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ABSTRACT 

 

The idea of this thesis is implementing a Burned Area (BA) mapping algorithm into a QGIS 

workflow. The approach for burned area identification is based on soft computing techniques and 

on the integration of features (spectral bands and indices) derived from Sentinel-2 multispectral 

satellite images with ordered weighted average operators (OWAs). The algorithm was previously 

implemented only in R environment and the core objective of this thesis was to exploit the QGIS 

user-friendly environment for displaying and visualisation of the results. Further, the workflow 

created and implemented in QGIS is first tested on the previously analysed fire site Pedrógão 

Grande, Portugal (2017), and then run over a new Mediterranean fire site to assess the exportability 

of the algorithm output. The new test region is chosen among as one of the most recent fire events 

in Antalya, Turkey (2021). In both cases, BA maps are compared to fire reference perimeters 

derived from very high-resolution Planet images for accuracy assessment. In Portugal, for all 

applied ordered weighted averages (OWAs), the omission error (oe), ranging in [8,3-48,5%], is 

greater than the commission error (ce), [0.3-6.4%]. On the other hand, in Turkey, while the 

omission errors are in a similar range [3,6-60%] as Portugal, commission errors are significantly 

greater especially for OWA_almost_or (19,5%) and OWA_or (23,2%). This increase leads to a 

decrease of the Dice coefficient with the lowest value of 0.57 for the OWA_and operator. Despite 

that, the OWA_average operator, which results with the best values in Turkey, still provides an 

acceptable oe (8.9%) and ce (11.1) with a high Dice coefficient (90%). Finally, results of the 

previous study on Mediterranean regions with the same algorithm (Sali et al., 2021)  and  our results 

together show that  the algorithm is successfully implemented in QGIS and it is suitable to detect 

burned areas in Mediterranean region even without further calibration.    
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ABSTRACT 

 

L’obiettivo principale di questo lavoro di tesi è di implementare un algoritmo di mappatura delle 

aree bruciate in QGIS. L’approccio per il rilevamento delle aree percorse dal fuoco, che si basa 

sulla teoria dei sistemi fuzzy e sulle tecniche di soft computing, integra bande e indici spettrali 

derivati da immagini satellitari Sentinel-2, attraverso l’utilizzo di operatori OWA (ordered 

weighted average operators). L’algoritmo, già disponibile e codificato in R, è stato implementato 

come flusso di lavoro in QGIS per poter sfruttare le avanzate funzionalità di visualizzazione e 

processing di dati geospaziali che offre un ambiente GIS rispetto ad un linguaggio di 

programmazione. L’implementazione è stata verificata su un evento di incendio già 

precedentemente analizzato (Pedrógão Grande, Portogallo, 2017) e successivamente è stata testata 

su un nuovo caso di evento di incendio in Turchia (Antalya, 2021). Per entrambi i casi di test, le 

mappe prodotte di area bruciata sono state confrontate con perimetri di riferimento derivati da 

immagini ad alta risoluzione Planet per la validazione. In Portogallo, la validazione ha evidenziato 

errori di omissione e commissione variabili a seconda dell'operatore OWA considerato nel range 

[8,3-48,5%] e [0.3-6.4%], rispettivamente. In Turchia, gli errori di omissioni sono comparabili 

[3,6-60%] mentre la commissione è significativamente maggiore soprattutto per il caso degli 

operatori OWA_almost_or (19,5%) e OWA_or (23,2%). L’operatore OWA_and ha evidenziato 

valori più bassi del coefficiente di Dice tra tutti gli operatori testati (DC=0.57). Per il caso test in 

Turchia, l’operatore che ha fornito globalmente i risultati migliori è stato OWA_average con 

oe=8.9%, ce=11.1% e Dice=90%. I risultati prodotti in questa tesi, combinati con evidenze già 

riportate in letteratura (Sali et al., 2021) hanno confermato che l'algoritmo implementato in QGIS 

è in grado di rilevare con soddisfacente accuratezza le aree percorse dal fuoco in ambiente 

Mediterraneo in modo semi-automatico.   

 

 

 

 

 

 



vi 
 

 

ACKNOWLEDGEMENTS 

 

Foremost, I would like to express my sincere gratitude to my supervisor Assist.Prof. Giovanna 

Sona and co-supervisor Dr. Daniela Stroppiana for their consistent support, guidance, and the 

comments during the running of this study. Besides, I would like to thank to Assoc.Prof. Giovanna 

Venuti for her support and offering my name for this work. 

   

I am very grateful to my lovely friends both in Turkey and in Milan. Their love, support and belief 

helped me not only in this period but also anytime I hit a stone wall. 

 

Finally, I would like to express my deepest love and thanks to my family. They never stopped 

believing in me and encouraged me on the way of all my wishes.  

 

 

 

 

 

 

 

 

 

 



1 
 

1. Introduction  
 

Fire is an integral and fundamental process of the Earth System as it affects the distribution of 

vegetation, the biogeochemical cycle, the landscape, and the climate. A fire regime, in general, 

describes intensity, frequency, size, severity (the degree of damage that fires cause to the 

landscape) and the seasonal patterns of fires in a local/regional area. The changes in the fire regimes 

are expected to continue during the coming years and decades, with potentially wide-ranging and 

severe impacts on different ecosystems (Rogers et al., 2020). 

Despite fire being a natural phenomenon and a key disturbance for many ecosystems, the general 

increasing trend in the number of fires and affected surface areas in the Mediterranean region is 

spectacularly serious. The reasons for this increase are mainly the land-use (landcover) change and 

climate warming. The changes in the traditional land use by socio-economic transformations and 

lifestyles have led an increase in accumulated fuel. According to many regional studies, the rural 

depopulation and the increased cover of forest and shrublands (increased plant biomass and fuel 

load) is one of the main reasons of more frequent fires and increased hazard in Mediterranean areas 

(Chergui et al., 2018; Chuvieco, 1999; San-miguel-ayanz et al., 2012). Secondly, climate change 

increases drought frequency and extends the fire season. Obviously, climate change alone is 

insufficient to explain current fire-regime changes for wildfires as human behaviour (e.g., ignition 

patterns) is also important. However, the weather factors affecting the fire occurrence (wind, high 

temperatures, and low humidity) are potentially affected by climate change (Pausas & Keeley, 

2021). These phenomena, together with anthropogenic impacts, place the Mediterranean forest 

ecosystem in an alarming situation.  

The results of wildfires with thousands of hectares of forest areas burned every year and with 

serious economic damage and landscape changes also contribute to soil erosion, habitat 

degradation, and release of greenhouse gases (GHGs). By all its effects on the ecosystem balance, 

wildland fires are accepted as an Essential Climate Variable (ECV) by the Global Climate 

Observing System (GCOS). Thus, burned area (BA) detection is an important active research topic 

studied for many ecosystems. To evaluate the damages, point the post-fire management and 

implement medium to long-term restoration strategies, a timely and accurate detection of burned 
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areas is essential (Luca et al., 2021; Ramo et al., 2018). One of the most important parameters to 

quantify fire damage on an area is generally the fire severity. 

Fire or burn severity (Figure 1) can be defined as the degree of the fire effect both on vegetation and 

soil (Rahman & Chang, 2017). The evaluation of fire severity can possibly be made by post-fire 

in-situ field surveys; however, because this approach requires enormous effort and budget, 

alternative solutions are gaining importance. Changes in spectral reflectance by vegetation removal 

acquired by remote sensing images are potential choices for this purpose both for local and global 

classification. Several studies showed that there is a high correlation between vegetation indices 

derived from post-fire data and burn severity (Santis & Chuvieco, 2007). 

 

Figure 1. Burn severity (low-medium-high) detected in different forest types (California (CA) chaparral, Montana (MT) mixed-
conifer forests, and Alaska (AK) black spruce forests) (Lentile et al., 2006) 
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On the other hand, using remote sensing images and data are very useful on fire mapping, there are 

many challenges to create algorithms and interpret the results of this approach. A local map can 

offer relatively high accuracy after the validation by a reference data, however using the same 

algorithm on another area may give completely ineffective results. In parallel with, creating 

extensive coverage maps, regional or global, can be extremely problematic. The independent 

variables may lead to completely different results in different areas because of the diverse 

conditions. This also arises a related problem which is lack of automation. Because the process 

generally includes determination of a trade-off between over-estimation (commission) and under-

estimation (omission), when the variables affecting these rates have different impacts, an automatic 

procedure can fail without a recalibration between diverse locations. Furthermore, fire mapping 

being time sensitive also poses an obstacle for automation (Goodwin & Collett, 2014).  

The idea of this study is integration of a BA algorithm which is proved that giving highly accurate 

results in various Southern European fire sites (Sali et al., 2021) into a new and a more user-friendly 

environment, and testing the algorithm’s exportability.  
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2. Background Information  

 

2.1. Remote sensing 
 

The electro-magnetic (EM) energy, reflected or emitted by surfaces, can give meaningful 

information on the physical characteristics of specified objects or of an area. Remote Sensing (RS) 

(Figure 2) is the process of detecting and recording the EM energy reflected and/or emitted by a 

surface by using sensors on board platforms at a distance from the observed surface (e.g., satellites 

or aircraft).  

Another definition of RS is that it is the science of collecting the spatial data about Earth’s features 

from a distance by using the sensors in order to map, monitor and manage the information and 

create meaningful results (Coops & Tooke, 2017).  

The information carrier in RS is the electromagnetic radiation which is measured either by passive 

or active sensors (Figure 3). Passive sensors (e.g., the sensors used in LANDSAT, SENTINEL 

missions) are those which sense natural radiations generated by the Sun, either reflected or emitted 

from the Earth. On the other hand, the sensors which produce their own electromagnetic radiation, 

are called active sensors (e.g. the sensors used in LIDAR, RADAR). The ensemble of data and 

techniques from RS is also called “Earth Observation” (EO) that helps researchers for decision 

making in many areas such as agriculture, natural resource management, forestry, urbanization, 

and transportation. 
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Figure 2. Schematic description of remote sensing process 

 

 

 

Figure 3. Active and Passive remote sensing 

 

The sensors used in remote sensing can be classified also based on the vehicles that carry them. 

Airplanes, satellites, and unmanned aerial vehicles (UAVs) (Figure 4) have specialized platforms 

that carry sensors and each of them has its own advantages and disadvantages on their flight 

restrictions, image resolution and coverage. For example, UAVs have flexible availability, 

relatively low cost, and very high spatial resolution. They can be very effective for imaging a small 

area; however, with their short flight time, the surveyed area is limited, and they can easily be 

affected by weather conditions. Airplanes can serve again high spatial resolution (higher than 

satellites) while their cost can be very high, and their availability depends on weather conditions. 

Satellites can acquire clear and stable images and detect larger area within each image. Also, they 

are a great resource for historical data collection. Generally, the resolutions and revisit times 
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depend on the satellite and the specific sensor on it. The drawbacks of the satellite imagery are that 

the clouds may hide ground features, the cost can increase dramatically for high resolution images 

and data may not be collected at critical times because of the fixed schedule (Chang & Clay, 2016).  

 

 

Figure 4. Scheme of three main types of RS vehicles: satellites, airplanes, and Unmanned Aerial Vehicles (UAVs) (Heisig, 2021) 

 

The resolution of an image refers to the potential details provided by the imagery. In remote 

sensing, we refer to four types of resolution: spatial, spectral, radiometric, and temporal. 

Spatial Resolution refers to the size of the ground area of each pixel that can be detected by a 

satellite sensor or displayed in a satellite image. For example, a spatial resolution of 250 m means 

that one pixel of the image represents an area 250 by 250 meters on the ground. The ability to 

"resolve," or separate, small details is one way of describing what we call spatial resolution. 

Spectral Resolution refers to the ability of a satellite sensor to collect EM radiation separating 

specific wavelengths of the electromagnetic spectrum. For example, panchromatic indicates it 

accepts all colours, meaning the band has a very wide signal range. Multispectral indicates that the 

sensor has the capability to accept signal in various narrower bands separately. 

Radiometric resolution refers to sensor sensitivity to the magnitude of the electromagnetic 

energy. The finer the radiometric resolution of a sensor, the more sensitive it is to detecting small 

differences in reflected or emitted energy. It determines how finely a system can represent or 

about:blank
about:blank
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distinguish differences of intensity and is usually expressed as several levels or a number of bits, 

for example 8 bits or 256 levels that is typical of digital image resolutions. 

Temporal resolution refers to the time between two successive acquisitions of the same area with 

the same geometry of acquisition (revisiting time). The capability for satellites to provide images 

of the same geographical area more frequently has increased dramatically since the dawn of the 

space age, ranging from some days to few hours (URL1). 

Remote sensing can also be broadly classified as optical and microwave. 

In the electromagnetic spectrum, the wavelengths ranging between approximately 1 cm to 1 m 

belongs to the microwave portion. Microwaves have some special properties by their long 

wavelengths. This region of wavelengths is not susceptible to atmospheric scattering caused by 

cloud cover, haze, dust, and rainfall, while shorter optical wavelengths are highly affected by them. 

This property allows detection of microwave energy under almost all weather and environmental 

conditions so that data can be collected at any time (URL2). In addition, microwave sensors have 

the ability for day/night operation independent of sun or illumination conditions. As a result of its 

all-weather capability, the practice area of microwave RS is demonstrated for applications  limited 

due to weather conditions like agriculture crop monitoring on a regular basis, flood mapping, 

disaster management (Mohan, 2015). 

 

Figure 5. Electromagnetic spectrum regions and wavelengths 

 

about:blank
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Optical remote sensing works with the sensors which detect the wavelengths from visible, near-

infrared and middle-infrared up to thermal-infrared region (Figure 5) of the solar radiation. When 

solar radiation hits a target surface, it can be transmitted, absorbed, or reflected.  

Spectral signature (Figure 6) as the basis of RS is a representation of the reflected radiation as a 

function of wavelength because different surfaces reflect radiation differently in various regions. 

Thus, a material can be identified from its spectral response (signature) at different wavelengths. 

For example, green vegetation has a very specific signature as the chlorophyll absorbs mainly the 

red light in the visible range and near-infrared light is reflected. Therefore, the difference between 

visible and near-infrared channels are great for vegetation while it is insignificant for bare soil.  

There are several variables affecting spectral response even for the same target type. For example, 

seasonal changes on vegetation (e.g., green-ness of leaves) or the location of the same kind of 

surface can give different signatures (e.g. by the effect of different level of urbanisation). Knowing 

where to "look" spectrally and understanding the factors which influence the spectral response of 

the features of interest are critical to correctly interpreting the interaction of electromagnetic 

radiation with the surface (Mohammed et al., 2017). 

 

 

Figure 6. Spectral signatures as function of wavelengths for five typical surfaces (Zhuge & Zou, 2017) 
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Optical RS systems can be classified depending on the number of spectral bands used in the process 

such as panchromatic, multi-spectral, and hyper-spectral imaging systems. The main differences 

between panchromatic, multispectral and hyperspectral data acquisition are the width and number 

of recording bands. Whereas panchromatic sensors work with a single wide recording band, 

multispectral image consists of several relatively narrower bands of which two or three bands are 

in the visible range and there may also be some in near-infrared or middle infrared bands. A 

hyperspectral image consists of a large number of narrower bands spread across the 

electromagnetic spectrum. Its primary goal is to obtain a spectrum from each pixel in the image of 

a scene to find objects, detect processes, or identifying materials. 

There are several multispectral imaging sensors used in different satellite missions. They have 

various resolutions from coarse to high and can have different numbers of bands.  Medium-

resolution satellite imagery is typically 10- to 30-meter resolution, gathered by satellites like the 

Landsat missions or Sentinel-2. They are widely used in Earth Observation because they are cost-

effective, not data-intensive, regularly updated, and a good source providing data and information 

of crops, soil, and ground cover for agricultural application and production. Also, because they 

follow a consistent path and shorter revisit availability, they provide a high possibility to find a 

good image.   

The aim of Sentinel-2 mission is monitoring variability in land surface conditions, and its wide 

swath width (290 km) and high revisit time (10 days at the equator with one satellite, and 5 days 

with 2 satellites under cloud-free conditions which results in 2-3 days at mid-latitudes), make its 

contribution to Copernicus themes such as climate change, land monitoring, emergency 

management, and security, highly significant (URL3). Sentinel-2 platform carries a multispectral 

sensor (MSI) covering 13 spectral bands (Table 1), from 443 to 2190 nm, visible and near-infrared 

bands are available at a 10 m spatial resolution, red-edge/shortwave-infrared bands at 20 m, while 

three atmospheric correction bands have 60 m resolution (Cogato et al., 2020). The 13 spectral 

bands guarantee consistent time series, showing variability in land surface conditions and 

minimising any defects introduced by atmospheric variability (URL4). 

There are several advantages of multispectral Sentinel-2 data over other available monitoring 

satellites. By the access of Sentinel Hub, the Sentinel-2A imagery can be freely acquired 

(https://scihub.copernicus.eu/). Additionally, for image processing, the ESA created a tool named 

https://www.ohb.de/en/magazine/twominutesofspace-part-7-what-is-hyperspectral-imaging
http://climate.copernicus.eu/
http://land.copernicus.eu/
http://emergency.copernicus.eu/
http://emergency.copernicus.eu/
http://www.copernicus.eu/main/security
https://scihub.copernicus.eu/


10 
 

Sentinel Application Platform (SNAP). It is a software specialized for Sentinel images and has a 

forum for discussions and consultations (Isbaex & Coelho, 2021).  

 

Table 1. Sentinel-2 band details 

Spectral Band Central Wavelength(nm) Band width(nm) Spatial Resolution(m) 

B1 (Coastal aerosol) 443 20 60 

B2 (Blue) 490 65 10 

B3 (Green) 560 35 10 

B4 (Red) 665 30 10 

B5 (Red-edge 1) 705 15 20 

B6 (Red-edge 2) 740 15 20 

B7 (Red-edge 3) 783 20 20 

B8 (Near infrared) 842 115 10 

B8a (Near infrared narrow) 865 20 20 

B9 (Water vapor) 945 20 60 

B10 (Shortwave infrared/cirrus) 1380 30 60 

B11 (Shortwave infrared 1) 1910 90 20 

B12 (Shortwave infrared 2) 2190 180 20 
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2.2. Stages in GIS Development  
 

A Geographic Information System (GIS) is a system which links the concepts of “where” and 

“what”. It connects data to map, and helps users understand patterns, relationships, and geographic 

context (URL5). The first example of this linkage and idea of using spatial analysis takes us all the 

way back to 1854 and a cholera outbreak. An English Doctor, Dr. John Snow, did not accept the 

belief that the disease was being spread through the air. He discovered a pattern and demonstrated 

the potential of maps by identifying the link between an outbreak location of cholera and a 

contaminated water supply. John Snow’s cholera map was a major event connecting the what with 

the where and showed that GIS is a problem-solving tool (URL6). 

Handling the data and coarse information was an issue so this problem accelerated the development 

of computer mapping. In the 1960s, Roger Tomlinson had created the Canadian Geographic 

Information System (CGIS) which was a unique system to handle maps by adopting layering 

approach (One-Stop GIS , Stages in GIS Development, 2021). The system provided accurate and 

relevant data which enabled Canada to begin its national land-use management program.  

During the same period, one of the first automated computer mapping software programs, namely 

SYMAP, was created in Northwestern University by Howard fisher. It included spatial analytic 

capabilities applied to spatially distributed data. Then in 1965, Fisher established the Harvard 

Laboratory for Computer Graphics, and this Lab became a research centre for spatial analysis and 

visualization (URL5). After these seminal works, GIS was not anymore an experimental tool, it 

started to be an important part of the cartographic world (URL7).  

GIS industry solidified its strength in the seventies. The foundation and products of Environmental 

System Research Institute (ESRI) have played a key role in the popularization of GIS. ESRI 

initially specialized in using GIS to give consultation services for land-use planning and resource 

management. In 1981, the firm developed the first commercial product, ARC/INFO. Then, in the 

late eighties, the first open-source GIS, GRASS (Geographic Resources Analysis Support System), 

appeared and it reached production status and supported both raster and vector data. 
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After the release of first commercial products, other companies also developed their own products 

and made GIS more powerful and user-friendly over the next ten years. With the development of 

internet and powerful computing tools, it became easier to gather and distribute data, so the 

functionality of GIS increased effectively.  

 

 

Figure 7. Major GIS use options (URL5) 

 

In today’s world, people can create their own digital maps to support solving real-world problems. 

Most of the organizations compare many different types of information by sharing their works, 

revealing the patterns and relationships. GIS can be counted both as a tool, technique or software 

for industry and a science for researchers by many tools for theory, evaluation and understanding. 

This variety of fields of usage induced the rise of open-source GIS software packages which are 

free, and the source code is openly available.  

Quantum GIS (QGIS), as one of the most commonly used open-source GIS software     , is an 

official project of the Open Source Geospatial Foundation (OSGeo) which is volunteer-driven. 

QGIS, with its nature, accepts contributions from users in the form of code, tool development, bug 

fixes, etc. This ability of all users to access and verify code promotes a high degree of quality 

control while the proprietary software packages are just available for the software developers and 

not to users (Flenniken et al., 2020).   
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The functionality of QGIS is accounted as the best one among the open source packages when 

compared with commercial ArcGIS by ESRI (WHO, 2018). QGIS design is built on plug-in 

architecture. This simplifies adding new functions or creating tools for specific applications and 

the archive is constantly expanding by contributions. Except for the plug-in archive, there are 

several standard tools for vector and raster analysis embedded in QGIS. The increasing number of 

plug-ins for QGIS suitable for processing and classification satellite images confirms the 

widespread use of this software by the RS community.     

As an advantage of QGIS, the integration with the other open-source platforms is fully supported. 

As in our study, some symbiosis with other softwares can be very helpful to conduct sophisticated 

geospatial tasks. For example, while R is one of the best environments for processing and algorithm 

implementation, QGIS is the best for visualization of the results and preparing map layouts. 

Consequently, QGIS and R association has been counted as an important option (Muenchow et al., 

2017).  

 

2.3. R programming  
 

As a programming language and software environment, R is a very useful tool for data analysis, 

and statistical computing. Also, it has been gaining high importance as a reference software tool 

for many different Research & Development areas. 

R is a free software and can be used on various operating systems (UNIX, Windows and MacOS). 

It is available under the GNU General Public License. The major motivations for using R are its 

simplicity and availability for high level programming. The syntax is not complex, and it has a lot 

of powerful functions for doing mathematics and statistics. Further, the debugging is relatively 

easy because R is not a compiled language, that means you can execute one line at a time to verify 

the calculations (Wallach et al., 2019). Another main advantage of R is its flexibility to integrate 

with other languages. This allows to easy access for the user to many data sources and packages. 

By all these important properties, it is currently one of the most requested programming languages 

and it is growing day by day (URL8). 
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In the context of geographic data analysis, with the availability of large amounts of spatial data, 

the demand for high performance computers and upgradeable software has been widely increased. 

Handling this data requires flexible analyse, visualization and modelling. Neither a standard 

statistical package nor a standard GIS tool can achieve all these requirements by oneself  (Brunsdon 

& Comber, 2019). R supports advanced geospatial statistics and being an interactive interface to 

other software, it can easily build a bridge to GIS software (URL9). This union can help to create 

more user-friendly and easier handling of geospatial data. 

And in this work, R codes have been integrated in QGIS to implement the Burned Area (BA) 

mapping algorithm. This way we can exploit the user-friendly interface of QGIS and the full 

potentiality of the R programming language. 
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3. Literature Review on BA mapping 
 

Remote sensing has been an important tool for BA mapping since the beginning of satellite 

observations. Because historical estimates done by fire management teams (field surveys) have 

been including differences in the methods and discontinuity in data collection, satellite imagery by 

reaching reliable information, permitting rapid, cost- effective, temporally constant coverage and 

monitoring of large and less accessible regions became a sound alternative  (Chuvieco et al., 2019; 

Luca et al., 2021).  

At the beginning, because of the impact of fire disturbance on climate, BA products were generally 

used by climate modelers. Then, by the increase in accuracy and continuous data collection, many 

different communities (e.g., civil protection services, environmental and forest protection services 

etc.) started to use these data. One of the main information provided by BA maps is the level of 

fire severity. Since the fire severity is an important factor that influences vegetation recovery, the 

primary post-fire management actions need this information to be taken. Also, it is used by 

researchers to study a variety of fire effects, including spatial patterns and trends in fire severity 

over time (Chuvieco et al., 2019; Lydersen et al., 2016).  

The existing RS based BA products can be separated broadly as global and regional products. To 

develop global BA products, mainly two sensors have been chosen in the last years: 

VEGETATION (VGT), on board the SPOT satellites since 1998, and Moderate Resolution 

Imaging Spectroradiometer (MODIS), on the board the Terra and Aqua satellites since 2000. The 

first global BA product named Global Burned Area (GBA2000) was developed based on daily 

VGT images during the year 2000 and provided monthly estimates of BA with 1km spatial 

resolution. To detect the BA, seven regional algorithms were adapted for different fire conditions 

because methods of detection of burnt area vary for different ecosystem types. These algorithms 

were different by their region of developments and spectral indices used with possible different 

thresholds  (Chuvieco et al., 2018; Tansey et al., 2004). After the first product, from VGT images, 

several following global products have been released: the L3JRC covering the period between the 

years 2000 and 2007, the Globcarbon for the period from 1998 to 2007 and several Copernicus 

products (the last one released in July 2020; with300 m resolution by using Sentinel-3 data) ( 

https://land.copernicus.eu/global/products/ba , last accessed March 2022). 

https://land.copernicus.eu/global/products/ba
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Furthermore, NASA has also generated an archive of global BA products, starting with MCD45A1 

using 500 m resolution MODIS imagery and it was standard NASA BA product from 2000 to 2016. 

In this product, in order to distinguish the significant differences between observed and predicted 

reflectance data, they used Bidirectional Reflectance Disturbance Function (BRDF). Then, by 

improving the algorithm by also using thermal anomalies, they created the recent set of products, 

namely MODIS MCD64A1 (Chuvieco et al., 2018, 2019). The current version of this algorithm 

(collection 6) provides considerably more sensitivity than the original and identifies 26% more 

global BA than the previous collection (Giglio et al., 2018). Recently, one of the main projects on 

global products namely Fire_CCI, has been generated by the European Space Agency’s Climate 

Change Initiative. The first product was based on 300-m resolution MERIS images from the 

ENVISAT satellite, and the algorithm was also using MODIS hotspots as a supplement. The most 

recent product (FireCCI51 for the period 2001-2020) (Figure 8) were using the MODIS sensor’s 

red (R) and near-infrared (NIR) reflectances and thermal anomaly data, thus providing the highest 

spatial resolution (250 m) among the existing global BA datasets. 

 

 

Figure 8. ESA average global BA product: MODIS FireCCI51 with subsequent extensions to include BA for the years 2018 to 2020. 
(https://geogra.uah.es/fire_cci/firecci51.php, last accessed on March 2022) 

 

https://geogra.uah.es/fire_cci/firecci51.php
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On a regional basis, many countries have been producing BA maps for their fire monitoring 

systems.  Several studies have been conducted by researchers to increase the accuracy on BA 

detection and automatization of the algorithms. While in global BA mapping, the coarse resolution 

sensors are employed; medium-to high resolution sensors are preferred in regional scale. A high 

percentage of recent studies are focused on the images derived from Landsat-8 and Sentinel-2 

missions. 

According to a study on exploring the utility of Sentinel-2 MSI and Landsat-8 OLI in BA mapping 

of a heterogenous savanna landscape, the highest contribution to burned area detection is gained 

by NIR, Red, Red-edge and Blue spectral bands in the studied ecosystem. The classification is done 

by Random Forest (RF) classifier. The study carried on two different sites and while Sentinel-2 

gives higher accuracy in one site, Landsat-8 had a higher accuracy on the other site. However, 

according to their results, although Landsat 8 OLI has a low spatial and temporal resolution as 

compared to Sentinel-2, it can still be utilized in burn area mapping (Ngadze et al., 2020). Another 

study (Fitriana et al., 2018) showed that in mountain regions (Java Island in Indonesia), Landsat-8 

imageries give the highest sensitivity  in the NIR band and Normalized Burn Ratio long (NBRL) to 

detect the burned area. According to another research on Landsat-8 dataset in Indonesia, using 

TIRS, SWIR and NBR combination can ease the differentiation of burnt and unburnt area in rural 

while highlighting that this combination does not give good results in urban areas and needs to be 

combined with land use data (Indratmoko & Rizqihandari, 2019). In a different study conducted in 

a temperate region (Southern Europe), with single-date Landsat TM/ETM+ images for burned area 

mapping, an overall accuracy of 99.72%, commission error of about 21% and omission error less 

than 3% have been reached by a semi-automated OWA and region growing algorithm based on 

Spectral Indices and soft computing techniques (Stroppiana et al., 2012). 

There is an increase in employment of Sentinel-2 imagery for BA mapping purposes. Filipponi 

(2019) offers a novel approach for medium-high resolution BA mapping by using Sentinel-2 MSI 

time series data. The study includes a four-step supervised method to develop an automated and 

transferable procedure that relies on a change detection approach, based on the identification of 

structural changes in vegetation cover, and exploits complementary information through a region-

growing algorithm for 2017 wildfires in Italy. The proposed procedure resulted in generating a 

commission error of around 25% and an omission error of around 40% and the best performance 
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gained by NBR spectral index (Filipponi, 2019). In development of FireCCISFD11 product, on 

sub-Saharan Africa, a multitemporal two-phase algorithm for BA detection has been developed 

(Roteta et al., 2019). They have used short and near-infrared bands from Sentinel-2 MSI 

measurements and hotspots by MODIS. The aim of selecting such a large area was comparing this 

local BA area map with global products. The results showed that the total BA estimated from this 

product was 4.9 M km2, around 80% larger area than what the NASA BA product (MCD64A1 c6) 

detected in the same period (2.7 M km2) with higher dice coefficient (DC) and much lower 

omission error. A comparison of different global BA products and FireCCISFD11 is demonstrated 

in Figure 9 (Lizundia-Loiola et al., 2020). In the end, it is proved that Sentinel-2 imagery can give 

a great contribution to better understanding the impacts of small fires in global fire regimes even if 

it has less temporal reporting accuracy than global BA products (Roteta et al., 2019). In addition 

to its positive contribution to detect small burned areas, Sentinel-2 has a potential to effectively 

used to map the wetland burned areas which is a challenging ecosystem as a result of spectral 

confusion between open water and burned area, rapid post-fire vegetation regrowth, and high 

annual precipitation limiting clear-sky satellite observations (Vanderhoof et al., 2021).  
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Figure 9. Comparison of the MODIS BA products (FireCCI50, FireCCI51, and MCD64A1 c6) against the Sentinel-2 product 
(FireCCISFD11) for the year 2016. a) Northern Hemisphere Africa (NHAF) and b) Southern Hemisphere Africa (SHAF) (Lizundia-

Loiola et al., 2020) 

And lastly, in the pioneer work of this study, an algorithm initially developed for post-fire Landsat 

data was assessed to see if it is adoptable to multi-temporal Sentinel-2 data with some 

improvements. Sali et al. (2021) already proposed a new version of the fuzzy BA algorithm applied 

to S2 data but in this thesis the objective it twofold: i) to implement the algorithm in a QGIS 

workflow to have a suitable environment for displaying and visualisation of the results and ii) to 

test the performance of the algorithm over a new site in Turkey The proposed algorithm combines 

the partial evidence of burn which is obtained from the S2 bands reflectance data through the 

membership functions, into a synthetic score of global evidence by means of an ordered weighted 

averaging (OWA) operator. This semi-automatic robust and self-adaptive algorithm is offered to 

maximize mapping accuracy delivered by Sentinel-2 imagery. The BA algorithm was trained over 

the Vesuvius National Park, Italy, which was highly affected by fires in 2017 and contained 

different degrees of severity. After the training phase, accuracy assessment was carried out over a 

wide range of conditions/locations in Southern Europe for the 2017 summer fire season (Sali et al., 

2021). In this thesis the algorithm is further tested to assess its exportability to a new region. 
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4. Methodology 
 

In this study, we can divide the process in two separate parts.  

The first one is the reorganization of the previously developed codes written in R as a sequence of 

separated steps and the integration of these codes for a direct use in QGIS in a more user-friendly 

way. The second part is testing the algorithm in QGIS over a new test site in another Mediterranean 

region (Turkey). This step allowed both testing the code itself as integrated in the new GIS 

environment and validating the output burned area maps in a different geographic area.  

The first phase implied a deep analysis of the codes used to create burned area maps from Sentinel-

2 images.  The QGIS and R integration phase was at first tested on the previously analysed fire site 

Pedrógão Grande, Portugal (2017), in order to check step by step the correctness of the code’s 

modifications.  And lastly, further test and validation area was chosen as one of the most recent 

fire events in Antalya, Turkey (2021). 

The core of this study is the analysis of the R codes step by step, then modification and 

implementation of them in QGIS. Before going deeper on what I did, a theoretical background of 

the algorithm could be helpful for the reader. The process workflow consists of three main steps 

which are: 

a. Computation of Membership Degrees (MDs) for each pixel 

b. Computation of Ordered Weighted Averages (OWAs) for each pixel  

c. Validation of the output Burned Area (BA) maps by comparing to reference data 

 

The above listed steps address two main parts of the work: burned area mapping (a, b) and 

validation (c). The inputs for the first part of the algorithm (part a,b) are the Sentinel-2 images 

acquired for the dates before and after of the fire event.  In order to select the useful bands or the 

band combinations  for the discrimination of burned and unburned surfaces, a separability analysis 

was carried out on the burned area over Vesuvius National Park, Italy (2017) in a previous study 

(Sali et al., 2021). We had used the same algorithm parameters which had been tuned in the same 

research. To choose the bands to be used, they have calculated the separability metric M by using 

frequency distributions of training pixels on their study.  
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                                                        𝑀 =  
𝜇𝑢−𝜇𝑏

𝜎𝑢+𝜎𝑏
 

where: μu and μb represent the mean values of unburned (u) and burned(b) classes, while σu and σb 

represent the standard deviation for the same two classes in the training data. 

The result of the formula is a value varying between 0 and + ∞. If M> 1, the two classes are 

separable. Furthermore, the more M is greater the more the classes are separable. If M takes values 

below of the unit, the two classes cannot be considered separable. 

In our study, we have used the same seven input bands which were selected from the separability 

analysis for the implementation of the algorithm and to be used in the membership function. These 

bands are:  post-fire NIR (B8), post-fire RE2 (B6) and RE3 (B7) and temporal difference 

(difference between post-pre fire reflectances) of the same three bands and additionally of SWIR2 

(B12) (Sali et al., 2021).  

In the following sections, first, the basis of R and QGIS integration phase and then, the theoretical 

definitions of the three main algorithm steps, explanations of the separated R codes and the 

modifications between R and QGIS will be explained. 

 

 

Figure 10. Fire areas in Mediterranean region used for : the parameter selection (b: Vesuvius National Park, Italy), integration 
phase (a: Pedrógão Grande, Portugal) and validation step (c: Manavgat, Antalya, Turkey) of the algorithm 
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4.1.  R and QGIS Integration 
 

This step is the main objective of the thesis because it makes the whole process of creation 

of burned area maps run in a more user friendly and semi-automatic way.  

The purpose in fact is to speed up the use of the code, and to allows a much easier way to 

visualize and analyse the results through QGIS interface.      

Furthermore, the creation of a link between QGIS and R can be especially essential for 

sharing your applications or algorithms with people who have limited skills in 

programming or spatial data analysis, that would be required by using the algorithm 

implemented, for example, in R.  

QGIS includes a number of plugins that you can activate in order to extend its functionality. 

The scripting language for QGIS is Python and the creation of a new plugin is only possible 

by writing the algorithms in Python to make it an open source. Python is fully integrated 

and cooperates with QGIS.  

On the other hand, there are many spatial extensions of R that support a wide range of 

geospatial capabilities. According to the research of GoGeomatics, on the top 

programming languages in GIS world, R will play an important role in the years to come 

(URL10).  

Since the algorithm had been developed and implemented only in R, the plugin 

“Processing R Provider” (Figure 11) is used, which allows the execution of R scripts 

directly on data loaded in QGIS; however, these codes could also have been run in QGIS 

with some modifications.  

In the first place, to use the scripts on QGIS, R has to be installed separately in the computer 

because the plugin searches for the installation automatically. Then, after the installation 

of Processing R Provider, by clicking the “options” icon (Figure 12 (a)) in the processing 

toolbox, you can configure the links between R and QGIS. This will bring up a window 

(Figure 13) where you can find the important paths to step up.  Finally, you can find the 

icon for creation of new R scripts on the processing toolbox (Figure 12(b)).   
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Figure 11. Plugin panel-Processing R Provider window 

 

Figure 12. (a) Options icon (b) Icon for R script creation 
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After the installation of R and setting up the directories for linkage, you can either create 

a new R code or copy-paste your existing codes on QGIS. In my case, I directly pasted our 

codes part by part. The main issue with R codes running in QGIS is the correct definition 

of inputs and outputs in QGIS syntax (Table 2Table 2. R Syntax in Processing scripts (URL12)). 

There are some specific code lines which must be specified at the beginning of the code. 

They, with several metadata, define the interaction between QGIS and R. These lines that 

start with hashtag # should be placed in the code so that QGIS can understand the R code. 

By using the correct statements, you can create a group for your models under the R 

segment (Figure 14) in the processing toolbox. Furthermore, these specified lines determine 

how the user interface will look like (URL11). 

However, QGIS doesn’t run the code immediately when you click the name of the code, 

because it needs to understand what the inputs and outputs of this run are.  Indeed, in 

running from the processing toolbox list an R code, QGIS at first just searches for it then, 

independently from the code is working or not, it opens a panel (Figure 15) to require the 

inputs and define the repository for your output.  

 

 

 

Figure 13. QGIS window to set up the important paths between QGIS and some main providers 
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Table 2. R Syntax in Processing scripts (URL12) 

Inputs Input Explanation  Outputs 

##My Group=group Group creation ##output = output vector 

##Name = name Naming the algorithm ##output = output raster 

##Layer = vector or raster 
Specifying the input layer is 

vector or raster 
##output = output table 

##Field= Field Layer 
Where layer is the name of the 

input layer 
##showplots 

##Bol = boolean 
To control the selection on the 

input/output interface 
 

##Str = string   

##Num = number   

 

 

The necessary input files should be added to QGIS layers panel because the input/output 

interface requires input selection from the already opened files.  

Until this point, properties or functionality of the R code is not checked by QGIS, it only 

deals with the metadata written at the beginning of the code (#). This makes the selectivity 

of this integration fail on a certain level. For example, in your code, you may have an 

algorithm that optionally creates more than one output, however either you need only one, 

or some, or all of them, QGIS asks you either to create a temporary folder or a repository 

for each of them, before starting the run. This may be enormously time consuming 

depending on the complexity of the run. In order to deal with this issue, some parts of the 

algorithms had to be recoded.  
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Figure 14. QGIS Processing Toolbox interface 

 

 

Figure 15. QGIS input/output interface example before the run 
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In the following sections, explanation of each code and the required modifications to run 

the algorithm on QGIS will be explained in detail.  

 

4.2. Theoretical Definitions and Code Modifications for Integration 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16 shows the flowchart of the algorithm: a pair of Sentinel-2 images (pre- and post- 

fire dates) is the input of the whole system and by adding information from some other 

systems (e.g. land cover data) to Sentinel data, we end up with burned area maps. In our 

case, the main issue was not running the codes because it was proven that the codes were 

working properly on R. At the beginning, we had four separated R codes (1 is intermediate) 

and they were not connected to each other. The first step for our study was having a deep 

understanding of the codes and testing them during each step of integration in QGIS. The 

need for an interoperable code between R and QGIS asked for modifications of some parts 

of the code. Here, we will explain firstly the theory behind each separate module of the 

algorithm, secondly the code owning the module and lastly the modifications and tests 

applied during the integration. 
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Figure 16 . Process flow (from Sentinel-2 imagery to burned area mapping) 
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Figure 17. Step by step Input/Output for each part of the algorithm 

 

 

4.2.1. Fuzzy Membership Function-Computation of Membership Degrees (MDs) 

 

A Membership Function (MF), in definition, is a function used to specify the degree for a 

given input belonging to a class. The output of this kind of a function is called a 

membership degree that ranges between 0 and 1. For example, in our system, a degree 

closer to 1 represents an area which belongs more likely to the “burned area” class, while 

a degree closer to 0 can be accepted in the “unburned area” class. In order to derive a 

burned area map (i.e. a binary classification of burned/unburned areas), a threshold value 

(∈ [0,1]) is chosen and the pixels having values greater than this threshold are considered 

as “burned”.  

In the algorithm developed by Sali et al. (2020), logistic regression, which is a 

classification model that uses an S-shaped curve to separate values of different classes, has 

been used to calculate the Membership Degree (MD) for each pixel.  
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𝑀𝐷 =    𝑓(𝑥) =  
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 

 

where: 

x = a real number 

x0 = the x value of the sigmoid midpoint 

k = logistic growth rate 

L = the curve's maximum value (here 1, MD should be between 0 and 1) 

 

The spectral response (x) from Sentinel-2 images for the selected seven bands are the input 

values for the sigmoid functions. That means, we run the MF for each of the seven bands 

separately for each pixel. The other parameters (k and x0) were also tuned during the study 

on the fire event at Vesuvius National Park, Italy (2017). We did not change these 

parameters for test areas because one of our research goals is the automatization of the 

process for whole Mediterranean region. So, this thesis work contributed to testing the 

exportability of the BA algorithm as developed by Sali et al. (2020) to a new geographic 

area. Thus, the only area specific parameter is the spectral response acquired from Sentinel-

2 image of the AOI.  

In the R code, the process flow of the computing MD module can be summarized as below: 

a. Loading of the necessary R packages  

b. Definition of the sigmoid membership function 

c. Setting band specific parameters (k and x0) 

d. Reading the input dataset (pre-fire and post-fire Sentinel images and, binary 

classified Corine Land Cover (CLC) vector) 

e. Conversion (rasterization) of the CLC shapefile to raster (based on the attribute 

field of the shapefile that provides information on burnable and not burnable 

polygons) 

f. Setting output directory for storing/saving MD output raster 

g. Calculating layers used in the processing from S2 spectral bands 

h. Application of sigmoid function by inserting the values on steps c and h 

i. Load of available data into a single raster (stacking)  
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j. Masking the stack with burnable/not burnable mask derived from the CLC 

k. Writing the output file in the directory at step g 

These above steps were modified in some points for the integration with QGIS. The 

required packages are much less when working on QGIS because it already has most of 

the tools needed for geospatial processes. And also, especially the input/output 

requirements are quite different for R and QGIS interfaces as mentioned in  Section R and 

QGIS Integration4.1. The added and removed lines for code integration are as below: 

 

Added Lines: 

For Definition of Inputs/Outputs: 

##Burned_area_detection=group   >> Group name for every code of the algorithm 

##a_Compute Membership Degrees=name  >> Algorithm name 

##PreFire_Sentinel2=raster  >> Input Sentinel-2 image for pre-fire 

##PostFire_Sentinel2=raster         >> Input Sentinel-2 image for post-fire 

##NotBurnable_Mask=vector  >> Input Masking vector 

##MD=output raster   >> Output masked MD map 

##mask=output raster  >> Output mask (to check) 

##Field=Field NotBurnable_Mask >> Masking vector required layer 

 

For setting the input rasters and vector at the same CRS: 

if (!compareCRS(crs(NotBurnable_Mask),crs(PreFire_Sentinel2) )){ 

crs = crs(PreFire_Sentinel2) 

NotBurnable_Mask <- st_transform(NotBurnable_Mask, crs)} 

 

For showing the outputs in the QGIS Result Viewer: 

mask <- mask_forest 

MD <- bande_md 

 

Removed Lines:  

For definition of input/output directories: 

in1 <-"directory of Sentinel-2 pre-fire image" 

in2 <-" directory of Sentinel-2 post-fire image " 

mask <- st_read("directory of Masking vector (CLC shapefile)") 

tiff_fname_md <-"output directory for MD map" 

 

For writing the created map into the output file: 

writeRaster(bande_md, tiff_fname_md, overwrite=TRUE) 
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After the calculation of MDs for each band, the intermediate step was sorting them in 

descending order pixel by pixel. This output was used in the next step, the OWA map 

computation. The added lines for I/O definition on QGIS are:  

 

##Burned_area_detection=group 

##b_Sort Membership Degrees=name 

##MD=raster 

##MD_raster_sort=output raster 

 

4.2.2. Computation of Ordered Weighted Averages and BA maps creation 

 

The sorted MD multiband raster is then used in Ordered Weighted Averaging (OWA) as 

the second step of the algorithm. 

 

OWA family is a tool which is first introduced by Yager (Yager, 1988) to deal with the 

problem of aggregating multicriteria functions to form an overall decision function. It 

provides an aggregation lying between two extremes (“and” and “or”). At one extreme 

(“and”), we desire that an alternative satisfy “all” the criteria. While, at the other extreme 

(“or”), the alternative should satisfy at least one of the criteria. In many cases the type of 

aggregation operator desired lies somewhere between these two extremes. Following this 

conceptualization, the decision maker’s attitude is highly important to form an overall 

decision function, the decision maker should state the number or the percent of the criteria 

that must be satisfied.  

 

Definition: An OWA of dimension N and weighting vector W, with i=1,...N ∑wi= 1, 

aggregates N input values [d1,…,dN] and computes an aggregated value a in [0,1] as 

follows: 

OWA: [0,1]N
🡪 [0,1]          𝑎 =  𝑂𝑊𝐴([𝑑1, . . . , 𝑑𝑁])  = ∑𝑁

𝑖=1 𝑤𝑖 ∗
𝑔𝑖 

 

in which gi is the i-th largest value of the d1, …, dN. In this case study, ([𝑑1, … , 𝑑𝑁])  are 

the MDs of the seven input factors (N=7): RE2, RE3, NIR, ∆RE2, ∆RE3, ∆NIR, ∆SWIR2. 
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As a multicriteria evaluation, unlike classical logic which is either true or false, the OWA 

operations allow the user to change the form of attributes contribution from a minimum 

(Logical AND, “optimistic”) to a maximum (Logical OR, “pessimistic”) combination on 

the maps created. All intermediate combinations, obtained by changing the order and 

magnitude of weights, may also create meaningful results for decision makers (Chapman 

et al., 2003).  

  In our algorithm, five different combinations of weights were used as OWA: 

 wand = [0,… , 0, 1]  🡪 most optimistic 

 walmost_and = [0,… , 0.5, 0.5]   

 walmost_or= [0.5,0.5,… , 0, 0]   

 waverage = [1/n,……, 1/n]   

 wor = [1,… , 0, 0]  🡪 most pessimistic 

 

 The added lines for OWA code integration are as following:  

Added Lines: 

For I/O definition: 

##Burned_area_detection=group >> Group name  

##c_Compute OWA=name  >> Algorithm name 

##MD_raster_sort=raster  >> Input Sorted MD map  

 

##and=Boolean 

##or=Boolean 

##almost_and=Boolean  >> User interface selection panel creation 

##almost_or=Boolean 

##average=Boolean 

 

##OWA_and=output raster   

##OWA_almost_and=output raster 

##OWA_or=output raster  >> Output BA maps for different weight combinations 

##OWA_almost_or=output raster  

##OWA_average=output raster 
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For time efficiency: 

OWA_and<- raster(nrow=1,ncol=1) 

values(OWA_and)<-0 

OWA_almost_and<- raster(nrow=1,ncol=1) 

values(OWA_almost_and)<-0 

OWA_or<- raster(nrow=1,ncol=1) 

values(OWA_or)<-0           >> Primary setting OWA    

OWA_almost_or<- raster(nrow=1,ncol=1)  rasters as “0” not to lose time  

values(OWA_almost_or)<-0    on the unselected computations 

OWA_average<- raster(nrow=1,ncol=1) 

values(OWA_average)<-0 

 

 

All the lines to load packages are removed in this part of the code, because all necessary 

packages were loaded in the primary MD computation step.  

Lastly, before computation of each OWA combination, we inserted an “if” statement, so 

that if the user does not select one of the combinations in the selection panel, that BA map 

will not be created.  

 

 

4.2.3. Calculation of Accuracy Metrics 

 

The third part of the implementation steps is computation of the accuracy metrics, i.e. 

validation (step c). Validation provides a quantitative assessment of the accuracy of geo-

products, burned area maps in this case; accuracy is relevant information for end users, 

while facilitating critical information for end users (Congalton and Green 1999). To assess 

accuracy, the training dataset must be compared by a reference. In our case, this spatial 

dataset should get as close as to the ground truth to have a high accuracy. Since the in-situ 

fire data is hardly feasible to be achieved over large areas and we need a representative 

and reliable data as reference, the use of high resolution remotely sensed data is widely 

accepted. The first rule for a reference dataset to be considered as ground truth is that this 

dataset must have a high accuracy and be generated independently (Morisette et al., 2006). 

In fact, in this work we used reference burned perimeters (as ground-truth data) derived 

from very high-resolution Planet images which is a high frequency satellite monitoring 
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system with a spatial resolution of 3.7 m in four multispectral bands (Red, Green, Blue and 

NIR). We decided to use only the post-fire Planet image as reference raster.  

 

The selected reference image was classified by Dzetsaka Classification Tool (Figure 18), a 

semi-automatic classification plugin. This plugin is very fast, easy and supports different 

classification models such as Gaussian Mixture Model, Random Forest, K-nearest 

neighbours, Support Vector Machines. We have used Random Forest classification 

algorithm, whose working principle depends on building decision trees on different 

samples and the final output is based on average or majority ranking (URL13).  

 

 

Figure 18. Dzetsaka classification tool interface for QGIS 

 

The next step after the classification was applying majority filter (SAGA) on the output 

raster to reduce the noise. And finally, vectorization was applied to the classified and 

filtered reference raster. By using this reference vector, we calculated the accuracy metrics 

for each of the OWA maps, to decide which weighting function gives a closer result to the 

ground truth. 

There are many different measures for validation in the literature. In our study, validation 

step was carried out by calculating the omission /commission errors, Dice coefficients and 

bias between the reference data and different OWA maps. All of these metrics are 

calculated by using the True Positive, True Negative, False Positive and False Negative 

pixels (Table 3). 
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Table 3. Sampled error/confusion matrix: nij express the number of pixels of agreements (diagonal cells) or disagreements (off 
diagonal cells) between the BA product and the reference PLANET image. In the case of binary classification (burned areas and 

not burned areas) considering as target objective of the algorithm the identification of Burned areas we can make this 
equivalence: True Positives (TP= n11 ),  True Negatives (TN= N22 ), False Positives (FP = n12 ) and False Negatives ( FN = n21). 

  Reference   

  Burned Unburned Total 

BA 

algorithm 
Burned n11 n12 n1+ 

Unburned n21 n22 n2+ 

 
Total n+1 n+2  

 

Errors of commission occur when a pixel is incorrectly included in burned class while the 

pixel is not burned in the reference, while errors of omission occur when a burned pixel is 

left out and classified as unburned (Table 4). 

 

Table 4. Metrics computed from the error/confusion matrix and range of variability 

Accuracy metric name             Formula Range 

Commission error 
𝐶𝑒 =

𝑛12

𝑛1+

 [0,1] 

Omission Error 𝑂𝑒 =
𝑛21

𝑛+1

 [0,1] 

Dice Coefficient 
𝐷𝐶 =

2𝑛11

2𝑛11 + 𝑛12 + 𝑛21

 [0,1] 

Relative Bias 𝑟𝑒𝑙𝐵 =
𝑛21 −  𝑛12

𝑛+1

 [-1,+1] 

 

 

Deciding on which accuracy measure between BA omission and commission errors is 

preferred is almost impossible because they are equally important. They show the 

proportion of area of agreement and disagreement but comparison on them may not yield 

a meaningful burned accuracy. Another reason for this is that we deal with a two-class 

problem Thus, another measure, Dice Coefficient (DC), summarizes both omission and 

commission errors, is reported, and it shows the degree of how similar the pixels in the two 

maps compared (URL14). 



36 
 

In the accuracy computation code, the aim is not only to tabulate the accuracy metrics as a 

measure of the agreement between reference and classified maps, but also to depict the 

spatial distribution of the agreement and disagreement pixels trough the agreement maps; 

these maps show whether pixels in the selected OWA map and reference map fall in one 

of the classes: correctly burned or unburned, omission or commission. 

  

The added and removed lines for the integration of this last portion of the codes are as 

follows: 

Added Lines: 

For I/O definition: 

##Burned_area_detection=group  >> Group name 

##Compare_with_reference_vector=name >> Algorithm name 

##reference=vector   >> Input ground truth (classified reference vector) 

##raster_to_validate=raster  >> Input OWA raster 

##threshold=number   >> threshold for each pixel to be assumed as burned 

##Field=Field reference  >> the classification layer on reference vector 

##tab=output table   >>Output tabulated accuracy metrics 

##agreement_map=output raster >> Output agreement map  

 

 

Since we have different input sources and they may not be set in the same CRS, we added 

the following lines to the code, as in MD computation module, to manage different 

reference systems:  

 

if (!compareCRS(crs(reference),crs(raster_to_validate) )){ 

crs = crs(raster_to_validate) 

reference <- st_transform(reference, crs)} 

 

In QGIS, since we have an interactive user panel, we do not need to define the threshold 

(that we have used to convert the continuous map to binary) in the code, we can change it 

in the user interface. So, the threshold definition line was removed from the code. 
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Finally, we have added some lines to create a table and show the outputs in the layer panel: 

rownames <- c("value") 

colnames <- c("omission error", "commission error", "Dice Coefficient", "Bias", "Relative 

Bias") 

tab <- matrix(c(oe, ce, dc, bias, relB),ncol=5,byrow=TRUE) 

rownames(tab) <- c("value") 

colnames(tab) <- c("omission error", "commission error", "Dice Coefficient", "Bias", 

"Relative Bias") 

tab <- as.table(tab) 

agreement_map <- accuracy 

 

In the following chapter, the description of the test area (Manavgat, Turkey) and the data 

used in the algorithms explained in this section will be displayed.  

 

 

 

 

 

  



38 
 

5. Test Area and Data 
 

5.1. Description of Test Area and fire season 
 

Manavgat is the second largest district of Antalya, Turkey, with a 2.283 km2 surface area.  

The area extending from the coastline to the Taurus Mountains is mainly agricultural area. 

It is covered with various plants, fruits, and trees. Next to the agricultural lands, as you 

climb to the Taurus Mountains, maquis and forest areas begin. Red pine is located in the 

lower part, South of the Taurus Mountains. As you go higher, black pine, spruce, cedar, 

and juniper take the place of red pine. Willow and plane tree are common in river valleys. 

Summers are quite hot and can exceed 45-degree Celsius. 

In July 2021, Turkey had faced one of the most severe fires in its history. Especially the 

fire that broke out at four different points in Manavgat caused high damage in forest areas 

while many animals lost their life. Manavgat is among the most fire-affected places in 

Turkey, and while seasonal fires are normal and even healthy for the local ecosystem, the 

scale of 2021 fires was threatening. With the landscape parched and strong winds – in 

particular, one that blows from the northeast– the authorities were struggling to move fast 

enough to control things (URL15). 

According to Global Disaster Alert and Coordination System (GDACS), this fire in 

Manavgat lasted nine days and the area affected was 35438 ha (URL16) and seven people 

have lost their lives. When we look at Figure 19, we can see that the size of the area affected 

by the fire in 2021 in the Manavgat region is greater than the annual totals in Turkey 

between 1990 and 2018. And, as it can be seen in Figure 20, MODIS data showed that there 

were lots of active fire zones in the area even in the fifth day from the first event. 

Selecting Manavgat as our study area is meaningful in two perspectives. Firstly, its being 

in Mediterranean area gives us the opportunity to test if the algorithm and the parameters 

tuned in Southern Italy and Portugal, can be extended without changing any parameters 

and creating a fully automatic process for regional mapping. Secondly, this event is very 

important in size and damage, while there are not many studies done on the area yet.  
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Figure 19. Forest Fires in Turkey between the years 1990-2018 (Republic of Turkey Ministry of Urban, Environment and Climate 
Change) 

  

 

 

Figure 20.  Detailed event map for Turkey Forest fires, 02/08/2021 (ECHO/European Commission) 
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5.2. Geospatial Data Used for Burned Area Detection on Manavgat, Turkey fire 

event 
 

As explained in process flow of the algorithm, we needed to obtain the pre- and post-fire 

Sentinel-2 images on our study area (Figure 21).  We used a R toolbox called Sen2r which 

is developed to download and pre-process Sentinel 2 images over a user-specified Area Of 

Interest (AOI) and time window, and exporting them as multi-band geotiff format 

(Ranghetti et al., 2020). 

 

 

Figure 21.  Sentinel-2 images for pre and post fire dates in Manavgat, Turkey (prefire: 20/07/2021 and postfire: 
29/08/2021) 

        

In the module of the algorithm for the computation of MD, burnable/unburnable raster 

mask is foreseen to mask out pixels that cannot burn. This mask was produced by using 

the Corine Land Cover (CLC) product from Copernicus Land Monitoring Service (Figure 

22). This file includes information about the biophysical characteristics of the Earth and 

we needed to add a field to the original file to define and merge the classes that can be 

counted as burnable or not (Figure 25).  
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As we knew that Manavgat is a forestry district, an important amount of the surface area 

is classified as burnable being covered by woodland and forest vegetation.  
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Figure 22. Turkey burnable land cover types 
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In the CLC metadata file, each polygon is identified by a label and a code number to be 

associate to a land cover class. In our AOI, there are five main codes and 44 sub codes. 

For example, code=5 identifies water bodies, but subcodes gives more details about the 

type of water bodies (e.g., maritime wetlands, inland waters). The list of the main codes 

and the land covers for each is as following:
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Table 5.  Landcover types in the CLC(2012) product 

Code Label Sub-labels 

1 Artificial surfaces  

 

Continuous urban fabric 

Discontinuous urban fabric 

Industrial or commercial units 

Road and rail networks and associated land 

Port areas 

Airports 

Mineral extraction sites 

Dump sites 

Construction sites 

Green urban areas 
Sport and leisure facilities  

2 Agricultural areas  

 

Non-irrigated arable land 

Permanently irrigated land 

Rice fields 

Vineyards 

Fruit trees and berry plantations 

Olive groves 

Pastures 

Annual crops associated with permanent crops 

Complex cultivation patterns 

Land principally occupied by agriculture, with significant areas of natural vegetation 
Agro-forestry areas  

3 Forest and semi-natural areas  

 

Broad-leaved forest 

Coniferous forest 

Mixed forest 
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Natural grasslands 

Moors and heathland 

Sclerophyllous vegetation 

Transitional woodland-shrub 

Beaches, dunes, sands 

Bare rocks 

Sparsely vegetated areas 

Burnt areas 

Glaciers and perpetual snow  

4 Wetlands 

 

Inland marshes 

Peat bogs 

Salt marshes 

Salines 

Intertidal flats  

5 Water bodies 

 

Water courses 

Water bodies 

Coastal lagoons 

Estuaries 

Sea and ocean  
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In Figure 23, the distribution of the overall land cover types is presented. As mentioned 

before, most of the land (58%) is covered by forested and semi-natural areas. The second 

greatest percentage (37%) belongs to the agricultural area. This distribution is the direct 

result of Copernicus Land Monitoring Service. When we work on it and classify the subsets 

manually as burnable and unburnable, we reached out Figure 24. The burnable class is 

formed of the CLC codes with 2 (agricultural) and 3 (forested areas).   

 

 

 

Figure 23. Distribution of percentage of polygon numbers with different land covers 

 

 

  

 

Figure 24. Distribution of percentage of burnable areas w.r.t assigned codes 
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Figure 25.  Classified CLC vector of Manavgat (as burnable or not) 

 



48 
 

 

Figure 26.  Pre-and post-fire Planet images (ground truth) 
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Figure 27.  Classified and filtered reference vector (from post-fire Planet image) 
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After the computation of MD raster and OWA maps, the next step was the calculation of 

the accuracy metrics. The inputs for this process are the created OWA maps and a reference 

vector (Figure 27). To generate a reference (ground truth) vector, pre and post fire Planet 

images (Figure 26) were downloaded for the same dates of Sentinel-2 images.   
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6. Results and Discussion 
 

As mentioned at the beginning of the methodology chapter, the first results were obtained as part 

of the tests for the codes developed for the implementation of the algorithm in QGIS. In this part, 

we have used the data on the fire site Pedrógão Grande, Portugal (2017). Working on this site 

supplied us a cross check because similar results were available from a previous study (Sali et al., 

2021) but without GIS involved.  

The testing section for the assessment of the algorithm performance was carried in the study area 

in Turkey. In this chapter, the results of the three modules of the algorithm (MD, OWA and 

accuracy metrics calculations) will be presented on these two Mediterranean areas.  

 

6.1. MD and OWA results 

6.1.1. Partial Evidence (MD) results 
 

The first step from theory to visualization of burn is carried out by applying MFs. The results are 

the maps of partial evidence of (Membership Degree, MD) showing the ratings of each pixel (i.e., 

the membership to the burned class). The MD values on the maps ( Figure 28 and Figure 30) show 

the burn likelihood of each pixel: higher MD (closer to 1, yellow in the figure) represents higher 

burn probability.  

The histograms (Figure 29 and Figure 31) show the density distribution of MDs for each input 

band:  histograms are clearly bimodal representing degrees for the unburned (peak at around 0) and 

burned (peak around 1) categories. For Portugal (Figure 29), the distributions of the values are better 

separated than the Turkey case. It means that the two classes are spectrally better separated, and it 

is likely that a better classification can be achieved. Less pixels with intermediate values are present 

and most of the pixels are concentrated toward 0 and 1. For the Turkey site we can observe that in 

the MD maps of the input bands ΔRE2, ΔRE3 and ΔNIR there are several pixel values in the range 

[0, 0.2] mainly concentrated in the Northern portion of the area affected by the fire (blue regions 

in Figure 30 (d,e,f)). The MD maps for the Portugal site are apparently more homogeneous over the 

burned area with most of the values that tend to 1.  However, in the Turkey case (Figure 31), density 

of MD=1 is relatively much lower when compared with Portugal.
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Figure 28. Sigmoid function results on Portugal site: MDs calculated for each selected band: PostRE2 (a), PostRE3 (b) PostNIR (c), ΔRE2 (d), ΔRE3 (e), ΔNIR (f) and ΔSWIR2 (g). 
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Figure 29. Portugal: Density distribution of different input layers. MD1=PostRE2, MD2=PostRE3, MD3=PostNIR, MD4=ΔRE2, MD5=ΔRE3, MD6=ΔNIR and MD7=ΔSWIR2 
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Figure 30. Sigmoid function results on Turkey site: MDs calculated for each selected band: PostRE2 (a), PostRE3 (b) PostNIR (c), ΔRE2 (d), ΔRE3 (e), ΔNIR (f) and ΔSWIR2 (g). 
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Figure 31.  Turkey: Density distribution of different input layers. MD1=PostRE2, MD2=PostRE3, MD3=PostNIR, MD4=ΔRE2, MD5=ΔRE3, MD6=ΔNIR and MD7=ΔSWIR2 
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6.1.2. Global Evidence (OWA) results 

 

By integrating the partial evidence with OWAs and by using different weighting vectors (see 4.2.2), we 

obtained the global evidence, the OWA maps (Figure 32 and Figure 33). OWA scores range within [0,1], 

with the greatest values showing points with the highest possibility of burn. As expected, the greatest 

proportion of burn area is obtained by the “or” (W=[1, 0, 0, …]) and “almost_or” (W=[0.5, 0.5, 0.0, …]) 

operators that assign the highest weights to the input features with the highest partial evidence; the 

opposite for “and” (W=[0, 0, …,1])  and “almost_and” (W=[0, 0, …,0.5, 0,5]) operators. These two 

groups of OWAs implement different attitudes/semantics being more (“and”) or less (“or”) conservative 

thus depicting a less or more optimistic/pessimistic picture of the fire event, respectively (Yager, 1988).  

“average” weighting comes with all equal participation of the seven input layers. As it can be seen from 

Figure 32 and Figure 33, using equal weights for each MD value yields greater spatial variability than other 

cases. The reason can be either different levels of severity or different land cover types across the area.  

 

After a fire, the first priority is emergency stabilization in order to prevent further damage to life, property 

or natural resources. The longer-term rehabilitation effort to repair damage caused by the fire begins after 

the fire is extinguished and continues for several years. Rehabilitation focuses on the lands unlikely to 

recover naturally from wildland fire damage (URL17). OWA maps can be very helpful to land managers 

and planners when determining the priority areas for rehabilitation and restoration because they can be 

an indicator of the burn severity and of the level of damage that have occurred to the 

vegetation/ecosystem. 
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Figure 32. Portugal: OWA maps with different weighting vectors: OWA_and(a), OWA_almost_and (b), OWA_average (c), OWA_almost_or (d), OWA_or (e)  
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Figure 33. Turkey: OWA maps with different weighting vectors: OWA_and(a), OWA_almost_and (b), OWA_average (c), OWA_almost_or (d), OWA_or (e) 
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6.2. Validation Results 
 

The OWAs maps can be converted to burned area maps by applying a threshold and converting to a 

binary information burned/unburned (1/0). In this work we assumed that all pixels with OWA value 

greater than zero are burned. Once the Burned Area (BA) maps were generated, accuracy assessment 

was carried out by comparison with fire reference perimeters derived from Planet images. The 

comparison between classified (from OWA) and reference BA maps generates the confusion matrix and 

the accuracy metrics. accuracy metrics for the Portugal and Turkey sites are summarized in Table 6 and 

Table 7, respectively, for the five OWAs. Figure 37 and Figure 38, show the agreement maps where areas 

in green are presenting the agreement on unburned while the blue pixels show the commission errors, 

the yellow pixels show the omission errors, and the red ones represent agreement on burned with both 

OWA and reference (Planet) dataset.  

As we discussed in the partial evidence section, it is proved that the algorithm gives a higher accuracy in 

Portugal. Looking at the Dice coefficient, that provides a synthetic measure of omission and commission 

errors, in Portugal site DC>0.67 with best values for the “or”, “average” and “almost-or” operators.  

 

Table 6. Accuracy Metrics of Portugal fire 

OWA weights Omission Commission Dice Coefficient 

 

Bias 

 

Relative Bias 

and 0.485 0.003 0.679 -586609 -0.484 

almost_and 0.296 0.003 0.825 -356360 -0.294 

average 0.107 0.047 0.922 -75713 -0.062 

almost_or 0.087 0.059 0.927 -36793 -0.030 

or 0.083 0.064 0.926 -23918 -0.020 

 

 

Table 7. Accuracy Metrics of Turkey fire 

OWA weights Omission Commission Dice Coefficient 

 

Bias 

 

Relative Bias 

and 0.600 0.004 0.572 -2139872 -0.597 

almost_and 0.506 0.020 0.657 -1777218 -0.496 

average 0.089 0.111 0.900 90725 0.025 

almost_or 0.043 0.195 0.874 679092 0.189 

or 0.036 0.232 0.855 911920 0.254 
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The results show that in Portugal, for all applied OWAs, the omission error, ranging in [8,3-48,5%], is 

greater than the commission error, [0.3-6.4%]. On the other hand, in Turkey, while the omission errors 

are in a similar range [3,6-60%] with Portugal, commission errors are significantly greater especially for 

OWA_almost_or (19,5%) and OWA_or (23,2%). This increase leads to a decrease in the Dice coefficient 

with the lowest value of 0.57 for the “and” operator.  

There can be possible reasons for the observed difference in the performance of the algorithm in the two 

sites; for example, the Portugal fire was very severe, in this case the classification can be much clearer 

than a moderately severe case. Alternatively, the land cover classes which are burned can be deeply green 

before the fire and the change in the signals can be easily noticeable in that case. Hence, several reasons 

concur to the greater accuracy of the BA maps for the Portugal site: fire severity, vegetation 

characteristics and conditions. 

As it can be seen from Figure 38, most of the commission error in the Turkey site comes from the northern 

part of the area, which is outside of the fire perimeter. This can be because during the algorithm run, we 

defined a threshold for OWA maps for binary classification (burned or not). Both for Portugal and 

Turkey, we set the threshold value as 0.1. That means for any of the OWA maps, if there is a pixel with 

a value higher than 0.1, it is assumed as positive evidence of burn. So, even if the northern area has small 

values (around 0.2-0.3) but higher than 0.1, they are also assumed as burned. We can see the same result 

of thresholding on Portugal agreement maps (Figure 37), however the effect on the accuracy is less than 

the effect in Turkey. The reason for this difference is most likely that the parameters are not tuned for 

Turkey at the beginning of MD computation algorithm. When we look at Figure 36, the commission error 

mainly comes from salt and pepper effect. The topography in the northern region contains large hills and 

rocks. This nature results in shadows and can rise the commission error because the reflectance in this 

region is close to but higher than our threshold. Also, the masking vector that we used to define burnable 

areas is the Corine Land Cover product of Copernicus programme which is produced for European 

countries. Using a local land cover map for Turkey can improve these kinds of errors because they may 

supply a better classification.  
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Figure 34. Percentage of omission errors for five different OWA operators 

 

 

Figure 35. Percentage of commission errors for five different OWA operators 
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Figure 36.  OWA_or map (excluding the pixels with values smaller than 0.1) and Planet image of the area 

 

Ultimately, the aim of this study is the automatization of the algorithms for regional scale in a more user-

friendly way. Therefore, as long as the overall accuracy falls in an acceptable range, tuning is not 

necessary for each different site, and this proves the exportability of the algorithm. When we look at the 

both results of the previous study on Mediterranean regions (Sali et al., 2021)  and  our results, we can   

say that  the algorithm is successfully integrated to QGIS and the algorithm itself is suitable to detect 

burned area in Mediterranean region even without further calibration.   
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Figure 37. Agreement maps by OWA maps and reference vector of Portugal: Agreement _and (a), Agreement _almost_and (b), Agreement _average (c), Agreement _almost_or 
(d), Agreement _or (e) 
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Figure 38. Agreement maps by OWA maps and reference vector of Turkey: Agreement _and (a), Agreement _almost_and (b), Agreement _average (c), Agreement _almost_or (d), 
Agreement _or (e)
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7. Conclusion 
 

In this thesis the objective is implementing a soft computing algorithm in a QGIS workflow which 

is a user-friendly environment for displaying and visualisation of the results and testing the 

performance of the algorithm over a new site in Turkey to assess the exportability of the BA 

mapping process over the Mediterranean region. The algorithm has three main steps i) membership 

degree (MD, partial evidence) computation ii) ordered weighted averages (OWA, global evidence) 

computation and iii) validation. The results show that the algorithm which was coded as separate 

parts in R environment is successfully integrated into QGIS and now the algorithm can be run on 

an easier user interface. In Portugal, for all applied OWAs, the omission error (oe), ranging in [8,3-

48,5%], is greater than the commission error (ce), [0.3-6.4%]. On the other hand, in Turkey, while 

the omission errors are in a similar range [3,6-60%] with Portugal, commission errors are 

significantly greater especially for OWA_almost_or (19,5%) and OWA_or (23,2%). This increase 

leads to a decrease in the Dice coefficient with the lowest value of 0.57 for the “and” operator. 

Most of the commission error in the Turkey site comes from the northern part of the area, which is 

outside of the fire perimeter. Two of the possible reasons for the lower accuracy are i) the 

topography in the northern region of Turkey site contains large hills and rocks. This nature results 

in shadows and can rise the commission error because the reflectance in this region is close to but 

higher than our threshold (0.1) ii) the parameters are not tuned for Turkey at the beginning of MD 

computation algorithm. Despite that, the OWA_average operator, which results with the best 

values in Turkey, still provides an acceptable oe (8.9%) and ce (11.1) with a high Dice coefficient 

(90%). Finally, results of the previous study on Mediterranean regions with the same algorithm 

(Sali et al., 2021)  and  our results together show that the algorithm is successfully integrated to 

QGIS and the algorithm itself is suitable to detect burned area in the Mediterranean region even 

without further calibration.    
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