
i
i

“thesis” — 2021/9/27 — 21:57 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONIC, INFORMATION AND BIOENGINEERING

(DEIB)
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ONLINE POWER MODELING, MONITORING AND

OPTIMIZATION FOR MOBILE COMPUTING

PLATFORMS

Doctoral Dissertation of:
Luca Cremona

Supervisor:
Prof. William Fornaciari

Co-Supervisor:
Prof. Davide Zoni

Tutor:
Prof. Francesco Amigoni

The Chair of the Doctoral Program:
Prof. Barbara Pernici

Ph.D Cycle XXXIII

i
i

“thesis” — 2021/9/27 — 21:57 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 1 — #3 i
i

i
i

i
i

Acknowledgements

To everyone that supported me during this PhD, especially to my family,
my girlfriend and all the HeapLab people.

1

i
i

“thesis” — 2021/9/27 — 21:57 — page 2 — #4 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page I — #5 i
i

i
i

i
i

Abstract

THE Internet-of-Things (IoT) revolution fueled new challenges and op-
portunities to achieve computational efficiency goals. Embedded
devices are required to execute multiple applications for which a

suitable distribution of the computing power must be adapted at run-time.
Such complex hardware platforms have to sustain the continuous acquisi-
tion and processing of data under severe energy budget constraints, since
most of them are battery powered. The state-of-the-art offers several ad-
hoc contributions to selectively optimize the performance considering as-
pects like energy, power, thermal or reliability. In this scenario, the use
of hardware-level online power monitors is crucial to support the run-time
power optimizations required to meet the ever increasing demand for en-
ergy efficiency. To be effective and to deal with the time-to-market pres-
sure, the presence of such requirements must be considered even during the
design of the power monitoring infrastructure. This thesis presents a power
model identification and implementation strategy with two main advantages
over the state-of-the-art. First, the proposed solution trades the accuracy of
the power model with the amount of resources allocated to the power mon-
itoring infrastructure. Second, the use of an automatic power model in-
strumentation strategy ensures a timely implementation of the power mon-
itor regardless the complexity of the target computing platforms. To assess
the effectiveness of the proposed solution the identified power monitor has
been adopted to feed a power optimization scheme, based on a control the-
ory based PID controller. Both the single-core and multi-core scenarios
have been taken into consideration. The online power monitor has been
validated against 8 accelerators generated through a High-Level-Synthesis

I

i
i

“thesis” — 2021/9/27 — 21:57 — page II — #6 i
i

i
i

i
i

flow and by considering a more complex RISC-V embedded computing
platform. The all-digital power optimization scheme has been validated
against the nu+ processor, a 16-ways SIMD processor with a configurable
number of cores. For the assessment of the proposed control scheme, this
thesis considers the four core configuration, running 20 applications from
the WCET benchmark suite. For what concerns the power monitor, depend-
ing on the imposed user-defined constraints and with respect to the uncon-
strained power monitoring state-of-the-art solutions, the proposed method-
ology shows a resource saving between 37.3% and 81% while the maxi-
mum average accuracy loss stays within 5%, i.e., using the aggressive 20us
temporal resolution. However, by varying the temporal resolution closer
to the value proposed in the state of the art, i.e. in the range of hundreds
of microseconds, the average accuracy loss of the power monitors is lower
than 1% with almost the same overheads. In addition, the presented solu-
tion demonstrated the possibility of delivering a resource constrained power
monitor employing a 20us temporal resolution, i.e., far higher the one used
by current state-of-the-art solutions. The power optimization scheme, in-
stead, shows an overhead limited to 0.86%(FFs) and 5.3%(LUTs) of the
FPGA chip. The performance results are analyzed considering three qual-
ity metrics. First, the efficiency in exploiting the imposed budget (EFFg)
that is on average 98.27%. Second, the overflow of the actual average power
consumption with respect to the assigned budget (OV Fg), which is limited
to 1.43 mW on average. Last, the performance utility loss due to the control
scheme that is limited to 1.87% on average.

II

i
i

“thesis” — 2021/9/27 — 21:57 — page III — #7 i
i

i
i

i
i

Abstract (in Italian)

La rivoluzione dell’Internet of Things (IoT) ha dato vita a nuove sfide e
occasioni per raggiungere nuovi traguardi di efficienza computazionale. I
dispositivi embedded sono spinti sempre oltre, per dar modo di affrontare
applicazioni per le quali le alte prestazioni devono talvolta lasciar spazio a

requisiti di risparmio energetico. Dato che tali dispositivi sono spesso
alimentati a batteria, devono spesso svolgere compiti di acquisizione e

elaborazione di dati sotto stringenti requisiti energetici. La letteratura offre
molteplici soluzioni per ottimizare il consumo energetico di tali

dispositivi, pur mantenendo un alto profilo in termini di prestazioni. In
questo scenario, l’utilizzo di hardware power meters si rivela cruciale, al
fine di supportare efficaci tecniche di gestione del consumo di potenza a

run time. Per essere incisivi e pronti a ridurre i tempi di ingresso nel
mercato, si deve condiserare la presenza di tali requisiti fin dalle prime fasi

di design. Questa tesi presenta una metodologia di identificazione e
implementazione di power monitors con due principali vantaggi rispetto a
quanto presente in letteratura. Primo di tutti questo approccio gestisce il

tradeoff tra una metrica di accuratezza del modello identificato e il
corrispettivo overhead introdotto. Secondo, utilizzando un approccio

completamente automatico, questa metodologia diminuisce sensibilmente
i tempi di implementazione. Per verificare l’efficiacia di questa

metodologia, sono stati considerati scenari con processori sia single che
multi core, utilizzando attuatori costruiti secondo la teoria del controllo.
L’efficacia dei power metes viene in questo lavoro verificata utilizzando

otto acceleratori hardware e un System on Chip che implementa un
processore RISC-V. Per quanto riguarda invece l’accuratezza degli

III

i
i

“thesis” — 2021/9/27 — 21:57 — page IV — #8 i
i

i
i

i
i

attuatori viene preso in considerazione un processore SIMD a 16 linee,
con un numero configurabile di cores attivi, su cui vengono eseguiti venti
benchmarks provenienti dalla suite WCET. Per quanto concerne i power

monitors, a seconda dei constraints imposti dall’utente, rispetto alla
versione senza constraints, questa metodologia presenta un risparmio in

termini di risorse che va dal 37.3% al 81%, mentre la perdita di
accuratezza rimane sotto il 5%., usando la maggiore risoluzione temporale
(20us). Variando tale risoluzione temporale, e portandola ai valori presenti
in letteratura (centinaia di microsecondi) la perdita di accuratezza rimane

sotto il 1%. Questa metodologia presenta inoltre il vantaggio di poter
raggiungere risoluzioni temporali molto fitte, utili in casi in cui la

dinamica del consumo di potenza diventa molto alta. Lo schema di
controllo del consumo di potenza, invece, presenta un overhead dello
0.86% (FFs) e 5.3%(LUTs). In questo lavoro sono state definite tre

metriche per valutare l’efficacia dello schema presentato: l’efficienza
risulta del 98.27%, l’overflow di 1.43mW e l’utility loss del 1.87%.

IV

i
i

“thesis” — 2021/9/27 — 21:57 — page V — #9 i
i

i
i

i
i

Contents

1 Introduction 3

2 Background 13
2.1 Switching activity based power monitors 16

2.1.1 Logic synthesis, mapping and simulation 17
2.1.2 Power traces extraction stage 18
2.1.3 Power model identification stage 19
2.1.4 RTL Power Model Instrumentation Stage 21

2.2 Performance counter based power monitors 22
2.2.1 Perf. Cnt. Data Collection Stage 23
2.2.2 Power Trace Extraction Stage 24
2.2.3 Power Model Stage 25
2.2.4 SW Power Monitor Implementation Stage 26

3 State of the Art 29
3.1 Direct measurements . 30
3.2 Performance counter based methodologies 31
3.3 Switching activity based methodologies 34

4 Methodology 39
4.1 Data collection . 41

4.1.1 Power monitor block profiling 41
4.1.2 Statistic extraction 42

4.2 Power model . 42
4.2.1 Model predictors . 43

V

i
i

“thesis” — 2021/9/27 — 21:57 — page VI — #10 i
i

i
i

i
i

Contents

4.2.2 Multicollinearity analysis 43
4.2.3 Evaluation metrics 44
4.2.4 Constrained power model identification 46

4.3 Power monitor . 50
4.3.1 Automatic implementation 53

5 Experimental Results: Power Monitoring 59
5.1 Experimental setup . 59
5.2 Accuracy and overheads 62
5.3 Exploring different time resolutions 63

6 Experimental Results: Power Control 69
6.1 Power Controllers . 70

6.1.1 Hierarchical control scheme 71
6.1.2 Controller design 73

6.2 Quality metrics . 78
6.2.1 Local quality metrics 78
6.2.2 Global quality metrics 79

6.3 Results . 82
6.3.1 Static scenario . 83
6.3.2 Dynamic scenario 87

7 Conclusions 93

A List of Publications 97
A.1 Main Papers . 98
A.2 Secondary Papers . 99

Bibliography 103

VI

i
i

“thesis” — 2021/9/27 — 21:57 — page VII — #11 i
i

i
i

i
i

Contents

VII

i
i

“thesis” — 2021/9/27 — 21:57 — page 1 — #12 i
i

i
i

i
i

Contents

1

i
i

“thesis” — 2021/9/27 — 21:57 — page 2 — #13 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 3 — #14 i
i

i
i

i
i

CHAPTER1
Introduction

With the incoming of the IoT world, an ever growing number of digital
devices are connected to the Internet. The key idea behind the IoT is the
possibility for different types of physical devices to collect, elaborate and
transmit data without the interference of humans. IoT devices rapidly be-
came part of human life, thanks to their possibility to provide useful ser-
vices at an affordable cost. Modern applications push higher and higher
requirements for the computational power of these IoT devices that, due to
their small size, sometimes cannot satisfy some user requirements, such as
execution time, throughput, power consumption. Cloud computing comes
into play here: data collected by the edge devices is sent to a server located
into a cloud data center, where the most computationally hard calculations
are performed. In many applications, IoT devices and sensors collect data
and perform actions in a local network; also in such situation a central
computing unit could be required to manage the interactions between the
IoT devices and to help them with the computations. In this scenario, a
new platform called Fog/Edge Computing has been introduced to help IoT
applications that either are not executable on the cloud or the latency due
to the communications with the cloud is not affordable. For example, ap-
plications constrained by a fast response time could find difficult the data

3

i
i

“thesis” — 2021/9/27 — 21:57 — page 4 — #15 i
i

i
i

i
i

Chapter 1. Introduction

transmission to the cloud layer, since the delay of the communication could
make these applications miss the imposed requirements. Fog server are
not installed in the Cloud but they are placed near to the scenario where
they are employed; however, the communications between the Fog and the
Cloud are always guaranteed. In these last years, a huge effort has been
spent on the upgrade of these Fog platforms, in order to improve security,
privacy and, especially, energy efficiency aspects. Figure 1.1 shows an ex-
ample of a cloud/fog computing environment. From Figure 1.1, it can be
noticed how the different IoT devices can either be directly connected to
a cloud computing infrastructure, or be part of an intermediate computing
unit (the fog environment).

Cloud Computing

Transport
Network

Transport
Network

Transport
Network

Transport
Network

Transport
Network

Transport
Network

Transport
Network

10:20

IoT Device

IoT Device

IoT Device

IoT Device

Fog Computing

Fog Computing
Fog Computing

IoT Gateway

IoT Gateway

IoT Gateway

Figure 1.1: An example of Cloud/Fog computing environment. IoT devices can either be
directly connected to the cloud computing servers or being part of a fog infrastructure.

The power/energy consumption is one of the most limiting factors for
the improvement of the computational performance for nowadays micro-
processors targeting both the embedded and the High Performance Com-
puting (HPC) world. At the low end, the power consumption have always
dominated over performance as the most important design constraint; how-
ever, while the battery capacity show a modest increase over these last

4

i
i

“thesis” — 2021/9/27 — 21:57 — page 5 — #16 i
i

i
i

i
i

years, the ever increasing computational power demand critically affects
the severity of the power constraint in the world of handheld and mobile
devices. At high end, where performance was always the most important
metric, the CMOS technology scaling constraints push the power and en-
ergy consumption aspects to a higher importance level, with respect to per-
formance. Thus, regardless the application domain, the power consumption
represents the most important "wall" for the growth of cost-effective per-
formance in both HPC and embedded computing devices. This situation
is known as the Power Wall problem. The power and energy consumption
is not only a problem for the design of the microprocessors or a limiting
factor for the growth of the computational capacity of nowadays digital
computing devices. Power consumption is also one of the highest cost
for most of the data and supercomputing centers. In fact, the impressive
computational capacity of a supercomputer, makes it also very hungry for
power. For example, the Cray XT5 Jaguar supercomputer at Oak Ridge
National Laboratory, consumes up to seven megawatts, enough to power a
town or a small city, and about a half of the total power is used to power
the supercomputer, while the other half is used to cool it. Nowadays, with
the incoming of the exascale era, the power bills for supercomputing cen-
ters spreaded in the world are around hundreds of million dollars annually.
Sumit Gupta, senior manager of the Tesla GPU computing business unit at
NVIDIA reports: "Power consumption and the need for more energy ef-
ficient computing systems is the top of mind for most of our customers."

As it can be noticed from Figure 1.2a, Gupta estimates that between 40%
and 60% of the energy costs in these supercomputing centers are spent for
cooling, while the remaining portion of the energy costs are for powering
the supercomputers. Furthermore, the 71% of the cooling costs are spent
for cooling the servers (see Figure 1.2b); this number underlines the impor-
tance of the energy-related cost in the economy of a data center.

The risk of a substantial increase of the energy consumption due to the
spreading of IoT devices and the related services has been analyzed in [19].
In this work, provided by the International Energy Agency (IEA), based
on the Energy Efficient End-Use Equipment (4E) Agreement, authors es-
timated the annual standby energy consumption for off-the-shelf mains-
powered IoT devices and their respective gateways, using market research
projections (2015-2025) of future IoT device shipments and power mea-
surements of the IoT devices. Authors estimate that the annual global
standby energy consumption of five selected IoT applications use-cases
(Home Automation, Smart Lighting, Smart Appliance, Smart Roads and

5

i
i

“thesis” — 2021/9/27 — 21:57 — page 6 — #17 i
i

i
i

i
i

Chapter 1. Introduction

(a) Server costs

(b) Cooling costs

Figure 1.2: Distribution of the energy costs for a datacenter. Data from Mission Possible,
Greening the HPC Data Center By Nicole Hemsoth.

Smart Street Lights) could reach 46 TWh by 2025, with the share of Home
Automation and Smart Appliances being 78% (36 TWh) and 15% (7 TWh)
respectively. Figure 1.3 depicts this trend. Power/Energy consumption op-
timization is not a challenge for HPC architectures only, but for all the hier-
archical infrastructure of the new introduced edge/fog computing. In fact,

6

i
i

“thesis” — 2021/9/27 — 21:57 — page 7 — #18 i
i

i
i

i
i

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

10

20

30

40

50

60 Smart Roads

Smart Street Lighting

Smart Appliances

Home Automation

Smart Lighting

Years

S
ta

nd
by

 E
ne

rg
y

C
on

su
m

pt
io

n
(T

W
h)

Figure 1.3: The worldwide network related standby energy consumption of devices used
for Smart Lighting, Home Automation, Smart Appliances, Smart Street Lighting and
Smart Roads is predicted to reach 46 TWh in the year 2025. Data from "Energy Effi-
ciency of the Internet of Things Technology and Energy Assessment"

one of the most critical problems for the edge devices is the fact that they
are mostly battery powered, thus having a limited power budget. On of the
major challenges for the design of embedded devices is the optimization of
the trade-off between energy consumption end performance: the most im-
portant final user requirement for these devices is a good user experience,
characterized by a fast response time, good services, and the opportunity
to use the devices for a long time without the risk of going out of battery.
With the evolution of the science and technology, IoT devices are running
more and more complex applications, covering a large set of human needs,
and objects such as the smartphones are becoming essential in nowadays
life.

Figure 1.4 shows the trend for the number of smartphone users from
2012 to 2020, with an estimate for 2023. As it can be noticed from Fig-
ure 1.4, the number of smartphones user in 2020 is four times higher with
respect to 2012. This rapid growth is due to mainly two factors: first of
all, the price of smartphones (especially the low-middle sector) decreases
a lot: the first Apple iPhone was launched on the market in 2007 and its
price ranged from 500 to 600 dollars. Nowadays a smartphone with the
same technical characteristics is sold with a far less price, around 100 or
200 dollars. The second factor is the vastity of applications available for

7

i
i

“thesis” — 2021/9/27 — 21:57 — page 8 — #19 i
i

i
i

i
i

Chapter 1. Introduction

2012
2013

2014
2015

2016
2017

2018
2019

2020
2023

0

1

2

3

4

5

Years

S
m

ar
tp

ho
ne

 u
se

rs
 in

 b
ill

io
ns

Figure 1.4: The number of smartphone users worldwide today surpasses three billion and
is forecast to further grow by several hundred million in the next few years. China,
India, and the United States are the countries with the highest number of smartphone
users, with a combined 1.46 billion users. Data from "Newzoo"

the smartphones, able to satisfy a lot of human needs. Nowadays, with a
smartphone people can turn on and off home lights, the home alarm, the
oven, the washing machines and many other smart home devices. Fur-
thermore, it is possible to pay contactless, take very high quality photos,
play games, use social networks a many other useful things. It is important
noticing that, nowadays, people rely on this digital devices, and the avail-
ability of their services has become of paramount importance in the life of
most people.

The most important cause that can threaten the availability of the smart-
phones, is the battery status, that, especially at the end of the day could
be low. This fact is underlined and confirmed by an analysis conduced
by Grand View Research, where authors shows very interesting numbers
about the North America market size of power bank devices. From this
analysis it emerges that the global power bank market size was valued at
USD 6.8 billion in 2019. and was anticipated to register a Compounded
Average Growth Rate (CAGR) of 18.4% from 2020 to 2027. The authors
of this report underline that the growth of this market can be attributed to
the increase in the adoption of smartphones and other electronic tools and
the rising power consumption of electronic devices due to advancements
in mobile technologies. Figure 1.5 shows the trend of the North America

8

i
i

“thesis” — 2021/9/27 — 21:57 — page 9 — #20 i
i

i
i

i
i

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

0

1

2

3

4

Years

N
or

th
e

A
m

e
ric

a
po

w
er

 b
an

k
m

ar
ke

t s
iz

e
(U

S
D

 B
ill

io
n

)

Figure 1.5: The North America power bank market size grown from 0.12 billions in 2016
to 1,29 billion dollars in 2020. It is estimated to grow up to 4 billions in 2027. Data
from: Grand View Research

power bank market size from 2016 to 2027; as it can be noticed, the market
size in 2016 was 0.12 billion, while in 2020 was 1,29 billion dollars. The
North America market power bank size is estimated to grow up to 4 billion
in 2027. These data show the need for the users to more energy to power
on their devices and the fear to go off with the smartphones and other IoT
devices that, as mentioned before, cover a key role in the daily life.

Given these scenario, the need for power optimization techniques emerges
as a need of paramount importance, both for the HPC and embedded de-
vice world. Most common power optimization techniques adopts soft-
ware routines, usually implemented within the operating system, that lever-
age power estimates to produce an action signal feeding the power actu-
ators. The most used power actuators are the Dynamic Voltage and Fre-
quency Scaling (DVFS) and clock gating. However, the key enabling fac-
tor to make these power optimization policies effective is the adoption of
a fast and accurate power monitoring mechanism, able to provide power
estimates at a fine grained time resolution. In fact, modern applications
show different phases during their execution, alternating moments where
the computational capacity required is high to moments where the applica-
tion requires far less computational resources. This alternation of compu-
tational phases also implies an alternation of the power consumption, that

9

i
i

“thesis” — 2021/9/27 — 21:57 — page 10 — #21 i
i

i
i

i
i

Chapter 1. Introduction

can increase or decrease its value by a 50% in some microseconds, thus
increasing the required actuation rate of the power optimization schemes.
The state of the art proposes different solutions to face the power moni-
toring problem, both hardware or software implemented. For what con-
cerns the software implemented online power monitoring infrastructures,
the most common procedure leverages the information coming from the
performance counters as the power model predictors. After collecting the
data of the performance counters and the power traces for a set of bench-
marks, a mathematical representation of power model is extracted offline
and then, a software routine implementing the corresponding power moni-
tor is implemented. This software routine periodically runs, producing the
power estimates. This approach shows both advantages and disadvantages:
the main advantages are that software power monitors can be designed and
implemented also after the production of the chip and that there it is no
necessary to have and modify the original RTL design of the target device.
Furthermore, this solution often shows a very high level of accuracy. How-
ever, this approach shows a main disadvantages that limits its application to
a non negligible set of devices, especially in the embedded world: the per-
formance counters are an optional feature, and they are not implemented in
all the processors. Since they require additional hardware resources to be
implemented, in small embedded chipset they are not implemented. Fur-
thermore, due to the need of a software routine, this approach show a low
power estimate rate. For what concerns, instead, hardware implemented
power monitoring infrastructure, the state of the art proposes the adop-
tion of the switching activity of the architectural wires as model predictors.
Once the toggle counts and the power traces have been collected for a set
of benchmarks, as before, a mathematical formulation of the power model
is identified, and the corresponding power monitor is implemented directly
into the RTL description of the target design. Also this approach shows ad-
vantages and disadvantages: the main advantage is the very high estimate
rates, that can reach up to an estimates per microsecond. Furthermore, there
is no need for pre-implemented resources (such as the performance coun-
ters): all the power monitoring infrastructure elements are designed and
implemented within the methodology. One of the most important disad-
vantages of this solution is that it modifies the RTL description of the target
devices, so it has to be applied during the design process of the chip. How-
ever, the main drawback of this methodology is the possible high resource
overhead introduced by the hardware implementation of the power monitor;
in fact, especially in small processors, the implementation of an hardware
power monitor can introduce an area and power overhead of up to 30%.

10

i
i

“thesis” — 2021/9/27 — 21:57 — page 11 — #22 i
i

i
i

i
i

From an analysis of the state of the art, it can be noticed that all the works
targeting RTL online power monitoring have, as goal, the highest accuracy
as possible. This fact makes the power monitor huge, while sometimes it is
not necessary to have a too high accuracy of the power traces.

This thesis is focused on hardware solutions for switching activity based
power monitoring infrastructures, in particular on the resource constrained
identification of power models. The goal of this thesis is the identification
of a methodology able to produce power monitors that optimize the trade-
off between the estimates accuracy and the introduced area overhead. To
this extent, the proposed flow accepts as an additional input the maximum
acceptable overhead that the power monitor can introduce; the methodol-
ogy tries to identify and implement the most accurate power monitor with
the available resource. To assess the effectiveness of the proposed method-
ology, the identified power monitors have been used to feed a fully digital
control theory based power optimization scheme.

The rest of the thesis is organized as follow: Chapter 2 explain the
background for online power monitoring solutions, Chapter 3 presents the
state of the art about power meters, while Chapter 4 presents the proposed
methodology for resource constrained power model identification. Chap-
ters 5 and 6 show the experimental results for the power monitoring infras-
tructure and for the power optimization scheme, respectively. Chapter 7
describes the conclusions, underlining the main contributions of this the-
sis.

11

i
i

“thesis” — 2021/9/27 — 21:57 — page 12 — #23 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 13 — #24 i
i

i
i

i
i

CHAPTER2
Background

With the end of the Moore’s Law, power consumption has emerged as a
major obstacle to any advancement in computing technologies, limiting the
performance of both embedded and high performance computing (HPC)
platforms. On one hand, embedded and portable devices operate within
tight power budget constraints to prolong their battery lifetime. On the
other hand, HPC platforms, that aim to maximize the performance, are be-
coming hot-spot limited since the performance increase is restricted by both
the maximum junction temperature and the cost of the required cooling sys-
tems. The power consumed by the compute unit cores, i.e. microproces-
sors and accelerators like GPUs, represents a major component of the power
budget in such systems, particularly in embedded and mobile platforms. As
a consequence, the research community has explored an increasing number
of online power monitoring techniques aimed at optimizing the trade-off
between power and performance [6, 17, 27, 52]. Unlike special-purpose
hardware, general-purpose units like microprocessors and GPUs pose sig-
nificant challenges both because they are inherently less power efficient
and more difficult to characterize by means of closed power models, due
to the strong dependence on the software workloads. Furthermore, because
general-purpose units are meant to provide the largest degree of flexibil-

13

i
i

“thesis” — 2021/9/27 — 21:57 — page 14 — #25 i
i

i
i

i
i

Chapter 2. Background

ity to software applications, they are usually overprovisioned in terms of
hardware resources and a significant portion of their subcomponents stay
idle, depending on the requirements of the specific application (or applica-
tion phase) being run [43]. On the other hand, the well-known dark sili-
con problem makes it impossible to concurrently power all the parts of the
computing device due to the impossibility of dissipating the full amount
of generated heat [9]. In this scenario, online power-aware optimization
techniques may play a key role in that they allow the dynamic tuning of the
available computing capacity aimed at maximizing the energy efficiency
under given thermal constraints.

However, the effectiveness of such optimization techniques is critically
subject to the employed power monitoring method as the incorrect assess-
ment of the power state of the system strongly affects the quality of the ac-
tuation with a negative impact on the power efficiency on the platform. At
run-time, the power consumption can be read out as either a direct measure-
ment or an indirect estimate. The direct measurement is achieved by means
of analog sensors providing highly accurate power values at high temporal
resolution. However, such solution suffers from a severe scalability issue
that limits the deployment of more than few sensors even in complex de-
signs and the use of complex mixed analog-digital design methodologies
to implement them. This fact also prevents the identification of the thermal
hot-spots at run-time, thus negatively impacting the reliability of the com-
puting platform [22]. In contrast, the indirect estimate is achieved by means
of a power model of the target architecture that is fed with the platform
statistics at run-time. Such solutions are usually scalable and cheaper due
to the possibility of implementing an all-digital power monitoring infras-
tructure that can monitor any part of the target. However, in general, they
provide a less accurate power estimate compared to direct measurement
schemes, thus motivating a huge research effort to bridge such accuracy
gap.

All indirect power estimate schemes leverage the relationship between
the power consumption and the internal switching activity of the target ar-
chitecture to build a power model that is later used as part of the online
power monitoring infrastructure. The possibility of using such relationship
at different abstraction levels highlights a trade-off between the accuracy of
the power estimate and the effort required to extract the required informa-
tion from the target platform. Power Monitoring Counter solutions lever-
age the information obtained from the performance counters that are used
as the proxy for the switching activity of the target platform [3, 37]. Such
solutions preserve good scalability properties and guarantee a good accu-

14

i
i

“thesis” — 2021/9/27 — 21:57 — page 15 — #26 i
i

i
i

i
i

racy of the power estimates and deliver significant flexibility, since they
can be implemented after-shipping. However, the identified power model
is software-implemented, thus the induced system-wide performance over-
head, at run-time, is proportional to the temporal resolution of the power es-
timate time series. Moreover, the performance counter infrastructure repre-
sents an optional subsystem that can be either not implemented or limited in
the number of the counters that can be concurrently read out. For example,
commercial GPUs expose a variety of performance counters to software
applications [6, 21], but they often limit the number of different values that
can be read out simultaneously. Moreover, counters are normally coarse-
grained, e.g. working at the streaming multiprocessor level in a GPU. In
situations where not all cores within a streaming multiprocessor are active,
e.g. because of nonuniform partitioning of the workload, the activity at the
streaming multiprocessor level, as measured by the available performance
counters, is not sufficient to capture the physical power behavior [6]. Fig-

Figure 2.1: The overhead introduced by a software power model based on performance
counters is not negligible. In a quite small architecture, like the OpenRISC, the over-
head on the execution time is about 2,29% @ 100Hz and 22,96% @ 1KHz, while the
energy overhead is about 1,97% @ 100Hz and 19,73% @ 1KHz.

ure 2.1 shows an example of how the execution of a software power model
can impact on the system performances. The data used to draw Figure 2.1
have been obtained simulating a software power model running on a small
RISC-based based processor ([23,28]), as a representative target device for
the embedded processor family. As it can be noticed from Figure 2.1, the

15

i
i

“thesis” — 2021/9/27 — 21:57 — page 16 — #27 i
i

i
i

i
i

Chapter 2. Background

overhead introduced by the execution of the software power model is about
2,29% @ 100Hz and 22,96% @ 1KHz, while the energy overhead is about
1,97% @ 100Hz and 19,73% @ 1KHz. In contrast, the most precise switch-
ing information correlating with the power consumption can be extracted
by monitoring the toggle activity of each signal in the target platform at
Register Transfer Level (RTL) or the corresponding activity of the driving
logic cells. While the high number of signals to be monitored makes such
solution infeasible, the possibility to remove the drawbacks of Power Mon-
itoring Counter schemes motivates the proposal of a number of all-digital
power monitoring solutions which try to optimally balance the number of
monitored RTL signals and the accuracy of the power estimate [22,24,44].

The rest of this chapter is organized in two sections. Section 2.2 de-
scribes the performance counter based power monitoring methodologies,
while Section 2.1 shows the switching activity based ones. Direct power
measurements methodologies are not considered in this thesis for two rea-
sons: first of all it is employed in a very limited number of devices with
respect to the other two methodologies. Second, it is an analog electronic
approach to the power monitoring problem, which is out of the field of my
research.

2.1 Switching activity based power monitors

Post-Map
Simulation

Input
Stimuli

Power
Dissipation

Computation

Value
Change
Dump

Power
Traces

Power
Model

De�nition

Power
Aware
Netlist

Logic Synthesis, Mapping
and Simulation Stage

Power Trace
Extraction Stage

HDL
Source

RTL
Syntesis
and Map

uarch
Stats

Power
Coe�cients
and probes

Power Model
Stage

Instrument
Power Model

RTL Syntesis
and Map

RTL Power Model
Instrumentation Stage

Post-Map
Netlist

Figure 2.2: Overview of a generic switching activity based power model identification
flow.

Figure 2.2 depicts a generic flow for a switching activity-based power
model identification and RTL implementation of the corresponding power
monitor. Starting from the HDL source code of the target device, the work-
flow produce another HDL description, semantically equivalent to the first
one, but embedded with an online power monitoring infrastructure. This
chapter analyzes the main features of each stage underlined in Figure 2.2.

16

i
i

“thesis” — 2021/9/27 — 21:57 — page 17 — #28 i
i

i
i

i
i

2.1. Switching activity based power monitors

2.1.1 Logic synthesis, mapping and simulation

The first stage that every switching activity-based power monitoring method-
ology has to perform is the implementation and RTL simulation of the target
design. This stage takes as input the original RTL design (HDL Source) of
the design under test, and produces as outputs the switching activity val-
ues (uarch Stats) for a selected set of wires of the design.

The uarch Stats file is organized as a matrix, containing the toggle count
of each wire, for each sampling window. The toggle count of a n-bit wide
signal can be computed in three different ways: Single Toggle Count (STC),
Hamming Weight Count (HWC) and Single Bit Count (SBC). The first
counting mode increments the statistic by one unit every time one or more
bits of the signal toggle. The HWC counting mode increments the statistic
by m, where m is the number of flipped bits of the considered signal. The
last counting mode considers every n-bit signal as n single bit signals; for
each signal the STC counting mode is applied.

The Value Change Dump(VCD) file also contains the toggles of every
signals of the target device; it can be seen as a sort of summary of the values
taken by each wire of the RTL description. This kind of file is widely used
to obtain the power traces of an RTL simulation, and it is a common format
for both ASIC and FPGA design flow tools, since, for every half-clock
cycle, it can provide the value assumed by each wire of the design and the
produced power value can have the temporal resolution of an half clock
cycle.

The HDL Source file is fed to the Logic synthesis and mapping step,
which is of paramount importance for the rest of the flow; in fact, it pro-
duces the post map netlist considering the technology library adopted, the
pinout of the design and the timing and clock information. In order to ob-
tain accurate power values from the hardware design flow tools, the design
fed to these tools has to contain all the implementation details of the real
devices, otherwise, the final embedded power monitor will produce inaccu-
rate power estimates.

The netlist produced by the RTL synthesis and map step is then fed to an
RTL simulator, together with some benchmarks (see Input Stimuli in Fig-
ure 2.2). Depending on the target device, the traffic provided to the RTL
simulator can be different; for example, if the target is a CPU, the Input
Stimuli set can be represented by the binary of a benchmark application,
while in other cases the Input Stimuli can be a synthetic traffic generated
by a testbench. It is worth noticing that the choice of the Input Stimuli is
very important: non appropriate benchmarks of synthetic traffic can stim-

17

i
i

“thesis” — 2021/9/27 — 21:57 — page 18 — #29 i
i

i
i

i
i

Chapter 2. Background

ulate only a part of the netlist, thus the switching activity information pro-
duced by the Logic Synthesis, Mapping and Simulation Stage can be in-
complete. Generating synthetic traffic is a suitable way to stress each wire
of the design, even if, especially in complex designs, generating testbench
able to produce the desired traffic is very challenging. For what concerns
the benchmarks, instead, it is important to chose a set of application able
to stress the whole architecture. The problem here is the simulation time:
RTL simulation are very complex to be executed and they require many
hours, especially for post map simulations. Most of the times, running com-
plete applications from the most famous benchmark suites like SPEC [20],
SPLASH [32] or PARSEC [2] is unaffordable, thus many works in the state
of the art [22, 24, 47] adopt microbenchmarks tailored to stress a specific
component of the architecture. In this way, with a small set of microbench-
marks, it is possible to get the switching activity of the entire architecture,
employing a limited amount of time for the simulations.

2.1.2 Power traces extraction stage

The Value Change Dump file produced by the Logic Synthesis, Mapping
and Simulation Stage is fed to the Power Trace Execution Stage to compute
the power dissipation. Starting from the VCD file, the power estimator of
each hardware design toolchain computes the power consumption of the
device, simulating the execution of the provided benchmark. Usually, the
power estimation tools expose a parameter that allows the tuning of the tem-
poral resolution. As mentioned before, the VCD format reports the value
of each wire of the architecture every half clock cycle, so the maximum
allowed temporal resolution is an half clock cycle. Changing the value of
the temporal resolution parameter it is possible to augment the sampling
window; from an analysis of the state of the art, it emerges that the most
adopted temporal resolutions range from 50 to 500 microseconds. How-
ever, not every power computation tool provided within an hardware design
tool offers the possibility to get a power trace, given a VCD as input. For
example, Vivado [42], an FPGA hardware design flow toolchain from Xil-
inx, proposes as power analysis tool report_power, which only provides the
average power consumption of the design under test, for the entire simula-
tion. To overcome such limitation, authors in [44], propose a methodology
to sample the VCD file and split it into several chunks, as if there were
several VCD files. Then, the power trace is computed by feeding the power
analysis tool with the sampled VCD files. This approach is not bounded
to a specific toolchain and it can be used for every power analysis tool that
does not natively provide the computation of a complete power trace. It is

18

i
i

“thesis” — 2021/9/27 — 21:57 — page 19 — #30 i
i

i
i

i
i

2.1. Switching activity based power monitors

important noticing that all the tools for power analysis within an hardware
design flow toolset provide estimates for both the static and dynamic power
consumption. Switching activity based power monitoring solutions have to
take into account both the power contributions: the dynamic power is mod-
eled leveraging the switching activity data, while the static power is usually
modeled with a known term in the mathematical model.

2.1.3 Power model identification stage

The power model identification stage takes as inputs the power traces and
the toggle count statistics(see emphPower Traces in Figure 2.2) and pro-
duces as output the mathematical formulation of the identified power model Power
Coefficients and probes in Figure 2.2). The goal of this stage is to find the
mathematical formulation that best models the power consumption of the
target device, given the switching activity of the architectural wires. In or-
der to measure the accuracy of the identified models, the state of the art
proposes several metrics, such as the Root Mean Square Error (RMSE), the
Mean Average Error (MAE) and many others. Chapter 4 will describe these
metrics in an exhaustive way.

The state of the art proposes basically two different procedure for the
power model identification algorithm, depending on how the target device
has been designed.

The first one is an hierarchical approach, where the power model iden-
tification algorithm starts from the top module of the design hierarchy and
tries to identify each level of the hierarchy tree, finding the one that produce
the smaller prediction error. The final power model will be built as the sum
of the power estimates of all the modules of that level plus an estimate of
the power consumption of the glue logic, i.e., the digital logic that connect
the modules together and manage the relations with the higher hierarchical
level modules.

The second approach considers the RTL design as a single hierarchical
level. Even if the design is organized more levels, this approach consid-
ers them as flattened in a single one, and the power model identification
algorithm will select the wires, independently from the original hierarchy
level.

The two aforementioned approaches present both strong and weak points.
The hierarchical approach is more flexible, as it allows the possibility of
monitoring the power consumption of single or a set of submodules within
the design hierarchy. However, most of times, this approach presents higher
implementation overheads, since, with respect to the second approach, it
uses more wires to build the power model. The flattened hierarchical ap-

19

i
i

“thesis” — 2021/9/27 — 21:57 — page 20 — #31 i
i

i
i

i
i

Chapter 2. Background

proach is more resource saving, since it is not forced to identify the single
submodule, but it can consider the whole design with all the available wires.
Nevertheless, it is less flexible, and no power estimates of single submod-
ules can be provided.

PStatic = Vdd × Isupply (2.1)

PDynamic = α× CL × V 2
dd × f (2.2)

The power consumption of logic gates can be described with two models,
static and dynamic. Equation 2.1 models the power consumption of a cir-
cuit under static conditions, i.e., when the logical values of the inputs are
fixed to 0 or 1. Under dynamic conditions, the inputs changes their logi-
cal state, so the transistors between the power supplies will be in an active
state, or they will continuously change values, requiring power to charge
and discharge the output capacitance. Thus, the dynamic power consump-
tion will depend on the switching activity of the architectural wires. Equa-
tion 2.2 presents the mathematical model that describes the dynamic power
consumption. From this equation it emerges that there is a quadratic de-
pendence between the dynamic power consumption and the Voltage Drain
Drain(Vdd), while the total capacitance (CL), the operating frequency (f)
and the switching probability (α) contribute linearly. It is important notic-
ing that, even if Equation 2.2 presents a quadratic term, most of the state
of the art articles about switching activity based power monitors use linear
mathematical formulations to model the power consumption of a digital
CMOS based device. This choice is due to mainly two factors: first of all,
as it can be noticed in Equation 2.2, α contributes to the dynamic power
consumption linearly, so even the switching activity data collected from
the RTL simulation stage should contribute linearly to the power estimates.
The second reason that push many authors of RTL online power monitoring
papers to adopt a linear mathematical model is the easiness of implement-
ing the corresponding power model into the RTL description. It is impor-
tant to remember that the implementation of the power model introduces a
resource and power overhead with respect to the original device; the more
the mathematical model is complex, the more this overhead is high.

One of the most frequent problems in the mathematical model identifi-
cation field is the choice of the model predictors. Especially in switching
activity based power models, the final formulation should use the minimum
set of predictors, as the more predictors are considered, the higher the over-
head due to the power monitor implementation is. For this reason the set of
statistics produced by the RTL simulation stage has to be filtered out from

20

i
i

“thesis” — 2021/9/27 — 21:57 — page 21 — #32 i
i

i
i

i
i

2.1. Switching activity based power monitors

those statistics showing a low correlation with the power consumption or
those showing an high multicollinearity. In statistic, multicollinearity is the
property of a predictor to be linearly estimated by a set of other predictors.
The more the accuracy of this estimate is, the more the multicollinearity
value is; a model built with predictors that show an high multicollinearity
value will be very accurate with training set data, while it could show a low
accuracy with test and validation set data.

2.1.4 RTL Power Model Instrumentation Stage

The last stage of a generic flow for the design of a switching activity based
power monitoring architecture is the implementation of the identified power
monitor into the original RTL description of the target device. As it can
be observed from Figure 2.2, the RTL Power Model Instrumentation Stage
takes as inputs the mathematical formulation of the power model, identified
in the Power Model Stage, and the original RTL source code. The output
of the RTL Power Model Instrumentation Stage is always an RTL descrip-
tion, semantically equivalent to the original one, but augmented with online
power monitoring capabilities (Power Aware Netlist in figure 2.2). The RTL
switching activity based power monitors are usually built adopting three ba-
sic blocks: counters, multipliers and adders.

Toggle counters: The Toggle counter is a synchronous module within the
power monitoring infrastructure that measures the switching activity of a
specific wire, i.e., it counts the number of toggles of the wire in a certain
time window. It can both measure the switching activity with single counter
or hamming weight counting mode, depending on the model identified in
the Power Model Stage.

Power Multipliers: The mathematical formulation of the identified model
can be summarized as a sum of multiplications between the toggles counts
and coefficients; depending on the order of the identified model, this mul-
tiplications can be more complex, but, given that the majority of the power
models are linear, it is most of the times a simple multiplication between a
number of toggles and a coefficient. The Power Multipliers is the compo-
nent of the power monitor in charge of performing these multiplications. It
has at least two inputs which are the toggle count and the model coefficient,
and one output represented by the result of the multiplication. Depending
on its microarchitectural structure, the multiplier can have as input also the
clock and the reset signal. It is important noticing that, especially in small
target designs, a combinatorial multiplier can impact a lot on the critical
path of the circuit. The internal structure of the Power multiplier greatly

21

i
i

“thesis” — 2021/9/27 — 21:57 — page 22 — #33 i
i

i
i

i
i

Chapter 2. Background

depends on the format of the coefficient provided as input: since it is, usu-
ally, a decimal number, it can be represented both as a floating point or a
fixed point value. Depending on this choice, the multiplier has to be de-
signed in order to accept one between the two formats; please note that the
implementation of a floating point unit within a power monitor will increase
the implementation overhead significantly. For this reason, the adoption of
a fixed point format to represent the model coefficients is preferred.
Power adders: Considering polynomial models, the formulation of a
power model can be summarized as a sum of products. Thus, every mul-
tiplier provides a power contribution term that has to be logically summed
with the others in order to get the final power estimates; for this reason
a Power adder is added into the design of the power monitor, to sum all
the results of the instantiated multipliers. The interface of a power adder
is usually made by n inputs, depending on the number of monitored sig-
nals, and one output providing the final result. Given that this adder has
only to perform additions (and subtractions), it is usually implemented as a
combinatorial module.

The instrumentation stage first instantiates a power counter and a power
multiplier for each signal considered in the power model, then introduces a
power adder to collect all the power contributions and to produce the final
power estimate.

Once the power adder is instantiated, the last implementation choice is
the mechanism to expose the power estimates to the user. From analysis
of the state of the art, two main solution can be found. The first solution
leverages a input/output mechanism, e.g., a serial port, to provide the power
estimates out of the device. The second mechanism leverages a memory-
mapped register to store the power estimates; in this way, from the software
it is possible to read the power consumption of the chip and use it to, for
example, feed a power/energy optimization mechanism.

2.2 Performance counter based power monitors

Figure 2.3 shows a generic flow for performance counter based power mon-
itoring design flow. It takes as input a set of benchmark applications Input
stimuli as produce as output a binary file implementing the software power
monitor. This type of methodology, instead of using the switching activ-
ity of the architectural wires, as described in the previous chapter, adopts
the performance counter data as model predictors. The performance coun-
ters are special memory mapped registers implemented within the CPU,
containing information about a set of selected architectural events. For ex-

22

i
i

“thesis” — 2021/9/27 — 21:57 — page 23 — #34 i
i

i
i

i
i

2.2. Performance counter based power monitors

Input
Stimuli

Performance Counters
Data Collection Stage

Power Trace
Extraction Stage

List of
available
Perf. Cnt.

Events
Read

Perf. Cnt.
Events

Data

Power Model
Stage

SW Power Monitor
Implementation Stage

Arch.
Stats

Power
Dissipation

Computation
Arch.
Stats

Power
Model

De�nition

Power
Model

Software
Power

Monitor

SW Power
Monitor
Design

Routine for
Perf. Cnt.

Data
Collection

Figure 2.3: Overview of a generic performance counter based power model identification
flow.

ample, a performance counter can measure the number of committed in-
structions, the number of cache hits or misses or the number of accesses
to the central memory. Typically, they are used to check the performance
status of an architecture, as well as to feed run-time performance optimiza-
tion schemes. The state of the art, present a great number of works that use
the performance counters to predict the power consumption of a computing
architecture. However, it is important noticing that, as the main limitation
of switching activity power monitor was the availability of the RTL de-
scription of the target device, the main limitation of performance counter
based power monitors is the availability of the performance counters. In
fact, it is a feature not implemented in all the computing architectures and,
especially in small embedded devices, where the processors are small and
the computational resources are limited, the performance counters are not
implemented, since they will represent an additional resource overhead.

This chapter summarizes the main features of each stage represented in
Figure 2.3.

2.2.1 Perf. Cnt. Data Collection Stage

The first step of a generic performance counter based power monitor de-
sign consists in the acquisition of the required data for the power model

23

i
i

“thesis” — 2021/9/27 — 21:57 — page 24 — #35 i
i

i
i

i
i

Chapter 2. Background

identification. These data are the power traces of the execution of a set of
benchmarks, and the performance counter data, used as model predictors.
Especially when dealing with a target device running an operating system,
it is important that the power traces and the performance counters data have
to be collected simultaneously, as the operating system can change the tem-
poral allocation of the running threads, thus introducing discrepancies from
tho consecutive runs of the same applications. The collection of the power
traces and the performance counters data are organized in Figure 2.3 in
two different stages, only for seek of clarity. This subsection describes the
performance counters data collection stage, while Subsection 2.2.2 will de-
scribe the power traces acquisition.

Differently from the switching activity based power monitor design flow,
presented in Section 2.1, the performance counter based one works after
production. It means that the RTL design is no more needed, as it works
directly on the target device. For this reason, instead of using an RTL sim-
ulation to collect the predictors data, it reads the performance counters data
through a software routine that periodically performs a set of system calls to
read the performance counters. It is important in this stage to have a list of
the performance counters implemented in the target architecture, together
with the scheme of the hardware mechanism that provide the performance
counters data to the software. In fact, in most of the architecture, especially
those exposing a great number of performance counters, with a single sys-
tem calls only a subset of the available performance counters can be read;
thus, many system calls have to be performed to get the required data. This
limitation have to be considered also in the Power Model Stage as the fi-
nal power monitor should perform the minimum number of system calls
to get the data of all the model predictors. The Arch. Stats file reported
in Figure 2.3 is the output of this stage and it contains, for each executed
benchmark, the data of all the available performance counters.

2.2.2 Power Trace Extraction Stage

The Power Trace Extraction Stage is the step of the flow in charge of col-
lecting the power consumption of the target device for the executions of
each benchmark. As mentioned before, the performance counter based
power monitor design methodologies work on the physical devices, in-
stead of working on their RTL descriptions. For this reason, to extract
the power traces, instead of using a post-map simulation, a direct measure
on the target device has to be performed. The measurement of the power
consumption of a digital device can be performed in two different ways:
direct current measure or Electromagnetic Emission (EM) measure. The

24

i
i

“thesis” — 2021/9/27 — 21:57 — page 25 — #36 i
i

i
i

i
i

2.2. Performance counter based power monitors

first approach leverages a shunt resistor plugged along the power line of
the device and measures the voltage drop on it through a multimeter or an
oscilloscope. Knowing the value of the resistor, the current can be com-
puted through the ratio between the measured voltage drop and the resistor
value. The other approach leverages the electronic emissions produced by
the chip to extract the power consumption. To this extent, an electronic
emission probe is placed close to the chip and through an oscilloscope the
values coming from the probe can be collected. It is important noticing
that, since the signal amplitude is tight, a signal amplifier is often required
to ease the sample process and make it more accurate. It is also important
to design the amplifier in order to be able to have the precise value of the
gain, otherwise the power measures cold be scaled by a proportional factor.

The sample frequency of the power traces should be the same as that
of the predictors (performance counter data). Unfortunately, especially in
the performance counter based power monitor design, the predictors are
sampled much slower with respect to the power traces, due to the delay
introduced by the system calls to read the performance counter values. For
this reason the state of the art proposes a solution that allows the sampling
of the power traces at a frequency higher than the performance counter
collection and then computes the average of the power samples to reach the
same number of samples as the performance counters data.

2.2.3 Power Model Stage

The Power Model Stage for a performance counter based power monitor de-
sign is very similar to the one presented in the previous chapter for switch-
ing activity based power monitors. In fact, in both situations, the inputs of
this stage are the power traces and the corresponding architectural statis-
tics, and the goal of the Power Model Stage is always the identification of
a mathematical model able to predict the power consumption of the com-
puting devices with an high accuracy, while using the minimum number
of model predictors. There are also similar constraints for switching ac-
tivity and performance counter based methodologies: both them have to
select with care the number of predictor since the add of a statistic in the
model cause an increase of the resource overhead from one side, and of the
performance overhead from the other.

The main difference between performance counter based and switch-
ing activity based power monitor design methodologies is the choice of the
adopted mathematical model. Differently from what has been described in
section 2.1, where the liner model family was the common choice due to
a low implementation overhead, here the power model is implemented in

25

i
i

“thesis” — 2021/9/27 — 21:57 — page 26 — #37 i
i

i
i

i
i

Chapter 2. Background

software, so, the impact of a more complex mathematical model formula-
tions on the overall system performance has to be minimized. This means
that the adopted model family should be the one showing the best trade-
off between accuracy, and performance overhead. For example, in [22],
authors propose a comparison between different model identification algo-
rithms, such as linear regression, Multivariate Adaptive Regression Splines(MARS)
and Neural Network, to find the algorithm that best predicts the power con-
sumption of the target device, with the corresponding performance over-
head, measure ad the number of clock cycles use to compute a single power
estimate. For that particular case, experimental results show that the model
obtained through the MARS approach is the best one in terms of accuracy,
but it shows up to 4x of clock cycles adopted to compute the power esti-
mates.

2.2.4 SW Power Monitor Implementation Stage

As mentioned before, two of the main differences between switching activ-
ity based and performance counter based power monitoring infrastructures,
are the implementation and the moment when the power monitor is added
into the target device. For what concerning the implementation the different
between the two approaches is that a switching activity power monitor is an
hardware component, while a performance counter based power monitor is
a software component. Furthermore, for switching activity based method-
ologies, the power monitor is added directly into the RTL description of
the target just after the end of the design stage, before the production of the
chip, while for performance counter based solutions, the power monitor is
a software routines that can be added in any moment after the production
of the chip. The software application that implements the power monitor
can be organized in two parts: data collection and power estimates compu-
tation.

Data collection: the power model identified in the Power Model Stage is
made by a list of performance counters, selected as model predictors, a
list of coefficients bounded to each predictor and a function representing
the mathematical model. The first thing that the power monitor should
do is the collection of the data from the performance counters. To this
extent, the power monitoring routine performs some system calls to read the
performance counter registers; as mentioned before, not all the performance
counter registers can be read simultaneously, so, multiple system calls have
to be performed to get all the required data.

Power estimate computation: once the predictors data have been ob-

26

i
i

“thesis” — 2021/9/27 — 21:57 — page 27 — #38 i
i

i
i

i
i

2.2. Performance counter based power monitors

tained, the next step is the software implementation of the mathematical al-
gorithm to compute the power estimates. To this extent, the algorithm have
to be written in any programming or scripting language and the identified
model parameters have to be associated to the corresponding predictors.

The obtained software code has to be compiled and run periodically, to
achieve a continuous online power monitoring of the target platform.

27

i
i

“thesis” — 2021/9/27 — 21:57 — page 28 — #39 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 29 — #40 i
i

i
i

i
i

CHAPTER3
State of the Art

The continuous increase in performance requirements which has been im-
posed by current applications motivated the widespread adoption of multi-
core architectures ranging from embedded to High Performance Computing
(HPC) solutions. In this scenario, power consumption represents a major
challenge for the entire computer continuum. The performance of both
embedded and high-end computing architectures is in fact limited by both
the available energy budget and the power related technology constraints.
Servers’ processors are typically constrained by both the max junction tem-
perature and the cooling systems, thus imposing energy-aware server con-
solidation techniques [33] to limit the average power consumption while
optimizing the energy-performance trade-off. Conversely, the limited en-
ergy budget of battery powered embedded systems imposes the design of
complex energy-performance resource allocation schemes [18] and aggres-
sive power saving infrastructures [45, 46].

To this extent, providing accurate power estimates to both the software
and the hardware architects is of paramount importance to enable i) power-
aware architectural optimizations at design time and ii) a continuous moni-
toring of the power profile of the architecture, thus enabling run-time schemes
for power-performance resource allocation. The majority of available Computer-

29

i
i

“thesis” — 2021/9/27 — 21:57 — page 30 — #41 i
i

i
i

i
i

Chapter 3. State of the Art

Aided Design (CAD) tools already support some sort of power modeling
feature to fulfill i), while ii), which is less standard, is still evolving to cope
with the ever increasing constraints in terms of accuracy and low latency
imposed by the applications.

The online power monitoring emerged as a viable solution to fulfill re-
quirement ii). It leverages either the performance counters [37] or the
switching activity of the architectural wires to provide a run-time power
estimate of the target architecture. The use of performance counters demon-
strated a good fit between the predicted and the real power consumption of
the target. It also provides a low cost and flexible solution to the run-time
power monitoring problem while introducing two drawbacks. First, per-
formance counters are not primarily intended for power modeling purposes
and, even worse, they cannot be always available, thus limiting the feasi-
bility of the related power monitoring solutions. Second, the update of the
power estimate is achieved through a software routine that consumes CPU
time and energy. The overheads become more severe with both the increase
in the update frequency and the decrease in the computational power of the
target architecture.

To solve the limitation imposed by performance counter based method-
ologies, switching activity based power monitors emerged as a viable solu-
tion to provide fast and accurate power estimates for those digital devices
not embedding the performance counters or constrained by tight perfor-
mance requirements.

This chapter shows the main methodologies to identify and implement
a power monitoring infrastructure for different class of digital computing
systems.

3.1 Direct measurements

A first approach to the power monitoring problem is represented by the
real measures solutions. Leveraging analog power meters, direct measure-
ments are performed on the target platform. These power meters can be
external [15] or internal [1] with respect to the target device to be moni-
tored. In [15] authors present a scalable power observation tool that enables
power and energy measurement for any kind of nodes adopted in a sensor
network. With this monitoring system, every node can communicate to the
main node their power and energy consumption, enabling the possibility
to apply energy saving policies. The power measurements are performed
using shunt resistors plugged on the power supply lines of the node. A
voltage meter measures the voltage drop on these resistors to compute the

30

i
i

“thesis” — 2021/9/27 — 21:57 — page 31 — #42 i
i

i
i

i
i

3.2. Performance counter based methodologies

power consumption. This approach results very accurate, since the power
consumption is measured and not estimated; in addition to that, this solu-
tion is clock independent, so it can normally work even if power saving
mechanisms are applied to the target devices (i.e. DVFS). Furthermore this
approach can reach a very tight temporal resolution, enabling the possibil-
ity to apply also thermal controls schemes. Unfortunately, this approach
presents mainly two drawbacks: first, they return only the total power con-
sumption, thus making impossible to measure both thermal hot-spots or
the power consumption of specific subsystem. Second the shunt resistors
dissipates power itself, so possible power overhead can be introduced.

[1] proposes a real-time, on-chip power sensor that estimates load cur-
rents and on-chip temperatures concurrently. The power monitoring infras-
tructure is implemented in CMOS technology directly into the processor
package. The main idea behind this work is to implement a on-chip current
meter, that monitors the power delivery network of the chip, so it can be
seen as a digital implementation of a shunt resistor. Experimental results
show a good sampling rates (nearly every ten clock cycles) both for power
and thermal measurements. The main drawbacks of this approach is rep-
resented by the scalability issue, that prevents deploying more than few of
them in a complex architecture.

3.2 Performance counter based methodologies

Another approach to the power monitoring problem is based on the tight
correlation between some hardware events and the power consumption of
the target device. For this reason, a great portion of the literature about
power modeling and monitoring is represented by software solution that
leverages the performance counters to collect information useful for gener-
ating power estimates. Performance counters are special registers instanti-
ated within modern SoCs that collect information about the hardware activ-
ity. Most popular performance counters collect, for example, the number
of hits and misses in the cache memory, the Clock per Instruction (CPI),
the number of floating point operations and other architectural information
about the execution of certain applications. These counters can be read
from the operating system (or a supervisor software in case of bare metal
applications) through a dedicated hardware support. Generally, a power
model is computed in software, taking as reference a measured power trace
of the same benchmark execution. A software routine, implementing the
power model, continuously collects data from the selected performance
counters and compute the power estimates. Starting from the 1990s, many

31

i
i

“thesis” — 2021/9/27 — 21:57 — page 32 — #43 i
i

i
i

i
i

Chapter 3. State of the Art

scientists worked on this topic; one of the first structured approaches is
presented in [13]. Here, authors propose a per-unit power estimation tech-
niques, leveraging the information coming from the performance counters
as model predictors. The resulting tool offers a run-time overall power esti-
mates for Intel Pentium 4 processors, and also provides power breakdowns
for 22 of the major CPU sub-units. The resulting power model accuracy is
validated on the SPEC2000 benchmark suite, together with normal desktop
workloads. Despite, this work has a main drawback, represented by the
very slow prediction rates (per minute), it set-up the base for many further
research on this field.

Further investigations on this approach were proposed in [4]. Here au-
thors propose the use of microprocessor performance counters for online
measurement of complete system power consumption. While past stud-
ies have demonstrated the use of performance counters for microprocessor
power, this work is the first that creates power models for the entire sys-
tem based on processor performance events. The proposed methodology
leverages the "trickle-down" effect of the architectural events to estimate
not only the power consumption for the SoC, but also for other elements
of the entire computing system, such as memory, disk, chipset and I/O. In
this article authors show a very interesting analysis on how on-chip events
(i.e. DMA transactions, cache miss) can provide information on the activ-
ity and, consequently, the power consumption of off-chip components. For
example, a Last Level Cache (LLC) miss means an access to the main mem-
ory. The good experimental results of this work open a new perspective in
this research area, since they assess the possibility to estimate system power
consumption of an entire computing system, without the need for additional
power sensing hardware.

Asymmetric multi-core architectures have recently emerged as a promis-
ing alternative to provide efficient computing platform, optimizing the energy-
performance trade-off. Typically, this kind of architectures, are equipped
with two or more cores, some targeting performance, others targeting low
power computation. Tasks are dynamically allocated to each core, depend-
ing on the adopted energy-aware policy. The state of the art is largely pop-
ulated by power monitoring methodologies, targeting this family of proces-
sors. One of the first works targeting this kind of processors is [27]. Here
authors propose a power model based on performance counters data, able
to provide accurate power estimates for both the high-performance and the
low-power cores of an ARM big.LITTLE [14] Multi-Processor System on
Chip (MPSoC). Experimental results show an average estimation error of
about 9%.

32

i
i

“thesis” — 2021/9/27 — 21:57 — page 33 — #44 i
i

i
i

i
i

3.2. Performance counter based methodologies

Further investigation on the possibility to identify an accurate power
model for asymmetric processors are presented in [37]. Here, authors pro-
pose a mathematically rigorous novel methodology for identifying accurate
run-time power models for mobile and embedded devices, leveraging per-
formance counters. In particular, they put particular attention to the stability
of the identified model, showing how this aspect is of paramount impor-
tance and how a stable power model can reduce the number of monitored
counters without losing accuracy. The main contribution proposed in this
work is the analysis of the multicollinearity among the model predictors.
Previous approaches, in fact, used to consider a lot of performance counters
to build the power model. This implies two main drawbacks: first, only few
counters can be monitored at the same time; thus, considering too many
counters implies a reduction of the prediction rate. Second, many coun-
ters can be auto-correlated, so they can provide the same information to the
power model; this could introduce a model instability, with a huge accuracy
loss between the training and the test set. In this article, authors provide
a formal method to reduce the multicollinearity; this allows also a 100%
reduction in experiment time, while losing only 0.6% in accuracy. Further-
more, this work highlights and addresses the problem of heteroscedasticity
in power modeling. The identified model is then implemented and validated
on an ARM big.LITTLE architecture.

[36], instead, is focused on a little bit different problem. Instead of
using the performance counters to predict the power/energy consumption,
in this work authors use them to predict the temperature. The estimated
temperature feeds a Dynamic Thermal and Power Management (DTPM)
algorithm, to compute the power budgets for the eight cores of the con-
sidered big.LITTLE processor. The power management infrastructure of
the device will adjust the values for voltages and frequencies to maintain
the power budget. Experimental results show an average accuracy for the
temperature estimates of 3%, while the DTPM algorithm provides around a
6% reduction in temperature variance and a 16% reduction of the total plat-
form power. A similar approach is adopted in [35]; here, authors adopt a set
of microbenchmarks to identify a performance counter based power model
and use the monitor estimates to feed a power-aware thread scheduler. A
slightly different approach is presented in [30]. With this work, authors
try to identify a set of performance counter able to predict the power con-
sumption not only for a single architecture, but for a large set of CPUs.
After a preliminary analysis, intended for identifying a set of common per-
formance counters that can be implemented on both HPC and embedded
CPUs, they try to use them to identify a power model that can be used

33

i
i

“thesis” — 2021/9/27 — 21:57 — page 34 — #45 i
i

i
i

i
i

Chapter 3. State of the Art

to estimate, with sufficient accuracy, the dynamic power consumption of
processors with varying microarchitecture. The validation of the proposed
methodology was performed against two CPUs, an Intel Atom and a Intel
Nehalem, representing low-power and HPC architecture families, respec-
tively. Experimental results show that the identified counters are shown to
be effective in predicting the dynamic power consumption across proces-
sors of varying resource sizes, achieving a prediction accuracy of 95%.

3.3 Switching activity based methodologies

Another approach to the power monitoring problem is represented by those
methodologies that leverage the tight relationship between the power con-
sumption of a digital device and the switching activity of the architectural
wires.Starting from the beginning of 2000, several work addressing this
problem can be found in the literature. One of the first work on all-digital
power meters is presented in [5]. Here authors try to use the switching
activity of the architectural inputs and outputs wires to predict the power
consumption of hard and soft hardware macros. The identified model, ob-
tained through a linear regression algorithm, is used only for an offline
power characterization at design time.

One of the first online implementation of an all-digital power monitor
is proposed in [25]. In this article, authors propose a novel processor, able
to auto monitor its power consumption. To achieve this goal, authors adopt
a mixed approach. In fact, they use as model predictors, both the switch-
ing activity of some architectural wires and the information coming from
ad-hoc hardware counters that are similar to the performance counters. In
other words, they collect the performance counters data directly in hard-
ware, with ad-hoc counters. A linear regression algorithm has been adopted
to extract the power model and the estimates are provided to the software
through a dedicated serial port. Experimental results show a very good ac-
curacy of the power estimates, with a prediction error below 2% and a area
overhead below 5%.

A more general approach is described in [31]. In this work authors pro-
pose a platform-independent power model identification methodology. The
key idea of this work is to identify set of wires able to provide accurate
power estimates over different FPGA model. A set of FPGA-specific pa-
rameters has been identified, to adapt the model to different FPGAs. In
other words, the model predictors remain the same across different plat-
forms but the model coefficients change. Although this solution speeds-up
the model identification process when dealing with different FPGAs, a non-

34

i
i

“thesis” — 2021/9/27 — 21:57 — page 35 — #46 i
i

i
i

i
i

3.3. Switching activity based methodologies

negligible estimation error (around 15%) is introduced.

A first formal definition for all-digital power models can be found in
[16]. This work, like [37] for performance counter based methodologies,
proposes a mathematical approach to the power model identification prob-
lem for all-digital power monitoring infrastructure. The approach adopted
here can be considered as an all-digital version of the performance counter
based methodologies. In fact, instead of monitoring the toggle activity of
architectural input and output wires, authors decided to monitor the switch-
ing activity of the performance counters, thus implementing a hardware
collection method for performance counters data. This allows to collect
data that precisely describe the actual workload of the architecture. In or-
der to reduce the multicollinearity and the area overhead due to the power
monitors, authors apply a Singular Value Decomposition (SVD) algorithm
to abstract the principle components of relationship between register tog-
gling profile and accurate power waveform. The model is then identified
using machine learning algorithms and automatically instrumented into the
target RTL design, allowing a cycle-by-cycle power dissipation estimation.
Despite a good accuracy of the identified model (error below 3%), the main
limitation of this work is the use of performance counters, not present in
all architectures, especially in small embedded CPUs. This mathemati-
cal approach revealed very interesting, such that many other works adopt
the same methodology. For example, [22] presents a deeper analysis on
this argument. Starting from the work proposed in [16], it perform a de-
tailed evaluation on how to measure the switching activity of the considered
wires. Authors identified three ways do measure the toggle of a signal: sin-
gle count, hamming weight and single bit. The first one increments the
count by one unit every time at least one bit of the signal change. The
second counting mode increments the count by the number of bits that
change value. Lastly, the third considers every bit of a signal separately.
Thanks to this differentiation, they succeed in extracting the different con-
tribution to the power consumption for each considered signal. Experimen-
tal result demonstrate that the proposed methodology can reach high level
of accuracy (about 1% of accuracy error), with a minimal impact on the
area overhead. A similar approach has been adopted in [44]. Instead of
targeting complex architecture like those considered in [22], here authors
considered a small RISC architecture and show how too complex power
model introduced large area and power overhead. In this work a linear re-
gression based power model is extracted considering only the single count
mode, since hamming weight counting mode requires more LUTs. Fur-
thermore, a novel accuracy measure has been introduced. In the state of

35

i
i

“thesis” — 2021/9/27 — 21:57 — page 36 — #47 i
i

i
i

i
i

Chapter 3. State of the Art

the art the most adopted metric to measure the model accuracy is the Root
Mean Squared Error (RMSE); however, this metric only consider the ab-
solute difference between the estimates and the reference. In this work
authors introduced the Mean Relative Error (MRE) which consider the rel-
ative distance between the estimates and the reference, giving a more ac-
curate metric of the model error. The analysis about the different counting
modes has been deepened in [24]. Here, authors show that the best way
to measure the signal switching activity is to consider each bit separately.
The reason why this choice can be considered twofold: from one side dif-
ferent bits in the signal can influence different data- or control-path of the
design and thus, can introduce different contribution to the overall power
consumption. From the other side, considering only a subset of the signal
bits can highly reduce the area overhead introduced by the implementation
of the power monitoring infrastructure. Experimental results show that the
overall model accuracy hasn’t been affected too much (it remains below
3%). A deeper and formal analysis about the different methods to measure
the switching activity is presented in [47]. Starting from the considerations
proposed in [22] and [24], this work proceeds in two directions: from one
side it proposes a deeper analysis about the three counting modes, while,
from the other side, it try to match each counting mode to a different type
of signal (data or control). From the first analysis it emerges that the single
bit counting mode can provide wrong results. For example, considering a
subset of a 32 bit memory address signal of a CPU, it is sufficient to change
the linker script to invalidate the power model. The second analysis, in-
stead, assess the effectiveness to consider the control signals with a single
count mode, while the data signal with a hamming weight mode. Authors
show the efficacy of the proposed methodology targeting a multicore multi-
threaded CPU; the experimental results show the same accuracy as the one
obtained in [22] and [24], without introducing possible errors like the one
mentioned before.

36

i
i

“thesis” — 2021/9/27 — 21:57 — page 37 — #48 i
i

i
i

i
i

3.3. Switching activity based methodologies

37

i
i

“thesis” — 2021/9/27 — 21:57 — page 38 — #49 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 39 — #50 i
i

i
i

i
i

CHAPTER4
Methodology

With the incoming of IoT world for the first time we have much more data
than the computational capacity to process them. In fact, huge HPC centers
are no more able to manage the huge amount of rough data provided by sen-
sor spreaded among the IoT environments. In this scenario, edge computing
emerges as the most promising solution to face the challenges proposed by
this computing revolution. With this new computing paradigm, data elab-
oration is no more performed in a single step, but it is distributed among
the different layers of a huge computing environment. Starting from the
edge, the IoT sensors are no more only sensors but they are complex com-
puting devices able to collect, process and transmit data, at least. Even if
edge devices are often equipped with small processors with limited compu-
tational capacity, they run complex applications, implementing algorithms
ranging from data mining to artificial intelligence field. Furthermore, since
they are mostly battery powered, energy efficiency emerges as one of the
most important metric to be considered, from the hardware design step of
the device, to the implementation of run-time software optimization poli-
cies. In this scenario, online power monitoring emerged as the key enabling
factor that allows run-time power optimization techniques to be effective.
As described in Chapter 2, power monitors can be implemented both in

39

i
i

“thesis” — 2021/9/27 — 21:57 — page 40 — #51 i
i

i
i

i
i

Chapter 4. Methodology

software or in hardware. This thesis is focused on hardware solutions for
online power monitoring infrastructures. From the state of the art analy-
sis described in chapter 3, it emerges that all the proposed solutions for
hardware power monitors aim to the development of methodologies of-
fering the highest accuracy as possible, without considering the resource
overhead introduced by the implementation of such monitors. It is impor-
tant noticing that, in the world of IoT devices, characterized, as mentioned
before, by small computing units, the overhead introduced by the addi-
tional resource used for implementing the power monitors becomes non-
negligible. For example the power overhead due to the hardware monitors
can overcome the amount of power saved thanks to the run-time optimiza-
tion techniques. For this reason, during the power model identification, it
is necessary to take into account not only the accuracy of the power esti-
mates, but also the resource overhead introduced by the implementation of
the power monitor. This thesis proposes a methodology for the identifica-
tion of resource-constrained power models and automatic implementation
of the corresponding power monitoring infrastructures for generic RTL de-
signs.

power
trace

analysis

VCD

PowerTrace

Power
model

identification
(PwrModId)

netlist
with online

power
monitoring

Statistic extraction (StatsExtraction)

RTL
source

implementation
and post-map

simulation

switching
activity
analysis power

model

Power
monitor

implementation
(PwrMonImpl)

post-map
netlist

SigStats

usrDef
Constr

PwrCounter
RTL

power
pro�le

implementation
& parameteric

analysis

Power monitor block profiling (PwrBlockProfile)

resource
pro�le

PwrAdder
RTL Pro�led

overheads (profOvh)

Basic block
RTL description
(pwrBlockRTL)

Design
Constr

Figure 4.1: Overview of the proposed resource-constrained automatic power model iden-
tification and instrumentation flow.

Figure 4.1 depicts the proposed toolchain to automatically generate a
hardware-level resource-constrained power monitor for generic comput-
ing platforms. Starting from the hardware description of the target de-
vice (RTL-source), its corresponding set of design constraints (designConstr)
and the user-defined constraints (usrDefConstr), the flow outputs an
hardware description file containing the target design augmented with the
power monitor (netlist with online power monitoring). It
is worth noticing that the design constraints are expressed in terms of the
standard timing, e.g., required operating frequency, and physical, e.g. pinout,
requirements for the implemented computing platform. In contrast, the

40

i
i

“thesis” — 2021/9/27 — 21:57 — page 41 — #52 i
i

i
i

i
i

4.1. Data collection

user-defined constraints allow the user to specify the number of allowed
resources to implement the power monitoring infrastructure.

The design and implementation of the power monitor is organized in two
separate steps: i) power model identification (PwrModId), and ii) power
monitor implementation (PwrMonImpl). The PwrModId stage identifies
a power model that ensures the smallest accuracy error within the resource
budget, by leveraging: i) the switching activity of the signals, ii) the power
consumption of the computing platform, iii) the user imposed resource con-
straints, and iv) the profiled overhead of the basic blocks used to realize
the power model. Finally, the PwrMonImpl stage augments the RTL de-
scription of the computing platform with a power monitoring infrastructure
which implements the identified power model.

4.1 Data collection

The first step for every power model identification flow, is the collection of
the required data, i.e., the power consumption of the target device and the
model predictors. Section 4.1.1 describes the power monitor block profile
stage, that produce the components of the power monitor, together with
the corresponding resource information, while Section 4.1.2 presents the
solutions adopted in this thesis to obtain the toggle counts and the power
consumption of the considered architecture leveraging the power estimation
tools provided by Xilinx.

4.1.1 Power monitor block profiling

The PwrBlockProfile is the stage of the power model identification flow in
charge of producing the RTL description of the basic blocks of the power
monitor (see pwrBlockRTL in Figure 4.1), and the corresponding profiled
overheads (profOvh). The RTL descriptions will be used in the power moni-
tor implementation stage (pwrMonImpl), while the resource and power pro-
files will be considered during the power model identification stage (Pwr-
ModId). The power monitor block profile stage starts with the implementa-
tion and the parametric analysis of the power counter and the power adder
basic blocks. In fact, the power counter can be parameterized with the
dimension of the signal to be analyzed, the Switching Activity Counting
Mode (SACM) adopted, the sampling windows (measured as a number of
clock cycles) and the output signal width, while the power adder can be pa-
rameterized with the number of signals to be summed and the width of the
input and output signals. For each configuration of both the power counter
and adder an out of context synthesis and map process is performed, and the

41

i
i

“thesis” — 2021/9/27 — 21:57 — page 42 — #53 i
i

i
i

i
i

Chapter 4. Methodology

resource occupations and power consumption are reported in the resource
profile and power profile files, respectively. During the power model identi-
fication stage, these files are considered, in order to check that the identified
power monitor respects the user constraints.

4.1.2 Statistic extraction

The StatsExtraction stage is in charge of collecting the power traces and
the switching activity information of the target device. In fact, this stage
takes as input the RTL source and the DesignConstr file and produces as
output the SigStats and the PowerTrace files containing the toggle counts
of all the architectural wires and the power trace of the executed bench-
marks, respectively. This stage starts with the implementation of the target
design, accordingly to the design constraints (physical and timing). The ob-
tained post-map netlist is used for a set of RTL simulations, using different
testbench, in order to stress all the architectural wires. From the implemen-
tation and post-map simulation step, this stage extracts a Value Change
Dump (VCD) file and a post-map netlist; the VCD file is used to compute
the toggle counts of the considered architectural wires, while the post-map
netlist is fed to the power estimation tool that computes the power traces.
As mentioned in Section 2.1.2, rarely an FPGA design tool suite provides
the possibility to obtain a temporal power trace of the simulation of an RTL
design; usually, these tools provide only the average power consumption.
For this reason, the proposed methodology adopts a custom tool, designed
specifically for this purpose, that samples the VCD file obtained from the
post-map simulation creating a set of VCD files, one for each considered
time epoch. For example, if the desired sampling window of the power
monitor is an hundred clock cycles, this tool will sample the VCD file every
hundred clock cycles. All these obtained sampled VCD files are provided
one by one to the power estimation tool, to obtain a complete power trace.

4.2 Power model

The power model identification is the second stage to be performed after
the acquisition of the required data. Before proceeding with the real iden-
tification stage, it is necessary to define the model predictors and how to
measure them, analyze the multicollinearity of the model statistics, define a
set of evaluation metrics and, finally, identify the mathematical formulation
of the power model.

42

i
i

“thesis” — 2021/9/27 — 21:57 — page 43 — #54 i
i

i
i

i
i

4.2. Power model

4.2.1 Model predictors

In general, the switching activity of a signal is defined as the number of
changes in the logic state of the signal itself over a finite amount of time. In
the state of the art, different works extend such definition for multibit sig-
nals. In particular, three different counting modes have been identified: The
Single Toggle Count (STC) of a multibit signal is defined as the transition of
the logic state of one of more bits of the signal itself. The Hamming Weight
Count (HWC) of a multibit signal is the number of bits that flip their logic
state during the multibit signal transition. The Single Bit Count (SBC) of a
n-bit signal produces n different values, each one corresponding to the STC
of each bit of the signal. For example, considering a 5-bit signal S whose
value at time t0 is 5’b10100 and at time t1 is 5’b11001, the STC value for
this transition is 1, the HWC value is 3 and the SBC value is {0,1,1,0,1}. It
is important noticing that the relationship between the power consumption
and the switching activity of a data signal depends on the actual number
of bits of the signals that switches their state, i.e., hamming weight, since,
in general, the higher the hamming weight, the higher the power consump-
tion. For this reason, the HWC counting mode is suitable for measuring the
switching activity of data signals. On the contrary, a change in a control
signal of the design enforces the execution of a different hardware opera-
tion regardless of the hamming weight of the control signal itself. Thus, the
STC counting mode is suitable for measuring the switching activity of con-
trol signals. Authors in [22] propose the adoption of the single bit counting
mode, in order to reduce the power monitor implementation overhead. In
fact, instead of considering the entire multi-bit signal, this counting mode
allows the selection of a subset of bits of the considered signal and use only
those bits to build the power model. However, this counting mode can cause
non negligible estimation errors. Considering, for example, a power model
built with two bits of the 32-bit Operand_A of a RISC ALU is considered,
the power estimates would depend on the value of the operand. Every val-
ues of Operand_A showing a zero in the two positions considered by the
power model, will produce zero as power estimate, which is, of course, a
huge estimation error.

4.2.2 Multicollinearity analysis

One of the main problems for mathematical models identification method-
ologies is the multicollinearity. It occurs when different variables in a re-
gression model show a high value of correlation. This is a problem because,
in a mathematical model, the variables should be independent and, if the de-

43

i
i

“thesis” — 2021/9/27 — 21:57 — page 44 — #55 i
i

i
i

i
i

Chapter 4. Methodology

gree of correlation between them is high, the identified model can show a
low accuracy in fitting data of the test or validation set. This problem is
very relevant when identifying power models: in fact, often the wires of an
hardware module are bounded by a tight relationship. In order to avoid the
multicollinearity problem, the proposed methodology implements a signal
filtering stage, that, for each signal, excludes the most correlated ones from
the final set of wires to be considered as possible model predictors.

Figure 4.2: Number of wires before and after the correlation filter.

Figure 4.2 shows the cumulative percentage of the available statistics
before and after the correlation filter. The X axis shows the ranges of corre-
lation with the power consumption, while the Y axis shows, for each chunk,
the cumulative percentage of wires that correlates with the power consump-
tion of the target devices. In this work the value of the correlation threshold
is set to 20%; it means that is the statistic produced by a wire correlates with
another one more than 20%, this statistic is not considered for the model
identification step. It can be noticed that a non-negligible number of wires
produces statistics that correlate with other ones for more than the thresh-
old. In particular the 38% of the total wires are not considered in the model
identification step, due to a too high multicollinearity value.

4.2.3 Evaluation metrics

To measure the accuracy of the proposed power monitor, the methodology
considers the distance between each of the n samples of the power estimates

44

i
i

“thesis” — 2021/9/27 — 21:57 — page 45 — #56 i
i

i
i

i
i

4.2. Power model

trace (p̂i) and the corresponding power consumption sample (pi), provided
by Xilinx technology libraries (see Equation (4.3)). The analysis of the
state of the art proposed in chapter 3 underlines four different metrics to
evaluate the accuracy of a power model:

• Mean Average Error (MAE):

MAE =
Σn

i=1

(
pi − p̂i

)
n

(4.1)

The Mean Average Error (MAE) metric considers the average distance
between the reference power measure pi and the estimate produced by
the power monitor p̂i. However, this metric does not consider the
magnitude of the power values so, two different data series with the
same ratio between pi and p̂i but with different magnitudes, will have
very different values of the MAE metric.

• Mean Relative Error (MRE): In order to solve the problem underlined
for the MAE metric, author of [48] propose a slightly different metric,
the Mean Relative Error.

MRE =
Σn

i=1

(
pi−p̂i

)
pi

n
(4.2)

This metric introduces a ratio between the distance (pi - p̂i) and the
value of pi. In this way, the value of MRE considers the magnitude of
the power values.

• Root Mean Square Error (RMSE):

RMSE =

√√√√Σn
i=1

(
pi − p̂i

)2
n

=

√√√√Σn
i=1

(
ei

)2
n

(4.3)

The RMSE measures the standard deviation of the residuals, i.e., the
distance between pi and p̂i. In other words, it measures the spread of
these residuals, showing how concentrated the data is around the line
of best fit. This metric suffers from the same problem underlined for
the MAE metric; an improved definition of the RMSE can be found in
the state of the art under the formulation of RMSEnorm.

• Normalized Root Mean Square Error (RMSEnorm):

45

i
i

“thesis” — 2021/9/27 — 21:57 — page 46 — #57 i
i

i
i

i
i

Chapter 4. Methodology

By employing the formulation in Equation (4.4), the point-wise real
power consumption (pi) is defined as the addition between the power
estimate (p̂i) and an error (ei). Considering the error as a random
variable with Gaussian distribution, zero-mean and with a σ standard-
deviation, the RMSE actually defines the σ quantity, i.e., the variabil-
ity of the power estimates over the actual power consumption. To this
end, Equation (4.5) defines the percentage RMSE normalized to the
average power consumption (RMSEnorm)i.

pi = p̂i + ei (4.4)

RMSEnorm[%] =
RMSE

E(p)
× 100 (4.5)

4.2.4 Constrained power model identification

The power model identification algorithm employs a recursive approach to
implement the top-down hierarchical visit of the target design (see Algo-
rithm 1). The algorithm takes five inputs: i) the top module of the design,
ii) the user-defined constraints, where each of them is specified as a frac-
tion of the same resource type used by the target design also including an
upper bound that specifies the maximum acceptable accuracy error for the
identified model, iii) profiled information from the PwrBlockProfile
module, as well as the iv) the switching activity and the v) power traces of
the target computing platform. The mathematical formulation of the iden-
tified power model represents the output of the algorithm. It consists in
a list of triples, where each triple is defined as the name of a signals of
the design to probe, the associated coefficient of the power model, and the
employed switching activity that is selected as either the Single Variation
Count (SVC) or the Hamming Weight Count (HWC).

Starting from the top module of the design, Algorithm 1 performs a top-
down visit of the target design hierarchy to find the best power model within
both the imposed resource constraint R and the accuracy upper bound limit
eTh. The power model of module M0 (mIdM0) is accepted if the accuracy
is within the allowed error eTh (see lines 2-5 of Algorithm 1). Otherwise,
the children modules of M0 are sorted in a descending order according to
their power consumption and an iterative power model identification ex-
ploration starts (see lines 8-20 of Algorithm 1). At each iteration in the
for-loop, the first sub-module in the sorted container list is popped
out and its power model is identified (see mId at line 11 of Algorithm 1).

46

i
i

“thesis” — 2021/9/27 — 21:57 — page 47 — #58 i
i

i
i

i
i

4.2. Power model

Algorithm 1 Top-down hierarchical visiting algorithm.
1: function [model, e] VISIT(M0, R, eTh)
2: [mId, eM0

] = ComputePwrModel(M0, R);

3: if eM0
< eTh then

4: model = mId; e = eM0
;

5: else
6: container = sortByPower(M0.m0 ... M0.mN);

7: mIdlList = []; rIdList = [];

8: for i = 1 : container.size do
9: mTmp = container.pop(i);

10: RTmp = R ∗mList(i).pwrRel;

11: [mId, e] = V ISIT (mTmp, RTmp, eTh);

12: [mCont, eCont] = V ISIT (container,R− rIdList, eTh);

13: mIdList.add(mId);

14: rIdList.add(RTmp);

15: if compErr([mIdList mCont]) < eTh then
16: model = [mIdList mCont];

17: e = compErr(model);

18: break;

19: end if
20: end for
21: end if
22: end function

Moreover, the remaining modules in the container list are identified
within a single power model. To this extent, a bi-partition of the modules
is created. It is worth noticing that the available resources are split propor-
tionally to the two partitions. The module identified in isolation is added
to the mIdList list, i.e., the list containing the power models identified on
the modules consuming the majority of the power in the target design. At
line 15, Algorithm 1 checks if the aggregate error of the power models in
the mIdList plus the power model identified for the container modules is
lower than the eTh threshold. This approach allows to optimize the num-
ber of the implemented power modules, since the iterative algorithm tries
to identify a dedicated power model for the modules than contribute the
most to the power consumption, while a single aggregate power model is
identified for the remaining ones. The recursive visit of the target design
terminates either with a set of identified power models or when the con-
tainer list is empty and the error is bigger than the imposed eTh threshold.

Algorithm 2 describes the power model identification procedure, i.e.,
the ComputePwrModel function, employed in lines 2 of Algorithm 1.
Algorithm 2 takes as input a module of the design (m) and the maximum
amount of resources R that can be employed for its power monitor im-
plementation and outputs the identified power model (modelcur) and the
associated accuracy error (e). It is important to note that both HWC and
SVC switching activity measurements are provided to Algorithm 2. It will

47

i
i

“thesis” — 2021/9/27 — 21:57 — page 48 — #59 i
i

i
i

i
i

Chapter 4. Methodology

Algorithm 2 Power model computation for module m.
1: function [modelcur, e] COMPUTEPWRMODEL(m,R)
2: e = MAXERR; modelcur = []; rescur = MAXRES;

3: for i = 1 : size[m.~I m.~O] do
4: C =

([m.~I m.~O]
i

)
;

5: for j ∈ C do
6: resnew = computePwrMonRes(j);

7: if resnew < R then
8: [modelnew, enew] = linReg(j,m.pwr);

9: etmp = k1 ∗ (enew−e)
e ;

10: restmp = k2 ∗ (rescur−resnew)
rescur

;

11: if restmp − etmp > 0 then
12: e = enew; rescur = resnew;

13: modelcur = modelnew;

14: end if
15: end if
16: end for
17: end for
18: end function

be the algorithm itself choosing the one which maximizes the accuracy of
the identified model.

To obtain a simple formulation, the algorithm identifies the power model
by leveraging the primary inputs and outputs of the target module. More-
over, the two nested for-loops (lines 3 and 5) drives the exploration to favor
the power models that require a small number of probed signals. For each
iteration of the outer for-loop, the statement at line 4 determines the set
of all the combinations of i signals. For each combination j, the inner
for-loop (line 5) computes the power model (modelnew) and the accuracy
error (enew) by means of a linear regression procedure (see line 8 in Algo-
rithm 2). Moreover, the estimated resource usage (resnew) for the identified
power model is computed at line 6.

The identified power model (modelnew) becomes the new candidate if
the weighted sum of its marginal increment with respect to the current can-
didate model, i.e. modelcur, in terms of accuracy (line 9) and resource
saving (line 10) is positive. In such a case, the identified power model
(modelnew) becomes the current candidate, i.e., modelcur (see lines 11-14
in Algorithm 2).
It is worth noticing that the algorithm allows tuning the weight of the
marginal increments in favor of either a more resource-optimized or a more
accuracy-optimized power model by means of two parameters, i.e., k1 and
k2. Without lack of generality, this work used k1 = 0.9 and k2 = 0.1.
It is important noticing that, the target architectural module can be iden-
tified directly, using only its inputs and outputs (direct power model), or

48

i
i

“thesis” — 2021/9/27 — 21:57 — page 49 — #60 i
i

i
i

i
i

4.2. Power model

Glue
Logic

Power
Model

M1

M2

Power

M2.I0

I1

I2

O0

O1

O2

O0

M2.I1

M2.I2

M2.O0

M2.O1

M1.I0

M1.O0

M1.O1

I0

(a) Direct power monitor

Glue
Logic

Power
Model

M2

Glue Power

M2.I0

I1

I2

O0

O1

O2

O0

M2.I1

M2.I2

M2.O0

M2.O1

M1.I0

M1.O0

M1.O1

I0

Power
Model

M1

Power
Model

A
D
D
E
R

M1 Power

M2 Power

CPU Power

(b) Indirect power monitor

Figure 4.3: Depending on the result of the power model identification algorithm, the
power monitor can be implementing using only the inputs and outputs of the identified
module (direct power model), or a mix of signals made by the inputs and outputs of the
identified module and of some of its submodules (indirect power model).

49

i
i

“thesis” — 2021/9/27 — 21:57 — page 50 — #61 i
i

i
i

i
i

Chapter 4. Methodology

indirectly, as the sum of the power contributions of some of its submod-
ules, plus the contribution of the glue logic power (indirect power model).
Figure 4.3 shows an example of a direct and an indirect power monitor:
Figure 4.3a reports an example of a direct power monitor, where the power
consumption of the target module is estimated directly with its interface
signals (I0, O0, O2). Figure 4.3b shows an example of an indirect power
monitor, where the power estimates of the target are computed as the sum
of the power estimates of M1, M2 and the glue logic, represented as the
power contribution of the input I0.

4.3 Power monitor

The power model identification stage of the proposed methodology, de-
scribed in section 4.2, produces as output a list of tuples, representing the
identified power model. Each entry of the list contains:

• The hierarchical name of each monitored signal

• The model coefficient related to that signal

• the Switching Activity Counting Mode (SACM)

top

m1

m2

cnt0 (c0, HWC)
a
b

sum

cnt1 (c1, HWC)

c

e
d

m3

out

m4

cnt2 (c2, SVC)

outpwr

local power model implementation global monitoring implementation

w0, c0, HWC
w1, c1, HWC
w2, c2, SVC

w0

w1

w2

param T
signals

#temp resolution

Figure 4.4: Example of a power monitor implementation, accordingly to the proposed
methodology.

Starting from the mathematical formulation of the identified power model,
the PwrMonImpl stage delivers the final netlist of the target design aug-
mented with the power monitor. In particular, the RTL description of the

50

i
i

“thesis” — 2021/9/27 — 21:57 — page 51 — #62 i
i

i
i

i
i

4.3. Power monitor

power monitor, that is target independent, is added to the netlist of the com-
puting platform and then a last incremental implementation pass is required
to deliver the final implementation netlist. Such aspect of technology inde-
pendence is crucial and it is enabling the use of the proposed methodology
in any hardware design flow. The power monitor implementation stage re-
alizes the identified power model in two steps, moving from the local to
the global power monitor. For each triple of values in the mathematical
formulation of the identified power model, the local power monitor stage
implements a customized power counter. The power counter is customized
in terms of the width of the monitored signal, the coefficient associated
with the signal, the type of switching activity and corresponding counter
selected for the signal. In contrast, the global power monitor stage im-
plements a single power adder in the top module of the target design and
connects its inputs with the output of each implemented power counter.
Figure 4.4 details the instrumentation of a three-counter power model into
a target design where the top module (top) implements three sub-modules
(m1, m2 and m3). The three power counters specified in the power model
are implemented to monitor the w1, w2, and w3 signals in the target. For
each power counter the associated coefficient (c0, c1, and c2) and the
type of switching activities are specified in the power model. Last, the
power adder instance (sum) delivers the periodic power estimate. We note
that, in addition to the width of each probed signal and the type between
either HWC or SVC to account for the switching activity, the power moni-
tor implementation stage makes use of the temporal resolution (see param
T in Figure 4.4) to correctly size each power counter. For each signal that
is part of the identified power model, a power counter module is instanti-
ated. It collects the switching activity of the corresponding physical signal
and, periodically, outputs the power contribution as the product between
the switching activity and the coefficient associated with the signal in the
identified power model. Figure 4.5 depicts the architectures of the pro-
posed power counter templates tailored to monitor the switching activities
of the signal in terms of either Hamming Weight Count (HWC) or Single
Variation Count (SVC). The two power counters share a similar structure to
store and to measure the switching activity. In particular, the accumulated
switching activity of the monitored signal is stored in the FFsa memory,
and another dedicated memory element is used to store the corresponding
power model coefficient (see coeff in Figure 4.5). In particular, the rstsa
signal is used to reset the accumulated switching activity at the beginning
of each time period. Moreover, the proposed power counter architectures
sample the monitored signal once per clock cycle to measure the switching

51

i
i

“thesis” — 2021/9/27 — 21:57 — page 52 — #63 i
i

i
i

i
i

Chapter 4. Methodology

HW/SC Counter

... *
.
.
.

signal[0]

signal[n]

signal[n:0] +

coe�

pwr_out

FF0

FFN

FFsa

SACM

+
0
1

n

1

1

10

rst_sa
sampling

Figure 4.5: Details of the implementation of the HWC and SVC counters.

activity in terms of the signal variations in two consecutive sampled val-
ues (see Sampling block in Figure 4.5 and Figure 4.5). Such monitoring
strategy avoids measuring the glitching activity to provide a strong upper
bound to the number of switches for each single-bit signal within a single
clock cycle, i.e., 1 at the most. However, the power monitor can still cap-
ture the non-negligible power contribution due to the glitching activity. In
particular, the glitches are due to the particular microarchitecture of the im-
plemented design. To this end, for each toggle in the monitored signal, the
associated power observed by the power model identification strategy is the
one of the actual signal toggle plus the power due to the related glitching
activity, if any.

The most evident difference between the two power counter architec-
tures is in the way the switching activity is accumulated, since an arithmetic
adder is used in the HWC power counter, while an OR gate is used in the
SVC counter. The power adder is a combinatorial block that is meant to
sum up all the power contributions from the instantiated power counters to
deliver the periodic power estimate. We note that the impact of the power
adder in terms of resource and power overheads is very limited with respect
to the rest of the power monitor architecture. To minimize the number of
dimensions of the design-time exploration without any flexibility loss, each
input to the power adder, i.e., the power counter output, is 10-bit signal
while a 12-bit signal is used to size the output of the power adder. By
trading the precision and the dynamic range of power measures, this solu-

52

i
i

“thesis” — 2021/9/27 — 21:57 — page 53 — #64 i
i

i
i

i
i

4.3. Power monitor

tion can address computing platforms ranging from embedded systems up
to High-Performance Computing (HPC) platforms. Such configuration can
be achieved by changing the unit employing to report the power consump-
tion in the power traces (see PowerTrace in Figure 4.1).

When targeting the embedded system domain, the use of a mW precision
to report the power consumption in the power traces allows each power
counter to deliver a probed power consumption between 0 and 1024mW
while the output of the power adder ranges between 0 and 4096mW. In
contrast, the use of a Watt precision to report the power consumption in the
power traces allows each power counter to report a probed power between
1 and 1024W while the output of the power adder can top up to 4096W.

For each power counter architecture, Figure 4.7a and Figure 4.6a) report
the resource utilization, i.e., flip-flops (FF) and Look-Up-Tables (LUT),
with respect to the width of the probed signal. Considering the SVC power
counter architecture in Figure 4.5, both the number of required FFs and
LUTs is linear with the width of the monitored signal even if the number
of FFs grows faster (see Figure 4.6a). It is important noticing that while
the number of FFs is dominated by the width of the signal showing a linear
coefficient equal to 1, the number of LUTs required to perform the SVC
computation, i.e., the boolean-OR, grows slower. In contrast, the number
of LUTs dominates the resources required to implement the HWC power
counter due to increasing complexity of performing the arithmetic addition
as the width of the probed signal increases. In particular, the number of
FFs still grows linearly with the width of the probed signal and it is com-
parable with the one required for the SVC power counter. In particular,
given the width of the probed signal, the marginal difference in the num-
ber of required FFs between the two power counter architectures is due to
the memory where the switching activity is accumulated during the time
epoch. As expected, the power consumption of the two power architectures
slightly grows with the increase of the width of the probed signal, while the
HWC power counter shows an higher power consumption than the SVC
one due to the additional design complexity of the arithmetic addition.

4.3.1 Automatic implementation

In order to make the proposed methodology completely automated, this
work proposes, as the final step, an automatic implementation of the iden-
tified power monitor. From figure 4.1, it can be noticed that the power
monitor implementation step (PwrMonImpl), takes as input the mathemat-
ical formulation of the power model and the post-map netlist, and gives as
output a new netlist augmented with the identified online power monitoring

53

i
i

“thesis” — 2021/9/27 — 21:57 — page 54 — #65 i
i

i
i

i
i

Chapter 4. Methodology

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

0

20

40

60

80

100

120

140

160
LUT FF

Signal Width

R
es

ou
rc

e
U

til
iz

at
io

n

(a) Resource utilization

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Power (mW)

Signal Width

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

(b) Power consumption

Figure 4.6: Single Variation Count (SVC) counters architecture.

infrastructure. To this extent, this work adopts Yosys [38], an open source
framework for Verilog RTL synthesis. In particular, the internal interme-
diate representation of the post-map design has been modified, in order to
implement all the components of the power monitor. The automatic imple-
mentation algorithm is organized in four steps:

• Signal analysis: The first step consists in an analysis of the selected
signals to be monitored; in particular the proposed methodology checks
whether there are signals that are actually the same in the design or

54

i
i

“thesis” — 2021/9/27 — 21:57 — page 55 — #66 i
i

i
i

i
i

4.3. Power monitor

2 9 16 23 30 37 44 51 58 65 72 79 86 93 10
0

10
7

11
4

12
1

12
8

0

50

100

150

200

250

300

Signal Width

R
es

ou
rc

e
U

til
iz

at
io

n

LUT FF

(a) Resource utilization

2 9 16 23 30 37 44 51 58 65 72 79 86 93 10
0

10
7

11
4

12
1

12
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Width

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Power (mW)

(b) Power consumption

Figure 4.7: Hamming Weight Count (HWC) counters architecture.

not. For example, the model can consider two signals a and b, where
a is the output of a module, b is the input of another module, and a
and b are connected each other. If this occurs, the second signal is not
considered and its coefficient is summed with the first one.

• Model reset: In this step, a model reset (model_rst in figure 4.5) is
instantiated. This signal becomes an input of the top module of the
design, so it is available to the user for aligning the power traces to a

55

i
i

“thesis” — 2021/9/27 — 21:57 — page 56 — #67 i
i

i
i

i
i

Chapter 4. Methodology

defined temporal instant.

• Building blocks instantiation: In the third step, the power monitor
building blocks are instantiated. For each entry of the power model
specification, an hardware counter is instantiated within the RTL mod-
ule where the wire is located. The counter is parameterized with the
dimensions of the input and output wires, the model coefficient and
the Switching Activity Counting Mode (HWC or SVC). The wire to
be monitored is connected to the counter, together with the clock and
the reset signals. The output of each counter is propagated up to the
top module of the design hierarchy.

• Power adder instantiation: In the last step, the power adder is in-
stantiated in the top module of the design. Considering a power model
made of n monitored signals, the adder is parameterized with the num-
ber of instantiated counters (n), the dimension of the input signals, the
dimension of the final result signal and the constant term identified in
the model. The adder inputs are the clock and reset wires, the counters
results, obtained by concatenating all the results of the power counters,
and a signal specifying the sign (+ or -) of each power contribution.
The result of the power adder is propagated as an output of the top
module.

56

i
i

“thesis” — 2021/9/27 — 21:57 — page 57 — #68 i
i

i
i

i
i

4.3. Power monitor

57

i
i

“thesis” — 2021/9/27 — 21:57 — page 58 — #69 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 59 — #70 i
i

i
i

i
i

CHAPTER5
Experimental Results: Power Monitoring

This section reports the assessment of the proposed methodology focusing
on the accuracy and the resource utilization of the hardware-level power
monitoring infrastructure. The experimental setup is discussed in Sec-
tion 5.1, while the accuracy of the power model estimates and the resource
utilization results are detailed in Section 5.2. Section 5.3 will analyze the
trend of the design metrics, by varying the temporal resolution of the power
estimates. This work has been published to the Sustainable Computing: In-
formatics and Systems [8]

5.1 Experimental setup

To demonstrate the value and the feasibility of this solution a set of HLS-
generated hardware accelerators and a complete embedded RISC-V-based
system-on-chip computing platform have been employed.
Power monitor generation for the use-case scenarios - The Bambu

open-source HLS tool from the Panda project [26] has been selected to
translate eight WCET kernels [11] into their corresponding Verilog RTL
descriptions. Leveraging the common interface provided by the Panda tool,
a hardware wrapper has been designed to allow the benchmarks to com-
municate with a host computer. A description of this wrapper is provided

59

i
i

“thesis” — 2021/9/27 — 21:57 — page 60 — #71 i
i

i
i

i
i

Chapter 5. Experimental Results: Power Monitoring

UART

clk

rst

tx
rx

HostCtrl
FPGA

start_port

Var_0

Var_n

....
Target

xc7a100tcsg324-1

done_port
return_port

Figure 5.1: The system used to test the HWC accelerators after the power monitor instru-
mentation. The HostCtrlFPGA controller drives the target accelerator and communi-
cates with an host computer. A request-response UART-based protocol is used by the
host computer to send the inputs and to collect the outputs of the computation.

in Figure 5.1. Through the UART interface it is possible to set the bench-
marks operands, start and stop the execution and read the power estimates
provided by the implemented power monitoring infrastructure.

Moreover, the System-on-Chip (SoC) from [34] has been employed, to
further assess the effectiveness of this solution against complex hand-coded
hardware designs. The SoC features a 32-bit bus-based architectures and
an in-order, five-stage RISC-V CPU using an Harvard memory architecture.
The CPU offers the hardware support to single-precision floating point as
well as to integer divisions and multiplications. A SoC debugger completes
the SoC architecture.

Table 5.1 reports the resource utilization of each considered design in
terms of Digital Signal Processing (DSP) tiles, LUTs, and flip-flops (FFs)
before the power monitor instrumentation. For each hardware design, the
methodology presented in Chapter 4 has been implemented in five steps:

1. Vivado 2018.2 has been employed to generate both the post-synthesis
and the post-implementation netlist of each considered hardware de-
sign.

2. The switching activities and the power traces to identify the power
models have been collected from the post-implementation simulations.

3. Starting from the switching activities, the netlist, the power traces and
the user-imposed constraints, Matlab-2019a has been employed to im-
plement the power model identification algorithms.

4. The identified power model as well as the post-synthesis netlist of
the corresponding hardware design, have been fed to the Yosys open-

60

i
i

“thesis” — 2021/9/27 — 21:57 — page 61 — #72 i
i

i
i

i
i

5.1. Experimental setup

source synthesizer which delivered the netlist augmented with the
power monitor.

5. Vivado 2018.2 post-implementation has been executed on the netlist
generated by Yosys, to deliver the final design implementation.

The functional validation has been assessed by prototyping each design
on the Digilent Nexys4-DDR board featuring a Xilinx Artix7 XC7A100TCSG324-
1 FPGA targeting a 100MHz implementation frequency. It is worth notic-
ing that the operating frequency of the power monitor exceeds 200MHz,
hence the maximum clock speed is limited by the rest of the computing
platform. In fact, the power monitor is working in parallel to the monitored
design, thus leaving unchanged the original critical path.
Quality metrics - In Section 4.2.3 different evaluation metrics found in
the state of the art have been analyzed; this work employs the normalized
Root Mean Square Error (RMSEnorm) to discuss about the accuracy of
the power estimates. Given the limitations underlined in Section 4.2.3, the
RMSEnorm is the metric that best describes the goodness of a power esti-
mate.

To demonstrate the effectiveness of the resource constraints, different
power monitors are discussed, each one implemented by fixing the maxi-
mum Look-Up-Tables (LUT) budget. For each design, the LUT boundary
is specified as a percentage of the total number of LUTs. It is worth notic-
ing that the proposed methodology allows to constrain any type of resource.
This work only addresses the LUT constraint, since the LUTs are the most
critical resources in FPGA designs.

Table 5.1: Resource utilization for the considered benchmarks, without the implementa-
tion of any power monitor.

Benchmark DSP LUT FF

fibonacci 0 185 101
crc 0 438 297

aes-Enc 0 491 233
aes-Dec 0 1037 137
expint 2 1361 1334
sqrt 2 2299 1682

qsort 0 2775 1323
fft 78 14974 10776

RISC-V 10 7868 5606

average 10.2 3492 2378.7

61

i
i

“thesis” — 2021/9/27 — 21:57 — page 62 — #73 i
i

i
i

i
i

Chapter 5. Experimental Results: Power Monitoring

5.2 Accuracy and overheads

Table 5.2: Experimental results for the benchmarks considering three constraints on the
use of resources (5%, 10%, 20%) for the power monitoring infrastructure and with-
out any boundary as in the state-of-the-art. A dashed cell means that the cost of the
power monitor exceeds the boundary and it is discarded. The overheads on the use
of resources and power are relative % values expressed over the size of the original
unmonitored designs reported in Table 5.1.

Unconstrained Constraint 20% Constraint 10% Constraint 5%

Name # # % of used Pwr # # % of used Pwr # # % of used Pwr # # % of used Pwr
HWC SVC LUT FF Ovh HWC SVC LUT FF Ovh HWC SVC LUT FF Ovh HWC SVC LUT FF Ovh

fibonacci 1 2 38.2 20.4 33.5 0 1 16.2 8.3 13.6 - - - - - - - - - -
crc 2 3 33.3 12.8 28.4 0 2 15.3 7.9 13.6 0 1 6.8 3.1 6.1 - - - - -

aes-Enc 1 2 20.2 10.3 17.1 0 2 12.2 7.1 9.6 0 1 6.1 2.9 5.4 - - - - -
aes-Dec 1 3 15.9 9.8 12.7 0 3 12.9 7.1 9.7 0 3 8.7 3.8 7.7 0 1 2.9 1.1 2.3
expint 1 2 8.9 4.8 6.9 1 2 8.9 4.8 6.9 1 2 8.9 4.8 6.9 0 1 3.1 1.7 2.8
sqrt 2 1 8.9 4.9 6.6 2 1 8.9 4.9 6.6 2 1 8.9 4.9 6.6 0 1 1.3 0.4 1.1
qsort 0 1 1.1 0.6 0.8 0 1 1.1 0.6 0.8 0 1 1.1 0.6 0.8 0 1 1.1 0.6 0.8

fft 1 2 0.7 0.5 0.7 1 2 0.7 0.5 0.7 1 2 0.7 0.5 0.7 1 2 0.7 0.5 0.7
RISC-V 19 10 18.4 10.2 15.9 18 10 17.9 9.9 15.2 10 4 9.1 4.1 8.2 4 4 4.6 2.2 4.1
average 3.11 2.9 16.2 8.2 13.6 2.4 2.7 10.1 6.0 7.4 2.1 2.6 5.7 3.6 4.3 1 2 2 1.3 1.9

For each benchmark design, Table 5.2 reports the occupation of the im-
plemented power monitors considering different constraints for the LUTs
and by assuming a temporal resolution of 20us, i.e., the highest this method-
ology can provide. In particular, we report results for the unconstrained
power monitor (Unconstrained) and for three LUT-constrained power
monitors (Constr-20%, -10%, -5%). The area and power overheads of
the power adder of the different module are negligible and thus they are not
explicitly reported in Table 5.2, although such contributions are included
and melted in the data reported for each scenario. Results demonstrate the
effectiveness of the proposed resource-constrained methodology where all
the implemented power monitors respect the specified resource constraints.
As expected, the use of an aggressive resource constraint on small designs,
i.e., using less than 500 LUTs, prevents the implementation of the power
monitor (it is still feasible but exceeding the user-defined constraints). For
example, the methodology fails to implement the power monitor for some
targets, such as fibonacci, crc and aes-Enc designs when the power
monitor overhead is limited to 5% (see Constraint-5% results in Ta-
ble 5.2). This is not a drawback of the proposed methodology, but, on the
contrary, it is a proof that this solution ensures a robust control over the
resource overheads due to the power monitor. The power monitor for small
designs can anyway be implemented simply by relaxing the resource con-
straint, as it is evident moving from 5% to 10% and then 20% overhead,
where all the power monitors are implemented for all the designs. In par-
ticular, this investigation confirms that the smallest single-counter power

62

i
i

“thesis” — 2021/9/27 — 21:57 — page 63 — #74 i
i

i
i

i
i

5.3. Exploring different time resolutions

monitor implementation requires a minimum of 30 LUTs, thus the target
computing platform must use 600 LUTs at least to allow a power moni-
tor constrained to 5%. It is worth noticing that the smallest Xilinx Artix7
FPGA, i.e., Artix7-12, features 8000 LUTs thus confirming that a 600 LUT
design is actually a tiny one.

fib
on

ac
ci cr

c

ae
s-

en
cr

yp
t

ae
s-

de
cr

yp
t

ex
pin

t
sq

rt
qs

or
t fft

RIS
C-V

Ave
ra

ge
0

2

4

6

8

10

12

14

16

Unconstrained Constr 20% Constr 10% Constr 5%

Benchmarks

R
M

S
E

no
rm

Figure 5.2: Accuracy loss of the power estimates with respect to the power traces ex-
tracted in clean room (Vivado 2018.2). The policy considers acceptable only the solu-
tions with a RMSEnorm error below 15.

5.3 Exploring different time resolutions

As expected, the power overhead has a trend aligned to the resource over-
head, hence it is decreasing moving from the unconstrained implementa-
tion to our constrained power models. The average power overhead is lower
than 5% for a resource constraint of 10% showing an average of 1.9% when
LUTs are constrained to 5%.

For each evaluated design, Figure 5.2 reports the accuracy of the im-
plemented power monitors employing the 4 LUT-constraints, i.e., uncon-
strained, 5%, 10%, and 20%. The RMSE degrades, i.e., higher values, with
the resource constraint, although it is always lower than 5% on average re-
gardless of the imposed resource constraint. It is important to notice that
the obtained accuracy is aligned with other state of the art solutions [22,24]
for which it is not possible however to constraint the resources, and to select
the temporal resolution during the automatic instrumentation process.

For example, by comparing the unconstrained solution to the one using
a Constr-20% constraint, the average resource saving is 37.3% while the

63

i
i

“thesis” — 2021/9/27 — 21:57 — page 64 — #75 i
i

i
i

i
i

Chapter 5. Experimental Results: Power Monitoring

average RMSEnorm degradation is limited to 0.4%. As expected, the benefit
increases with the severity of the imposed LUT-constraint, i.e. a negligible
accuracy loss allows to sensibly drop down the used LUTs.

To provide a wider evaluation of the proposed methodology, this section
discusses the trend of the considered design metrics by varying the tempo-
ral resolution of the power estimates. In particular, this work analyzes area,
i.e., LUTs and FFs (see Figure 5.3a and 5.3b), and power overheads (see
Figure 5.2c) as well as the accuracy loss by considering different temporal
resolutions, i.e., 20us, 100us, 200us, 300us, 400us, and 500us (see Fig-
ure 5.2d). It is important to note that the investigated temporal resolutions
are aligned with the ones employed in state-of-the-art hardware solutions
to optimize the energy-performance trade-off in single- [49] and multi-
[50] cores.

By lowering the temporal resolution, a marginal increase for both the re-
source utilization and the power overhead can be observed. Such increase is
due to the need to store more statistics, i.e., for a longer time period, related
to the switching activity of the probed signals in the circuit. In particu-
lar, more FFs and LUTs are required to perform larger multiplications and
additions to deliver the power estimates. However, considering each im-
plemented power monitor, the area and power overhead increase is always
lower than 5% across the entire range of the analyzed temporal resolutions.

In contrast, the accuracy of the power estimates improves by lowering
the temporal resolution of the power monitor (see Figure 5.2d). Lower tem-
poral resolutions act as smoothing factors for the power spikes that are the
primary cause of the accuracy loss. In particular, the power consumption
trace appears more regular at lower temporal resolutions, thus allowing the
power monitor to better track it.

64

i
i

“thesis” — 2021/9/27 — 21:57 — page 65 — #76 i
i

i
i

i
i

5.3. Exploring different time resolutions

20 100 200 300 400 500
0

5

10

15

20

25

Unconstrained Constr 20%
Constr 10% Constr 5%

Time resolution (us)

LU
T

 O
ve

rh
ea

d
(%

)

(a) LUT Overhead

20 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

Unconstrained Constr 20%
Constr 10% Constr 5%

Time resolution (us)

F
F

 O
ve

rh
ea

d
(%

)

(b) FF Overhead

65

i
i

“thesis” — 2021/9/27 — 21:57 — page 66 — #77 i
i

i
i

i
i

Chapter 5. Experimental Results: Power Monitoring

20 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Unconstrained Constr 20%
Constr 10% Constr 5%

Time resolution (us)

P
ow

er
 O

ve
rh

ea
d

 (
%

)

(c) Power Overhead

20 100 200 300 400 500
0

1

2

3

4

5

6

Unconstrained Constr 20%
Constr 10% Constr 5%

Time resolution (us)

N
or

m
al

iz
ed

 R
M

S
E

(d) Accuracy Loss

Figure 5.2: Design Space Exploration by varying the time resolution of the implemented
power monitor. The picture reports the trend of the average values.

66

i
i

“thesis” — 2021/9/27 — 21:57 — page 67 — #78 i
i

i
i

i
i

5.3. Exploring different time resolutions

67

i
i

“thesis” — 2021/9/27 — 21:57 — page 68 — #79 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 69 — #80 i
i

i
i

i
i

CHAPTER6
Experimental Results: Power Control

Energy efficiency represents a standing obstacle for the evolution of any
computing platform, limiting the performance of both embedded and high-
performance computing (HPC) applications. Unfortunately, the practice of
minimizing the energy consumption under performance constraints, com-
monly used in HPC scenarios, cannot be readily applied to embedded plat-
forms. In fact, the latter, which are battery-powered, exhibit an opposite
optimization problem that imposes to maximize the performance under
energy-budget constraints. Moreover, the traditional embedded platforms,
that were in charge of a single task, have been replaced by complex multi-
cores executing multiple concurrent applications where specialized hard-
ware accelerators are used to offload the most intensive part of the compu-
tation. The complexity of such architectures, coupled with the required
computational efficiency, highlights a coordinated management problem
made of two tightly linked aspects. First, an energy-budget management
strategy is required to ensure that the overall device remains operational for
a given amount of time. Second, an allocation scheme is required to split
the energy budget inside of the computing platform, also accounting for the
application-level requirements. However, a single policy cannot easily en-
compass both the energy-budget and the application-specific requirements.

69

i
i

“thesis” — 2021/9/27 — 21:57 — page 70 — #81 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

In fact, the state-of-the-art proposals rely on ad hoc-solutions to solve
specific energy-performance optimization problems. There exists some
control-theoretic PID schemes used to trade performance with energy [49,
50], thermal [7] or reliability [29] aspects. Such schemes ensure theoreti-
cal stability for the controller that, however, is too simple to manage either
application constraints or multiple system-wide objectives. In contrast, the
majority of the investigations in the state-of-the-art deliver heuristic, or al-
gorithmic implementations, for which even no theoretical guarantee on sta-
bility or optimality can be ensured. In general, the use of ad-hoc schemes
prevents any comparative analysis and any reuse in application scenarios
that are even slightly different from the original one. The majority of the
proposals leverages Dynamic Voltage and Frequency Scaling (DVFS) as the
sole actuator to achieve both the energy-budget and the performance goals.
It is important noticing that the effectiveness of the DVFS mechanism is
mitigated by its complex mixed analog-digital design that imposes the use
of voltage and frequency islands and the use of a proper resynchroniza-
tion logic infrastructure [51]. To this extent, faster and simpler actuators
are emerging to support the run-time optimizations in the embedded plat-
forms domain. To limit the design complexity of the power rails to support
hardware reconfigurability, Xilinx FPGAs only offers Dynamic Frequency
Scaling (DFS) only.

One of the main problems emerged by a review of the state of the art
about run-time power control schemes, is the low temporal resolution of
the online power monitoring infrastructures. In fact, all the software im-
plemented mechanisms for power monitoring and optimization work with
actuation intervals that range from one to hundreds milliseconds; most of
nowadays computing platforms run applications that show power consump-
tion trends changing faster than one millisecond. Furthermore, some appli-
cation fields, i.e., thermal managements, requires control steps running in
the order of some microseconds.

For this reason, the power monitoring methodology, described in the
previous chapters, has been adopted to feed an all-digital run-time power
optimization scheme. This section presents the design of a control-based,
all-digital, energy-constrained management scheme for general purpose pro-
cessors and accelerators, leveraging all-digital actuators and monitors.

6.1 Power Controllers

This section describes the control theory based power controllers adopted
in this thesis. In particular, Section 6.1.1 explains the hierarchy of the pro-

70

i
i

“thesis” — 2021/9/27 — 21:57 — page 71 — #82 i
i

i
i

i
i

6.1. Power Controllers

PK
Tot

MISO

Σ

k0

Global Controller

1
z-p2

SIMO

ϑ1

ϑnCpu

. . .
Pk

Tot,SP ek
Tot Sk

Tot

Global control-loop

Supervisor algorithm

up
da

te

sw
itc

hi
ng

 s
ig

na
l

ut
ili

ty
 e

st
im

at
or

ss

Pk
SP

DCG / DFS α Pk1
Ak,i

Pk,i
unfiltered

Local Controller i-th

dk

1-p1

z-p1

100
0

z-z0

z-p0

Actuator i-th Identified process i-th

Ck,i

Local low-pass filter i-th

ek,i

Pk,i

Local control-loop i-th

Pk,i
SP

Pk

Pk
TotCorr,SP

Inner control-loop

 2W
-2W

wbInstr[nCpu][InstrType]

isCpuIdle

param DWELL_CYCLES

Θ

 4W
 0W

Figure 6.1: Closed-loop view of the proposed all-digital coordinated energy-budget and
energy-allocation system. Local control-loop parameters: z0=0.32, p0=1, p1=0.5.
Global control-loop parameters: p2=1, k0=0.01. The identified α is equal to 0.8.

posed power control infrastructure, while Section 6.1.2 analyzes the design
of each element of the hierarchical structure.

6.1.1 Hierarchical control scheme

Figure 6.1 depicts the hierarchical structure of the proposed control scheme,
which has three parts: local controller, global controller and supervisor con-
troller.
Local controller. At the innermost level, a local control loop is imple-
mented for each computing unit (CPUi) (see Local control-loop i-th in
Figure 6.1). The number of implemented CPUs is nCpu. The i-th local
controller of such innermost loop regulates the control action to ensure the
power consumption of the corresponding i-th core (Pk,i) to follow the local
set point value (see P SP

k,i in Figure 6.1).

If
ac

e
to

 th
e

ru
n-

ti
m

e
re

so
ur

ce
 m

an
ag

er

Functional
controller

Accelerator
status
Power
budget

Actual
power

Power
controller

All-digital controller

(1) freeze
thread selector

functional commands

hardware
statistics

Accelerator 0

fu
nc

ti
on

al
m

es
sa

ge
s

Run-time
power

monitor

power
sample

(2) isIF_idle

(3) freeze
instruction scheduler

(2.1) isID_idle

St
op

 &
 G

o

Ck

Ak

THREAD INFO

GPU-like core 0

Thread
selector In

st
ru

ct
io

n
fe

tc
h

D
ec

od
e

PC+4

PC

Instr
fetch (1-M)

Instr
decode (1)

Thread selection
(1-M)

Thread
scheduler (2)

Scoreboard

CPU
backend

RF (2)

 EX (1-32)
LSU (3-N)

WB (1)

In
st

ru
ct

io
n

sc
he

du
le

r

Th-ID

I$-miss
Blocked

Th-ID

Th-ID

insn

Th-ID

sched
insn

D$-miss

Status PC

D$

Figure 6.2: Architectural view of the energy controller and the front-end of the considered
accelerator

Figure 6.2 details the proposed local controller. Please note that the

71

i
i

“thesis” — 2021/9/27 — 21:57 — page 72 — #83 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

proposed energy-cap methodology actually constrains the average power
consumption that is sampled at a fixed time interval, i.e., once for each
time window (k), by the online power monitor. The Functional controller
interacts with the global resource manager or the Operating System (OS)
by means of functional messages. Such messages are parsed and actuated
via the functional commands interface. The global resource manager and
the OS can neither directly observe nor control the accelerator. They can
only read out its status and dynamically assign a power budget through the
memory mapped Accelerator status, Actual power and Power budget regis-
ters. The Accelerator status register is also updated when a new application
is kicked off or terminated. The Functional controller delivers the same in-
terface to communicate with the controller regardless of whether the latter
control either the host CPU or the accelerators.

The Power controller takes three inputs, i) the status of the computing
resources, ii) the power budget, and iii) the actual power consumption, to
produce the actuation signal (Ck), for each time window k, used as the input
to the power actuators.

stop&go
model

k
AkPk

SP

Power controller

1-p1

z-p1

94
0

Pk

1
z-p0

z-z0

Actuator

Ck

Low-pass filter

Ek

α P

Pk

dk

Identified process

Figure 6.3: Block diagram of the closed-loop controller.

Figure 6.3 depicts the discrete time-domain closed-loop of the proposed
power controller. It implements a programmable control-based PID and a
low pass filter, and it actuates on the process (P) that models the power
consumption of the system. The set point (P SP

k) represents the energy-cap
dynamically imposed by the OS or the resource manager for each time win-
dow k. The actual power consumption (Pk) is backward propagated via a
low pass filter to generate the error signal (Ek) which is then fed to the

72

i
i

“thesis” — 2021/9/27 — 21:57 — page 73 — #84 i
i

i
i

i
i

6.1. Power Controllers

controller. The control signal Ck drives the Stop&Go actuator by directly
impacting the controlled variable, i.e., power state of the system, via the ac-
tuation variable (Ak). The dk quantity models the non-controllable disturb
on power consumption.
Global controller. The outer layer (see Global control-loop in Figure 6.1)
is made of a single-input single-output (SISO) Global controller that gener-
ates a correction factor to the power budget (STot

k) starting from the differ-
ence between the global set-point P Tot,SP

k and the total consumed power in
the considered time epoch k (P Tot

k). It is worth noticing that the global
power set-point (P Tot,SP

k) is imposed by either the operating system or
the resource manager and it represents the average power consumption to
enforce the required energy-budget. Moreover, it can change overtime to
honor any higher level policy and requirement. The correction factor STot

k

is generated by the global controller and it is added to the P Tot
k quantity to

generate the global available power budget (P TotCorr,SP
k) for the time epoch

k. Such budget is split between the local controllers in the form of their lo-
cal set-points (P SP

k,i) (see Inner control-loop in Figure 6.1). Moreover, the
saturation blocks in the Global control-loop are used for implementabil-
ity reasons and their saturating values have been selected according to the
employed reference platform (see Section 6.1.2 for further details).

The global controller implements a single-input single-output (SISO)
scheme that, for each time epoch k, takes the global power set point (P Tot,SP

k)
and outputs the available power budget (P TotCorr,SP

k). Such global power
set point (P TotCorr,SP

k) is obtained by adding the total consumed power
(P Tot

k) and the correction factor STot
k generated by the global controller.

The correction factor STot
k is related to the difference between the global

set point P Tot,SP
k and the total consumed power, while the P Tot,SP

k quantity
represents the average power consumption corresponding to the assigned
energy budget imposed by the operating system (OS) or by the resource
manager. The strategy adopted by an OS or the strategy used by a resource
manager to decide the energy budget, falls outside the scope of this work.
Last, the overall budget (P TotCorr,SP

k) is split into the local set-points (see
the SIMO in Figure 6.1).

6.1.2 Controller design

The global controller structure is meant to apply a correction factor to the
total budget, i.e., P Tot,SP

k . In particular the global controller consists in an
integral component (p3 = 1) that is fed with the error signal (eTot

k), i.e.,
the difference between the total power budget (P Tot,SP

k) and the actual total

73

i
i

“thesis” — 2021/9/27 — 21:57 — page 74 — #85 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

consumed power (P Tot
k). The controller works as an energy buffer to make

available the power that hasn’t been used so far in the next epochs. Sim-
ilarly, the integral controller operates in the opposite direction if the total
consumed power is higher than the set point. The correction factor STot

k

is algebraically added to the total budget P Tot,SP
k to get the total corrected

power budget, i.e., P TotCorr,SP
k . Such scheme allows to maximize the use

of the energy budget in the long run by increasing or by reducing the total
energy budget available to the computing units at each epoch k, depending
on the energy spent in the past. Without lack of generality, the correc-
tion factor STot

k is limited between +/ − 2 watts, while the overall budget
P TotCorr,SP
k stays between 0 and 4 watts. Such numbers have been selected

starting from the observed maximum power consumption of the reference
platform, i.e., 1.6 W, to maximize the benefit of the proposed scheme and
to size the width of buses and wires in the implemented microarchitecture.
k0 has been set equal to 0.01 to enforce a slow dynamics of the inte-

gral part of the controller. In this perspective, the pure integrator ensures
that the global controller matches the imposed energy budget in the long
run. The controller has been designed to ensures the correction factor has a
“slow” dynamics, namely milliseconds (see Figure 6.4b), compared to the
response time of the local controllers, 30µs (see Figure 6.4a). The rea-
son for this is twofold. First, the dynamics of the set-point in the global
controller is expected to change in the order of seconds and above, thus a
fast controller is not required. Second and more important, the difference
between the dynamics of the global and of the local controllers, allows the
latter to converge between two consecutive changes in the local set-points
operated by the former.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

1.2

Time (us)

A
m

pl
itu

de

(a) Simulation of the step response of the local control-
loop

20 40
0

78
0
11

60
15

40
19

20
23

00
26

80
30

60
34

40
38

20
42

00
45

80
49

60
53

40
57

20
61

00
64

80
68

60
72

40
76

20
80

00
83

80
87

60
91

40
95

20
99

00
0

50

100

150

200

250
Set_point K = 0.010 K = 0.025 K = 0.040

Time (us)

P
ow

er
 (

m
W

)

(b) Simulation of difference step responses of the closed-
loop transfer function

Figure 6.4: Figure 6.4a shows the simulation of the step response of the local control-loop,
while Figure 6.4b analyzes the simulation of different step responses, considering the
global closed-loop transfer function and different k0 values.

The budget-split module (SIMO) distributes the total power budget to

74

i
i

“thesis” — 2021/9/27 — 21:57 — page 75 — #86 i
i

i
i

i
i

6.1. Power Controllers

each computing element of the multi-core, by modifying the set point of
each local controller. Such distribution of the budget is achieved by means
of a vector of θ values defined as follows:

θi ∈ R, θi ≥ 0,

nCpu∑
i=1

θi = 1 (6.1)

where nCpu is the already defined number of computing units in the multi-
core. The vector of θ values allows to distribute the total budget to the local
controllers and it represents a flexible point to design the energy-allocation
policies. The design of such policies has been constrained to the supervisor
algorithm.
Supervisor controller. On top of the control loops, the supervisor algo-
rithm actually implements the energy-allocation policy by modifying the
θ coefficients of the SIMO box. Such controller regulates the quota of
the energy-budget assigned to each local controller in the form of its set-
point value. As one of the possible strategies, this manuscript presents a
fair energy-allocation strategy for performance balancing. However, the
supervisor algorithm can implement any scheme or heuristic to shape the
performance metric, thus ensuring a great flexibility in the customization of
the system. From a mathematical perspective, the possibility of changing
the θ values at run-time turns the proposed control scheme into a switched
system that is made of a set of asymptotically stable linear systems. In par-
ticular, each linear system of such switched system is the hierarchical con-
trol scheme made of the global and all the local controllers with a specific
instance of the θ vector of weights. It is worth noticing that the obtained
switched system is a particular non-linear system made of a set of time-
invariant asymptotically stable linear systems for which the stability con-
dition has been proven to be fairly easy to obtain. In particular, this work
is interested in the exponential stability of the switched system [12] that is
the specific asymptotic stability property required for non-linear systems.
The proposed methodology leverages the work in [12] which demonstrates
that any switched system made of a set of time invariant asymptotically
stable i linear systems, always has a minimum dwell time that ensures the
exponential stability of the entire control scheme. The dwell time repre-
sents the minimum time interval between two consecutive changes of the θ
values, and it guarantees the exponential stability of the switched system.
Such time interval depends on the characteristics of the set of closed-loop
systems making the switched system. It represents a single and easy to
achieve condition to preserve the stability of the proposed control scheme.
It is important to notice that such result represents a critical advance in the

75

i
i

“thesis” — 2021/9/27 — 21:57 — page 76 — #87 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

design of the coordinated energy-budget and energy allocation schemes,
since this work provides a framework to virtually design any possible pol-
icy. The supervisor controller implements an energy-allocation policy to
balance the performance of the CPUs. Such policy is mainly intended to
show the wide range of design possibilities offered by the proposed con-
trol scheme, although it also achieves remarkable results with respect to the
imposed performance goal. A core-wise utility metric has been defined as
the proxy for the performance. In particular, Eq. 6.2 defines the calculated
utility (uCalci,k) of core i-th at time epoch k as the number of commit-
ted instructions (wbInstr) within a time epoch of 2µs corresponding to 100
clock cycles in the proposed implementation running at 50MHz.

uCalci,k =

instrType∑
j=1

wbInstri,k ∗ numCcInstrTypej

i ∈ { 1, .., nCpu } (6.2)

Each instruction have been weighted according to its theoretical latency
expressed in terms of clock cycles to complete its execution (numCcInstr-
Type). This allows to acknowledge that executing fewer multi-cycle in-
structions rather than multiple single-cycle leads to the same utility. In
particular, three instruction classes, have been considered i.e., instrType.
Load/store instructions have a weight of 8, FPU ones have a weight of 16
while all the others, including the ALU ones, have a weight of 1. It is
worth considering that, by construction, it is impossible to define an accu-
rate utility model since some types of instructions, e.g., loads, stores, are
affected by a non-deterministic latency dependent on the shared resource
contention. Even single clock latency instructions may take multiple cycles
to complete, due to data and/or structural hazards in the CPU. However,
the experimental results show that the control-inspired nature of the su-
pervisor controller makes it adaptive with respect to such possible model
inaccuracies. Please note that the specific instance of the policy does not
represent the key contribution of this work and thus any other utility metric
and policy can be implemented to optimize different run-time goals. The
calculated utility uCalci,k is employed to define the CPU utility that repre-
sents the performance proxy for each core (see Eq 6.3). In particular, the
supervisor algorithm updates the utility of the core i at the time epoch k
(ui,k) considering a weighted sum of the current utility and the calculated
utility uCalci,k as defined in Eq. 6.2 .

ui,k = 0.5× ui,k−1 + 0.5× uCalci,k (6.3)

76

i
i

“thesis” — 2021/9/27 — 21:57 — page 77 — #88 i
i

i
i

i
i

6.1. Power Controllers

Starting from the defined utility (ui,k), the supervisor implements a fi-
nite state machine (FSM) that aims at optimizing the performance fairness
between the cores, i.e., to maximize the balanced utility (ui,k), by acting on
the θ values to modify the energy-budget allocation to each local controller.
Note that a CPU can have its utility lower than the average one due to ei-
ther its energy-budget or the application behavior. In the former scenario,
the supervisor controller can increase the application utility by increasing
its local budget, i.e., by rising the set point of the corresponding local con-
troller. In the latter scenario, the application is self-constraining its own
utility and no increase of the energy budget can improve it. For example,
an idle core always shows zero utility and a core executing a self-suspended
application reports a close to zero utility.

To this extent, the supervisor algorithm identifies three sets to classify
each core: idle, balanced and unbalanced. The idle set contains all the
idle cores. The balanced set contains all the cores running a self-limiting
application for which no further action of the controller can increase its
utility. The unbalanced set contains all the other cores.

The supervisor algorithm aims at maximizing the average utility of the
unbalanced set with minimum standard deviation. This set is in fact the
only set of cores that can benefit from a reshape of the θ values. Such goal
allows to balance the utility between all the cores when the energy budget
is low enough to actually constrain the execution of the applications and no
core is idle.
Actuators. To argue the feasibility of the proposed solution, this work is
constrained by the characteristics of existing FPGA platforms, that offer
DFS support only. In fact, due to the complexity of designing a dynami-
cally scalable power rail for the reconfigurable logic, no commercial Xilinx
FPGA integrates DVFS actuators. However, our controller can be coupled
with any actuator and, to this purpose, this work shows the use of DFS
and DCG actuators which have been both implemented on the considered
Digilent board. The Dynamic Clock Gating (DCG) has been integrated to
control each nu+ core of the considered platform. It acts within each time
epoch k by disabling the clock signal for a fraction of the time epoch to
reduce the activity, and thus the power consumption, of the corresponding
core. At the chosen time resolution, i.e., 2µs, the operating frequency of
50MHz shapes time epochs made of 100 clock cycles each. In particular,
the designed DCG actuator leverages the programmable FPGA resource
only, and takes up to 4 cycles to stop the clock cycles of the controlled
CPU. Differently, the Dynamic Frequency Scaling (DFS) actuator lever-
ages the Xilinx Mixed Mode Clock Manager (MMCM) resources of the

77

i
i

“thesis” — 2021/9/27 — 21:57 — page 78 — #89 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

Artix-7 FPGA family [39]. The MMCM generates the clock frequency and
it offers a reconfiguration port to change the operating frequency at run-
time.

6.2 Quality metrics

This section presents the quality metrics designed to assess the proposed
methodology. These metrics can be organized in two categories: the Local
quality metrics have been designed to measure the effectiveness of each
local controller, while the Global quality metrics measure the effectiveness
of the overall control system.

6.2.1 Local quality metrics

Two quality metrics have been defined to capture the performance loss and
the energy cap violations for energy-constrained optimizations. Both met-
rics are piece-wise defined for constant set point values and are limited
between 0 and P SP . The overflow metric (OVF) sums up the magnitudes
of the energy budget violations (see Equation 6.4). The efficiency metric
(EFF) measures the performance loss induced by a non-zero control ac-
tion when the power consumption is below the assigned energy budget (see
Equation 6.6). For each epoch k, Gapk (see Equation 6.5) measures the
minimum positive value between two quantities: i) the difference between
the power cap and the actual power (P SP

k − Pk), and ii) the proportional
increase in the actual power in case the control action is equal to zero, i.e.
(TP∗Pk

TP−Ck
−Pk). A temporal resolution (TP) of 100 clock cycles has been set

for the entire system.

OV F =
1

P SP
∗

#samples∑
k=1

max(0, Pk − P SP)

#samples
(6.4)

Gapk = min
(

(P SP
k − Pk), (

TP ∗ Pk

TP − Ck

− Pk)
)

(6.5)

EFF =
1

P SP
∗

#samples∑
k=1

max(0, Gapk)

#samples
(6.6)

78

i
i

“thesis” — 2021/9/27 — 21:57 — page 79 — #90 i
i

i
i

i
i

6.2. Quality metrics

6.2.2 Global quality metrics

Three metrics have been defined to measure the quality of the collected re-
sults. The global efficiency (EFFg) expresses the efficiency of the assigned
global power budget. The global overflow (OV Fg) measures the average
overflow with respect to the imposed global set-point (P Tot,SP

k). Last, the
global utility (Ug) measures the obtained performance as intended in the
supervisor algorithm, i.e., a fair balance of the utility within the set of un-
balanced cores.
Global efficiency - The global efficiency (EFFg), which is a percent-
age value between 0 and 100, measures the efficacy of the assigned global
set-point to execute the computation. The EFFg figure of merit has been
developed starting from the concept of the maximum consumed power at
time epoch k for core i (Pmax

k,i), which is defined as follows:

Pmax
k,i =

100

100− Ak,i

× Pk,i, 0 ≤ Ak,i < 100 (6.7)

In particular, Eq. 6.7 assumes 100 as the maximum number of uncontrolled
clock cycles within any time-epoch k, while Ak,i (0 ≤ Ak,i < 100) is the
control action that limits such value. Please note that the control action
is upper limited to 99 to prevent Eq. 6.7 from getting infinite values. In
particular Ak,i either stretches the clock cycle period (DFS) or selectively
masks some positive edges of the clock to the computing logic (DCG).

Eq. 6.8 leverages the current power (Pk,i) and actuation (Ak,i) on the
i-th core as well as its maximum power consumption (Pmax

k,i) to define the
power gap between the actual power and either the power max (Pmax

k,i) or the
current local set-point (P SP

k,i). The P cap
k,i quantity accounts for the running

applications that consume far less of the assigned power budget. For this
reason, such applications must not contribute to reduce the effectiveness of
the energy-budget scheme. In fact, the control action for these applications
is null and it is not possible to increase neither the power consumption nor
the performance.

P cap
k,i = min

(
(P SP

k,i − Pk,i), (P
max
k,i − Pk,i)

)
(6.8)

Eq. 6.9 defines the energy-budget efficiency for the i-th CPU as the
weighted average of the efficiency at each time epoch k. Please note once
more that the global set-point is equal to the sum of the local set-points.
Thus, the total energy-budget efficiency (EFFg) has been defined as the

79

i
i

“thesis” — 2021/9/27 — 21:57 — page 80 — #91 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

average of the local efficiencies, i.e., EFFi, ∀i ∈ nCpu, (see Eq. 6.10).

EFFi =
1

P SP
i

×

#samples∑
k=1

max(0, P cap
k,i)

#samples
(6.9)

EFFg =

|nCpu|∑
i=1

EFFi

|nCpu|
(6.10)

Please note that the proposed definition of the global efficiency takes
into account those scenarios for which the imposed global set-point is far
bigger than the cumulative power consumption of all the applications run-
ning on the multi-core, e.g., when some cores are idle or when some ap-
plications are self-suspending. In particular, the efficiency is preserved in
these scenarios.
Global overflow - While the global efficiency measures the quality of the
assigned budget, the global overflow OV Fg measures the quality in fulfill-
ing the total budget. In a nutshell, OV Fg measures the difference between
the actual total power consumption and the set-point. Its value is limited to
positive numbers and it is reported in terms of milliwatts.

The definition of such metric starts by noting that the global controller
implements an integral component that allows to employ an unused part
of the budget at epoch k, in the following epochs. In the same way, an
overuse of the budget at epoch k determines a negative correction (STot

k) on
the budget pertaining the subsequent epochs. Such implementation allows
to constrain the consumed energy to the allocated energy budget in the long
run. In this scenario it is worthless to measure the epoch-wise overflow,
being the global setpoint dynamically corrected to optimize the use of the
imposed energy budget. To acknowledge such observation, the segmented
overflow (OV F seg) has been defined considering a set K of consecutive
time-epochs, where the global set-point (P Tot,SP

k) is fixed.

OV F seg =

|K|∑
i=1

P Tot
i

|K|
− P Tot,SP

i

subject to P Tot,SP
i = P Tot,SP

j ∀i, j ∈ K (6.11)

In particular, the OV F seg quantity is defined as the algebraic difference be-
tween the averaged power consumption in theK set of time-epochs and the

80

i
i

“thesis” — 2021/9/27 — 21:57 — page 81 — #92 i
i

i
i

i
i

6.2. Quality metrics

global set-point. Since the global set-point is fixed and the period of time
within the set of epochs is expected to be sufficiently long, such quantity
measures the overflow with respect to the imposed budget in the long run.

Starting from the OV F seg, Eq. 6.12 defines the global overflow OV Fg

as the average of the segmented overflow values to account for the changes
of the global set-point. The OV Fg has been limited to positive values since
this work is interested in the overflow to the imposed set-point. The under-
flow would instead indicate that the set-point is too relaxed with respect to
the actual power consumption.

OV Fg =

|T |∑
i=1

OV F seg
i

|T |

⌋
0

subject to T = {K1, .., Kn}
Kz = {k1, .., km}, z ∈ {1, .., n}
kt is a time epoch, t ∈ {1, ..,m}
P Tot,SP
kr

= P Tot,SP
kq

∀kr, kq ∈ Kz (6.12)

Global utility loss - The global utility loss (ULossg) measures the distance
between the average utility and the utility of each core as the percentage
relative error. To this extent, the smaller the better.

To define the global utility loss, the concept of utility has been leveraged
as the performance proxy to implement the fairness policy of the proposed
control scheme. In general, two applications showing the same power con-
sumption can have different utility values. The utility is in fact related to
the mix of instructions executed by each application and to the structural
and data hazards.

As already discussed before, the fairness has been enforced by minimiz-
ing the utility loss of the cores in the so-called unbalanced set, namely the
cores that are neither idle nor have a utility lower than the average, and zero
control action. In fact, idle CPUs show zero utility. Moreover, those CPUs
for which the control action is zero cannot experience a utility improvement
by increasing their set point, since their utility is limited by the application
behavior itself. Thus, the unbalanced cores are those for which a change in
the power set-point and the relative control-action affects the utility.

The utility definition of Eq. 6.13 has been leveraged; it, for each time-
epoch k, updates such quantity depending on the number of committed
instructions each of them weighted according to its instruction type. For

81

i
i

“thesis” — 2021/9/27 — 21:57 — page 82 — #93 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

each time epoch k, the utility loss of the cores in the unbalanced set (U epoch)
is defined as follows:

ULossepoch =

|setunbal|∑
i=1

∣∣∣ui−U
setunbal
avg

U
setunbal
avg

∣∣∣
|setunbal|

× 100 (6.13)

The quantity ui is the utility of the i-th core at time k as defined in Eq. 6.13,
while U setunbal

avg is the average utility of the cores in the unbalanced set at
time-epoch. To this extent, the utility loss at time-epoch k measures the dis-
tance, as the relative error, between the average utility and the utility of each
core in the unbalanced set. This work leverages the quantity ULossepoch to
define the global utility loss (Ug) as the ULossepoch averaged on the set of
the considered time-epochs (see Eq. 6.14).

ULossg =

|K|∑
i=1

U epoch
i

|K|
subject to K = {k1, ..kn}

ki is a time epoch, i ∈ {1, .., n} (6.14)

6.3 Results

This work employs the nu+ SIMD processor as the reference computing
platform for which the complete description is available in [48]. To show
the scalability, this work employs both the quad- and the eight-core ver-
sions of the processor, for which each nu+ core supports 16-way SIMD
instructions but it is limited to a single-thread of execution. Multi-threaded
applications run by using one core for each running thread. Such archi-
tecture can stress each part of the proposed control scheme. 20 programs
from the WCET benchmark suite have been used as representative applica-
tions [48]. The applications are running as bare-metal programs and the re-
quired run-time software has been implemented to support multi-threaded
execution, hence no OS support is offered and, thus, no GNU Linux li-
braries can be used. Such choice is meant to favor the implementation of
the complete prototype of the reference computing platform, with emphasis
to the hardware implementation of the proposed controller, i.e., the relevant
contribution of this work. WCET can run on bare metal, but since they are
indeed complete applications, they can stress each part of the computing

82

i
i

“thesis” — 2021/9/27 — 21:57 — page 83 — #94 i
i

i
i

i
i

6.3. Results

platform. The entire design is synthesized, implemented and simulated at
50MHz targeting the Digilent Nexys4-DDR board [41] equipped with a
Xilinx Artix-7 100t FPGA chip [40].

6.3.1 Static scenario

Table 6.1: Results considering the 4-core processor using the Dynamic Clock Gating
(DCG) actuator. Results are reported in terms of efficiency (EFFg), overflow (OVF)
and utility (Usetunbal

avg), considering different combinations of global set-points and
number of running applications.

(a) EFFg

Set Point Running applications
(mW) 1 2 3 4
100 99.78 97.53 95.69 93.94
200 100 99.92 98.81 94.14
300 100 100 99.99 96.94
400 100 100 100 99.85

(b) OV Fg

Set Point Running applications
(mW) 1 2 3 4
100 0.43 2.09 4.01 5.50
200 0 0.03 0.39 5.11
300 0 0 0 1.42
400 0 0 0 0.21

(c) Usetunbal
avg

Set Point Running applications
(mW) 1 2 3 4
100 0 4.54 6.78 8.88
200 0 0.37 0.43 5.27
300 0 0 0.01 3.7
400 0 0 0 0.41

This section reports the results in terms of the global efficiency (EFFg),
global overflow (OV Fg) and global utility loss (ULossg) considering the
quad- and the eight-core reference processors, with a two-fold objective.
First, this work assesses the performance of the proposed control scheme,
i.e., the effective use of the allocated global budget without overflowing it,
while considering a performance constraint (balanced utility for the running
applications in the considered experiments). Second, it assess the scalabil-
ity of the proposed solution by considering two processors, i.e. up to 8
cores. To ensure a statistical significance, each reported result is obtained
as the average of 30 simulations of the same usecase, for which different
randomly chosen benchmarks have been selected. Table 6.1 and Table 6.2
report the obtained results for the quad-core processor considering the use
of the Dynamic Clock Gating (DCG) or the Dynamic Frequency Scaling
(DFS) actuator, respectively. Results for the eight-core processor consider-
ing DCG and DFS are reported in Table 6.3 and Table 6.4, respectively. For

83

i
i

“thesis” — 2021/9/27 — 21:57 — page 84 — #95 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

Table 6.2: Results considering the 4-core processor using the Dynamic Frequency Scaling
(DFS) actuator. Results are reported in terms of efficiency (EFFg), overflow (OVF)
and utility (Usetunbal

avg), considering different combinations of global set-points and
number of running applications.

(a) EFFg

Set Point Running applications
(mW) 1 2 3 4
100 100 98.04 92.25 94.4
200 100 99.99 96 93.54
300 100 100 99.99 98.85
400 100 100 100 99.23

(b) OV Fg

Set Point Running applications
(mW) 1 2 3 4
100 0.05 0.49 6.33 13.42
200 0 0.03 0.38 1.71
300 0 0.09 0.09 0.1
400 0 0.04 0.04 0.05

(c) Usetunbal
avg

Set Point Running applications
(mW) 1 2 3 4
100 0.03 0.41 7.81 9.22
200 0 0.16 6.14 4.33
300 0 0.11 0.3 0.72
400 0 0.04 0.04 0.08

84

i
i

“thesis” — 2021/9/27 — 21:57 — page 85 — #96 i
i

i
i

i
i

6.3. Results

Table 6.3: Results considering the 8-core processor using the Dynamic Clock Gating
(DCG) actuator. Results are reported in terms of efficiency (EFFg), overflow (OVF)
and utility (Usetunbal

avg), considering different combinations of global set-points and
number of running applications.

(a) EFFg

Set Point Running applications
(mW) 1 2 4 8
200 100 99.92 94.14 91.11
400 100 100 99.85 92,59
600 100 100 100 97.08
800 100 100 100 99.58

(b) OV Fg

Set Point Running applications
(mW) 1 2 4 8
200 0 0.03 5.11 7.77
400 0 0 0.21 6.09
600 0 0 0 2.24
800 0 0 0 0.18

(c) Usetunbal
avg

Set Point Running applications
(mW) 1 2 4 8
200 0 0.37 5.27 8.51
400 0 0 0.41 6.09
600 0 0 0.17 4.16
800 0 0 0 0.77

each actuator and processor the results have been collected exploring two
different design space directions: i) global set-point values and ii) number
of executing applications. The use of different global set-points stresses
the quality of the control scheme with a limited or a severely constrained
budget. Differently, changing the number of executing applications stresses
the quality of the control scheme for realistic scenarios, where the platform
is not required to show its full computing power. In particular, an average
power consumption of 500 mW and of 1000 mW have been observed when
4 and 8 applications are executing. To this extent, this work analyzed the
quality of the control scheme considering four set-points for each processor
that roughly correspond to 100%, 75%, 50% and 25% of the total required
power. In the same way, this work considered scenarios where the platform
is used at different fractions of its total computing capacity. The quad-core
processor has been stressed at 25% (1 application), at 50% (2 applications),
at 75% (3 applications) and at 100% (4 applications). Similarly the eight-
core has been exercised considering scenarios where 1 (12.5%), 2 (25%), 4
(50%), or 8 (100%) applications have been executed.

Regardless of the employed actuator and the processor (quad- or eight-
core architecture), all the three considered metrics follow the same trend.
In particular, they degrade with the reduction of the budget and with the

85

i
i

“thesis” — 2021/9/27 — 21:57 — page 86 — #97 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

Table 6.4: Results considering the 8-core processor using the Dynamic Frequency Scaling
(DFS) actuator. Results are reported in terms of efficiency (EFFg), overflow (OVF)
and utility (Usetunbal

avg), considering different combinations of global set-points and
number of running applications.

(a) EFFg

Set Point Running applications
(mW) 1 2 4 8
200 100 99.99 93.54 95.91
400 100 100 99.23 95.85
600 100 100 99.71 98.02
800 100 100 100 99.12

(b) OV Fg

Set Point Running applications
(mW) 1 2 4 8
200 0 0.03 6.33 1.71
400 0 0.04 0.38 0.05
600 0 0.04 0.09 0.03
800 0 0.09 0.04 0.03

(c) Usetunbal
avg

Set Point Running applications
(mW) 1 2 4 8
200 0 0.16 4.33 9.49
400 0 0.04 0.08 5.88
600 0 0.03 0.05 3.17
800 0 0.03 0.04 1.01

increase in the executing applications. This depends on the severity of the
scenario. If the controller does not drive the actuation, instead, there is
no penalty from a metrics’ perspective. Moreover, the use of 4- and 8-core
processors show the scalability of the proposed controller since the increase
in the number of cores does not degrade the considered quality metrics.
Global efficiency - Considering the 4-core processor, the average effi-
ciency is 98.27% with a minimum value of 92% and 93.94% using DFS
and DCG, respectively. The worst case values are obtained when the set-
point is limited to 100 mW and the required platform computing capacity is
above 75%, i.e., 3 or 4 applications are running. Such scenario occurs be-
cause each application is most likely blocked by the control scheme that is
limiting its performance due to the imposed set-point. The high scalability
of the proposed scheme is testified by the performance of the 8-core pro-
cessor. In particular, the average global efficiency is 95.09% and 97.23%
using the DCG and DFS, respectively.
Global overflow - Considering the global overflow on the 4-core proces-
sor, i.e., OV Fg, the proposed control scheme is meant to align the total
power consumption to the global set-point rather than keeping the former
below the latter. In fact enforcing the latter condition penalizes the effi-
ciency, although with the proposed design this work is trading efficiency

86

i
i

“thesis” — 2021/9/27 — 21:57 — page 87 — #98 i
i

i
i

i
i

6.3. Results

and overflow. The global overflow degrades when the control scheme oper-
ates under severe energy budget constraints, i.e., multiple running applica-
tions and low set-point value (100mW for 4-cores and 200mW for 8-cores).
Such degradation is independent from the type of employed actuator and
from the number of employed cores. For example, the worst case OV Gg

are 5.5 mW and 13.42 mW using DCG and DFS for the 4-core CPU and
7.77 mW and 1.71 mW considering 8-cores with DCG and DFS actuators.
Global utility loss - The average global utility loss (ULossg) for the quad-
core processor is 1.84% with a worst value of 8.88% and 9.22% using the
DCG and DFS, respectively. Such metric shows a trend that is similar to
the one observed for which the utility loss increases with lower set-points
and an higher number of applications. In fact, such scenario is more likely
constraining the applications that, thus, fall into the unbalanced set. As
expected, an higher number of elements in the unbalanced set, makes the
balancing process more difficult, thus lowering slightly the utility metric.
A slightly increase in the utility loss, i.e., 1% must be acknowledged when
the 8-core processor is considered. Such loss is due to the need of balanc-
ing a larger number of cores. As a second critical observation, the optimal
value of the utility loss metric (ULossg) is determined by the supervisor al-
gorithm that enforces the θ values. In particular, the θ values change in the
order of 64 µs, thus showing a dynamic that is far slower than the latency of
both the employed actuators. To this extent, even the DFS has the time to
converge before the subsequent change of the θ values, thus showing results
aligned to the one reported when the the DCG is used.

6.3.2 Dynamic scenario

This section discusses the results obtained from the execution of 4 applica-
tions on the 4-core processor employing the DCG actuator. It then consid-
ers the interaction between the controller, the OS and the applications. The
final goal is to demonstrate the possibility to seamlessly integrate standard
OS-level and application-level policies to be effectively actuated by the pro-
posed controller. For example, the OS can impose a different global energy-
budget at run-time or limit the energy quota on specific applications [10].
Differently, an application that is self-monitoring through emerging self-
adaptive distributed management schemes, e.g., MARGOT [10], might need
to change its energy quota to optimize its own quality-of-service.

It is worth considering that the definition of the QoS for an application
or that of the policy needed to specify the global energy-budget, are out
of scope here. Our work aims instead at making it possible to account
for such decisions and constraints into the proposed control scheme. In

87

i
i

“thesis” — 2021/9/27 — 21:57 — page 88 — #99 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

particular, a self-monitoring application can regularly ask to change its θ
value depending on its application-level policy. The critical aspect to note
is that such application behavior, seamlessly integrates with the proposed
controller that fixes the θ required by the application. At the same time it
is ensured that the energy-allocation policy implemented in the supervisor
continues to manage the remaining running cores.

Results are reported in Figure 6.3 considering the signals of the 4 lo-
cal controllers (see Figure 6.5a- 6.4d) and the single global one (see Fig-
ure 6.3e). According to the notation defined in Figure 6.1 for the control
scheme, for each local controller i-th this work reported the power con-
sumption (Pk,i), the power consumption set-point (P SP

k,i), the actuation sig-
nal (Ak,i) as well as the utility (Utilityi) and the assigned θ value (Θi).
Moreover, the total budget with slack (P TotCorr,SP

k), the total consumed
power (P Tot

k), the slack (STot
k) and the total power set-point (P Tot,SP

k) are
displayed for the global controller.

The proposed scenario allows to discuss three aspects. First, the OS is
forcing a low θ4 value between sample 310 and 364. Such action has two
consequences. Local controller 4 starts actuating due to the reduced power
set-point (Pk,i) for application 4 and thus a reduction in the utility for the
same application can be observed. In contrast, the remaining applications
experience an increase in their utility, due to the extra θ fraction removed
from application 4 that has been redistributed among the other running ap-
plications.

Second, the OS is reducing the global power budget at time sample 1264
with two distinct consequences. The total power set-point (P TotCorr,SP

k)
is gracefully lowering as a consequence of the energy budget buffer im-
plemented in the global controller; in other words, p2 = 1 generates an
integrator in the global controller (see Figure 6.1). Such buffer ensures a
graceful degradation of the performance of the running applications, while
maintaining stable the difference between the sum of the global set-points
and the consumed energy, i.e., the error (eTot

k) is 0 at steady state. In par-
ticular, the system is using the energy accumulated in the buffer until the
reduction of the global set-point at time sample 1264. The energy in the
buffer increases because the applications were not using all the available
energy budget (see the increase of the STot

k until sample 1264).
The last scenario is devoted to the evaluation of the system when appli-

cation 1 terminates around sample 1384. The controller acknowledges the
end of the application by removing its core from the set of unbalanced ones.
To this extent, the energy budget allocated to the terminated application is
distributed to the other three running applications, with a net increase in

88

i
i

“thesis” — 2021/9/27 — 21:57 — page 89 — #100 i
i

i
i

i
i

6.3. Results

their utility. Such results demonstrate the adaptivity of the system to an
external event.

Pk,1 Pk,1
SP Ak,1 Utility1

P
k,

1
 a

n
d

 P
k,

1
S

P
:

[m
W

]

A
k,

1
:

[0
:1

0
0

]

Θ
1

:
[0

:1
];

U
ti

lit
y
1

:
[#

In
st

ru
ct

io
n
s]

#Samples

Θ1

(a) Local controller 1

Pk,2 Pk,2
SP Ak,2 Utility2

P
k,

2
 a

n
d

 P
k,

2
S

P
:

[m
W

]

A
k,

2
:

[0
:1

0
0

]

Θ
2

:
[0

:1
];

U
ti

lit
y
2

:
[#

In
st

ru
ct

io
n
s]

#Samples

Θ2

(b) Local controller 2

89

i
i

“thesis” — 2021/9/27 — 21:57 — page 90 — #101 i
i

i
i

i
i

Chapter 6. Experimental Results: Power Control

P Pk,3
SP Ak,3 Utility3

P
k,

3
 a

n
d

 P
k,

3
S

P
:

[m
W

]

A
k,

3
:

[0
:1

0
0

]

Θ
3

:
[0

:1
];

U
ti

lit
y
3

:
[#

In
st

ru
ct

io
n
s]

#Samples

Θ3

(c) Local controller 3

Pk,3 Pk,3
SP Ak,3 Utility3

P
k,

3
 a

n
d

 P
k,

3
S

P
:

[m
W

]

A
k,

3
:

[0
:1

0
0

]

Θ
3

:
[0

:1
];

U
ti

lit
y
3

:
[#

In
st

ru
ct

io
n
s]

#Samples

Θ3

(d) Local controller 4

4 64 12
4
18
4
24
4
30
4
36
4
42
4
48
4
54
4
60
4
66
4
72
4
78
4
84
4
90
4
96
4
10
24
10
84
11
44
12
04
12
64
13
24
13
84
14
44
15
04
15
64

0

200

400

600
Pk

TotCorr,SP Pk
Tot Sk

Tot Pk
Tot,SP

#Samples

[m
W
]

(e) Global Controller

Figure 6.3: Evaluation over the time of the actuation and monitored signals for the global
and the 4-local controllers considering a quad-core processor employing the DCG ac-
tuator. Application 4 imposes its own θ4 value between sample 320 and 950 (see Fig-
ure 6.4d), application 1 terminates at sample 1390 (see Figure 6.5a) and OS imposes
a new energy budget at sample 1264 (see Figure 6.3e).

90

i
i

“thesis” — 2021/9/27 — 21:57 — page 91 — #102 i
i

i
i

i
i

6.3. Results

91

i
i

“thesis” — 2021/9/27 — 21:57 — page 92 — #103 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 93 — #104 i
i

i
i

i
i

CHAPTER7
Conclusions

This thesis presented a methodology to automatically instrument a resource-
constrained power monitor into generic hardware designs. Furthermore,
the identified power monitors have been adopted to feed a coordinated
control scheme to optimize the energy-budget and energy-allocation for
multi-cores, also ensuring the exponential stability of the overall system.
The proposed power control scheme is neither an ad-hoc heuristic nor an
energy-budgeting algorithm, but a complete framework to design any en-
ergy allocation policy. The online power monitors results have been vali-
dated considering both HLS-generated hardware accelerators as well as a
RISC-V based SoC across a wide set of temporal resolutions ranging from
20us to 500us.

Depending on the imposed user-defined constraints and with respect to
the unconstrained power monitoring state-of-the-art solutions, the proposed
methodology shows a resource saving between 37.3% and 81% while the
maximum average accuracy loss stays within 5%, i.e., using the aggressive
20us temporal resolution. However, by varying the temporal resolution
closer to the value proposed in the state of the art, i.e. in the range of
hundreds of microseconds, the average accuracy loss of our power monitors
is lower than 1% with almost the same overheads.

93

i
i

“thesis” — 2021/9/27 — 21:57 — page 94 — #105 i
i

i
i

i
i

Chapter 7. Conclusions

In summary, the proposed constrained power monitoring infrastructure
identification methodology allows to optimize the time-to-market by al-
lowing the automatic integration of a power monitor into a target design,
while allowing to flexibly trade between the accuracy of the estimate and
the overheads.

The assessment of the identified power monitors have been performed
by employing them within an all-digital control theory based power opti-
mization scheme, which advances the state-of-the-art in three ways. First,
it allows to cast any energy allocation policy as an algorithm of the super-
visor controller while maintaining the global control scheme exponentially
stable, regardless of the implemented policy. Second, the proposed con-
troller can seamlessly integrate constraints from the OS and application
level, also working with different actuators, still preserving the stability
property. Third, the scalability of the proposed solution has been demon-
strated through the use of a quad- and an eight-core processors as com-
puting platforms. Moreover, the low-area overhead in the standard-logic
implementation of the proposed controller, highlighted its flexibility and
wide applicability.

The proposed scheme has been validated on a real prototype consider-
ing a quad- and an eight-core processor as computing platforms as well as
two actuators, i.e., DFS and DCG. In particular, the complete design has
been synthesized, placed and routed on a Nexys4-DDR board featuring a
Xilinx Artix-7 100t FPGA chip and considering a 50 MHz clock since it
is the maximum operating frequency supported by the quad-core. The ob-
tained area occupation is limited to 0.86% (FFs) and 5.3% (LUTs) of the
FPGA chip considering the reference quad-core. We use three metrics to
assess the quality of the proposed control scheme: the respect of the im-
posed energy-budget (OV Fg), the performance loss due to control scheme
(ULossg) and the quality in terms of how efficiently the granted energy
budget (EFFg) is exploited. In particular, results have been collected for a
huge variety of realistic scenarios and the statistical significance has been
considered by executing each scenario 30 times. The obtained results show
valuable achievements: the average EFFg is 98.27% (worst case 92.25%),
the average OV Fg is 1.43 mW (worst case 13.42 mW) and the average
ULossg is 1.87% (worst case 9.22%).

94

i
i

“thesis” — 2021/9/27 — 21:57 — page 95 — #106 i
i

i
i

i
i

95

i
i

“thesis” — 2021/9/27 — 21:57 — page 96 — #107 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 97 — #108 i
i

i
i

i
i

APPENDIXA
List of Publications

This appendix contains the list of scientific publications resulting from the
research conducted during the PhD and presented in this thesis. Each paper
is summarized with the following structure: Title: Title of the publication
Authors: List of authors
Publication venue: Journal, Proceedings, etc...
Year: Publication year or Conference year
Bibliographic info: Pages of the journal where the article ban be found
DOI: Digital Object Identifier
Thesis citation number: Reference to the citation ID of the thesis
References to thesis chapters: Section or chapter where the reference is
used

Section A.1 lists the main papers related to this thesis and presented in
the previous chapters. The author of this thesis contributed to the papers
listed in Section A.1 both for the theoretical and for the experimental parts,
even when he is not the first author. Section A.2 contains the papers not
very related to this thesis, but representing the result of collaborations with
other researchers or European Projects. Finally, Section ?? lists the papers
currently under review.

97

i
i

“thesis” — 2021/9/27 — 21:57 — page 98 — #109 i
i

i
i

i
i

Appendix A. List of Publications

A.1 Main Papers

• Title: PowerProbe: Run-time power modeling through automatic RTL
instrumentation

Authors: D. Zoni, L. Cremona and W. Fornaciari

Publication venue: Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE)

Year: 2018

Bibliographic info: pp. 749-754

DOI: 10.23919/DATE.2018.8342106

Thesis citation number: [44]

References to thesis chapters: Section 2.1.2 and 3.3

• Title: PowerTap: All-digital power meter modeling for run-time power
monitoring

Authors: Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko
Gagliardi, William Fornaciari

Publication venue: Microprocessors and Microsystems

Year: 2018

Bibliographic info: Volume 63, Pages 128-139

DOI: 10.1016/j.micpro.2018.07.007

Thesis citation number: [47]

References to thesis chapters: Section 3.3

• Title: "All-Digital Energy-Constrained Controller for General-Purpose
Accelerators and CPUs

Authors: D. Zoni, L. Cremona and W. Fornaciari

Publication venue: IEEE Embedded Systems Letters

Year: 2020

Bibliographic info: vol. 12, no. 1, pp. 17-20

DOI: 10.1109/TC.2019.2963859

Thesis citation number: [49]

References to thesis chapters: Section 5

98

i
i

“thesis” — 2021/9/27 — 21:57 — page 99 — #110 i
i

i
i

i
i

A.2. Secondary Papers

• Title: All-Digital Control-Theoretic Scheme to Optimize Energy Bud-
get and Allocation in Multi-Cores

Authors: D. Zoni, L. Cremona and W. Fornaciari

Publication venue: IEEE Transactions on Computers

Year: 2020

Bibliographic info: vol. 69, no. 5, pp. 706-721

DOI: 10.1109/LES.2019.2914136

Thesis citation number: [50]

References to thesis chapters: Section 5

• Title: Automatic identification and hardware implementation of a
resource-constrained power model for embedded systems

Authors: Luca Cremona, William Fornaciari, Davide Zoni

Publication venue: Sustainable Computing: Informatics and Sys-
tems

Year: 2020

Bibliographic info: ISSN 2210-5379

DOI: 10.1016/j.suscom.2020.100467

Thesis citation number: [8]

References to thesis chapters: Section 4

• Title: Design of side-channel resistant power monitors

Authors: D. Zoni, L. Cremona and W. Fornaciari

Publication venue: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems

Year: Under review

Bibliographic info: Under review

DOI: Under review

Thesis citation number: []

References to thesis chapters: No references

A.2 Secondary Papers

• Title: DENA: A DVFS-Capable Heterogeneous NoC Architecture

99

i
i

“thesis” — 2021/9/27 — 21:57 — page 100 — #111 i
i

i
i

i
i

Appendix A. List of Publications

Authors: L. Cremona, W. Fornaciari, A. Marchese, M. Zanella and
D. Zoni

Publication venue: IEEE Computer Society Annual Symposium on
VLSI (ISVLSI)
Year: 2017
Bibliographic info: pp. 489-494
DOI: 10.1109/ISVLSI.2017.91
Thesis citation number: []
References to thesis chapters: No references

• Title: Reliable power and time-constraints-aware predictive manage-
ment of heterogeneous exascale systems
Authors: William Fornaciari, Giovanni Agosta, David Atienza, Carlo
Brandolese, Leila Cammoun, Luca Cremona, Alessandro Cilardo, Al-
bert Farres, JosÃ c© Flich, Carles Hernandez, Michal Kulchewski, Si-
mone Libutti, JosÃ c©Maria MartÃnez, Giuseppe Massari, Ariel Olek-
siak, Anna Pupykina, Federico Reghenzani, Rafael Tornero, Michele
Zanella, Marina Zapater, Davide Zoni

Publication venue: 18th International conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulations
Year: 2019
Bibliographic info: Proceedings
DOI: 10.1145/3229631.3239368
Thesis citation number: []
References to thesis chapters: No references

• Title: VGM-Bench: FPU Benchmark suite for Computer Vision, Com-
puter Graphics, and Machine Learning applications
Authors: L. Cremona, W. Fornaciari, A. Galimberti, A. Romanoni, D.
Zoni

Publication venue: International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation
Year: 2020
Bibliographic info: pp 323-335
DOI: Publishing
Thesis citation number: []

100

i
i

“thesis” — 2021/9/27 — 21:57 — page 101 — #112 i
i

i
i

i
i

A.2. Secondary Papers

References to thesis chapters: No reference

101

i
i

“thesis” — 2021/9/27 — 21:57 — page 102 — #113 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 103 — #114 i
i

i
i

i
i

Bibliography

[1] S. Bhagavatula and B. Jung. A power sensor with 80ns response time for power management
in microprocessors. In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference,
pages 1–4, Sept 2013.

[2] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[3] W. L. Bircher and L. K. John. Complete system power estimation using processor performance
events. IEEE Transactions on Computers, 61(4):563–577, April 2012.

[4] W. L. Bircher and L. K. John. Complete system power estimation using processor performance
events. IEEE Transactions on Computers, 61(4):563–577, April 2012.

[5] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. Regression-based rtl power
modeling. ACM Trans. Des. Autom. Electron. Syst., 5(3):337–372, July 2000.

[6] Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. Understanding GPU power: A sur-
vey of profiling, modeling, and simulation methods. ACM Comput. Surv., 49(3):41:1–41:27,
September 2016.

[7] P. Chaparro, J. GonzÃ¡les, G. Magklis, Q. Cai, and A. GonzÃ¡lez. Understanding the ther-
mal implications of multi-core architectures. IEEE Transactions on Parallel and Distributed
Systems, 18(8):1055–1065, Aug 2007.

[8] Luca Cremona, William Fornaciari, and Davide Zoni. Automatic identification and hardware
implementation of a resource-constrained power model for embedded systems. Sustainable
Computing: Informatics and Systems, 29:100467, 2021.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, pages 365–376, New York,
NY, USA, 2011. ACM.

[10] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano. margot: A dynamic autotuning framework
for self-aware approximate computing. IEEE Transactions on Computers, 68(5):713–728, May
2019.

[11] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and BjÃ¶rn Lisper. The malardalen wcet
benchmarks: Past, present and future. In BjÃ¶rn Lisper, editor, WCET, volume 15 of OASICS,
pages 136–146. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

103

i
i

“thesis” — 2021/9/27 — 21:57 — page 104 — #115 i
i

i
i

i
i

Bibliography

[12] Joao P Hespanha and A Stephen Morse. Stability of switched systems with average dwell-time.
In Proceedings of the 38th IEEE conference on decision and control (Cat. No. 99CH36304),
volume 3, pages 2655–2660. IEEE, 1999.

[13] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end processors:
Methodology and empirical data. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, pages 93–, Washington, DC, USA, 2003. IEEE
Computer Society.

[14] Brian Jeff. Big.little system architecture from arm: saving power through heterogeneous mul-
tiprocessing and task context migration. In Patrick Groeneveld, Donatella Sciuto, and Soha
Hassoun, editors, DAC, pages 1143–1146. ACM, 2012.

[15] Xiaofan Jiang, Prabal Dutta, David Culler, and Ion Stoica. Micro power meter for energy
monitoring of wireless sensor networks at scale. In Proceedings of the 6th International Con-
ference on Information Processing in Sensor Networks, IPSN ’07, pages 186–195, New York,
NY, USA, 2007. ACM.

[16] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. Early stage real-time soc
power estimation using rtl instrumentation. In The 20th ASPDAC, pages 779–784, Jan 2015.

[17] Jakub Krzywda, Ahmed Ali-Eldin, Trevor E. Carlson, Per-Olov Ostberg, and Erik Elmroth.
Power-performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and ver-
tical scaling. Future Generation Computer Systems, 81:114 – 128, 2018.

[18] Simone Libutti, Giuseppe Massari, Patrick Bellasi, and William Fornaciari. Exploiting perfor-
mance counters for energy efficient co-scheduling of mixed workloads on multi-core platforms.
PARMA-DITAM ’14, pages 27:27–27:32, New York, NY, USA, 2014. ACM.

[19] Rainer Kyburz M. Friedli, Francesco Paganini. Energy efficiency of the internet of things -
technology and energy assessment report, 2016.

[20] Matthias Müller, Brian Whitney, Robert Henschel, and Kalyan Kumaran. SPEC Benchmarks,
pages 1886–1893. Springer US, Boston, MA, 2011.

[21] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka. Statistical power modeling
of GPU kernels using performance counters. In International Conference on Green Computing,
pages 115–122, Aug 2010.

[22] M. Najem, P. Benoit, M. El Ahmad, G. Sassatelli, and L. Torres. A design-time method for
building cost-effective run-time power monitoring. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(7):1153–1166, July 2017.

[23] OpenRISC Project. OpenRISC 1000 Architectural Manual. Technical report, OPEN-
CORES.ORG, 2014.

[24] D. J. Pagliari, V. Peluso, Y. Chen, A. Calimera, E. Macii, and M. Poncino. All-digital embed-
ded meters for on-line power estimation. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2018, pages 743–748, March 2018.

[25] J. Peddersen and S. Parameswaran. CLIPPER: Counter-based low impact processor power
estimation at run-time. In 2007 Asia and South Pacific Design Automation Conference, pages
890–895, Jan 2007.

[26] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high level synthesis of
memory-intensive applications. In 23rd Int. Conf. on Field programmable Logic and Appli-
cations, pages 1–4, Sep. 2013.

[27] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkataramani, Tulika Mi-
tra, and Sanjay Vishin. Power-performance modeling on asymmetric multi-cores. In Pro-
ceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, CASES ’13, pages 15:1–15:10, Piscataway, NJ, USA, 2013. IEEE Press.

104

i
i

“thesis” — 2021/9/27 — 21:57 — page 105 — #116 i
i

i
i

i
i

Bibliography

[28] OpenRisc Project. Mor1kx Cappuccino: OpenRISC compliant SoC, 2016.

[29] D. Rodopoulos, F. Catthoor, and D. Soudris. Tackling performance variability due to ras mech-
anisms with pid-controlled dvfs. IEEE Computer Architecture Letters, 14(2):156–159, July
2015.

[30] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu. A study on the use of performance
counters to estimate power in microprocessors. IEEE Transactions on Circuits and Systems II:
Express Briefs, 60(12):882–886, 2013.

[31] M. Rogers-VallÃ c©e, M. A. Cantin, L. Moss, and G. Bois. Ip characterization methodology
for fast and accurate power consumption estimation at transactional level model. In 2010 IEEE
International Conference on Computer Design, pages 534–541, Oct 2010.

[32] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros. Splash-3: A properly synchronized bench-
mark suite for contemporary research. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 101–111, 2016.

[33] A. Sansottera, D. Zoni, P. Cremonesi, and W. Fornaciari. Consolidation of multi-tier work-
loads with performance and reliability constraints. In 2012 International Conference on High
Performance Computing Simulation (HPCS), pages 74–83, July 2012.

[34] Giovanni Scotti and Davide Zoni. A fresh view on the microarchitectural design of fpga-based
risc cpus in the iot era. Journal of Low Power Electronics and Applications, 9:19, 02 2019.

[35] Karan Singh, Major Bhadauria, and Sally A. McKee. Real time power estimation and thread
scheduling via performance counters. SIGARCH Comput. Archit. News, 37(2):46–55, July
2009.

[36] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras. Predictive dynamic thermal and power
management for heterogeneous mobile platforms. In 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 960–965, March 2015.

[37] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-Hashimi, and G. V.
Merrett. Accurate and stable run-time power modeling for mobile and embedded CPUs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1):106–119,
Jan 2017.

[38] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[39] Xilinx. 7 Series FPGAs Clocking Resources. https://www.xilinx.com/support/
documentation/user_guides/ug472_7Series_Clocking.pdf.

[40] Xilinx. 7 Series FPGAs Data Sheet: Overview. https://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf.

[41] Xilinx. Digilent Nexys4-DDR. https://reference.digilentinc.com/
reference/programmable-logic/nexys-4-ddr/start.

[42] Xilinx. Vivado design suite.

[43] D. Zoni, L. Colombo, and W. Fornaciari. DarkCache: Energy-performance optimization of
tiled multi-cores by adaptively power gating LLC banks. ACM Trans. Archit. Code Optim.,
page 1:25, 2018.

[44] D. Zoni, L. Cremona, and W. Fornaciari. PowerProbe: Run-time power modeling through
automatic RTL instrumentation. In DATE 2018, pages 749–754, March 2018.

[45] D. Zoni, J. Flich, and W. Fornaciari. Cutbuf: Buffer management and router design for
traffic mixing in vnet-based nocs. IEEE Transactions on Parallel and Distributed Systems,
27(6):1603–1616, June 2016.

105

http://www.clifford.at/yosys/
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start

i
i

“thesis” — 2021/9/27 — 21:57 — page 106 — #117 i
i

i
i

i
i

Bibliography

[46] Davide Zoni, Andrea Canidio, William Fornaciari, Panayiotis Englezakis, Chrysostomos
Nicopoulos, and Yiannakis Sazeides. Blackout. J. Parallel Distrib. Comput., 104(C):130–145,
June 2017.

[47] Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko Gagliardi, and William Fornaciari.
Powertap: All-digital power meter modeling for run-time power monitoring. Microprocessors
and Microsystems, 63:12, 07 2018.

[48] Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko Gagliardi, and William Fornaciari.
Powertap: All-digital power meter modeling for run-time power monitoring. MICPRO, 63:128
– 139, 2018.

[49] Davide Zoni, Luca Cremona, and William Fornaciari. All-digital energy-constrained controller
for general-purpose accelerators and cpus. IEEE Embedded Systems Letters, PP:1–1, 04 2019.

[50] Davide Zoni, Luca Cremona, and William Fornaciari. All-digital control-theoretic scheme
to optimize energy budget and allocation in multi-cores. IEEE Transactions on Computers,
PP:1–1, 01 2020.

[51] Davide Zoni and William Fornaciari. Modeling dvfs and power-gating actuators for cycle-
accurate noc-based simulators. J. Emerg. Technol. Comput. Syst., 12(3):27:1–27:24, September
2015.

[52] Davide Zoni, Federico Terraneo, and William Fornaciari. A control-based methodology for
power-performance optimization in NoCs exploiting dvfs. Journal of Systems Architecture,
61(5):197 – 209, 2015.

106

i
i

“thesis” — 2021/9/27 — 21:57 — page 107 — #118 i
i

i
i

i
i

Bibliography

107

i
i

“thesis” — 2021/9/27 — 21:57 — page 108 — #119 i
i

i
i

i
i

i
i

“thesis” — 2021/9/27 — 21:57 — page 109 — #120 i
i

i
i

i
i

Acronyms

ALU: Arithmetic and Logic Unit
ASIC: Application Specific Integrated Circuit
CAGR: Compounded Average Growth Rate
CMOS: Complementary Metal-Oxide Semiconductor
CPI: Clock Per Instruction
CPU: Central Processing Unit
DCG: Dynamic Clock Gating
DFS: Dynamic Frequency Scaling
DMA: Direct Memory Access
DSP: Digital Signal Processing
DTPM: Dynamic Thermal and Power Management
DVFS: Dynamic Voltage and Frequency Scaling
EFF: Efficiency
FF: Flip Flop
FPGA: Field Programmable Gate Array
FPU: Floating Point Unit
FSM: Finite State Machine
GPU: Graphic Processing Unit
HDL: Hardware Description Language
HLS: High Level Synthesis
HPC: High Performance Computing
HWC: Hamming Weight Count
IEA: International Energy Agency
I/O: Input/Output
IoT: Internet of Things
LLC: Last Level Cache
LUT: Look Up Table
MAE: Mean Average Error
MARS: Multivariate Adaptive Regression Splines
MMCM: Mixed Mode Clock Manager
MPSoC: Multi Processor System on Chip
MRE: Mean Relative Error

109

i
i

“thesis” — 2021/9/27 — 21:57 — page 110 — #121 i
i

i
i

i
i

Bibliography

NN: Neural Networks
OVF: Overflow
PID: Proportional Integral Derivative
RISC: Reduced Instruction Set Computing
RMSE: Root Mean Square Error
RTL: Register Transfer Level
SACM: Switching Activity Counting Mode
SIMD: Single Instruction Multiple Data
SIMO: Single Input Multiple Outputs
SISO: Single Input Single Output
STC: Single Toggle Count
SP: Set Point
TWh: TeraWatt Hour(s)
SBC: Single Bit Count
SoC: System on Chip
SVD: Singular Value Decomposition
USD: United States Dollar
VCD: Value Change Dump
VDD: Voltage Drain Drain
WCET: Worst Case Execution Time

110

	Introduction
	Background
	Switching activity based power monitors
	Logic synthesis, mapping and simulation
	Power traces extraction stage
	Power model identification stage
	RTL Power Model Instrumentation Stage

	Performance counter based power monitors
	Perf. Cnt. Data Collection Stage
	Power Trace Extraction Stage
	Power Model Stage
	SW Power Monitor Implementation Stage

	State of the Art
	Direct measurements
	Performance counter based methodologies
	Switching activity based methodologies

	Methodology
	Data collection
	Power monitor block profiling
	Statistic extraction

	Power model
	Model predictors
	Multicollinearity analysis
	Evaluation metrics
	Constrained power model identification

	Power monitor
	Automatic implementation

	Experimental Results: Power Monitoring
	Experimental setup
	Accuracy and overheads
	Exploring different time resolutions

	Experimental Results: Power Control
	Power Controllers
	Hierarchical control scheme
	Controller design

	Quality metrics
	Local quality metrics
	Global quality metrics

	Results
	Static scenario
	Dynamic scenario

	Conclusions
	List of Publications
	Main Papers
	Secondary Papers

	Bibliography

