perform multiple read and write database invocations.

Apart from Beldi’s tables and tables for storing client’s data based on Nobject types, a
few more tables potentially need to be created depending on the client’s project.

Many-To-Many object relationship

Let’s examine a scenario like in Listing 2.1. Shop and User objects are in a mutual many-
to-many relationship. In Nubes, to keep track of many-to-many object relationships, an
additional join table is created where a table name is a string concatenation of the two
types’ names. It contains two columns; one stores the IDs of the first Nobject type (e.g.,
User) and the other stores the IDs of the other Nobject type (Shop). The order of columns
with IDs is the same as the order of types in the table name. Moreover, the first type
name is set to be a primary key, while the second type (of which IDs are stored in the
second column) is used as a sort key. A query with a partition key is used to obtain the
elements associated with the object defined as the first type in this relation. To do so the
other way around, to get all the IDs of the first type associated with the second type’s
ID, it was necessary to introduce indexes and use them in this scenario. The index’s key
is the second type in the join table relation, one used as a sort key. This way, Nubes
provides a way to obtain all the elements associated with the ID from either side of a
many-to-many relation.

2| Implementation Details 21

1 type Shop struct {
2 Id string
3 Name string
4 Owners lib.ReferenceNavigationList[User] ‘nubes:"hasMany-Shops"‘
5 }
6

7 type User struct {
8 FirstName string
9 LastName string

10 Shops lib.ReferenceNavigationList[Shop] ‘nubes:"hasMany-Owners"‘
11 Orders lib.ReferenceList[Order]
12 }

Listing 2.1: Example of objects in many-to-many relationship.

The same approach was not possible with Nubes+ as we are limited to Beldi’s APIs.
Beldi’s read API does not provide a way to query with indexes or parameters besides a
key and a table name.

1 func Read(env *Env, tablename string, key string) interface {}
2

3 func Write(env *Env, tablename string,
4 key string,
5 update map[exp.NameBuilder]exp.OperandBuilder)
6

7 func CondWrite(env *Env, tablename string,
8 key string,
9 update map[exp.NameBuilder]expression.OperandBuilder,

10 cond exp.ConditionBuilder) bool

Listing 2.2: Beldi’s APIs for database reads and writes.

Another limitation that can be noticed in Listing 2.2 is that Beldi returns a single element
from the table name associated with a given key. Therefore, returning multiple objects
with a single query is not possible. To overcome these limitations, we needed to find a way
to get all the objects from many-to-many relationships associated with their owner using
a single read call and without the help of partition keys or indices. Our way around it is
to use not one but two join tables. Their names are in the format: FirsttypeSecondtype
and SecondtypeFirsttype. For the example above, the tables would be called UserShop
and ShopUser. To achieve our goal and tackle Beldi’s limitations, these tables serve us
as a set collection structure where each key is unique. Keys are IDs of the first object

22 2| Implementation Details

type in the table name. The value we store per each key is a list of the second type’s IDs.
Following this approach, we solved the problem of returning multiple elements associated
with one key in one table read call, as Beldi presented itself with limitations here.

To ensure both tables are compatible with one another and to keep data integrity, tables
are simultaneously updated. For example, adding a new shop ID to the list of shop IDs
of a user is followed by appending a user ID to the list of user IDs of that particular shop.
Needless to say, these actions are done in a transaction, as updating multiple tables is not
possible with Beldi.

One-To-Many object relationship

Even designing bidirectional one-to-many relationships presented itself as a problem.
Nubes uses queries to get multiple objects associated with a specific key from one-to-
many relationships and relies on partition keys and indices. Beldi does not provide this
flexibility; thus, once again, we encountered Beldi’s limitation, and finding another ap-
proach to achieve the same functionality was needed. We applied similar logic as we did
in many-to-many relationship.

1 type Shop struct {
2 Id string
3 Name string
4 Products lib.ReferenceNavigationList[Product]‘nubes:"hasOne-SoldBy"‘
5 }
6

7 type Product struct {
8 Id string
9 Name string
10 QuantityAvailable int
11 SoldBy lib.Reference[Shop] ‘dynamodbav:",omitempty"‘
12 Discount lib.ReferenceList[Discount]
13 Price float64
14 }

Listing 2.3: Example of objects in one-to-many relationship.

To declare one-to-many object relationships, one object has to have a reference to an-
other object, while the other one has a collection of the previous one. To define this
relationship with Nubes and Nubes+, one object has a Reference type, and the other has
a ReferenceNavigationList ; see Listing 2.3. From the point of view of an object that has
a reference to another one, nothing has changed. On the other hand, retrieving many

2| Implementation Details 23

associated with a parent object needed to be adjusted. In Nubes, retrieving many is done
by a query that filters the rows based on the value of the Reference field. The Reference
field has to have the same ID as the object type with the ReferenceNavigationList field. In
Nubes+, we use an additional table. The table name is the concatenation of the types in
the format ObjectmanyObjectone. For the example shown in Listing 2.3, the table would
be called ShopProduct. As for many-to-many, the table serves as a set, where the key is
the collection owning object type’s ID, and the value is the list of IDs. For example, in
ShopProduct, we store a list of product IDs for a shop ID.

Properly updating this table presented itself as a challenge. Namely, many factors and
different use cases exist when the reference type can be changed. Export or setter functions
are two main examples. Covering those use cases in export, setter functions (and others),
and adding checks if the field has changed presented itself as an error-prone task. For this
reason we decided to unify the behavior of the bidirectional relationships. In many-to-
many object relationships, the client has at its disposal an AddToManyToMany method
from the referenceNavigationList type to add an item to a collection; see Listing 1.2.

The novelty of Nubes+ in one-to-many relationships is if clients want to add an item into
a collection, they must do it explicitly. Essentially, in the same way as for many-to-many
relationships. Since all the collections are of type referenceNavigationList, the method list
is still as in Listing 1.2. However, calling an AddToManyToMany function on an object
in a one-to-many relationship would be misleading. To avoid misleading function names,
we renamed the AddToManyToMany into AddToMany. When called in the context of
a one-to-many relationship, it will append an ID in a list of associated IDs with that
particular object.

Storing data

There is also a difference in how Nubes and Nubes+ store client data. Essentially, the
content of the object tables is different, and the reason behind it lies in Beldi’s necessity
to keep write logs in the same atomicity scope as client data; thus, write logs and client
data are kept in the same table. This is not true in Nubes, where tables contain only the
client’s data. Examples of table contents are given in the Figures 2.4 and 2.5.

Database initialization is performed with the generator during handler definition gener-
ation if specified by the client with the parameter flag. It happens as a final stage of
code-to-code translation, and all the information needed for table creation is gathered
during the parsing process. Tables needed for storing client’s data are created based on
defined Nobject types. For each many-to-many object relationship, two additional tables

24 2| Implementation Details

Figure 2.4: Example of data stored on DynamoDB with Nubes as an abstraction layer.
An item contains only the attributes of the Project object, defined in Listing 2.3.

Figure 2.5: Example of data stored on DynamoDB with Nubes+ as an abstraction layer.
An item contains attributes of Beldi’s WriteLog together with the attributes of the Project
object, defined in Listing 2.3.

2| Implementation Details 25

are created. For each bidirectional one-to-many object relationship, an additional table
is created. Three tables are created for each stateful function deployed on AWS Lambda
to store Beldi’s logs.

2.2.2. SSFs, handlers and client library

In this section, we will go through other changes that need to be introduced. First, we
will give an overview of backend changes worth mentioning, and then we will proceed
with changes concerning those who develop with Nubes+.

Before discussing why those changes were needed and how we implemented them, we need
to provide more details about the core piece of the library - Env (Environment). Env is
a structure defined in Beldi’s library that holds all the necessary information and values
needed for Beldi to provide its guarantees; see Listing 2.7. LambdaId is the name of the
lambda function deployed on AWS Lambda that is currently being invoked. InstanceId
is a unique identifier of a particular lambda invocation call. LogTable, IntentTable and
LocalTable contain table names where Beldi’s log data is stored. StepNumber increasingly
counts every external operation where the external operation is, e.g., reading a value from
the database. Input is the client’s actual input, usually data to be stored in the database.
TnxId is the transaction identifier used in a transactional context, and Instruction stands
for either COMMIT, ABORT, or EXECUTE. The Env structure is initialized before the
main body of the SSF is executed. However, to achieve this initialization, the handler
function needs to be wrapped with Beldi’s Wrapper method; see the example in Listing 2.5.

Notice that there is a difference with Nubes where the handler function is passed as an
argument to the Start method immediately. The start method is one of the functions in
AWS’s lambda package, which offers the lambda programming model. See Listing 2.4 and
Listing 2.5.

1 func HandlerName(input aws.JSONValue) (<optional>, error) {
2 // function body
3 }
4

5 func main() {
6 lambda.Start(HandlerName)
7 }

Listing 2.4: Passing a handler function to the Start method.

26 2| Implementation Details

1 func HandlerName(env *beldilib.Env) (interface {}, error) {
2 // function body
3 }
4

5 func main() {
6 lambda.Start(beldilib.Wrapper(HandlerName))
7 }

Listing 2.5: Passing a handler function to the Start method.

The Env type in the context of Beldi has a similar role as the Context type in Golang
projects [38]. Good practice when writing projects in Go that deal with networks and
concurrencies is to pass a variable of type Context as a first variable. Context provides
and holds information about the environment where the function is executed. The same
applies to the variable of type Env. It gives the library all the context about the environ-
ment where lambda invocation is executed. Beldi requires clients of its APIs to provide
that context (variable of type Env) as a first function parameter to understand the cur-
rent state of the invocation and how to proceed. That is the crucial reason for the change
we are introducing, and it concerns those who develop with Nubes+. Namely, context
(a variable of type Env) must be propagated to every read or write method. Due to a
chain of propagations, exposed functions of the Nubes library come in Nubes+ with an
adjusted signature, presented in the Listing 2.6

1 func Load [T Nobject](env *beldilib.Env, id string) (*T, error)
2 func Export [T Nobject](env *beldilib.Env, objToInsert Nobject) (*T,

error)
3 func Delete [T Nobject](env *beldilib.Env, id string) error

Listing 2.6: Nubes+ library functions.

For the same reason, due to a chain of propagations, the same applies to all custom
methods defined by the client. If a client wants to create its own methods and call, e.g.
Export, in the method body, there will be a need to put a variable of type Env as a
first function parameter. Even if the custom method does not call methods for explicit
database-related operations, it is highly likely to perform operations on the object. Let’s
remind our reader that in the handler-generating phase performed by the generator, all
custom-made methods are extended with additional checks if the object state should be
retrieved or saved to the database. Additional checks are based on statuses of invocation-
Depth and isInitialized flags. Therefore, even if the client does not explicitly use database

2| Implementation Details 27

interaction methods, due to the operations on the object, there will be a need to perform
calls to the database to retrieve the object state or to save performed changes. Again,
database interaction methods in the Beldi library require a variable of type Env to be
passed as a first argument. Consequently, if the client does not explicitly use database
interaction methods in its custom method, the generator will insert a variable of type Env
as the first method’s parameter during the code-to-code handler translation phase.

1 type Env struct {
2 LambdaId string
3 InstanceId string
4 LogTable string
5 IntentTable string
6 LocalTable string
7 StepNumber int32
8 Input interface {}
9 TxnId string

10 Instruction string
11 Baseline bool
12

13 // Added with Nubes+
14 TypeName string
15 }

Listing 2.7: Env structure holds information needed for Beldi to provide its guarantees.
TypeName is added by us to know on which object type the function was called.

2.2.3. Generator

Changes and adjustments needed to be made on the generator side as well. The generator
has two modes: handler and client. Handler mode creates handler functions and enriches
methods and defined object types. Client mode creates a client library, or in other words,
exposes methods ready to be used by the client. When called, they invoke the appropriate
lambda function on AWS and return the result to the client. Files and code generated
for the client library changed minimally. In the previous section, we mentioned that we
renamed a method from the client library from AddManyToMany to AddToMany. The
reasons behind it were already explained. Apart from that, only the error handling part
of the invocation calls to the AWS was improved as we added more checks of the returned
result.

Changes in the handler part mainly include adjustments in the template files for handler

28 2| Implementation Details

functions. Files and code generated in a handler mode are semantically more different
from the previous implementation; however, the logical flow has stayed the same. We
introduced transactions, wrapped the SSF function with Beldi’s Wrapper method, and
ensured all the underlying methods use Beldi’s API when database interaction is needed.

Enhanced logging was also helpful to have during the development phase and was inten-
tionally left in the code. We believe logging is a crucial aspect of code development and
comes with benefits. The idea is to provide valuable information about the object’s state
and SSF at different points during execution. If something goes wrong, clients can go to
their CloudWatch, check logs of deployed lambda and see a sequence of steps performed
that led up to an error or unexpected behavior. It will make it easier to diagnose and fix
potential issues.

2.3. Limitations

Introducing Beldi’s library as a way to provide fault-tolerant object-oriented programming
for stateful serverless functions brought about certain limitations that need careful con-
sideration. In contrast to Nubes, migration to Beldi usage posed challenges as previously,
each database interaction was custom-made and optimized. After the migration, not all
optimal approaches could be preserved as database tables have predefined structures and
provide minimal query flexibility.

Let’s start with the mentioned Read function and its definition. The function definition,
shown in Listing 2.2, is designed to return a single object based on a given key. The
abstraction layer Nubes+ provides the possibility of defining object relationships; thus,
returning multiple objects from the database is a valid use case. Beldi lacks this possi-
bility, thus forcing us to adopt a less-than-optimal O(n) approach. Instead of fetching
multiple objects simultaneously, objects must be fetched one by one, introducing poten-
tial performance inefficiencies. Apart from retrieving multiple objects at once, the simple
nature of the queries prevents us from doing value-based filtering; instead, we must re-
trieve all values from the database and perform the filtering ourselves on the backend
side, introducing potential performance inefficiencies here as well.

Furthermore, to remain compatible with Nubes and continue offering the possibility of
defining one-to-many and many-to-many object relationships, we had to come up with a
solution that involved data redundancy due to the constraints we faced. In both scenarios,
we had to create an additional table containing data already present in the database
but conforming to the format compatible with Beldi queries. This approach was not
previously necessary under Nube, as custom indexes were strategically implemented and

2| Implementation Details 29

utilized instead.

We would like to acknowledge that these limitations are not inherent flaws in Beldi but
rather challenges that arose from integrating Beldi into an existing architecture. The
changes we introduced resulted from finding a solution that balances the unique features
of Beldi with the desired functionalities of Nubes+.

2.4. Lifecycle

Project lifecycle starts with the type definition. Developers define all the object types they
need and encapsulate their functions. Let’s emphasize that it is the task of a developer
to follow programming principles and standard practices and design object methods in a
way that reflects logical coherence with the objects they operate on.

Nubes+ provides a wide range of possibilities in type definition. We have already provided
details on defining object methods, including the requirements that must be followed.
Additionally, we have discussed various approaches to defining object relationships. For a
more in-depth look at the complete set of possibilities in the type definition, we encourage
readers to consult the Nubes referenced paper [11]. However, the changes introduced in
Nubes+ must also be taken into account.

After defining all type definitions, the generator generates the handler functions and re-
defines type definitions for Nubes+ needs. At this point, handler functions must be built
and deployed on AWS Lambda to enable the end client to use them in their project.

1 ./ build_handlers.sh generated/
2 sls deploy

Listing 2.8: Build and deploy.

To build and deploy, in the main directory of types definitions, project developers can
call two commands presented in Listing 2.8. The first command invokes a Bash script
that builds each handler function from the folder specified as an argument, placing the
newly obtained binary files in the created /bin folder. The second command searches for
the serverless.yml file in the directory where it was executed. The serverless.yml file is
created by the generator in the handler generation phase. Let us note that the require-
ments to run the final command are properly configured AWS credentials and installed
serverless framework [49].

30 2| Implementation Details

After the object types have been defined, the function handlers have been generated and
deployed on AWS; it remains to generate the client library where function calls perform
lambda invocations and return the result to the client.

31

3| Evaluation

The focus of this thesis was to add exactly-once execution guarantees into Nubes. To
achieve fault tolerance, we needed to bring another layer of complexity that would per-
form all the necessary logic behind it. The main focus of this chapter is to analyze the
performances of Nubes+ and understand the performance trade-off exactly-once execution
brings.

Since Nubes+ is enhanced Nubes, we will present comparisons between Nubes+, Nubes,
and baseline implementation. Baseline implementation in our evaluation later in the text
denoted as SSF, represents implementation where all the state management needed to be
designed and implemented by the developer, as one would do without Nubes. We will
provide more details later in the text.

3.1. Testing setup

We performed the same case study as it was done in Nubes [11]. We built a simple
application that covers many functionalities and features Nubes+ provides. To be precise,
we built a simple hotel booking application where User can make a Reservation for a
Room in a Hotel. The Hotel is located in a City. This kind of hotel booking application is
a common practice when putting under evaluation architectural design or microservices,
and it derives from DeathStarBench [4]. Other applications derived from DeathStarBench
include social network, media service, e.g., movie review applications, banking system, and
others. Topics are different, but the core use cases are similar.

Table 3.1 presents the list of all functionalities we tested together with the high-level access
mode to the database. Let us note here that even methods we described as read-only,
like get-user-reservations that fetches a list of reservations made by a user, are not purely
read-only anymore. We mentioned how Beldi logs each external call to the database; thus,
each read call is written to the log table. However, we put a high-level overview of the
access mode as the table value to make it intuitive to the reader what the idea behind
the method is and what it does.

32 3| Evaluation

Task Access mode Features under test

user-registration read-write export to DB

delete-user read-write delete from DB

set-hotel-rate read-write update a field in the DB

reserve read-write
export to DB,
update a field in the DB,
update many-to-many relation

recommend-location read-only get from one-to-many relation

recommend-price read-only get from one-to-many relation

login read-only invoke a method on an object

get-hotels read-only get copies of multiple objects
from one-to-many relation

get-user-reservations read-only get copies of multiple objects
from one-to-many relation

Table 3.1: Overview of all tasks performed and their purposes for the evaluation.

Let’s comment on what is shown in the table 3.1. user-registration creates a user and
exports it to the database. delete-user removes the user from the database. login checks
if the given user’s secrets match those in the database, e.g., if the password entered is
the same as the one in the database. get-user-reservations returns a list of reservations
performed by the user. set-hotel-rate updates the total hotel rating. get-hotels returns a
list of hotels in a city. reserve is used to make a room reservation, and finally, recommend-
location and recommend-price mimic a behavior when a user is recommended a few hotels
based on the location and hotel rate.
Having the same testing setup as in Nubes gives us a few benefits:

• Building a hotel booking application is a common practice when working with mi-
croservice applications; thus, the results are relevant and meaningful to the broader
community (Academia or others who develop with microservices) as we put Nubes+
in the same testing context.

• Following this approach allows us to understand the results better and understand
exactly what has changed in performance with the introduction of fault tolerance.

• Use cases cover a good portion of what is possible with Nubes+. We would like to
note here that the very fact that this type of application can be built using Nubes+
is worthy of praise as it demonstrates it has an appliance in day-to-day scenarios.

3| Evaluation 33

This application comes with different cardinality of object relationships. Namely, two
one-to-many relationships exist: between hotel and rooms and city and hotels. Users are
in many-to-many object relationships with reservations.

3.2. Testing models

We implemented three versions of the presented hotel booking application as testing
models. We put them under the test to better understand their performance comparisons.

Further in the text, we will address them as:

• SSF for the basic implementation

• Nubes for the implementation that used the Nubes methodology

• Nubes+ for the implementation that used the Nubes+ methodology

The main differences between Nubes+ and Nubes are explained in this work. They are
mostly implementation-related and involve handling the many-to-many and one-to-many
object relationships. Apart from that, anywhere where the return of multiple objects was
needed, Nubes+ had to do it using the O(n) approach.

SSF is the primary implementation where the developer does all the state management
in stateful serverless functions. Instead, in Nubes and Nubes+, all database interactions
are hidden from the developer and the client.

3.3. Environment setup

All the experimental setup was done by using different Amazon Web Services. To be
sure our computer can handle the testing load, we provisioned an EC2 instance of type
t3a.2xlarge on AWS with Ubuntu as Amazon Machine Image (AMI). t3a.2xlarge instance
type comes with 32 GigaBytes of RAM and 8 vCPU.

All our provisioned services (EC2 instance, DynamoDB, and deployed lambda functions)
were placed in the same region to avoid cross-region latencies. We used the US East,
North Virginia region for our tests, commonly known as us-east-1.

For invocation calls, we used wrk2, an open-source HTTP benchmarking tool [12]. After
the invocation call have been performed, we based our results on retrieved CloudWatch
data.

34 3| Evaluation

3.4. Performance review

Before we started the performance comparison, we had initialized DynamoDB tables and
populated them with dummy data. Data was auto-generated as the content per se was
unimportant for the evaluation.

Element Count Total in DB

Cities 5 5

Number of hotels per city 100 500

Number of rooms per hotel 25 12500

Number of reservations per room 20 250000

Number of users 50000 50000

1. Rate of invocations 100 inv/s -

2. Rate of invocations 1000 inv/s -

Table 3.2: Default parameters used to evaluate performance.

Table 3.2 shows the state of the database after initial initialization. The total number
of elements in the Reservation table upon initial seeding was 250000. After the initial
population, the total size of User table was 50000.

We were focused on measuring the time duration of each task. As mentioned, we used the
wrk2 tool to perform invocations towards our Gateway Lambda method that further ran-
domly dispatched invocations to other methods. Listing 3.1 shows the full configuration
of the parameters we used, where parameters are defined as:

• -c number of open connections

• -t number of threads

• -R rate of invocations per second

• -d duration

To get more precise results, we took into consideration the cold start. The cold start usu-
ally occurs when a resource is in an idle state. When an event occurs, the resource starts
from scratch and goes through initialization. Cold starts can take time and negatively
influence our results; thus, we discarded results obtained from the first 30 seconds of invo-

3| Evaluation 35

cations. Taking that into account, the invocation duration we measured took 120 seconds.

1 #!/ bin/bash
2 wrk2 -c 100 -t 8 -- latency -R 100 -d 150s -s hotel-full.lua

<URL_To_Gateway> 15 /path/to/result/folder

Listing 3.1: Bash script used for performance testing.
de

le
te

-u
se

r

ge
t-h

ot
el

s

ge
t-u

se
r-r

es
er

va
tio

ns

lo
gi

n

re
co

m
m

en
d-

lo
ca

tio
n

re
co

m
m

en
d-

pr
ice

re
se

rv
e

se
t-h

ot
el

-ra
te

us
er

-re
gi

st
ra

tio
n

0

50

100

150

200

250

Ta
sk

 d
ur

at
io

n

baseline-simple
nubes
nubes+

Figure 3.1: Task duration percentiles (10th, 50th and 90th) at 100 inv/s.

Figure 3.1 visually represents the 10th, 50th, and 90th percentile for duration measure-
ments across all testing models, divided by task for a rate of 100 invocations per second.
At first glance, it is evident that Nubes+ demonstrates a significantly higher duration
for each task when compared to both Nubes and SSF. Results for Nubes and SSF show
that our findings align with those concluded in [11]. Nubes introduces a slight overhead
compared to the baseline SSF implementation; however, their performances are mutually
comparable in most use cases. An interesting finding becomes apparent when one looks
at the duration distribution of Nubes+ itself. Methods marked as read-only in the table

36 3| Evaluation

3.1 perform significantly slower than ones marked as read-write. This outcome aligns
with our expectations. To ensure fault tolerance, Beldi introduces an additional level of
complexity. For each external database call performed in the serverless function, Beldi
performs additional database calls to log those operations. Furthermore, perhaps the
most crucial reason for such an increase in duration of calls lies in Beldi’s limitation of
returning only one object in the read call. In a high-level overview, imagine a hotel with
200 rooms. To retrieve a list of Room objects associated with a hotel, the process involves
initially querying the HotelRoom one-to-many join table, which provides a list of room
IDs linked to the hotel. Subsequently, a separate query to the Room table is executed
for each room ID obtained to fetch the corresponding Room object. Therefore, each time
a method in Nubes+ returns a collection of objects to the end-user or during function
processing, n invocations to the database are required, where n is the number of objects
in the collection.

We performed another test, changing the number of invocations per second from 100 to
1000. The results are shown in the Figure 3.2. Regarding the duration of the Nubes+
task, nothing changed. We can conclude from the results that increasing the invocation
rate does not influence task duration. System scale up to infinity if needed; therefore,
Nubes+ preserves the serverless solutions’ scalability.

3.5. Discussion

Performed evaluation and performance testing allows us to answer how does Nubes+ per-
form when compared to Nubes and baseline SSF model. While Nubes and SSF demon-
strated comparable results, the slower performance of our model, Nubes+, is directly
related to integrating a specialized fault-tolerant library into the system architecture.

The integration of the fault-tolerant library came with a set of challenges, involving ar-
chitectural incompatibilities and integration mismatches with the existing model Nubes.
While Beldi’s integration contributed to resilience of our system, it is accounted for the
observed slower performance, as data fetching one-by-one requires additional processing
time. However, this trade-off was expected for enhancing fault tolerance, and ensuring
the reliability of our model.

3| Evaluation 37

de
le

te
-u

se
r

ge
t-h

ot
el

s

ge
t-u

se
r-r

es
er

va
tio

ns

lo
gi

n

re
co

m
m

en
d-

lo
ca

tio
n

re
co

m
m

en
d-

pr
ice

re
se

rv
e

se
t-h

ot
el

-ra
te

us
er

-re
gi

st
ra

tio
n

0

50

100

150

200

250

Ta
sk

 d
ur

at
io

n

baseline-simple
nubes
nubes+

Figure 3.2: Task duration at 10th, 50th, and 90th percentiles, with a request rate of 1000
inv/s. The results mirror those depicted in Figure 3.1, with the distinction of baseline
SSF exhibiting increased duration in the recommend-price task.

39

4| Related Work

4.1. Serverless Workflows

Function workflows coordinate serverless functions together. As serverless functions are
event-driven, chaining them into a data processing pipeline is convenient. Cloud providers
come with a framework for defining and managing function workflows. AWS has AWS Step
Functions [29] for orchestrating workflows. Microsoft Azure’s framework for orchestrating
Azure Functions is called Azure Durable Functions [31]. Google Cloud Platform offers
Google Cloud Composer [34], a fully managed workflow orchestration.

To go a step further, the line of research is focused on optimizing the transfer of inter-
mediate states and reducing latencies between functions chained into a workflow with
the so-called control-flow paradigm. Faastlane and FaaSFlow are two such approaches.
Faastlane [6] reduces latency and accelerates function workflows by executing functions as
threads within a single process of a container instance. FaaSFlow [8] proposes a pattern
for scheduling worker-side workflows in the serverless workflow execution context. A more
recent study, DataFlower [9], proposes a data-flow paradigm for serverless workflows. In
DataFlower, a container encapsulates a function and data logic units. The function logic
unit is responsible for function execution, while the data logic unit manages asynchronous
data transmission. Furthermore, there is a collaborative communication mechanism in
place between the host and container to enhance the efficiency of data transfer.

CRUCIAL [2], is a system created to program highly parallel stateful serverless applica-
tions. The idea is to provide a solution for applications that require fine-grained support
for mutable state and synchronization, such as machine learning.

40 4| Related Work

4.2. Fault tolerance for stateful serverless systems

Halfmoon

Halfmoon [50] is the newest serverless system for fault-tolerant stateful serverless com-
puting. It uses logging approach, as Boki and Beldi do. As stated in the paper, Halfmoon
defines Boki’s and Belds’s logging protocol as symmetric as they log both reads and writes
to the external state. On the other hand, Halfmoon evolved around the idea that it suf-
fices to log reads or writes; thus asymmetrically. It provides two logging protocols that
come with exactly-once guarantees. Each of them provides either log-free reads or writes.
Halfmoon prototype is implemented on top of Boki.

Boki

Another way to achieve fault tolerance in stateful serverless applications is using Boki.
Boki is a FaaS runtime that exports a shared log API to stateful serverless applications to
manage their state while ensuring durability, consistency, and fault tolerance [5]. These
benefits are achieved through LogBook, an abstraction layer used to access shared logs.
Boki is the first system that uses distributed shared logs to manage state for stateful
serverless operations.

One of the benefits LogBook provides is read consistency. In other words, LogBook
ensures read-your-writes and monotonous readings when reading records. Another char-
acteristic of LogBook is sequence numbers, or seqnum. For every newly added log in the
record, API generates a unique seqnum, which helps to understand the relative order of
logs in LogBook. When appending a log record in a LogBook, logs are tagged and put
together with their set of tags. Tags help perform selective reads and reduce overheads as
records with the same tag form a sort of abstract stream within the LogBook. Another
characteristic of a LogBook is auxiliary data, designed to be per-log-record cache storage
and used for optimization purposes. LogBooks are multiplexed into physical logs, each
with associated metalogs to keep track of its internal state transitions. In Boki, meta-
logs play an essential role since they provide mechanisms for log ordering, ensuring read
consistency, and tolerating machine failures.

Boki comes with three support libraries that provide solutions for stateful FaaS paradigms
that benefit from using shared logs with LogBook abstraction: BokiFlow, BokiStore and
BokiQueue.

BokiFlow is a library that puts Boki in the context of fault tolerance. Beldi greatly inspired
it, guarantees exactly-one execution, comes with transactional semantics, and derives from

4| Related Work 41

Beldi’s codebase. However, BokiFlow differentiates itself from Beldi in three ways. Unlike
Beldi, which can test-and-append atomically if the current step is logged and append it
if it is not logged, this approach is not possible in BokiFlow as the LogBookAPI does
not offer the possibility of conditional log appends. In BokiFlow, user data and LogBook
are not in the same atomic scope. Moreover, BokiFlow database updates are idempotent.
There is no requirement, like in Beldi, that database update and logging of that step
have to be an atomic operation. The last thing that differentiates these two libraries is
how they implemented locks. Beldi uses conditional updates provided by the database
that meet the requirements of the atomic test-and-set operation. In BokiFlows, locks are
implemented as registers backed by replicated state machines using the LogBook API.

BokiStore is designed as a solution for durable object storage for stateful functions. Stud-
ies [1, 54] showed that shared logs can support consistent, durable, scalable high-level
data structures. The library provides transaction semantics and stores objects in JSON
format.

BokiQueue is designed as a queue library where shared logs are used to build serverless
message queues. Serverless functions can indirectly communicate with each other by using
BokiQueue’s push-and-pop API to send and receive messages.

43

5| Conclusions

5.1. Review and Critique of Beldi library

One thing is sure: Beldi library provides fault tolerance to stateful serverless functions
by extending the log-based approach from Olive. The previous chapter already described
a more detailed overview of how it was accomplished. Putting Beldi in the context of
Nubes allowed us to provide an enriched abstraction layer, Nubes+, built for stateful
serverless function, with an execution guarantee. In this section, we would like to provide
an overview of the library usage, limitations we encountered, and how we bypassed them
to stay consistent with the existing client-facing interface Nubes was already providing.

When working with third-party libraries, the developer first turns to code documenta-
tion. Speaking strictly about the Beldi codebase, one must say Beldi does not come with
user-friendly documentation since one does not exist. Although Beldi’s paper introduces
general client APIs, some uncertainties exist when one starts using them.

When developing a public library, developers should be guided by good practice where
only functions offered to the end client user are publicly exposed. To put this into the Go
programming language context, since both Beldi’s library and Nubes+ were developed in
it, clients should be able to call only exported functions in the package, where exported
functions are those that start with capital letters. This was not the case with Beldi,
where all the functions were publicly exposed. Not all of them are meant to be used
by the client since their function is specific to the development logic, and generally, that
should be hidden from the client. On the contrary, if the functions were purposely meant
to be publicly exposed and the client was given the possibility and freedom to use them,
the client should be given documentation to fully comprehend their functionalities. Then,
they can use them as they fit.

Two main functions Beldi exposes are Read and Write. Both have their internal LibRead
and LibWrite representatives for end database interactions. We noticed the Delete func-
tion was not present; only its under-the-hood version, LibDelete was. Read and Write
functions take input parameters and do additional logic before calling their representatives

44 5| Conclusions

LibRead and LibWrite. We compensated for the lack of a Delete function by following
the same logic as in Read and Write.

We noticed some hidden logic and inconsistency between the Read and Write functions
in the library. We already presented Read and Write functions in the Listing 2.2. Let’s
imagine a scenario where the client writes a value to the table called test and then reads
it like in the Listing 5.1:

1 value := map[expression.NameBuilder]expression.OperandBuilder{
2 expression.Name("Value"): expression.Value(i),
3 }
4 beldilib.Write(env, "table", "K", value)
5

6 databaseValue := beldilib.Read(env, "table", "K")

Listing 5.1: Example of incorrect library behavior.

The current setup will return nil to the databaseValue. After digging deeper into the
library codebase, we noticed the Read function has a projection expression hardcoded
to V. In the context of DynamoDB, a projection expression is a string that identifies
attributes the client wants returned. We compensated for this bug in the Write function.
Namely, when inserting objects into the database, we saved the entire object under the
attribute V. The Read function correctly returned the object afterward, which we also
tested.

Something can always go wrong; thus, error handling and logging are good coding prac-
tices. Beldi does check for errors, but in a way we disagree with. To be more specific, if
an error occurs during library function calls, the library halts program execution, or to
put it in the context of Go language, the library panics. This is a bad practice since we
do not want to halt the client’s application. Instead, errors should be propagated to the
caller and handled properly. That being said, our proposal is to refactor all functions that
should be exposed to the client to return an error as an (additional) return parameter.

Good coding practice is to log essential and critical steps to the standard output during
execution. Logging makes it easier to pinpoint the root cause of unwanted behaviors later
in the debugging and troubleshooting phase. Beldi does not log its steps, and this is
something we will propose later on in future work.

As mentioned earlier, to configure Beldi’s behavior correctly, the developer needs to create
three main tables for each lambda function, and those are LambdaId, LambdaId-collector,
LambdaId-log, where LambdaId is the name of the deployed lambda function. Beldi comes

5| Conclusions 45

with the utility function CreateLambdaTables that, given LambdaId, creates required ta-
bles. However, if developers want to use transactional workflows, they must create an
additional table in the LambdaId-local format; otherwise, an error will occur. This should
have been mentioned in the library documentation if one existed. The library does come
with the util method called CreateTxnTables. However, the table in the format LambdaId-
local is not created there. Thus, the function name is misleading.

There was another hard-coded behavior we noticed in the Beldi library we needed to
adjust. Beldi offers a SyncInvoke function that calls the callee function and waits for an
answer; see Listing 5.2. However, also shown in the Listing 5.2, in the invocation call
towards AWS, the function name is set to be in the format: beldi-dev-%s. If the developer
deployed a function called: ReserveHotel and passed to SyncInvoke string ReserveHotel as
a collee parameter, the library would, in reality, go to the client AWS and try and search
for a function with the name beldi-dev-ReserveHotel to be executed, but one does not exist.

1 func SyncInvoke(env *Env, callee string, input interface {}) (interface {}
, string) {

2

3 // function body
4

5 res, err := LambdaClient.Invoke (& lambdaSdk.InvokeInput{
6 FunctionName: aws.String(fmt.Sprintf("beldi-dev-%s", callee)),
7 Payload: payload,
8 })
9

10 // ...
11 }

Listing 5.2: Example of incorrect library behavior in SyncInvoke function.

Let us emphasize that this overview was directed to Beldi’s codebase. Those are minor
issues that the developers probably overlooked. It would be beneficial if this feedback
could be applied as it will save time for future library users.

On the other hand, Beldi’s paper nicely explains all of Beldi’s internal details and logic
and was introduced in the Proceeding of the 14th USENIX Symposium on Operating
Systems Design and Implementation.

46 5| Conclusions

5.2. Future Work

The presented abstraction layer Nubes+ opens the door to different possibilities; thus,
various improvements can be implemented. To start from its components, one of the
possible improvements regarding the Beldi library is to put in place adjustments regarding
the issues we discussed in the section 5.1. Mainly, it includes adding documentation to the
codebase, enhancing logging, reformatting the code to follow the recommended guidelines,
and correcting a few irregularities we mentioned. Furthermore, Beldi currently uses the
first version of the AWS SDK for Go package, which is slowly becoming deprecated. Thus,
the additional improvement could be refactoring the codebase to use the AWS SDK version
2 package. More about both package versions can be found in the documentation [27].

If possible, broadening the spectrum of possibilities and covering a broader range of use
cases, making Beldi’s queries more flexible, or expanding the list of API methods for
database interaction would be of great benefit. Beldi would become more adaptable as a
solution and would have a positive effect on overall Nubes+ performances. For example,
addressing the issue of not having the possibility to use database indices would result in
minimizing the number of database calls. Fewer calls to the database would make Nubes+
faster, more robust, reliable, and resilient.

Nubes+ itself has room for improvement. In the related work, we mentioned Boki 4.2
and Halfmoon 4.2, the other technologies that tackle the issue of ensuring exactly-once
execution in stateful serverless functions. It would be interesting to compare performances
with the solution that relies on Boki or Halfmoon. A step further would be designing a
solution that ensures fault tolerance customized for Nubes. That would come as a benefit
of not having any trade-offs a library may come with.

The long-term goal would be to make Nubes+ more flexible, versatile, and adaptive as a
solution. The next steps towards achieving the mentioned goals would be improving the
client-facing interface, or in other words, introducing more features to the client library
and offering clients more possibilities. We bring several ideas on how the improvement
on that part can be achieved. One is to expand the list of methods currently available
to the client. It is a first step towards making Nubes+ more flexible and more adaptive,
as it means covering more use cases on the client side. Another improvement could be
optimizing already existing methods and reducing latency. Both greatly contribute to
improving the overall user experience. An alternative approach to covering a wider range
of client use cases is introducing the possibility of generating the client library in other
programming languages. The proposed feature would enable the usage of Nubes+ in, e.g.,
web application models for backend service development, with the frontend serving as the

5| Conclusions 47

client for the generated library. The Nubes paper [11] discusses mentioned approach and
the advantages of generating the client library in JavaScript, as JavaScript is primarily
used for frontend web development. Apart from making Nubes+ available to a broader
audience by extending the generating model with additional programming languages, the
improvement of Nubes+ can go even further and make Nubes+ compatible with other
database models or cloud providers.

5.3. Overall Conclusion

One of the most significant benefits of the cloud is that it is flexible with its wide range of
services. Individuals and businesses are turning to the cloud as it allows them to be more
flexible, cost-effective, and innovative in their use of technology. A frequently used cloud
model is Function-as-a-Service. Clients upload their developed functions to the cloud,
which are triggered as a response to upcoming events or requests. Because of their great
benefits, the need to manage the state with serverless functions appeared very quickly.
Managing a state with stateful serverless functions is a challenging task that requires
careful design.

This thesis introduces Nubes+, an abstraction layer that provides fault tolerance for
object-oriented programming for stateful serverless functions. Nubes+ is enhancing Nubes,
an existing state management model for stateful serverless functions, with exactly-once
execution guarantees.

To provide exactly-once execution guarantees, Nubes+ uses Beldi for database interac-
tions. Although Beldi excels in providing fault tolerance for stateful serverless functions,
its trade-offs become apparent compared to the custom-designed and optimized nature of
Nubes. As reflected in the results, the need for effective workarounds emerged in various
scenarios, demonstrating the complexities of integrating fault tolerance into our system.

Although introducing changes in Nubes to make it compatible with the Beldi library was
challenging, the changes needed on the client side were reduced to a minimum, therefore,
the client interface remained practically the same.

49

Bibliography

[1] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D.
Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed data structures over a
shared log. SOSP ’13, page 325–340, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450323888. doi: 10.1145/2517349.2522732. URL
https://doi.org/10.1145/2517349.2522732.

[2] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. París, and P. García-López.
Stateful serverless computing with crucial. ACM Trans. Softw. Eng. Methodol., 31
(3), mar 2022. ISSN 1049-331X. doi: 10.1145/3490386. URL https://doi.org/10.

1145/3490386.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. In ACM Symposium on Operating
System Principles, 2007. URL https://www.amazon.science/publications/

dynamo-amazons-highly-available-key-value-store.

[4] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou. An open-source benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450362405. doi: 10.1145/3297858.3304013.
URL https://doi.org/10.1145/3297858.3304013.

[5] Z. Jia and E. Witchel. Boki: Stateful serverless computing with shared logs. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 691–707, 2021.

[6] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu. Faastlane: Accelerating Function-

https://doi.org/10.1145/2517349.2522732
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store
https://doi.org/10.1145/3297858.3304013

50 | Bibliography

as-a-Service workflows. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 805–820. USENIX Association, July 2021. ISBN 978-1-939133-23-6.
URL https://www.usenix.org/conference/atc21/presentation/kotni.

[7] R. Lafore. Object-Oriented Programming in C++, Fourth Edition. SAMS, 2005.

[8] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo. Faasflow: Enable
efficient workflow execution for function-as-a-service. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, page 782–796, New York, NY, USA, 2022. doi:
10.1145/3503222.3507717.

[9] Z. Li, C. Xu, Q. Chen, J. Zhao, C. Chen, and M. Guo. Dataflower: Exploiting the
data-flow paradigm for serverless workflow orchestration, 2023.

[10] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, nov 1994. ISSN 0164-0925. doi: 10.1145/
197320.197383. URL https://doi.org/10.1145/197320.197383.

[11] K. Marek. Nubes: Object-oriented programming for stateful serverless functions,
2023.

[12] Online: a HTTP benchmarking tool based mostly on wrk. wrk2. https://github.
com/giltene/wrk2 [Accessed Nov, 2023].

[13] Online: Amazon CloudWatch. Amazon cloudwatch. https://aws.amazon.com/

cloudwatch [Accessed Nov, 2023].

[14] Online: Amazon CloudWatch Documentation. What is amazon cloud-
watch? https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

WhatIsCloudWatch.html [Accessed Nov, 2023].

[15] Online: Amazon CloudWatch Working with log groups and log streams.
Working with log groups and log streams. https://docs.aws.amazon.com/

AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

[Accessed Nov, 2023].

[16] Online: Amazon DynamoDB. Amazon dynamodb. https://aws.amazon.com/

dynamodb [Accessed Nov, 2023].

[17] Online: Amazon DynamoDB Partitioning. Partitioning. https://docs.aws.

amazon.com/whitepapers/latest/comparing-dynamodb-and-hbase-for-nosql/

partitioning.html [Accessed Nov, 2023].

https://www.usenix.org/conference/atc21/presentation/kotni
https://doi.org/10.1145/197320.197383
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://aws.amazon.com/dynamodb
https://aws.amazon.com/dynamodb
https://docs.aws.amazon.com/whitepapers/latest/comparing-dynamodb-and-hbase-for-nosql/partitioning.html
https://docs.aws.amazon.com/whitepapers/latest/comparing-dynamodb-and-hbase-for-nosql/partitioning.html
https://docs.aws.amazon.com/whitepapers/latest/comparing-dynamodb-and-hbase-for-nosql/partitioning.html

| Bibliography 51

[18] Online: Amazon DynamoDB Point-in-time recovery: How it works. Point-in-time
recovery: How it works. https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/PointInTimeRecovery_Howitworks.html [Accessed Nov, 2023].

[19] Online: Amazon Simple Storage Service Documentation. Amazon simple storage
service. https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.

html [Accessed Nov, 2023].

[20] Online: Amazon Web Services. Amazon web services. https://aws.amazon.com

[Accessed Nov, 2023].

[21] Online: AWS CloudFormation. Aws cloudformation. https://aws.amazon.com/

cloudformation [Accessed Nov, 2023].

[22] Online: AWS CloudFormation Documentation. What is aws cloudforma-
tion? https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

Welcome.html [Accessed Nov, 2023].

[23] Online: AWS CloudFormation Working with stacks. Working with stacks. https://
docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html [Ac-
cessed Nov, 2023].

[24] Online: AWS Identity and Access Management Documentation. Aws identity
and access management. https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.html [Accessed Nov, 2023].

[25] Online: AWS Lambda Documentation. What is aws lambda? https://docs.aws.

amazon.com/lambda/latest/dg/welcome.html [Accessed Nov, 2023].

[26] Online: AWS Lambda Features. Aws lambda features. https://aws.amazon.com/

lambda/features [Accessed Nov, 2023].

[27] Online: AWS SDK for Go Documentation. Aws sdk for go documentation. https:

//docs.aws.amazon.com/sdk-for-go [Accessed Nov, 2023].

[28] Online: AWS Serverless. Serverless on aws. https://aws.amazon.com/serverless
[Accessed Nov, 2023].

[29] Online: AWS Step Functions. Aws step functions. https://aws.amazon.com/

step-functions [Accessed Nov, 2023].

[30] Online: AWS What is cloud computing? What is cloud computing? https:

//aws.amazon.com/what-is-cloud-computing [Accessed Nov, 2023].

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery_Howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery_Howitworks.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://aws.amazon.com
https://aws.amazon.com/cloudformation
https://aws.amazon.com/cloudformation
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/lambda/features
https://aws.amazon.com/lambda/features
https://docs.aws.amazon.com/sdk-for-go
https://docs.aws.amazon.com/sdk-for-go
https://aws.amazon.com/serverless
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
https://aws.amazon.com/what-is-cloud-computing
https://aws.amazon.com/what-is-cloud-computing

52 | Bibliography

[31] Online: Azure Entity Functions Documentation. Entity functions.
https://learn.microsoft.com/en-us/azure/azure-functions/durable/

durable-functions-entities?tabs=function-based%2Cin-process%

2Cpython-v2&pivots=csharp [Accessed Nov, 2023].

[32] Online: Azure Functions Documentation. Azure functions documentation. https:

//learn.microsoft.com/en-us/azure/azure-functions [Accessed Nov, 2023].

[33] Online: Azure What is cloud computing? What is cloud computing? https:

//azure.microsoft.com/en-us/resources/cloud-computing-dictionary/

what-is-cloud-computing [Accessed Nov, 2023].

[34] Online: Cloud Composer. Cloud composer. https://cloud.google.com/composer
[Accessed Nov, 2023].

[35] Online: GCP What is cloud computing? What is cloud computing? https://

cloud.google.com/learn/what-is-cloud-computing [Accessed Nov, 2023].

[36] Online: Getting started with IBM Cloud Functions. Getting started with ibm cloud
functions. https://www.ibm.com/products/functions [Accessed Nov, 2023].

[37] Online: Global tables - multi-Region replication for DynamoDB. Global ta-
bles - multi-region replication for dynamodb. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/GlobalTables.html [Accessed Nov,
2023].

[38] Online: Go Context Package Documentation. https://pkg.go.dev/context [Ac-
cessed Nov, 2023].

[39] Online: Go Documentation. Effective go. https://go.dev/doc/effective_go [Ac-
cessed Nov, 2023].

[40] Online: golang. Golang, language’s official website. https://go.dev/ [Accessed
Nov, 2023].

[41] Online: Google Cloud. Goodle cloud. https://cloud.google.com/?hl=en [Ac-
cessed Nov, 2023].

[42] Online: Google Cloud Functions. Cloud functions. https://cloud.google.com/

functions/?hl=en [Accessed Nov, 2023].

[43] Online: IBM Cloud. Ibm cloud. https://www.ibm.com/cloud [Accessed Nov, 2023].

[44] Online: IBM What is cloud computing? What is cloud computing? https://www.

ibm.com/topics/cloud-computing [Accessed Nov, 2023].

https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=function-based%2Cin-process%2Cpython-v2&pivots=csharp
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=function-based%2Cin-process%2Cpython-v2&pivots=csharp
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=function-based%2Cin-process%2Cpython-v2&pivots=csharp
https://learn.microsoft.com/en-us/azure/azure-functions
https://learn.microsoft.com/en-us/azure/azure-functions
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://cloud.google.com/composer
https://cloud.google.com/learn/what-is-cloud-computing
https://cloud.google.com/learn/what-is-cloud-computing
https://www.ibm.com/products/functions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://pkg.go.dev/context
https://go.dev/doc/effective_go
https://go.dev/
https://cloud.google.com/?hl=en
https://cloud.google.com/functions/?hl=en
https://cloud.google.com/functions/?hl=en
https://www.ibm.com/cloud
https://www.ibm.com/topics/cloud-computing
https://www.ibm.com/topics/cloud-computing

| Bibliography 53

[45] Online: IBM What is FaaS (Function-as-a-Service)? What is faas (function-as-a-
service)? https://www.ibm.com/topics/faas [Accessed Nov, 2023].

[46] Online: IBM What is serverless? What is serverless? https://www.ibm.com/

topics/serverless [Accessed Nov, 2023].

[47] Online: Microsoft Azure. Microsoft azure. https://azure.microsoft.com/en-us

[Accessed Nov, 2023].

[48] Online: Resilience and disaster recovery in Amazon DynamoDB. Resilience
and disaster recovery in amazon dynamodb. https://docs.aws.amazon.com/

amazondynamodb/latest/developerguide/disaster-recovery-resiliency.

html [Accessed Nov, 2023].

[49] Online: Serverless Framework Documentation; Setting Up Serverless Framework
With AWS. Setting up serverless framework with aws. https://www.serverless.

com/framework/docs/getting-started [Accessed Nov, 2023].

[50] S. Qi, X. Liu, and X. Jin. Halfmoon: Log-optimal fault-tolerant stateful serverless
computing. In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP ’23, page 314–330, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613154. URL https:

//doi.org/10.1145/3600006.3613154.

[51] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and J. Ren. Realiz-
ing the Fault-Tolerance promise of cloud storage using locks with intent. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 501–516, Savannah, GA, Nov. 2016. USENIX Association. ISBN 978-1-931971-
33-1. URL https://www.usenix.org/conference/osdi16/technical-sessions/

presentation/setty.

[52] B. Stroustrup. What is "object-oriented programming"? (1991 revised version). In
1st European Software Festival, 1991.

[53] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and Paradigms
(2nd Edition). Prentice-Hall, Inc., USA, 2006. ISBN 0132392275.

[54] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Munshed, M. Dhawan, J. Stabile,
U. Wieder, S. Fritchie, S. Swanson, M. J. Freedman, and D. Malkhi. vCorfu: A
Cloud-Scale object store on a shared log. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 35–49, Boston, MA, Mar.

https://www.ibm.com/topics/faas
https://www.ibm.com/topics/serverless
https://www.ibm.com/topics/serverless
https://azure.microsoft.com/en-us
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://www.serverless.com/framework/docs/getting-started
https://www.serverless.com/framework/docs/getting-started
https://doi.org/10.1145/3600006.3613154
https://doi.org/10.1145/3600006.3613154
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/setty
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/setty

54 5| BIBLIOGRAPHY

2017. USENIX Association. ISBN 978-1-931971-37-9. URL https://www.usenix.

org/conference/nsdi17/technical-sessions/presentation/wei-michael.

[55] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and transac-
tional stateful serverless workflows. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 1187–1204. USENIX Association,
Nov. 2020. ISBN 978-1-939133-19-9. URL https://www.usenix.org/conference/

osdi20/presentation/zhang-haoran.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-michael
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wei-michael
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

55

List of Figures

2.1 Architectural overview of an execution flow. 17
2.2 Invocation flow with Nubes as an abstraction layer. 18
2.3 Invocation flow with Nubes+ as an abstraction layer. 19
2.4 Example of data stored on DynamoDB with Nubes as an abstraction layer. 24
2.5 Example of data stored on DynamoDB with Nubes+ as an abstraction layer. 24

3.1 Task duration percentiles (10th, 50th and 90th) at 100 inv/s. 35
3.2 Task Duration Percentiles at 1000 inv/s. 37

57

List of Tables

3.1 Task, access mode and feature under test 32
3.2 Default parameters used to evaluate performance. 34

59

Listings

1.1 Example of naming convention and encapsulation in Go 8
1.2 Methods defined in ReferenceNavigationList object type. 9
1.3 Allowed method signatures. 10
2.1 Example of objects in many-to-many relationship. 21
2.2 Beldi’s APIs for database reads and writes. 21
2.3 Example of objects in one-to-many relationship. 22
2.4 Passing a handler function to the Start method. 25
2.5 Passing a handler function to the Start method. 26
2.6 Nubes+ library functions. 26
2.7 Env structure holds information needed for Beldi to provide its guarantees.

TypeName is added by us to know on which object type the function was
called. 27

2.8 Build and deploy. 29
3.1 Bash script used for performance testing. 35
5.1 Example of incorrect library behavior. 44
5.2 Example of incorrect library behavior in SyncInvoke function. 45

61

Acknowledgements

This thesis brings to an end my studies and my Politecnico di Milano story, which greatly
contributed to my personal growth. Many things marked my studies in Milan. Milan
itself, travels, and conversations. I will forever be grateful for all the memories I made
here, the people I met, those who passed through, and those who remained in my life
during this time. I am happy to say there were many of them.

I would like to thank my mentor, Professor Alessandro Margara, for his guidance in
developing this thesis.

Many thanks to all my friends who enriched my studies and made it fun, exciting, and
unforgettable. Without you, this story would not be the same.

The biggest thank you goes to my family, who supported me and were with me in all the
easy and difficult moments. Without you, this story would not be possible.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Cloud Computing
	Serverless vs Function-as-a-Service
	Faults, Failures and Fault tolerance
	Object-Oriented Programming
	Golang and OOP

	Used Technologies
	Nubes
	Beldi
	Amazon Web Service

	Implementation Details
	Architecure and General Overview
	Differences with Nubes
	Database - tables and queries
	SSFs, handlers and client library
	Generator

	Limitations
	Lifecycle

	Evaluation
	Testing setup
	Testing models
	Environment setup
	Performance review
	Discussion

	Related Work
	Serverless Workflows
	Fault tolerance for stateful serverless systems

	Conclusions
	Review and Critique of Beldi library
	Future Work
	Overall Conclusion

	Bibliography
	List of Figures
	List of Tables
	Listings
	Acknowledgements

