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Abstract

In the present thesis, a data-driven approach for the optimization of detailed
kinetic mechanisms is proposed. This methodology is based on heuristic op-
timization algorithms. The curve matching (CM) index is proposed as alter-
native error function to classical norms. In CM calculation the similarities be-
tween model’ responses and experimental data is measured quantitatively and
qualitatively, considering also the first derivatives and shapes of corresponding
splines. A novel protocol for the optimization of PLOG reactions is established.
The interdependencies between Arrhenius expressions at different pressures
were accounted for by handling three random variables for each PLOG, re-
gardless of the number of discrete pressures specified in the mechanism. The
Cumulative Sensitivity Function (CSF) and a Cumulative Impact Function (CIF)
were introduced to make reaction selection automatic, fast, and efficient. The
development above-mentioned methodology represents the underlying func-
tioning of the OptiSMOKE++, a new C++ toolbox for the optimization of detailed
kinetic mechanisms. OptiSMOKE++ is an flexible interface for the communi-
cations between other open source softwares like OpenSMOKE++, DAKOTA,
Curve Matching and SciExpeM. This framework enables the simultaneous use
of experimental targets from different facilities, i.e. Batch Reactors, Plug Flow
Reactors (PFR), Perfectly Stirred Reactor (PSR), Shock Tubes (ST), Rapid
Compression Machines (RCM) and 1D flames. Using this methodology, an
optimized mechanism for ammonia combustion is obtained over a wide range
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of operating conditions. The approach involved all 101 kinetic parameters si-
multaneously. The role of diluents like H2O and CO2 in operating conditions
relevant to applications for MILD combustion of hydrogen and syngas was dis-
cussed and analysed by means of a virtual species analysis (VSA), Global
Sensitivity Analysis (GSA), and Optimization. The VSA suggests that mea-
surements of ignition delay time (IDT) and species concentrations in perfectly
stirred reactors (PSR) in diluted conditions are ideal candidates for the estima-
tion of collision efficiencies as their physics is significantly third body driven.
Eventually, the errors introduced by the replacement of the TROE formulation
for fall-off reactions with PLOG were quantified for hydrogen combustion, and
a method to extract information from data about third body efficiency of strong
colliders in PLOG formulation was proposed in case high-level ab-initio calcu-
lations are not available. Finally, an experimental campaign was performed
to investigate options for optimal operating conditions for the Université Libre
de Bruxelles (ULB) flameless furnace fired with ammonia/hydrogen blends. In
particular, the campaign aimed at identifying trade-off between NOx emissions
and ammonia slip. In Reynolds-averaged Navier-Stokes simulations, substan-
tial differences between mechanisms predictions and experimental data were
observed in terms of NOx emissions. A combination of Uncertainty Quantifica-
tion (UQ) and Chemical Reactor Network (CRN) was adopted to propagate the
uncertainty of NOx kinetics to the CFD simulations.
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Résumé

Dans cette thèse, une approche basée sur les données pour l’optimisation
des mécanismes cinétiques détaillés est proposée. Cette méthodologie est
basée sur des algorithmes d’optimisation heuristiques. L’indice de correspon-
dance des courbses (Curve Matching) est proposé comme fonction de perte
alternative aux normes classiques. Dans le calcul du CM, les similarités entre
les réponses du modèle et les données expérimentales est mesurée quan-
titativement et qualitativement, en considérant les dérivées premières et les
formes des splines correspondants. Un nouveau protocole pour l’optimisation
des réactions de PLOG est établi. Les interdépendances entre les expressions
d’Arrhenius à différentes pressions ont été prises en compte en manipulant
trois variables aléatoires pour les réactions PLOG, et ce quelque soit soit le
nombre de pressions discrètes spécifiées dans le mécanisme. Les fonctions
de sensibilité cumulée (CSF) et d’impact cumulé (CIF) sont introduites afin
d’améliorer la qualité de l’analyse et pour rendre la sélection des réactions
automatique, rapide et efficace. La méthodologie de développement men-
tionnée ci-dessus représente le fonctionnement sous-jacent d’OptiSMOKE++,
une nouvelle boîte à outils C++ pour l’optimisation des de mécanismes ciné-
tiques détaillés. OptiSMOKE++ est une interface flexible que Pouvant être cou-
plée avec des logiciels open-source tels que OpenSMOKE++, DAKOTA, Curve
Matching et SciExpeM. Ce cadre permet l’utilisation simultanée de cibles ex-
périmentales provenant de différentes installations, comme des réacteurs dis-
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continus, PFRs, PSRs, ST, RCMs et flammes 1D. En utilisant cette méthodolo-
gie, un mécanisme est optimisé pour la combustion de l’ammoniac sur une
large gamme de conditions de fonctionnement. L’approche fait intervenir si-
multanément les 101 paramètres cinétiques. Le rôle des diluants tels que H2O
et CO2 dans les conditions d’opérations pertinentes pour les applications de
combustion MILD de l’hydrogène et du gaz de synthèse a été a effacer discuté
et analysé à l’aide d’une analyse virtuelle des espèces (VSA), d’une analyse de
sensibilité globale (GSA) et de l’optimisation. Dans des conditions de dilution,
la VSA suggère que les mesures du délai d’allumage (IDT) et des concen-
trations d’espèces dans les réacteurs parfaitement mélangés (PSR) sont des
candidats idéaux pour l’estimation de l’efficacité des collisions. L’estimation
de l’efficacité des collisions, car leur physique est fortement influencée par
les corps tiers. Les erreurs introduites par le remplacement de la formulation
TROE pour les réactions de retombée avec PLOG ont été quantifiées pour la
combustion de l’hydrogène, et une méthode pour extraire des informations à
partir des données sur l’efficacité du troisième corps des collisionneurs forts
dans la formulation PLOG a été proposée dans le cas où des calculs d’abitio
de haut niveau ne sont pas disponibles. Enfin, une campagne expérimen-
tale a été réalisée pour étudier les options de conditions de fonctionnement
optimales pour le brûleur sans flamme de l’ULB alimenté par des mélanges
ammoniac/hydrogène. En particulier, la campagne visait à identifier le com-
promis entre les émissions de NOx et de l’ammoniac. Dans les simulations
RANS, des différences substantielles entre les prédictions des mécanismes et
les données expérimentales ont été observées en termes d’émissions de NOx.
Une combinaison de quantification d’incertitude (UQ) et de réseau de réacteurs
chimiques (CRN) a été adoptée pour propager l’incertitude de la cinétique des
NOx aux simulations CFD.
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Sommario

Questa tesi propone un approccio per l’ottimizzazione di meccanismi cinetici
dettagliati. Questa metodologia è basata su algoritmi di ottimizzazione eu-
ristici. L’indice di similarità tra curve (Curve Matching) è proposto come fun-
zione obiettivo alternativa alle classiche norme (L2/L1). Nel calcolo del CM,
la somiglianza tra le risposte dei modelli e i dati sperimentali viene misurata
quantitativamente e qualitativamente, considerando anche le derivate prime e
le forme delle corrispondenti spline. Un nuovo protocollo per l’ottimizzazione
delle reazioni PLOG è stabilito, dove le interdipendenze tra le espressioni di Ar-
rhenius a diverse pressioni vengono prese in considerazione gestendo tre vari-
abili casuali per ogni PLOG, indipendentemente dal numero di pressioni dis-
crete specificate nel meccanismo. La funzione di sensibilità cumulativa (CSF)
e una funzione di impatto cumulativo (CIF) sono stati introdotti per rendere la
selezione delle reazioni automatica, veloce ed efficiente. La metodologia di
sviluppo di cui sopra rappresenta il funzionamento di base di OptiSMOKE++,
un nuovo toolbox C++ per l’ottimizzazione di meccanismi cinetici dettagliati.
OptiSMOKE++ è un’interfaccia flessibile per la comunicazione tra altri soft-
ware open source come OpenSMOKE++, DAKOTA, Curve Matching e SciEx-
peM. Questa struttura permette l’uso simultaneo di target sperimentali da di-
verso tipo, come ad esempio reattori batch, PFRs, PSRs, ST, RCMs e fiamme
1D. Usando questa metodologia, un meccanismo ottimizzato per la combus-
tione dell’ammoniaca è ottenuto su una vasta gamma di condizioni operative.
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Quest’ultimo lavoro coinvolge 101 parametri cinetici simultaneamente. Il ruolo
dei diluenti come H2O e CO2 nelle condizioni operative rilevanti per le appli-
cazioni di combustione MILD di idrogeno e syngas è stato discusso e analiz-
zato per mezzo di un’analisi alle specie virtuali (VSA), Global Sensitivity Anal-
ysis (GSA) e ottimizzazione. La VSA suggerisce che le misurazioni del tempo
di ritardo dell’accensione (IDT) e delle concentrazioni di specie in reattori per-
fettamente agitati (PSR) in condizioni diluite sono candidati ideali per la stima
delle efficienze di collisione in quanto la loro fisica è significativamente guidata
dal terzo corpo. Alla fine, gli errori introdotti dalla sostituzione della formu-
lazione TROE con il formato PLOG sono stati quantificati per la combustione
dell’idrogeno, e un metodo per estrarre informazioni dai dati sull’efficienza di
terzo corpo nella formulazione PLOG è stato proposto nel caso in cui calcoli
abitio di alto livello non siano disponibili. Infine, una campagna sperimentale
nel forno dell’ULB è stata eseguita per studiare la fattibilità della combustione
senza fiamma con miscele di ammoniaca/idrogeno. In particolare, la cam-
pagna mira a identificare il trade-off tra emissioni di NOx e ammoniaca. Nelle
simulazioni RANS, sono state osservate differenze sostanziali tra previsioni e
i dati sperimentali in termini di emissioni di NOx. Una combinazione di Uncer-
tainty Quantification (UQ) e Chemical Reactor Network (CRN) è stata adottata
per propagare l’incertezza della cinetica di NOx attraverso le simulazioni CFD.
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Nomenclature

Acronyms

Abbrevation Description

GHG greenhouse gas

RE renewable energy or relative error

SEC smart energy carriers

SEC smart energy carriers

P2F power to fuel

HC hydrocarbons

SNCR selective non-catalytic reduction

MILD moderate or intense low-oxygen dilution

EGR exhaust gases recirculation
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Nomenclature

HITAC high temperature air combustion

CDC colorless distributed combustion

DNS direct numerical simulations

PSR perfectly stirred reactor

WSR well stirred reactor

JHC jet in hot coflow

PFR plug flow reactor

ER equivalence ratio

PLOG pressure logarithmic interpolation

IDT ignition delay time

RBG reference bath gas

CFD computational fluid dynamics

AI-TST-ME abinitio transition stat theory-based master equation

UQ uncertainty quantification

B2B-DC bound to bound data collaboration

PCE polynomial chaos expansion

MUMPCE method of uncertainty minimization using PCE

FFCM foundational fuel chemistry model

GA genetic algorithm

PSO particle swarm optimization

EA evolutionary algorithm

CM curve matching

ULB université libre de bruxelles

obj objective function

2



Nomenclature

NE number of experimental dataset

NY number of data point in a dataset

LHS latin hypercube sampling

HDMR high-dimensional model representation

SM solution mapping

MC monte carlo

TC test case

CSF cumulative sensitivity function

CIF cumulative impact function

RCM rapid compression machine

ST shock tube

PES potential energy surface

VRC-TST variable reaction coordinate transition state theory

JSR jet stirred reactor

HAB height above the burner

LSA local sensitivity analysis

GSA global sensitivity analysis

VSA virtual species analysis

LFS laminar flame speed

FTIR fourier transform infrared

ID internal diameter

RANS Reynolds-averaged Navier-Stokes

PaST Partially stirred reactor

ROPA rate of production analysis
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Nomenclature

Latin Symbols

Symbol Description Units

A pre-exponential factor cm−mol− s

n temperature exponent cm−mol− s

Ea activation energy calmol−1

F fuel or canonical distribution −

OX oxidiser −

P products or pressure −

[Xi] molar concentration molm3

k kinetic constant cm−mol− s

C̃p molar specific heat calmol−1K−1

H̃ molar specific enthalpy calmol−1

S̃ molar specific entropy calmol−1K−1

Ke equilibrium constant −

R ideal gas constant calmol−1K−1

r reaction rate molcm−3s−1

f uncertainty factor −

P probability −

V covariance matrix or variance −

d dissimilarity measure −

L1 L1 norm −

L2 L2 norm −
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Nomenclature

C concentration or correction molm−3

or −

B sensitivity matrix −

p parameter or pressure −

J Jacobian matrix −

s local sensitivity coefficient −

s̃ normalized local sensitivity coefficient −

I impact coefficient −

S global sensitivity coefficient −

E estimated value −

U random variable −

H hessian −

X random variable for PLOG optimization −

x molar fraction molmol−1

[M ] mixture concentration molm−3

Greek Symbols

Symbol Description Units

υ stoichiometric coefficients −

α third body efficiency or logarithm of pre-exponential

factor or mode strengths in PCE

−
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Nomenclature

κ natural logarithm of kinetic constant −

ε activation temperature or experimental error −

σ standard deviation −

ζ independent variable s or m

θ vector of model parameters −

ω vector of selected model parameters −

ξ vector active model parameters or germ −

Λ PCE functional −

λ set of multi-indices −

γ single multi-index −

ψ polynomial belonging to family of orthogonal polyno-

mials

−

ω entire sample space −

∇ mathematical operator −

χ canonical distribution −

β third body efficiency in PLOG extended format −

τ time scale or residence time s

Superscripts-Subscripts
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Nomenclature

Symbol Description

f forward

b backward

− average or reference

0 nominal or initial

p pearson

SP species

* re-parametrized

TH thermal effect

TB third body effect

CH chemical effect

∞ high-pressure limit

low low-pressure limit

r reduced or relative to the rth reaction

mix mixing

a air

f fuel

rec recirculated
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CHAPTER1
Introduction and State-of-the-art

Nowadays our society massively relies on energy. Our lifestyles contribute
to increase consumption, which is estimated to grow of about 20% by 2040.
The way we produce energy has a demonstrated impact over the environment:
climate-change is affected by greenhouse gas production, particularly by CO2

emissions, which represents 80% of the global anthropogenic emissions [174].
Global warming and air pollution is pushing to identify new solutions that can
reduce CO2 and Greenhouse Gas (GHG) emissions ( [187]), through the re-
placement of fossil fuels with renewable energy (RE) (e.g. solar, wind). In this
context, a significant adoption of renewable sources is expected in the future
years, to meet the long-term objective of CO2 neutrality and mitigate the ef-
fects of global warming. The European objectives for 2030 consist in cutting at
least 50% of greenhouse gas (GHG) emissions (from 1990 levels), with a min-
imum sharing of renewable of 32%, and improving energy efficiency of about
32.5% [1]. However, The intermittent nature of renewable sources requires
the development of storage solutions that can guarantee the availability of the
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1.1. Hydrogen and Ammonia as Smart Energy Carriers

required energy supply, when renewable sources are not available. Indeed,
chemical molecules are characterised by very large energy densities (tens of
MJ/kg), and they are ideal candidates for energy-intensive processes, where
the use of renewable sources (e.g. wind and solar) and other storage solutions
(e.g. batteries) is not realistic. Thus, energy storage in the form of chemical
compounds, sometimes indicated as Smart Energy Carriers (SEC), can lead
to a true integration between renewable sources and existing infrastructure for
energy conversion, such as combustion systems. Notwithstanding the inter-
mittent nature of RE sources (wind, solar), continuous, and on demand, power
production can be achieved by exploiting RE surplus in Power to Fuel (P2F)
techniques ( [50]). Nevertheless, combustion science will need to undergo pro-
found innovation, to promote novel technologies able to deal simultaneously
with resources availability, and environmental impact, by avoiding pollutants
formation at the source, rather than treat them downstream. The fuels, indus-
try relies upon, are and will continue changing asking for the new technology to
be fuel flexible. Syngas, biogas, natural gas, hydrogen and ammonia enriched
fuels are emerging. Yet, attention must be paid also to pollutants such as NOx
and soot. Since even “clean gases” (i.e. hydrogen) form NO and NO2 (i.e. ni-
tric oxides: NOx) at high temperatures via the Zeldovich mechanism [67], also
known as "Thermal NOx" mechanism. Other kinetics paths lead to NO forma-
tion (prompt, fuel, N2O-intermediate, NNH-intermediate); NO is subsequently
converted to NO2 in the atmosphere, contributing to photochemical smog and
acid rains. Soot is a known human carcinogen, also responsible for other respi-
ratory diseases, since it contributes to particulate matter. It derives from incom-
plete combustion of hydrocarbons in fuel-rich mixtures, and once widespread
into the atmosphere, soot can directly absorb incoming solar radiation, causing
warming and playing a role in ice melting, due to its high emissivity.

1.1 Hydrogen and Ammonia as Smart Energy Carriers

Hydrogen is one of the most promising among the SEC, in spite of the chal-
lenges related to its storage and transportation. In order to bypass these com-
plications, "green" H2 may be converted to other molecules with different prop-
erties. For instance, H2 can be produced via water electrolysis exploiting the
energy surplus of solar panels [12], converted into ammonia to facilitate its
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1.1. Hydrogen and Ammonia as Smart Energy Carriers

storage and transportation [91], eventually re-converted in-situ for power gen-
eration [12]. Originally, ammonia was given prominence for its role in both
fuel NOx formation and abatement through selective non-catalytic reduction
(SNCR) (see [34]). The importance of ammonia is also related to other re-
newable energy sources: for example, it is a by-product of anaerobic digestion
of municipal wastewater sludges [5], and it is found in trace amounts in bio-
gas [171]. However, Ammonia shows a very high potential ( [91]), as it has
very high H2 density and it can be liquefied at pressures higher than 9.9 bar
at ambient temperature. From an economical perspective, "green ammonia"
was also found to be competitive with natural gas-based ammonia plants ("gray
ammonia"), as a result of the recent cost reductions in solar and wind technolo-
gies ( [132]). However, compared to other liquid fuels (e.g. gasoline), ammonia
presents some safety issues, being considered a high health hazard, since it
is corrosive to the skin, eyes and lungs. Once it turns to gas, ammonia is
colorless with a sharp, penetrating, intensely irritating odor, and it contributes
to atmospheric aerosol loading, particularly to particulate matter (PM) 2.5 (i.e.
small particles). Takizawa [175] and Hayakawa [73] performed laminar flame
speed measurements for ammonia in different conditions, showing its limited
reactivity, which may lead to combustion instabilities ( [189]). To overcome
these practical issues, NH3 combustion doped with hydrogen was tested in
internal combustion engines ( [62]), rapid compression machines ( [134]), and
swirl burners ( [188,189]) for utilisation within a gas turbine environment, where
it was found to have significant NOx emissions. Recently, Dai et al. [38] per-
formed experiments using NH3/DME mixture, and studied their interaction in a
rapid compression machine.

The pioneering work of Miller and Bowman [113] in modelling of ammonia
kinetics, was validated via several species measurements and laminar flame
speeds ( [71, 106]). Lately, Glarborg [67] reviewed the nitrogen chemistry in
combustion, including the NH3 sub-mechanism. Nowadays, other widely val-
idated kinetic models for ammonia oxidation are available in literature, for in-
stance those from Shrestha [157], Otomo [127] and Stagni [170]. The combus-
tion kinetics of ammonia (NH3) is one of the most active research fields, due to
the high potential of ammonia as a fuel, from both an economic and a technical
perspective [91]. The combined use of NH3 with conventional fuels like H2 or
CH4 has also been studied in order to improve shortcomings related to its low
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1.2. MILD combustion

reactivity [99, 189]. Also, optimal operating conditions were found to minimize
NOx emissions [91]. Therefore, several mechanisms describing the oxidation
of NH3 and NH3/H2 fuel blends were developed [8, 100, 107, 157]. Glarborg
et al. [67] recently proposed a comprehensive nitrogen chemistry model, in-
cluding ammonia itself. This mechanism was recently updated to account for
the interactions between DME and NH3 during ignition at high pressure and
low-temperatures [38]. Anyway, uncertainties still persist in the characteriza-
tion of ammonia chemistry for an accurate prediction of ignition, speciation,
and laminar flame speed [67]. The optimization of relatively compact kinetic
mechanisms, such as methane, hydrogen, and ammonia is particularly attrac-
tive, because of i) the large availability of high-fidelity data [36], ii) the current
interest in e-fuels produced from renewable energy [50], and iii) their compact
size allowing to benchmark the suitability of different optimization algorithms
before their application to more complex networks.

1.2 MILD combustion

Oxyfuel combustion [201] overcomes NOx formation by eliminating or strongly
limiting nitrogen content in the oxidizer. Over the last years, particular attention
was paid to flameless combustion, introduced by [206], which is characterized
by preheated and diluted reactants, non-visible flame, and uniform distributed
temperatures, induced by internal exhaust gas recirculation (EGR). Later on,
high temperature air combustion (HiTAC) ( [85]), Moderate or Intense Low oxy-
gen Dilution (MILD) ( [28]) and Colorless Distributed Combustion (CDC) ( [6,7])
were also investigated. Moderate or Intense Low-oxygen Dilution (MILD) [28],
or flameless, combustion is well-known for the inhibition of pollutant forma-
tion, such as NOx and soot. This regime is obtained through preheating of
the oxidizer flow, and a specific internal fluidynamics of the burner in con-
junction with high velocity inlets, responsible for internal flue gases recircu-
lation [206]. This results in a localized reduction of O2, and a strong dilution
of the fuel/oxidizer mixture in combustion products (i.e CO2 and H2O), lead-
ing to delayed ignition and to a homogeneous as well as distributed reaction
zone [174] operating at intermediate temperatures. This guarantees very large
combustion and energy efficiencies, while suppressing both soot and thermal
NOx formation, and causes the disappearance of the flame front and the asso-
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1.2. MILD combustion

ciated temperature gradients [128], with beneficial effects on metallic materials
longevity and reliability [28]. In recent years, researchers focused on the na-
ture of the reaction structure, and recent evidences suggest that it is made
of many thin reaction zones, interacting with each other [128]. From a mod-
elling perspective, the macroscopically distributed nature of MILD combustion
questions the use of flamelet-like models, as shown in Direct Numerical Sim-
ulations (DNS) [114]. Minamoto and Swaminathan [114] confirmed the need
for non-flamelet approaches to deal with the frequent interactions between re-
action zones in MILD combustion, advocating canonical reactors, such as per-
fectly stirred reactors (PSR). Cavaliere and De Joannon [28] suggested that,
in terms of fluid-dynamics, the reactive zone in MILD combustion might evolve
as in a well stirred reactor (WSR). The feasibility of such an approximation
was recently demonstrated through systematic comparison with experimental
data from attached flames ( see Chen et al. [31]). Lately, Medwell et al. [110]
successfully extended such hypothesis to the Jet in Hot Coflow (JHC) flames,
focusing on the chemistry dominated effects, to distinguish among two differ-
ent resembling regimes in non-premixed flames, i.e. MILD combustion and
autoignitive lifted flames. Conclusively, Zieba et al. [212] proposed to adopt a
series of plug flow reactors (PFRs) with recirculation, while Rocha et al. [141]
adopted a freely-propagating-flame model with exaust gas recirculation (EGR).
From the chemical kinetics perspective, MILD combustion is a very challeng-
ing process to model. The well mixed conditions of the process imply that fuel
conversion is chemically controlled, thus requiring detailed kinetic mechanisms
to capture relevant phenomena. Experimental data are crucial to understand
the kinetic role of diluents such as CO2 and H2O, especially in third body reac-
tions [66, 146], and to assess the uncertainty related to currently employed ki-
netic parameters, in particular collision efficiencies, whose knowledge is crucial
in low-temperature combustion [36,86]. Other open issues in MILD regime con-
cern the formation of pollutants. Indeed, unconventional routes, such as N2O
and NNH intermediate drive NOx formation [65], since thermal NOx is inhibited
by the reduced temperatures. In spite of the reasonable number of investiga-
tions involving natural gas or methane (See [39,79,128,133,174,194,195]), the
amount of detailed studies available for furnaces operating under flameless or
MILD conditions using non-conventional fuels is scarce and limited to few op-
erating conditions (see [10, 53, 116, 147]). For the first time in literature, [169]
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1.3. Open challenges in combustion kinetics for diluted conditions

investigated the feasibility of pure ammonia combustion MILD using a lab-scale
cyclonic burner, varying the mixture equivalence ratio, nominal thermal power
and inlet preheating level. They pointed out the need of operating above 1300
K to ensure both combustion stability and low NOx emissions. A minimum in
NOx emissions (less than 100 ppm) was observed for equivalence ratios (ER)
between 1 and 1.1, with tolerable ammonia slip.

1.3 Open challenges in combustion kinetics for diluted conditions

Due to the role of diluents in MILD regime, kinetic mechanisms validated us-
ing conventional combustion data usually result in non-accurate estimation for
these conditions [11,63,105,146] . In several recent studies of methane com-
bustion [11,145], the kinetic and thermal contributions of diluents like CO2 and
H2O was isolated by introducing fictitious inert species, with the same thermo-
dynamic properties of the diluent, inside the mechanism. Sabia et al. [146]
demonstrated that the high collisional efficiencies of CO2 and H2O affect the
ignition delay time of low-alkanes, mainly through reactions which are related
to the H2/O2 mechanism. Recently, Sabia and De Joannon [145] experimen-
tally studied hydrogen oxidation in lean and highly diluted conditions using a
perfectly stirred reactor, and showed inconsistencies with recent model predic-
tions. Curran [36] briefly described the impact of third body efficiencies for the
laminar flame speed of methane/air mixtures at different pressures, and sug-
gested that they could have major impact in oxy-fuel conditions. The rate of
fall-off reactions is usually modelled using the Troe format [182], which is char-
acterized by non-negligible fitting errors. PLOG [140] expressions are gradually
substituting the previous formulation of pressure-dependent rate constants, as
they offer a higher accuracy [86]. However, the current CHEMKIN implemen-
tation for PLOG reactions does not include the parametrization of third body
efficiencies. Klippenstein [86] and Curran [36] pointed this out as a major is-
sue for kinetic modelling of EGR, MILD and oxy-fuel combustion. Recently, a
modified PLOG format was proposed [87], where one PLOG might be speci-
fied for each bath gas and the conversion to the overall rate constant can be
calculated through a linear mixture rule. To use this format, high-level theo-
retical calculations or experiments for each bath gas should be performed for
each reaction. Additionally, it was demonstrated that non-linear mixture rules
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1.3. Open challenges in combustion kinetics for diluted conditions

should be implemented in future formulations as they significantly impact on
the model performance [97]. However, the outstanding main problem consist
in ab-initio calculations being more likely to be carried out for weak colliders
(i.e. He, Ar, Kr, H2, N2, O2) [74, 86], as more complex protocols need to be
employed for strong ones, such as CO2 [86] and H2O [97]. For this reason,
Jasper [82] predicted trajectory-based collision parameters for 307 pressure-
dependent unimolecular decompositions of alcohols, hydroperoxides, and hy-
drocarbons in several bath gases, excluding CO2 and H2O. The latter was also
shown to have a temperature-dependent collision efficiency relative to others
colliders [83]. It is worth noting that the modified PLOG formalism allows de-
scribing temperature-dependent collision efficiencies. On the contrary, defining
separate Arrhenius parameters for different bath gases using the TROE for-
malism produces incorrect results at high pressures, since the calculated rate
coefficients are effectively multiplied by the number of collider specific reac-
tions [86, 193]. Nevertheless, this practice is adopted in some kinetic mech-
anisms available in the literature. The estimation of plausible values for the
Chaperon efficiencies by comparison between experimental data and models
predictions started with the pioneering work of Slack [162], who estimated the
efficiency of argon and nitrogen in H + O2 + M = HO2 + M from shock tube
measurements of ignition delay time (IDT). Brabbs and Robertson [21] esti-
mated that of CO2 following a similar procedure. Since then, much effort was
put in this direction [9, 52, 112, 152]. In practice, the IDT is measured in a
pure reference bath gas (RBG) (e.g. Ar or N2) in conditions relevant to the
smallest possible set of reactions, including the one of interest. Then, the rate
constant for the RBG is inferred, considering the other sensitive reactions as
certain. Secondly, experiments of the same macroscopic quantity are carried
out in mixtures of inert compounds (e.g. H2O/Ar or H2O/N2) and the rate con-
stant for the second diluent can be inferred using experimental data assuming
a linear mixture rule. The ratio between the two rate constants, at the pres-
sure of the experiment, is a measure of the third-body efficiency of the stronger
collider. However, four flaws can be identified for this procedure: (i) fall-off re-
action rate constants not necessarily follow a linear mixture rule [97]; (ii) there
often is a mismatch between the operating pressure of the experiment and the
true low-pressure limit for the investigated reaction [23]; (iii) The inferred rate
parameters values strongly depend on the adopted kinetic model, and (iiii) the
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results strongly depend on the particular set of experimental data used as tar-
get. Recently, Lei and Burke [97] discussed, and quantified the uncertainties
introduced by the assumptions of the linear mixture rule and low-pressure limit,
and suggested best practices to design experiments where their influence is
reduced to a minimum. Nowadays, advanced tools and protocols are available
for parameters estimation allow to account for parameter uncertainties using
large amount of experimental data as targets.

1.4 Quantification and Optimization in detailed kinetic mechanisms

The steady increase in computational power enables us to describe the be-
havior of complex combustion processes with more detail in Computational
Fluid Dynamics (CFD) simulations, thus allowing us to more accurately predict
how changes to the system would affect critical parameters, such as emis-
sions, maximum temperature, efficiency, etc. This is crucial in the development
of novel technologies, as a more traditional trial-and-error approach for many
cases quickly becomes unfeasible, due to both time consumption and costs.
Yet, we are far from a day-to-day use of CFD simulations for proper design
purposes. However, as regulations are growing stricter and industries need
to quantitatively prove compliance with limits on main pollutants, such tools
have seen their popularity increase as powerful alternative or complement to
experimental measurements. The complexity of a combustion simulation can
be expressed in many ways, i.e. geometric, flow modeling, chemical mecha-
nism complexity, etc. Only in recent years it became feasible to account for
more detailed chemical mechanisms in large scale simulations [104]. The de-
velopment of detailed kinetic mechanisms for fuels combustion supports and
facilitates the implementation of cleaner fuels and more efficient combustion
technologies, in the perspective of a reduced environmental impact, a differ-
entiation of energy sources and their wiser utilization [104]. From a chemical
kinetics perspective, a combustion process involves a considerable amount of
species connected by a complex network of reactions. The increase in comput-
ing capabilities and in the accuracy and availability of experimental data [2, 3]
pushes the development of kinetic models of increasing complexity in terms of
number of species ( 103) and reactions ( 104) [104]. The rate constants of these
reactions constitute the parameters of such models, together with thermody-
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1.4. Quantification and Optimization in detailed kinetic mechanisms

namic and transport properties can be determined experimentally, theoretically
or based on analogy with similar compounds for which kinetic subsets already
exist [36]. Each chemical reaction consists of rate constants (k), which in turn
can be expressed as a function of temperature and pressure with some em-
pirical parameters (the pre-exponential factor A, the temperature exponent n,
and the activation energy Ea). Their definitions come from fitting model equa-
tions to experimental data or theoretical calculations [184]. The last decade
was characterized by a more frequent adoption of theoretical methods (e.g. ab
initio transition state theory-based master equation, AI-TST-ME) [86], for the
determination of kinetic parameters and thermodynamic properties. Beyond
the intrinsic advantages derived from the massive use of AI-TST-ME meth-
ods in terms of model predictive capabilities, the increasing popularity of such
methods is justified by improved theoretical methods and algorithms currently
available, and by the capability of measuring rate constants for elementary
steps in a more accurate way, thus providing an immediate validation target
for the theoretical results. In addition, automated computational protocols im-
plementing the state-of-the-art AI-TST-ME methods [29, 42, 191] are reaching
out to a much wider audience, thus paving the way to a more standardized ap-
proach to theoretical calculations within the combustion chemistry community.
Nonetheless, adopting the best rate parameters does not necessarily lead to
improved model performances when looking at a wide range of experimental
targets [36, 56]. This is due to multiple reasons: i) reference kinetic mecha-
nisms within the combustion science and engineering community have a long
and consolidated history, or, in machine learning terms, are “well-trained” mod-
els, iteratively validated over a wide range of experimental targets over decades
of research activities [56,139]. ii) Models that have been historically developed
largely relying on analogy rules and on semi-empirical, or at least less com-
plex, thermochemical kinetics principles [16] are typically self-consistent, even
in terms of the very likely possibility of hiding error compensation phenomena.
iii) Every rate constant, including those from theoretical methods, is affected
by an uncertainty [14, 15, 56, 180]. Regarding theoretical determinations the
uncertainty can be intuitively considered as decreasing with an increasing de-
tail in the level of theory [89]. In the past, uncertainty propagation methods
were used to quantify the level of uncertainty of phenomenological rate co-
efficients, in n-propyl radical oxidation, obtained from theory [69]. In recent
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times, quantum chemistry calculations are said to have reached a level of ac-
curacy comparable to that of experimental measurements [86], promoting their
applicability in combustion mechanism development. The recent mechanism
for oxidation and pyrolysis of Ammonia by Stagni [170] is an excellent exam-
ple of such integration. A multi-scale modelling approach was proposed by
Burke et al. [22], who optimized a set of uncertain theoretical kinetics parame-
ters directly relating their uncertainties to the combustion behaviour in terms of
macroscopic targets (ignition delay time, laminar flame speed, etc.). Shannon
et al. [151] proposed the use of experimental data and uncertainty quantifica-
tion to constrain and optimize input parameters in the master equation using
MESMER [68]. Essentially, each parameter of a kinetic model, expressed in
any form, can be considered as a randomly distributed variable within its uncer-
tainty range [180]. Thus, as the size of the mechanism grows, also the number
of uncertain parameters increases. In order to cope with the large amount of
uncertain parameters, Uncertainty Quantification (UQ) and Optimization have
been increasingly adopted in the process of chemical mechanism develop-
ment [203]. In the context of chemical mechanisms, Solution Mapping [61] was
the first optimization method applied to a large, complex system. This method
faces the multi-modality of the problem through polynomial response surfaces,
and it was applied for the development of the GRI-MECH [60]. This mechanism
was trained on a heterogeneous (i.e. containing different type of targets) set of
77 well-documented experiments describing the combustion of natural gas. In
the development of the GRI mechanisms [60], especially the pre-exponential
factors for the most impactful reactions were optimized. More recently, Fren-
klach et al. [58] introduced the concept of collaboration of data, and demon-
strated that a joint analysis on the entire data sample can increase the amount
of extracted information and improve the results. Feeley et al. [51] showed
that the technique of data collaboration can be used to rigorously assess the
mutual consistency of experimental results and identify potential outliers, using
a chemical kinetic model. The methodology, called Bound-to-Bound Data Col-
laboration (B2B-DC) has been successfully applied and refined in several other
works [57,80,143,144,163,209]. Najm et al. [122] applied forward Uncertainty
Quantification (UQ) and Polynomial Chaos Expansion (PCE) to chemical kinet-
ics. Wang and co-workers later developed the Method of Uncertainty Minimiza-
tion using Polynomial Chaos Expansion (MUMPCE) [156], which again utilizes
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surrogate modeling for representing the model responses. Then by finding the
least-squares point within the parameter space, they determined the optimal
mechanism. They used this approach for several different fuels [130,154,207],
and also to develop the Foundational Fuel Chemistry Model (FFCM) [164] for
small hydrocarbon fuels. However, in these works [130,154,156,164,177,207]
they only considered the pre-exponential factors and some third body efficien-
cies as active parameters. A species is considered as a third body if it stays
inert though the reaction process, and only transfers/removes energy from the
process. Only in a recent study [178], they applied the MUMPCE approach
considering the joint probability distribution of the pre-exponential factors and
the activation energies of some reactions. Cai and Pitsch [25, 26] also used
the MUM-PCE [156] methodology, but for the optimization of rate rules in-
stead of specific reactions. In the optimization method proposed by Cai and
Pitsch [25, 26], each rate rule is supposed to be a potential active parameter
of the model calibration. Later, they also applied a Bayesian approach for the
optimization of rate rules for alkanes [27]. Rate rules are used to derive kinetic
parameters for reactions that behave in a similar way. As the determination of
one rate rule directly inflicts changes to many reactions, it is a very efficient
approach for developing kinetic mechanisms for fuels with larger molecules.
Recently, this approach was combined with the optimization of thermochem-
ical properties in the works of vom Lehn et al. [197–199], showing a large
impact of the thermochemical parameters, especially at intermediate tempera-
tures. However, in all these works [25–27, 197–199], only the pre-exponential
factors for the rate rules were considered for the optimization. Vom Lehn et
al. [200] also proposed an iterative model-based experimental design for effi-
cient uncertainty minimization.

The approach based on the use of response surfaces can be highly efficient
for mechanism optimization, but the resulting procedure would be mechanism
dependent. In fact, as metamodels are built for each model response based
on chemical combustion model. Intuitively, if the nominal model changes, then
also the surrogate modelling phase has to be repeated. Additionally, as men-
tioned by Sikalo et al. [161], the nature of the objective function in mechanism
optimization can be highly complex, since it consists of many local minima
and maxima. Therefore, Sikalo et al. [161] suggest to use the Genetic Algo-
rithm (GA) global optimization approach, which has been proven to perform
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very well in these conditions [49, 135, 161]. Turányi [185] proposed a sum-of-
squared-error-based methodology, but, differently from others, they included
all three Arrhenius parameters in the optimization, i.e. A, n and Ea, as well
as third body collision efficiencies. This approach accounts for both direct and
indirect measurements, where direct experimental values refer to experimental
data of the rate constant k, while the indirect targets consist of concentration
profiles, ignition delay times, and laminar burning velocities. The methodology
from the ELTE group was successfully applied to H2/O2 [192], H2/O2/NOx [93],
H2/CO mixtures [193], CH2O and CH3OH [125], and ethanol [126]. Sheen
and Wang introduced the method of uncertainty minimization by polynomial
chaos expansion (MUM-PCE) [156, 203]. Cai and Pitsch [25] minimized the
uncertainty in a n-pentane combustion mechanism by applying the MUM-PCE
method to the optimization of rate rules. They also proposed a strategy to op-
timize pressure-dependent reactions, formulated via logarithmic interpolation,
i.e. PLOG standard [140]. PLOG expressions are indeed gradually substi-
tuting the previous formulation of pressure-dependent rate constants, as they
yield a better fitting to experiments or calculations [86]. As this formalism uses
accurate rates for discrete pressures, the parameters of each pressure value
were considered independent from each other in [25]. The use of heuristic
optimization methods, such as the genetic algorithm (GA), and particle swarm
optimization (PSO) for parameter estimation is very promising [148]. Heuristic
optimization methods are global optimization methods based on empirical rules
inspired by evolution-based strategies in nature. They are usually very flexible
and can be applied to many types of objective functions and constraints. The
word “heuristic” is used to refer to these methods because convergence is not
guaranteed, although a useful and good approximation of the searched opti-
mum can frequently be obtained. These methods can be used in problems
for problems characterized by high-dimensionality, as they are poorly sensitive
to the initial parameter guesses, gradient-free, and are able to perform global
optimization. The applicability of Evolutionary/Genetic Algorithms (EA/GA) to
optimization problems involving detailed kinetics was broadly investigated by
Elliott and co-workers [47–49]. EA/GA were found particularly suitable for
searching objective-function spaces characterized by high dimensionality. So
far, optimization studies in chemical kinetics have been relying on ob-
jective functions based on the L1 and L2 norms of the difference between
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models predictions and corresponding experimental targets [47,177,193].
Recently, You et al. [209] minimized the 1-norm of the difference between the
active variables values and the nominal ones, constrained on the feasible set
of combinations identified with B2B-DC [56]. The formulations in [209] not only
improve the model performance, but also minimize the number of parameters
and the deviations of the new values from the literature recommendations. Re-
cently, Bernardi et al. [17] presented an innovative framework based on Curve
Matching (CM), consisting in a multi-faceted functional analysis of the profiles
obtained from both models and experiments. In this approach, they introduced
a proper metric to quantify the similarity between the curves representing ex-
periments and simulations, rather than a point-wise measure of the distance
between them.

1.5 Objective of the present work

The objective of the present thesis is multiple:

• Propose a methodology for the optimization of kinetic mechanisms based
on heuristic optimization algorithms. Most of existing methods do not
discuss the challenges in PLOG reactions optimization and are based
on the minimization of a point-wise error measure, i.e. classical norms.
This methodology includes, for the first time in literature, the possibility
to optimize PLOG reactions by accounting for interdependencies between
rates at different pressures and uses the CM index [17] as the error func-
tion, which accounts for similarity of curves shapes. The effectiveness of
such approach was verified using an extensive dataset for a recent kinetic
model of ammonia combustion [170]. This model largely relies on theo-
retical calculations of key reaction rate constants. As an added value, this
work also presents guidelines for attributing reasonable uncertainty fac-
tors for theoretical determinations performed with different theory levels.
More details are available in chapter 3.

• Describe the authors contribution to the development and refinement of
an open source toolbox, named OptiSMOKE++. This toolbox, enables
the user to perform optimizations of detailed kinetic mechanisms perfor-
mances handling numerous kinetic parameters, under uncertainty. More
features of OptiSMOKE++ are demonstrated in chapter 4.
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• Study how diluents affect hydrogen/syngas combustion thermally and by
participating to reactions, both directly and indirectly. Additionally, a proce-
dure for the estimation of third-body efficiencies of H2O and CO2 in impact-
ful fall-off reactions is described, which considers experimental data from
different sources and facilities, as well as the uncertainties of all impactful
reactions, simultaneously. Finally, quantify the impact of missing collision
efficiencies in PLOG reactions on mechanism performance for hydrogen
combustion data and propose a novel optimization-based protocol to com-
pensate for induced errors. All this is described in chapter 5.

• Identify influential reactive steps for NOx formation in the ULB industrial
flameless burner fired with H2/NH3 blends over a wide range of operating
conditions.Also, verify whether the origin of the deviation between exper-
imental measurements and predictions of NOx emissions from numerical
simulations is attributable to uncertainty in ammonia kinetics. These prob-
lems are tackled in chapter 6.
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CHAPTER2
Methodology

THE present chapter is meant to discuss theoretical elements of existing
methods for UQ, sensitivity analysis and optimization, which are used
throughout this thesis.
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The aim of a combustion kinetic modeller is to characterise the conversion of
one mole of fuel (F) and a moles oxidiser (OX) to b moles of product b (P). In
Global terms, this process can be summarized as follows:

F + aOX =⇒ bP (2.1)

The rate of fuel consumption can be then expressed as:

d[XF ]

dt
= −k(T, P )[XF ]n[XOX ]m (2.2)

where [Xi] is used to denote the molar concentration in kmol/m3, n/m are
related to the reaction order, and k is a temperature (and pressure) depen-
dent costant of proportionality, known as global rate coefficient. In general,
the expression 2.2 holds for a very limited set of operating conditions (i.e. T
and P). On this set, n, m and k can be obtained by means of curve fitting
is measurements of XF in time are available. However, "global" approaches
to combustion chemistry are far from a fair representation of the underlying
physics. Indeed, during conversion from reactants to products, a number of
intermediate species and/or radicals are formed and destroyed in as many el-
ementary kinetic steps. Furthermore, depending on the operating conditions
and fuel/oxidiser/diluent composition the system can follow a different kinetic
pathway. The collection of all elementary reactions, and species, describing
the kinetics of F is known as its detailed kinetic mechanism. Reaction mech-
anisms may involve only a few steps or as many as several hundreds. Ex-
amples of the size of existing mechanisms for hydrogen, ammonia, and small
hydrocarbons are displayed in Figure 2.1.
Figure 2.1 also reports a rough estimation of the number of kinetic parameters,
which are present in a model. This estimation is obtained by multiplying the
number of reactions by 3. In fact, the logarithmic functional form (i.e. modified
Arrhenius’ law) of the rate constant yields:

ln(k) = ln(A) + nln (T )− Ea
RT

= α + nln(T )− ε

T
(2.3)

where A, n and Ea are empirical parameters known as pre-exponential factor,
temperature exponent, and activation energy, respectively. In general, the rate
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Figure 2.1: Size of selected detailed mechanisms for hydrogen, ammonia, natural gas and
low-hydrocarbons. Adapted from Lu and Law [104]

parameters for a certain reaction can be:

• estimated from curvefitting experiments using a kinetic model. The revi-
sions from Cohen and Westberg [32, 33] and Baulch [14, 15] are perfect
examples;

• estimated through curvefitting of κ(T, P ) values determined from first prin-
ciple calculations;

However, a kinetic model is also composed by thermodynamic [70] and trans-
port [76] properties for each species i taking part to elementary reactions. In
CHEMKIN, the thermodynamic properties are tabulated as temperature depen-
dent polynomials, known as NASA polynomials:

C̃p,i
R

= ai,1 + ai,2T + ai,3T
2 + ai,4T

3 + ai,5T
4

H̃i

RT
= ai,1 +

ai,2
2
T +

ai,3
3
T 2 +

ai,4
4
T 3 +

ai,5
5
T 4 +

ai,6
T

S̃0
i

R
= ai,1ln(T ) + ai,2T +

ai,3
2
T 2 +

ai,4
3
T 3 +

ai,5
4
T 4 + ai,7

(2.4)

where, C̃p,i, H̃i, and S̃0
i are the molar specific heat constant pressure, the molar

specific enthalpy and the molar specific entropy at 1 atm for the ith species,
respectively. Finally, ai is a vector of 7 fitting parameters. The first five are
used to compute C̃p,i. An additional (two) parameter is required for H̃i (S̃0

i ).
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In CHEMKIN, two different sets are usually reported, for each species i, to
represent two different temperature ranges, namely, mid-low (e.g. [300, 1200])
an mid-high ([1200, 3500]). Once the forward kinetic constant kfj for the jth

reaction is computed using equation 2.3 that of its backward reaction kbj can be
computed through the equilibrium constant Ke

j :

kbj =
kfj
Ke
j

Ke
j = exp

(
∆̃S0

i

R
− ∆̃Hi

RT

)(patm
RT

)∑Ns
i=1(υbi,j−υ

f
i,j)

(2.5)

where, ai,j are fitting parameters available in CHEMKIN while υbi,j and υfi,j are
the stoichiometric coefficients of the species i in reaction j. The reaction entropy
∆̃S0

i and enthalpy ∆̃Hi are defined as:

∆̃S0
i =

Ns∑
i=1

(υbi,j − υ
f
i,j)S̃

0
i

∆̃Hi =
Ns∑
i=1

(υbi,j − υ
f
i,j)H̃i

(2.6)

Finally, the net reaction rate can be obtained through the difference between
forward and backward (if reversible) reactions rates:

rj = kfj

Ns∏
i=1

cυ
f
i,j − kbj

Ns∏
i=1

cυ
b
i,j (2.7)

Here, ci represents the concentration of the ith species. Unimolecular dissoci-
ation reactions (e.g. C2H6(+M) 
 CH3 +CH3(+M)) are of utmost importance
in combustion. Reactions of this type exhibit a first order behavior at high pres-
sure, while a second order behavior is observed at low pressure. This is due
to the concentration of any other molecule, M, with which the reacting species
may collide. Each molecule have its own collisional or third body efficiency, αi.
So, the average third body efficiency of the reacting mixture can be computed
as follows:
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α =
Ns∑
i=1

αixi (2.8)

Here, xi represents the molar fraction of the ith species. Termolecular reac-
tions correspond to the revers of unimolecular reactions at low pressure. In
CHEMKIN [140], the format for kinetic mechanisms, pressure dependent reac-
tions can be expressed in Lindemann [101], Troe [182] or PLOG [140] formats.
Nowadays, these formats are widely used in combustion kinetic models. In
TROE and Lindemann formulations, two different triplets of Arrhenius’ parame-
ters are used to describe the temperature-dependent k at two discrete pressure
values, i.e. low P0 and high P∞ limits, which vary according to the specific re-
action j. Their ratio is termed reduced pressure:

Pr(M) =
klow[M ]

k∞
(2.9)

here, [M ] represents the mixture concentration enhanced by the average colli-
sion efficiency of the mixture.

[M ] =
Ns∑
i

xiαi =
Pα

RT
(2.10)

So equation 5.4 , tells us that molecules with strong collision efficiency have
an impact on the kinetic constant k, as its equation yields:

k = k∞
Pr(M)

1 + Pr(M)
F (2.11)

The parameter F has values of 1 in the Lindemann formulation, while it is an
elaborated empirical function of temperature in TROE’s. The latter formula-
tion forces the user to fit 3 or 4 additional parameters, which make the fitting
procedure more challenging and sometimes reduce its accuracy. For this rea-
son, the PLOG formulation for fall-off reactions was recently introduced in the
CHEMKIN format, as alternative to TROE’s, for its lower fitting error. A PLOG
reaction consists of multiple Arrhenius rate constants at discrete pressures pi
(with i = 1, . . . , Np), individually accounting for temperature dependence. In-
deed, kp1 and kpn correspond to the low (klow[M ]) and high-pressure limit k∞,
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2.1. The uncertainty of reaction rate constants

respectively. A logarithmic interpolation is then adopted at intermediate pres-
sures p:

ln(kp) = ln(kpi) +
[
ln(kpi+1

)− n(kpi)
] [ ln(p)− ln(pi)

ln(pi+1)− ln(pi)

]
(2.12)

The transport properties of the ith species are its dynamic viscosity ηi, ther-
mal conductivity λi and its binary mass diffusion coefficient Γ0

i,j at atmospheric
pressure, relative to the jth species. These three quantities can be computed
using the following polynomial fit of the logarithm of the quantity:

ln(νi) =
N∑
k=1

bνi,k(lnT )k−1 (2.13)

ln(λi) =
N∑
k=1

bλi,k(lnT )k−1 (2.14)

ln(Γ0
i ) =

N∑
k=1

bΓ
i,j,k(lnT )k−1 (2.15)

where bνi,k, b
λ
i,k, and bΓ

i,j,k are fitting parameters available in CHEMKIN format.
OpenSMOKE++ [35], and therefore OptiSMOKE++ [64], uses third-order poly-
nomials fit to ensure and average error with respect to data below 1 %. When
the operating pressure is different from atmospheric, the binary diffusion coef-
ficients need to be corrected as follows:

Γi,j =
Γ0
i,j

p
(2.16)

Finally, the mixture average properties are computed from those of single com-
pounds, by using proper mixing rules.

2.1 The uncertainty of reaction rate constants

Over time, kinetic rate constants for elementary reactions have been indirectly
estimated from experiments. Figure 2.2 reports examples of "experimental
datasets" representing the dependence of rate constant of the well-known O +
OH –– H + O2 reaction on temperature. As shown in figure 2.2, not all "exper-
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2.1. The uncertainty of reaction rate constants

imental datasets" covers the entire temperature range typical of combustion,
and even those overlapping covering similar ranges do not always show com-
parable trends and absolute values. This is a clear sign of the uncertainty which
is embedded even in the better known kinetic constants.
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Figure 2.2: Collection of experimental data for the reaction O + OH –– H + O2 from 1958 to
2011. On the chart, the best estimate k(T) is reported using a straight line, experimental
data are represented by markers, while the deducible reaction uncertainty by the orange
shaded area. The data collection is a courtesy of Matteo Pelucchi.

In principle, a single perfect fourmulation for each reaction rate constant in a
kinetic mechanisms should exist, but in practice it does not. Shannon [151]
demonstrated that relatively small uncertainties in the input parameters may
lead to large uncertainties in calculated rate coefficients even in theoretical
calculation. Additionally, the reaction uncertainty is both pressure and tem-
perature dependent. Moreover, a kinetic mechanism is a complex system of
reactions interconnected with each other, thus, in terms of macroscopic per-
formance, different combinations of rates in a mechanism may lead to similar
macroscopic behavior. Extensive work was done to characterize the uncer-
tainty in crucial reaction rate constants for low hydrocarbons [14, 15]. In these
works, recommendations for temperature-independent uncertainty coefficients
are given under the form of f factor:
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2.1. The uncertainty of reaction rate constants

f(T, P ) =
κmax − κ0

ln(10)
=
κ0 − κmin
ln(10)

(2.17)

This formulation can be interpreted with the help of figure 2.2, where the black
straight line represent the best estimate or nominal kinetic rate constant (i.e.
κ0), while the extreme curves of the orange shaded area are its maximum
κmax, and minimum κmax value, respectively. Here, an uncertainty of 60%
was assumed, which corresponds to a temperature-independent f value of 0.2.
Nagy [119] considered the dependence of fr on temperature. In a later study,
Nagy et al. [120] recommended the adoption of temperature-independent un-
certainty and uniform distributions for Arrhenius parameters when little prior in-
formation is available. Since the thermodynamic properties of small molecules
is very well-known parameters of equations 2.4 can be assumed to be cer-
tain. However, the excellent work of Vom Lehn [197–199] shows that this
assumption does not hold for bigger molecules and it is crucial to also optimize
thermodynamic parameters, which are involved in the computation of the equi-
librium constant in equation 2.5. In this work, we will always consider tempera-
ture independent uncertainty factors fj, and the uncertainty of thermodynamic
parameters to be negligible. This is an acceptable approximation, since the
uncertainty of thermodynamic properties for small molecules as ammonia and
hydrogen is considerably low. However, for models describing the kinetics of
larger fuels this hypothesis might decay for a large number of molecules, and
radicals due to scarsity of experimental data, which induces a greater lack of
knownledge in the fitting parameters of equations 2.4. For such cases, it is
beneficial to consider these parameters as active variables in optimization or
UQ together with Arrhenius’ ones in order to avoid bias.

2.1.1 Transferring uncertainty from the kinetic constant to Arrhenius
empirical parameters

Even though the uncertainty of rate constants is available through equation
2.17, what in general is optimized are the empirical parameters α, n and ε of the
Arrhenius extended formulation. In fact, their optimized values need to be re-
ported in a kinetic model in CHEMIKIN format. For this reason, the reaction un-
certainty needs to be translated into parameters bounds to be used in optimiza-
tion. If only the logarithm of the pre-exponential factor α is optimized, this be-
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2.1. The uncertainty of reaction rate constants

comes a trivial task. Indeed, It is easy to show that α ∈ [−fln(10)α0,+fln(10)α0].
However, when all three parameters are meant to be optimized their depen-
dence has to be accounted for.

Let’s consider the case where only α and ε are uncertain. In this case, the
procedure to derive bounds is depicted in figure 2.3.
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Figure 2.3: Graphical representation of bounding methods accounting for statistical depen-
dence of Arrhenius parameters. Adapted from [120]

Here, the nominal kinetic constant κ0 is multiplied and divided by 10f to obtain
the two linear contraints κM and κm. Since considering E∗a introduces the de-
pendence on temperature, a suitable temperature range needs to be chosen.
For combustion applications, it is realistic to assume T ∈ [300, 3000]K. Now,
we know the values of κM(Tmax/min) and κm(Tmax/min). So we only need to find
the values of A and E for the to lines crossing these points, by solving:{

ln(κM(Tmax)) = ln(A∗) + n0ln(Tmax)− E∗
a

RTmax

ln(κm(Tmin)) = ln(A∗) + n0ln(Tmin)− E∗
a

RTmin

(2.18)

for Amax and Ea,max, and:{
ln(κM(Tmin)) = ln(A∗) + n0ln(Tmin)− E∗

RTmin

ln(κm(Tmax)) = ln(A∗) + n0ln(Tmax)− E∗

RTmax

(2.19)
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2.1. The uncertainty of reaction rate constants

for Amin and Ea,min. In figure 2.3, it is interesting to notice that Amax/min rep-
resent the projection of the rate constant at infinitely high temperature. How-
ever, the uncertainty of κ forces statistical dependence between parameters.
This becomes clear when plotting the extremes points of the parameters un-
certainty region, i.e. κ(Amax, Ea,min) and κ(Amin, Emax), which are outside the
uncertainty of κ (see fig. 2.3). This means that not all parameters combination
are eligible as optimal point during search performed by the optimisation algo-
rithm of choice. In particular, all viable parameters combinations are contained
inside a convex region, which is displayed in figure 2.4 a for A and Ea. Here,
all the combinations within the green area will respect constraints on κ
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Figure 2.4: Graphical example of statistical dependence of constrained Arrhenius parameters.
Adapted from [63,120]

To avoid sampling non-viable combinations during the optimization proceduce,
Nagy [119] proposed the use of the multivariate normal distribution of the trans-
formed Arrhenius parameters from prior information on the rate constant, and
a procedure to estimate its covariance matrix. In his work, Nagy assumed
initial bounds for n ∈ [n0 − 2, n0 + 2], which can be used as input to the pro-
cedure to estimate the covariance matrix of the parameters joint distribution.
However, in some cases, one may be interested in optimizing the parameters
independently. Fürst et al. [64] proposed the use of a penalty function, capable
of excluding non-viable combinations. Finally, Fürst [63] proposed a protocol
to determine bounds for n, applying a similar procedure to the one described
above and displayed in figure 2.3, where Ea was considered certain. The re-
sulting convex region for A and n, is reported in figure 2.4 b.
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2.2. Penalty function

2.2 Penalty function

As mentioned, although the limits of each uncertain kinetic parameter are in-
dividually specified with the procedure described above, the non-linear nature
of the modified Arrhenius curve does not necessarily ensure that during op-
timization the rate constant stay within its initially prescribed bounds for the
complete temperature span (considered as 300–3000 K to correctly account
for realistic temperature conditions in combustion applications). It is therefore
important to do a check of the proposed parameter combinations, to see that
the rate constants are within the uncertainty limits. This can be handled by
utilizing a so-called penalty function. Penalty functions can be used for many
purposes. For example, Sikalo et al. [161] used a penalty function for keeping
the optimized parameters close to the original values. Alternatively, the penalty
function can be implemented to forcefully increase the objective function value
for parameter combinations which do not respect the uncertainty limits of the
rate constants, for all of the reactions considered. This ensures that the opti-
mizer does not choose a parameter combination which violates this restriction,
and finds the optimal combination of parameters which satisfies the constraints.
Consequently, the use of this penalty function results in quite significant compu-
tational savings, as the penalized parameter combinations are not simulated.
However, it should be said that for gradient based optimization approaches,
penalty functions are not a good choice, as these algorithms depend on the
prior evaluations for the estimation of the slope of the objective function. The
use of penalty functions disrupts the natural slope of the objective function and
gradient based algorithms would then face issues in finding the optimal so-
lution. Finally, the combination of a penalty function and non-gradient based
global optimizers is very efficient for constrained optimization problems such
as kinetic mechanism optimization.

2.3 Evolutionary Algorithm

In this work, objective function minimization is mainly performed by means of
a global, mono-objective Evolutionary Algorithm (EA) in DAKOTA [4], whose
solution is less dependent on the initial guess compared to other algorithms
[47]. When this algorithm is applied to the optimization of n reactions in a
detailed kinetic model, an individual "DNA" string (see figure 2.5) is composed
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2.3. Evolutionary Algorithm

of random values of kinetic parameters A, n and E for each reaction rateRn. By
drawing S random samples from individual distribution of kinetic parameters, a
population is built, which is nothing but a set of randomly initialized DNA strings.

R1 Rn

A1 n1

E1

Ramdom
Sampling

Initial Population

Figure 2.5: Graphical representation of a DNA string in evolutionary algorithm applied to chem-
ical kinetics.

Initially, a population of S different combinations of parameters is sampled,
evaluated and labelled with objective function values. Then, the algorithm
starts the first iteration (a ‘generation’) (see figure 2.6), where the elements
of the current population (the ‘parents’) are ranked applying a linear scaling of
probability based on the corresponding objective function values. In general,
the best fittest parents undergo uniform crossover, where a couple of parents
or a ‘chromosome’ is selected, and each parameter value can be swapped be-
tween the two with a probability equal to the crossover rate pc. This operation
produces a new pair of elements (the ‘off-springs’), resulting from the cross-
over of as many parents. Subsequently, mutation is introduced. In particular,
for each new off-spring, every variable has the same probability to mutate, ac-
cording to the mutation rate pm. A non-uniform mutation operator was adopted
to assign a new parameter value by sampling from its distribution. When mu-
tation and cross-over are complete, a resulting population of 2S elements is
obtained, i.e. twice the size of the initial one. In this work, a replacement
strategy, which selects the S/2 best individuals in 2S elements, and randomly
selects other S/2 from the remaining 3S/2, was adopted. This ensures the bal-
ance between global and local search. The adopted probability of cross-over
(pc = 0.65) and mutation (pm = 0.5) were suggested by Elliott [47]. The new
parent population undergoes the same procedure iteratively until satisfactory
accuracy is achieved.
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Figure 2.6: Graphical representation of an example generation in Evolutionary Algorithms.

2.4 Objective/Error/Loss functions

Given a set of experiments ye and a corresponding mathematical model f(θ),
where θ is the vector of model parameters. The goal of parameters estimation
is to maximize the probability of obtaining experimental data from model re-
sponses. As they are inherently uncertain, experimental data can be regarded
as random variables with joint probability distribution:

P (ye,y, ε) (2.20)

which decribes the probability to get the experimental values ye, given the real
unknown values y and the experimental errors ε. Given the model functions:

f(x, θ) (2.21)

where x is the vector of independent variables. The vector of model parameters
θ can be estimated by maximizing 2.20. When the experimental errors follow
the normal distribution, maximization of 2.20 is equivalent to the minimization
of:

Obj(θ) = (f(x, θ)− ye)TV −1
y (f(x, θ)− ye) (2.22)

In equation 2.22, it is implicitly assumed that the uncertainty of the independent
variables is negligible. If the dependent variables measurement are uncorre-
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lated, the covariance matrix V −1
y is diagonal and equation 2.22 takes the form

of weighted least squares:

Obj(θ) =
NE∑
i=1

NY∑
j=1

(fi,j − yei,j)2

σi,j(yei,j)
2

(2.23)

NE and NY are the number of experiments and dependent variables, respec-
tively, and σi,j is the experimental variance of the jth dependent variable in the
ith experiment. In this manuscript, it will always be assumed that measured de-
pendent variables are gaussian random variables with mean yei,j and standard
deviation σi,j. Given the relative error (RE) of the experimental measurement,
the standard deviation can be calculated as follows:

σi,j =
RE × yei,j

m
(2.24)

In equation 2.24, m can assume values of 1,2 or 3, depending on the uncer-
tainty analysis of the experimentalist. However, when this information is not
available from literature, the value of m can be assigned based on the degree
of belief associated to that particular experiment. It is important to point out that
when the functional relation between dependent and independent variables is
exponential, yi,j needs to be replace by it’s natural logarithm. This is done
to avoid giving higher relative weight to points with higher absolute values. In
kinetics, this is the case for ignition delay times of a given mixture. Another pop-
ular objective function in optimization problems is the sum of weighted absolute
deviations:

Obj(θ) =
NE∑
i=1

NY∑
j=1

|fi,j − yei,j|
σi,j(yei,j)

(2.25)

In the following chapters, the terms L2-norm and L1-norm will refer to equation
2.23 and 2.25, respectively.

2.4.1 Curve Matching

Recently, Bernardi et al. [17] presented an innovative framework based on
Curve Matching (CM), consisting in a multi-faceted functional analysis of the
profiles obtained from both models and experiments. In this approach, they
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2.4. Objective/Error/Loss functions

introduced a proper metric to quantify the similarity between the curves rep-
resenting experiments and simulations, rather than a point-wise measure of
the distance between them. Pelucchi et al. [131] revised and proposed such
framework as a further step towards an automatic model validation protocol.
In general, functional representations of both experiments, g(x), and model
responses, f(x) (and their derivatives g′(x) and f(x)) are obtained by inter-
polating smoothed splines, which result in satisfactory approximations of both
data points and first derivatives. Based of these estimations, four dissimilarity
indices can be computed:

d0
i,L2

=
1

1 +
‖f−g‖
|D|

∈ [0, 1] (2.26)

d1
i,L2

=
1

1 +
‖f ′−g′‖
|D|

∈ [0, 1] (2.27)

d0
i,p = 1− 1

2

∥∥∥∥ f

‖f‖
− g

‖g‖

∥∥∥∥ ∈ [0, 1] (2.28)

d1
i,p = 1− 1

2

∥∥∥∥ f ′

‖f ′‖
− g′

‖g′‖

∥∥∥∥ ∈ [0, 1] (2.29)

where |D| is the intersection of the domain between g(x) and f(x). For in-
stance, if the abscissa values of g(x) belong to [500,1500], and those of f(x)

belong to [400, 1800], the value of |D| would be 1000 (i.e. |D| =1500-500). The
‖g(x)‖ is the L2-norm of the function g(x). All the dissimilarity indices are in-
trinsically constrained between 0 and 1, where 1 indicates maximum similarity,
and 0 maximum dissimilarity. Individually, d0

i,L2
depends on the area enclosed

by g and m, while d1
i,L2

evaluates the same quantity between their respective
derivatives. Hence, the first generalizes a classical L2-norm, while the second
extends it. On the other side, the Pearson dissimilarity measures d0

i,p and d1
i,p

indicate perfect matching if g and m, and their derivatives, only differ by verti-
cal translation. Figure 2.7 offers a graphical representation of how the curve
matching framework enables the comparison between model responses and
data, together with their derivatives. Finally the curve matching index for the ith

pair or experiments/model responses can be computed as:
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CMi =
d0
i,L2

+ d1
i,L2

+ d0
i,p + d1

i,p

4
∈ [0, 1] (2.30)
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Figure 2.7: Graphical example of how the splines and their derivatives are compared in the
Curve Matching index. The top layer panels describe the model responses as well as ref-
erence data (left), and their derivatives (right). The bottom panel reports a comparison
between optimized model responses obtained with CM and L2 norm (left) as well as exper-
iments, and their derivatives (right).

Further mathematical details and examples are given in [17, 131]. In order
to account for the uncertainty in the evaluation of (10), a bootstrapping pro-
cedure on the experimental data is carried out. This procedure relies on the
assumption that each data point is normally distributed within its experimental
uncertainty. A sufficiently large set of possible experimental trends is gener-
ated taking random samples from the above-mentioned distributions. Figure
2.8 displays an example of the application of the bootstrap procedure for lam-
inar flame speed data, where 7 gaussian distributions (i.e. one for each data
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point) were sampled 10 times to generate as many bootstrap variations.
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Figure 2.8: Example of bootstrap procedure with 10 variations. Experimental data from [45]

A set of 50 bootstrap variations (Nb=50) for each data point was adopted after
verifying the substantial independence of the final output on a further broaden-
ing of the set. Thus, the objective function in case of DS number of experimen-
tal target datasets is defined as:

CMobj =
1

DS

DS∑
j=1

[
1− 1

Nb

Nb∑
i=1

(CMi)

]
j

∈ [0, 1] (2.31)

2.4.2 Correlation between Arrhenius parameters and reparametrization

One additional challenge in optimization of detailed kinetics is the enhanced
non-linearities of the models to be optimized. Such non-linearity introduces
strong correlations between the variation of model responses due to perturba-
tion model parameters. Parameters correlations effects on model tuning were
discussed by Valko et al. [190], who also discussed their impact on global sen-
sitivity analysis and how to remove correlations using a Rosenblatt trasforma-
tion. These correlations also makes it harder for any optimization algorithm to
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get to absolute minimum in the objective function space. For the sake of sim-
plicity, we hereby consider a trivial example proposed by [13] and also used in
more recent work [150] for the same purpose. Let’s consider the following mass
balance equation for a first order irreversible reaction consuming the species
SP:

d[SP ]

dt
= −k[SP ] (2.32)

For isothermal experiments k is constant, this model has analytical solution:

y = [SP ] = [SP ]0exp(−kt) (2.33)

where [SP ]0 is the concentration of SP for t=0. Considering the experimental
data in table 2.1, the model in equ. 2.33 can be used for parameter estimation
by minimizing the objective function in equation 2.23. For this problem, the
global minimum is located at 0.010279. For the sake of simplicity, only A and E
are optimized. The employed optimization algorithm is, a modified version of
the Powell [136] algorithm, available in SciPy [196].
Once we get to the best estimate, the sensitivity matrix can be computed as
follows:

B =


∂y1
∂A

∂y1
∂E

...
...

∂yNE

∂A
∂yNE

∂E

 (2.34)

and the variance-coovariance matrix can be also computed as:

V = s2(BTB)−1 (2.35)

where s2 is the constant variance of the experimental fluctuations.
If we formulate k as follows:

k = Aexp(− ε
T

) (2.36)

The optimization algorithm is not able to reach the global minimum 0.010279.
In fact, it gets stuck in a local minimum 0.012029 corresponding to completely
different values of the best parameters. This happens because of the non-
linearity introduced in equation 2.33 by 2.36. This results in strongly correlated
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Table 2.1: Experimental data used in this example

t [min] T [K] y t [min] T [K] y
120.0 600 0.900 60.00 620 0.802
60.00 600 0.949 60.00 620 0.802
60.00 612 0.886 60.00 620 0.804
120.0 612 0.785 60.00 620 0.794
120.0 612 0.791 60.00 620 0.804
60.00 612 0.890 60.00 620 0.799
60.00 620 0.787 30.00 631 0.764
30.00 620 0.877 45.10 631 0.688
15.00 620 0.938 30.00 631 0.717
60.00 620 0.782 30.00 631 0.802
45.10 620 0.827 45.00 631 0.695
90.00 620 0.696 15.00 639 0.808
150.0 620 0.582 30.00 639 0.655
60.00 620 0.795 90.00 639 0.309
60.00 620 0.800 25.00 639 0.689
60.00 620 0.790 60.10 639 0.437
30.00 620 0.883 60.00 639 0.425
90.00 620 0.712 30.00 639 0.638
150.0 620 0.576 30.00 639 0.659
90.40 620 0.715 60.00 639 0.449
120.0 620 0.673 — — —

derivatives of the model responses with respect to parameters perturbations
as shown in figure 2.9 a. Here, the pearson correlation is close to -1, and the
estimation is therefore biased.

(a) (b)

Figure 2.9: Example of bootstrap procedure with 10 variations. Experimental data from [45]

However, it is possible to achieve uncorrelated model responses (see 2.9 b),
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if the Arrhenius equation is reparametrized. By applying this simple non-linear
transformation of the pre-exponential factor:

A∗ = Aexp(− ε

Tref
) (2.37)

the model becomes:

y = exp

{
−tA∗exp

[
−ε
(

1

T
− 1

Tref

)]}
(2.38)

It should be noted that in 2.38, the correlation between model responses is
also dependent on our choice of a new parameter, i.e. Tref , which is usu-
ally chosen as equal to the average temperature of the experimental dataset.
When Tref = 628.45K complete uncorrelation is achieved, as shown in (see
2.9 b). It is worth mentioning that in the form 2.38 the global minimum can be
always reached regardless the choice of Tref . However, figure 2.10 (a) shows
that parameters correlation is really sensitive to Tref . The same is true for the
number of model evaluations that the optimizer need to get to the global min-
imum, which is minimized when the correlation is equal to 0. These results
show that one should pay attention when selecting Tref in 2.37 only when the
performance of the optimization algorithm are concerned, and that chosing Tref
equal to the average of the operating temperature in experimental conditions is
a good choice [150].
In case a modified Arrhenius equation is chosen, the following reparametriza-
tion can be adopted in optimization codes:

ln(k) = ln(A) + nln

(
T

Tref

)
− Ea

R

(
1

T
− 1

Tref

)
= α + nln

(
T

Tref

)
− ε
(

1

T
− 1

Tref

) (2.39)

2.5 Sensitivity analysis

Improving model accuracy is a task of critical importance. However, for large
models with hundreds/thousands of parameters, to consider all of them simul-
taneously is particularly expensive from a computional point of view [95], even
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(a)

(b)

Figure 2.10: (a) Correlation between modified Arrhenius parameters as a function of the
adopted reference temperature. (b) Number of model evaluations requested by the opti-
mizer to reach the error measure minimum as a function of the adopted reference temper-
ature.

with advanced and efficient tools. Sensitivity analysis allow to determine rela-
tive parameter importance, and to focus efforts on those parameters with the
biggest influence on predictions. It would be incorrect to optimise parameters
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for which there is no sensitivity to experimental data. An extensive review of
all applied methods for sensitivity analysis in combustion was carried out by
Alison Tomlin [180].

2.5.1 Local Sensitivity Analysis

The simulations of reacting gas mixtures are usually carried out in ideal reac-
tors (e.g. perfectly stirred, batch and plug flow reactors, shock-tubes etc.) and
laminar flames. A general reacting mixture is governed by the following system
of coupled, first-order Odinary Differential equations (ODE):{

dy
dζ

= f(y, ζ,p)

y(ψ0) = y0
(2.40)

In 2.40, y is the vector of unknowns (temperature, pressure, and species con-
centration). ζ is the independent variable (time or spatial coordinate), and
f(y, ζ, p) is a non-linear function of the unknowns and kinetic model param-
eters, p. The first order sensitivity coefficients for the ith unknown and the jth

parameter are defined as follows:

s1
ij =

∂yi
∂pj

(2.41)

The equations for the sensitivity coefficients can be easily obtained by differen-
tiating the ODE system in equation 2.40:

ds1j
dζ

= Js1j +
∂f
∂pj

s1(ζ0) = 0
(2.42)

where J is the jacobian matrix of 2.40, and s1j is the vector of the partial deriva-
tives of unknowns with respect to the parameter pj. In OpenSMOKE++ [35]
sensitivity coefficient for each parameter pj solving an independent ODE sys-
tem (equation 2.42) in addition to 2.40. Finally, the raw sensitivity coefficients
are normalized to make comparison between different reactions easier:

s̃1
ij =

∂ln(yi)

∂ln(pj)
=
pj
yi
sij (2.43)
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2.5.2 Cumulative Sensitivity/Impact Function

Warnatz [205] suggested the joined use of sensitivity and uncertainty to identify
key reactions in a detailed kinetic mechanism. This concept was also used in
optimization of kinetic models for the first time by Frenklach et al. [61], who
selected the active variables using a ranking based on the “impact factor”, i.e.
considering the absolute values of sensitivity coefficients multiplied by their own
uncertainty. Later on, this index was also referred to as “sensitivity-uncertainty
index” [186] and “optimization potential” [25].

As in the context of this thesis we usually dealt with large datasets, com-
posed by hundreds of experimental data points, parameters selection is per-
formed separately for each Test Case (TC), in order to retain all the important
elementary steps for the optimization. A test case is a dataset, containing Nd

data points, coming from a single scientific article or expeirmental facility. The
process of reaction selection is described in the following.

First, a local sensitivity analysis (decribed in 2.5.1), was performed for each
data point in TC. This produces a Nd×Nr matrix, where each row Sd of size (i.e
number of reactions), containing normalized sensitivity coefficients as defined
in 2.43. This matrix can be used to compute average normalized sensitivity
coefficient for the jth reaction as follows:

sj =
1

Nd

Nd∑
n=1

|s̃nj| (2.44)

The coefficients in equation 2.44 are obtained by perturbating the nominal
values, and can be the stored in a vector S, sorted and elaborated in cumula-
tive sum. The resulting vector is referred to as Cumulative Sensitivity Function
(CSF). This procedure allows the exploitation of the cumulative sum proper-
ties, aiding the selection of reactions to be optimized with proper priority. In
particular, a subset of sensitive reactions ss can be retrieved by establishing a
threshold corresponding to a defined fraction of the sum of the 1st order sen-
sitivity coefficients related to a specific TC. Subsequently, once the uncertainty
factors are known for each identified reaction impact factor the jth is evaluated
as suggested in the literature:

Ij = sj · fj (2.45)
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Figure 2.11 shows an example of Cumulative Impact Function (CIF) ob-
tained by applying the cumulative sum on the vector I for the test case from
Song [168]. Here only 5 reactions, are responsible of 90% of the impact. The
remaining set of 196 reactions retaining 10% of the total impact are excluded
in further investigations.

Figure 2.11: Example of reaction selection through Cumulative Impact Function (CIF) for Song
[168] test case. The horizontal line represents the chosen threshold of 90% of the total local
impact

2.5.3 Global sensitivity analysis

Global sensitivity analysis has been widely applied to combustion kinetics [88,
181,213,214], in this works, the High-Dimensional Model Representation was
introduced and applied for uncertainty propagation and analysis of variance
decompotion for global sensitivity.

Usually, local techniques do not allow for general considerations about the
model as they strongly depend on the initial guess and do not account for in-
terdependencies between parameters. In Figure 2.12 the difference between
Local and Global methods is depicted. Both charts show an example response
surface generated by varying the value of the model parameters, P1 and P2.
Here, P0 = [P1,0, P2,0] is the initial model parametrization. As displayed in the
top chart, the local sensitivity analysis would measure the derivatives of the
model response with respect to P0. Indeed, it is reasonable to expect that de-
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pending on P0 these derivatives would change. This is the reason why LSA
is strongly dependent on the initial model parametrization. Variance-based de-
composition methods, or Global Sensitivity Analysis (GSA), consider the model
response within the entire sample space of the parameters and does not de-
pend on the initial model configuration [74].

𝑷𝟎

𝑃",$
𝑃%,$

Figure 2.12: Graphical description of the difference between Local Sensitivity and Global Sen-
sitivity.

Sobol [78] suggested the use of Monte Carlo (or quasi-Monte Carlo) methods
for the calculation of sensitivity measures. The first order sensitivity coeffi-
cients:
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2.5. Sensitivity analysis

Si =
Vωi

(Eω∼i
(m(ω|ωi))

V (m(ω))
(2.46)

where V (m(ω)) is the total variance of the model response m(ω)), and
the numerator represents the variance of the expected value of the model re-
sponse, obtained by varying all the parameters while keeping the ith one con-
stant, i.e. by varying all the parameters but the ith one (ω∼i). This is displayed
in the bottom graph of figure 2.12, where the estimated value of the model re-
sponse to variations of P2 can be computed for eah value of P1 along the grey
shaded area. Homma and Saltelli [79] introduced the ‘total effect’ parameter
index. The latter provides a measure of the total effect of a given parameter,
including all the possible synergetic terms between the parameter and all the
others:

ST i = 1− Vω∼i
(Eωi

(m(ω|ω∼i))
V (m(ω))

(2.47)

where the numerator of the second term is the first order effect of ω∼i, so ST i
must give the contribution of all terms in the variance decomposition which
include ωi. The description of efficient numerical methods for the estimation of
Si and ST i can be found elsewhere [80]. In general, K(2+N) model evaluations
are required for the calculation of Sobol’s indices [80], where N is the number of
model parameters and K the considered number of input values combinations.
For the example, if eight parameters were selected (N=8). To infer accurate
statistics on the first and second moment of a given model response, Monte
Carlo methods takes a considerable amount of parameters combinations (e.g.
K=100). For this example, it would take 1000 model evaluations for GSA on a
single model response.

In HDMR and PCE, the Analysis of Variance (ANOVA) allows to perform
GSA by analyzing the mode strengths in the spectral expansion. In particular,
the overall output variance can be computed as the sum of all mode strengths
(αi in equation 2.49):

σ2(ξ) =
P+1∑
i=1

α2
i (2.48)

Consequently, the fractional contribution of each αi to σ2(ξ) represent the global

47



2.6. Uncertainty Quantification methods

sensitivity coefficient related to the variables involved in the construction of the
mode functional Ψi.

Adjoint sensitivity analysis

It is worth mentioning the work from Langer et al. [95], who used adjoint sen-
sitivity analysis on kinetic, thermodynamical and transport properties showing
the potential of using all mechanism parameters for optimization in the future.
The adjoint sensitivity analysis for complex combustion kinetic model was ini-
tially proposed by Lemke et al. [98]

2.6 Uncertainty Quantification methods

Uncertainty Quantification or Propagation methods are a family of approaches,
which can be used to construct the probability law of the solution of a model,
given a set of independent random variables (RVs), usually called germ, rep-
resenting the model inputs and their variability.

2.6.1 Monte Carlo (MC) methods

The MC method is the simplest approach to implement because the germ ele-
ments are considered statistically independent. For this reason, a sample set
of independent realizations of the germ is withdrawn using a (pseudo) random
number generator for each RV belonging to it. By computing the model re-
sponses for each individual realization, the probability law of the solution can
be estimated with a sampling error, which converges to 0 as the sample set
dimension increases. As for most applications the computational cost is dom-
inated by the resolution of the model for a single parameter realization, more
efficient sampling strategies were proposed, e.g. Latin Hypercube Sampling
(LHS) [108] and Quasi Monte Carlo Sampling (QMCS) [115].

2.6.2 Spectral methods

The use of surrogate models comes to handy when extremely expensive tasks
need to be performed for model improvement and/or analysis. The principle is
common to all of them" approximate the model responses using a pre-defined
meta-model structure, usually a polynomial, whose parameters are tuned to
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match real model responses given variations of parameters values. In com-
bustion, the most widely used are Solution Mapping (SM), from Frenklach [61],
High-dimensional model representation (HDMR) [180] and Polynomial Chaos
Expansion (PCE) [122]. In this thesis, PCE was employed and will therefore be
discussed in the following.

Polynomial Chaos Expansion

Polynomial Chaos Expansion is a spectal method for uncertainty quantifica-
tion, which aims at constructing the functional dependence between the vector
of input parameters ξ and the response of a known model m(ξ) to their pertur-
bation. This functional dependence is usually expressed in terms of a infinite
or finite-dimensional series:

m(ξ) ≈ f(ξ) =
∞∑
i=0

αiΓi(ξ), (2.49)

where Γi are adequate functionals (also known as "mode functions") of ξ, and
αi are the coefficients to be determined (or "mode strengths"). ξ is a random
vector of standardized random variables. In real applications, the expansion
is usually truncated at the order p and the number of terms (P + 1) in the
expansion is given by:

P + 1 =
(N + p)!

N !p!
(2.50)

where N is the dimensionality of the germ ξ. Once available and validated, f(ξ)

may be immediately used to compute statistics of the real model responses.
Let {ξ}∞i=1 be a sequence of centered, normalized, mutually orthogonal, gaus-
sian variables. Let Γ̂p denote the space of polynomials in {ξ}∞i=1 having degree
less or equal to p. Γp denote the set of polynomials, which belong to Γ̂p, and
are orthogonal to Γ̂p−1, and by Γ̃p we denote the space spanned by Γp. Γp is
termed a Polynomial Chaos of order p, and consists of all polynomials of or-
der p, involving all possible combinations of the random variables {ξ}∞i=1. For
instance, the expansion of the random variable U , dependent of Np = 2 input
parameters and order p, becomes:
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U = α0Γ0 + α1Γ1(ξ1) + α2Γ1(ξ2)

+ α11Γ2(ξ1, ξ1) + α22Γ2(ξ2, ξ2) + α12Γ2(ξ1, ξ2)
(2.51)

where Γp = {Γ0,Γ1(ξ1),Γ1(ξ2),Γ2(ξ1, ξ1),Γ2(ξ2, ξ2),Γ2(ξ1, ξ2)} is the polynomial
chaos, truncated at the order p, for this particular case. Let’s take a N-dimensional
case (i.e. with {ξ}Ni=1) and define a multi-index γ = {γ1, γ2, ..., γN} containing a
polynomial order for each variable belonging to the germ. If we define λ(p) as
the set of all possible multi-indices:

λ(p) = {γ :
N∑
i=1

γi = p} (2.52)

the PC of pth order can be constructed according to:

Γp = {∪γ∈λ(p)

γN∏
γ1

ψγi(ξi)} (2.53)

where ψγi(ξi) is a polynomial of order γi, belonging to a known or constructed
family of orthogonal polynomials. Indeed, the underlying assumption is that the
random vector (i.e. the germ) contains statistically independent variables. How
shall we choose the optimal set of orthogonal polynomials to be used to build
the functionals Γi? In general, one can assert that the optimal polynomial ex-
pansion is that constructed using the measure corresponding to the probability
law of the random variable that we seek to represent. However, this probability
law is often not known a priori. In this case, the probability laws chosen for the
model parameters can be used to choose a corresponding family of orthogonal
polynomials (see Table 2.2).

Table 2.2: Optimal matches between input parameter probability laws and families of orthogo-
nal polynomials.

Distribution of ξ Polynomials Family
Gaussian Hermite

γ Laguerre
β Jacobi

Uniform Legendre
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The Figure 2.13 displays the first six polynomials for the families of polynomials
which will be used in this thesis, namely Legendre and Hermite polynomials.
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(

)
Legendre Polynomials

-3 -2 -1 0 1 2 3
-20
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20
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Hermite Polynomials

0th order
1st order
2nd order
3rd order
4th order
5th order

Figure 2.13: First 6 polynomials for Legendre and Hermite families from Askey Scheme.

The mode strengths αi can be evaluated through a spectal projection against
the space spanned by Γi:

αi =
〈m,Γi〉
〈Γi,Γi〉

=
1

〈Γi,Γi〉

∫
Ω

mΓiρx(ξ)dξ =
1

〈Γi,Γi〉

[
1

Ncp

Ncp∑
j=1

m(ξj)Γi(ξj)

]
(2.54)

where the inner product 〈Γi,Γi〉 is known from the construction of the PC ba-
sis, and the projection integral can be solved numerically. Indeed, Ncp is the
number of collocation points, or chose combinations of parameters values, to
evaluate the integral. The "choice" of the collocation points can be performed
using random sampling techniques (Monte Carlo (MC), Latin Hypercube Sam-
pling, Quasi-MC) or determistic methods, i.e. quadrature rules. Among the
alternatives for deterministic methods, which ensure a lower number of model
evaluations for low dimensional problems (i.e. Ncp), are tensor product and
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sparse [165] quadrature rules. The latter has a weaker dependence on dimen-
sionality with respect to the former and ensure a lower number of collocation
point, with comparable accuracy. Figure 2.14 displays an example of grid built
with the previously mentioned methods.

-1 -0.5 0 0.5 1

1

-1

-0.5

0

0.5

1

2

Gauss-Legendre grid

-1 -0.5 0 0.5 1

1

-1

-0.5

0

0.5

1

2

Smolyak Sparse Grid

Figure 2.14: Example of collocation points used to evaluate the coefficients in a spectral ex-
pansion of two variables. Left) tensor-product using Gauss-Legende rules. Right) Smolyak
sparse grid.
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2.7 Elliptical and Likelihood confidence regions

In this work, we exploit the features of EA to obtain likelihood confidence or
acceptance regions for parameters estimates [148, 150], which were used in
combination with heuristic optimization algorithms elsewhere [149]. Assuming
that is possible to linearize the objective function S(ω) around its minimum point
estimate ω̂, its second-order Taylor expansion yields:

O(ω) = O(ω̂) + (sω − ω̂)∇Oω̂ +
1

2
(ω − ω̂)THω̂(ω − ω̂) (2.55)

where ∇Oω̂ and Hω̂ are the gradient vector and the Hessian matrix of the
objective function, respectively. Considering that O(ω) is a stationary point
for O(ω), the first derivative of O with respect to any parameter is null (i.e.
∇Sω̂ = 0), and Hω̂ is equal to twice the covariance matrix of parameters
estimates [13]. It follows:

O(ω)−O(ω̂) = (ω − ω̂)TV −1(ω − ω̂) ≡ χ2
p (2.56)

So, O(ω) - O(ω̂) is a random value, which follows a chi-squared distribution.
At the same time O itself follows a chi-squared distribution with n − p degrees
of freedom [13]. Therefore, by definition, the ratio between the two follows a F
distribution with (1− λ) level of confidence and parameters p, and (n− p):

O(ω)−O(ω̂)

O(ω)

n− p
p
≡ F 1−λ

p,n−p] (2.57)

Finally, all the combinations corresponding to an objective function value such
that:

O(ω) ≤ O(ω̂)

[
1 +

p

n− p
F 1−λ
p,n−p]

]
(2.58)

compose the confidence region. Assuming a joint gaussian distribution for the
probability of input parameters, all the combinations of parameter values be-
longing to the acceptance region, can be used to estimate its covariance matrix
and display the confidence regions in its elliptical form.
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CHAPTER3
Optimization of a kinetic mechanism for ammonia

combustion

This chapter is based on the following pubblication:

• An evolutionary, data-driven approach for mechanism optimization: the-
ory and application to ammonia combustion. Bertolino, A., Fürst, M. B.,
Stagni, A., Frassoldati, A., Pelucchi, M., Cavallotti, C. A., Faravelli, T.,
Parente, A. Combustion and Flame. https://doi.org/10.1016/j.

combustflame.2021.02.012
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3.1. Abstract

3.1 Abstract

In this chapter, the approach for detailed kinetic mechanism optimization de-
scribed in previous chapters is applied to ammonia combustion. The approach
is based on a curve matching-based objective function and includes a novel
methodology for the optimisation of pressure-dependent reactions via logarith-
mic interpolation (PLOG format). In order to highlight the advantages of the
new formulation of the objective function, a comparison with L1 and L2 norm
is performed. The selection of impactful reactions is carried out by means of
a Cumulative Impact Function (CIF), while an Evolutionary Algorithm (EA) is
adopted to perform the optimization. The capabilities of the proposed method-
ology were demonstrated using a database of 635 experimental datapoints
on ammonia combustion, covering standard targets like ignition delay times,
speciation and laminar flame speed. The optimization was carried out starting
from a recently published mechanism [170] describing ammonia pyrolysis and
oxidation, largely developed using first-principles calculation of rate constants.

After the selection of the 24 most impactful reactions, the related 101 nor-
malized Arrhenius parameters were simultaneously varied, within their con-
straints. Their uncertainties were taken from the literature, when available, or
estimated according to the level of theory adopted for the determination of the
rate constant. Hence, guidelines to estimate uncertainty for reaction rate con-
stants, derived from first principles calculations using well consolidated compu-
tational protocols as a reference, are provided. The optimized mechanism was
found to improve the nominal one, showing a satisfactory agreement over the
entire range of operating conditions. Moreover, the use of a ‘curve matching’ in-
dex was found to outperform the adoption of L1 and L2 norms. The comparison
between the nominal mechanism and the one optimized via curve matching al-
lowed a clear identification of different critical reaction pathways for different
experimental targets.
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3.2 Database

Figure 3.1 summarizes the features of each test case (TC) in the temperature,
pressure and composition space. The experimental data considered in this
work covers the entire space of operating conditions.

Figure 3.1: Collected data on Ammonia combustion displayed in temperature, pressure, com-
position space.

The database, consisting of 60 different datasets (with 635 experimental points)
from different test cases, was divided in optimization and validation targets (i.e.
75% and 25%, respectively). For high-temperature conditions, the shock tube
experiments from Mathieu and Petersen [107], and Shu et al. [159] cover ig-
nition delay time in a wide range of composition (φ = 0.5 to 2.0) and pres-
sures (10 to 40 bar). Stagni et al. [170] reported data for ammonia oxidation at
nearly atmospheric pressure for lean mixtures in two different systems, namely
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jet stirred and flow reactors. At low temperatures, He et al [75]and Pochet et
al. [134] provided auto-ignition data at higher pressures, for lean, stoichiometric
and rich mixtures in rapid compression machines. Wargadalam et al. [204] and
Song et al. [168] published speciation data for very lean conditions, at pressure
of 1, 30 and 100 bar, in flow reactors. Davidson et al. [41] investigated ammo-
nia pyrolysis in a shock tube at extremely high temperatures (T>2500 K). The
laminar burning speed experiments by Lhuillier et al. [99] were only considered
for validation. However, flame speed targets were included by using the data
from Ronney [45]. The TCs from Rota [142] and Dagaut [37] in jet stirred re-
actors were excluded from the optimisation set, yet used for validation, as they
cover a part of the operating conditions space which is already populated with
data from Stagni [170] and Wargadalam [204] (see fig. 3.1).

Details on models responses

For each data set the ignition delay times were calculated using the definition
reported in the corresponding reference experimental paper, to ensure consis-
tency. For the shock tubes, the assumption of constant volume was adopted
for the case of Mathieu and Petersen [107] and Davidson [41]. To reproduce
the data from Shu et al. [159], gas dynamic effects were accounted for fol-
lowing the methodology described in [96]. For the RCM data, the “adiabatic
core hypothesis” was adopted [173], and detailed volume profiles from He [75]
and Pochet [134] were used to properly account for the compression stroke and
heat exchange effects in each experiment. In the flow reactor from Stagni [170]
the experimental temperature profiles were imposed are reported in the refer-
ence paper.

3.3 Estimation of uncertainty factors for first principle calculations of
rate constants

Among the reactions listed in table 3.1 13 out of 43 rates come from exper-
iments, together with their uncertainty factors. In particular, for experimental
data the uncertainty is assumed to be equal to that declared by the experi-
mentalists. The remaining part involves phenomenological rate constants de-
termined using first principle (ab-initio) calculations. Klippenstein et al. [89]
declares that an uncertainty factor of 0.3 (see eq. 2.17) for the rate constants
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can be obtained for reactions belonging to the reaction families considered in
the present work. In a more recent publication Cavallotti et al. [29] showed that
the level of accuracy attainable using the ab-initio master equation approach
can be a factor of 0.3 (see eq. 2.17) or lower. The main factors contributing
to uncertainty in a rate constant calculation derive from: 1) the level of theory
used to determine the energy of stationary points on the potential energy sur-
face (PES); 2) the theoretical methods adopted for the computation of the high
pressure rate constant; 3) the level at which pressure effects and reaction dy-
namics on a multi-well PES are described; 4) the treatment of anharmonicities,
most importantly the description of torsional motions, if active for a specific re-
action; 5) the availability of experimental rate constant data. The values from
the protocols of Cavallotti et al. [29] and Klippenstein et al. [89] are assumed as
the lower uncertainty threshold in the present work, while the remaining ones
are assigned with a policy of inverse proportionality to the adopted level of the-
ory. This threshold corresponds to a fr factor equal to 0.3 (see eq. 2.17). The
following penalty terms were used:

• Concerning the level at which electronic structure calculations were per-
formed, computational protocols where energies are computed at the CCSD(T)
/ CBS or higher have no penalty term. For CBSQB3 calculations a 0.2 fac-
tor is added to fr, so that the uncertainty goes from 0.3 to 0.5. For DFT
calculations, such as B3LYP, a factor of 0.3 is added, thus increasing the
uncertainty factor to 0.6.

• High pressure rate constants can be determined using (in order of de-
creasing accuracy): i) Variable Reaction Coordinate Transition State The-
ory (VRC-TST), ii) variational transition state theory (VTST), or iii) conven-
tional transition state theory (TST), where TST or VTST are assumed to
be suitable to study abstraction or addition reactions, while VRC-TST or
VTST are necessary to study barrierless processes such as recombina-
tion or bond dissociation reactions (i.e. unimolecular initiations reactions).
A penalty of 0.3 and 0.1 was assigned to TST and VTST, respectively, in
case of radical/radical recombination or decomposition reactions. Other-
wise, penalties of 0.1 and 0.05 were assigned.

• Methods where the impact of pressure dependence and multi-well dynam-
ics on the rate constant are studied using the Master equation approach
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coupled with TST and ab initio calculations (AI-TST-ME), are generally
more accurate than methods with lower theoretical detail, such as QRRK.
The adopted penalty term is 0.4, so that for QRRK methods the estimated
rates are associated with an uncertainty factor ranging between 0.7 and
1. This value was adapted to 0.5 for Dean and Bozzelli [43], who also
compared their rates with experimental data and adjusted their recom-
mendations accordingly.

• Anharmonicities can have a quite relevant impact on rate constants if tor-
sional motions are present [124]. If no torsional motion treatment, such
as the hindered rotor model, is used when torsional motions are active, a
penalty term of 0.5 is added.

In order to further support the general validity of the optimization method, a
sensitivity analysis to the assigned uncertainty parameters was carried out by
performing three different optimizations with a limited number of targets [18].
The first was carried out with uncertainty factors used in this work, the oth-
ers by multiplying all of them by a factor of 0.5, and 2. Results showed that
the majority of the resulting kinetic rate constants overlap with those obtained
with the nominal values of f (eq. 2.17), thus supporting the robustness of the
methodology.

3.4 A novel method for the estimation of Arrhenius parameters bounds

As in [185, 192], all the parameters of the selected rate constants expressed
according to the modified Arrhenius expression (k = AT βexp(−Ea/RT )) un-
dergo optimization, i.e. pre-exponential factors (A), temperature exponents
(n), and activation energies (Ea). In equation 2.3, α, n and ε are continuous
random variables representing the Arrhenius parameters, usually assumed to
be uniformly [178] or normally [185] distributed. The problem of defining the
constraints for the active parameters was dealt with in several studies. In the
deterministic framework of B2B-DC [59], the feasible set is obtained by com-
bining the initial bounds of both active variables and experimental data. In
MUM-PCE [155], a statistical approach is adopted, which assumes “a priori”
distributions for both the model parameters and the measurements, and pro-
duces “a posteriori” distributions for both model parameters and predictions.
These two approaches were recently compared, and they were found to give
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consistent results [57]. As we discuss earlier in this chapter, the nominal mech-
anism largely relies on ab-initio calculations. For this reason, the temperature
dependence of fr (eq. 2.17) is not accounted for, and uniform distributions
for all the active variables are employed. As reported in equation 2.3, κ is a
weighted sum of three random variables with joint uniform distribution, which
results in a higher probability near κ0 [121]. For the sake of simplicity, in the
following we assume that for all temperatures the kinetic constant is a normally
distributed random variable with mean value κ0, corresponding to κ(p0), and
standard deviationσκ, with p0 = [α0, β0, ε0]. As in [155, 178], we assume that
fr corresponds to the 2σκ of the distribution of κ, and we constrain it at 3σ.
From equation (eq. 2.17), κmax and κmin can be obtained, i.e. the maximum
and minimum linear constraints of κ in T ∈ [Tmin, Tmax]. As an element κi in
κ can be retrieved by sampling from the distributions of the normalized Arrhe-
nius parameters, fr can also be propagated from κ to α, β, and ε to estimate
their bounds. In the following, the hypothesis of mutual independence between
parameters is used exclusively to achieve this goal. Given the equation:

10fr =
κmax(T )

κ0(T )
=

κ0(T )

κmin(T )
= exp[∆α + ∆nln(T )−∆εT−1] (3.1)

and assuming that the maximum variation ∆pi of one parameter is determined
by projecting the uncertainty of κ on the parameter itself (i.e. keeping constant
the other two to their nominal values so that ∆pi=0), the following constraints
can be retrieved:

α0 − ln
(
10fr

)
< α < α0 + ln

(
10fr

)
(3.2)

n0 −
fr

log10(T )
< n < n0 +

fr
log10(T )

(3.3)

ε0 − frT ln(10) < ε < ε0 + frT ln(10)) (3.4)

This operation results in 2 non-linear constraints for n and ε in κ in T ∈ [Tmin, Tmax].
However, it can be shown that:

lim
T→∞

k(T ) = exp(α)T n (3.5)
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lim
T→0

k(T ) = exp(−εT−1) (3.6)

The limits (3.5) and (3.6) indicate that at high temperature, the term T n con-
trols the value of κ, while the contribution of εT−1 is progressively smaller. The
opposite is true for low temperature. Thus, the sensitivity of κ to n is maximum
at Tmax. Conversely, the sensitivity of κ to ε is maximum at Tmin. By bound-
ing n and ε in equations 3.3 and 3.4 at Tmax and Tmin, respectively, we ensure
that κ(α0, βmax, ε0, T ), κ(α0, βmin, ε0, T ), κ(α0, β0, εmax, T ) and κ(α0, β0, εmin, T )

never violate the linear constraints on κ(T ), when T ∈ [Tmin, Tmax]. In this
work, the minimum and maximum temperatures are 300 and 3000 K, respec-
tively. Indeed, from the definition of fr in equation 2.17, also κ(αmin, β0, ε0, T ),
κ(αmax, β0, ε0, T ) do not violate the mentioned constraints. The adoption of
this methodology for the estimation of parameter boundaries has two main
advantages. First, it reduces the probability of sampling a kinetic rate con-
stant κ(T ), which violates the above mentioned linear constraints, with respect
to previously proposed methods. Secondly, it also enables the optimization
of PLOG-based reactions. As an example, the Figure 3.2 shows the pro-
jections of the parameters bounds on the kinetic constants of the reaction
NH2 +NO2 = H2NO +NO.
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Figure 3.2: Graphical example of reaction rate uncertainty: NO + O = NO2. Adapted from
[103]
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Those resulting from varying only α overlap with the 2σ of the distribution of κ.
On the other hand, those resulting from the variation of n and ε only overlap
with the 2σ of κ only at Tmax and Tmin, respectively, while not exceeding them
along T ∈ [Tmin, Tmax]. The limit values of the corresponding κ distribution, i.e.
κ(αmax, nmax, εmin) and κ(αmin, nmin, εmax), are also displayed. They include the
entire space of κ and exceed it. In fact, since the parameters are statistically
dependent [66], not all the combinations of the three are valid. All the combina-
tions, which result in values of κ belonging to the area between the limit values
and the 3σ bounds of the distribution of κ, are excluded from the set of eligible
parameter combinations (see section 2.2).

3.5 Optimization of reaction PLOG formalism

For those reactions exhibiting a “fall-off” behaviour, the rate k(T, P ) is usu-
ally determined from the low and high-pressure limit constants, together with
a blending function that smoothly connects the limiting rates across the fall-off
regime, using different possible formulations. Among these, the Troe formula-
tion [182] is the most widely used. An alternative formulation based on loga-
rithmic interpolations, expressed with the so-called PLOG, has been recently
proposed [140], and is rapidly growing in popularity because of the potentially
superior accuracy, thus becoming the new standard formalism. PLOG reac-
tions are typically introduced in a kinetic mechanism using multiple Arrhenius
rate constants accounting for temperature dependence at constant pressures
covering the entire range of conditions from the low to the high-pressure limits.
Then, a proper (i.e. logarithmic) interpolation is adopted for the intermediate
pressures. In this way, the combined effect of pressure (P) and temperature (T)
on the rate constant k is properly accounted for. As a result, the three Arrhenius
parameters for each pressure value cannot be optimized independently from
each other, even within their own uncertainty ranges, in order to keep the phys-
ical consistency in the whole pressure domain. On the contrary, the same opti-
mization performed using all the nominal pre-exponential factors, temperature
exponents and activation energies, i.e. treating reactions at different pressures
as independent from each other, would result in a non-monotonic behaviour
with arguable physical meaning. Additionally, since the number of reactions
within the same PLOG is the result of a fitting needed to describe complex
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k(T, P) with a small acceptable error, the number of parameters to be handled
scales accordingly. This may result in an abrupt increase in the number of pa-
rameters for a single reaction. For the first time in literature, we propose an
approach to optimize the parameters at all pressures simultaneously, based on
what proposed for the parameters bounds in the previous section, using only
three, uniformly distributed random variables with an average value of 0, and
constrained in the following ranges:

X1 ∈ [−ln
(
10fr

)
, ln
(
10fr

)
] (3.7)

X3 ∈
[
− fr
log10(Tmax)

,+
fr

log10(Tmax)

]
(3.8)

X3 ∈ [−frTminln(10),+frTminln(10)] (3.9)

These variables are associated with α, n and ε, at all pressures, respectively.
The value of X1 is sampled from its distribution and added to all the α, at dif-
ferent pressures, i.e. each reaction rate is changed by the same factor, and
the same is applied for n0 and ε0, using X2 and X3. As an example, Figure
3.3 displays the comparison between nominal and optimized rate for the de-
composition reaction HNO=H+NO, to which an uncertainty factor fr. of 0.3
was attributed. The reported pressure values for this reaction are 0.1,1,10,100
and 1000 bar. Figure 3.3 highlights the preserved consistency in the pressure
dependent behaviour of the reaction rates.

3.6 Selection of active variables for optimization

As outlined in section 2.5 sensitivity analysis was carried out for each test case
contained in the database, and a corresponding Cumulative Sensitive Function
(CSF) was obtained applying a 90% threshold on the total local sensitivity. The
joint set of sensitive reaction is reported in table 3.1, which summarizes the
sensitivity study and reports the uncertainty factor f each referenced reaction.
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Figure 3.3: 3D behavior of PLOG reaction R143: HNO=H+NO, before (dashed line) and after
optimization (continuous line)

3.7 Analysis of the optimized mechanism

The model from Stagni et al. [170], hereafter reported as ‘nominal’, consists
of 31 species and 210 reactions. The proposed methodology for mechanisms
optimization aims at improving the nominal one considering all target datasets
and uncertain parameters, simultaneously. This represents a significant dif-
ference from previously suggested approaches, where a hierarchical and sys-
tematic procedure was adopted instead [126]. As already explained in section
2.3, the 60 datasets within the database were split into two parts, i.e. opti-
mization and validation targets (45 and 15, respectively). This was done in
order to test a-posteriori the change in the predictability on the datasets which
were not used in the optimization. The evaluation of the impact of different
objective functions on the optimized model performance is the main purpose
of this section. Using the same database, three detailed kinetic mechanisms
were obtained using CM (eq. 2.31), L1-norm (eq. 2.25), and L2-norm (eq.
2.23). These are hereafter referred to as CM-mech, L1-mech, and L2-mech,
respectively. Specifically, CM-mech is available in the Supplemental Material of
Bertolino et al. [18]. The thermodynamic and transport properties (which were
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3.7. Analysis of the optimized mechanism

Table 3.1: Complete set of sensitive reactions for NH3 combustion in the mechanism from
Stagni [170]. Here, FIRST P.C. is short for first principle calculations.

Index Reaction f Reference Type
24 NH3 –– H + NH2 0.30 [170] FIRST P.C.
25 H + NH2 –– H2 + NH 0.18 [41] EXPERIMENTS
26 H + NH3 –– H2 + NH2 0.30 [170] FIRST P.C.
27 OH + NH3 –– H2O + NH2 0.30 [170] FIRST P.C.
28 O + NH3 –– OH + NH2 0.30 [170] FIRST P.C.
29 HO2 + NH3 –– H2O2 + NH2 0.30 [170] FIRST P.C.
30 O2 + NH3 –– HO2 + NH2 0.30 [170] FIRST P.C.
31 O + NH2 –– H + HNO 1.00 [172] FIRST P.C.
32 O + NH2 –– H + HNO 1.00 [172] FIRST P.C.
33 O + NH2 –– OH + NH 0.50 [43] FIRST P.C.
35 OH + NH2 –– H2O + NH 0.70 [117] FIRST P.C.
37 O2 + NH2 –– O + H2NO 0.30 [89] FIRST P.C.
38 HO2 + NH2 –– OH + H2NO 0.50 [43] FIRST P.C.
39 NH + NH2 –– H + N2H2 0.18 [41] EXPERIMENTS
43 NH + NH –– 2 H + N2 0.30 [90] FIRST P.C.
44 2 NH2 –– NH3 + NH 0.30 [90] FIRST P.C.
45 2 NH2 –– N2H4 0.50 [43] FIRST P.C.
46 2 NH2 –– H + N2H3 0.50 [43] FIRST P.C.
69 HO2 + HNOH –– O2 + NH2OH 0.50 [43] FIRST P.C.
74 NO2 + NH2 –– NO + H2NO 0.48 [67] EXPERIMENTS
75 NO2 + NH2 –– H2O + N2O 0.48 [67] EXPERIMENTS
76 NO + NH2 –– N2 + H2O 0.08 [167] EXPERIMENTS
77 NO + NH2 –– OH + NNH 0.08 [167] EXPERIMENTS
78 H + NH –– H2 + N 0.30 [14] DATABASE
79 O + NH –– H + NO 0.70 [33] DATABASE
80 NH + OH –– HNO + H 0.70 [33] DATABASE
82 O2 + NH –– O + HNO 0.70 [176] FIRST P.C.
85 NO + NH –– H + N2O 0.65 [72] FIRST P.C.
90 O2 + N –– O + NO 0.30 [15] DATABASE
91 NO + N –– N2 + O 0.20 [15] DATABASE

111 N2H2 –– H + NNH 0.50 [43] FIRST P.C.
112 N2H2 –– H + NNH 0.50 [43] FIRST P.C.
113 H + N2H2 –– H2 + NNH 0.35 [211] FIRST P.C.
119 N2H2 + NH2 –– NH3 + NNH 0.85 [102] FIRST P.C.
140 HO2 + NO –– OH + NO2 0.04 [78] EXPERIMENTS
143 HNO –– H + NO 0.30 [170] FIRST P.C.
144 H + HNO –– H2 + NO 0.90 [123] FIRST P.C.
148 O2 + HNO –– HO2 + NO 0.50 [43] FIRST P.C.
149 HNO + NH2 –– NO + NH3 0.70 [109] FIRST P.C.
161 HONO + NH2 –– NO2 + NH3 0.16 [179,208] EXPERIMENTS
170 NO2 + H2NO –– HNO + HONO 0.70 [183] ANALOGY AB-I
171 NH2 + H2NO –– HNO + NH3 0.50 [43] FIRST P.C.
172 O2 + H2NO –– HO2 + HNO 0.60 [168] FIRST P.C.

not involved in the optimization) were taken from [170]. The reactions to be
optimized were selected using a cumulative sensitivity threshold (see section
2.5.2) equal to 90%, applied for each test case, leading to a sensitive subset
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3.7. Analysis of the optimized mechanism

of 41 reactions. Once uncertainties were established (see section 2.3), a se-
lected subset of 24 most impactful reactions was obtained using a threshold of
90% on the CIF (see section 2.5.2). More details about which reactions were
included in this sub-set are given in SM. It is also important to mention that 4
out of 24 reactions (namely (R24, R111 and R112, and R143) are expressed
with PLOG formalism. Indeed, R111 and R112 are duplicate of the same reac-
tion, as evaluated by Dean and Bozzelli [43]. Overall, optimization was carried
out considering 68 active variables. Nonetheless, only 56 out of 68 are directly
linked to one single Arrhenius parameter, in pressure-independent reactions.
Due to the nature of the four pressure-dependent reactions (i.e. PLOG), the
remaining 12 uncertain parameters correspond to 45 Arrhenius parameters in
the kinetic mechanism (see section 3.5). Subsequently, 101 kinetic parameters
were optimized simultaneously.

Figure 3.4 shows a comparison between the optimized duplicate PLOG us-
ing the CM as objective function, and the nominal reaction. The former falls
within the 2σ uncertainty band and it is increased by the same factor, for all
pressures. In the case of a duplicate reactions the f (see 2.17) is to be applied
to the sum of multiple kinetic rate constants and these constraints should be
evaluated everytime the reactions’ parameters are sampled/evaluated.

0.4 0.5 0.6 0.7 0.8 0.9 1
1000 / T [K -1]

10-2

100

102

104

106

108

k 
[c

m
3 m

ol
-1

s-1
]

Uncertainty
Nominal
CM-mech

P [bar]

10

0.1

Figure 3.4: Sum of reaction rates R111 and R112.
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On average, the optimized rate deviates from the nominal value by +76.4% at
the low-pressure limit and by +78.2% at the high-pressure limit, due to the sum
of R111 and R112 at different pressures. The pre-exponential factors of the
three pressure logarithmic reaction rates were optimized by multiplying them
by a factor of 1.567 and 1.221, for R111 and R112, respectively. Regarding
other parameters, for R111 the temperature exponent is kept constant, while
it increases for the R112 by a factor of 0.065. Inversely, a more significant
change of -315.7 [cal/mol] in the energies of activation for R111, and no vari-
ation for the same parameter in R112, was observed. The agreement with
the laminar flow reactor experiments from Stagni [170] is affected by reactions
R24, R111, R112, R143 among the others. Remarkable results are obtained,
with all objective functions, for predictions of O2 consumption, NH3 conversion,
H2O and NO formation, as highlighted in Figure 3.5. The major change occurs
at 1523 K for NO, where also ammonia, oxygen, and water are significantly
affected in shape. At this temperature, NH3 consumption is delayed and NO
volume fraction decreases by one order of magnitude (from 1.3 to 0.2 v/v %),
resulting in a largely improved agreement with the experimental data for both
CM-mech and L2-mech, while the L1-mech slightly underestimates the con-
centration of NO at this point. For temperatures between 1600 and 1800 K, a
significant deviation from experimental data is anyway present considering all
the models. For the temperature ranges [1523,1600] and [1800,2000] K, the
L2-mech shows the best agreement with the experiments. For NO formation,
the CM index (see eq. 2.31) increases from 0.849 to 0.9 for all the optimized
mechanism. The L2-norm for this dataset decreases from 1560 to 172, 160
and 158 for CM-mech, L1-mech and L2-mech, respectively.

In order to discuss this case further, sensitivity and rate of production analysis
of both nominal and CM-mech were performed at 1523 K to explain how mod-
ifying kinetic rate constants led to the improvement discussed above. Figure
3.6a shows the main sensitive reactions for the formation of NO. R26 is charac-
terized by a negative sensitive coefficient, which relatively increases after opti-
mization. This happens because the rate constant for this reaction increases of
a factor of 2, as shown in Figure 3.6b, and strongly impacts ammonia conver-
sion, as well as NO formation. Existing direct measurements for R26 reported
a lower rate with respect to the nominal mechanism. Therefore, model opti-
mization and measurements seem to recommend conflicting rate modification
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Figure 3.5: Comparison between speciation predictions with nominal and optimized mecha-
nism for lean NH3/O2 mixture in a flow reactor, at 1.25 bar. Experimental data from [170]

for this reaction. However, recent advanced theoretical calculations reported
an increased rate for R26 with respect to the nominal one, in agreement with
results from the optimizer. In this context, a better characterization for this re-
action is recommended for future mechanism development. For instance, new
experiments may be carried out to confirm previous findings.

Globally, the rate of NH3 consumption in the optimized mechanism decreases
because of the competition between R26 and R27. The latter is the dominant
kinetic step to form NH2, which is then formed in a lower amount. This explains
modified trend for ammonia in Figure 3.5. In spite of the 27% increase in the
combined kinetic rate constant of R31 and R32 (see Figure 3.6c), HNO rate of
production decreases due to the limited availability of NH2. It is clear that in
L2/L1-mech the reduced production of HNO is enhanced by a decrease in R31
and R32. As reported by Stagni et al. [170], HNO plays a key role in NOx for-
mation. This species dissociates through R143, and undergoes H-abstraction
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Figure 3.6: Sensitivity analysis (a) and kinetic rate constants (b-f) of key reactions for NO for-
mation in test case from Stagni [170], comparison between nominal and optimized mecha-
nism.

in R144, forming nitrogen-oxide (NO). As shown in 3.6a, R143 and R144 ex-
hibit positive and negative sensitivity coefficients, respectively. Therefore, the
reduction of R143 by a factor of 2 (see Figure 3.3) along with the increase of
R144 by a factor of 2.5 (shown in 3.6f) cause the pronounced NO reduction at
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1523 K. Figure 3.6e shows a 6% increase in k(T) for R76, which carries an en-
hanced negative sensitivity coefficient in the optimized mechanism. Therefore,
NO reduction is also due to its conversion to final products through such reac-
tion. Also, an average 7% increase in R39 (see Figure 3.6d), along with the
abovementioned deviation of R111/R112 from the nominal values, displayed
in Figure 3.4, strengthen the following path NH → N2H2 → NNH → N2, which
bypasses NO formation during ammonia oxidation, contributing to its reduc-
tion. Figure 3.6d also shows the rate constants obtained in L2/L1-mech, which
are significantly higher than those of CM-mech. This reaction, together with
R31 and R32, is responsible for the difference between the three optimized
mechanisms in terms of NO formation. All of the reactions discussed above
were also found to be impactful for laminar flame speed cases. The dataset
from Ronney [45] was considered as a target in the optimization process, as
measurements have been obtained in microgravity, where buoyancy effects do
not affect the measurements. Indeed, this physical phenomenon was found to
cause instabilities in the flame front for low-reactivity mixtures, i.e. high pres-
sure [30], and was correlated to discrepancies between experimental data and
predictions using 1D laminar flames [19], for rich conditions. Since ammonia
exhibits a very low laminar burning speed, and the data from Lhuillier et al. [99]
were not produced in microgravity conditions, they were used only for the val-
idation. Figure 3.7a displays the comparison between the nominal, and the
optimized mechanisms on data from Ronney [45]. The performance of CM-
mech mostly falls within the experimental uncertainty and is comparable to the
nominal one. On the contrary, using the point-wise definitions of the objective
function, see equations 2.23 and 2.25, resulted in a loss in predictability. For
the conditions in Figure 3.7a, the 4 most sensitive reactions (and their sensitiv-
ity coefficients) areH+O2 = O+OH (0.804), R39 (0.196), NO+NH2=OH+NNH
(0.151), and R31-R32 (-0.095). As shown in Figure 3.6c and Figure 3.6d, R31-
R32 decrease and R39 increases in both L2/L1-mechanisms. Since these
reactions show a negative and a positive sensitivity coefficient, respectively,
they determine an increase in reactivity for L2/L1-mech. In particular, R39 is
pushed outside the 2σ of its distribution and approaches the upper bound at 3σ
for both L2/L1-mech, resulting in a rate with lower probability than that of CM-
mech. This reaction was found to be strongly impactful in the shock tube data
from Davidson [41]. In Figure 9b, the L2/L1 mechanisms clearly outperform
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the nominal model, as well as the CM-mech, for the formation of NH2 during
the pyrolysis of ammonia at 2300 K and atmospheric pressure. Conversely,
in the same system and operating conditions, all of the models show satisfac-
tory agreement for the experiment on NH formation (see Figure 3.7c). Thus,
to improve the predictions in Figure 3.7b and the NO formation in Figure 3.5
using the objective functions in equations 2.23 and 2.25, the optimizer might
force the kinetic parameters of R26 to less probable values (see Figure 3.6c/d).
The same does not happen with CM-mech, where only 1 out of 24 reactions
exceeds the 2σ. The details about kinetic rate constants of the considered
reactions in optimization can be found in the appendix A.

As already discussed in [67], reactions R74 and R75 are crucial for modelling
extremely lean mixtures, leading to formation of N2O, and H2NO. Accordingly,
R172 was defined as strongly impactful for high O2 excess and high pressures.
In this work, the same three reactions were found to be strongly impactful for
ignition delay time predictions at high pressure in both shock tube [159] and
rapid compression machine [75] experiments. Figure 3.8 shows examples from
the 6 ignition delay time datasets from Shu et al. [159], at high pressure. For
this test case, CM-mech has the highest similarity with experiments, in fact
the average CM value is 0.954, while the nominal one is 0.945. The highest
similarity index, 0.983, is obtained at 40 bar for stoichiometric conditions. Even
though L2/L1-mech yield very good agreement with this test case, their curve
matching indices decreases to 0.927 and 0.931, respectively. At 20 bar and
in rich conditions, all the mechanisms show satisfactory agreement with the
experimental data. However, for low temperatures, none of them is consistent
with the experimental uncertainty. This result suggests that, only for these three
points, measurement uncertainty might be higher than 20%.

The reactions R74, R75 and R172 were also selected for the JSR data
by Stagni [170], the RCM data by Pochet [134] and the PFR data from War-
gadalam [204], and Song [168]. These test cases contain measurements ob-
tained in similar operating conditions as those described by Glarborg et al. [67],
as reported in Figure 3.1. In a similar temperature regime, experimental ignition
delay times at high pressure (20 and 40 bar) recently reported in the literature
by He et al. [75] give the most satisfying results in this work. Even for this
test case, R74, R75 and R172 were found to be the governing reactions. In
general, overall improvement can be appreciated in Figure 3.9.
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Figure 3.7: Comparison of nominal and optimized mechanisms on different targets. (a) Lam-
inar flame speed of NH3/air mixtures in microgravity conditions at 300 K; (b) Molar fraction
of NH2 in a shock tube at 1.028 atm and 2301 K. (c) Molar fraction of NH in a shock tube at
0.986 atm and 2294 K. Experimental data from [41,45]
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Figure 3.8: High pressure ignition delay time of NH3/air mixtures in a shock tube for different
equivalence ratios, namely 0.5,1.0, and 2.0. Experimental data from [159].
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Figure 3.9: Comparison between nominal and optimized mechanism for NH3 self-ignition at
pressures between 40 and 60 bar in a Rapid compression machine. Experimental data
from [75].
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Table 3.2 shows the overall objective function values for the optimized models
and their deviations from those of the nominal mechanism. As expected, both
L1-mech and L2-mech outperform the nominal mechanism in terms of L1 and
L2-norms, but the first is characterized by lower a CM index (i.e. higher 1-
CM), and the second shows little improvements. This indicates that using the
objectives functions 2.23 / 2.25 on large databases, may lead to a lower CM
index (i.e. lower agreement with experimental data) with respect to the nominal
mechanism. On the other hand, the CM-mech performs better than the nominal
mechanism for all the measurements, not only in terms of CM index, which is
expected, but also in terms of L2/L1-norm (even though its gain is much lower
than that of the other two optimized mechanisms).

Table 3.2: Comparison between different error measures values of nominal and optimized
mechanisms for the optimization subset.

Mech. label 1-CM (% deviation ) L1-norm (% deviation ) L2-norm (% deviation )
Nominal 0.1919 3.77 176.35
CM-mech 0.1726 (-11.17%) 3.72 (-1.46%) 136.31 (-22.70%)
L1-mech 0.1962 (+1.76%) 2.71 (-31.51%) 58.940 (-66.58%)
L2-mech 0.1903 (-1.49%) 2.54 (-35.37%) 55.600 (-68.46%)

Overall, the deviations of the objective function values between optimized and
nominal mechanisms are smaller using CM with respect to the L1/L2-norm. In-
deed, in equation 2.31, performance gains and losses for each curve contribute
equally to the average value, which is always between 0 and 1. Additionally,
it is very difficult, if not impossible, for any mechanism to show no similarity,
or dissimilarity with experimental data, if a large set is considered. For this
reason, the possible range of values for CM is even more limited than [0,1].
In general, a well-constructed and validated kinetic model as the one used in
this work is not expected to show outstanding global improvements in terms of
curve matching metrics. Yet, significant differences between the nominal model
and the CM-mech were observed in this work when looking at single curves.
To further support this, the CM index was computed for the optimization tar-
get datasets inside the database (i.e. 44 out of 60), for all mechanisms (i.e.
Stagni, CM/L1/L2-mech). Table 3.3 reports the number of negatively/positively
impacted datasets in each optimized mechanism. The average, and maximum
deviations from the nominal CM values are also reported. This deviation is the
difference in percentage between the CM index of the nominal mechanism and
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3.7. Analysis of the optimized mechanism

of the optimized ones, and it was computed for each of the 44 optimization
target datasets.

Table 3.3: Performance comparisons between mechanisms on target datasets in optimization.

Negative Impact Positive Impact
Adopted objective function CM-mech L1-mech L2-mech CM-mech L1-mech L2-mech
No of datasets 12.00 26.00 23.00 32.00 18.00 21.00
Ave.CM deviation (%) -1.42 -3.29 -3.21 +3.99 +3.29 +4.54
Max. CM deviation (%) -3.00 -8.75 -8.89 +14.39 +11.29 +18.35

The CM-based optimization approach leads to a significantly larger number of
improved datasets, with respect to point-wise based approaches. In fact, L1-
mech shows reduced performances on a number of curves almost twice as big
as the number of improved ones, and L2-mech behaves similarly. Additionally,
both average and maximum negative deviations are significantly lower for the
CM-mech compared to the others. For this reason, the latter approach can
be considered as more conservative than the other two. Moreover, average
and peak improvements in CM-mech are comparable to those of the L2-mech,
which is the one leading to the biggest local improvement. All of this is graph-
ically summarized in Figure 3.10, where the same information for the single
dataset is delivered through a parity plot, for both optimization and validation
sub-sets of the complete database. From Figure 3.10, it can be also concluded
that the CM-mech yields the most homogeneous and consistent improvement
over the entire subset of optimization target datasets even in terms of L1 and
L2 norms.

Indeed, the absolute numerical values of relevant measures for combustion
kinetic model validation (i.e. laminar burning speed, main and intermediate
species concentration, and ignition delay time) range different order of magni-
tudes, namely from 10−6 to 102. As a consequence, the point-wise formulations
of the objective function (i.e. eq. 2.23 / 2.25) are characterized by very different
absolute values for each dataset, even when normalization is performed or the
natural logarithm is adopted for the ignition delay time. Therefore, in mono-
objective optimization study targeting a wide set of experimental data, the op-
timizer focuses on those contributing more to the full extent of the objective-
function. CM prevents this issue, since it associates each curve with a score
between 0 and 1.
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Figure 3.10: Parity plot: curve matching indices comparison between nominal mechanism
from Stagni et al. [170] and optimized mechanisms from this work.

3.8 Concluding remarks

In this work, we proposed a novel data-driven approach for the optimisation of
detailed kinetic mechanisms. The employed optimization algorithm is the Evo-
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lutionary Algorithm (EA). For the first time the objective function was based on
a recently published curve matching algorithm that is capable to quantitatively
and qualitatively evaluate the agreement of kinetic models with experimental
data, characterizing the agreement in terms of L1 and L2 norm as well as on
the first derivatives and shapes of the curves. Also, a novel methodology to
optimize the Arrhenius parameters of PLOG-based reactions was established.
The interdependencies between Arrhenius expressions at different pressures
were accounted for by handling three random variables for each PLOG, regard-
less of the number of discrete pressures specified in the mechanism. To the
authors knowledge, PLOG reactions were consistently optimized for the first
time within their entire temperature and pressure domain. An optimized mech-
anism for ammonia combustion was obtained, and it was found to outperform
the nominal mechanism from Stagni et al. [170], as well as those obtained
with point-wise formulations of the objective function (i.e. L1 and L2 norms),
over a wide range of operating conditions involving more than 635 experi-
mental data points. Addressed features of ammonia combustion were conver-
sion, oxidation, pyrolysis, ignition and laminar flame speed in several systems.
Improvements driven by optimization on all the impactful reactions were con-
strained to their uncertainty bounds when experiments on single elementary
steps were available. For rates determined using first principles calculations,
guidelines were established to estimate uncertainty ranges based on the level
of theory adopted throughout the calculation protocols for electronic structures,
potential energy surfaces and phenomenological reaction rate constants. In
this process, 41 reactions were involved and 24 were finally selected as the
most impactful by introducing a Cumulative Sensitivity Function (CSF) and a
Cumulative Impact Function (CIF) for each test case in the database. As a re-
sult, the approach involved all 101 kinetic parameters, which were addressed
contemporarily by the optimizer during optimum search. Finally, the compar-
ison between nominal and optimized mechanisms was exploited to highlight
crucial reaction pathways, needing further characterization, demonstrating the
applicability of the methodology as a useful tool for a more accurate evaluation
of crucial kinetic constants and for design of experiments. Finally, sensitivity
and rate of production analysis of both nominal and CM-mech were performed
to investigate how modifying kinetic rate constants led to the improvement dis-
cussed above. R26 sensitivity coefficient relatively increases after optimization.
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This happens because the rate constant for this reaction increases of a factor
of 2, as shown in Figure 3.6b, and strongly impacts ammonia conversion, as
well as NO formation. Existing direct measurements for R26 reported a lower
rate with respect to the nominal mechanism. Therefore, model optimization and
measurements seem to recommend conflicting rate modification for this reac-
tion. However, recent advanced theoretical calculations reported an increased
rate for R26 with respect to the nominal one, in agreement with results from
the optimizer. In this context, a better characterization for this reaction is rec-
ommended for future mechanism development. For instance, new experiments
may be carried out to confirm previous findings.
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CHAPTER4
OptiSMOKE 2.0

THIS chapter showcases OptiSMOKE 2.0 capabilties through 9 practical
examples. This toolbox embodies the methodology discussed in pre-
vious chapters. This chapter is partly based on the following pubblica-

tions:

• OptiSMOKE++: A toolbox for optimization of chemical kinetic mechanisms.
Fürst, M., Bertolino, A., Cuoci, A., Faravelli, T., Parente, A. Computer
Physics Communications https://doi.org/10.1016/j.cpc.2021.
107940

• Combined effect of experimental and kinetic uncertainties on NO predic-
tions in low-pressurepremixed laminar H2/CH4/CO-air and H2/CH4/CO/C6H6-
air flames, Iavarone, S., Bertolino, A., Cafiero, M., Parente, A., currently
under preparation

The OptiSMOKE 2.0 code is available at:
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• https://github.com/burn-research/OptiSMOKE_toolbox.git
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4.1. Workflow

4.1 Workflow

An overall view of the OptiSMOKE++ workflow is depicted in Fig. 4.1. OpenSMOKE++
[35] is conceived for solving reacting systems with numerous species and re-
actions. OpenSMOKE++ utilizes advanced numerical techniques to reduce
the computational cost of the simulation, without sacrificing accuracy or ro-
bustness. A more extensive description of the code and its utilities can be
found in [35]. It consists of a series of solvers for 0D reactors (Batch Reac-
tors, PFRs, PSRs, ST, RCM and laminar flames. DAKOTA (Design Analysis
Kit for Optimization and Terascale Applications) is a framework developed at
and distributed by Sandia National Laboratories [4]. It is a toolkit used for iter-
ative parameter evaluations, which are key to perform optimization, sensitivity
analysis, and uncertainty quantification.
The code runs through the following phases:

• Import the input files, i.e OptiSMOKE dictionary, kinetic mechanism maps,
experimental data and opensmoke input files. It is important to notice
that the data can be either present on a local storage or interactively
downloaded from an online database, called SciExpeM, from Ramalli et
al. [138].

• Initialize the set of OpenSMOKE++ simulations.

• Select the reaction through screening, based on Cumulative Sensitivity
Function (CSF).

• Calculate Constraints for the selected reactions, based on user specified
uncertainties.

• Run a user-defined optimization algorithm in DAKOTA [4], which strategi-
cally suggests new combination of chosen parameters. OptiSMOKE [64]
then undates the kinetic maps accordingly, and check if the constraints.
If even one of the constraint is not respected a penalty is applied to that
evaluation and the simulations are not carried out. If all constraints are
respected, OptiSMOKE [64] runs all OpenSMOKE [35] simulation, post-
process the results and uses the to compute a user-defined objective func-
tion. Based on the objective function value and the optimization strategy,
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Figure 4.1: Schematic workflow of OptiSMOKE++ and its Interactions with SciExpeM,
OpenSMOKE++ [35] and DAKOTA [4]

DAKOTA suggests a new set of parameter values and the process is re-
peated until at least one of the stopping criteria has been reached. These
stopping criteria can depend on the optimization methodology used, but

83



4.2. OptiSMOKE features: application to different of Quantity of Interests (QoI)

typical universal ones are: maximum number of evaluations, maximum
number of iterations, solution target, and convergence criteria.

• Write the optimal kinetic mechanism for off-line user activities.

4.2 OptiSMOKE features: application to different of Quantity of Inter-
ests (QoI)

The following section discusses 9 different examples, which demonstrate the
functionality of OptiSMOKE++. Target data of direct and indirect nature can
be used for mechanisms optimization, as proposed and intended by Turanyi et
al. [185].

4.2.1 QoIs of direct (or least indirect) nature

This type of data represents experiments in fine and controlled conditions,
where the set of sensitive mechanism reactions is reduced to a minimum size
yet including the reaction of interest. The latter can be inferred from data us-
ing a model and assuming (i) correct mechanism and model representation,
(ii) the uncertainty of the experiments and (iii) the uncertainty of all sensitive
uncertain reactions in the reduced set are considered. These targets are di-
rectly compared with kinetic constant calculations in OpenSMOKE++, through
OptiSMOKE++.
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Test Case 1: Optimization of O + OH = O2 +H

The following example involves one of the most famous reactions in combus-
tion, O + OH = O2 + H. For this reaction, 48 different sets of Arrhenius pa-
rameters from reviews, experiments and theory are available in NIST [103]
database, from 1958 to 2011. Some of them are reported in figure 4.2.
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Figure 4.2: Comparison between nominal (—) and optimized (- - -) rate constant for reactions
O +OH = O2 +H in test case 1. Experiments from NIST [103]

In this example, the starting point in optimization is referred to as nominal in
table 4.1, and an uncertainty factor f of 1.0 (see equ. 2.17) was assumed to in-
clude almost all the available reference data. Because of the low computational
cost of the model evaluations, EA (see section 2.3) was set with 20000 evalu-
ations, comparable to a direct search. Using two different objective functions,
i.e. L2 and L1 norms (see equ. 2.23 and 2.25), optimized parameters values
can be obtained, and are reported in table 4.1. It is interesting to notice that
optimization with both error functions find a local minimum for n = 0.239, while
slightly different values for the other two parameters are obtained. Nonethe-
less, the optimized constants overlap in figure 4.2. It is important to clarify the
weight of each experiments in the objective function is inversely proportional to
the experimental uncertainty. For the sake of brevity and plot readibility, error
bars are not reported here.

85



4.2. OptiSMOKE features: application to different of Quantity of Interests (QoI)

Table 4.1: Objective function, and Arrhenius parameters values for nominal as well as opti-
mized reaction rate for section 4.2.1

Mechanism L2 L1 A [cm-mol-s] n [-] Ea [cal/mol]
Nominal 7.973e-03 2.113e-01 1.2525e+11 0.533000 -2098.42
Opt. L2 1.279e-03 — 1.2127e+12 0.238704 -725.85
Opt. L1 — 1.162e-01 1.1425e+12 0.238704 -843.01

Test Case 2: Optimization of H2O2(+M) = OH + OH(+M) in PLOG format

In this section, an exercise similar to that shown for TC1 is carried out for a
pressure-dependent reaction expressed in PLOG format, following the method-
ology proposed in 3.5. The experimental data from Zellner [210] and Hong [77]
are used as targets for different combinations of pressure and temperature.
The L2 − norm (see equ. 2.23) was adopted as objective function in this ex-
ample. L2 − norm values for each curve are given in figure 4.3 together with
graphical results.
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Figure 4.3: Comparison between nominal (—) and optimized (- - -) rate constant for reactions
H2O2(+M) = 2OH(+M) in test case 2. Experimental data from Zellner [210] and Hong
[77]

In spite of the satisfying agreement between model responses and experimen-
tal data, a strong correlation between model responses exists. This becomes
clear when looking at the 68% and 99% confidence regions of the optimization
parameters for the PLOG reaction in figure 4.4. Here, X1,2,3 represent the 3
random variables defined for PLOG optimization (see 3.5). The ellipticl regions
dysplayed were obtained following the procedure described in section 2.7. As
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well-documented in [150], rotated ellipse axes are a sign of parameters corre-
lation (see section 2.4.2). Of course such correlations would make the job of
any optimizer harder, as discussed in section 2.4.2. For this reason, heuristic
algorithms with high number of evaluations are a good choice. Here, an Evolu-
tionary Algorithm was run for 30’000 evaluations since the cost of a realization
is close to 10−4s as the entire process roughly takes 10 s.

Figure 4.4: The 68% (. . . ) and 99% (—) confidence regions, and best estimate (marker) for
PLOG optimization parameters in test case 2.

4.3 QoIs of strong indirect nature

4.3.1 Test Case 3: Speciation and Temperature increase in a Non-Isothermal
Perfectly Stirred Reactor (PSR)

In this example, the optimization targets consist of species concentrations and
temperature increase during hydrogen oxidation at different initial temperatures
in an Non-Isothermal Jet-stirred reactor (JSR) [145]. An experimental JSR can
be modeled as a Perfectly Stirred Reactor (PSR), the injection occurs through
jet nozzles with a high velocity, which ensures instantaneous mixing inside the
reactor. The species concentrations were measured with fixed residence time
(τ = 0.5 s), at 1.2 atm, φ= 0.5 and 94% dilution. The diluent is composed
by 30% of H2O and 70% of N2 in volume. The target species for this study
were limited to H2 and O2, but a larger number of species can be handled
by OptiSMOKE++. The nominal kinetics used for this case was Aramco 2.0

87



4.3. QoIs of strong indirect nature

[94], and the sensitivity study, for determining which reactions to consider in
the optimization, was performed based on section 2.5.2. This resulted in 10
reactions and 30 kinetic parameters, which are not reported here for the sake
of brevity, but are a subset of those reported in the next chapter (see chapter
5). A comparison between nominal and optimized mechanisms is reported in
figure 4.5. It can clearly be seen that an overall improvement is achieved for
each species profile, these improvements increase the average curve matching
index (see 2.31) from 0.8835 to 0.9470.
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Figure 4.5: Comparison between nominal (—) and optimized (- - -) model responses for test
case 3. Experimental data from [145]

4.3.2 Test Case 4: Temporal profiles of hydrogen, oxygen and water in a
Plug Flow Reactor

In case of laminar flow reactors, it is possible to shift the species profiles using
the 50% fuel depletion as recommended by Dryer [46]. This can be done
before the calculation of any objective function in OptiSMOKE++, and needs to
be done every time DAKOTA suggests a new combination of parameters. The
data from Mueller [118], about H2/O2 oxidation at intermediate temperatures,
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are a very good example for this QoI. The mechanism from ELTE [192] was
used in optimization for seven reactions and a total of 21 kinetic parameters.
Uncertainties for these kinetic steps were mainly taken from the collection of
Baulch [14]. Figure 4.6a reports the fuel oxidation profile before time-shift for
both nominal and optimized kinetic model. It is important to notice that while
maximizing curve similarity, the time shift is also minimized. Figures 4.6b, c
and d show the time-shift, computed on the fuel, applied to H2, H2O, and O2.
The agreement between optimized model and experiments is remarkable. In
fact, the average Curve Matching for curves similarity increases from 0.85 to
0.93.
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Figure 4.6: Comparison between nominal (—) and optimized (- - -) model responses for test
case 4. Calculated (a) and shifted (b) H2 profiles from simulation. Shifted profiles for H2O
(c) and O2 (d). Experimental data from Mueller [118]

4.3.3 Test Case 5: Species concentration at the outlet of a Flow Reactor
fed with nitromethane

This example aims at showing one possible application of OptiSMOKE++ to as-
sess mechanism completeness. Isopropyl nitrate ((CH3)2CHONO2, iPN) is an
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organic molecule, used as a additive to prompt fuel reactivity in gas turbine en-
gines, or in blends with diesel. iPN is a promising “green”, non-toxic, and non-
corrosive monopropellant, which be used for a wide range of applications (e.g.
space and aerial vehicles, underwater power sources). Additionally, iPN can be
produced at low cost and has low susceptibility towards premature detonation.
An example of pyrolysis data of isopropyl nitrate (iPN) in a tubular reactor at at-
mospheric pressure and temperatures ranging from 373 to 773K and residence
times of 2 s. Preliminary results were published by Bourgalais [20], who de-
scribed a mechanism for iPN decomposition, currently under development. The
experimental setup has recently been described in detail elsewhere [158]. The
major products of iPN decomposition are formaldehyde (CH2O), nitromethane
(CH3NO2), methanol (CH3OH), formamide (CH3NO), NO and others. The ex-
perimental data for some of these species are reported in figure 4.7. In Bour-
galais [20], a modified POLIMI mechanism was able to predict the decompo-
sition of iPN as well as some major product reasonably well. However, pro-
nounced deviations for the major species indicate that further improvements
are needed. Worst performances are observed especially for formaldehyde
(CH2O), nitromethane (CH3NO2), and methanol (CH3OH) in figure 4.7 b,c, and
d. The optimized reactions are neither reported nor discussed here because
the mechanism has not been published yet, but it was rather obtained through
personal communication with the authors [20], who contacted our lab to explore
possibilities for mechanism improvement with OptiSMOKE++.
What is really interesting to notice here is that in spite of a general increase
in performance, after the optimization was carried out (i.e. CM increases from
0.83 to 0.8754), the mechanism reproduction of formaldehyde (CH2O) (see
figure 4.7b) is far from satisfactory. After a thourough kinetic analysis and opti-
mization involving 8 sensitive reactions, which were optimized with increasing
uncertainty (i.e. f= 0.3, 0.5 and 0.7), the hypothesis that a critical kinetic step
might be missing was formulated. Theoretical calculations to explore this pos-
sibility will be carried out by co-authors of Bourgalais [20].

4.3.4 Test Case 6: Ignition delay time in a shock tube

For shock tube simulations, constant volume batch reactors can be usually
adopted. However, due to non-ideal facility behaviour, a constant pressure
rise in time is observed at low temperatures before ignition, and should be

90



4.3. QoIs of strong indirect nature

300 400 500 600 700 800
Temperature[K]

0

0.2

0.4

0.6

0.8

1

C
H

3N
O

 [v
/v

 %
]

10-3

300 400 500 600 700 800
Temperature[K]

0

0.002

0.004

0.006

0.008

0.01

0.012

IP
N

 [v
/v

 %
]

Bourgalais et al.
nominal
optimized

300 400 500 600 700 800
Temperature[K]

0

0.002

0.004

0.006

0.008

0.01

N
O

 [v
/v

 %
]

300 400 500 600 700 800
Temperature[K]

0

2

4

6

8

C
H

3N
O

2 
[v

/v
 %

]

10-3

300 400 500 600 700 800
Temperature[K]

0

1

2

3

4

5

C
H

3O
H

 [v
/v

 %
]

10-3

300 400 500 600 700 800
Temperature[K]

0

0.002

0.004

0.006

0.008

0.01

C
H

2O
 [v

/v
 %

]

Bourgalais et al.
nominal
optimized

CMOPT = 0.8754

CMNOM = 0.8305

(a) (b)

(d)(c)

(f)(e)

Figure 4.7: Comparison between nominal (—) and optimized (- - -) model responses for in test
case 5

imposed in simulations as a percentage of the operating pressure [35]. This
information can be included in simulations whether available from the reference
papers. If not, it is suggested here to remove, from the target dataset, those
data points where a pressure rise in time equal to the 3% of the initial pressure
caused at least 10% variation in the calculated ignition delay time. This would
ensure that parameters estimation is not biased by uncertainties due physical
phenomena, which can not be reproduced with a simple batch reactor. Figure
4.8 reports the experimental data from Wang [202], which were "cleaned" from
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4.3. QoIs of strong indirect nature

possibly corrupted data. Here, the onset of ignition corresponds to the instant
where the maximum rate of OH production is observed. The ignition delay
times calculated using Aramco 2.0 [94] mechanisms as well as its optimized
version, based on 7 elementary reactions and the third body efficiency of water
in 2 reaction among the main set, are shown in figure 4.8. Finally, the increase
in CM index is rather impressive for all curves but for that obtained with 25%
water dilution and 9.5 [bar] pressure, which shows decreased performance.
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Figure 4.8: Comparison between nominal (—) and optimized (- - -) model responses for in test
case 6. Experimental data from Wang [202]

4.3.5 Test Case 7: Ignition delay time in a rapid compression machine

As a key physico-chemical property of a specific mixture, the IDT is an impor-
tant measure for determining if the kinetic mechanism is accurately predicting
the onset of combustion correctly or not. The ignition strongly controls the suc-
cessive combustion process, which is why it is commonly used as a target for ki-
netic mechanisms in both validation and optimization. For the Rapid Compres-
sion Machine (RCM) data for Ignition Delay time of strongly diluted stoichio-
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metric hydrogen/oxygen mixtures from Das [40] the adiabatic core assumption
needs to be adopted [173]. In particular, the experimental cold pressure traces
were used to infer corresponding volume histories. The IDT was then com-
puted as the time elapsed between the maximum pressure time-derivative and
the minimum volume, corresponding to the end of compression. The ignition
delay times calculated using Aramco 2.0 [94] mechanisms as well as its opti-
mized version, based on 6 elementary reactions and the third body efficiency
of water in 2 reaction among the main set, are shown in figure 4.9.
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Figure 4.9: Comparison between nominal (—) and optimized (- - -) model responses for in test
case 7. Experimental data from [40].

4.3.6 Test Case 8: laminar flame speed optimization for global mecha-
nisms

As a key quantity for describing the combined effect of a mixtures’ diffusivity,
reactivity and exothermicity, the LFS is often used as a target for the develop-
ment, validation and optimization of a kinetic mechanism at low temperatures.
It describes at which speed the flame front is propagating back towards the un-
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burned gases in a laminar flow. When the inlet velocity of the mixture is equal
to the LFS, a stable flame front is established. The numerical evaluation of the
LFS are usually carried out in 1D freely propagating flame simulations. The
numerical solution of such a system depends on the inlet mixture composition,
kinetic and thermodynamic parameters, as well as the transport properties.
OptiSMOKE++ supports the application of LFS as targets for the optimization
by using the premixed laminar flame solver of OpenSMOKE++. The experi-
mental targets used for this test case consists of LFS data of methane/air, 1
bar and, temperature and equivalence ratio ranging from 300 to 500. The "ex-
perimental" measurements were produced by means of detailed mechanism
for an equivalence ratio between 0.7 and 1.2 using a detailed C1-C3 mech-
anism from POLIMI (Creck modelling). The challenge in this example is to
produce an optimized version of the Jones-Lindstedt [84] with the same lami-
nar burning speed as the detailed mechanism. The results of the optimization
can be seen in Fig. 4.10, and the optimized mechanism is able to capture
the targets very well. Here, only the Arrhenius parameters were optimized,
while the reaction orders with respect to reactant were kept equal to the orig-
inal mechanism. Figure 4.10d shows the convergence of the EA optimization
algorithm, which is basically achieved after 500 evaluations (i.e. 500*15 flame
calculations) with number of penalties around 150. Only small improvements
are observed afterward, while the number of penalties increases. This is a
clear sign that the optimizer is still performing a global search in the param-
eters hyperspace, even though local minimum were found elsewhere. Tables
4.2 and 4.3 report the parameters values for the nominal and optimized global
mechanisms, respectively.

Table 4.2: Collection of kinetic parameters from the nominal Jones-Lindstedt [84] in this work.
RO means reaction order.

Reaction A [cm-s-mol] n Ea [cal/mol] RO CH4 RO H2 RO O2

CH4 + 0.5O2 => CO + 2H2 7.82E+13 0.00 30000. 0.5 — 1.25
CH4 +H2O => CO + 3H2 3.00E+11 0.00 30000. — — —
H2 + 0.5O2 = H2O 1.209E+18 -1.0 40000. — 0.25 1.5
CO +H2O = CO2 +H2 2.75E+12 0.00 20000. — — —
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4.3. QoIs of strong indirect nature

Table 4.3: Collection of kinetic parameters from the optimized Jones-Lindstedt [84] in this
work. RO means reaction order.

Reaction A [cm-s-mol] n Ea [cal/mol] RO CH4 RO H2 RO O2

CH4 + 0.5O2 => CO + 2H2 5.571082e+13 0.00 29895.85 0.5 — 1.25
CH4 +H2O => CO + 3H2 6.234473e+11 0.00 30460.47 — — —
H2 + 0.5O2 = H2O 2.720403e+18 -1.0 39568.71 — 0.25 1.5
CO +H2O = CO2 +H2 1.407710e+12 0.00 20516.79 — — —
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Figure 4.10: Comparison between nominal (—) and optimized (- - -) model responses for in
test case 8. Laminar burning speed of methane/air mixtures at 300 (a), 400 (b), and 500
(c) K. Convergence of the evolutionary algorithm is shown in (d) together with the number
of penalized parameters combinations.

4.3.7 Test Case 9: NO formation in a burner-stabilized flame

In this example, the capabilities of OptiSMOKE++ in handling species profiles
measurements in low pressures (p]=7.5 kPa) burner stabilized flames is tested
against rich CH4/ CO/ H2 mixture at measured by Cafiero [24], in a Spalding-
Botha burner of diameter d=0.08 m. NO concentrations was measured via
chemiluminescence, with an estimated experimental uncertainty of 15%. Also,
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Table 4.4: Selected uncertain reactions with nominal pre-exponential factor, adopted uncertain
factors, mean and standard deviations.

Number Reaction A [kmol/cm/s] f µ σ
R5 H +O2 = O +OH 1.14E+11 0.20 25.46 0.15
R6 H +OH +M = H2O +M 3.50E+16 0.50 38.09 0.38
R32 H + CH4 = H2 + CH3 6.14E+02 0.40 6.42 0.30
R53 O2 + CH2 = OH +HCO 1.06E+10 0.55 23.084 0.42
R56 H + CH2 = H2 + CH 3.00E+10 1.00 24.12 0.76
R63 H + CH = H2 + C 1.10E+11 0.60 25.42 0.46
R72 O + CH3 = H + CH2O 5.54E+10 0.20 24.73 0.15
R73 OH + CH3 = H2O + CH2(S) PLOG 0.30 0.00 0.10
R6110 LC6H5 = C2H2 + C4H3 1.00E+14 0.74 32.24 0.56
R6111 LC6H5 = 2C2H2 + C2H 2.00E+14 1.00 32.93 0.76
R7681 NO +N = N2 +O 4.28E+10 0.15 24.48 0.11
R7726 O +NNH = NO +NH 5.20E+08 0.30 20.07 0.23
R7676 NO +NH = H +N2O 5.33E+09 0.65 22.40 0.49
R7813 O2 + CN = CO +NO 1.40E+09 0.30 21.06 0.23
R8024 N2 + CH = H +NCN PLOG 0.30 0.00 0.10
R8034 H +NCN = N +HCN PLOG 0.38 0.00 0.13
R8036 O +NCN = NO + CN 2.50E+10 1.10 23.94 0.84

NO formation was discussed from a chemical perspective and many reactions
were found to be impactful. In the following example, we extend the screen-
ing performed by Cafiero [24] with local sensitivity analysis using uncertainty
propagation and global sensitivity analysis using polynomial chaos expansion,
and model optimization. Table 4.4 reports the most impactful reactions along
with the nominal pre-exponential factors, the uncertainty factors f , means µ

and standard deviations σ.

Before analyzing the impact of temperature and kinetic uncertainties on the
predictions of NO in the 1D premixed laminar flame, the accuracy of the PCE
approach with sparse grid was assessed. The NO distributions obtained by
PCE at two different heights above the burner (HAB) for the stoichiometric
flame were compared to those extracted by near-randomly sampling the 17-
dimensional uncertain parameter space via the Latin Hypercube Sampling (LHS)
method [108]. The number of 1D simulations required to extract the reference
distributions via LHS amounts to 4096, almost six times higher than those re-
quired to construct the polynomial expansion via a sparse grid, i.e. 757. In
terms of computational costs, 4096 simulations required about 360 hours on
a 16-core workstation. Figures 4.11 (left) and 4.11 (right) show the distribu-
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tions obtained at HAB=0.80 cm and HAB=4.95 cm, respectively. The former
represents the flame front distribution, while the latter the post-flame one.

Figure 4.11: NO distributions at heights above the burner HAB=0.80 cm (a) and HAB=5.00
cm (b) in the 1D premixed laminar flame S1 (stoichiometric conditions)

To assess how each selected reaction contributes to the output variability, a
global sensitivity analysis was performed using the expansion model built with
PCE. Indeed, the impact of the i-th active variable can be measured in terms of
the first order Sobol index or main effect (see section 2.5.3). Figure 4.12 shows
such indices, normalized so that they sum up to 1, for many positions in the
flame domain, revealing that different kinetic pathways are responsible for NO
formation in different flame zones. It is interesting to report that second order
terms sum up to a total which is less than 0.01% of the output variance, and
are therefore omitted from the figure. The importance of the prompt pathway in
the rich flame is proven by the magnitude of the Sobol indices for the reactions
R56, R63, R8036 and R8024, that involve NCN and CH radicals. In particular,
reaction R8024 is the rate limiting reaction for NO prompt route, since it forms
NCN radical from the reaction between N2 and CH radical, whereas reaction
R56 is the main reaction of formation of CH radical in the investigated flames.
The values of the Sobol indices for these reactions remain quite constant in
the post-flame zone, indicating that NO are mainly formed in flame R1 via the
prompt pathway, while the thermal NO pathway gives a negligible contribution
to the overall NO formation [24].
Finally, the model uncertainty can be propagated, as shown in figure 4.13,
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Figure 4.12: First order, normalized, and variance-based sensitivity coefficients for important
reactions in NOx formation for CH4/H2 rich flame (φ = 1.2).

through PCE. In the plot, the light gray band contains the whole possible ranges
of NO values, the dotted and dashed lines show the 95th and 75th percentiles,
respectively, and the solid line depicts the median of the obtained NO distribu-
tion. The expected value of such distribution overlaps with the prediction of the
nominal mechanism. The experimental uncertainty band is enclosed within the
simulation one, indicating that there exists combinations of the kinetic param-
eters providing NO predictions that are included the experimental uncertainty.
To conclude, 12 parameters from reactions R56, R63, R72 and 8036, which
were found to be the most impactful in GS analysis, were optimized in Op-
tiSMOKE++. The figure 4.13 shows model improvements in a red, straight line.

4.4 Conclusions

This chapter describes different features of OptiSMOKE++: a C++ interface be-
tween DAKOTA, OptiSMOKE++, and CurveMatching. Additionally, OptiSMOKE++
can rely on SciExpeM to retrieve OpenSMOKE++ inputs for simulations and
experimental data from different sources. Here, nine different test cases were
presented, which reflect the full spectrum of available models, data, and tech-
niques in the OptiSMOKE++ framework. The latter can be used to optimize
kinetic mechanisms, perform UQ of Arrhenius parameters (and others), and

98



4.4. Conclusions

0 1 2 3 4 5
Distance from the burner [cm]

0

2

4

6

8

10

12

14

16

18

20

N
O

 [p
pm

]

PCE: min/max
PCE: 95th/5th perc.
PCE: 75th/25 th perc.
PCE: median
POLIMI
Cafiero
Optimized

Figure 4.13: Comparison between nominal (—) and optimized (- - -) model responses for test
case 9, and uncertainty propagation by means of PCE. Experimental data from Cafiero.

variance-based sensitivity analysis through polynomial chaos (PCE). These
nine test cases are available for future users, together with the code at https:
//github.com/burn-research/OptiSMOKE_toolbox.git. I think Op-
tiSMOKE should be used for mechanism optimization when a complete dataset,
involving several different targets, is available or, for small sets, to detect pos-
sible ways of improving the model, and subsequently perform first principle
investigation in that direction. As the latter is not in line with the aim of this
work, the chapter is meant to showcase possible use of OptiSMOKE++ and as
reference for future users, who would like to reproduce the work with their own
data and reactions. The core value of OptiSMOKE++ is flexibility and user-
friendlyness, which is reflected by the available reaction formats, and targets
from different facilities, which can of course also be used simultaneously at will:

• Kinetic constant rate fitting from high-fidelity experimental data, for modi-
fied Arrhenius (see 4.2.1), Lindemann, TROE, PLOG and modified PLOG
(see 4.2.1), and DUPLICATE;

• Perfectly Stirred Reactors, for species concentration (see 4.3.1);

• Plug Flow Reactor, also for speciation (see 4.3.2 and 4.3.3)and IDT;

• Batch ractors, mainly used for reproducing Ignition Delay Time (IDT) and
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species concentration in Shock Tubes (4.3.4)and Rapid Compression Ma-
chines (4.3.5);

• Laminar one-dimensional flames, for both flame speed (4.3.6) and speci-
ation (4.3.7).

The user can set up experimental data files and indicate reactions to be in-
vestigated with a limited amount of information, i.e. reaction indices (i.e. posi-
tion within the CHEMKIN model), uncertainties and format. In general, different
optimization algorithms can be employed using the DAKOTA toolkit. Then, Op-
tiSMOKE++ ensures that the optimizer falls within the physically viable portion
of the parameters sample space, by applying a penalty function to the unfeasi-
ble samples, i.e. it checks constraints for all reactions and forcefully increases
the corresponding objective function value (i.e. without performing simulations
and computing the real value) in case any non-eligible parameter is detected
(sort of Sparta rule). Even though this procedure slows down the optimizer in
terms of attempted model evalutions, the effective number of evaluated model
responses is lower compared to other penalty function concepts implemented
in Dakota, where non-eligible combinations are anyway evaluated, with the aim
of preserving a continuous objective function space. On the other hand, dis-
continuities such as those introduced by the penalty function make the adoption
of (more-efficient) gradient-based algorithms unfeasible. However, literature
shows how a heuristic algorithm can overcome these issues and get closer to
the global minimum, even though convergence is never garanteed. In addition,
these algorithm allow for caractherization of acceptance regions for model in-
put parameters, highlighting their strong correlation, when present (see figure
4.5). Still large room for improvements is available in H2/O2 core mechanism
parametrization when the fuel/oxidiser mixtures are diluted in water (see fig-
ure 4.6 and 4.8). It is of crucial importance, to include a horizontal shifting
parameter to meaninfully compare models and experiments, while optimizing
the first using flow reactors data (see section 4.3.2). This is widely accepted
in literature, and available in OptiSMOKE 2.0. Even though it might be obvious
for the expert reader that, in case of missing elementary kinetic steps in the
mechanism, the model tuning would result in non-physically meaningful kinetic
parameters values, one of the possible day-to-day use of OptiSMOKE 2.0 is
the verification of missing pathways. In particular, if an optimizer is not capable
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to improve a model while considering all sensitive reactions with wide uncer-
tainty, it is highly likely that the mechanism is incomplete (see discussion in
section 4.3.3). Another possible use of the framework is tuning global/skeletal
mechanisms, as demonstrated in section 4.3.6. Finally, the same framework
might serve purposes of uncertainty quantification and variance-based sensi-
tivity analysis as demonstrated in section 4.3.7.
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CHAPTER5
Estimation of third body efficiencies from

experimental data: an application to hydrogen
combustion

This chapter is based on the following pubblication:

• Estimation of third body efficiencies from experimental data: an applica-
tion to hydrogen combustion. Bertolino, A., Frassoldati, A., Cuoci, A.,
Parente, A. International Journal of Hydrogen Energy. under_review
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5.1. Abstract

5.1 Abstract

In this work, the role of H2O and CO2 as diluents is investigated , in operating
conditions relevant to MILD combustion of hydrogen. Through virtual species
analysis, the role of third body collisions emerges in phenomena such as igni-
tion and speciation. Global sensitivity analysis shows that a single third body
efficiency exhibits a larger impact than a group of sensitive reactions. For fall-
off reactions, the adoption of a PLOG format, rather than a classical TROE
can introduce errors as high as 2000% on macroscopic combustion targets
due to the absence of key collision efficiencies. Heuristic optimization methods
in OptiSMOKE++ provide best estimates and confidence regions for the third
body efficiencies of H2O and CO2 in H + O2( + M) –– HO2( + M) and H2O2( +
M) –– 2 OH( + M) in TROE formulation. Eventually, a method to extract this infor-
mation using the PLOG formulation is proposed. This approach is applicable
to other reactions in case theoretical calculations are unavailable or difficult to
perform.
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5.2 Database

This work, involving the H2 – O2 core for diluted H2/air mixtures, is based on 450
experimental data collected from literature from PSR, ST, RCM and spherical
bombs. A summary of the operating conditions for each test case (TC) are
summarized in Table 5.1.

Table 5.1: List of experimental measurement studied in this section

Label System T [K] P [atm] φ [-] Diluents Dilution Ref. N. of dp
TC1 RCM 907-1048 10,30, 70 1.0 N2/H2O 81.25% [40] 51
TC2 RCM 889 – 1012 10,30, 0.5, 1.0, 2.0 N2/H2O/Ar 52-67% [44] 30
TC3 ST 935 – 1331 4 ,10, 16 0.42 N2/H2O 67-80% [202] 41
TC4 ST 955-1248 1.1 1.0 CO2/Ar 94.00% [21] 17
TC5 ST 1180-1340 11-32 1.0 N2/H2O/Ar/ CO2 95.50% [152] 29
TC6 PSR 825-1014 1.2 0.5 N2/H2O/Ar/ CO2 92-94% [145] 248
TC7 spherical vessel 298 0.5-1 1.0-1.8 N2/He/Ar/ CO2 26-73% [137] 40

Details on models responses

For the RCM data from Das et al. [40] and Donohoe et al. [44], the adiabatic
core assumption was adopted [173]. In particular, the experimental cold pres-
sure traces, translated to volume histories, were used to infer corresponding
volume histories. The IDT was then computed as the time elapsed between the
maximum pressure time-derivative and the minimum volume, corresponding to
the end of compression. For shock tube simulations, constant volume batch re-
actors can be usually adopted. However, due to non-ideal facility behaviour a
constant pressure rise in time is observed at low temperatures before ignition,
and should be imposed in simulations as a percentage of the operating pres-
sure [129]. This information was included in simulations where available from
the reference papers. If not, data points where a pressure rise in time equal
to the 3% of the initial pressure caused at least 10% variation in the calculated
ignition delay time were excluded. Brabbs and Robertson [21] suggested that
in their facility the ignition occurs where a 2% rise in pressure was measured
with respect to the initial value. For the test case of Wang et al. [202], the onset
of ignition corresponds to the instant where the maximum rate of OH produc-
tion was observed. In Shao et al. [152], the ignition delay time is determined by
extrapolating the maximum slope of pressure signals back to the baseline. The
same definitions were adopted in the present work. PSR measurements from
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Sabia and De Joannon [145] where no oscillatory behaviour was experimen-
tally observed were also considered. Every experiment reported in Table 5.2
is reproduced with a simulation in OpenSMOKE++ [35]. The adopted kinetic
mechanism in this study is a subset of Aramco 2.0 [94], which is composed by
39 species and 193 reactions.

5.3 Reaction Selection

In performing optimization, the model responses corresponding to experimen-
tal observations are not equally influenced by all the parameters. On the con-
trary, a limited set of parameters need to be considered due to the phenomenon
termed effect sparsity. Subsequently, a first screening on model parameters is
usually performed by means of local sensitivity analysis [180]. By applying the
methods described in section 2.5.2, and applied in chapter 3 the reactions in
5.2 were selected. In brief, a CSF calculation was performed for each test
case in table 5.1, resulting in 7 separate sets of reactions. The final set of 13
reactions (5.2) was obtained by merging the latter sets.

Table 5.2: List of reactions considered for optimization in this section.

Label Reaction f Ref.
R2 H2 + O –– H + OH 0.2 [14]
R3 H2 + OH –– H + H2O 0.3 [14]
R5 H + O2 –– O + OH 0.2 [14]
R21 H2O2 ( + M) –– 2 OH ( + M) 0.2 [14]
R23 H + H2O2 –– HO2 + H2 0.3 [103]
R27 HO2 + H –– 2 OH 0.15 [14]
R28 HO2 + H –– H2 + O2 0.3 [14]
R29 HO2 + O –– OH + O2 0.1 [103]
R32 2 HO2 –– O2 + H2O2 0.4 [103]
R33 2 HO2 –– O2 + H2O2 0.4 [103]
R34 H + O2 ( + M) –– HO2 ( + M) 0.3 [14]
R36 H + CO –– H+CO2 0.1 [14]
R37 NH + CO –– H+CO2 0.1 [14]
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5.4 Virtual Species Analysis

Methodology

According to Koroglu et al. [92], the influence of diluents such as CO2, and
H2O on fuel combustion is three-folded, namely as reactants in reactions such
as CO2 + H = CO + H, colliders (e.g in termolecular reactions if their effi-
ciency is greater than 1), and chemical species with pronounced heat specific,
thus lowering the process temperature. In the following, we shall refer to these
three separate contributions as "direct", "indirect" (participation to reactions)
and "thermal" effects on combustion behavior. It is important to clarify that the
"direct" effect do not indicate the reactivity of the activated complex in termolec-
ular reactions, which was just recently discussed in the community, but just
species involvement in reactions available within the actual CHEMKIN mecha-
nism. Non-reactive diluent (e.g. N2, Ar, Ne, Kr, He) only participate with a con-
tribution of the third type (thermal) or as weak colliders. Virtual species can be
introduced in a mechanism to isolate the three different effects of diluents [153].
A similar approach was recently adopted for hydrogen oxidation in diluted con-
ditions [145]. In this work, six virtual species were included in Aramco 2.0, and
their properties are listed in 5.3. The difference between macroscopic quanti-
ties calculated in presence of the original species X and XCH is a measure of
“chemical” effect of X. In fact, XCH does not participate to any reaction, nei-
ther directly nor indirectly, and it has the same thermodynamic properties of X.
Since XTB has heat specific, enthalpy and entropy of N2, and same chaperon
efficiencies of the original species in all pressure-dependent reactions, discrep-
ancies between quantities of interest calculated with X and XTB measure the
“third body” effect. Eventually, the effect of direct participation to reactions (DR)
can be evaluated through the comparison between the X and a species XDR,
characterized by both its thermal and collision efficiency in each reaction.

Application to collected data

The experimental data in table 5.1 were simulated with H2O, CO2 and related
virtual species (see table 5.3) to isolate single contributions of diluents to fuel
reactivity in Figure 5.1 displays the results of the VSA for hydrogen IDT under
steam dilution in rapid compression (Figure 5.1a) machines, and shock tubes
(Figure 5.1b). For the sake of brevity, the VSA for hydrogen ignition in CO2 di-
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Table 5.3: List of virtual species used in this section.

Species Thermodynamics Indirect (collider) Direct (Reactant) Isolated effect
H2O H2O (H2O)j Yes -
H2O

CH H2O - - Chemical
H2O

TB N2 (H2O)j - 3rd Body
H2O

DR H2O (H2O)j - Direct
CO2 CO2 (CO2)j Yes -
COCH

2 N2 - - Chemical
COTB

2 CO2 (CO2)j - 3rd Body
CODR

2 CO2 (CO2)j - Direct

lution is reported in appendices. Ignition delay times in presence of the original
and the three virtual diluent species are presented in abscissa and ordinate,
respectively. The “chemical” effect does not reproduce the ignition delay time
in diluted conditions (see 5.3). In fact, the ignition is overall faster with H2O

CH

as model responses values relative to this species gather within the area be-
low the bisector. This is especially true for ST (i.e. TC3 and TC5) in Figure
5.1b, while in RCM (i.e TC1 and TC2) the trend is inverted when pressure
rises above 30 atm (see Figure B8 c). Hence, the reactive process is globally
slower/faster because of the kinetic effect of the diluent, and not because of its
enhanced specific heat. As there is no difference between the results obtained
with H2O andH2O

DR, which embodies both thermal and third body characteris-
tics of water, the “direct” participation to reactions plays no role. In fact, the data
points lie on the bisector. Also the curve that refers to H2O

TB overlaps with the
bisector. This suggests that by accounting only for the collisional contribution
of the diluents it is possible to reproduce the effect of the original diluent on the
ignition delay time. The last statement leads to the conclusion that the ignition
of hydrogen in diluted conditions is third body driven. Therefore, an accurate
estimation of third body efficiencies for strong colliders in fall-off reactions and
their range of uncertainty is crucial for more accurate predictions.
To understand why this happens, a flux analysis using datasets TC1 and TC3
was performed, and it is displayed in 5.2. At 4 bars and 1150 K, the water
addition effect on the system was studied through the test case by Wang et
al. [202].
When there is no diluent, H radical is mainly formed through R2. The former
also produces OH via R5. Finally, R3 terminates the process (i.e. produces
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Figure 5.1: Virtual species analysis for ignition delay time of hydrogen diluted with H2O, in
rapid compression machine (a) and shock tubes (b).

H2O). It is important to point out that in these conditions the branching ratio of
H + O2 reactions is in favour of R5 instead of R34, leading to fast ignition. The
HO2 resulting from the last reactions produces H2 through R28, and eH2O2 is
formed in backward R21. When steam constitutes 15, 25 and 40% of the initial
mixture in volume, the reaction rate of R34 increase proportionally to the third
body efficiency of the diluent. This leads to enhanced production of hydroper-
oxyl radical, and H2O2 is formed in R23, R32 and R33. This reactive pathway,
together with R27, becomes competitive against R5 in hydroxyl radical produc-
tion. Subsequently, OH is produced in R21. Indeed, at low pressure R21 is
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Figure 5.2: Flux analysis for hydrogen ignition. Reaction pathways enhanced by the presence
of a diluent are reported with straight line (-), while others in dashed (–).

not as impactful as R27. The opportunity for the system to take this alternative
longer pathway, explains why ignition in presence of water or carbon dioxide is
slower. In fact, the latter molecules have very large third body efficiencies in
R34, namely 10 for H2O and 3.8 for CO2. Lastly, when the third body of the dilu-
ent is set to 1 (i.e. XCH is used in place of X) the system returns to fast ignition
because of the OH production being led mainly by R5. At high pressure (30
and 70 bar), the ignition delay time in presence ofH2O

CH is higher than forH2O

and the other virtual species, meaning that the third body effect accelerates the
chemistry in these conditions. Indeed, the pronounced third body efficiency of
water causes the rate constant of R21 to rise enough to produce a significant
amount of OH radical and prompt the ignition. Also Das et al. [40] reached
similar conclusions for high pressures with H2O dilution. Here we confirm and
reinforce their statement as the same behaviour is observed in this work for
experiments at 10 and 30 bar from Donohoe et al. [44]. Figure 5.3 displays
VSA for temperature increase (a), hydrogen (b) and oxygen (c) conversion in
a PSR close to atmospheric pressure. Similar conclusions to those for ignition
can be drawn. In fact, simulations which were carried out with COCH

2 as diluent
show a more pronounced reactivity than those with other virtual species, as
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5.5. Estimation of third body efficiencies in TROE format

their values are distant from the bisector. This happens because of R34, which
is enhanced by CO2 as collider. Again, when the third body efficiency of CO2

is set to 1 (i.e.COCH
2 is the diluent), R5 prevails and leads to higher energy

release. Little chemical effect can be appreciated for temperature, while reac-
tants conversion is fully third body driven. Conversely, thermal effects control
flame propagation as expected (see Figure 5.3d). In fact, the laminar burning
speed increases when CO2 is replaced by COTB

2 due to the lower heat capac-
ity of the mixture, which translates to a higher maximum temperature as well
as steeper temperature increase. Oppositely, the flame speeds calculated with
CODR

2 or COCH
2 are equal and their difference with CO2 is negligible. In conclu-

sion, experimental measurements of macroscopic combustion quantities, such
as species concentrations in perfectly stirred reactors and ignition delay times
in diluted conditions are ideal targets for estimation of third body efficiencies as
their parametrization embodies the driving physical phenomenon.

5.5 Estimation of third body efficiencies in TROE format

Unimolecular/recombination reactions are both temperature and pressure de-
pendent. Generally, they follow a classical Arrhenius behaviour at the high-
pressure limit. Diversely, at low pressures they require a third body collision
to proceed, which usually involves inert as well as reacting colliders. Indeed,
some colliders are more “efficient” than others, meaning that the reaction rate
at the low-pressure limit can be higher or lower, depending on the molecule
taking part to collision. In fact, chemical species can be classified as “weak”
or “strong”, colliders. So, the value of the third body efficiency of a molecule
in a certain reaction is a measure of its ability to prompt it through collision
with reacting compounds. This was theorized by Lindemann [101], and it is
usually parametrized in CHEMKIN using the TROE format [182]. This is the
case for reactions R21 and R34 in the mechanism adopted for this study, i.e.
Aramco 2.0 [94]. However, no consensus for the efficiencies of H2O and CO2

was reached. Table 5.4 shows maximum and minimum values from literature
mechanisms for these two molecules. The efficiencies in reactions R21 and
R34 were normalized by those of argon and N2, respectively, to make compar-
ison with values in the Aramco 2.0 [94] model easier.
To show the impact that such uncertainties can have on model responses a
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Figure 5.3: Virtual species analysis for speciation and laminar flame speed of hydrogen di-
luted with CO2. In (a) different normalized quantities of interests are reported: temperature
increase (a), hydrogen (b) and oxygen (c) concentration, and laminar flame speed (d).

Table 5.4: Uncertainty range for third body efficiencies of CO2 and H2O in impactful fall-off
reactions for test cases in this section. The reference bath gas (i.e. X) is argon for R21 and
nitrogen for R34.

Reaction Index αH2O/X αCO2/X

- min max min max
R21 1.00 22.64 1.00 3.80
R34 10.00 16.00 1.00 5.95

global sensitivity analysis was carried out on ignition delay time measurement
by Das et al. [40] at 30 bar with 0 and 40% of water inside the initial mixture.
All the sensitive reactions, identified through a local sensitivity analysis (see
Figure B2), were included in this analysis as well as the third body efficiencies
of water for reactions R21 and R34, bounded with values reported in Table 5.4.
Figure 5.4a shows the first order Sobol’s indices (see section 2.5.3) for model
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5.5. Estimation of third body efficiencies in TROE format

inputs, in absence of water. The reaction responsible for most of the variance
in the model response is R23, forming hydrogen peroxide, which decomposes
through R21, the second most impactful reaction. The Sobol’s indices for reac-
tion R33 are directly proportional to temperature, on the contrary R5 and R34
show inverse proportionality. Here, third body efficiencies play no role in the
variability of the model responses. Conversely, 5.4b demonstrates that when
ignition takes place in a strongly diluted environment, the impact of a single
parameter might exceed that of an entire group of important reactions. In fact,
the third body efficiency of water for R21 accounts for almost the 20% of the
output variance. It is to be expected that for lower pressures the efficiency of
H2O in R34 would have a major impact instead

Another way to see this is to look at the uncertainty propagation to model re-
sponses using the metamodels produced by means of PCE, which is shown in
Figure 5.5. Two separate surrogate models were built for each operating con-
dition starting from two different germs (see section 2.5.3). The first surrogate
model was built using a random vector containing the pre-exponential factors
of all sensitive reactions identified by means of the CSF for the test case of
Das et al. [40] (see Figure B2 in SM) and the third body efficiencies of water
in R21 and R34. In the second meta-model instead, the third body efficiencies
of water were excluded from the germ, but all the A factors of sensitive reac-
tions were considered. While no difference between the uncertainty of the two
models was observed in Figure 5.5a, the uncertainty of the model response in
Figure 5.5b was significantly increased.

These results point out that an accurate estimation and uncertainty reduction
for these parameters is crucial for diluted conditions, and that they represent
an important degree of freedom to improve the performance of existing mech-
anisms. Finally, if these parameters were not included in optimization studies,
the uncertainty in model responses might be improperly minimized by tuning
other sensitive parameters. Indeed, it is important to characterize third body
efficiencies both in terms of best values and confidence regions. In previous
studies, inference of kinetic rate constants of pressure-dependent reaction R34
and its collision efficiencies was achieved using shock tubes experiments for
IDT measurements, NO2 concentration plateaus, and species time-histories.
Shao [152] discussed the importance of finding conditions where the QoI is
sensitive to the smallest possible set of elementary reactions. In their work,
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Figure 5.4: Global Sensitivity Analysis for important reactions in a rapid compression machine,
cases by Das et al. [40] at 30 bar, 0 (a) and 40 (b) % water dilution, as a function of
temperature.

they used IDT for H2/O2/diluent to evaluate the collision efficiency of N2, CO2

and H2O relative to the one of Argon in R34. In the operating conditions which
were accounted for, the IDT was strongly sensitive to R34, and R5. Indeed,
the uncertainty of R5 in the adopted model would impact the parameters esti-
mation for R34, but it was considered negligible. Also, this approach excludes
the possibility to use experimental data for QoI in operating conditions where
the number of sensitive reactions increases as for the RCM and PSR measure-
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Figure 5.5: Propagation of uncertainty from kinetic mechanism to model responses using a
Polynomial Chaos Expansion based surrogate model built by considering and neglecting
the contribution of third body efficiency of water to the model uncertainty, cases by Das et
al. [40] at 30 bar, 0 (a) and 40 (b) % water dilution, as a function of temperature.

ments from Das et al. [40] and Sabia and De Joannon [145], respectively (see
Figure B). Global optimization approaches consider the uncertainties of all the
sensitive reactions, and a large set of available experimental data in different
operating conditions, simultaneously. In the following, these methods are ap-
plied and confidence regions (see section 2.7) are retrieved. For the sake of
clarity, two aspects need further attention. First, the experimental data in 5.3
were divided in two separate sets, i.e. those involving H2O and CO2 as diluent,
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respectively. The third body efficiencies of H2O/CO2 were estimated using only
the first/second set as targets. Second, to highlight the importance of consider-
ing the entire set contemporarily and discuss the relevance of each test case to
parameters estimation, optimization was also performed on each component
of the dataset separately. Figure 5.6 shows that not only the best estimates are
different for each test case, but also the confidence regions differ from each
other significantly. For this reason, the estimation of third body efficiencies us-
ing experimental data from a single source is not recommended. In the case
of water (see Figure 5.6a), suggested parameters values fall in the north-west
quadrant of the sample space for Sabia and De Joannon [145], south-west
quadrant for Donohoe et al. [44], and south-east one for Das et al. [40] and
Wang et al. [202]. The size and the orientation of the elliptical confidence
regions display the relevance of the test case for each parameter, and the cor-
relation between them. The data from Shao et al. [152] are relevant for the
estimation of αH2O in R34, but not for R21, as the elliptical confidence region
extend along the entire horizontal axis. This is due to the operating pressure,
which is lower than 20 [bar] In fact, the most relevant data for the estimation
of αH2O are those from Das [40] as they were performed at operating pressure
up to 70 bar. Regarding CO2, the analysis of results shown Figure 5.6b leads
to the conclusion that experimental data from Brabbs and Robertson [21] carry
a lower amount of information about the parameter estimates with respect to
other test cases. It is also interesting to notice that data from Shao [152] are
significant for the estimation of αCO2 in R21.

In Figure 5.6a, and Figure 5.6b results from optimization procedures which
were carried out using all data together are displayed, and a single well-defined
uncertainty region can be observed for the four parameters, conditioned by the
uncertainty of all the sensitive reactions in Table 5.3. It is interesting to notice
that, while for CO2 the uncertainty region overlaps with that identified by values
in existing mechanisms, efficiencies of water fall outside the more populated
region. Finally, this study strengthens our belief about how important it is to
consider a wide variety of data when performing optimization. In particular,
using each dataset separately, the modeller would end up in different parame-
ters settings in disagreement with each other, mainly due to the heterogeneous
set of adopted operating conditions, i.e. temperature, pressure, mixture com-
position, equivalence ratio, which reduces the general validity of parameters
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(a)

(b)

Figure 5.6: Regions of 68% (. . . ) and 99% (-) confidence for third body efficiencies of water
(a) and carbon dioxide (b) in H2O2(+M) = 2OH(+M) and H + O2(+M) = HO2(+M)
in TROE format estimated by using different datasets as target for optimization. The black
stars mark parameters values from existing kinetic mechanisms, while best estimates are
represented by circles.

acceptance regions. The minimum and maximum values in the confidence
region of the four considered parameters are displayed in Table 5.5.
In conclusion, new experimental data at high-pressure conditions with water
dilution are needed to narrow the uncertainty range of αH2O in R21. For CO2,
the range is well defined in R34 while is still broad in R21, this confirms that
more data at high pressures are needed.
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Table 5.5: Uncertainty range for third body efficiencies of CO2 and H2O in impactful fall-off
reactions for test cases in this section. The reference bath gas (i.e. X) is argon for R21 and
nitrogen for R34.

Reaction Index αH2O/X αCO2/X

- min max suggested min max suggested
R21 15.60 23.40 16.15 1.10 3.96 2.30
R34 13.30 16.70 14.75 2.55 3.37 2.94

5.6 Importance and estimation of third body efficiencies in PLOG for-
mat

The PLOG formulation for fall-off reactions was recently introduced in the CHEMKIN
format, in alternative to TROE’s, to accommodate ab-initio calculations in ki-
netic mechanisms with a lower fitting error. A PLOG reaction consists of multi-
ple Arrhenius rate constants at discrete pressures pi (with i = 1, . . . , Np), individ-
ually accounting for temperature dependence. Indeed, p1 and pNp correspond
to the low and high-pressure limit, respectively. A logarithmic interpolation is
then adopted at intermediate pressures p:

ln(kp) = ln(kpi) +
[
ln(kpi+1

)− n(kpi)
] [ ln(p)− ln(pi)

ln(pi+1)− ln(pi)

]
(5.1)

In this form, the rate does not account for chaperon efficiencies. Thus, in case
of diluted mixtures, error in prediction of macroscopic targets might be higher
than those due to the fitting error of the TROE format [36, 86]. To quantify this
error, two mechanisms were created from Aramco 2.0 [94], which are referred
to in the following as “single bath” and “multi bath”, respectively. In the first,
the rates for R21 and R34 were converted from TROE to PLOG format con-
sidering all species with equal, unitary third body efficiency. This was done to
emulate the replacement of a fall-off reaction in TROE format with a PLOG. In
the second mechanism, the third body efficiencies for each species were con-
sidered during the conversion using an extended PLOG format proposed by
Klippenstein (personal communication), where one PLOG is specified to sep-
arately model the contribution of the jth bath gas, and the overall reaction rate
constant can be retrieved using a linear mixture rule:
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ln(kptot) =

Nbg∑
j=1

ln(kp,j)xj (5.2)

Nbg is the number of considered bath gases, and xj its molar fraction. To our
knowledge, this format is not available in CHEMKIN yet, but it can be used in
OpenSMOKE++ [35] and OptiSMOKE++ [64]. Figure 5.7a shows the predic-
tions of temperature increase in the low-pressure PSR measurement by Sabia
and De Joannon [145] with the three kinetic models (i.e. Aramco 2.0, single-
bath, and multi-bath). A steep increase in temperature can be noted with the
single-bath mechanism around the onset of ignition, while the difference be-
tween the other two models is negligible. The dotted curve represents the rel-
ative error between the predictions of Aramco 2.0 and the single-bath model.
Its values, reaching a peak of 2000%, can be read on the secondary axis.
The same procedure was carried out for the ignition delay time data by Das et
al. [40] with 40% H2O dilution at elevated pressures. Here, the relative error
on the ignition delay time induced by the PLOG is between 120 and 140%.

This new PLOG format allows to include accurate ab-initio calculations for
each bath gas. However, due to higher complexities associated with calcula-
tions for strong colliders (e.g. CO2 and H2O), their efficiencies are not always
available. On the other hand, if measurements are available for a certain bath
gas, its efficiency can be estimated using optimization strategies, as shown in
previous sections. In the following, we address the question: “Is it possible
to introduce new parameters to account for collision efficiency in PLOG
reactions?”. Figure 5.8a reports a graphical example of the TROE fall-off be-
haviour in reaction R34 in mixtures with different third body efficiencies, namely
1, 5 and 10. Indeed, all three rates converge at the high-pressure limit. When
this reaction is replaced with a PLOG format (see 5.8a) only one of the three
curves will be available within the mechanism (i.e. the one with α = 1). In
principle, it should be possible to derive a correction, function of pressure and
temperature, to express the rate dependence to the bath gas using the rate for
reference one. If we consider a Lindemann formulation for pressure dependent
reactions:

k = k∞
Pr(M)

1 + Pr(M)
(5.3)
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Figure 5.7: Comparison between Aramco 2.0 (-), single-bath (–), and multi-bath (-·-) mech-
anisms performances. (a) Increase in temperature in a perfectly stirred reactor for lean
H2/O2/CO2 mixtures. (b) Ignition delay in a rapid compression machine for stoichiometric
H2/O2/N2/H2O mixtures. The relative error (···) between Aramco 2.0 (-) and single-bath (–)
bath mechanisms is reported on the secondary axis. Experimental data from Sabia [145]
and Das et al. [40]

Where k∞ is the high-pressure limit rate, or the Arrhenius with highest pressure
in the reference PLOG, and Pr is the reduced pressure.
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Pr(M) =
klow[M ]

k∞
(5.4)

In equation 5.4, klow[M ] represent low-pressure limit rate, or the Arrhenius with
lowest pressure in the reference PLOG. Finally [M ] is the mixture concentra-
tion, enhanced by the average collision efficiency of the mixture:

[M ] =
P

RT

Nsp∑
i

xiαi (5.5)

Here, αi is the third-body efficiency of the ith species (with i ∈ [1, Nsp]). The ra-
tio between the rate with unitary efficiency k0 and another rate k1, characterized
by higher efficiency, is equal to the desired correction C(T, P, β):

k1

k0

= C(T, P, β) =
[M1]

[M0]

klow[M0] + k∞,p
klow[M1] + k∞,p

= β
klow[M0] + k∞,p
βklow[M0] + k∞,p

(5.6)

It is trivial to prove that β is a relative third body efficiency, as it is the ratio
between the average collision efficiencies of the two mixtures:

[M1]

[M0]
=

(∑Nsp

i xiαi

)
1(∑Nsp

i xiαi

)
0

= β (5.7)

In equation 5.6, klow, kinf , and [M0] can be easily computed from a reaction
given in standard PLOG format (see eqn. 5.1). In fact, in a standard PLOG,
the Arrhenius parameters for the lower discrete pressure give the rate constant
at the low-pressure limit (i.e. klow [M0]) while those at the highest pressure
represent the high-pressure limit (i.e. kinf). Finally, [M0] is easily retrieved
from the ideal gas law. This rate is considered as reference in terms of bath
gas, i.e. representative of all molecules with unitary third body efficiency. The
estimation of β, for a bath gas with chaperon efficiency higher/lower than 1,
becomes possible through optimization if the rate is expressed by:

ln(kptot) =

Nbg∑
j=1

[ln(kp,j)xjC(T, P, βj)] (5.8)

Equation 5.8 was implemented in OptiSMOKE++ to perform this task. Figure
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Figure 5.8: (a) Fall-off behavior using TROE formulation for R34 for different values of effi-
ciency, namely 1, 5, and 10. (b) Comparison between TROE and PLOG based corrections
for fall-off behavior in R34 (primary y axis); Relative error between the two (secondary y
axis). Efficiencies of 5, 10 were considered. Both graphs refer to T=990 K.

5.8b quantifies the errors between TROE-based correction and Lindemann-
based one, which was derived in this work for PLOG reactions. On the primary
axis, the correction as a function of pressure is reported at two different ideal
mixtures with efficiencies (i.e. 5 and 10) at constant temperature: 990 K. The
relative error between the two formulations is also reported and can be read on
the secondary axis. Equation 5.6 reproduces the desired trend and matches
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5.6. Importance and estimation of third body efficiencies in PLOG format

the other quantitatively at the low and high-pressure limits. On the other hand,
a relative error increase for pressures above 102/104 bar can be observed.
In this region, equation 5.6 may lead to overestimation/underestimation of the
reaction rate. These errors increase with increasing collision efficiency, sug-
gesting that the proposed method might lead to underestimation of the third
body efficiency for very strong colliders like H2O in R21 and R34. However,
efficiencies higher than 6 are rare in fall-off reactions involving more complex
species (e.g. in C1 − C3 or higher). To demonstrate the applicability of the
proposed method another mechanism was created from Aramco 2.0. In this
model, R21 and R34 are presented in the PLOG format suggested by Klippen-
stein (see equation 21). However, α(H2O) and α(CO2) were artificially set to
1 before fitting the Arrhenius parameters. On the contrary, the PLOG related
to weaker colliders (e.g. He, Ar, and others) implicitly contains the information
about their efficiency. Using the same datasets presented in the previous sec-
tion, the same optimization procedure was applied to estimate β, and results
are presented in Figure 5.9.

Figure 5.9a shows that the acceptance region of βH2O and αH2O are com-
parable (see Figure 5.6a). Conversely, for CO2 a substantial difference exists
between the estimated β and α. Ranges and suggested values from the anal-
ysis are available in Table 5.6.

Table 5.6: Uncertainty range for third body efficiencies of CO2 and H2O in impactful fall-off
reactions for test cases in this section. The reference bath gas (i.e. X) is argon for R21 and
nitrogen for R34.

Reaction Index βH2O/X βCO2/X

- min max suggested min max suggested
R21 6.75 18.94 13.00 6.70 8.14 7.50
R34 9.80 16.65 13.08 2.81 3.88 3.25

In conclusion, the method presented in this section is general and it is intended
to be used if the following conditions apply:

• Experimental measurement of macroscopic combustion targets, in diluted
conditions, are available and were carried out in operating conditions where
model responses are sensitive to a group of reactions including the fall-off
reaction of interest.

• The uncertainties of all the reactions belonging to this set is known or easy
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5.6. Importance and estimation of third body efficiencies in PLOG format

Figure 5.9: Acceptance regions for third body efficiencies of water (a) and carbon dioxide (b)
in H2O2(+M) = 2OH(+M) and H + O2(+M) = HO2(+M) estimated from macroscopic
combustion data using PLOG formulation.

to estimate.

• The fall-off reaction of interest is expressed in the kinetic mechanism using
the standard PLOG format, where all molecules are supposed to have
unitary third body efficiency.

• High-level theoretical calculations are not readily available for the desired
collider.
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5.7 Concluding remarks

In this chapter, the role of diluents like H2O and CO2 in operating conditions
relevant to applications for MILD combustion of hydrogen was discussed and
analysed by means of a virtual species analysis (VSA). This approach allows
to study the three main effects of H2O and CO2 (namely thermal, third body
and chemical) on the fuel ignition, species consumption/formation and lami-
nar flame speed. The VSA suggests that measurements of ignition delay time
(IDT) and species concentrations in perfectly stirred reactors (PSR) in diluted
conditions are ideal candidates for the estimation of collision efficiencies as
their physics is significantly affected by third body effects. The analysis of
literature mechanisms revealed a general disagreement for the values to be
adopted for these parameters. After a first screening with local sensitivity anal-
ysis, all unimportant reactions were excluded from the study. The remaining
subset, including two fall-off reactions (i.e. R21 and R34), was employed to
perform a Global Sensitivity Analysis (GSA), with variance-based decomposi-
tion methods aided by surrogate models, created using non-intrusive methods
for Polynomial Chaos Expansions. Results on ignition delay time (IDT) showed
that, in diluted conditions, a single third body efficiency can manifest a Sobol’s
first order effect greater than a group of sensitive reactions. Thus, considering
these parameters in optimization is important to avoid strong changes in other
reactions to compensate for the missing contribution of collision efficiencies.
Using an Evolutionary Algorithm (EA) enables parameters estimation and re-
trieval of confidence and/or acceptance regions regardless the dimensionality
of the problem at hand. Separate optimization procedures for each test case
highlight the need of considering experimental data from different sources si-
multaneously. Indeed, the confidence regions as well as the best parameter
estimates for the collision efficiencies of H2O and CO2 were found to strongly
depend on the adopted target dataset. The approach we propose in this work
differs from existing ones for two reasons: (i) a combination of experimental
measurements from different sources and reactors are employed. (ii) the un-
certainties of all sensitive reactions are considered to weaken the dependence
from starting model. Eventually, the errors introduced by the replacement of
the TROE formulation for fall-off reactions with PLOG were quantified for hy-
drogen combustion, and a method to extract information from data about third
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body efficiency of strong colliders in PLOG formulation was proposed in case
high-level ab-initio calculations are not available.
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CHAPTER6
Uncertainty propagation through the numerical

model of a flameless furnace, assisted with
canonical reactors

This chapter is based on the following publication:

• On the influence of kinetic uncertainties on the accuracy of numerical mod-
elling of an industrial flameless furnace fired with NH3/H2 blends: a nu-
merical and experimental study. Ferrarotti, M., Bertolino, A., Amaduzzi,
R., Parente, A. Frontiers in Energy Research. https://doi.org/10.

3389/fenrg.2020.597655
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6.1. Abstract

6.1 Abstract

Ammonia/hydrogen-fueled combustion represents a very promising solution for
the energy scenario to come. This study aims to shed light and understand the
behaviour of ammonia/hydrogen blends under flameless conditions. A first-of-
its-kind experimental campaign was conducted to test fuel-flexibility for differ-
ent ammonia/hydrogen blends in a flameless burner, varying the air injector
and the equivalence ratio. NO emissions increased drastically after injecting a
small amount of NH3 in pure hydrogen (10% in volume). An optimum trade-off
between NOx emission and ammonia slip was found when working sufficiently
close to stoichiometric conditions (φ = 0.95). In general a larger air injector
(ID25) reduces the emissions, especially at φ = 0.8. A well stirred reactor
(WSR) network with exhausts recirculation was developed exchanging informa-
tion with Computational Fluid Dynamics (CFD) simulations, to model chemistry
in diluted conditions. Such a simplified system was then used in two ways: (i) to
explain the experimental trends of NOx emissions varying the ammonia molar
fraction within the fuel blend, (ii) to perform an uncertainty quantification study.
A sensitivity study coupled with Latin Hypercube Sampling (LHS) were used
to evaluate the impact of kinetic uncertainties on NOx prediction in the WSR
network model. The influence of the identified uncertainties was then tested in
more complex numerical models, such as Reynolds Averaged Navier-Stokes
(RANS) simulations of the furnace. The major over-predictions of existing ki-
netic scheme was then alleviated significantly, confirming the crucial role of
a well-characterized detailed kinetic mechanism for the accuracy of predictive
numerical model for NH3/H2 mixtures in flameless regime.
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6.2 Experimental facility and measurement techniques

The furnace was introduced in [53] and it is shown in Figure 6.1. It is composed
of a cubic combustion chamber (1100x1100x1100 mm), with inner dimensions
of 700x700x700 mm. A recuperative Flame-FLOX burner (nominal power of
20 kW) is mounted at the bottom of the combustion chamber. The burner
is equipped with an integrated heat exchanger for combustion air pre-heating
from the enthalpy flue gases. The fuel is injected via a centrally located nozzle
(inner diameter ID 8 mm) and surrounded by a coaxial air jet, whose dimen-
sions can be varied to adjust the air jet entrainment (ID 16-20-25 mm). The unit
is equipped with an air cooling system consisting of four cooling tubes (outer
diameter OD of 80 mm), with a length of 630 mm inside the furnace. Varying
the air flow allows the combustion chamber to operate at different stable condi-
tions, thus simulating the effect of a variable load. Opening for measurements
are available on the vertical walls. One side is used for OH* chemilumines-
cence measurements, while the others are insulated. One of three hosts 12
equally spaced (50 mm) ports for thermocouples, with inherent uncertainty of
0.5%. The exhaust gases temperature (before the heat exchanger) is obtained
by means of another thermocouple positioned on the central plane and shifted
200 mm with respect to the axis, on the bottom wall. Other thermocouples are
used to measure the temperature of the main operating parameters, such as
fuel, cooling air, combustion air and exhaust gases after the heat exchanger.
The outlet of the combustion chamber (after the heat exchanger) is equipped
with a heated sampling probe to allow flue gas temperature and composition
measurements, avoiding condensation. A Fourier Transform InfraRed (FTIR)
analyser is used to measure pollutants (NH3, NO2 and NO), while a different
analyser is used for oxygen, after condensing water from the exhaust gases.

The following experimental champaign considered a fixed thermal input power
of 15 kW, while varying equivalence ratio between 0.8 and 1. Rich conditions
were excluded from the study to ensure a full conversion of the fuel and to
minimize the content of ammonia-slip released in atmosphere. The cooling
power subtracted via the air cooling system was set to 5.1 kW to ensure an
exhaust gases temperature of around 950°C before the heat exchanger. Two
different air injector sizes (ID 16 and 25 mm) were used, varying therefore the
injection velocity and residence time. Experiments were performed at steady-
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Figure 6.1: Schematic of the furnace (left), vertical cross section (top right) and burner nozzle
(bottom right). Courtesy of Marco Ferrarotti.

state conditions, after a warming period of about 3 h, during which the same
burner was used in normal flame conditions, acting on the fluid dynamic of the
injection. In the following, "NxHy" term represents the fuel mixture of x %vol.
of NH3 and y %vol. of H2. Figure 6.2 shows the intense yellow color typical of
ammonia combustion for different NH3-H2 blends, for the case ID25 and φ = 1.
Figures 6.3 and 6.4 compare averaged experimental temperature profiles ex-
tracted at different axial locations and OH* imaging for the N50H50 mixture,
varying the air ID and the equivalence ratio (ER). Using ID16 and φ = 0.8, the
reaction region is located in the region 110-160 mm from the nozzle, with a
maximum temperature of around 1750 K, at z = 150 mm. The OH* contour
also appears more spread and less intense compared to the other cases. In-
deed, ID16 ensures a very high injection velocity (≈ 185 m/s), leading to a high
strain rate value close to the burner exit. When the latter is reduced, at a cer-
tain axial distance, ignition occurs, leading to a noticeable lift-off. Keeping the
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6.2. Experimental facility and measurement techniques

Figure 6.2: Photographs of NH3-H2 combustion for (a) N10H90, (b) N20H80, (c) N40H60, (d)
N50H50 and (e) N60H40. ID25, φ = 1. Canon EOS 80D 1/70 s exposure time. Courtesy of
Marco Ferrarotti.

same injector, but reducing the air excess (φ = 1), thinner reaction layer shifted
towards the burner exit is observed. However, for this case, as well as for ID25,
the actual maximum temperature is likely to be located below the first available
measurement port (z = 100 mm). When the ID25 is employed, the OH* re-
gion is shifted even more upstream (between 50-80 mm) and the temperatures
profiles are smoother for the investigated region.
Figure 6.5(left) shows the normalized NO and ammonia-slip emissions, varying
the ammonia molar fraction and the ER for ID25. Differently from nitrogen-free
fuels (i.e. methane and hydrogen), when a fuel blend containing ammonia is
used, different pathways are involved. With a small amount of NH3 (10% in
volume), NO emissions grow considerably (from 159 to 827 ppm for φ = 0.8)
reaching a peak at between 50% and 60% NH3 of 3500 ppm.

Moreover, results suggest that the stoichiometry has a major impact on
NO formation, confirming literature outcomes from [166] and [169]. As ex-
pected, the minimum NO emission levels were obtained close to stoichiomet-
ric conditions. Under these conditions, NO is less sensitive to the reaction
O+NH2=H+HNO (R31 in Table 6.1) due to a lower availability of the radical O.
HNO is then converted to NO via the reaction HNO+H → NO+H2 (more de-
tails in next Section). Furthermore, going towards φ = 1, the peak is shifted
progressively towards lower ammonia molar fraction up to 10 %NH3 for φ = 1
(137 ppm). Very low NO emissions (single digit) can be achieved for this last
condition (φ = 1), for a percentage of ammonia above 50%. The stabilization of
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Figure 6.3: Averaged temperature measured at (a) z=100 mm, (b) z=150 mm, (c) z=200 mm
and (d) z=400 mm for N50H50, varying the air ID and φ. Averaged experimental uncertainty
of 10 K. Courtesy of Marco Ferrarotti.

Figure 6.4: Averaged OH* distribution for ID16 φ=0.8 (a) and φ=1 (b) and for ID25 φ=0.8 (c)
and φ=1 (d). Units in mm and counts. N50H50. Courtesy of Marco Ferrarotti.

pure ammonia combustion was not achieved, since extinction occurred above
80% NH3, for all the investigated conditions. In literature, there are example
of pure ammonia burning in MILD regime, for instance [169] managed to use
pure ammonia in a cyclonic burner, under specific conditions. Finally, reaching
conditions close to stoichiometry, unburned ammonia might be found in the ex-
haust gases (NH3-slip). At φ = 1 (Figure 6.5(right)), NH3-slip rapidly increases
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6.3. CFD model

Figure 6.5: (Left) NO and (Right) NH3-slip emissions varying the NH3 percentage in the fuel
(vol.) and the equivalence ratio φ for ID 25 mm. NH3-slip averaged relative uncertainty of
8%. Courtesy of Marco Ferrarotti.

reaching values about ≈ 3000 ppm, while it is almost zero for lean conditions.
An optimal window can be found between φ = 0.95 and φ = 1.00 with a strong
reduction in NO emission (maximum value 400 ppm) as well as low NH3-slip.
However, It must be pointed out that it is easier to clean the exhaust gases re-
moving ammonia (i.e. by condensation, adsorption) than adopting techniques
to abate NO (i.e. DeNOx). The effect of the air injector ID is shown in Fig-
ures 6.6 for both NO (left) and NH3-slip (right) emissions. A higher air inlet
velocity tends to increase NOx emissions as well. This might be explained
considering the following: a higher recirculation ratio kv decrease NO since it
increases the level of dilution, however a reduced residence time (ID16) might
not guarantee a sufficient time to convert NO into N2.

6.3 CFD model

Reynolds-averaged Navier-Stokes (RANS) simulations were carried out with
Fluent 19.3 by Ansys, Inc. Turbulence chemistry interactions were handled
with the PaSR combustion model ( [53, 54]). In the latter model, the chemical
time scale is retrieved from the species formation rate, while a static formulation
for the mixing time scale is computed as follows:

τmix = Cmix
k

ε
(6.1)

The constant Cmix was set equal to 0.5 as suggested by [53,54]. Standard k-ε
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6.3. CFD model

Figure 6.6: (Left) NO and (Right) NH3-slip emissions varying the NH3 percentage in the fuel
(vol.) and the equivalence ratio φ for ID 16 mm. NH3-slip averaged relative uncertainty of
8%. Courtesy of Marco Ferrarotti.

was used to model turbulence, while two kinetic schemes were used for the
H2/NH3 chemistry, namely [170], composed by 31 species and 203 reactions,
and [67], also containing an ammonia sub-mechanism consisting of 31 species
and 211 reactions. Radiation was modeled using a discrete ordinate (DO) ap-
proach, combined with the weighted-sum-of-gray-gases (WSGG) model. The
computational domain considers an angular sector of 45o due to the symmetry
of the problem. Indeed, the presence of the window was not considered in the
present study, and the related heat loss was added to the cooling loss. A verifi-
cation study to ensure grid independence was carried out, following directions
from previous studies of the same system ( [53]). The resulting 3D grid con-
sists of 216k cells. Air and fuel flow rates were set according to the operating
conditions of the experiments. The fuel blends were assumed to be fed into
the furnace at 343 K, while the inlet air temperature was estimated by solving
an energy balance across the heat exchanger. In order to model the cooling
surfaces a constant negative heat flux condition was imposed, which also in-
corporates the energy loss by radiation through the window. The recirculation
degree kv was also estimated, considering the following equation:

kv =
ṁrec

ṁa + ṁf

=
ṁmix − (ṁa + ṁf )

ṁa + ṁf

, (6.2)

where ṁmix represents the flow rate of the reactants mixed with exhaust gases
(Figure 6.7).
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Figure 6.7: Schematic representation of the internal recirculation pattern used to calculate
ṁmix. N10H90 (left) and N50H50 (right).

The latter can be calculated considering the above-mentioned reactive zone,
identified using OH as marker. Within this region, three planes were defined at
different axial locations. The flow rate passing through a clip of positive velocity
(i.e. towards the top wall) was then calculated along these planes. ṁmix was
defined as the average between the resulting three values. A first validation
for temperature profiles is presented for case N50H50 ID16 φ = 1. Here, a
value of 0.5 was employed for Cmix in the PaSR model, together with standard
k-ε for turbulence. Figure 6.8 shows the comparison between measured and
predicted temperature profiles along the axis (a) and at different axial positions
(b, c, d). The results from two different kinetic mechanisms, developed for
ammonia combustion, i.e. [170] and [67] are also reported.

Looking at Figure 6.4, the reaction region (maximum of OH* counts) is located
between 110 and 160 mm from the burner exit. However, the two models
predict a late ignition compared to experimental data, as they under-predict the
temperature peak at 100 mm away from the inlet. The above-mentioned under-
prediction corresponds to a 2% and 1% relative error for [170] and [67] models,
respectively.
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Figure 6.8: Sensitivity of temperature predictions to different kinetic schemes, [170] and [67].
(a) Axial, (b) z=100 mm, (c) z=150 mm and (d) z=200 mm. Cmix=0.5, std k-ε. Averaged
experimental uncertainty of 10 K. N50H50, φ=1, ID16.

6.4 Well stirred reactor with EGR

As recommended by Medwell et al. [110], an adiabatic, non-isothermal well-
stirred reactor, with recirculation, was adopted to model the chemistry of a
highly diluted and preheated reactive mixture (i.e. MILD-like conditions). In-
deed, as flameless combustion is characterized by a slower chemistry, ignition
is likely to take place in flame kernels with premixed fuel and oxidizer, and rel-
atively low strain rate, i.e. distant from the inlet. In this work, the use of WSR
with recirculation is intended to map pollutants emissions (i.e. NOx) in different
operating conditions, and to qualitatively reproduce experimental trends (not
absolute values), and to be used for uncertainty quantification. Figure 6.9(top)
shows a schematic representation of the adopted network and its links with
experiments and CFD simulations.
The mixing unit receives three streams in input, namely fuel, air and exhaust
gases. The temperature of each stream is equal to that of experiments. It
has to be pointed out that the temperature of exhaust gases was assumed to
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Figure 6.9: Conceptual scheme about the interactions between experiments, CFD modeling
and WSR model.

be equal to that measured at the outlet (before the heat exchanger). This was
done to avoid modelling of heat losses along the recirculation region, where the
mixture may be assumed to be non-reactive ( [212]). As proposed by [110], in-
termediate species were included in the exhaust gas recirculation (EGR), since
they were found to take part in pre-ignition chemistry in MILD regime [160]. The
complete list of recirculated species in the exhaust gas is: NH3, H2, O2, N2, H,
O, H2O, OH, HO2, NO. The network consists of a MATLAB script involving
the perfectly stirred reactor solver in OpenSMOKE++ [35]. The residence time
τres and the recirculation degree, were estimated from CFD simulations (see
Figure 6.9). For each operating conditions, the reactive region was identified
using OH contour, and the residence time of the reactor was calculated as the
average PaSR mixing time scale in this region (τres=τmix). The resulting mix-
ture is then fed to the WSR solver. The first reactor in the network is solved by
introducing air as oxidizer. Afterwards, the outlet composition is retrieved and
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6.4. Well stirred reactor with EGR

assumed to be equal to the EGR for the next simulation. This procedure is iter-
atively repeated untile convergence is achieved for both outlet temperature and
NO concentration. The analysis was carried out using the recent mechanism
from [170] in OpenSMOKE++ [35], which enables the user to perform sensi-
tivity, and rate of production (ROP) analyses to identify influential reactions to
be further investigated with uncertainty quantification (UQ). Figure 6.10 reports
the most influential reactions for the mixtures N25H75 and N50H50, at different
equivalence ratio, namely 0.8 and 1.0.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

R85: NO+NH=H+N2O

R91: NO+N=N2+O

R76: NO+NH2=N2+H2O

R31: O+NH2=H+HNO

R80: OH+NH=H+HNO

R89: OH+N=H+NO

R39: NH+NH2=H+N2H2

R90: O2+N=O+NO

Sensitivity coefficient [-]

ER = 0.8, N25H75
ER = 0.8, N50H50
ER = 1.0, N25H75

ER = 1.0, N50H50

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

R85: NO+NH=H+N2O

R91: NO+N=N2+O

R76: NO+NH2=N2+H2O

R31: O+NH2=H+HNO

R80: OH+NH=H+HNO

R89: OH+N=H+NO

R39: NH+NH2=H+N2H2

R90: O2+N=O+NO

Impact factor [-]

ER = 0.8, N25H75
ER = 0.8, N50H50

ER = 1.0, N25H75
ER = 1.0, N50H50

Figure 6.10: NO normalized sensitivity coefficients and impact factors for NH3/H2 mixtures at
different fuel compositions for φ=1. ID16.

In particular, reactions involved in the hydrogen core mechanism were dis-
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6.4. Well stirred reactor with EGR

carded a priori. The sub-mechanism for thermal NOx, involving R89, R90
and R91, was found to be particularly sensitive, especially for stoichiometric
mixtures. However, it was not considered for the uncertainty quantification, as
the uncertainty in this mechanisms is very low (see [15] and Table 6.1). In
fact, the impact factor for R80, R90 and R91 is significantly lower than other
reactions’ in Figure 6.10. Interestingly, R85 is the most impactful reaction with
negative sensitivity coefficient. It is also important to point out that NO is very
sensitive to R31, which forms HNO, for lean conditions, where more oxygen is
available. Indeed, HNO is then converted to NO via HNO + H = NO +H2. This
may explain why lean conditions produce higher NO emissions. However, R31
as well as R76, were found to have high sensitivity coefficient for temperature
and consequently ruled out from the UQ study. Regarding other reactions, R80
converts NH into HNO and impact positively the sensitivity, and R39 is only
sensitive for higher ammonia content in the fuel than 25%. Indeed, this reac-
tion affects more and more the formation of NO as NH2, and NH production
increase, due to higher availability of NH3 as well as lower H and OH radicals
concentrations. As a consequence, only R80, R85 and R39 were selected for
the uncertainty quantification study. Table 6.1 reports the adopted uncertainty
factors for reactions in Figure 6.10, based on literature information.

Table 6.1: Details about identified sensitive reactions.

Index Reaction f Ref.

R31 O+NH2=HNO+H - [172]

R39 NH+NH2=H+N2H2 0.18 [41]

R76 NO+NH2=N2+H2O 0.08 [167]

R80 NH+OH=HNO+H 0.7 [33]

R85 NH+NO=H+N2O 0.65 [111]

R89 OH+N=H+NO 0.1 [15]

R90 O2+N=O+NO 0.2 [15]

R91 NO+N=N2+O 0.2 [15]

In addition, a flux analysis was performed for both N25H75 and N50H50 mix-
tures (see Figure 6.11), to explain the NO emissions trends.
Ammonia reactivity proceeds along NH2 → NH→ N, and NO is part of its oxi-
dation. In fact, NH2 mainly forms NH and HNO in R31, which gives NO. The NH
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6.4. Well stirred reactor with EGR

Figure 6.11: ROP analysis for NH3-H2 mixtures. ID16.

intermediate has a crucial role, as not only leads to NO through HNO in R80,
but also reacts with it in R85 to form N2O, which is almost completely converted
to N2 in the termination step H+N2O=N2+OH. In addition, NH is converted to
N, which exhibits an analogous behaviour, i.e. it produces NO in R89 and R90,
but also reacts with it in R91, again as a termination step. Up to N10H90, hy-
drogen concentration is so high that the radical pool is extremely rich in H and
OH, prompting HNO production (R80) and its next conversion to NO, deter-
mining an emissions peak. The latter peak is even more pronounced at φ=0.8
because of the higher availability of local O radical, prompting the HNO pro-
duction via R31. As the NH3 percentage in the fuel increases (i.e. at N50H50),
these pathways weaken, and R39 starts competing. The latter reaction, offers
an alternative path to NH, namely N2H2 → NNH → N2, which tends to reduce
the NO formation by subtracting NH and NH2 from the pool of reactants. So,
R39 is part of the reason why richer fuel mixtures in NH3 show decreased NO
emissions. In fact, this reaction shows a positive impact of NO sensitivity in Fig-
ures 6.10 as it competes with NH → NO → N2O → N2, which represents the
preferential way for the system to reduce NO emissions. Finally, one possible
explanation for the existence of a shifted peak at φ=0.8 (see Figure 6.5) is the
higher oxygen content, which pushes the NO production through HNO in R31
for richer mixtures with respect to stoichiometric conditions, delaying the effect
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of R39. As previously reported in Figure 6.12 the LHS study suggests that the
maximum NO production in Figure 6.13 is located nearby the maximum of R85,
minimum of R39 and R80. The opposite is true for the minimum NO formation
in Figure 6.13, in agreement with the sensitivity and rop analysis. Finally, this
analysis tell us that it would be better to operate the reactor with high inter-
nal recirculation ratio. Indeed, this would increase the NO concentration in the
reacting mixture, which would react in R85, converting NH3 intermediates to
product directly. Thus reducing the overall emissions.

6.5 Uncertainty propagation

According to equation 2.3, the kinetic constant, for each reaction in a kinetic
mechanism, can be addressed as a random variable with estimated uncer-
tainty (i.e. with a factor of 10f , see 2.17). Indeed, deviations from the nominal
value of κ for the above-mentioned sensitive reactions (see section 6.4) might
have a strong impact on the model output, NOx in this case. In order to eval-
uate the combined effect of those reactions, which were found to be influential
for NOx formation, a Latin Hypercube Sampling (LHS) ( [55,81]) was used. The
uniform distributions of the pre-exponential factors of aforementioned reactions
independently were sampled independently and new kinetic mechanisms are
obtained, and corresponding model responses can be computed. Through this
forward propagation, NOx emissions in each operating condition can be rep-
resented as a region, rather than a curve. Performing LHS study using RANS
simulations would have been prohibitive from a computational point of view.
For this reason, the WSR network was used instead. By analyzing the system
responses to input variations, Arrhenius parameters combinations correspond-
ing to both maximum and minimum of the NO formation distribution could be
identified. Figure 6.12 shows the 500 samples, which were withdrawn from
the three-dimensional space associated with the uncertainty ranges of pre-
exponential factors in reactions R39, R85 and R80 in table 6.1. The deviation
of the WSR model responses from the nominal mechanism is reported in terms
of color: white points are characterized by null deviation, while black indicates
maximum deviation. The two parameters combinations corresponding to the
maximum negative (i.e. min NOx), and positive (i.e. max NOx) deviations are
also reported.
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Figure 6.12: Latin Hypercube Sampling samples for reactions R80, R85 and R39. Here, the
grey scale represents in black the points with maximum NO deviation from the nominal
mechanism, in white the points with minimum NO deviation.

The WSR analysis is not intended to quantitatively predict the experimen-
tal data shown in Figures 6.5-6.6, but to provide qualitative information about
NO formation in hydrogen-ammonia mixtures. Figure 6.13 shows the NO esti-
mations computed with the WSR network, varying the ammonia molar fraction
in the fuel, for the two different ER (i.e., φ = 0.8,1). These estimations are
referred to as mean values. Their variability due to separate influence of the
uncertainties in kv, τres and kinetics, is also displayed. As the adopted kv and
τres values, for each fuel composition, are average quantities extracted from
the reactive zone in RANS simulations (see section 6.4), a sensitivity analysis
was performed by multiplying and dividing them by a factor of 2. The model
responses are reported in Figure 6.13, where a higher sensitivity to the recir-
culation degree than to residence time is observed. Yet, uncertainties in the
kinetic model yields a much greater impact on the NO variance, which is also
reported in Figure 6.13. The displayed uncertainty bands come from the pre-
viously described LHS performed on the pre-exponential factors of reactions
R39, R80, and R85.
Remarkably, the simplified reactor network is capable of qualitatively capturing
the NOx dependence on the equivalence ratio, as observed experimentally
(see figures 6.6 6.5). In fact, the following conclusions can be withdrawn by
looking at the mean model predictions:

• at φ=1 (see Figure 6.13) (left), for the ID16 burner, a peak is observed
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Figure 6.13: Effect of the recirculation degree (kv), the residence time, and kinetics uncertain-
ties on the pollutant emission estimates from the WSR network, for equivalence ratio of 1.0
(left) and 0.8 (right) at different fuel composition.

in correspondence of the N10H90 mixture, then emissions diminish as
ammonia concentration in the fuel raises;

• at φ=0.8 (see Figure 6.13) (right), NO emissions increase with respect to
stoichiometric conditions;

• at φ=0.8, a lower NO production can be achieved using a larger air injector
(ID25). This is in line with what was found experimentally (see Figure 6.5).
The lower inlet velocity, due to ID25 configuration, reduces the entrainment
of exhaust gas (kv), and increases residence time in the reactive zone
(τres). Globally, this results in reduced emissions.

In the following, the characterized uncertainties in detailed kinetic mechanisms
on NO predictions with more complex numerical models, i.e. RANS simula-
tions with PaSR sub-model for turbulence/chemistry interaction. To do so, the
two mechanisms were found to give maximum and minimum NO output val-
ues from the previously described LHS study were tested (Figure 6.12). Even
though, both mechanisms [67, 170] performed well on temperature profiles,
strong differences were detected for pollutant emissions estimates. Regarding
NOx, a pronounced overestimation was observed using both models (see Fig-
ure 6.14). In particular, for φ = 1 (Figure 6.14 left), [67] predicts much higher
values, i.e. 13580 and 5300 ppm at N25H75 and N50H50, respectively, versus
9473 and 2851 ppm for the mechanism from [170]. Anyway, even using the
latter model, predictions are still far from the experimental data (460 ppm and

142



6.5. Uncertainty propagation

160 ppm for N25H75 and N50H50, respectively). Among the possible reasons
for such discrepancies, it is worth mentioning that for such conditions a wider
set of reaction might play non-negligible role in affecting model uncertainty and
that considering turbulence model uncertainty might increase the local recircu-
lation ratio, this should yield higher NO concentration before combustion and
lead to enhanced re-burning and lower overall emissions.

Figure 6.14: Dry NO pollutant emissions predicted using different kinetic schemes. The gray
area represents the uncertainty propagation of the LHS study for Stagni2020. ID16, φ = 1
(left) and φ = 0.8 (right). Relative experimental uncertainty 2%.

For φ = 0.8 (Figure 6.14 right), a better agreement with experimental data is ob-
served, even though the model under-predicts the NO emissions for N50H50.
In order to verify the major role of an accurate kinetic sub-model in this chemistry-
controlled regime (flameless), results from the previously performed LHS study
on the WSR network were tested in CFD simulations. Again, this means
performing additional simulations using the set of kinetic parameters corre-
sponding to the maximum and minimum NO emissions on the LHS chart (Fig-
ure 6.12). Figure 6.14 also shows the uncertainty propagation associated with
R39-80-85 on the NO emissions. At φ = 1, the lower band moves towards
the experimental values, allowing a massive reduction compared to the origi-
nal model from [170]. This is true especially for N50H50, where NO emissions
decrease from 2851 ppm to 539 ppm. On the contrary, temperature profiles in
the furnace (not shown here) remain almost constant, meaning that the effect
of the kinetic of the three reactions is relevant only for NO. Much better results
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were achieved at φ = 0.8, where the uncertainty bounds almost intersects the
experimental data region for N10H90 and contains it for N25H75 and N50H50.

6.6 Concluding remarks

An experimental campaign was performed to investigate options for optimal op-
erating conditions for the ULB flameless furnace fired with ammonia/hydrogen
blends. In particular, the campaign aimed at identifying trade-off between NOx
emissions and ammonia slip. Ammonia slip emissions are negligible in lean
conditions, while they become relevant close to φ = 1. The optimal working
point was identified for all fuel mixtures at φ = 0.95, which allows to reduce
NO emissions with respect to leaner conditions, while keeping low NH3-slip
(below 10 ppm). In RANS simulations, the agreement between temperature
measurements and estimations was found to be satisfactory (see Figure 6.8),
and nearly insensitive to the adopted kinetics, i.e. [170] and [67]. However, in
terms of NOx emissions, substantial differences between mechanisms predic-
tions and experimental data were observed (see Figure 6.14(left)). This dis-
crepancy can be partially attributed to the kinetic model uncertainties. A well-
stirred reactor network (WSR) was designed, and fed with boundary conditions
derived from experiments and CFD simulations (e.g. residence time (τres), and
recirculation degree (kv)). Sensitivity and rate of production analyses could be
performed to identify influential reaction for NO, i.e. R39-80-85 in Table 6.1.
A latin hypercube sampling (LHS) method was adopted to propagate the un-
certainty of the above-mentioned reactions to NO production/emissions. Two
kinetic mechanisms were then created from [170], representing the maximum
and the minimum of the NO distribution, reported for both the WSR and for CFD
simulations, in Figures 6.13 and 6.14, respectively. In conclusion, a significant
part of the discrepancy between the pollutant emissions from simulations and
experimental observations is associated to inherent uncertainties in recent ki-
netic mechanisms for ammonia/hydrogen combustion. In the future, a better
characterization of specific reactions (i.e. R39-80-85 and others in Table 6.1),
might reduce the uncertainty of CFD simulations for the prediction of pollutants
emissions. This is particularly true for stoichiometric conditions, where the dis-
crepancies between numerical models predictions and experiments was found
to be most significant. Future experimental campaign will focus on reducing
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the emissions of pollutants, namely NH3 and NOx. Another option, which was
not considered in this work, is to fire the furnace in fuel rich conditions in com-
bination with ammonia slip capture at the furnace outlet. The latter approach
would reduce the combustion efficiency though.
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CHAPTER7
Conclusions and future perspectives

In this final chapter, an overview of the accomplishments and contributions of
this PhD project is presented.
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7.1 Brief summary of the achievements of this thesis

In the present thesis, a novel data-driven approach for the optimisation of
detailed kinetic mechanisms was proposed. This methodology is based on
heuristic optimization algorithms, such as the Evolutionary Algorithm (EA).
The curve matching index was proposed as alternative loss function to clas-
sical norms. In CM calculation the similarities between models responses
and experimental data is measured quantitatively and qualitatively, consider-
ing also the first derivatives and shapes of corresponding splines. A novel
protocol for the optimization of PLOG reactions was established. The in-
terdependencies between Arrhenius expressions at different pressures were
accounted for by handling three random variables for each PLOG, regardless
of the number of discrete pressures specified in the mechanism. To the au-
thors knowledge, PLOG reactions were consistently optimized for the first time
within their entire temperature and pressure domain. The Cumulative Sen-
sitivity Function (CSF) and a Cumulative Impact Function (CIF) were in-
troduced to make reaction selection automatic, fast, and efficient pushing the
use information local sensitivity analysis to its maximum extent. An optimized
mechanism for ammonia combustion was obtained over a wide range of op-
erating conditions. In this process, 41 reactions were involved and 24 were
finally selected as the most impactful by introducing a for each test case in
the database. As a result, the approach involved all 101 kinetic parameters
simultaneously. For rates determined using first principles calculations, guide-
lines were established to estimate uncertainty ranges based on the level of
theory adopted throughout the calculation protocols for electronic structures,
potential energy surfaces and phenomenological reaction rate constants. Fi-
nally, the comparison between nominal and optimized mechanisms highlighted
crucial reaction pathways, needing further characterization. The development
above-mentioned methodology represents the underlying functioning of Op-
tiSMOKE++, a new C++ toolbox for the optimization of detailed kinetic mecha-
nisms. OptiSMOKE++ is an flexible interface for the communications between
other open source softwares like OpenSMOKE++, DAKOTA, Curve Matching
and SciExpeM. This framework enables the simultaneous use of experimental
targets from different facilities, i.e. Batch Reactors, PFRs, PSRs, ST, RCMs
and 1D flames. In order to produce a feasible optimized kinetic mechanism
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(i.e. with physically viable kinetic parameters), OptiSMOKE++ utilizes a penalty
function which forcefully increases the objective function value when a set of
kinetic parameters gives a rate coefficient outside the uncertainty bounds. This
ensures that the optimizer chooses an optimal point which still gives physically
viable rate coefficient values, as well as it allows for computational savings as
penalized parameter combinations are not evaluated using OpenSMOKE++.
The role of diluents like H2O and CO2 in operating conditions relevant to
applications for MILD combustion of hydrogen and syngas was discussed
and analysed by means of a virtual species analysis (VSA), Global Sensitiv-
ity Analysis (GSA), and Optimization. The VSA suggests that measurements
of ignition delay time (IDT) and species concentrations in perfectly stirred re-
actors (PSR) in diluted conditions are ideal candidates for the estimation of
collision efficiencies as their physics is significantly third body driven. The
GSA, based on Polynomial Chaos Expansion (PCE), performed on ignition
delay time (IDT) showed that, in diluted conditions, a single third body efficiency
can be more impactful than an entire subset of sensitive reactions. The use of
heuristic optimization algorithms enables parameters estimation and estima-
tion of the confidence regions regardless the dimensionality of the problem at
hand. This approach proposed here surpasses existing ones for two reasons:
(i) a combination of experimental measurements from different sources and
reactors can be employed. (ii) the uncertainties of all sensitive reactions are
considered to weaken the dependence from starting model. Eventually, the er-
rors introduced by the replacement of the TROE formulation for fall-off reactions
with PLOG were quantified for hydrogen combustion, and a method to extract
information from data about third body efficiency of strong colliders in
PLOG formulation was proposed in case high-level ab-initio calculations are
not available. An experimental campaign was performed to investigate op-
tions for optimal operating conditions for the ULB flameless furnace fired with
ammonia/hydrogen blends. In particular, the campaign aimed at identifying
trade-off between NOx emissions and ammonia slip. In RANS simulations, the
agreement between temperature measurements and estimations was found to
be satisfactory (see Figure 6.8), and nearly insensitive to the adopted kinetics,
i.e. [170] and [67]. However, in terms of NOx emissions, substantial differences
between mechanisms predictions and experimental data were observed (see
Figure 6.14(left)). A well-stirred reactor network (WSR) was designed, and
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fed with boundary conditions derived from experiments and CFD simulations
(e.g. residence time (τres), and recirculation degree (kv)). Sensitivity and rate
of production analyses could be performed to identify influential reaction for
NO, i.e. R39-80-85 in Table 6.1. A latin hypercube sampling (LHS) method
was adopted to propagate the uncertainty of the above-mentioned reactions to
NO production/emissions in the WSR and subsequently also in CFD simu-
lations. Future experimental campaign will focus on reducing the emissions of
pollutants, namely NH3 and NOx. Another option, which was not considered
in this work, is to fire the furnace in fuel rich conditions in combination with
ammonia slip capture at the furnace outlet.

7.2 Open questions for future work

During the writing phase of this manuscript I realized my work opened a series
of research questions, which I leave open for future work and have partly been
investigated in literature:

• As the dimensionality of optimization problems involving kinetics is consid-
erable: will it be possible to perform an on-the-fly dimensionality reduction
through PCA for performance acceleration?

• Since the interest toward integration of first principle calculations in de-
tailed kinetic mechanisms is growing in the community: would optimiza-
tions tools, such as OptiSMOKE++, MESMER, OPTIMA++ and others,
find application to master equation parameters rather than empirical ones,
for mechanism development on a larger scale? Good examples are al-
ready available in the work of [151], who used MESMER to calibrate Po-
tential Energy Surfaces (PES) parameters to high-fidelity experimental
data for a single PES, and the Burke [22], who advocates for the future
realisation of multi-scale informatics protocol. However, it is worth men-
tioning that implementation of Master Equation solvers and the definition
of uncertainty for PES parameters are highly non-trivial tasks, which would
require dedicated resources and involve more people and expertises than
those available in a single research group.

• As the cost of CFD simulations of reacting flows strongly increases with
the mechanism size. Can OptiSMOKE++ be coupled with reduction tech-
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niques to produce tailored mechanisms for specific applications? Since
there is a trade off between kinetics costs and improved turbulence mod-
elling, which might be the cause of significant discrepancy, this would
carve out some computational power to investigate more expensive tur-
bulence models and their uncertainties.

• Is it worth to investigate more complex and structured reactor networks,
through Uncertainty Quantification, to gain insights about the role of kinetic
uncertainties in CFD simulations?

In conclusion, I believe that optimization and uncertainty quantification might
be used to boost kinetic mechanisms development on many different levels.
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Supplementary information for Chapter 3

In this section, the cumulative sensitivity function for different test cases
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Figure A1: Comparison between nominal and optimized mechanism (in blue, straight line) for
considered reactions during optimization. Nominal values from Stagni [170]
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Figure A2: Comparison between nominal and optimized mechanism (in blue, straight line) for
considered reactions during optimization. Nominal values from Stagni [170]
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Figure A3: Comparison between nominal and optimized mechanism (in blue, straight line) for
considered reactions during optimization. Nominal values from [170]
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Figure A4: Comparison between nominal and optimized mechanism. Experimental data from
Mathieu and Petersen [107]
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Figure A5: Comparison between nominal and optimized mechanism. Experimental data from
Mathieu and Petersen [107]
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Figure A6: Comparison between nominal and optimized mechanism. Experimental data from
Pochet et al. [134]

Figure A7: Comparison between nominal and optimized mechanism. Experimental data from
Song et al. [168]
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Figure A8: Comparison between nominal and optimized mechanism. Experimental data from
Stagni et al. [170]

Figure A9: Comparison between nominal and optimized mechanism. Experimental data from
Wargadalam et al. [204]
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Figure A10: Comparison between nominal and optimized mechanism. Experimental data
from Dagaut [37]
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Figure A11: Comparison between nominal and optimized mechanism. Experimental data
from Lhuillier et al. [99]
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Figure A12: Comparison between nominal and optimized mechanism. Experimental data
from Rota [142]

Figure A13: Comparison between nominal and optimized mechanism. Experimental data
from Davidson [41]
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APPENDIXB
Supplementary information for Chapter 5
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Figure B1: Cumulative Sensitivity Function for the test case from Brabbs and Robertson [21]
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Figure B2: Cumulative Sensitivity Function for the test case from Das et al. [40]
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Figure B3: Cumulative Sensitivity Function for the test case from Donohoe et al. [44]
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Figure B4: Cumulative Sensitivity Function for the test case from Quiao et al. [137]
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Figure B5: Cumulative Sensitivity Function for the test case from Sabia et al. [145]
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Figure B6: Cumulative Sensitivity Function for the test case from Shao et al. [152]
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Figure B7: Cumulative Sensitivity Function for the test case from Wang [202]
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Figure B8: Virtual Species Analysis for the test case from Shao et al. [152]
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Figure B9: Virtual Species Analysis for the test case from Brabbs and Robertson [21]
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Figure B10: Virtual Species Analysis for the test case from Das et al. [40]
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