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Abstract

Mathematical modeling of muscle tissue, in particular of its contraction, has be-
come an important topic in biomechanics and biomedical fields. There exist some
models, based on continuum mechanics, which describe the activation of a mus-
cle, either by using a multiplicative decomposition of the deformation gradient, like
active strain, or an additive split of the energy, called active stress. Moreover there
exists a model called mixture active strain approach, which takes advantage of the
multiplicative decomposition only on the anisotropic component of the energy, that
permits to model muscle activation with a costant parameter, while recovering the
uniaxial deformation experimental data more accurately. Considering the muscle as
a fiber-reinforced material, we show why the choice of an energy dependent on both
anisotropic invariants is more compatible with experimental data which investigate
the shear responses of an anisotropic body. Lastly we introduce a new model, using
mixture active strain approach, which better reproduces the experimental data of
the stress-stretch curve.
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Sintesi

La contrazione muscolare è un argomento molto discusso in ambito biomedico, in
particolare per quel che riguarda l’attivazione del muscolo. Una categoria di mate-
riali in cui rientrano i muscoli è infatti quella dei materiali attivi, capaci di defor-
marsi senza carichi esterni. Attraverso la meccanica dei continui sono stati sviluppati
diversi modelli in grado di descrivere il comportamento di questo tipo di materiali,
come l’active strain che sfrutta una decomposizione moltiplicativa del tensore gradi-
ente di deformazione, o l’active stress, che divide l’energia in una somma di energia
attiva ed energia passiva. Un altro modello utilizzato è il mixture active strain,
che utilizza la decomposizione moltiplicativa soltanto sulla componente anisotropa
dell’energia, permettendo di ottenere una migliore previsione dei dati di defor-
mazione uniassiale, mantenendo il parametro di attivazione costante. Una scelta
che viene spesso effettuata è quella di far dipendere la parte anisotropa dell’energia
solo dal quarto invariante, ma questo porta a risultati controintuitivi fisicamente e
in disaccordo con i risultati sperimentali. Infine introduciamo un modello dipen-
dente da entrambi gli invarianti, che grazie al modello mixture active strain riesce a
prevedere in maniera migliore i dati di deformazione uniassiale.
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Summary

In order to provide a mathematical description of muscles, like skeletal muscles or the
cardiac muscle, an open research topic in the field of biomechanics has become the
modeling of soft biological tissues and numerical methods for simulations. In partic-
ular, a topic of interest is the one regarding what are the so called active materials,
materials that can undergo deformation even without any external load, like mus-
cles, which under an electrical stimulus have actin and myosin heads attaching in
order to shorten the muscle in a preferred direction, to provide force and movement.
In order to describe this behaviour we use the framework of Continuum Mechanics,
where it’s studied how a body deforms under, for example, external loads. Here
we assume that the body is an anisotropic material, which means that it has a
preferential direction, given by the orientation of the fibers, and an incompressible
material, thanks to the fact that it is mainly made of water. In particular, we
will set in the framework of Hyperelasticity, and consider the muscle tissue as a
fiber-reinforced material, which is described as an anisotropic material embedded
in an isotropic material, to reproduce the behaviour of the muscle fibers and the
collagen material surrounding them.
A model which is particularly suitable for this type of materials is the so called
mixture active strain approach, which enables to activate only a part of the body
(in our case the anisotropic one).

In Chapter 1 we show the main functions of the muscle tissue and in particular the
structure of skeletal muscle tissue, then we illustrate the data obtained by Hawkins
and Bey [4] in their experiments in vivo on a tibialis anterior of rats, to obtained
realistic data in order to test our new model.
In Chapter 2 we recall the bases of Continuum Mechanics and Hyperelasticity, then
we show two classical models to describe the passive behaviour of the muscle tissue.
In Chapter 3 we recall two classical models which describe the behaviour of activated
muscle tissue: the active stress which uses an additive decomposition of the strain
energy function, and the active strain which takes advantage of a multiplicative de-
composition of the deformation gradient.
In Chapter 4 the work is divided as follows. First we introduce the mixture active
strain method, which uses the multiplicative decomposition of the active strain ap-
proach only in the anisotropic part of the material, giving the possibility of a better
fit of the data by Hawkins and Bey using a costant activation.
Second, we introduce the work by Murphy[3], which shows how the dependence of
the strain energy on only one of the anisotropic invariants implies physical controin-
tuitive conditions on the shear moduli, that moreover are shown to be wrong by
experimental data.
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Lastly we introduce a new model depending on both invariants, and test it on
Hawkins and Bey experimental data.
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Chapter 1

Introduction to skeletal muscles:
biological structure and
experimental data

In this chapter we will introduce how muscles are made and how they activate, then
we will look at the data by Hawkins and Bey in [4] and see what we can understand
from them.

1.1 Muscle structure and activation

Muscle tissue is used by the body for some fundamental functions which can be
really different from each other. These functions can be the movement of the body
parts, moving the blood in the vessels, moving organs to assist digestion or many
others. The high variability of the tasks of this tissue requires it to be differentiated
in more types. In fact there exist three types of muscles :
-the skeletal muscle, which moves the body and its parts
-the cardiac muscle, that determines, with his contraction, the blood flow
-the smooth muscle, responsible for organs movement and which assists some phys-
iological functions
Each one of these muscles is made by specific cells, which are all contractile units,
that under electrical and chemical stimulus can shorten and develop force. The
type of tissue we’ll be interested in is the skeletal muscle tissue, which makes up to
40-45% of body mass and it’s in about 660 muscles of the human body. Its morpho-
logical units are called fibers, that are cells with an elongated form with a diameter
variable from 10 to 100 µm and whose number in various skeletal muscles can be
highly different.
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Figure 1.1: Muscle macroscopic structure

As shown in Figure 1.1 every muscular fiber is surrounded by connective tissue
which separates adiacent cells, called endomysium, then groups of around 150 fibers
are called fascicles and are surrounded by another winding of connective tissue called
perimysium. Finally, the whole muscle is sheated in a last layer of connective tissue,
called epimysium, which becomes thicker at the end, anchoring the muscle to the
tendons at each end. Tendons are structures made of collagen which transfer the
tension produced by the fibers to the bones.
While the connective tissue can be considered isotropic, the fibers are transversely
isotropic, since they can be considered cylindrical and contract along their axis.

Figure 1.2: Muscle microscopic structure

In Figure 1.2 we see that on a microscopic level, fibers are made of myofibrils,
which have a diameter of about 1-2 µm and are made by units which repeat regularly
along them. These units, called sarcomeres, with a resting length of about 2,5 µm,
are responsible for the contraction of the fibers. Every sarcomere is made by thin
(1 µm long and with a diameter of about 5 nm) and thick (1,6 µm long and with a
diameter of 15 nm) filaments. Thin filaments are made of actin and are anchored
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to the end region of the sarcomere which is called Z-disc, while thick filaments are
made of myosin, and are disposed in the central region of the sarcomere, where their
disposition gives rise to darker bands, called A-bands. Then moreover, two more
zones can be observed : the I-band which is the zone where there are only actin
filaments, and the H-zone which is a lighter band where there are only thick myosin
filaments.
The sarcomere represents the contractile unit of the muscle, since when exposed to
electrical stimulus by the nervous system, the Z-discs get closer thanks to the fact
that thin and thick filaments slide on each other. In particular, when the sarcomere
activates, the myosin heads grab on to the actin filaments and rotate, generating
what is called a cross-bridge. Influencing the contraction effect of the muscle there
are several factors, like the amount of connective tissue, the length of the fibers,
which can shorten up to 60% of their rest length, and the muscular architecture.
The muscular architecture substantially refers to the orientation of the fibers with
respect to the direction which the force is generated macroscopically. This splits up
the fibers and consequently the muscles in two types, when the fibers are parallel to
the direction of the force-generating axis the muscles are called parallel, when they
have a different orientation the muscle is called pennate.
In Figure 1.3 we can see the principal types of muscle direction.

Figure 1.3: Parallel and pennate muscles

1.2 Hawkins and Bey’s data

The data collected by Hawkins and Bey in [4] are useful to compare our models with
the results from experiments. These data show the behaviour of the stress-stretch
relationship of a muscle on relaxed state and on activated state. The experiment
has been conducted in vivo on a rat’s tetanized tibialis anterior, considering the fact
that the tension produced is divided into a passive and an active contribution. First
the passive data were collected, then by electrical stimulus the muscle was activated
and the total data (passive and active contribution) were collected. The stretch in
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the data has been divided by the resting length of the muscle, so that λ shows the
ratio of elongation, in fact λ = 1 means that the muscle is at its resting length and
it’s unstressed.

Passive

Total

Active

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0

50

100

λ

P
M

Figure 1.4: Hawkins and Bey’s data plot

Now first we focus on the passive curve, shown in Figure 1.4. The first thing
that can be noticed is the exponential behaviour after a certain stretch (λ ≈ 1.3)
given by the connective tissue, which rebounds, but before that length there is only
a very small resistance. When the muscle is activated the fibers shorten, so that
the new unstressed length will be much less than the passive resting length; in fact
we see it on the total curve, which starts showing stress already around λ = 0.7.
Subtracting the passive curve from the total curve we get the active curve, that is
the contribution given by only the active part of the tissue. This curve shows us that
the active contribution has a peak around λ = 1.3, that is when all the cross-bridges
in the sarcomere are formed. This explains the behaviour of the total curve after
λ = 1.3, in fact we can see the same exponential behaviour as in the passive curve,
that is because the activation is complete and the elastic behaviour of the connective
tissue prevails.
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Chapter 2

Mathematics of Continuum
Mechanics and Nonlinear
Elasticity

In this chapter we are going to recall the basic notions of the theory of Continuum
Mechanics and Hyperelasticity required to model soft biological tissues. First we
will introduce some balance equations, then we introduce a framework that will
lead to more complicate and accurate models. The tissue we will model is the
skeletal muscle tissue, which can be considered as an anisotropic (more specifically
transversely isotropic) continuum material, since it has a preferential direction, and
incompressible, since it’s composed up to 75% of water.
Later on we will consider the material to be hyperelastic, neglecting viscous effects
and considering a steady state, we will introduce some classical models proposed to
describe the passive state of the muscle tissue, and which are coherent with Hawkins
and Bey’s experimental data.

2.1 Preliminary notions of Continuum Mechanics

and Hyperelasticity

In continuum mechanics a body is considered as a 3D continuous domain B0, whose
varying shape in time becomes Bt. The motion of a body can be described by the
displacement χ : B0 ⊂ R3 → R3, which is an invertible smooth map describing how
every point is mapped from B0 to Bt.
Every point X in B0, which is called reference configuration, is associated with
x = χ(X, t), its current placement in the so called current configuration Bt.
X are called material coordinates, and represent the position of a particle in the ref-
erence configuration B0, while x are called spatial coordinates and show the position
of a particle in the current configuration.
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Figure 2.1: Displacement representation

2.1.1 Kinematics, constitutive laws and conservation laws

Let us introduce first the deformation gradient tensor F defined as

F :=
∂x

∂X
= grad(x)

and its determinant J := det F. We assume that J > 0 since it represents the ratio
between initial and actual volume.
Now let us introduce the material velocity V : B × R→ R3 which is defined as

V(X, t) :=
∂χ

∂t
(X, t)

which represents the velocity at time t of the particles which were in X in the
reference configuration, and the Eulerian velocity,

v(x, t) := V(χ−1(x; t), t)

which depends on spatial coordinates and gives the velocity of the particles which
are in x at time t.
Now we will introduce an important theorem of Continuum mechanics.

Theorem 2.1.1 (Reynolds’ Transport Theorem). Let Ω(t) be a regular region in Bt
and vn(x, t) be the outward normal speed of a surface point x ∈ ∂Ω(t). Then for any
smooth tensor field F (x, t), we have

d

dt

∫
Ω(t)

F (x, t)dV =

∫
Ω(t)

∂F

∂t
(x, t)dV +

∫
∂Ω(t)

F (x, t)vn(x, t)dS

Next we suppose that there exists a function ρ(x; t) integrable and of class C1,
which represents the mass density per unit volume of the current configuration.
Then
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M(Ω(t)) =

∫
Ω(t)

ρ(x, t)dV

will represent the mass of a portion Ω(t) of the body in its current configuration.
The balance of mass states that ∀ Ω ⊂ B0,

M(Ω(t)) = M(Ω)

which means that any subbody Ω doesn’t vary his mass during the motion, and
applying the Reynolds’ Transport Theorem, using F (x, t) = ρ(x, t) we can find that

dρ

dt
+ ρ div v = 0

which is called equation of continuity.
Computing this equation, using a change of variables x = χ(X, t) we find that

J(X, t)ρ(χ(X, t), t) = ρ0(X)

where J = det F and ρ0(X) represents the mass density in the reference configura-
tion. If the material is incompressible we have that

ρ(X, t) = ρ0(X, 0)

which gives

det F = 1.

Next we want to find out how forces interact with our subbody Ω at any time and
forces and be divided into internal and external forces.
First, the resultant of the external forces can be represented as∫

Ω(t)

ρbdV

where we’ve introduced b(x, t), which is the density of external forces and it’s usu-
ally known.
For what concerns the internal forces we will assume the following postulate.

Cauchy postulate. If x ∈ ∂Ωt1∪∂Ωt2, and ∂Ωt1 and ∂Ωt2 have a common oriented
normal at x, then

t(x, t, ∂Ωt1) = t(x, t, ∂Ωt2)

which has as an immediate consequence the following theorem

Theorem 2.1.2 (Cauchy’s lemma). Suppose that t(·,n) is a continuous function of
x. Then

t(x,−n) = −t(x,n)

8



for any x ∈ Ωt and any unit vector n ∈ ∂Ωt.

Finally we have the last theorem, which states

Theorem 2.1.3 (Cauchy’s Theorem). Under the same conditions assumed in Cauchy’s
lemma, there exists a second-order tensor field T,such that

t(x, t,n) = T(x, t)n

These theorems basically state that internal forces interact with each other,
resulting at the end only as surface forces.
We will assume that T = T(F).

This tensor describes the tensional state in the current configuration, but since this
configuration is not known a priori, it’s useful to introduce its equivalent in the
reference configuration, the first Piola-Kirchhoff stress tensor, given by

P = JTF−T

then we also introduce the second Piola-Kirchhoff stress tensor which is

S = JF−1TF−T = F−1P

The first tensor is generally not symmetric, but satifies the relation PTT = FPT ,
while the second is always symmetric.
Now we will introduce the principle of conservation of linear momentum which says
that the rate of change of linear momentum of a material volume equals the resultant
force on the volume:

d

dt

∫
Ω(t)

ρVdV =

∫
Ω(t)

ρbdV +

∫
∂Ω(t)

tdS

from this, using the divergence theorem and some previous results, the Eulerian
form of the equation of motion can be obtained

ρ
dv

dt
= ρb + div (T)

which expressed in the reference configuration becomes

ρ0
∂2u

dt2
= ρ0B + Div (P)

where u = x−X is the displacement.
Finally we introduce the conservation of angular momentum, which reads

d

dt

∫
Ω(t)

ρx× vdV =

∫
Ω(t)

ρx× b +

∫
∂Ω(t)

x× tdS
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and which is satisfied if and only if T = TT , giving some restriction on the Cauchy
tensor T. This restriction can also be seen on P, since P = JTF−T we have that the
balances of linear and angular momentum are satisfied if and only if PFT = FPT .
From now on we will be interested to the equilibrium configuration, so the problem
we will be considering is 

ρ0B + Div P = 0

det F = 1

PFT = FPT

2.1.2 Notions of Elasticity and Hyperelasticity

To begin we will introduce two tensors, the left and right Cauchy-Green stress tensor,
which are defined as

C = FTF
B = FFT

and are both symmetric.
We recall the polar decomposition theorem, which says that since J > 0, the defor-

mation gradient F can be decomposed as follows:

F = RU = VR

where U and V are symmetric positive definite tensors, and R is a rotation. In
particular we have that U2 = C and V2 = B.
This decomposition permits us to see how the deformation F is composed by a
rotation and a stretch.
In particular, since the muscle is transversely isotropic, we want to define the stretch
along a given direction m, which is defined as follows

λ =| Fm |=
√

(Cm) ·m

and represents the percentual increment of length.
A material is called hyperelastic when there exists a function Ψ such that

Ψ : B0 ×M3×3
+ → R

(X,F)→ Ψ(X,F)

called elastic energy, that is C1 with respect to F, and such that

Pij =
∂Ψ

∂Fij

Now we want the elastic energy to be independent from the motion of the observer,
so we assume what is called the principle of frame indifference:

Ψ(QF) = Ψ(F) ∀Q ∈ SO(3).

10



By assuming this principle, we can rewrite Ψ as a function of the tensor C

Ψ(F) = Ψ̃(C)

by taking Q = RT where R is the rotation obtained by the polar decomposition
theorem.
Furthermore this allows us to write the first Piola-Kirchhoff stress tensor as

P = 2F
∂Ψ̃

∂C

The next thing we want to consider is the fact that some materials are intrinsically
symmetric, which means that there could be directions which will lead to the same
result when the body is deformed.
For this reason we will introduce what is called a material symmetry group :

G = {Q ∈ SO(3) : T(FQ) = T(F) ∀F ∈ Lin+}

where SO(3) is the set of all rotations and Lin+ is the set of positive determinant
deformations.
In fact if the body is independent of the direction of deformation it is called isotropic,
and we will have that G = SO(3), and consequently its elastic energy will have the
following property:

Ψ(QCQT ) = Ψ(C) ∀Q ∈ SO(3)

Now it’s useful to recall that for any tensor, in particular for C, it’s true that

C3 − I1C
2 + I2C− I3I= 0

where I1, I2, and I3 are called invariants of C and

I1(C) = tr C

I2(C) =
1

2
[(tr C)2 − tr C2]

I3(C) = det C

What we are interested in are the so called transversely isotropic materials, for which

we introduce m, the preferential direction of the material and the structural tensor
M = m⊗m.
Their material symmetry group will be

G = {Q ∈ SO(3) : Qm = ±m}

and in particular for transversely isotropic materials there are two more invariants,
I4 and I5 to be introduced.

I4(C,M) = tr CM

I5(C,M) = tr C2M

If a material is isotropic and we assume the principle of frame indifference, the elas-

tic energy is only dependent on the first three invariants of C, and we can write
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Ψ = Ψ̂(I1, I2, I3)

if a material is transversely isotropic, the energy will be dependent on the preferential
direction, and more in particular on I4 and I5

Ψ = Ψ̂(I1, I2, I3, I4, I5)

The muscle tissue is anisotropic, and in particular it can be seen as a fiber-reinforced
material which is a class of transversely isotropic materials.
These materials are made by transversely isotropic material, like muscle fibers, en-
veloped in an isotropic material, in this case the connective tissue, and their elastic
energy is structured as follows

Ψ = Ψiso(I1, I2, I3) + Ψani(I4, I5)

The first Piola-Kirchhoff tensor can now be expressed as

P =
∂Ψ

∂F
=
∂Ψ

∂Ii

∂Ii
∂F

(2.1)

So now its useful to recall the invariant’s derivatives with respect to F

∂I1

∂F
= 2F

∂I2

∂F
= 2(I1F− FTF)

∂I3

∂F
= det FF−T

∂I4

∂F
= 2FM

∂I5

∂F
= 2F(CM + MC)

Furthermore since the muscle is made mainly of water, we will assume that it is an

incompressible material, so we need to meet the condition

J = 1

where J = det F.
This condition will introduce forces that will mantain the volume constant so we
will need to introduce new forces in the conservation of linear momentum equation.
In particular these forces are introduced by a lagrangian multiplier p, which we will
call pressure and which modifies the first Piola-Kirchhoff tensor as follows

P =
∂Ψ

∂F
− pF−T

Now we will introduce two basic deformations for an isotropic elastic body, uniaxial
stretch and simple shear, which we will use in the following chapters.
The first deformation we are going to see is the uniaxial stretch

x = λ1X, y = λ2Y, z = λ3Z

12



so that the deformation gradient will be

F =

λ1 0 0
0 λ2 0
0 0 λ3


in this case λi > 0 represents an extension of the body in the direction ei, and λi < 0
a compression.
In particular if we impose incompressibility the deformation gradient will be

F =

λ 0 0
0 1√

λ
0

0 0 1√
λ


so that when the body extends in a direction, it will be compressed along the other
directions in order to mantain the volume costant.
In this case the first three invariants will be

I1 = λ2 + 2λ−1, I2 = 2λ+ λ−2, I3 = 1

The second deformation we are going to introduce is the simple shear:

x = X + κY, y = Y, z = Z

where κ is a costant that represents the amount of shear.
The deformation gradient will be

F =

1 κ 0
0 1 0
0 0 1


and consequently the invariants will be

I1 = 3 + κ2, I2 = 3 + κ2, I3 = 1

Lastly, we want the elastic energy to have some mathematical properties, to
ensure that problems are well-posed. In fact in an hyperelasticity the following
problem 

ρ0B + Div
∂Ψ

∂F
= 0

det F = 1

PFT = FPT

can be reduced to a minimization problem.

First of all we introduce the definition of a convex function:

Definition. A function F : M3×3 → R ∪ {+∞} is called convex if

αF (H) + (1− α)F (G) ≥ F (αH + (1− α)G)

for each H, G ∈M3×3, α ∈ (0, 1)

Next one is rank-one convexity:
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Definition. A function F : M3×3 → R∪ {+∞} is called rank-one convex if for any
couple of matrices A,B ∈ M3×3 with rank (A−B) ≤ 1 and for any 0 < λ < 1 we
have that

F (λA + (1− λ)B) ≤ λF (A) + (1− λ)F (B).

Next we introduce a stronger mathematical property, which implies rank-one con-

vexity, called polyconvexity

Definition. A function Ψ : M3×3 → R ∪ {+∞}, such that

Ψ(F) = g(F,Cof F, det F)

with g : R19 → R ∪ {+∞} convex, is called polyconvex.

Convexity implies policonvexity and consequently rank-one convexity, as shown
in the following theorem

Theorem 2.1.4. Let F : M3×3 → R∪ {+∞} be convex. Then F is also polyconvex
and rank-one convex.

Finally the following theorem, which states under which conditions our problem
will be well-posed

Theorem 2.1.5 (John Ball).
Let Ψ : M3×3

+ → R be a stored energy function, such that

(i) Ψ is polyconvex

(ii) if Fn → F in M3×3
+ , Hn → H in M3×3

+ , and δn → 0+, then

limn→+∞ g(Fn,Hn, δn) = +∞

where g : R19 → R ∪ {+∞} is the convex function of polyconvexity definition;

(iii)There exist a ∈ R, b > 0, p ≥ 2, q ∈ R with
1

p
+

1

q
≤ 1, and r > 1, such

that

g(F,H, δ) ≥ a+ b(||F||p + ||H||q + δr)

for all (F,H, δ) ∈M3×3 ×M3×3 × (0,+∞).

Let Ω ⊂ R3 be a bounded open subset with boundary Γ = Γ0 ∪ Γ1, where |Γ0| > 0.
Let f : Ω→ R3 and t : Γ1 → R3 measurable, such that

L[u] =

∫
Ω

f · u dV +

∫
Γ1

t · u dS

14



is continuous over W 1,p(Ω,R3).
Finally let u0 : Γ0 → R3 be measurable and such that the set

U = {u ∈ W 1,p(Ω,R3) : Cof∇u ∈ Lq, det∇u ∈ Lr, det∇u > 0 a.e. inΩ,u = u0 on Γ0}

is not empty.
Then, defining the functional F : U → R ∪ {+∞} as

F [u] =

∫
Ω

Ψ(∇u)dV − L[u]

and supposing that inf F [u] < +∞, there exists

min
u∈U
F [u].

2.2 State of art of passive behaviour of muscle

tissue

In this section we are going to introduce two of the most classical models for passive
muscle tissue.
Let us begin by introducing the deformation gradient Fλ, which in our case will be
an uniaxial deformation along the muscle’s fibers direction that we consider along
m = e1.
Let M = m⊗m be the structural tensor, then the deformation gradient Fλ will be

Fλ = λM +
1√
λ

(I−M)

and consequently

C = λ2M +
1

λ
(I−M)

The incompressibilty constraint is satisfied from the form of Fλ, in fact we always
have J = 1.
For the elastic energy we will take the following function of C, used in [7]

Ψ(C) =
µ

4

{ 1

α

[
eα(Ip−1) − 1

]
+

1

β

[
eβ(Kp−1) − 1

]}
where Ip and Kp and called generalized invariants

Ip =
w0

3
tr C + (1− w0) tr CM

Kp =
w0

3
tr C−1 + (1− w0) tr C−1M

The parameters α > 0, β > 0 are dimensionless parameters that depend on the

material, µ is an elastic parameter and w0 is another dimensionless parameter which
weighs the amount of isotropy and anisotropy of the material.
It’s important to notice that if no deformation is applied to the body, that is Fλ = I
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then Ψ(I) = 0, that means that no force is exerted by the material.
The generalized invariants can be rewritten in function of the invariants of C, so
that we can derive the first Piola-Kirchhoff tensor using (2.1).

Ip =
w0

3
I1 + (1− w0)I4

Kp =
w0

3

I2

I3

+ (1− w0)
I5 − I1I4 + I2

I3

obtaining

P(F) =
µ

2
Fλ

{
eα(Ip−1)

[w0

3
I+(1−w0)M

]
−eβ(Kp−1)C−1

[w0

3
I+(1−w0)M

]
C−1

}
−pF−T

and which component along the m direction is

PM = P : M =
µ

2
λ
{
eα(Ip−1)

[w0

3
+ (1− w0)

]
−eβ(Kp−1)

[w0

3
+ (1− w0)

]
λ−4
}

where A : B is the matrix scalar product.
The generalized invariants considered as a function of λ are

Ip =
w0

3
(λ2 +

2

λ
) + (1− w0)λ2

Kp =
w0

3
(

1

λ2
+ 2λ) + (1− w0)

1

λ2
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Figure 2.2: Exponential model’s fit on Hawkins and Bey’s data

Another model which should be taken in consideration is the energy used by
Gent [5] to model rubber-like materials.
The elastic energy which we will use is
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Ψ(C) = −µ
2
Imax log (1− I1 − 3

Imax
)

which is fully isotropic.
In this model µ is the shear modulus, while Imax imposes the maximum value which
can be reached by I1.
After some trivial calculations we can derive PM as done before, obtaining

PM = µ(1− λ2 + 2λ−1 − 3

Imax
)−1(λ− λ−1)

from which we get the following result
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Figure 2.3: Gent model’s fit on Hawkins and Bey’s data

Gent’s elastic energy is simpler, since it depends on only two parameters, and has
the advantage of having an asymptote, which could physically represent the limits
of the model, in fact it could represent the rupture of the tissue due to excessive
elongation. Moreover a Gent material acts as a Neo-Hookean material for small
strains.
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Chapter 3

Active Stress vs Active Strain
approaches

There is a category of soft materials, called active materials, which can deform under
external stimuli (tipically chemical or electrical) without any external load.
Muscle tissue is a typical example of these materials, in fact an electrical stimulus
leads the fibers to a contraction. In the following sections we will introduce two
methods to describe the activation of the tissue: the active stress and the active
strain. These methods take advantage of a decomposition, either additive for the
energy or multiplicative for the deformation gradient, which make it possible to
distinguish between an activated and non-activated state of the material. Moreover
we will see how these methods affect the mathematical properties of the energy, to
ensure that the problem can be well-posed.

3.1 The active stress approach

This approach, called active stress approach consist in the additive decomposition
of the strain energy function as the sum of two parts which describe the passive and
the active behaviour of the material.

Ψ(F) = Ψpass(F) + Ψact(F)

where Ψpass(F) represents the passive energy and Ψact(F) the active energy.
The first Piola-Kirchhoff stress tensor is obtained in the following way:

P(F) = Ppass(F) + Pact(F) =
∂Ψpass

∂F
(F) +

∂Ψact

∂F
(F)− pF−T

where Pact(F) is the stress given by the activation.
For the passive part, which is already discussed above, we will consider a Gent
material.
Since the deformation we are considering is Fλ and the fibers, the active part of the
material, are transversely isotropic and are deformed along the direction m = e1,
we will consider Ψact as a function of I4, in particular as a function of its square
root, which in this case is exactly λ, in fact
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I4 = tr CM = λ2

Now since the active part of the energy is written in terms of
√
I4, the stress relative

to the active part will be obtained as follows:

Pact(F) = 2
∂Ψ

∂F
(
√
I4)Fm⊗ Fm := Pact(

√
I4)Fm⊗ Fm

We are going to choose the Pact used in [8], which is the following:

Pact(λ) =

Popt
λmin − λ
λmin − λopt

exp
(2λmin − λ− λopt)(λ− λopt)

2(λmin − λopt)2
, λ > λmin

0, otherwise

from which the following active part of the energy is obtained:

Ψact(λ) =

Popt(λmin − λopt)
[
exp

(2λmin − λ− λopt)(λ− λopt)
2(λmin − λopt)2

− e
1

2
]
, λ > λmin

0, otherwise

By using least square optimization the following parameters are obtained:

� Popt = 73.52kPa , this parameter describes the maximal activation obtained

� λmin = 0.682, which is the minimal length for activation

� λopt = 1.192, that describes the point of maximum

The curve in Fig 3.1 is obtained, and we can notice that for λ < 0.9 and for
1 < λ < 1.3 the fit is not good, but the curves have a similar shape.
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Figure 3.1: Active stress along fibers and Hawkins and Bey’s active data

Now we can compute the total stress along the fibers:

PM(λ) = P ·M = µ(1− λ2 + 2λ−1 − 3

Imax
)−1(λ− λ−1) + Pact(λ)

where µ = 4 and Imax = 0.42.
The result obtained is the following:
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Figure 3.2: Gent’s model fit on Hawkins and Bey’s data
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we can see that the behaviour of the curve almost fully respects the data by
Hawkins and Bey [4], but for the intervals where the active curve didn’t fit well.
The last concern about this method is about the mathematical properties which
ensure the well-posedness of the problem. Thanks to the fact the the decomposition
is additive, we can say that the total energy inherites the properties of the ”weaker”
energy, for example if the active energy is rank-one convex, and the passive energy
is polyconvex, the total energy will be only rank-one convex. In our case the active
energy may not be polyconvex.

3.2 The active strain approach

In this model, called active strain approach, we consider a multiplicative decompo-
sition of the deformation gradient.
Considering the Kröner-Lee decomposition,which is

F = FeFa

where Fe is the elastic strain, the part which contributes to elastic energy and Fa

represents the deformation gradient given by the activation.
This decomposition represents that the fiber’s contraction can be physically inter-
preted as a geometrical remodeling of the body structure on a microscopic level.

Figure 3.3: Kröner-Lee decomposition

We can rewrite the strain energy as

Ψ(F; Fa) = det (Fa)Ψpass(FF−1
a ) (3.1)

and the first Piola-Kirchhoff tensor writes as

P(F; Fa) = det (Fa)
∂Ψpass

∂F
(FF−1

a )− pF−T
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From now on we are going to follow the work done in [6], which uses a simplified
version of the exponential energy to model the passive behaviour, then activates it
with a non-costant activation parameter.
The strain energy density used is

Ψpass(F) =
µ

4

{
1

α

[
eα(Ip−1) − 1

]
+Kp − 1

}
where, as seen in the past chapter,

Ip =
w0

3
tr C + (1− w0) tr CM

Kp =
w0

3
tr C−1 + (1− w0) tr C−1M

and the parameters have the same meaning as the energy described before.

The first Piola-Kirchhoff stress tensor then will be given by

Ppass(F) =
µ

2
F

{
eα(Ip−1

[
w0

3
I + (1− w0)M

]
−C−1

[
w0

3
I + (1− w0)M

]
C−1

}
−pF−T

Using µ = 0.1599 kPa, α = 19.35 and w0 = 0.7335, the following result for the
passive behaviour of the muscle can be obtained.
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Figure 3.4: Passive stress along fibers and Hawkins and Bey’s active data

Now we want to activate the muscle, and to do this we need to define Fa.
The chosen form is the following

Fa = (1− a)m⊗m +
1√

1− a
(I −m⊗m)
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where a is such that 0 ≤ a < 1 and it’s a dimensionless parameter which describes
the activation of the muscles, where a = 0 means that the muscle isn’t activated.
Moreover we have that det Fa = 1. The parameter a could be considered constant,
in order to have a simpler model, but we can show that in this case it will not fit
well the experimental data.
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Figure 3.5: Activation behaviour with respect to λ, with γ costant, γ = 0.05, 0.1, 0.15

This choice of activation is given by the fact that in the active part of the exper-
imental data the stress-stretch relationship reaches a maximum before decreasing,
which suggests that there is a behaviour dectated at the molecular level for which
the activation a of the muscle tissue depends on the stretch λ.
In particular we will consider a = a(I4), where I4 is the fourth invariant, and repre-
sents the squared stretch along the fibers.
A consequence of this assumption is that Fa = Fa(I4), and this leads to the following
activated form of the first Piola-Kirchhoff stress tensor:

P(F) = 2F
∂Ψ

∂C
− p̂F−T = 2F

∂

∂C

[
Ψpass(F

−T
a (I4)CF−1

a (I4))
]
−p̂F−T

From (3.1) we find the energy:

Ψ = Ψpass(FλF
−1
a ) = Ψ(λ, a(λ)) =

µ

4

[
1

α
(eα(Ip−1) − 1) +Kp − 1

]
where now, considering

Ce =
λ2

(1− a)2
m⊗m +

1− a
λ

(I −m⊗m)

we have that
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Ip =
w0

3
tr Ce + (1− w0) tr CeM =

(
1− 2

3
w0

) λ2

(1− a)2
+

2w0

3

(1− a)

λ

Kp =
w0

3
tr C−1

e + (1− w0) tr C−1
e M =

(
1− 2

3
w0

)(1− a)2

λ2
+

2w0

3

λ

(1− a)

Now we have to find the expression of a(λ), which has to satisfy the equation

Ptot = Ppas + Pact (3.2)

in which we can find Ptot and Ppas from the strain energy densities,with the condition

that a(λmin) = 0, with λmin = 0.6,then Pact has to be modeled from the data.
By integrating equation (3.2) we find that

Ψ(λ, a(λ))−Ψ(λ, 0) = Sact (3.3)

with Sact is obtained by integrating Pact, considering Sact(λmin) = 0.

To simplify we are going to take

a(λ) = e−p6λ(p5λ
5 + p4λ

4 + p3λ
3 + p2λ

2 + p1λ+ p0)(λ− λmin)

and find it by using least square optimization on (3.3), where Sact has been found
using the trapezoidal rule on the active data.
The form of the activation will be the following
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Figure 3.6: Activation behaviour with respect to λ

where the function has been truncated to prevent physical anomalies, like the
total stress becoming less than the passive one.
Finally we can compute the total stress along m, obtaining the following result
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Figure 3.7: Total stress-strain relation and Hawkins and Bey’s data

In the case of active strain, there is a trade off between activation complexity
and mathematical properties of the total energy, if the activation Fa is costant, the
total energy will preserve the convexity properties of the passive energy, ∀H 6= 0,
we have that

H :
∂2Ψ

∂F∂F
: H = H :

(
∂2

∂F∂F
Ψ(FF−1

a )

)
: H = HF−1

a :
∂2Ψ

∂F∂F
: HF−1

a > 0

and if H is a rank-one tensor, also HF−1
a is rank-one convex, so the total energy

preserves the properties of the passive one.
For what concerns the polyconvexity of the function we refer to the work by Neff
[13], in particular to the Lemma 6.5 :

Lemma. Let Ψ(F) be polyconvex and assume that Fa ∈ L∞(Ω, GL+(3,R)), where

GL+(3,R) :=

{
X ∈M3×3| detX > 0

}
,

is given. Then the function

Ψ̂(x,F) := Ψ(FF−1
a (x)) detFa(x)

is itself polyconvex.

However if we take a more complicated Fa(F), the mathematical properties of
the passive energy may be lost with activation.
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Chapter 4

A novel multiphase model with
active strain

In this chapter we will use the method used in the work by Riccobelli and Ambrosi
[1], the mixture active strain. This model considers an additive decomposition in
an isotropic and an anisotropic part, and uses the Kröner-Lee decomposition of the
deformation gradient only in the anisotropic part.

4.1 The mixture active strain approach

Another way to model muscle tissue is the mixture active strain approach, which
is a really interesting method, because by decomposing the energy in the sum of
an isotropic and an anisotropic part, we can model the passive behaviour of the
material, and activate, by applying the active strain approach, only the anisotropic
part of the material, which represents the fibers. So, even if this is a particular case
of the active stress, we can think of this as a more physiologically accurate way to
represent muscle tissue.
The energy will have the following form, which is the one shown above for fiber-
reinforced materials.

Ψ(F) = Ψiso(F) + Ψani(I4, I5) (4.1)

From (4.1) we can derive the Piola-Kirchhoff stress tensor, which reads

Ppass(F) =
∂Ψiso

∂F
+ det(Fa)

∂Ψani

∂F
− pF−T

Now, since only the anisotropic part of the energy will activate, we will apply the
Kröner-Lee decomposition only on it.

F = FeFa

So the total energy will read

Ψ = Ψiso(F) + det (Fa)Ψani(Fe) = Ψiso(F) + det (Fa)Ψani(FF−1
a )
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And the total stress derived will be

P(F) =
∂Ψ

∂F
=
∂Ψiso

∂F
+ det (Fa)

∂Ψani(FF−1
a )

∂F
− pF−T =

Piso(F) + Pani(FF−1
a )F−Ta − pF−T

In (4.1) the isotropic part of the material is described as a Gent material, so that

the strain energy density will be given by

Ψiso = −µ
2
Imax log (1− I1 − 3

Imax
)

where I1 is the first invariant of C, µ is the shear modulus and Imax is the maximum
value of I1. The anisotropic part considered in (4.1) is

Ψani = αβ(I
1
2β

4 − 1)2

where α and β are material constants. This energy is usually used with the square
root of I4, but in this case a parameter β is considered to take into account the
change of convexity.
For what concerns the deformation gradient and its Kröner-Lee decomposition we
have an uniaxial deformation in the direction m, as shown in the previous chapters

F = Fλ = λM +
1√
λ

(I−M)

where m = e1 and M = m⊗m, and

Fa = (1− γ)M +
1√

1− γ
(I−M)

where γ represents the shortening of the fibers. In this model we will consider the
activation parameter γ to be costant. This choice will,on one side, simplify the
model, but on the other side remove some some degrees of freedom with respect to
the activation seen above.
Since det Fa = 1, the first Piola-Kirchhoff stress tensor will be given by

P(F) = Piso(F) + Pani(FF−1
a )F−Ta − pF−T

and in particular, considering the energies chosen above, we have

Piso(F) =
∂Ψiso

∂F
= µ

(
1− I1 − 3

Imax

)−1

F

Pani(F) =
∂Ψani

∂F
= 2α

I
1
2β

4 − 1

I
2β−1
2β

4

FM
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Now what we are interested in is the principal stress in the direction m, which we’ll

call PM and which it’s obtained by differentiating Ψ(Fλ) with respect to λ :

PM(λ, γ) =
dΨ(Fλ)

dλ

In our case we will have that, using the mixture active strain approach, the first
Piola-Kirchhoff stress tensor will be decomposed as

PM(λ, γ) = P iso
M (λ) + P ani

M (λ, γ)

where

P iso
M (λ) =

dΨiso(Fλ)

dλ

P ani
M (λ, γ) =

dΨani(FλF
−1
a )

dλ

and considering the form of the energies shown before, we get:

P iso
M (λ) = µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1

(λ− λ−1)

P ani
M (λ, γ) = 2α

((
λ

1− γ

) 1
β
)((

λ

1− γ

) 1
β

−1

)
λ−1

and finally

PM(λ, γ) = µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1

(λ− λ−1)

+ 2α

((
λ

1− γ

) 1
β
)((

λ

1− γ

) 1
β

−1

)
λ−1

The following result is obtained:
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Figure 4.1: Plot of PM when µ = 1.8kPa, Imax = 0.41, α = 31kPa,
β = 1.5 and γ varies from 0 to 0.5 with steps of 0.05.

The curve is in good agreement with the data for γ = 0.5, which is also an
acceptable value for the physiological shortening of the fibers.
As we can see above the passive curve doesn’t represent the experimental data very
well, and the total curve shows a good agreement with the data only between λ = 0.9
and λ = 1.2.
To better understand the contribution of the components we can see the contribu-
tion of the anisotropic component and how it changes with the activation of the
material, while the contribution of the isotropic component was already shown in
Chapter 2.
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Figure 4.2: Plot of the anisotropic component where γ varies from 0 to 0.5 with
steps of 0.05.

We can see better the limitations of this model by looking only at its active part.
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Figure 4.3: Active contribution of the model and active experimental data.

We can observe that in the active case the curve doesn’t represent the behaviour
of the data, still being a good approximation for some λ in the middle range.
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For what concerns the mathematical issues raised by the mixture active strain ap-
proach, if both Ψiso and Ψani are rank-one convex and Fγ is costant, then:

H :
∂2Ψ

∂F∂F
: H = H :

∂2Ψiso(F)

∂F∂F
: H + HF−1

γ :
∂2Ψani(F)

∂F∂F
: HF−1

γ > 0

for all H rank-one convex.
For polyconvexity we have the same condition, in fact if both Ψiso and Ψani are
polyconvex then the activated energy is polyconvex too, as a direct consequence of
the result by Neff [13], already shown in Chapter 3.

4.2 Anisotropy and representation by invariants

In this chapter we are going to briefly resume the work done by Murphy in [3], since
it regards the choice of the dependence of the anisotropic part of the energy on I4

and I5.
We start by setting in the general framework proposed by Weiss in [21] to model a
transversely isotropic tissue, which is

Ψ = F1(I1, I2) + F2(I4) + F3(I1, I2, I4) = Ψ(I1, I2, I4) (4.2)

where

� Ψ1 is the energy contribution by the anisotropic part of the tissue

� Ψ2 represents the contribution of the anisotropic part

� Ψ3 represents the interaction between the collagen matrix and the fibers

In this subsection (4.2), to keep the notation of the work done by Murphy, we will
use the following invariants I1, I2 and I3:

I1 = tr B

I2 =
1

2

[
I2

1 − tr B2
]

I3 = det B = J2

What we want to show now is that the form of the energy in (4.2) is not physically
realistic.
We start by taking the Cauchy stress for an incompressible, homogeneous, trans-
versely isotropic, non-linear hyperelastic material,whose energy is dependent on both
anisotropic invariants I4 and I5, given by

t = −pI+2Ψ1B+2Ψ2

(
I1B−B2

)
+2Ψ4Fm⊗Fm+2Ψ5

(
Fm⊗BFm+BFm⊗Fm

)
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where m is the preferential direction, Ψk =
∂Ψ

∂Ik
, with k = 1, ..., 5 and p is an

arbitrary pressure.
The first two conditions required on the energy are the ones that ensure that there
is no stress in the undeformed configuration, and these are:

2Ψ0
1 + 4Ψ0

2 = p0 (4.3)

Ψ0
4 + 2Ψ0

5 = 0 (4.4)

where the 0 superscript means that is evaluated in the undeformed configuration,
and the two conditions are given by the fact that m is arbitrary.
Lastly we want the whole energy to be null in the undeformed configuration:

Ψ0 = 0

Now we set in the framework of linear elasticity (see, for example, Gurtin [12], ),
assuming that we have infinitesimal strains. Assuming that the preferential direction
m = e3 and assuming that the strain tensor has component εij we have that

t11 = −p+ 2µT ε11

t22 = −p+ 2µT ε22

t33 = −p+ C33ε33

t23 = 2µLε23

t13 = 2µLε13

t12 = 2µT ε12

where µT is the infinitesimal shear along the plane normal to the fibers, µL the

infinitesimal shear along the fibers and C33 a material costant.
Starting from this, Merodio and Ogden in [20], in order to make linear and non-
linear theory compatible, obtained some restrictions on the possible energies, which
in terms of the constants used above are:

2Ψ0
1 + 2Ψ0

2 = µT (4.5)

2Ψ0
1 + 2Ψ0

2 + 2Ψ0
5 = µL (4.6)

4Ψ0
44 + 16Ψ0

45 + 16Ψ0
55 = EL + µT − 4µL (4.7)

where EL is the Young’s modulus in the direction along the fibers.

Now (4.6), using (4.5), can be rewritten as follows

2Ψ0
5 = µL − µT (4.8)

which,using (4.4) implies that

Ψ0
4 = µT − µL (4.9)

Now if we consider our material indipendent of I5 we will have that Ψ5 = 0, which

implies in particular that Ψ0
5 = 0 and from (4.9) we get
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µT = µL (4.10)

which means that the infinitesimal shear moduli perpendicular to the fibers and

along them are identical.
This is a very counter-intuitive condition for a transversely isotropic material and,
as we will see, it’s not supported by experimental data.
The following studies are the ones cited in the work by Murphy:

� Sinkus et al. [22] using MR-Elastography on beef muscle, and two patients
with breast lesions showed 1.5 < µL/µT < 2.2.

� Gennisson et al. [23] using transient elastography techniques on beef muscle
and human biceps found 7.8 < µL/µT < 16.

� Arbogast and Margulies [24] using oscillatory shear tests on porcine brainstem
tissue found that µL > µT for all strains investigated.

� Kruse et al. [25] using MR-Elastography on bovine semitendinosus skeletal
muscle tissue found that µL > µT

� Kriz and Stinchcomb [26] using ultrasound found µL/µT = 1.97 for graphite-
epoxy fibre-reinforced materials.

� Morrow el al. [27] is the only study in contrast with others, in which, testing
the extensor digitorum longus muscle tissues from rabbits, obtained µL/µT =
0.66, but this study still shows that µL 6= µT .

Therefore there is experimental evidence that µL > µT and even more that µL 6= µT ,
therefore (5.9) cannot be considered valid.
Next we want to investigate the non-linear response to shear on a transversely
isotropic cube, with preferential direction m = e3 as before. The block will be
sheared using the following transformations:

Shear along the fibers: longitudinal shearing
1. x = X, y = Y, z = Z + κX
2. x = X, y = Y, z = Z + κY

Shear across the fibers: perpendicular shear
3. x = X, y = Y + κZ, z = Z
4. x = X + κZ, y = Y, z = Z

Shear in planes normal to the fibers: transverse shear
5. x = X, y = Y + κX, z = Z
6. x = X + κY, y = Y, z = Z

In an hyperelastic framework the three shears can be summarized as

σ =
dΨ(I1(κ), I2(κ), I4(κ), I5(κ))

dκ
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and for the various shears:

Longitudinal shear:

I1 = I2 = 3 + κ2, I4 = 1, I5 = 1 + κ2

σL = 2κ
(
Ψ1 + Ψ2 + Ψ5

)
Perpendicular shear:

I1 = I2 = 3 + κ2, I4 = 1 + κ2, I5 = (1 + κ2)2 + κ2

σP = 2κ
(
Ψ1 + Ψ2 + Ψ4 + Ψ5

(
3 + 2κ2

))
Transverse shear:

I1 = I2 = 3 + κ2, I4 = 1, I5 = 1

σT = 2κ
(
Ψ1 + Ψ2

)
Now if we consider Ψ = Ψ(I1, I2, I4), so that the energy doesn’t depend on I5, we

obtain that

σL = σT

which means that the longitudinal and transverse shear are the same for all shears.
This is physically counter-intuitive for a transversely isotropic material, and there
is some experimental evidence, like Dokos et al. [28] suggesting that the three shear
responses are different from each other.

4.3 Results of proposed models: prediction on ex-

perimental data

In this section we will select some anisotropic energies from the work of Chagnon et
al. [2], which depend only on both invariants I4 and I5.
As shown above the fit on the Hawkins and Bey’s data can be improved, so in the
next table there are the energies selected from the work by Chagnon et al. [2], which
can be used in the mixture active strain approach in order to obtain a better fit.
For what concerns the isotropic part of the model, we will use, as in Ch. 4.1, a Gent
energy:

Ψiso = −µ
2
Imax log

(
1− I1 − 3

Imax

)
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Ψani = c1(I4 − 1)− c1

2
(I5 − 1)

Park and Youn [14]

Ψani = c1(I4 − 1) + c2(I4 − 1)2 − c1

2
(I5 − 1)

Bonet and Burton [15]

Ψani = c1(I5 − 1)2

Merodio and Ogden [16]

Ψani = c1(2I4 − I5 − 1) + c2(I5 − 1)2

Murphy [3]

Ψani = c1(2I4 − I5 − 1) + c2(I4 − 1)(I5 − 1)

Murphy [3]

Ψani = c1(2I4 − I5 − 1) + c2(I4 − 1)2

Murphy [3]

Ψani = c1(I5 − I2
4 )

Hollingsworth and Wagner [17]

Ψani =
c1

2c2

(
exp

(
c2(I4 − 1)2

)
− 1
)
+
c3

2c4

(
exp

(
c4(I5 − 1)2

)
− 1
)

Masson et al. [18]

Ψani =
c1 + c2(I4 − 1)

c3 + c4(I4 − 1) + c5(I4 − 1)2 + c6(I5 − 2I4 + 1)

Horgan and Saccomandi [19]

Most of these energies don’t have enough degrees of freedom to respect the conditions
obtained above, so we will use the last two energies by Horgan and Saccomandi [19]
and Masson et. al. [18] as anisotropic parts of our mixture active strain model.
The first anisotropic energy that we will use in the mixture active strain approach
is the one used by Horgan and Saccomandi in [19].

37



Considering that in our case:

I4 =

(
λ

1− γ

)2

I5 =

(
λ

1− γ

)4

the anisotropic stress obtained along m is the following

P ani
M = 2

λ

(1− γ)2

c2

c3 + c4(I4 − 1) + c5(I4 − 1)2 + c6(I5 − 2I4 + 1)

− 2
λ

(1− γ)2

(c1 + c2(I4 − 1))(c4 + 2c5(I4 − 1)− 2c6)

(c3 + c4(I4 − 1) + c5(I4 − 1)2 + c6(I5 − 2I4 + 1))2

− 4
λ3

(1− γ)4

c6(c1 + c2(I4 − 1))

(c3 + c4(I4 − 1) + c5(I4 − 1)2 + c6(I5 − 2I4 + 1))2

This energy has a quite complex form, and the stress obtained is quite complicated
as well. As we can see in Fig. (4.4) the fit on the total curve is quite good. However
to reach this result some costants need to be negative, which makes the passive
branch of the curve physically inacceptable: in fact this branch doesn’t touch the
point (1,0), which means that without any activation and any elongation the body
can exert a force.

Hawkins and Bey's data
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Figure 4.4: Stress-strain relation with energy by Horgan and Saccomandi when
µ = 1.5 kPa, Imax = 0.41, c1 = −63.51 kPa, c2 = −10.54 kPa, c3 = 0.62 kPa,
c4 = −0.068 kPa, c5 = −0.867 kPa, c6 = −847 kPa and γ = 0.494.
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Hawkins and Bey's data

Active stress
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Figure 4.5: Stress-strain relation with active component of the energy by Horgan
and Saccomandi when µ = 1.5 kPa, Imax = 0.41, c1 = −63.51 kPa, c2 = −10.54 kPa,
c3 = 0.62 kPa, c4 = −0.068 kPa, c5 = −0.867 kPa, c6 = −847 kPa and γ = 0.494.

The anisotropic energy used by Masson et. al. [18] has been used for finite
dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed
tube.
It’s made by two exponential components, each one dependent on only one of the
two invariants. The anisotropic part of the component of the first Piola-Kirchhoff
stress tensor in the preferential direction m, is given by

P ani
M (λ, γ) = 2c1

(
exp

{
c2

(( λ

1− γ
)2−1

)2
}
− 1

)(( λ

1− γ
)2−1

)
λ

(1− γ)2
+

2c3

(
exp

{
c4

(( λ

1− γ
)4−1

)2
}
− 1

)(( λ

1− γ
)4−1

)
λ3

(1− γ)4
.

The results of the following model are plotted in Fig. 4.5, where we set µ = 1.5 kPa,
Imax = 0.41, c1 = −1.056 kPa, c2 = 0.201 kPa, c3 = 0.00454 kPa, c4 = −0.0527 kPa
and γ = 0.6.
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Hawkins and Bey's data
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Figure 4.6: Stress-strain relation with energy by Masson et al. when µ = 2 kPa,
Imax = 0.41, c1 = −3.501 kPa, c2 = −22.5908 kPa, c3 = 0.044 kPa, c4 = −0.624
kPa and γ = 0.481.

The total branch of the curve follows the behaviour of the data quite well, how-
ever almost every part of the curve has a quite big error with respect to the data.
The passive branch has a really good behaviour, and has it’s shown in Fig. 4.6 the
active component of the data also follows the experimental data behaviour quite well.
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Hawkins and Bey's data

Active stress
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Figure 4.7: Active component of the stress-strain relation with energy by Masson et
al. when µ = 2 kPa, Imax = 0.41, c1 = −3.501 kPa, c2 = −22.5908 kPa, c3 = 0.044
kPa, c4 = −0.624 kPa and γ = 0.481

Since both these models have a non-linear and complicate dependence on the two
invariants, while not fitting the data very well, I decided to use a linear combination
of the 3 energies proposed by Murphy.
Originally, in the work by Murphy [3], these energies had an isotropic component
made by a Neo-Hookean energy:

Ψiso = c1(I1 − 3)

but since the Gent energy is a generalization of a Neo-Hookean energy I decided to
take only the anisotropic part of these energies into account.
The resulting energy will be:

Ψ = −µ
2
Imax log

(
1− I1 − 3

Imax

)
+ c1(2I4 − I5 − 1) + c2(I4 − 1)2+

c3(I4 − 1)(I5 − 1) + c4(I5 − 1)2

41



which gives the following stress along the fibers:

PM(λ, γ) = µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1

(λ− λ−1)

+ 4c1

(
λ

(1− γ)2
− λ3

(1− γ)4

)
+2c2

(
λ

(1− γ)2
− 1

)(
λ

(1− γ)2

)
+ c3

(
λ

(1− γ)4
− 1

)(
λ

(1− γ)2

)
+c3

(
λ

(1− γ)2
− 1

)(
λ3

(1− γ)4

)
+ 2c4

(
λ

(1− γ)4
− 1

)(
λ3

(1− γ)4

)

from which we get the following fit:
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Figure 4.8: Plot of PM when µ = 2.3 kPa, Imax = 0.41, c1 = 6.21 kPa,
c2 = 15.5462 kPa, c3 = −0.3697 kPa, c4 = 0.0116 kPa and γ = 0.5556

As we can see in Fig 5.1 the passive branch has a good fit, while for the total fit
we can observe that the fit is good for λ > 0.88, but fails for the other values.
In particular we can notice this looking at the active branch in Fig 5.2
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Hawkins and Bey's data
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Figure 4.9: Plot of the active part PM

Moreover we can see the contribution to PM of each activated anisotropic com-
ponent of the energy:
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(a) Linear term: (2I4 − I5 − 1)
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(b) Quadratic term : (I4 − 1)2
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(c) Quadratic term : (I5 − 1)2
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(d) Quadratic mixed term : (I4 − 1)(I5 − 1)

Table 4.1: Contributions of single anisotropic activated terms.

All these energies predict better the data by Hawkins and Bey [4] even with a costant
activation using the mixture active strain approach, however polyconvexity of the
total energy may not the obtained, or however is not trivial to demonstrate, since
I5 is not polyconvex itself, but its combination with I4 may be.
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Conclusions

In this work we have considered various approaches in order to model muscle tissue.
First we introduced two passive energies which reproduce quite well the behaviour of
the uniaxial stretch if compared to the experimental results by Hawkins and Bey [4].
Then we introduced two methods to model the active behaviour of muscle tissue,
the active stress and the active strain, which have several limitations regarding the
mathematical properties of the method, or the possibility to reproduce well the
data behaviour. Another method to model active muscle behaviour is the mixture
active strain approach, which takes advantage of the Kröner-Lee decomposition only
on the anisotropic part of the energy. This method gives the possibility to better
reproduce the data even using a costant activation Fa, which permits to the total
energy to inherit the properties of the isotropic part and the anisotropic part of
the energy. Finally by introducing the work by Murphy [3] we decided to introduce
a new anisotropic energy which depends on both anisotropic invariants I4 and I5,
which can reproduce the Hawkins and Bey data almost completely using a costant
activation.
Further improvements can be

� Find an energy which better reproduces the lower fit of the energy;

� Find an energy which has a combination of I5 which is polyconvex, since I5

itself isn’t.
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